GAN-AE : An anomaly detection algorithm for New Physics search in LHC data - Université Clermont Auvergne
Article Dans Une Revue European Physical Journal C: Particles and Fields Année : 2023

GAN-AE : An anomaly detection algorithm for New Physics search in LHC data

Résumé

In recent years, interest has grown in alternative strategies for the search for New Physics beyond the Standard Model. One envisaged solution lies in the development of anomaly detection algorithms based on unsupervised machine learning techniques. In this paper, we propose a new Generative Adversarial Network-based auto-encoder model that allows both anomaly detection and model-independent background modeling. This algorithm can be integrated with other model-independent tools in a complete heavy resonance search strategy. The proposed strategy has been tested on the LHC Olympics 2020 dataset with promising results
Fichier principal
Vignette du fichier
s10052-023-12169-4.pdf (1.3 Mo) Télécharger le fichier
Origine Publication financée par une institution
Licence

Dates et versions

hal-04105917 , version 1 (08-02-2024)

Licence

Identifiants

Citer

Louis Vaslin, Vincent Barra, Julien Donini. GAN-AE : An anomaly detection algorithm for New Physics search in LHC data. European Physical Journal C: Particles and Fields, 2023, 83 (11), pp.1008. ⟨10.1140/epjc/s10052-023-12169-4⟩. ⟨hal-04105917⟩
80 Consultations
18 Téléchargements

Altmetric

Partager

More