P-adic Analytic Functions - Université Clermont Auvergne
Ouvrages Année : 2021

P-adic Analytic Functions

Résumé

The book describes the definitions and properties of p-adic analytic functions in a complete algebraically closed ultrametric field. Various properties of p-adic exponential-polynomials are examined, such asthe Hermite-Lindemann theorem in a p-adic field, with a new proof. The order and type of growth for analytic functions arev studied , in tyhe whole field and in the complemental of an open disk, using the Motzkin meromorphic products. Thye Nevanlinna theory is widely explained, with various applications. Small functions are introduced with results of uniqueness. The question of whether the ring of analytic functions , in the whole field or in an open disk, is a Bezout ring. is also examined
Fichier principal
Vignette du fichier
p-adic analytic functions.pdf (1.55 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04787199 , version 1 (17-11-2024)

Licence

Identifiants

  • HAL Id : hal-04787199 , version 1

Citer

Alain Escassut. P-adic Analytic Functions. WSPC. WSPC, 2021, 978-981-12-2621-2. ⟨hal-04787199⟩
0 Consultations
0 Téléchargements

Partager

More