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Abstract

The Routing and Spectrum Assignment problem in Flexgrid Elastic
Optical Networks can be modeled in two phases: a selection of paths
in the network and an interval coloring problem in the edge-intersection
graph of these paths. The interval chromatic number equals the smallest
size of a spectrum such that a proper interval coloring is possible, the
weighted clique number is a natural lower bound. Graphs where both
parameters coincide for all induced subgraphs and for all possible integral
weights are called superperfect. We examine the question which minimal
non-superperfect graphs can occur in the edge-intersection graphs of paths
in different underlying networks and show that for any possible network
(even if it is restricted to a path) the resulting edge-intersection graphs
are not necessarily superperfect.

1 Introduction

Flexgrid Elastic Optical Networks constitute a new generation of optical net-
works in response to the sustained growth of data traffic volumes and demands
in communication networks. In such networks, light is used as communication
medium between sender and receiver nodes, and the frequency spectrum of an
optical fiber is divided into narrow frequency slots of fixed spectrum width. Any
sequence of consecutive slots can form a channel that can be switched in the
network to create a lightpath (i.e., an optical connection represented by a route
and a channel). The Routing and Spectrum Assignment (RSA) problem con-
sists of establishing the lightpaths for a set of end-to-end traffic demands, which
involves finding a route and assigning an interval of consecutive frequency slots
for each demand such that the intervals of lightpaths using a same edge in the
network are disjoint, see e.g. [15]. Thereby, the following constraints need to be
respected when dealing with the RSA problem:

∗This work was supported by the French National Research Agency grant ANR-17-CE25-
0006, project FLEXOPTIM.
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1. spectrum continuity : the frequency slots remain the same on all the links
of a route;

2. spectrum contiguity : the frequency slots allocated to a demand must be
contiguous;

3. non-overlapping spectrum: a frequency slot can be allocated to at most
one demand.

The RSA problem is a generalization of the well-studied Routing and Wavelength
Assignment (RWA) problem that is associated with a fixed grid of frequencies
[6]. The former problem has started to receive a lot of attention over the last
few years. It has been shown to be NP-hard [3, 16]. In fact, if for each demand
the route is already known, the RSA problem reduces to the so-called Spectrum
Assignment (SA) problem and only consists of determining the demands’ chan-
nels. The SA problem has been shown to be NP-hard on paths [14] which makes
the SA problem (and thus also the RSA problem) much harder than the RWA
problem which is well-known to be polynomially solvable on paths, see e.g. [6].

More precisely, we are given a communication network G and a set of end-to-
end traffic demands between pairs u, v of nodes in G specifying the number duv

of required frequency slots to satisfy this demand. The routing part of the RSA
problem consists of selecting a route through G from u to v, i.e. a (u, v)-path
Puv in G, for each such traffic demand. The spectrum assignment can then be
interpreted as an interval coloring of the edge-intersection graph I(P) of the set
P of selected paths:

• Each path Puv ∈ P becomes a node of I(P) and two nodes are joined by
an edge if the corresponding paths in G are in conflict as they share an
edge (note: we do not care whether they share nodes).

• Any interval coloring in this graph I(P) weighted with the demands duv

correctly solves the spectrum assignment: we assign a frequency interval
of duv consecutive frequency slots (spectrum contiguity) to every node of
I(P) (and, thus, to every path Puv ∈ P (spectrum continuity)) in such
a way that the intervals of adjacent nodes are disjoint (non-overlapping
spectrum).

The interval chromatic number χI(I(P), d) is the smallest size of a spectrum
such that I(P) weighted with the traffic demand duv for each path Puv has a
proper interval coloring. The weighted clique number ω(I(P), d), also taking
the traffic demands duv as weights, is a natural lower bound for χI(I(P), d).
Graphs where both parameters coincide for all induced subgraphs and for all
possible non-negative integral weights are called superperfect.

A graph is perfect if and only if we have ω(G, d) = χI(G, d) for every (0, 1)-
weighting d of its nodes, thus every superperfect graph is perfect. A graph
G = (V,E) is comparability if and only if there exists a partial order O on
V × V such that uv ∈ E if and only if u and v are comparable w.r.t. O.
Comparability graphs form a subclass of superperfect graphs [10], but there are
also superperfect non-comparability graphs such as e.g. even antiholes [8].
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Figure 1: The graph A1 together with node weights d and an interval coloring.

A complete list of minimal non-comparability graphs is presented in [7], the
superperfect graphs from this list have been determined in [1]. The remaining
non-comparability graphs from the list in [7] which are not superperfect by [1]
are thus minimal non-superperfect: the graph A1 shown in Fig. 1 and all

• odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2,
• the graphs Jk and J ′

k for k ≥ 2 (see Fig. 2),
• the complements of Dk for k ≥ 2 and of Ek, Fk for k ≥ 1 (see Fig. 3).
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Figure 2: Minimal non-superperfect graphs: Jk, J ′
k for k ≥ 2.
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Figure 3: Minimal non-superperfect graphs: the complements of Dk, Ek, Fk.

Note that we have ω(G,1) < χI(G,1) with 1 = (1, . . . , 1) if G is an odd hole
or an odd antihole (as they are not perfect by [4]), whereas the other minimal
non-superperfect graphs from the list are perfect and, thus, ω(G, d) < χI(G, d)
is attained for some d 6= 1 (see Fig. 1).
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We examine the question which of these minimal non-superperfect graphs
can occur in edge-intersection graphs of paths in different underlying networks
G: if G is a tree (see Section 2) or more generally if G is a 1-tree (see Section
3). We close with some concluding remarks and open problems.

2 If the network is a tree

If the underlying communication network G is a tree, then there exists exactly
one (u, v)-path Puv in G for every traffic demand between a pair u, v of nodes.
Hence, if G is a tree, then P and I(P) are uniquely determined for any set
of end-to-end traffic demands, and the RSA problem reduces to the spectrum
assignment part.

Next, we examine which minimal non-superperfect graphs can occur in I(P)
if G is a tree:

Theorem 1 If P is a set of paths in a tree, then I(P) can contain A1 and

• odd holes C2k+1 for k ≥ 2, but no odd antiholes C2k+1 for k ≥ 3,
• the graphs Jk and J ′

k for all k ≥ 2,
• the graphs D2, D3, E1, E2, E3, F 1, F 2, F 3, but none of Dk, Ek, F k for
k ≥ 4.

Proof (Sketch) In order to prove the theorem, we will present according path
collections for the affirmative cases and exhibit a P 6 (which cannot occur in
I(P) if G is a tree) as common subgraph of the remaining cases.

If P is a set of paths in a tree, then I(P) can contain

• odd holes C2k+1 for k ≥ 2,
• the graphs Jk and J ′

k for all k ≥ 2,
• the graphs A1, D2, D3, E1, E2, E3, F 1, F 2, F 3,

see the corresponding collections of paths in Fig. 4 and Fig. 5 (which can be
easily extended to all cases for k ≥ 2), and Fig. 6, Fig. 7, Fig. 8, Fig. 9 and
Fig. 10 for the remaining graphs.
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Figure 4: The odd hole C5 = I(P) with P in a star.

Furthermore, we can show by case analysis that P 6 cannot occur in the edge-
intersection graph of paths in a tree. This implies that I(P) cannot contain
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Figure 5: The graphs J2 = I(P) and J ′
2 = I(P) with P in a path.
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Figure 6: The graph A1 = I(P) with P in a tree.

• odd antiholes C2k+1 for k ≥ 3,

• the graphs Dk, Ek, F k for k ≥ 4,

as their complements all contain a P6 (which is clear for odd holes C2k+1 for
k ≥ 3 and for the graphs Dk, Ek, Fk for all k ≥ 4 from their definition, see Fig.
3). �

This implies that edge-intersection graphs of paths in a tree are not neces-
sarily perfect (as they may contain odd holes).

We next examine the situation when we restrict the tree further. A graph is
triangulated if it does not have holes Ck with k ≥ 4 as induced subgraph. We
can show the following:

Lemma 2 If P is a set of paths in a tree with maximum degree 3, then I(P)
is triangulated and can contain the graphs Jk and J ′

k for all k ≥ 2 and D2, E1,
E2.

Proof (Sketch) For that, we can prove (again by case analysis) that Ck with
k ≥ 4 can occur in the edge-intersection graph of paths in a tree only if the
tree contains a star K1,k. This implies for the case where the network is a tree
with maximum degree 3 that I(P) cannot contain any hole Ck with k ≥ 4,
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Figure 7: The graphs D2 = I(P) and D3 = I(P) with P in a tree.
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Figure 8: The graphs E1 = I(P) and E3 = I(P) with P in a tree.

hence I(P) is triangulated and from the above list, we can exclude the following
graphs:

• all odd holes C2k+1 for k ≥ 2,
• the graphs A1, D3, E3, F 1, F 2, F 3 (that all contain a C4),

whereas the graphs Jk and J ′
k for all k ≥ 2 and D2, E1, E2 have an according

representation. �

This implies that edge-intersection graphs of paths in a tree with maximum
degree 3 are perfect (as they neither contain odd holes nor odd antiholes), but
not necessarily superperfect.

Moreover, an interval graph is the intersection graph of intervals in a line.

Lemma 3 If P is a set of paths in a path, then I(P) is an interval graph and
can contain the graphs Jk and J ′

k for all k ≥ 2 and E2.

Proof In this case, I(P) is clearly an interval graph and only

• E2 and the graphs Jk and J ′
k for all k ≥ 2
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Figure 9: The graph E2 = I(P) with P in a path.
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Figure 10: The graphs F 1 = I(P), F 2 = I(P) and F 3 = I(P) with P in a tree.

can occur (see their according representations in Fig. 5 and Fig. 9), whereas
D2, E1 are excluded (as known examples of non-interval graphs from [12]). �

This implies that even edge-intersection graphs of paths in a path are not
necessarily superperfect.

3 If the network is a 1-tree

Modern optical networks have clearly not a tree-like structure due to surviv-
ability aspects concerning node or edge failures in the network G. At least the
subset of “core nodes” has to lie on a cycle (to have the choice between two
paths, see e.g. [11]). We wonder which minimal non-superperfect graphs from
the list in [7] can occur in edge-intersection graphs of paths in 1-trees (that are
graphs obtained from a tree by adding one edge, i.e., graphs having exactly one
cycle).

The situation when the network G is a 1-tree includes in particular the case
when G is a cycle and, thus, when I(P) is a circular-arc graph (as it is the
intersection graph of arcs in a cycle). Making use of this fact, we can prove:

Theorem 4 If P is a set of paths in a cycle, then I(P) can contain A1 and
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• all odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2,
• the graphs Jk and J ′

k for all k ≥ 2,
• the graphs Dk for all k ≥ 2,
• E1 and E2, but not Ek for k ≥ 3,
• F 2, but not F 1 neither F k for k ≥ 3.

Proof (Sketch) If P is a set of paths in a cycle, then I(P) can contain

• odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2 (as they are well-known
examples of circular-arc graphs, see e.g. [5] and Fig. 11 for illustration),

• the graphs Jk and J ′
k for all k ≥ 2 and E2 (as they are, by Theorem

1, examples of interval graphs, which form by construction a subclass of
circular-arc graphs, see Fig. 5 and Fig. 9 for illustration),

• A1, the graphs Dk for all k ≥ 2, E1 and F 2 by presenting the correspond-
ing collections of paths, see Fig. 12 and Fig. 13.

Note that from the path representation of D2 in Fig. 12, we can get the cor-
responding collections of paths for the graphs Dk for all k ≥ 3 as follows:
P k+2 = a, 1, . . . , k, d ⊆ Dk can be embedded in the cycle (e.g. by using the
k + 2 corresponding paths of a path representation of an sufficiently large odd
antihole, see Fig. 11), then we add a long path for c and a short path for b (only
sharing an edge with the paths of a and d).
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Figure 11: The graph C7 = I(P) with P in a cycle.

However, I(P) cannot contain F 1, neither F k nor Ek for k ≥ 3 because

• E3 is not a circular-arc graph, as there is no corresponding collection of
paths (which can be shown by case analysis);

• each of Ek for k ≥ 4 and F 1 contains C4 ∪ K1 as induced subgraph
(1, 3, 4, a, b in Ek and 1, a, b, d, e in F 1, see Fig. 10) which is a well-known
minimal non-circular-arc graph by [2];

• each of F k for k ≥ 3 contains a domino induced by 1, k, a, b, d, e as sub-
graph (see F 3 in Fig. 10 for illustration), which is another well-known
minimal non-circular-arc graph by [5].

�
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Figure 12: The graphs A1 = I(P) and D2 = I(P) with P in a cycle.

Remark 5 Note that E3 is, to the best of our knowledge, a new example of
a minimal non-circular-arc graph (see e.g. the results on circular-arc graphs
surveyed in [5]).

If the network is a 1-tree, then all minimal non-superperfect graphs occuring
in I(P) when the network is a tree or a cycle can clearly be present. In addition,
we can further show, by presenting according path collections, that also the
families Ek and F k can occur in such edge-intersection graphs. Thus, we obtain:

Theorem 6 If P is a set of paths in a 1-tree, then I(P) can contain A1 and

• all odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2,
• the graphs Jk and J ′

k for all k ≥ 2,
• the graphs Dk for all k ≥ 2,
• the graphs Ek and F k for all k ≥ 1.

Proof (Sketch) In the case where the network G is a 1-tree, all studied minimal
non-superperfect graphs occuring in I(P) when the network is a tree or a cycle
can be present, hence we conclude from Theorem 1 and Theorem 4 that we have

• A1 (can occur in both cases)
• all odd holes C2k+1 for k ≥ 2 (can occur in both cases),
• all odd antiholes C2k+1 for k ≥ 2 (can occur if G is a cycle),
• the graphs Jk and J ′

k for all k ≥ 2 (can occur in both cases),
• the graphs Dk for all k ≥ 2 (can occur if G is a cycle),
• E1, E2, E3, F 1, F 2, F 3 (can occur if G is a tree).
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Figure 13: The graphs E1 = I(P) and F 2 = I(P) with P in a cycle.

Hence, it is left to address the two families Ek, F k for k ≥ 4. We can show that
the graphs Ek and F k for all k ≥ 4 can occur if G is a 1-tree, by presenting
the corresponding collections of paths. For that, we first note that Ek and F k

differ only in the presence of edge bd. The path representation of the subgraphs
induced by a, b, c, d, e are shown in Fig. 14.
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Figure 14: The paths representations of the subgraphs induced by a, b, c, d, e in
Ek and F k.

Moreover, the P k+2 = a, 1, . . . , k, e ⊆ Ek, F k can be embedded in a cycle
running through the edges used by the paths of a, c, e (e.g. again by using for
1, . . . , k the corresponding paths of a path representation of an sufficiently large
odd antihole in such a way that the paths for a and e fit). The path of c needs
to be enlarged to meet all paths of 1, . . . , k, see Fig. 15 for illustration.

This finally proves the theorem. �

Hence, we can finally conclude that all the studied minimal non-superperfect
graphs can occur in edge-intersection graphs of paths, as soon as the network
G is a 1-tree and satisfies minimal survivability conditions concerning edge or
node failures.
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4 Concluding remarks

We showed that edge-intersection graphs of paths in communication networks
are not necessarily perfect (as they can contain odd holes and odd antiholes)
and are, thus, also not necessarily superperfect. If we restrict the networks to
trees having maximum degree 3, then I(P) is triangulated (and, thus, perfect),
but not necessarily superperfect, and even if we restrict the networks to paths,
then I(P) is an interval graph, but still not necessarily superperfect (as the
minimal non-superperfect graphs Jk and J ′

k for all k ≥ 2 and E1 can occur).
This is in accordance with the fact that the SA problem has been showed to be
NP-hard on paths [14].

Hence, in all networks, it depends on the weights d induced by the traffic
demands whether there is a gap between the weighted clique number ω(I(P), d)
and the interval chromatic number χI(I(P), d). To determine the size of this
gap, we propose to extend the concept of χ-binding functions introduced in [9]
for usual coloring to interval coloring in weighted graphs, that is, to χI -binding
functions f with

χI(I(P), d) ≤ f(ω(I(P), d))

for edge-intersection graphs I(P) in a certain class of networks and all possible
non-negative integral weights d. We can identify for one of the studied families
of minimal non-superperfect graphs such a χI -binding function:

Lemma 7 If I(P) is an odd hole, then χI(I(P), d) ≤ 3
2ω(I(P), d) for all non-

negative integral weights d.

Note that a network of Spain together with its demands (see e.g. [13]) is a
real instance where a natural routing P yields an edge-intersection graph I(P)
with several non-superperfect subgraphs, including an odd hole C7 that attains
the worst-case bound of the χI -binding function.

It is clearly of interest to study such χI -binding functions for the other fam-
ilies of minimal non-superperfect graphs and to identify a hierarchy of graph
classes between trees and sparse planar graphs resembling the structure of mod-
ern optical networks in terms of the gap between ωI(I(P), d) and χI(I(P), d).

Furthermore, in networks different from trees, the routing part of the RSA
problem is crucial and raises the question whether it is possible to select the
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routes in P in such a way that neither non-superperfect graphs nor unnecessarily
large weighted cliques occur in I(P).

Note that the studied families of minimal non-superperfect graphs are not an
exhaustive list. In fact, giving a complete list of such graphs is an open problem,
so that our future work comprises to find more minimal non-superperfect graphs
and to examine the here addressed questions for them.

Finally, edge-intersection graphs of paths in a path (resp. a cycle) corre-
spond to the well-studied class of interval graphs (resp. circular-arc graphs).
Can we characterize (by some combinatorial properties) the graph class that
corresponds to all edge-intersection graphs of paths in a tree? The results from
Section 2 imply that this needs to be a superclass of interval graphs and a
subclass of P 6-free graphs.

Acknowledgement. We would like to thank Martin Safe for interesting dis-
cussions on the topic, in particular concerning circular-interval graphs.
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Appendix

We here provide a network of Spain together with its demands (taken from e.g.
[13]) as a real instance of the RSA problem, see Fig. 16 for the network and
Table 1 for a subset of demands.

Figure 16: The network of Spain together with a routing P of a subset of
demands with I(P) = C7.
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index origin s destination t demand dst

1 6 2 3
2 3 8 3
3 5 7 3
4 8 9 3
5 10 6 3
6 4 6 3
7 2 5 3

Table 1: The considered subset of demands

A natural routing P of this subset of demands (see again Fig. 16) yields an
edge-intersection graph I(P) equal to an odd hole C7:

• P6,2 and P3,8 share link l5,

• P3,8 and P5,7 share link l13,

• P5,7 and P8,9 share link l14,

• P8,9 and P10,6 share link l10,

• P10,6 and P4,6 share link l6,

• P4,6 and P2,5 share link l7,

• P2,5 and P6,2 share link l1.

The odd hole C7 together with the weights d = (3, . . . , 3) attains the worst-case
bound of the χI -binding function as it has ω(C7, d) = 6 < 9 = χI(C7, d).
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