On superperfection of edge-intersection graphs of paths - Université Clermont Auvergne
Communication Dans Un Congrès Année : 2020

On superperfection of edge-intersection graphs of paths

Résumé

The Routing and Spectrum Assignment problem in Flexgrid Elastic Optical Networks can be modeled in two phases: a selection of paths in the network and an interval coloring problem in the edge-intersection graph of these paths. The interval chromatic number equals the smallest size of a spectrum such that a proper interval coloring is possible, the weighted clique number is a natural lower bound. Graphs where both parameters coincide for all induced subgraphs and for all possible integral weights are called superperfect. We examine the question which minimal non-superperfect graphs can occur in the edge-intersection graphs of paths in different underlying networks and show that for any possible network (even if it is restricted to a path) the resulting edge-intersection graphs are not necessarily superperfect.
Fichier principal
Vignette du fichier
KW_SuperEIGoP_HAL_v2.pdf (286.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02017433 , version 1 (13-02-2019)
hal-02017433 , version 2 (26-04-2019)

Identifiants

Citer

Hervé Kerivin, Annegret K. Wagler. On superperfection of edge-intersection graphs of paths. CTW 2020, Sep 2020, online, Italy. ⟨10.1007/978-3-030-63072-0_7⟩. ⟨hal-02017433v2⟩
213 Consultations
301 Téléchargements

Altmetric

Partager

More