On superperfection of edge-intersection graphs of paths * - Université Clermont Auvergne
Pré-Publication, Document De Travail Année : 2019

On superperfection of edge-intersection graphs of paths *

Résumé

The Routing and Spectrum Assignment problem in Flexgrid Elastic Optical Networks can be modeled in two phases: a selection of paths in the network and an interval coloring problem in the edge-intersection graph of these paths. The interval chromatic number equals the smallest size of a spectrum such that a proper interval coloring is possible, the weighted clique number is a natural lower bound. Graphs where both parameters coincide for all induced subgraphs and for all possible integral weights are called superperfect. We examine the question which minimal non-superperfect graphs can occur in the edge-intersection graphs of paths in different underlying networks and show that for any possible network (even if it is restricted to a path) the resulting edge-intersection graphs are not necessarily superperfect.
Fichier principal
Vignette du fichier
KW_Lagos2019_HAL.pdf (237.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02017433 , version 1 (13-02-2019)
hal-02017433 , version 2 (26-04-2019)

Identifiants

  • HAL Id : hal-02017433 , version 1

Citer

Hervé Kerivin, Annegret K. Wagler. On superperfection of edge-intersection graphs of paths *. 2019. ⟨hal-02017433v1⟩
213 Consultations
301 Téléchargements

Partager

More