GAN-AE : An anomaly detection algorithm for New Physics search in LHC data - Université Clermont Auvergne Access content directly
Preprints, Working Papers, ... Year : 2023

GAN-AE : An anomaly detection algorithm for New Physics search in LHC data

Abstract

In recent years, interest has grown in alternative strategies for the search for New Physics beyond the Standard Model. One envisaged solution lies in the development of anomaly detection algorithms based on unsupervised machine learning techniques. In this paper, we propose a new Generative Adversarial Network-based auto-encoder model that allows both anomaly detection and model-independent background modeling. This algorithm can be integrated with other model-independent tools in a complete heavy resonance search strategy. The proposed strategy has been tested on the LHC Olympics 2020 dataset with promising results

Dates and versions

hal-04105917 , version 1 (25-05-2023)

Identifiers

Cite

Louis Vaslin, Vincent Barra, Julien Donini. GAN-AE : An anomaly detection algorithm for New Physics search in LHC data. 2023. ⟨hal-04105917⟩
0 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More