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Abstract In recent years, interest has grown in alterna-
tive strategies for the search for New Physics beyond the
Standard Model. One envisaged solution lies in the develop-
ment of anomaly detection algorithms based on unsupervised
machine learning techniques. In this paper, we propose a new
Generative Adversarial Network-based auto-encoder model
that allows both anomaly detection and model-independent
background modeling. This algorithm can be integrated with
other model-independent tools in a complete heavy reso-
nance search strategy. The proposed strategy has been tested
on the LHC Olympics 2020 dataset with promising results.

1 Introduction

The search for New Physics beyond the Standard Model
is one of the main goals of high-energy physics. A fairly
common strategy is to search for a localized deviation in
an invariant mass spectrum that could correspond to a new
heavy particle. This kind of search usually depends on accu-
rate simulations of the Standard Model processes and also
on several signal hypotheses. However, simulating data from
experiments such as ATLAS [1] is computationally intensive
and is limited by modelling uncertainties. Also, assuming a
signal model without knowing what lies beyond the Standard
Model can be a source of bias that reduces the generalizabil-
ity of an analysis.

To overcome these limitations, much effort has been put
into defining generic search strategies that do not rely on
specific theoretical models of New Physics. One possible
solution is to use algorithms that don’t need a specific sig-
nal model to train on, but still detect events that differ from
the Standard Model predictions. Such unsupervised anomaly
detection algorithms [2] can potentially identify anomalous

a e-mail: julien.donini@cern.ch (corresponding author)

events by evaluating an anomaly score, so that in the search
for New Physics processes, signal events can be seen as an
anomaly with respect to the Standard Model.

A well-known class of anomaly detection algorithms
using unsupervised machine learning is the auto-encoder
(AE) and its derivatives [3,4]. Such models can be trained
directly on data with the only assumption that signal events
are very rare. In the following sections, we present a GAN-
AE algorithm inspired by AEs and generative models that
allows for both anomaly detection and data-driven back-
ground modeling. This model is tested on the LHC Olympics
2020 challenge dataset [5] as a benchmark. For this search
a complete strategy including the model independent Bum-
pHunter algorithm [6] has been defined. The code used to
build and train the GAN-AE algorithm on this dataset is
accessible online.1

2 The GAN-AE algorithm

The GAN-AE algorithm proposes to combine a vanilla auto-
encoder together with a discriminator network in an adver-
sarial manner similar to that of a Generative Adversarial Net-
work (GAN) [7]. Other algorithms propose similar models,
such as Outliers Exposure [8] and Self-Adversarial AE [9].
In these works, the goal is either to constrain the latent space
of an AE or to improve the sensitivity to anomalies in a semi-
supervised setting. With the GAN-AE algorithm, the objec-
tive is to construct an alternative measure of reconstruction
error using a multilayer perceptron network trained to dis-
tinguish reconstructed and original events. Figure 1 shows a
synoptic view of the GAN-AE architecture.

Traditionally, auto-encoders are trained using a possibly
regularized measure of the (Euclidean) distance between

1 https://github.com/lovaslin/GAN-AE.
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Fig. 1 Schematic of the global layout of the GAN-AE architecture. The
auto-encoder network (AE) is trained to produce reconstructed events
that closely resemble the original events. The discriminator network
(D) is trained to discriminate between reconstructed and original events
with labels 0 and 1, respectively

their input and output. A well known metric for this task
is the Mean Square Error (MSE). In this work, we propose
an alternative metric based on a supervised discriminator net-
work trained to classify reconstructed events (labeled 0) and
original events (labeled 1). This binary classifier (bc) model
is trained with the usual binary cross-entropy loss function:

bc
(
y(d), y(l)

)

= −
[
y(l) log

(
y(d)

)
+

(
1 − y(l)

)
log

(
1 − y(d)

)]
, (1)

where y(d) is the output of the discriminator and y(l) the
associated label.

In order to train this two-party GAN-AE network, we
define a training procedure divided into two main phases.
The first step is to train the discriminator network parameters
θ D with a mixture of original data and events reconstructed
by the AE. Parameters θ D are then updated for a few epochs
while keeping the parameters θ AE of the AE fixed.

The second step is to train the auto-encoder parameters
θ AE using the discriminator output as constraint. This train-
ing is done with a special loss function that combines both
the usual distance metric and the information coming from
the discriminator. The distance metric used is a modified
Euclidean distance defined as:

D
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√√√√ 1
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i − y(r)

i

)2
, (2)

with y(o) the input vector (original event), y(r) the output
vector (reconstructed event) and N the dimension of both
vectors. The constraint of the discriminator is introduced by
modifying the binary cross-entropy loss function defined in
Eq. 1. In fact, while the goal of the discriminator is to cor-
rectly identify reconstructed events associated with the label
‘0’, the goal of the AE is, on the contrary, to confuse the
discriminator network. Thus, the AE must be trained so that
the output of the discriminator comes closer to the label ‘1’
corresponding to (real) original events. This can be achieved

by computing the binary cross-entropy loss of the discrim-
inator using reconstructed events associated with the label
of the original events as the target. The two metrics are then
combined to define the loss for a given event k as follows:

Lk

(
y(o), y(r), y(d)

)
= bc

(
y(d), y(l) = 1

)
+ εD

(
y(o), y(r)

)
,

(3)

with ε a hyperparameter that balances the relative importance
of the two terms. This loss is used to update θ AE for a few
epochs.

The AE has an architecture composed of 5 layers: the
encoding part with the input layer, a hidden layer and the
latence space, and a decoding part that is exactly symmetri-
cal to the encoder part. The activation function used for the
hidden layers is the LeakyReLU function, while the latent
space and output are linear. As an additional constraint, we
used the tied weight trick discussed in [10] to impose that
the weight tensors of the decoder are the transposed ones of
those of the encoder:

W (n−k) =
(
W (k)

)T
, (4)

where W (k) is the weight tensor between layers k and k+1 of
the encoder and W (n−k) is the weight tensor between layers
n − k and n − k − 1 of the decoder. Dropout is applied to
each hidden layers.

The structure of the discriminator network is defined as a
fully connected multilayer perceptron with 4 hidden layers
using LeakyReLU activation. The output is one-dimensional
with a sigmoid activation function compatible with the binary
cross-entropy loss function. Dropout is applied to the hidden
layers of the discriminator.

The main hyperparameters of the GAN-AE algorithm are
presented in Sect. 4.1. In this architecture, the discriminator is
used to enhance the training of the auto-encoder. However, in
the application step, only the trained AE is actually used. The
anomaly score is defined as the modified Euclidean distance
(Eq. 2). Thus, the most anomalous events, here assimilated
to the most signal-like events, can be identified as those with
the highest anomaly score. The selected anomalous events
can then be compared to a reference to test for the presence
of an anomaly. The next section describes how to obtain this
reference.

3 Background modelling and mass sculpting mitigation

In order to integrate the GAN-AE algorithm into a complete
and fully data-driven search strategy, we propose a method
to extract a viable background model directly from the data.
This method is based on the hypothesis that the signal that
we might expect to find in the data is a rare process, such that
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Fig. 2 Normalized histograms of the invariant mass. The blue his-
togram shows the spectrum before applying any selection to the anomaly
score. The orange and green histograms show the spectra after selec-
tion at the 50th and 85th percentiles of the anomaly score distribution,
respectively. The data used to obtain this figure is described in Sect. 4

the data is dominated by the background. In this case, when
performing a bump hunt in a relevant spectrum, such as an
invariant mass, one would expect the signal to be invisible
unless proper selections are made. Thus, the invariant mass
spectrum prior to any selection can serve as the reference
background distribution.

However, in order to use this distribution as a reference
background, we must ensure that its shape is not affected
by the selection based on the anomaly score described in
the previous section. Even if the GAN-AE model is trained
without using the invariant mass as an input variable, this
condition is generally not met, as illustrated in Fig. 2.

To get rid of the mass sculpting induced by the selection
process, we propose two mitigation techniques that can be
combined. First, an event weight is applied in order to uni-
formize the invariant mass distribution. Otherwise, events
with low invariant mass will be over-represented in the data
compared to others, leading to a bias in the reconstruction
error. Then, to reduce the mass sculpting, the Distance Cor-
relation regularization (DisCo) [11,12] is added to the loss of
the auto-encoder. As it requires the use of independent and
identically distributed samples of the distribution to decorre-
late, this term is defined for a batch of events.

By combining the DisCo regularization term and the event
weighting, we can define the modified loss function of the
auto-encoder:

Lk

(
y(o), y(r), y(d)

)

=
Nb∑
i=1

wi

[
bc

(
y(d)
i , y(l)

i = 1
)

+ εD
(
y(o)
i , y(r)

i

)]

+αDisCo
(

D�, y(m)
)

(5)

with wi the weight associated to event i , Nb the number
of events in a batch, α a new hyperparameter of the loss,

Fig. 3 Diagram representing the analysis flow applied for the LHC
Olympics 2020 challenge

y(m) the vector of invariant mass value associated to a batch
and D� the vector of anomaly score values associated to
a batch. Note that the event weights should not be applied
when computing the DisCo regularization. Since the goal of
this term is to decorrelate the invariant mass and anomaly
score distributions, it is important to keep both distributions
unchanged.

With this new loss function, we can ensure that the invari-
ant mass distribution prior to the selection on the anomaly
score is a valid reference model for the background. Now
we need to compare this reference with the distribution of
selected events in order to look for a localized deviation. For
this purpose we use the pyBumpHunter package [13]2 which
provides an improved version of the BumpHunter algorithm
[6] implemented in Python. This tool has the advantage of
locating any deviation in a model-independent way, evaluat-
ing both local and global significance by removing the Look
Elsewhere Effect [14]. Now we have all the tools needed to
build a complete and model-independent strategy for reso-
nant New Physics searches. The next section shows an exam-
ple of application using a benchmark dataset.

4 Application to LHC Olympics 2020 data

In order to test and evaluate the performance of the tech-
niques developed in the previous section, we use the public
dataset proposed for the LHC Olympics 2020 challenge [5].
This dataset provides a good case study for testing and com-
paring anomaly detection algorithms in the context of model-
independent New Physics searches. The strategy that we will
use for this challenge is illustrated in Fig. 3.

The challenge proposes a so-called RnD dataset [15] to
assist the development of anomaly detection algorithms. This
dataset is composed of a background sample containing QCD
multijet events and a benchmark New Physics signal model.
The signal events consist of a Z’ boson with a mass of 3.5 TeV
(inspired by [16]) decaying into two heavy resonances X
and Y with masses of 500 GeV and 100 GeV, respectively.
Two types of signal signatures are considered, one where
both X and Y decay to two quarks and form boosted jets
with 2-pronged substructure, and another where both X and
Y decay to three quarks, resulting in boosted jets with 3-
pronged substructure. A total of 1M events were generated

2 GitHub - scikit-hep/pyBumpHunter at v0.4.0.
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Table 1 Table summarizing all variables, computed in the preprocess-
ing of the LHC Olympics 2020 data, for each large jet, except for the
last variable, which is defined for pairs of jets

4-vectors pT , η, φ, E

Jet mass and constituents m jet , nc
Number of subjets [20] Nincl , Nexcl

N-subjetiness [21] τ1, τ2, τ3, τ21, τ31

Energy rings Ering,1, Ering,2, . . . , Ering,10

Di-jet invariant mass mj j

for the background model, along with 100k events for each
signal hypothesis. The events are generated using Pythia8
[17] and Delphes 3.4.1 [18] with no pile-up or multiple
parton interaction included, and with a detector architecture
similar to the ATLAS experiment. Events are selected using a
large radius (R = 1) jet trigger with a pT threshold of 1.2 TeV.

The anomaly detection algorithms are tested on three dif-
ferent Black Box datasets [19] containing unknown event
samples. The only information given to the challenge par-
ticipants is that the events contain at least two jets with a
different background modelling than the RnD data. The goal
is then to determine if there is a hidden signal in the Black
Boxes and at what mass.

For each event, a list of up to 700 hadrons 4-vectors is
provided. Jets are reconstructed using the anti-kt algorithm
implemented in the FastJet 3.3.3 library [20] with a large
jet radius R = 1. A second clustering is performed within
the large jets with a smaller radius r = 0.2 in order to char-
acterize their substructure. The list of the variables computed
in this preprocessing procedure is presented in Table 1. For
a clustering in two large jets, we have a total of 45 variables.
The code used to preprocess the data is publicly available.3

4.1 Hyperparameter optimization

The hyperparameters are optimized according to three Fig-
ures of Merits (FoM). The first is the reconstruction error of
the AE network, which also serves as an anomaly score. The
performance being maximal when the reconstruction error
is minimal. Another important criterion, discussed above,
is the amount of mass sculpting when applying a cut to the
anomaly score distribution. Finally, a third aspect to consider
is the stability of the method. This is necessary to ensure the
resilience of the algorithm to random fluctuations in the ini-
tialization of the model parameters prior to training. It can
be evaluated by training a model several times with the same
hyperparameters but with different initialization seeds. All
these criteria should be taken into account in order to opti-
mize the GAN-AE in a model-independent way.

3 https://gitlab.cern.ch/idinu/clustering-lhco.

Table 2 Initial set of hyperparameter used at the beginning of the opti-
mization procedure. A pre-training of the Auto-Encoder is performed
without adversary using only the reconstruction error before the main
training loop

Hyperparameter Value

Latent space dimension 14

AE hidden dimension 84

D hidden dimensions {150, 100, 50}

ε (reconstruction term) 5.0

α (DisCo term) 50.0

Dropout rate 20%

Number of training cycles 100

AE epochs per cycle 5

D epochs per cycle 7

Pre-training of AE True

In the context of the present work, we chose an initial
set of hyperparameters based on our previous expertise with
Auto-Encoders and GANs. These hyperparameters, used as
starting point for the optimization procedure, are reported in
Table 2.

The different FoM of the model can be evaluated with
these initial values and then at neighboring points in the
hyperparameter space. The position of the points is then
updated according to the results. This technique is similar to
that used to update the centroids defined in the well-known
k-means algorithm. However, the selection of the best hyper-
parameter set is difficult to automate. Therefore, based on this
procedure, the hyperparameters were optimized empirically.

Compared to Table 2, the architecture of the discriminant
was changed to four hidden layers with dimensions {300,
200, 100, 50}. Also, the hyperparameters of the loss function
were changed to 6.0 for ε and 65.0 for α. Increasing the DisCo
regularization term was found to be important to reduce the
mass sculpting.

4.2 Results on RnD data

In order to evaluate the performance of the GAN-AE algo-
rithm and validate the background modeling procedure, we
use the RnD dataset. The results are presented for a cluster-
ing in two large jets. The GAN-AE model is trained on 100k
background events and tested on a mixture of background and
signal. All variables listed in Table 1 are used in the training
except for the di-jet invariant mass and the azimuthal angle
φ of the jets, for a total of 42 input variables.

The anomaly scores obtained for the background and both
signal test samples are shown in Fig. 4a. The corresponding
ROC curves are shown in Fig. 4b. The Area Under the Curve
(AUC) obtained on the test set is 0.82 for the first RnD sig-
nal (2-prong) and 0.74 for the second (3-prong) This result
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Fig. 4 Results obtained with the RnD data of the LHC Olympics 2020
challenge showing the separation of background and signal: a anomaly
scores for background and signal events; b ROC curves obtained from
the test set of the RnD data. The labels signal 1 (orange) and signal 2
(green) correspond to 2-prong and 3-prong jet substructure, respectively

confirms that the Auto-Encoder trained using the GAN-AE
algorithm is able to distinguish the signal from the back-
ground.

To check the ability to remove mass sculpting, the mod-
eling of the reference background distribution in the test
set is evaluated after applying a selection on the anomaly
score. Figure 5a shows the normalized distribution of the
di-jet invariant mass, before and after selection at differ-
ent thresholds. To quantitatively assess the deformation of
the invariant mass spectra induced by the selection, we use
Jensen–Shannon divergence as a metric [22]. By continu-
ously varying the selection threshold, we can evaluate this
metric to produce the curve shown in Fig. 5b. Compared to
the results shown on Fig. 2, the invariant mass distribution
is no longer modified when applying a selection based on
the anomaly score. The fact that Jensen–Shannon divergence
stays below 0.1 up to a 99th percentile threshold indicates
that the invariant mass distribution of the background before
selection remains compatible with that after selection.

Fig. 5 Results obtained with the RnD data of the LHC Olympics 2020
challenge showing the capacity to mitigate the mass sculpting: a di-jet
invariant mass of background events before (blue) and after selection
at the 50th (orange) and 85th (green) percentile of the anomaly score
distribution, b Jensen–Shannon divergence between the invariant mass
distribution before and after selection for different thresholds

By comparison, a GAN-AE model trained without the
mass sculpting mitigation techniques results in the Jensen–
Shannon divergence curve shown in Fig. 6. This metric
increases rapidly with the selection threshold reaching more
than twice the distance obtained with the mitigation tech-
niques. This strong constraint on the mass sculpting can be
realized simultaneously with the good ability to separate sig-
nal and background shown in Fig. 4. This achievement is a
good improvement over classically trained Auto-Encoders
for which applying such constraints generally deteriorates
the quality of the anomaly detection.

Figure 6 also shows the results obtained using only one
mitigation technique. Using the DisCo regularization results
in a Jensen–Shannon distance that is similar, within uncer-
tainties, to that obtained with both mitigation techniques.
However, when using only the DisCo regularization, we
observed a localized deviation at high selection thresholds,
which appeared at a low invariant mass. This deviation can
be identified as a spurious signal when performing a model-
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Fig. 6 Jensen–Shannon distance obtained using the two mass sculpting
mitigation techniques (blue) and without using them (red). The orange
and green lines correspond, respectively, to the Jensen–Shannon dis-
tance obtained using only DisCo and only event weights

independent bump hunt. Adding event weights is the only
way we found to reduce this spurious signal without affect-
ing the anomaly detection performance.

Finally, one last check concerns the effect of signal con-
tamination in the training set. The main hypothesis behind
our strategy is that the signal should be very small compared
to the background.4 To quantify up to which signal fraction
this hypothesis can hold, we performed signal injection tests
using the first RnD signal (2-pronged substructure). In this
process, the amount of signal in the training set is gradually
increased, and a new model is trained at each step. We have
found that the AUC obtained using the same hyperparameters
as presented above is stable up to a signal over background
(S/B) ratio of 0.5%, and remains satisfactory up to 1% with
an AUC above 0.75. Beyond this value, the AUC deteriorates
rapidly with increasing signal fraction. Figure 7 shows the
evolution of the AUC for signal fraction values up to 3%.

4.3 Results on Black Box datasets

After validating the GAN-AE algorithm and the mass sculpt-
ing mitigation procedure, we can apply the complete strat-
egy chain to the Black-Box datasets. For each Black-Box, a
GAN-AE model is trained on 100k events using the set of
hyperparameters presented in Sect. 4.1. The trained model is
applied to each dataset in order to evaluate the anomaly score
distribution. A selection is applied on the 99th percentile of
this distribution. Then, the invariant mass distribution of the
di-jets in this subsample is compared to the invariant mass
distribution of the di-jets in the pre-selection data, which
serves as a reference background. The reference histogram

4 This hypothesis seems valid if we consider the limits obtained at the
LHC for di-jet resonance searches, for example in [23] or [24].

Fig. 7 Evolution of the average AUC as function of the signal fraction
in the data. Error bars are obtained by training multiple models with the
same signal fraction

is normalized to the selected data using a side-band normal-
ization procedure.

Results obtained with pyBumpHunter for Black-Box 1
are presented in Fig. 8. The BumpHunter algorithm finds a
deviation in data, with respect to the data-driven reference
background, around 3.97 TeV with a local significance of
almost 3σ (Fig. 8a). No other significant excess, or deficit,
is observed outside the selected interval. Figure 8b shows
the background-only test statistics from which a global sig-
nificance of 1.2σ is derived. The low overall significance is
partly explained by the fact that the bump hunt search is per-
formed without assuming a prior signal and with a floating
background normalization.

After the end of the challenge, the content of each Black-
Box was revealed by the organisers. Figure 9 shows the
histograms of di-jet invariant mass in Black-Box 1, along
with the true labels corresponding to background and signal
events. The region of the spectrum identified by the Bum-
pHunter algorithm is indeed the location of the true signal.
The signal generated for this dataset corresponds to a 3.8 TeV
Z’ boson decaying to two heavy resonances with a similar
2-prong substructure jet signature as in the RnD data.

The initial signal over S/B ratio is 0.08%, which is within
the application range of our method. After applying the full
strategy chain to this dataset, we obtain an improvement in the
S/B ratio of a factor of 20. The signal efficiency after selection
at the 99th percentile of the anomaly score distribution is over
15% for a background rejection of almost 99%. We also note
that the data-driven reference background fits quite well the
true background distribution after selection. The deviation
identified by BumpHunter corresponds to the true signal with
a small bias on the mass of the Z’ (less than 200 GeV).

The same methodology has been applied to the two other
Black-Boxes and results are summarized below. Black-Box 2
did not contain any signal, as this data set was actually pro-
vided for the purpose of testing the identification of spuri-
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Fig. 8 Results obtained with the data of Black-Box 1 of the LHC
Olympics 2020 challenge after applying the complete analysis chain

ous signals. Our algorithm successfully modeled the shape of
the background and found no significant deviations. The third
black box contained a complex signal signature, as the gener-
ated resonance could decay into either two or three jets, with
a branching ratio of one third and two thirds, respectively.
In the case of Black-Box 3 and with the 2-jet clustering,
the GAN-AE algorithm was unable to distinguish between
signal and background events. However, the process of mod-
eling the background shape from the data still worked.

Finally, we compared the performance of the GAN-AE
algorithm with a classical supervised algorithm using a BDT

Fig. 9 Histograms showing the true background (blue) and signal
(orange) distributions for Black-Box 1, after selection on the 99th per-
centile of the anomaly score distribution. The reference background
histogram used for BumpHunter is shown in green and the selected
interval is represented by the vertical dashed lines

model implemented in scikit-learn.5 The model was trained
on the RnD background and 2-pronged signal and applied to
Black-Box 1 sample. The AUC obtained on the RnD dataset
is 0.99, but it drops to 0.89 when applied to the Black-Box
dataset. We also evaluated an approximate local significance6

of 3.5σ considering a selection threshold at the 99th per-
centile of the BDT output distribution. In comparison, the
AUC obtained for a GAN-AE trained directly on the Black-
Box dataset is 0.85 and the local significance is 2.9σ . In
addition, since the BDT does not use the DisCo regulariza-
tion or the event weights, there is no control over the mass
sculpting. Thus, there is no easy way to extract a suitable
background model to perform a bump hunt, other than using
simulated Monte-Carlo samples.

Conclusion

The development of alternative search strategies for New
Physics beyond the Standard Model has gained much impor-
tance in recent years. Events such as the LHC Olympics chal-
lenge proposed in 2020 are part of this effort. In this context,
we propose a model-independent analysis strategy based on
unsupervised machine learning and data-driven background
modeling.

The GAN-AE algorithm offers an interesting alternative to
the classical training of auto-encoders by defining a new mea-
sure of reconstruction error given by an adversary network.
This algorithm offers good performance and stability, even
when using strong constraints to reduce the mass sculpting

5 https://scikit-learn.org/stable/index.html.
6 We use the approximation σ = S/

√
S + B with S and B the number

of signal and background events respectively.
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such as the DisCo regularization term. Thanks to this con-
straint, we can derive a reference background model directly
from the data, with the only assumption that the signal is
rare enough. The background model can then be used as a
reference for the BumpHunter algorithm, which allows the
evaluation of both local and global significance.

The strategy was tested using the LHC Olympics 2020
challenge datasets. The results on the RnD dataset as well as
on the first black box are promising, allowing us to correctly
identify the hidden signal with a local significance of 2.9σ .
This result is comparable to those obtained by other partici-
pants. Our strategy is also the only one to propose a built-in
evaluation of the global significance, showing its complete-
ness. A possible way to improve the method would be to
include the GAN-AE algorithm in a weakly supervised set-
ting, such as the Tag N’Train (TNT) algorithm [25], which
obtained one of the best results in the LHC Olympics 2020
challenge.
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