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Introduction

The theory of analytic and meromorphic functions is well known on the
field C. Consider now an algebraically closed ultrametric field that is complete
with respect to its ultrametric absolute value, such as the field Cp which is the
completion of the algebraic closure of Qp whose absolute value is the p-adic
absolute value. It is possible to make a theory of analytic and meromorphic
functions and this was done in the 20-th century, with new results recently
obtained. However, understanding the behaviour of an analytic function in a
domain of such a field K requires to know all particular properties of K which
are very different from those of the field C. Particularly Cp is not spherically
complete, which means that certain decreasing sequences of disks may have an
empty intersection, though the field is complete...All constructions of fields are
made in the first Part A in order to work in a field the properties of which
are clearly known. Thus, the book is aimed at being autocontained in order to
provide readers all basic properties without looking at several other books.

Analytic elements where defined by Marc Krasner in order to make analytic
functions. Due to the absence of connected sets in an ultrametric field, we
defined infraconnected sets which make the biggest class of sets where analytic
elements have a coherent behaviour. Here we do not recall the theory of analytic
functions on quasi-connaected subsets, made by Marc Krasner, nor the more
general theory of analytic functions on infraconnected subsets made by Philippe
Robba but we will restrict ourself to the properties of analytic and meromorphic
functions on classical sets such as the whole field K, or a disk, or an annulus and
the complement of a disk and we will study many properties of these functions,
such as the growth order for analytic functions and overall the Nevanlinna theory
for meromorphic functions, in the whole field K made by Abdelbaki Boutabaa
and this inside a disk and finally in the complement of an open disk. We can then
obtain many applications on value sharing, parametrization and small functions.

All properties of analytic functions or meromorphic functions are based on
the properties of analytic elements inside disks and annuli, with sometimes the
use of the famous Mittag-Leffler Theorem for analytic elements on an infracon-
nected set, due to Marc Krasner and also the factorization of analytic elements
on an infraconnected set due to Elhanan Motzkin.

Problems linked to exponentials are well known in complex analysis. Similar
problems may be considered in an ultrametric field: Hermite-Lindeman’s The-
orem and transcendence of one among a few eponentials, for instance. Most of
proofs require specific ultrametric methodes. Here we give an original proof of
Hermite-Lindeman’s Theorem in an ultrametric field which applies not only to
Cp but also the Levi-Civita field.

Given an open disk of center 0 and diameter R and a sequence (an, qn)n∈N
with lim

n→+∞
|an| = R, |an| < |an+1| and qn ∈ N, the problem to construct an

anaytic function admitting each an as a zero of order qn was solved by Michel
Lazard in a spherically complete field. The construction is a very big work
which is recalled here.
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The order of growth for entire functions is recalled with all relations to the
type and the cotype of growth. Next, a study is made on the order of growth
and the type and the cotype of growth for an analytic function inside an open
disk.

The p-adic Nevanlinna theory is constructed, in the whole field and inside
an open disk, but also in the complement of a hole, with the help of Motzkin’s
factors.

Branched values are studied in connection with the order of growth for the
numerator and the denominator.

The zeros of meromorphic functions and their derivatives are thoroughly
examined and are used to study the Hayman conjecture, in the p-adic context.
The case of f ′f2 was only solved in 2013 in a p-adic field and requires here many
intermediate results, some of them due to Jean-Paul Bézsivin.

Concerning small functions in complex analysis, a famous theorem due to
K. Yamanoi is well known and unfortunately we don’t have an equivalent in
p-adic analysis. However, we present here a kind of theorem providing us with
an inequality that is not as good as Yamanoi’s inequality in complex analysis
but lets us obtain some new results in problems on sharing small functions.
For instance, two meromorphic functions sharing 7 small functions (ignoring
multiplicity) are equal; that applies to analytic functions: analytic functions
sharing 3 small functions (ignoring multiplicity) are equal.

As previously remarked, the situation in fields with residue characteristic
zero particularly involves Levi-Civita fields and which get an increasing impor-
tance. When results require a specific statement, that is mentioned, particularly
in Chapters B.16 and B.17.
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A. Ultrametric �elds

A.1. Basic definitions and properties of ultrametric fields

In this first chapter we will recall basic definitions and properties on ultra-
metric fields: ultrametric absolute values, valuation rings and residue fields. We
must define holes of a subset and infraconnected subsets that are essential for
the behaviour of analytic functions (certain authors improperly call such sets
”connected sets” which makes no sens in topology since there are no connected
sets except singletons in an ultrametric field). A major interest of the class of
infraconnected sets is that it is the biggest class of sets in an ultrametric com-
plete algebraically closed field where the famous Krasner Mittag-Leffler theorem
applies.

Definitions and notations: Throughout the book, we denote by N the set
of integers ≥ 0, by Z the ring of relative integers, by Q the field of rational
numbers, by R the field of real numbers and by C the field of complex numbers.

Given a topological space T and a subset S of T , we denote by S its closure

(also called adherence) and by
◦
S its interior (also called opening).

Let E be a field provided with an absolute value | . | and let log be a real
logarithm function of basis θ > 1. We call valuation associated to that absolute
value the mapping v from E to R defined as v(x) = − log |x| and here, we set
Ψ(x) = log |x| and |E| = {|x| | x ∈ E}. If a set F contains the zero of a ring,
we denote by F ∗ the set F \ {0}. An absolute value is said to be trivial if
|x| = 1 ∀x ∈ E \ {0}.

Throughout the book, we will denote by IL a field complete with respect
to a non-trivial ultrametric absolute value and by K an algebraically closed
field complete with respect to a non-trivial ultrametric absolute value. We will
denote by | . |∞ the archimedean absolute value defined on R.

Lemma A.1.1: Let E be a field provided with an ultrametric absolute value
| . |. The completion of E with respect to that absolute value is provided with an
ultrametric absolute value which continues that of E. The set {|x| | x ∈ E∗} is
a subgroup of the multiplicative group R∗+.

Definition: Given a field E provided with an ultrametric absolute value | . |,
the multiplicative group {|x| | x ∈ E∗} is called the value group of E and the
additive group {v(x) | x ∈ E} is called valuation group of E.

Similarly, the set {Ψ(x) | x ∈ E∗} is a subgroup of R called valuation group
of E.

The field E is said to have discrete valuation or to have discrete absolute value
if its valuation group is a discrete subgroup of R and hence is isomorphic to Z.
Else, the valuation group is dense in R and E is said to have dense valuation or
to have a dense absolute value.
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Lemma A.1.2 is classical and proven in the same way no matter what the
absolute value of E.

Lemma A.1.2: Let E be a field provided with two absolute values whose as-
sociated valuations are v and w, respectively. They are equivalent if and only if
there exists r > 0 such that w(x) = rv(x) whenever x ∈ E.

Proof. If such a r exists, the two absolute values are seen to be equivalent.
Reciprocally, we assume them to be equivalent and take a ∈ E such that v(a) ≥
0. It is seen that w(a) ≥ 0. On the other hand, for all x ∈ E and for all

m,n ∈ N, we have v(
xm

an
) > 0 if and only if w(

xm

an
) > 0. Therefore, we see that

v(x)
v(a)

>
n

m
is equivalent to

w(x)
w(a)

>
n

m
. Then, since Q is dense in R, we have

v(x)
v(a)

=
w(x)
w(a)

whenever x ∈ E and therefore
w(x)
v(x)

=
w(a)
v(a)

.

Notations: The set of the x ∈ E such that |x| ≤ 1 will be denoted by UE and
the set of the x ∈ E such that |x| < 1 will be denoted by ME .

Then Lemma A.1.3 is immediate:

Lemma A.1.3: UE is a local subring of E whose maximal ideal is ME.

Definitions and notations: Henceforth UE is called the valuation ring of E.

The maximal ideal ME of UE is called the valuation ideal and the field E =
UE
ME

is called the residue class field of E. For any a ∈ E, the residue class of a will
be denoted by a.
The characteristic of E is named the residue characteristic of E and will be
denoted by p.

Lemma A.1.4: Let F be a subfield of E, let E (resp. F) be the residue class
field of E (resp. of F ). Then F is a subfield of E. If E is algebraically closed
and if its valuation is not trivial, it is dense.

Proof. The first statement is immediate. Next, given α ∈ E such that 0 < |α| <
1 and β ∈ E such that βq = αs we have v(β) =

q

s
v(α) whenever s ∈ N∗ and

q ∈ Z.

Lemma A.1.5: Let V be a IL-vector space of finite dimension provided with
two norms. Then the two norms are equivalent.

Proof. Let ‖ . ‖ and ‖ . ‖′ be the two norms on V . We proceed by induction on
the dimension of V and assume the equivalence true for subspaces of dimension
n < q. Let V have dimension q. Let e1, ...eq be a base of V . Let us suppose that
the two norms are not equivalent on V . Then there exists a sequence (un)n∈N
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of the form un =
q∑
j=1

aj,nej , with ‖un‖ ≥ 1, such that lim
n→∞

‖un‖′ = 0. Let

S be the subspace of V generated by {e1, ..., eq−1}. For every n ∈ N, we put

vn =
q−1∑
j=1

aj,nej .

First, we suppose that
(1) lim

n→∞
|aq,n| = 0.

Since lim
n→∞

‖un‖′ = 0, we have lim
n→∞

‖vn‖′ = 0. By hypothesis, the restrictions

of the two norms to S are equivalent, hence we have lim
n→∞

‖vn‖ = 0. But since

‖un‖ ≥ 1 for all n ∈ N, this contradicts (1).
Now, since (1) is not true, there exists a subsequence of the sequence (|aq,n|)n∈N

that admits a strictly positive lower bound and therefore, without loss of gen-
erality, we can clearly assume that there exists r > 0 such that |aq,n| ≥ r for all
n ∈ N. Let (xn)n∈N be the sequence defined as xn =

un
aq,n

. It is seen that

(2) lim
n→∞

‖xn‖′ = 0.

The two norms ‖ . ‖ and ‖ . ‖′ are equivalent on S and they both are equivalent

to the product norm ‖ . ‖′′ defined as ‖
q−1∑
j=1

bjej‖′′ = max
1≤j≤q−1

|bj |. Since IL is

complete, S is complete with respect to ‖ . ‖′′, hence S is closed in V with
respect to the two norms ‖ . ‖ and ‖ . ‖′. Hence by (2) eq belongs to S, which
is absurd and finishes the proof.

Theorem A.1.6: Let F be an algebraic extension of IL, provided with two
absolute values extending the one IL. These absolute values are equal.

Proof. Let v, w be the valuations associated to these absolute values. Let a ∈ F .
By Lemma A.1.5, the two absolute values are equivalent on IL[a]. Hence by
lemma A.1.2, there exists r > 0 such that w(x) = rv(x) whenever x ∈ IL[a].
But since v(x) = w(x) whenever x ∈ IL and since there exists u ∈ IL such that
v(u) 6= 0, we have r = 1.

Lemma A.1.7: Let A be a IL-algebra. Let φ be a semi-norm of IL-algebra
satisfying φ(xn) = (φ(x))n ∀x ∈ A. Then φ is ultrametric.

Proof. Let a, b ∈ A satisfy φ(a) ≥ ϕ(b). We just have to show that φ(a + b) ≤

φ(a). Obviously we have φ((a+ b)n) = φ
( n∑
k=0

Ckna
kbn−k

)
. For each k = 0, ...n

we have φ(Ckna
kbn−k) = |Ckn|φ(akbn−k) ≤ φ(a)kφ(b)n−k ≤ φ(a)n hence φ((a +

b)n) ≤ (n+1)φ(a)n and therefore φ(a+b) ≤ n
√
n+ 1 φ(a) for all n ∈ N∗. Finally

we obtain φ(a+ b) ≤ φ(a).
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The most classical example of an ultrametric complete algebraically closed
field is the field Cp that will be described later.

Notations: Consider the field E provided with an ultrametric absolute value.
Let a ∈ E and let r ∈ R+. We denote by d(a, r) the disk {x ∈ E| |x− a| ≤ r},
by d(a, r−) the disk {x ∈ E| |x−a| < r} and we call circle of center a, of radius
r the set C(a, r) = d(a, r) \ d(a, r−).

Given r1 and r2 such that 0 < r1 < r2 we denote by Γ(a, r1, r2) the annulus
{x ∈ E| r1 < |x − a| < r2} and by ∆(a, r1, r2) the annulus {x ∈ E| r1 ≤
|x− a| ≤ r2}.

We know that if b ∈ d(a, r) then d(b, r) = d(a, r) . In the same way if
b ∈ d(a, r−) then d(b, r−) = d(a, r−). Moreover given two disks T and T ′ such
that T ∩ T ′ 6= ∅ then either T ⊂ T ′ or T ′ ⊂ T .

We denote by δ the distance defined on E by δ(a, b) = |a− b|. Given a ∈ E
and a subset D of E, we set δ(a,D) = inf{|x−a| | x ∈ D} and given two subsets
D, F of E, we set δ(D,F ) = inf{|x− y| | x ∈ D, y ∈ F}.

We set diam(D) = sup{|x− y| | |x ∈ D, y ∈ D} and diam(D) is named the
diameter of D.

Similarly, we set codiam(D) = sup{|x − y| |x ∈ D, y /∈ D} and codiam(D)
is named the codiameter of D.

Of course the following three statements are seen to be equivalent :
i) d(a, r) = d(a, r−)
ii) C(a, r) = ∅
iii) r /∈ | E |
Further, the disks d(b, r−) included in C(a, r) (resp. in d(a, r)) are the disks

d(b, r−) such that b ∈ C(a, r) (resp. in d(a, r)). They are called the classes of
C(a, r) (resp. of d(a, r)).

Henceforth D will denote a subset of the field IL .
The closure of D (also called adherence of D) is denoted by D and the

interior of D (also called opening of D) is denoted by
◦
D .

Given a point a ∈ L we put δ(a,D) = inf{|x − a| |x ∈ D}. Then δ(a,D) is
named the distance of a to D.

Given two subsets D, D′ of L we put δ(D,D′) = inf{|x−y| |x ∈ D, u ∈ D′}.
Then δ(D,D′) is called the distance between D and D′.

We will denote by ÎL an extension of IL provided with an absolute value that
extends that of IL. Given a ∈ ÎL, r > 0, d̂(a, r) (resp. d̂(a, r−)) will denote the
disk {x ∈ ÎL| |x− a| ≤ r} (resp. {x ∈ ÎL| |x− a| < r} ).

Let D be a subset of IL, of diameter R ∈ R (resp. +∞), whose holes form
a family

(
d(ai, r−i )

)
i∈N. Let a ∈ D. We will denote by D̂ the set d̂(a,R) \((⋃

i∈I
d̂(ai, r−i )

)⋃
(D \D)

)
(resp. L̂ \

(⋃
i∈I

d̂(ai, r−i )
)

).
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Lemma A.1.8: Let d(a, r), d(b, s) be disks such that d(a, r)∩d(b, s) 6= ∅ with
r ≤ s. Then d(a, r) ⊂ d(b, s).

Let us also notice the following basic lemma:

Lemma A.1.9: Suppose that the residue class field E of the field E is finite,
of cardinal q. Then for every disk d(a, r) with a ∈ E and r ∈ |E|, admits only q
classes.

Lemma A.1.10: D̃\D admits a unique partition of the form (Ti)i∈I , whereas
each Ti is a disk of the form d(ai, r−i ) with ri = δ(ai, D).

Proof. For every a ∈ D̃\D, let r(a) = δ(a,D). Let α and β be two points in D̃\D
such that | β−α | < r(α). It is easily seen that for every x ∈ D, we have |x−β| =
|x−α | , and then the family of the disks T (α) = d(α, r(α)−) (α ∈ D̃\D) makes
a partition of D̃ \D because given α and β ∈ D̃ \D , either |α − β| < r(α)
and then T (α) = T (β), or |α − β| ≥ r(α) and then |α − β| ≥ r(β) hence
T (α) ∩ T (β) = ∅.

Definition and notation: Such disks d(ai, r−i ) are called the holes of D. If
D is bounded of diameter R we denote by D̃ the disk d(a,R) for any a ∈ D. If
D is not bounded we put D̃ = IL.

Example 1 : The holes of a disk d(a, r−), with r ∈ | IL |, are the classes of
C(a, r).
Example 2 : The only one hole of IL \ d(0, 1−) is d(0, 1−).
Example 3 : The holes of IL \ d(0, 1) are the disks d(a, 1−) with a ∈ d(0, 1).

Definitions: D is said to be infraconnected [44], [50], [58] if for every a ∈ D,
the mapping Ia from D to R+ defined by Ia(x) = |x − a| has an image whose
closure in R+ is an interval. In other words, D is not infraconnected if and only
if there exist a and b ∈ D and an annulus Γ(a, r1, r2) with 0 < r1 < r2 < |a− b|
such that Γ(a, r1, r2) ∩D = ∅.

Lemma A.1.11 is obvious:

Lemma A.1.11: If D is infraconnected of diameter R ∈ R (resp. +∞) then
Ia(D) = [0, R] (resp. Ia(D) = [0,+∞[ ).

The following Lemma A.1.12 gives a point of view from a hole of D.

Lemma A.1.12: Let D be infraconnected and let α belong to a hole T of
diameter ρ. The closure of the set {|x − α| |x ∈ D} is an interval whose lower
bound is ρ.
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Proof. We just have to show that for every r and r′ such that ρ < r < r′ <
diam(D), there exists β ∈ D such that r < |β−α| < r′. By definition of the holes
there exists b ∈ D such that |α−b| < r and then, since D is infraconnected, there
exists β ∈ D such that r < |b−β| < r′. But it is seen that |β−α| = |b−β|.

Given two infraconnected sets A and B we may prove A∪B to be infracon-
nected in the following two hypothesis (Th. A.1.13 and A.1.15).

Theorem A.1.13: Let A and B be two infraconnected sets such that A∩B 6=
∅. Then A ∪B is infraconnected.

Proof. If A and B are not bounded, the statement is obvious because for every
a ∈ A, Ia(A) = R+ and for every a ∈ B we have Ia(B) = R+ . Now we
may assume A to be bounded, of diameter R, while B has diameter R′ ≥ R
(resp. is not bounded). Then A ∪ B has diameter R′ (resp. is not bounded).
Let c ∈ A ∩ B, let a ∈ A ∪ B and let us show that Ia(A ∪B) = [0, R′] (resp.
[0,+∞[).

For convenience we first assume B to be bounded. Since c ∈ A∩B we see that
|x−a| ≤ max(|x−c|, |c−a|) ≤ R′ whenever x ∈ A∪B hence Ia(A ∪B) ⊂ [0, R′].
Hence we just have to show that Ia(A ∪B) ⊃ [0, R′]. Obviously Ia(A ∪B) =
Ia(A) ∪ Ia(B) = [0, R] ∪ Ia(B). Hence we have to show that Ia(B) ⊃ [R,R′].
But when x ∈ B with |x − a| > R, we see that |x − a| = |x − c| (because
|c − a| ≤ R) hence Ia(B)∩]R,R′] = Ic(B)∩]R,R′] and finally Ia(B) ⊃ [R,R′]
because Ic(B) ⊃ [R,R′].

When B is not bounded, in the same way it is seen that Ia(A ∪B) = [0,+∞[.
This finishes showing that A ∪B is infraconnected.

Corollary A.1.14: The relation R defined by xRy if there exists an infra-
connected subset of D that contains x and y, is an equivalence relation.

Proof. R is obviously reflexive and symmetric. It is transitive by Theorem
A.1.13.

Definition: The equivalence classes with respect to this relation are called the
infraconnected componants.

Examples : 1) d(0, 1−) ∪ d(1, 1−) is infraconnected. Its holes are the disks
d(α, 1−) with |α| = |α− 1| = 1.
2) Let r ∈]0, 1[ and let D = d(0, 1−)∪ d(1, r) . Then D is not infraconnected,
its infraconnected components are d(0, 1−) and d(1, r). The holes of D are
the disks d(α, 1−) with |α| = |α − 1| = 1 and the disks d(α, |α − 1|−) with
r < |α− 1| < 1.

Theorem A.1.15: Let A and B be infraconnected sets such that Ã = B̃.
Then A ∪B is infraconnected.
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Proof. Obviously Ã ∪B = Ã. If A is bounded let Ã = d(α,R) and otherwise let
Ã = L. First let us assume A to be bounded. For a ∈ A, the set {|x−a| | x ∈ A}
is dense in [0, R] hence so is the set {|x− a | | x ∈ A ∪B}. In the same way B
plays the same role hence this still holds for a ∈ B. Finally if A is not bounded
we just replace [0, R] by [0,+∞[. That finishes proving Theorem A.1.15.

Definition: An infraconnected subset D of L is said to be affinoid if it is of

the form d(a,R) \
q⋃

k=1

d(bk, r−k ) with R and rk ∈ |IL| ∀k. A subset D of L is said

to be affinoid if it is a finite union of infraconnected affinoid subsets.

Proposition A.1.16: Let D1, D2 be two infraconnected affinoid subsets of
IL such that D1 ∩D2 6= ∅ and set D = D1 ∪D2 and E = D1 ∩D2. Then both
D and E are infraconnected affinoid. Moreover, D̃ is either D̃1 or D̃2 and each
hole of D is either a hole of D1 or a hole of D2.

Proof. By Theorem A.1.13 D is infraconnected. Consider now D1, of the form
d(a, r) \ (∪mi=1d(ai, r−i )) and D2 is of the form d(b, s) \ (∪ni=1d(bi, s−i )). Suppose
for instance r ≤ s and let c ∈ D1 ∩D2. Then we can check that

E = d(c, r) \
((
∪di=1 (ai, r−i )) ∪ (∪ni=1d(bi, s−i )

))
which is an infraconnected affinoid again. Since D1∩D2 6= ∅, we have D̃1∩D̃2 6=
∅, hence D̃ is either D̃1 or D̃2, hence diam(D) ∈ |IL|. Next, since the holes of
both sets are in finite number, each hole of D is either a hole of D1 or a hole
of D2, so each hole of D has a diameter in |IL| and of course they are in finite
number.

Definition: We will call empty annulus of D an annulus Γ(a, r1, r2) such that
i) r1 = sup{|x− a| |x ∈ D, |x− a| ≤ r2}
ii) r2 = inf{ |x− a| |x ∈ D, |x− a| ≥ r1}

The set d(a, r1) ∩ D will be denoted by ID(Γ(a, r1, r2)) while the set (IL \
d(a, r−2 )) ∩ D will be denoted by ED(Γ(a, r1, r2)). When there is no risk of
confusion about the set D we will just write I(Γ(a, r1, r2)), (resp. E(Γ(a, r1, r2))
), instead of ID(Γ(a, r1, r2)), (resp. ED(Γ(a, r1, r2)) ).

Remark 1: By definition, D is not infraconnected if and only if it admits an
empty annulus.

Remark 2: By definition {I(Γ(a, r1, r2)), E(Γ(a, r1, r2))} is a partition of D.

Examples: Let r ∈]0, 1[, let D = d(0, r) ∪ d(1, 1−) and let D′ = d(0, r−) ∪
d(1, r). Then Γ(0, r, 1) is an empty annulus of D and also of D′. In the same
way Γ(1, r, 1) is also an empty annulus of D′.
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Notations: Let X (D) be the set of the empty annuli of D. Given Λ1 and
Λ2 ∈ X (D), it is easily seen that I(Λ1) ⊂ I(Λ2) is equivalent to E(Λ1) ⊃ E(Λ2).
We will denote by ≤ the relation defined on X (D) by Λ1 ≤ Λ2 if I(Λ1) ⊂ I(Λ2)
and we set Λ1 < Λ2 if Λ1 ≤ Λ2 and Λ1 6= Λ2.

The following Lemmas A.1.17 and A.1.18 are easily seen.

Lemma A.1.17: The relation ≤ is a relation of order on X (D). Let Λ1 and
Λ2 be two empty annuli of D. The following assertions are equivalent :

i) Λ1 and Λ2 are not comparable with respect to the order ≤
ii) I(Λ1) ⊂ E(Λ2)
iii) I(Λ2) ⊂ E(Λ1)
iv) I(Λ1) ∩ I(Λ2) = ∅.

Lemma A.1.18: Let Λ ∈ X (D) and let x ∈ I(Λ) (resp. x ∈ E(Λ)). The
infraconnected component of x is included in I(Λ) (resp. in E(Λ)). If Λ′ ∈ X (D)
is such that Λ < Λ′ then I(Λ′) ∩ E(Λ) 6= ∅.

The following Lemma A.1.19 is a direct consequence of Lemmas A.1.17 and
A.1.18.

Lemma A.1.19: Let Θ be an empty annulus of D. The family of the empty
annuli Λ ≥ S is totally ordered.

Proof. Let Λ1 and Λ2 ∈ X (D) satisfy Λ1 ≥ Θ,Λ2 ≥ Θ. Then I(Λ1) ∩ I(Λ2) ⊃
I(Θ) 6= ∅ hence I(Λ1) is not included in E(Λ2) hence Λ1 and Λ2 are comparable.

Lemma A.1.20: Let Θ be a minimal element of X (D) for the order ≤. Then
I(Θ) is an infraconnected component of D.

Proof. Suppose that I(Θ) is not infraconnected. By definition I(Θ) is of the
form d(a,R) ∩D hence there exists an empty annulus Λ = Γ(α, r1, r2) of I(Θ)
with α ∈ d(a,R), r1 < r2 ≤ R and some β ∈ I(Θ) such that r2 ≤ |α − β| ≤ R.
Since Λ ⊂ d(a,R) we see that Λ∩D = ∅ hence Λ is an empty annulus of D and
therefore Λ < Θ. This ends the proof of Lemma A.1.20.

Theorem A.1.21: D has finitely many infraconnected components if and
only if it has finitely many empty annuli. Moreover if so does D then one of
the infraconnected components is A0 =

⋂
Θ∈X (D)

E(Θ) while the others are of the

form Ai = I(Λi)
⋂( ⋂

Θ<Λi

E(Θ)
)

, with Λi ∈ X (D).
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Proof. We will first assume X (D) to be finite and we will prove that the infra-
connected components are in the form Ai, above, so that there will be finitely
many ones.

Let Λ1, ...,Λn be these empty annuli of D and for every i = 0, ..., n , let
Ai be the subsets of D defined from Λ1, ...,Λn as above. For every x ∈ D, for
every i = 1, ..., n , either x ∈ I(Λi) or x ∈ E(Λi) hence it is easily seen that x

belongs to one of the Ai, hence D =
n⋃
i=0

Ai. We check that Ai∩Aj = ∅ whenever

i 6= j. First we assume i = 0, j > 0. Hence A0 ⊂ E(Λj) while Aj ⊂ I(Λj) hence
A0 ∩ Aj = ∅. Now we suppose i > 0, j > 0. If Λi < Λj then aj ⊂ E(Λi) while
Ai ⊂ I(Λi) and then Ai ∩ Aj = ∅. Hence we may assume that Λ1 and Λ2 are
not comparable and then by Lemma A.1.17 we have I(Λi) ∩ I(Λj) = ∅ hence
Ai ∩Aj = ∅. Consequently, the family (Ai)0≤i≤n makes a partition of D.

Now we will show that each Ai is infraconnected. Suppose that a certain Ah
is not infraconnected for some h > 0 (resp. h = 0). Then it admits an empty
annulus Λ = Γ(a, r1, r2). First we notice that if h = 0 then Λh > Λ because
both a, b are centers of Λh. Now, if h = 0 (resp. h > 0), let Θ ∈ X (D) (resp.
let Θ ∈ X (D) be such that Θ < Λh). Since both a, b belong to E(Θ), it is seen
that all Λ is included in E(Θ) and therefore is included in Ah. This contradicts
the hypothesis and finishes proving that Ah is infraconnected.

Next we check that each Aj is maximal in the set of the infraconnected
subsets of D. Indeed let B be a subset of D that strictly contains a certain Ah
and let a ∈ B \ Ah. If h = 0, there exists Θ ∈ X (D) such that a ∈ I(Θ), but
Ah ⊂ E(Θ) and therefore Θ is included in an empty annulus of B. If h > 0,
either a belongs to E(Λh) whereas Ah ⊂ I(Λh) and then Λh is included in an
empty annulus of B, or there exists Θ ∈ X (D) satisfying Θ < Λh and a ∈ I(Θ),
but then Ah ⊂ I(Θ) and therefore Θ is included in an empty annulus of B.
Thus in each case B is not infraconnected and this finishes showing that each
Ai is maximal in the set of the infraconnected subsets of D. As a consequence,
the infraconnected components of D are the Ai.

Now conversely, we assume D to have infinitely many empty annuli. First let
us suppose that D has a sequence of empty annuli (Λn)n∈N such that Λn < Λn+1

(resp. Λn > Λn+1) for all n ∈ N. By Lemma A.1.15 , for every n ∈ N there
exists xn ∈ E(Λn) ∩ I(Λn+1) (resp. xn ∈ I(Λn) ∩ E(Λn+1)) and then the
infraconnected component Xn of xn satisfies Xn ⊂ E(Λn) ∩ I(Λn+1) (resp.
Xn ⊂ I(Λn) ∩ E(Λn+1)) hence Xn ∩ Xm = ∅ for all n 6= m , hence D has
infinitely many infraconnected components.

Finally we may assume that every totally ordered set of empty annuli is
finite. Hence there exists a sequence of empty annuli Λn that are minimal
elements for the order ≤ on X (D) and then I(Λn) ∩ I(Λm) = ∅ whenever
n 6= m. By Lemma A.1.19 , I(Λn) is an infraconnected component Dn of D
such that Dn ∩ Dm = ∅ whenever n 6= m. This finishes proving that D has
infinitely many infraconnected components and this ends the proof.
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A.2. Monotonous and circular filters

Monotonous and circular filters are essential on an ultrametric field, mainly
because for any rational function, its absolute value admits a limit along each
circular filter [50], [58], [61] and circular filters are the least thin filters having
this property. Most of properties of analytic functions of all kinds derive from
that property of circular filters. Certain authors call ”generic disk” a notion
which is not clearly defined but actually represents a circular filter... We will
see that, given a bounded sequence, there exists a subsequence thinner than a
circular filter.

For certain problems, we can reduce ourselves to consider monotonous filters
instead of circular filters. Monotonous filters are linked to sequences (an) such
that |an+1−an| is strictly monotonous. Moreover, decreasing filters let us define
spherically complete fields.

Definitions: Let J be set. A filter F on J is said to be thinner than a filter
G if every element of G belongs to F . In such a case, G is said to be less thin
than F . Two filters F , G are said to be secant if for all A ∈ F , B ∈ G we have
A ∩B 6= ∅.

A filter F is said to be secant to a subset B ⊂ J if {F ∩ B | F ∈ F} is a
filter.

A sequence (un)n∈N in J is said to be thinner than a filter G if so is the filter
defined by the sets Aq = {un|n ≥ q} (q ∈ N). In such a case, G is said to be less
thin than the sequence (un)n∈N.

A sequence (un)n∈N in IL will be said to be an increasing distances sequence
(resp. a decreasing distances sequence) if the sequence |un+1 − un| is strictly
increasing (resp. decreasing) and has a limit ` ∈ R∗+.

The sequence (un)n∈N will be said to be a monotonous distances sequence if
it is either an increasing distances sequence or a decreasing distances sequence.

A sequence (un)n∈N in IL will be said to be an equal distances sequence if
|un − um| = |um − uq| whenever n,m, q ∈ N such that n 6= m 6= q.

Theorem A.2.1: Let E be a field provided with an ultrametric absolute value.
Let (un)n∈N be a bounded sequence in E. Either we may extract a Cauchy
subsequence or we may extract a monotonous distances subsequence or we may
extract an equal distances subsequence from the sequence (un)n∈N. Further, if
the absolute value of E is discrete, there is no monotonous distances sequence
in E. And if the residue class field of E is finite, there is no equal distances
sequence in E.

Proof. Suppose Theorem A.2.1 to be false. For every q ∈ N the set of the circles
C(uq, r) that contain some un is then finite.

Suppose that we have already defined integers nq for q ≤ t satisfying
(1) |unq − unq−1 | < |unq−1 − unq−2 | for 2 ≤ q ≤ t
and such that d(unq , |unq − unq−1 |− ) contains infinitely many terms of the
sequence (un). For every q = 2, ..., t, let rq = |unq − nnq−1 |. Obviously, at least
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one of the circles C(unt , r), with r < rt contains infinitely many terms of the
sequence (un)n∈N. Let C(unt , rt+1) be such a circle. It is seen that at least
one class Λ of this circle contains infinitely many terms of the sequence because
otherwise we would have a sequence of classes (Λj) each one containing at
least one term uτ(j) and then they should satisfy |uτ(j)−uτ(i)| = rt+1 whenever
i 6= j. Hence the sequence (un)n∈N should admit an equal distances subsequence.
Then we may pick up one term unt+1 in Λ and we have constructed the finite
subsequence up to the rank t + 1, satisfying the properties mentionned above.
In the same way we may initiate the induction by defining n2 from arbitrary
n0, n1. The sequence (unt)t∈N is then defined for every t ∈ N and satisfies (1)
for t > 1. Let ` = lim

t→∞
|unt − unt+1 |. If ` = 0 the subsequence (unt)t∈N is a

Cauchy subsequence. If ` > 0 this is a decreasing distances subsequence. Thus
we have proven that we can extract a sequence which is either a convergent
sequence, or a monotonous distances sequence, or an equal distances sequence.

Now, suppose that the absolute value is discrete and suppose that we have
exctracted a monotonous distances sequences (bm)m∈N form the sequence (un).
Then the strictly monotonous sequence |bm+1 − bm| must tend to 0, a con-
tradiction. Finally, suppose that the residue class field E of E is finite and
suppose that we have extracted an equal distances sequences (bm)m∈N. So,
|b0− bm| = |b0− bn| = |bm− bn| ∀m 6= n, m 6= 0, n 6= 0. Let q be the cardinal of
E . Then, by Lemma A.1.9 the set of terms bm is at most q, a contradiction.

Henceforth, throughout the chapter, the field IL is supposed to have a dense
valuation and D is an infraconnected subset of IL

Definitions and notation : Let a ∈ D̃ and R ∈ R∗+ be such that Γ(a, r,R)∩
D 6= ∅ whenever r ∈]0, R[ (resp. Γ(a,R, r) ∩ D 6= ∅ whenever r > R). We
call an increasing (resp. a decreasing) filter of center a and diameter R, on
D the filter F on D that admits for basis the family of sets Γ(a, r,R) ∩ D
(resp. Γ(a,R, r) ∩D). For every sequence (rn)n∈N such that rn < rn+1 (resp.
rn > rn+1 ) and lim

n→∞
rn = R, it is seen that the sequence Γ(a, rn, R) ∩ D

(resp. Γ(a,R, rn)∩D) is a basis of F and such a basis will be called a canonical
basis . We call a decreasing filter with no center of canonical basis (Dn)n∈N and

diameter R > 0, on D a filter F onD that admits for basis a sequence (Dn)n ∈ N
in the form Dn = d(an, rn)∩D with Dn+1 ⊂ Dn , rn+1 < rn, lim

n→∞
rn = R, and⋂

n∈N
d(an, rn) = ∅.

Given an increasing (resp. a decreasing) filter F on D of center a and
diameter r we will denote by BD(F) the set {x ∈ D| |x − a| ≥ r} (resp. the
set {x ∈ D| |x − a| ≤ r} and by CD(F) the set {x ∈ D| |x − a| < r} (resp.
the set {x ∈ D| |x − a| > r}. When there is no risk of confusion we will only
write B(F) instead of BD(F) and C(F) instead of CD(F). Next, CD(F) will be
named the body of F and BD(F) will be named the beach of F .
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We call a monotonous filter on D a filter which is either an increasing filter
or a decreasing filter (with or without a center). Given a monotonous filter F
we will denote by diam(F) its diameter.

The field IL is said to be spherically complete if every decreasing filter on
IL has a center in IL. The field Cp for example is not spherically complete (see
Chapter A.5). However, every algebraically closed complete ultrametric field
admits a spherically complete algebraically closed extension and this will be
recalled in Chapter A.7.

Lemma A.2.2: Let (an)n ∈ N be an increasing distances (resp. a decreasing
distances) sequence in D. There exists a unique increasing (resp. decreasing)
filter F on D such that the sequence (an)n ∈ N is thinner than F .

Proof. Let rn = |an+1 − an| and let R = lim
n→∞

rn.

We first suppose (an)n∈N to be an increasing distances sequence. The in-
creasing filter F of center a0, of diameter R is obviously less thin than the
sequence (an)n∈N. We will show that F is unique. Let G be an increasing filter
of center a, of diameter R′, less thin than the sequence (an)n∈N. For every
r < R′, there exists q ∈ N such that an ∈ Γ(a, r,R′) whenever n ≥ q. If
a ∈ d(a0, R

−) this clearly requires that R = R′ and then G = F . Let us suppose
that a /∈ d(a0, R

−). Then we have |a− an| = |an− am| = C whenever n 6= m so
R′ > R and then Γ(a, r,R′) does not contain the an whenever r > R. Finally
G = F .

We now suppose the sequence (an)n∈N to be a decreasing distances sequence
with a point a such that |a − an| = |an+1 − an| whenever n ∈ N. Then the
decreasing filter of center a, of diameter R is a decreasing filter less thin than
the sequence (an)n∈N. We will show it to be the only decreasing filter less
thin than the sequence (an)n∈N. Indeed given a decreasing filter G less thin
than the sequence (an)n∈N, it must have a center because if it had no center,
the sequence d(an+1, |an+1 − an|) would be one of its canonical basis, but by
definition it has an intersection that contains a. Then, symmetrical to the case
when F is increasing, it is easily seen that F is unique.

Now we suppose that the sequence (an)n∈N is a decreasing distances sequence
and that there does not exist a ∈ L such that |a− an| = |an+1 − an| whenever
n ∈ N. We put |an+1 − an| = rn. Hence the sequence of disks d(an+1, rn)
has empty intersection and then the filter F , a basis of which is the sequence
(Dn)n∈N with Dn = d(an+1, rn) ∩ D, is a decreasing filter with no center, of
diameter R. There is no decreasing filter with center a ∈ IL, less thin than the
sequence (an) because we should have |a− an| = rn whenever n ∈ N. Hence it
just remains to show that F is the only decreasing filter with no center less thin
than the sequence (an). Let us suppose that there exists another decreasing
filter G of diameter R′ with no center, of canonical basis (D′m)m∈N less thin
than the sequence (an). If R′ > R, since every D′m contains points an, it is seen
that all the an lie in D ∩ d(a0, R) ⊂ D′m whenever m ∈ N and this contradicts
that G has no center. Hence we have R′ ≤ R. But symmetrically we have
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R ≤ R′. Hence R = R′. We will show that G = F . For every m ∈ N, let ρm be
the diameter of D′m and let aq ∈ D′m be such that rq ≤ ρm. Clearly an ∈ D′m
whenever n ≥ q hence Dn ⊂ D′m whenever n > q. In the same way, let n ∈ N
and t ∈ N be such that ρm < rn whenever m ≥ t. Then D′m contains some as
which belongs to d(an+1, rn)∩D = Dn, hence D′m ⊂ Dn whenever m ≥ t. That
finishes showing that G = F and that ends the proof of Lemma A.2.2.

Lemma A.2.3: Let F be an increasing filter (resp. a decreasing filter) on
IL, of center a ∈ D̃ and diameter R ≤ diam(D) (resp. R < diam(D) ) such that
a does not belong to a hole of diameter ρ ≥ R (resp. ρ > R). Then F is secant
with D and induces on D an increasing filter (resp. a decreasing filter) of center
a and diameter R, on D.

Proof. We just have to check that Γ(a, r, R) ∩D 6= ∅ whenever r ∈]0, R[ (resp.
Γ(a,R, r) ∩D 6= ∅ whenever r > R) and this is obvious when a ∈ D because D
is infraconnected and R ≤ diam(D) (resp. R < diam(D)). Now let us assume
a to belong to a hole T of diameter ρ < R (resp. ρ ≤ R). Since |IL| is dense in
[0,+∞[, for every r < R (resp. r > R), D has points α such that r < |a−α| < R
(resp. R < |a− α| < r) and this ends the proof.

Definition: Let F be an increasing (resp. a decreasing) filter of center a and
diameter R on D. F is said to be pierced if for every r ∈]0, R[, (resp. r > R),
Γ(a, r,R) (resp. Γ(a,R, r)) contains some hole Tm of D.

A decreasing filter with no center F of canonical basis (Dm)m∈N on D is
said to be pierced if for every m ∈ N, D̃m \ D̃m+1 contains some hole Tm of D.

Remarks: The definition of a pierced filter with no center also applies to a
deacreasing filter with a center and then is equivalent to that given just above
for such a filter.

If F is an increasing (resp. a decreasing) filter of center a, of diameter R, F
is pierced if and only if there exists a sequence of holes (Tn)n∈N of D such that
δ(a, Tn) < δ(a, Tt+1), (resp. δ(a, Tn) > δ(a, Tn+1)), lim

n→∞
δ(a, Tn) = R.

Given a Cauchy filter F on D, of limit a in L, we will call a canonical
basis of F a sequence Dm in the form d(a, rm) ∩ D with 0 < rm < rm+1 and
lim
m→∞

rm = 0. The filter F is said to be pierced if for every m ∈ N, D̃m contains
some hole of D.

Let a ∈ D̃. Let (Tm,i) 1≤i≤s(m)
m∈N

be a sequence of holes of D which satisfies

δ(a, Tm,i) = dm (1 ≤ i ≤ hm), dm < dm+1 (resp. dm > dm+1), lim
m→∞

dm =
S > 0.

The sequence (Tm,i) 1≤i≤s(m)
m∈N

is called an increasing (resp. a decreasing)

distances holes sequence that runs the increasing (resp. decreasing) filter of
center a, of diameter R.
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Now let (Tm,i) 1≤i≤s(m)
m∈N

be a sequence of holes of D that satisfies

δ(am, Tm,i) = dm (1 ≤ i ≤ s(m)), dm > dm+1, lim
m→∞

dm = R > 0, where

the filter F of basis Dm = d(am, dm) ∩D is a decreasing filter with no center.
The sequence (Tm,i) 1≤i≤s(m)

m∈N
is called a decreasing distances holes sequence that

runs F .
Summarizing these definitions, an increasing (resp. decreasing) distances

holes sequence that runs an increasing (resp. decreasing) filter F will be just
named an increasing (resp. decreasing) distances holes sequence and the filter
F will be named the increasing (resp. decreasing) filter associated to the se-
quence (Tm,i) 1≤i≤s(m)

m∈N
. The diameter of F will be called the diameter of the

sequence (Tm,i) 1≤i≤s(m)
m∈N

. If F has a center a, a will be named the center of the

sequence (Tm,i) 1≤i≤s(m)
m∈N

. If F has no center, the sequence (Tm,i) will be called

a decreasing distances holes sequence with no center.
Finally, an increasing (resp. decreasing) distances holes sequence will be

called a monotonous distances holes sequence and the sequence (dm)m∈N is called
the monotony of the monotonous distances holes sequence.

Let (Tm,i) 1≤i≤s(m)
m∈N

be a monotonous distances holes sequences and for every

(m, i) 1≤i≤s(m)
m∈N

let ρm,i = diam(Tm,i). The number inf
1≤i≤s(m)
m∈N

ρm,i will be called

piercing of the sequence (Tm,i) 1≤i≤s(m)
m∈N

.

If a monotonous holes sequence has a piercing ρ > 0, it will be said to be
well pierced. If a monotonous filter F is run by a well pierced monotonous holes
sequence, F will be said to be well pierced.

In each case the sequence of circles C(a, dm) when F has center a (resp.
C(am+1, dm) when F has no center) will be said to run the filter F and to carry
the monotonous distances holes sequence (Tm,i) 1≤i≤s(m)

m∈N
.

A monotonous distances holes sequences (Tm,i) 1≤i≤s(m)
m∈N

will be said to be

simple if s(m) = 1 for all m ∈ N.
Next, a sequence of holes (Tm)m∈N of D will be called a Cauchy sequence of

holes of limit a ∈ IL if lim
m→∞

δ(a, Tm) = 0. Such a sequence will be said to run

the Cauchy filter of basis {d(a, r) ∩D|r > 0}.

Notation: In all the propositions, Theorem, Corollaries A.2.4, A.2.5, A.2.6,

A.2.7, A.2.8, A.2.9, A.2.10, γ is the Moebius function b+
1

x− a
with a, b ∈ IL.

Proposition A.2.4: Let α ∈ D, r > 0 be such that |a − α| < t. Then
γ(C(α, r)) = C(b, 1

r ).

Proof. We may assume b = 0 and then the proof is immediate.
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Corollary A.2.5: Let α ∈ IL, r1, r2 ∈]0,+∞[ with |a− α| < r1 < r2. Then

γ(Γ(α, r1, r2)) = Γ(b,
1
r2
,

1
r1

).

Corollary A.2.6: Let F be the increasing (resp. decreasing) filter of center
α and diameter R > |a − α|, on IL \ {a}. Then γ(F) is the decreasing (resp.

increasing) filter of center b and diameter
1
R
.

Lemma A.2.7: Let α ∈ IL be such that |α− a| 6= r. Then

γ(C(α, r)) = C
(
γ(α),

r

|a− α|2
)
.

Proof. When x belongs to C(α, r) we have

γ(x)− γ(α) =
∣∣ α− x
(x− α)(a− α)

∣∣= r

|a− α|2

hence γ(C(α, r)) ⊂ C
(
γ(α),

r

|a− α|2
)
. Now let ξ(u) = γ−1(u) = a+

1
u− b

. We

see that C
(

(γ(α),
r

|a− α|2
)
⊂ C(α, r). Since γ and ξ are injective we see that γ

must be a surjection onto C
(
γ(α),

r

|a− α|2
)
.

Corollary A.2.8: Let α ∈ IL and r, r′ ∈]0,+∞[ be such that 0 < r < r′ <

|a− α|. Then we have γ
(

Γ(α, r, r′)
)

= Γ
(
γ(α),

r

|a− α|2
,

r′

|a− α|2
)

,

γ(d(α, r)) = d
(
γ(α),

r

|a− α|2
)
, γ(d(α, r−)) = d

(
γ(α),

( r

|a− α|2
)−)

.

Corollary A.2.9: Let F be the increasing (resp. decreasing ) filter of center
α and diameter R on IL\{a} with |a−α| > R.Then γ(F) is an increasing (resp.

a decraesing ) filter of center γ(α), of diameter
R

|a− α|2
on IL \ {b}.

Corollary A.2.10: Let F be a decreasing filter with no center, of basis (Dn)n∈N
on IL \ {a} such that a /∈ D0. Then γ(F) is a decreasing filter with no center,
of canonical basis

(
γ(Dn)

)
n∈N

on IL \ {b}.

Theorem A.2.11: We suppose a ∈ D. Let D′ = γ(D). Let F be a filter on
D which is either a monotonous filter or a Cauchy filter. Then F is pierced if
and only if γ(F) is a pierced filter on D′.
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Proof. For example we suppose first F to be a monotonous filter. By definition,
F is the intersection with D of a monotonous filter G of IL \ {a}. Hence F is
pierced if and only if G is secant with (IL \ {a}) \D. Since γ is bicontinuous in
IL \ {a} we see that γ(G) is secant with (IL \ {b}) \D′ if and only if G is secant
with (IL \ {a}) \D because γ(D) \ {a} = D′ \ {b}. Hence the conclusion is clear.
In the same way if F is a Cauchy filter of limit α ∈ IL, we consider the filter
G′ of the neighborhoods of γ(α) in L \ {b} and we see that G is secant with
(L \ {a}) \D if and only if G′ is secant with (IL \ {b}) \D′.

We are now going to define circular filters, which roughly characterize the
absolute values on IL(x) when IL is algebraically closed.

Definition: Let a ∈ IL and let R ∈]0,+∞[. We call circular filter of center
a and diameter R on L the filter F which admits as a generating system the
family of sets Γ(α, r′, r′′) ∩ D with α ∈ d(a,R), r′ < R < r′′, i.e. F is the

filter which admits for basis the family of sets of the form
( q⋂
i=1

Γ(αi, r′i, r
′′
i )
)

with

αi ∈ d(a,R), r′i < R < r′′i (1 ≤ i ≤ q , q ∈ N).

For reasons that will appear when characterizing the absolute values of L(x)
when IL is algebraically closed, a decreasing filter with no center on IL, of canon-
ical basis (Dn)n∈N will also be called circular filter on IL with no center, of
canonical basis (Dn)n∈N.

Finally the filter of the neighborhoods of a point a ∈ IL will be called circular
filter of the neighborhoods of a on IL. It will also be named circular filter of
center a and diameter 0. A circular filter on L will be said to be large if it has
a diameter different from 0.

A circular filter on IL secant with D will be called circular filter on D. Given

a circular filter F on IL, its diameter will be denoted by diam(F) and we will
call F-affinoid any infraconnected affinoid subset of L lying in F .

Lemma A.2.12 lets us describe circular filters on an infraconnected subset of
IL.

Lemma A.2.12: Let a ∈ D̃, let ρ be the distance from a to D and let R be
such that ρ ≤ R ≤ diam(D). For j = 1, ..., q let αj ∈ d(a,R) and let r′j , r

′′
j ∈ R+

be such that r′j < R < r′′j . Then
q⋂
j=0

(Γ(αj , r′j , r
′′
j ) ∩D) 6= ∅.

Proof. If ρ < R we put r′ = max
1≤j≤q

r′j and we see that Γ(a, r′, R)∩D is not empty

(because D is infraconnected) and is included in every set Γ(αj , r′j , r
′′
j ) ∩D. If

R < diam(D) we put r′′ = min
1≤j≤q

r′′j and in the same way, Γ(a,R, r′′) ∩D is not

empty and is included in every set Γ(αj , r′j , r
′′
j ) ∩D.
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Now if ρ = R = diam(D), let b ∈ D and let r′ = max
1≤ j≤ q

r′j . Then Γ(b, r′, R)∩

D is not empty and is included in every set Γ(αj , r′j , r
′′
j ) ∩D.

Corollary A.2.13: Let a ∈ D̃, let ρ be the distance from a to D and let R be
such that ρ ≤ R ≤ diam(D). The circular filter on IL of center a and diameter
R is secant with D.

The following Proposition A.2.14 is immediate according to definitions:

Proposition A.2.14: Let F be an increasing filter (resp. a decreasing
filter) of center a and diameter R, on D. Then the circular filter of center a
and diameter R on L is secant with D and is the only circular filter on D less
thin than F .

Conversely, let F be a circular filter of center a and diameter R, on D secant
with d(a,R−) (resp. IL \ d(a,R)). Then the increasing filter (resp. decreasing
filter) of center a and diameter R on IL is secant with D and thinner than F .

Lemma A.2.15: Let F be a circular filter. Then F admits a basis consisting
of the family of all F-affinoids. If F does not admit a countable basis, it has a
center and its diameter belongs to |IL|. If F has no center and is secant with an
infraconnected affinoid subset B of IL then B lies in F . If F has center a and
diameter r, then an infraconnected affinoid set B lies in F if and only if satisfy
E ∩ (IL \ d(a, r)) 6= ∅, B ∩ d(b, r−) 6= ∅ ∀b ∈ d(a, r).

Proof. By definition, a circular filter with no center has a countable basis and of
course so does a Cauchy circular filter. In both cases, it admits a basis consisting
of a family of disks which are F-affinoid sets.

Now, consider a circular filter of center a and diameter r > 0. Then, F
admits for basis the family of sets of the form d(a, r + 1

n ) \ (
⋃q
i=1 d(ai, (r − 1

n )−)
where the ai are centers of F satisfying |ai − aj | = r. In particular, if r /∈ |L|
we have q = 1 and we obtain a basis of the form Γ(a, r − 1

n , r + 1
n ) which is

countable.
Now, suppose that F is secant with an infraconnected affinoid subset B of

IL. Suppose first that F has no center. Let (An)n∈N be a canonical basis of
F . Since each An admits common points with B, each is included in B̃ and
therefore it is included in B if and only if it contains no hole of B. But since F
has no center,

⋂∞
n=0An = ∅, hence there exists q ∈ N such that An ⊂ B ∀n ≥ q

and therefore B ∈ F .
Now suppose that F has center a and diameter r. If B ∈ F , it obviously

satisfies B ∩ (IL \ d(a, r)) 6= ∅, B ∩ d(b, r−) 6= ∅ ∀b ∈ d(a, r). Since B has
finitely many holes, on one hand there exists s > r such that Γ(a, r, s) ⊂ E
and on the other hand, all classes of d(a, r) are included in B, except finitely
many: d(bj , r−), 1 ≤ j ≤ n. And for each j = 1, ..., n, there exists rj < r such
that Γ(bj , rj , r) ⊂ B. Finally, B contains the set d(a, s) \

⋃n
j=1 d(bj , rj) which

obviously lies in F .
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Corollary A.2.16: Let F be a circular filter of diameter r. For every
s ∈]0, r[, the family of F-affinoid of codiameter ρ > s is a basis of F . If two
disks d(a, r) and d(b, s) have no common points and if F is secant with d(a, r),
it is not secant with d(b, s).

Proposition A.2.17: Let a ∈ D̃, let S be the closure of {|x− a| |x ∈ D} in
R. For every r ∈ S the circular filter F of center a and diameter r is secant
with D.

Proof. Let a ∈ D̃. We first suppose that C(a, r) ∩ D = ∅. Then either there
exists a sequence (xn)n∈N in D such that r < |xn+1−a| < |xn−a|, lim

n→∞
|xn−a| =

r, or there exists a sequence (xn)n∈N in D such that |xn − a| < |xn+1 − a| <
r, lim
n→∞

|xn − a| = r. In both cases the circular filter F of center a and diameter
r is clearly secant with D.

Now we may suppose that C(a, r)∩D 6= ∅. Let b ∈ C(a, r)∩D. We see that
b is also a center of F . Since D is infraconnected and since |a−b| = r ≤ diam(D)
there does exist a sequence (xn)n∈N in D such that lim

n→∞
|xn − b| = r. Hence F

(that has center b and diameter r), is secant with D.

Proposition A.2.18: Let (an)n∈N be a sequence in D that is either a monotonous
distances sequence or a constant distances sequence. Then there exists a unique
circular filter on D less thin than the sequence (an).

Proof. First we suppose that the sequence (an)n∈N is an increasing (resp. a de-
creasing) distances sequence. By Lemma A.2.2 there exists a unique increasing
(resp. decreasing) filter F on D less thin than the sequence (an)n∈N. If F has
center a and diameter R, by Proposition A.2.14, F is less thin than the circular
filter of center a, of diameter R on D. If F is decreasing with no center, F is a
circular filter.

Now we suppose that (an)n∈N is a constant distances sequence. We put
R = |an − am| for n 6= m and a = a0. The circular filter F of center a of
diameter R on IL is clearly secant with D because each set Λn = Γ(an, r′, r′′)
with r′ < R < r′′ belongs to a generating system of F and contains am for every
m > n hence its intersection with D is a circular filter C on D less thin than
the sequence (an)n∈N. That ends the proof.

Corollary A.2.19: Let F and G be two circular filters that are secant. Then
they are equal.

Proof. We can find a monotonous sequence thinner than F . Then the sequence
is thinner than G and hence G = F .
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Notation: Let IL′ be an extension of L provided with an absolute value that
extends the one of IL. Let D be a set in IL, let F be a monotonous filter on
D and let D′ be a set in IL′ that contains D. Let (an)n∈N be a monotonous
distances sequence that runs F . In D̂, there is a unique monotonous filter less
thin than the sequence (an)n∈N. This filter will be denoted by F̂ .

In the same way, let G be a circular filter of center a and diameter r on D.
We will denote by Ĝ the filter of center a and diameter r on D′. Finally let G
be a circular filter with no center. Then it is a decreasing filter, hence we have
already previously defined Ĝ.

Corollary A.2.20: Let (an)n∈N be a bounded sequence in IL. Then there
exists a subsequence (ant)t∈N and a unique circular filter F on IL less thin than
the subsequence (ant)t∈N.

Proof. Since the sequence (an)n∈N is bounded, by Theorem A.2.1 we can extract
either a monotonous distances subsequence or a constant distances subsequence,
or a converging subsequence. In all cases, once such a subsequence is choosen,
there exists a unique circular filter F on IL less thin than the subsequence.

Theorem A.2.21: Let (an)n∈N, (bn)n∈N be two sequences such that |an −
bn| ≤ t < r ∀n ∈ N. Suppose that the sequence (an)n∈N is thinner than a
circular filter F of diameter r. Then the sequence (bn)n∈N also is thinner than
F .

Proof. By Corollary A.2.16, F admits a basis consisting of F-affinoids S of
codiameter ρ > t. Consider such a F-affinoid S. Then if an belongs to S, so
does bn. Now, when n is big enough, all an belong to S and hence so do all bn.
And since F admits a basis of F-affinoids with a codiameter s > t, we see that
the sequence (bn)n∈N is thinner than F .
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A.3. Ultrametric absolute values for rational functions

Notation: As mentioned in Chapter A.1, log denotes a real logarithm func-
tion of basis θ > 1 (eventually we can take for θ an integer p that is the residue
characteristic of K). When a function f from an interval I to R admits a right
side (resp. a left side) derivative at a point a ∈ I, we will denote it by f ′r(a)

(resp. f ′l(a)). If the variable is µ, we will also denote it by
drf

dµ
(resp.

dlf

dµ
).

Moreover, thoughout the chapter, we will denote by IL be a field provided
with an ultrametric absolute value | . |.

The set of circular filters on K secant with a subset D of K will be denoted
by Φ(D) and the subset of large circular filters on K secant with D will be de-
noted by Φ◦(D). We will show the absolute values on the field K(x) of rational

functions to be characterized by the circular filters on K. Actually, the most
important property of such absolute values comes from the fact that the loga-
rithm of an absolute value is a piecewise affine fonction of the logarithm of the
absolute value of the variable. And next, a valuation function is then defined
for any h ∈ K(x) in the following way: let r ∈]0,+∞[ be such that µ = − log r
and let F be the circular filter of center 0 and diameter r. Following classical
notations [2], [50] and [72], one sets

v(h, µ) = − log(lim
F
|h(x)|).

This function v(h, µ), called the valuation function of h, is convenient mainly
because it is piecewise affine. However, in order to avoid many changes of sign,
here we will consider Ψ(h, log r) = log(limF |h(x)|) and we will show that when
drΨ(h, µ)

dµ
6= dlΨ(h, µ)

dµ
then

drΨ(h, µ)
dµ

− dlΨ(h, µ)
dµ

is equal to the difference

between the number of zeros and the number of poles of h (taking multiplicity
into account) on the circle C(0, r) such that log r = µ. This translates properties
of |h(x)| into terms of piecewise affine functions.

However, this kind of definition presents the inconvenient of changing the
sens of monotony for both |x| and |h(x)|. Moreover, its sign is opposite to this of
the counting function of zeros for entire functions in the Nevanlinna theory. This
is why, here we will adopt another set of notation and put Ψ(x) = log |x| ∀x ∈
K. First, we have to state several basic properties that work not only in an
algebraically closed field such as K but more generally in a field E that is just
provided with an ultrametric absolute value.

Let IL[x1, ..., xq] be an algebra of polynomials in q indeterminates, with co-
efficients in IL. For each P (x1, ..., xq) =

∑
j1+...+jq≤t

ai1,...,iqx
j1
1 .....x

jq
q we set

P (x1, ..., xq) :=
∑

j1+...+jq≤t

ai1,...,iqx
j1
1 .....x

jq
q .
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On IL[x1, ..., xq], we put ‖P‖ := sup
j1+...+jq≤t

|ai1,...,iq |0.

However, when there is no risk of confusion, we will just write ‖ . ‖ instead
of ‖ . ‖0.

Lemma A.3.1: ‖ . ‖ is a multiplicative norm of IL-algebra.

Proof. Let B = IL[x1, ..., xq]. Clearly, ‖ . ‖ is an ultrametric norm of IL-vector
space on B. We check that ‖PQ‖ = ‖P‖‖Q‖ whenever P,Q ∈ B. Both ‖P‖,
‖Q‖ belong to |IL|. Hence, without loss of generality, we may clearly assume
‖P‖ = ‖Q‖ = 1. Thus we have P = Q = 1. Let L be the residue field of
IL. Since L[x1, ..., xq] is a ring without divisors of zeros, we have PQ 6= 0 and
therefore ‖PQ‖ = 1. This ends the proof.

Definition and notation: The norm ‖ . ‖ on IL[x1, ..., xq]0 is called the

Gauss norm. Given a polynomial P (x) =
q∑
j=1

ajx
j ∈ IL[x], for any r > 0 we set

|P |(r) = max
0≤j≤q

(|aj |rj).

By ultrametricity, Lemma A.3.2 is then immediate:

Lemma A.3.2: Let P (x) ∈ IL[x]. For all x ∈ IL, one has |P (x)| ≤ |P |(|x|).

Lemma A.3.3: Suppose IL is algebraically closed. Let P (x) =
n∑
j=0

ajx
j ∈

IL[x] \ {0} and let r ∈ R+. Then |P (x)| admits a limit equal to |P |(r) when
|x| approaches r but remains different from r. Let x ∈ d(0, r). Then |P (x)| ≤
|P |(r). If P has no zero in the class of x in d(0, r) then |P (x)| = |P |(r). If P
has at least one zero in that class, then |P (x)| < |P |(r).

Proof. Let r′ < r and r′′ > r be such that P has no zero in Γ(0, r′, r)∪Γ(0, r, r′′).

We may obviously assume P to be monic. Let P (x) =
n∏
i=1

(x − αi) be the

factorization of P in an algebraic closure of IL, with
|αi| < r′ for i ≤ h
|αi| > r′′ for i ≥ `
|αi| = r for i = h, ..., `.

Now let x ∈ Γ(0, r′, r). Clearly |x−αi| = |x| whenever i ≤ h while |x−αi| = |αi|

whenever i > h hence |P (x)| = |x|h
n∏

i=h+1

|αi| hence lim
|x|→r−

|P (x)| = rh
n∏

i=h+1

|αi|.

Symmetrically we show that lim
|x|→r+

|P (x)| = r`−1
n∏
i=`

|αi| = rh
n∏

i=h+1

|αi|. But

the terms |ajxj | are all different for every |x| except for finitely many values so
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that there exist ρ′ ∈ [r′, r[ and ρ′′ ∈]r, r′′] such that the |ajxj | are all different
when x ∈ Γ(0, ρ′, r)

⋃
Γ(0, r, ρ′′). Then we have |P (x)| = max

0≤j≤n
|aj ||x|j and

hence lim
|x|→r
|x|6=r

|P (x)| = max
0≤j≤n

|aj |rj .

Now let x ∈ d(0, r) and let us assume P to have no zero in the class Λ
of x in d(0, r). This means that |x − αi| = r whenever i = 0, ..., ` − 1 and

|x− αi| = |αi| whenever i ≥ `. Thus |P (x)| = r`−1

n∏
i=`

|αi|. If P has at least one

zero αh+1 in the class of x we see that |x−αh+1| < r while |x−αi| ≤ r for every

i = h+ 2, ..., `− 1, hence |P (x)| < r`−1

n∏
i=`

|αi| and finally |P (x)| < |P |(r).

Theorem A.3.4: Let P ∈ IL[X] and let U be the unit disk {x ∈ | |x| ≤ 1}
of K.Then ‖P‖ = supx∈U (|P (x)).

Proof. On one hand,|P (x)| ≤ ‖P‖ ∀x ∈ U . On the other hand, by Theorem
A.3.3, lim

|x|→1, x∈U,
|x|6=1

|P (x)| = ‖P‖ Consequently, the equality holds.

Corollary A.3.5: Let P ∈ IL[X] and let t ∈ IL be such that |t| ≤ 1. Let
Q(X) = P (X + t). Then ‖P‖ = ‖Q‖. If ‖P‖ ≤ 1, then P is 1-Lipschitzian.

Theorem A.3.6: For every r > 0 the mapping from IL[x] to R+ defined by
P → |P |(r) is an absolute value on IL[x] such that |P (a)| ≤ |P |(|a|) ∀a ∈ IL.

Proof. Due to the definition of |P |(r), it is easily checked that |P |(r) = 0 if and
only if P = 0 and that

|P +Q|(r) ≤ max(|P |(r), |Q|(r)).

We can also check that |P (a)| ≤ |P |(|a|) ∀a ∈ IL. Now, set P (x) =
m∑
j=1

ajx
j ,

Q(x) =
n∑
j=1

bjx
j and let P (x)Q(x) =

m+n∑
j=1

cjx
j . Let s (resp. t) be the biggest of

the integers such that |P |(r) = |as|rs (resp. |Q|(r) = |bt|rt). Then |P |(r)|Q|(r) =
|asbt|rs+t. On one hand, we can check that, obviously, |cj |rj ≤ |asbt|rs+t ∀j =
0, ...,m + n, hence |PQ|(r) ≤ |P |(r)|Q|(r). On the other hand, since |aj |rj <
|as|rs ∀j > s and |bj |rj < |bt|rt ∀j > t, we have |cs+t|rs+t = |asbt|rs+t, which
proves that |PQ|(r) ≥ |P |(r)|Q|(r) and hence ends the proof.

Now, Lemma A.3.7 shows that we can change the origin, inside the disk
d(0, r)
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Lemma A.3.7: Suppose E is algebraically closed. Let r ∈ R+ and let a ∈ IL
be such that |a| ≤ r. Then |P (x)| has a limit when |x − a| approaches r but
remains different from r. Further, that limit does not depend on a ∈ d(0, r) and
it belongs to |K| if and only if so does r.

Proof. We set x = a + u and Pa(u) = P (a + u). For every P ∈ IL[x] we have
lim
|u|→r
|u|6=r

|Pa(u)| = |Pa|(r). In particular |Pa|(r) = lim
|u|→r+
|u|<r

|Pa(u)|. But for every

ρ > r,C(0, ρ) = C(a, ρ), hence lim
|x|→r+

|P (x)| = lim
|u|→r+

|P (a+u)| = lim
|u|→r+

|Pa(u)|.

That ends the proof of Lemma A.3.7.

Theorem A.3.8: Suppose IL is algebraically closed. Let P (x) =
q∑
j=0

ajx
j ∈

E[x] be a monic polynomial such that aj ∈ d(0, 1) whenever j = 0, ..., q. Then
the q zeros of P belong to d(0, 1).

Proof. Let ψ be the absolute value defined on E[x] by ψ(P ) = lim
|u|→1,|u|6=1

|P (u)|

and let P (x) =
q∏
j=1

(x − cj). By Lemma A.3.3, for each j = 1, ..., q, it is seen

that ψ(x − cj) ≥ 1 while ψ(P ) = 1. Hence ψ(x − cj) = 1 for every j = 1, ..., q
and therefore by Lemma A.3.3 again, we have cj ≤ 1 whenever j = 1, ..., q.

Notation: These ultrametric absolute values defined on IL[x] are immediately

extended to rational functions by
∣∣∣P
Q

∣∣∣(r) :=
|P |(r)
|Q|(r)

.

Then Lemma A.3.9 is immediate:

Lemma A.3.9: Suppose IL is algebraically closed. Let h ∈ IL(x) and let r ∈
R+. For every a ∈ d(0, r) we have lim

|x−a|→r
|x−a|6=0

|h(x)| = |h|(r). Let x ∈ C(0, r).

If h has no zero and no pole in the class of x in C(0, r) then |h(x)| = |h|(r).
Further, |h|(r) belongs to |K| if and only if so does r.

Circular filters characterize the multiplicative norms defined on K(x) [50],
[52], [61], [62].

Theorem A.3.10 (B.Guennebaud): For every circular filter F on K, for
every rational function P (x) ∈ K[x], |P (x)| has a limit ϕF (P ) along the filter F .
The mapping F → ϕF from Φ(K) into the set of the multiplicative semi-norms
on K[x] is a bijection. Moreover, for every large circular filter on K, ϕF has
continuation to K(x) and the mapping F → ϕF from Φ◦(K) into the set of the
multiplicative norms on K(x) is a bijection.

If F has center 0 and diameter r, then ϕF (h) = |h|(r).



24 Ultrametric fields

Proof. We first suppose that F has center a ∈ K and diameter r > 0. With
no loss of generality we may obviously assume a = 0 by means of the change
of variable x = a + u. Then by Lemma A.3.3, |h(x)| = |h|(r) holds in every
class of C(0, r) but finitely many ones Λ1, ...,Λq. For every j = 1, ..., q, we take
αj ∈ Λj and set α0 = 0. Let ε be > 0. By Lemma A.3.3 there exist ρ′ ∈]0, r[

and ρ′′ > r such that | |h(x)| − |h|(r) |∞ ≤ ε for every x ∈
q⋂
j=0

Γ(αj , ρ′, ρ′′), so

lim
F
|h(x)| = |h|(r).
Now we suppose that F has no center in K. It admits a canonical basis

(Dn)n∈N and then given h ∈ K(x), there exists q ∈ N such that h has neither
any zero nor any pole inside Dq. Hence |h(x)| is equal to a constant l in Dq and
therefore we have lim

F
|h(x)| = l. By the same kind of reasonning as in Lemma

A.3.6 it is easily seen that ϕF is an absolute value on K(x).
Now, we will check that the mapping F → ϕF is injective. Indeed let F1,F2

be two different circular filters and let r1 (resp. r2 ≥ r1) be the diameter
of F1 (resp. F2). We first suppose that we may find disks Λ1 = d(a1, ρ1) and
Λ2 = d(a2, ρ2) such that Λ1∩Λ2 = ∅ and such that F1, (resp. F2) is secant with
Λ1, (resp. Λ2). Then it is seen that |a1 − a2| > ρ1 ≥ r1 hence ϕF1(x− a1) ≤ r1

while ϕF2(x− a1) = |a1 − a2| > r1 and therefore ϕF1 6= ϕF2 .
We now suppose that we cannot find disks Λ1, Λ2 defined as above. Since

r1 ≤ r2, any disk Λ which belongs to F1 is included in any disk that belongs
to F2 and therefore any point of Λ1 is a center of F2. Thus F2 admits a center
a ∈ Λ and then, F1 is secant with d(a, r2). Hence we have r1 < r2 because
otherwise F1 would be equal to F2. In particular F2 is secant with one class
d(α, r−2 ) of d(a, r2). Then we have ϕF1(x−α) ≤ r1 while ϕF2(x−α) = r2. This
finishes showing that the mapping F → ϕF is injective.

Now we will show that this mapping defined on Φ◦(K) is also surjective onto
the set of multiplicative norms i.e. the absolute values on K[x] continuing these
of K. Indeed let ψ be such an absolute value on K[x] and let r = inf

λ∈K
ψ(x− λ).

We first suppose that there exists a ∈ K such that ψ(x− a) = r. Since ψ is
an absolute value, we check that r > 0 because if r = 0, we have ψ(h) = h(a)
for every h ∈ K[x] and then ψ is not an absolute value. Hence we can assume
r > 0. Let F be the circular filter of center a, of diameter r. By Lemma A.1.7,
we know that ψ is ultrametric and then for every b ∈ K, we have ψ(x − b) ≤
max (ψ(x−a), |a− b|) = max(|a− b|, r). But by definition we have ψ(x− b) ≥ r,
hence (1) r ≤ ψ(x− b) ≤ max(r, |a− b|).
If |a− b| > r, then both ψ(x− b), ϕF (x− b) are equal to |a− b|. If |a− b| ≤ r,
then b is another center of F and we have ϕF (x− a) = ϕF (x− b) = r. But by
(1) we see that ψ(x− b) = r. So we have shown that ϕF (x− b) = ψ(x− b) for
all b ∈ K and since K is algebraically closed, this finishes proving that ψ = ϕF .

We now suppose that there does not exist a ∈ K such that r = ψ(x − a).

There exists αn ∈ K such that r < ψ(x−αn) < r+
1
n
. Let ρn = ψ(x−αn). For

b ∈ K \ d(αn, ρn) clearly we have
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(2) ψ(x− b) = |b− αn| > ρn

because ψ(x − αn) < |αn − b|. Further, if Fn is the circular filter of center αn
and diameter ρn we have

(3) ψ(x− b) = |b− αn| = ϕFn(x− b).
However there exists αn+1 ∈ K such that r < ψ(x − αn+1) < min(ρn, r +

1
n+ 1

). Hence by (2) we see that αn+1 ∈ d(αn, ρn). That way, we may define

a decreasing sequence of disks Dn = d(αn, ρn) such that r < ρn < r +
1
n

and

ψ(x − αn) = ρn. Let D′n = Dn ∩ D. Then the decreasing filter F of basis
(D′n)n∈N satisfies lim

F
ψ(x − αn) = r. It is easily seen that F has no center

because if α is a center of F then ψ(x − α) ≤ max (|ψ − αn|, |αn − α|) hence
ψ(x−α) = r. We will show that ψ = ϕF . Let b ∈ K and let q ∈ N be such that
b /∈ Dq. Then by (3), for n ≥ q we have ψ(x − b) = ϕFn(x − b). On the other
hand it is easily seen that ϕFn(x− b) = ϕF (x− b). Thus ψ(x− b) = ϕF (x− b)
whenever b ∈ K and then ψ = ϕF .

Finally, let ψ be a multiplicative semi-norm that is not a norm: there exists
a polynomial P such that ψ(P ) = 0 and hence, there exists a ∈ K such that
ψ(x − a) = 0. Let b ∈ K. Then ψ(x − b) = ψ((x − a) + (a − b)) ≤ maxψ(x −
a), ψ(a − b)). But since ψ(t) = |t| ∀t ∈ K, we have ψ(x − b) = |a − b|, hence,
putting h(x) = x − b, we have ψ(h) = |h(a)|, which shows that the equality
ψ(h) = |h(a)| holds for every polynomial of degree 1 and therefore it holds in
all K[x]. This ends the proof of Theorem A.3.10.

Theorem A.3.11: Let H be a filter on K and let F , G ∈ Φ(K) be less thin
than H. Then F = G.

Proof. Since H is thiner than F and G we have limH |P (x)| = ϕF (P ) =
ϕG(P ) ∀P ∈ K[x], hence ϕF = ϕG . But by theorem A.3.10 the mapping that
associates to each circular filter F the multlplicative semi-norm ϕF is injective
and hence F = G.

Notation: When F is the circular filter of center a, of diameter r, we will also
denote by ϕa,r the absolute value ϕF . Hence by definition we have ϕa,r(h) =

lim
|x−a|→r
|x−a|6=a

|h(x)|. In particular we notice that ϕ0,r(h) = |h|(r).

Finally, we will denote by ϕa the multiplicative semi-norm defined on rational
functions with no pole at a as ϕa(h) = |h(a)|.

Now, let us go back to the field L. For µ ∈ R we set Ψ(h, µ) = log(|h|(θµ))
for simplicity, we set Ψ(h) = Ψ(h, 0). Thus, comparatively to the valuation
function v(h, µ) defined and used in previous works [2], [58], we have Ψ(h, µ) =
−v(h,−µ). The advantage of the fonction Ψ is to respect the sens of variation
of |h|(r).
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The translation of Lemmas A.3.1, A.3.2, A.3.3, A.3.6, A.3.7, A.3.8, A.3.9
into terms of valuation allows us to obtain the following Lemmas A.3.12 and
A.3.13.

Lemma A.3.12: Let P (x) =
n∑
j=0

ajx
j ∈ K[x] \ {0}. For every µ ∈ R, we have

Ψ(P, µ) = max
0≤j≤n

Ψ(aj) + jµ. Moreover, Ψ(P (a)) ≤ Ψ(P,Ψ(a)) ∀a ∈ L.

Suppose P ∈ K[x]. The equality Ψ(P (x)) = Ψ(P,Ψ(x)) holds if and only if
P has no zero α such that Ψ(x− α) < Ψ(x).

Lemma A.3.13: Let h ∈ K(x) \ {0}. We have Ψ(h(x)) = Ψ(h,Ψ(x)) for
every x ∈ K such that h has no zero α satisfying Ψ(x− α) < Ψ(x) and no pole
β satisfying Ψ(x− β) < Ψ(x).

Lemma A.3.14: Let h1, h2 ∈ K(x) \ {0}. Then we have

Ψ(h1 + h2, µ) ≤ max
(
Ψ(h1, µ),Ψ(h2, µ)

)
.

When Ψ(h1, µ) > Ψ(h2, µ), then we have Ψ(h1 + h2, µ) = Ψ(h1, µ). Moreover,
Ψ(h1.h2, µ) = Ψ(h1, µ) + Ψ(h2, µ).

Notation: In order to perform easily any change of origin, for every a ∈ K
and h ∈ K(x) \ {0} we put Ψa(h, µ) = Ψ(ha, µ) with ha(u) = h(a + u). Thus
if F denotes the circular filter of center a and diameter θ−µ then Ψa(h, µ) =
log(ϕF (h)).

We now consider again a polynomial P (x) =
n∑
j=0

ajx
j 6= 0. We denote by

ν+(P, µ) (resp. ν−(P, µ)) the biggest (resp. the smallest) index j such that
Ψ(aj) + jµ = Ψ(P, µ).

Lemma A.3.15 is a consequence of Lemma A.3.9:

Lemma A.3.15: Let h ∈ K(x)\{0} and let a, b ∈ K. For every µ ≥ Ψ(a− b),
we have Ψa(h, µ) = Ψb(h, µ) .

Theorem A.3.16: Let P (x) =
n∑
j=0

ajx
j ∈ K[x]. For every µ ∈ R, ν+(P, µ)−

ν−(P, µ) is equal to the number of zeros admitted by P in the circle C(0, θµ)
in K. The function ν+(P, .) (resp. ν−(P, .)) is increasing and continuous on
the right (resp. on the left). Moreover, given Q ∈ K[x], then ν+, ν− satisfy
ν+(PQ, µ) = ν+(P, µ) + ν+(Q,µ), ν−(PQ, µ) = ν−(P, µ) + ν−(Q,µ). Further,
if ν+(P, µ) = ν−(P, µ), then both are constant in a neighborhood of µ.

The function Ψ(P, .) is continuous, piecewise affine, increasing, convex and
has a right side derivative (resp. a left side derivative) equal to ν+(P, µ) (resp.
ν−(P, µ)).
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Proof. It is easily seen that the equality
(1) ν+(P, µ) = ν−(P, µ)
holds for every µ but finitely many values, at most n. It is also clear that the
functions ν+(P, .) and ν−(P, .) are increasing. By continuity we see that the
function ν+(P, µ) is continuous on the right at each point while ν−(P, µ) is
continuous on the left at each point. Finally if (1) holds in an interval ]µ′, µ′′[,
then the functions ν+(P, .) and ν−(P, .) are constant and equal. Consider an
interval ]µ′, µ′′[ such that ν+(P, µ) = ν−(P, µ) for all µ ∈]µ′, µ′′[ and let j =
ν+(P, µ) whenever µ ∈]µ′, µ′′[. Then Ψ(P, µ) = Ψ(aj) + jµ so that the function
Ψ(P, .) is in the form A+ iµ in this interval.

Now let µ be such that ν+(P, µ) < ν−(P, µ). We see that Ψ(P, .) is still
continuous at µ and has a left side derivative equal to ν−(P, µ) and a right
side derivative equal to ν+(P, µ). Finally the function Ψ(P, .) is continuous,
piecewise affine, convex and largely increasing.

If P and Q ∈ K(x) \ {0} then ν+(PQ, µ) is the right side derivative of
the function Ψ(PQ, .). But Ψ(PQ, .) = Ψ(P, .) + Ψ(Q, .), hence its right side
derivative at µ is just ν+(P, µ)+ν+(Q,µ). In the same way we have ν−(PQ, µ) =
ν−(P, µ) + ν−(Q,µ) by considering left side derivatives.

Then, to prove that ν+(P, µ) − ν−(P, µ) is the number of zeros of P in
C(0, θµ), it is sufficient to show this when P is a binomial x− a. But then, this
is obvious because ν+(P, µ) = ν−(P, µ) = 0 whenever µ < Ψ(α), ν+(P, µ) =
ν−(P, µ) = 1 whenever µ > Ψ(α), while ν+(P,Ψ(α)) = 1, ν−(P,Ψ(α)) = 0. So
all the statements of Theorem A.3.16 have been proven.

Applying Lemma A.3.12 and Theorem A.3.16 to the numerator and the
denominator of a rational function, we obtain Corollary A.3.17.

Corollary A.3.17: Let P (x) =
n∑
j=0

ajx
j ∈ K[x]. For every µ ∈ R, ν+(P, log(r))

is equal to the number of zeros admitted by P in d(0, r).

Corollary A.3.18: Let h ∈ K(x) \ {0}. The function in µ Ψ(h, µ) is contin-
uous and piecewise affine.

If µ is such that d(0, θµ) contains s zeros and t poles of h, (taking multiplicity
into account), but neither any zero nor any pole in C(0, θµ), then Ψ(h, .) has a
derivative equal to s− t at µ.

If µ is such that C(0, θµ) contains s zeros and t poles of h, (taking multiplic-

ity into account), then we have
dlΨ
dµ

(h, µ)− drΨ
dµ

(h, µ) = s− t. Further, if the

function Ψ(f, µ) is not derivable at µ, then µ lies in Ψ(K).

Corollary A.3.19: Let h ∈ K(x) \ {0} have no pole (resp. no zero) in an
annulus Γ(0, r′, r′′). Then Ψ(h, µ) is convex (resp. concave) in [log r′, log r′′].

Corollary A.3.20: Let h ∈ K(x) \ {0} have s zeros and t poles in d(0, r′)
and have neither any zero nor any pole in an annulus Γ(0, r′, r′′). Then in
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Γ(0, r′, r′′), Ψ(h, log |x|) is of the form A+ (s− t) log |x|. Moreover, ν+(h, µ)−
ν−(h, µ) = s− t ∀µ ∈] log r′, log r′′[ and ν+(h, µ) (resp. ν−(h, µ)) is continuous
on the right (resp. on the left). Finally, given g ∈ K(x), we have ν+(gh, µ) =
ν+(g, µ) + ν+(h, µ), ν−(gh, µ) = ν−(g, µ) + ν−(h, µ).

Theorem A.3.21: Let G ∈ Φ(K). Let f ∈ K(x) and take ε > 0. There exists
a G-affinoid E such that | |f(x)| − ϕG(f)|∞ ≤ ε, ∀x ∈ E.

Proof. Let r = diam(G) and let l > r. If G has no center, there exists a disk
d(a, l) ∈ G, with r ∈ |K|, containing neither zeros nor poles of f , therefore by
Lemma A.3.9 |f(x)| is a constant equal to ϕF (f) in d(a, r), so our claim is
obvious. Now, suppose that G = Fa,r. Let Λ1, ...,Λq be the classes of d(a, r)
containing at least one zero or one pole of f . By Lemma A.3.9 |f(x)| is a constant
equal to ϕG(f) in d(a, r) \

(⋃q
j=1 Λj

)
. Consider a class Λj = d(aj , r−) and let

sj (resp. tj) be the number of zeros (resp. poles) of f inside Λj and let s0 (resp.
t0) be the number of zeros (resp. poles) of f in all d(a, r). Let ρ ∈]0, r[∩|K|

be such that
∣∣( r
ρ

)sj−tj − 1
∣∣ϕG(f) ≤ ε ∀j = 0, ..., q. Let l =

r2

ρ
and let E =

d(a, l) \
⋃q
j=1 d(aj , ρ−). By Corollary A.3.19 we can check that the inequality

| |f(x)| − ϕG(f)|∞ ≤ ε holds in all E. Since ρ < r, E is an infraconnected
affinoid set which belongs to G. Moreover, by definition, l > r.

Theorem A.3.22: Let F be a filter on K such that for every h ∈ K(x), |h(x)|
admits a limit along F . Then there exists a circular filter H less thin than F .

Proof. For every h ∈ K(x), set φ(h) = lim
F
|h(x)|. Then φ belongs toMult(|K(x))

and hence by Theorem A.3.10, there exists a unique circular filter H such that
φ = ϕH. Suppose that F is not thinner than H. There exists a subset B of K
such that F is secant with B but H is not. Since H admits a basis consisting of
affinoid subsets, there exists a H- affinoid D such that D ∩ B = ∅. Since D is

affinoid, it is of the form d(a,R) \
( q⋃
k=1

d(ai, r−i )
)

and H also admits a H- affi-

noid E of the form d(a, S) \
( q⋃
k=1

d(ai, s−i )
)

with S < R and ri < si ∀i = 1, ..., q.

Let b ∈ Γ(a, S,R) and let h(x) =
∏q
i=1(x− ai)mi

(x− b)n
. Then with integers mi, and

n big enough, we can get

inf{|h(x)| | x ∈ E} > sup{|h(x)| | x ∈ B}

a contradiction to the hypothesis: |h(x)| admits a limit along F .
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A.4. Hensel Lemma

The Hensel Lemma is a classical tool for studying the factorization of analytic
functions on a circle [2], [50], [58] and is indispensable in Chapter A.5. It
is a strong result that roughly says : ”In a complete field IL, if P splits in
the form γη with (γ, η) = 1, then P also splits in IL[x] in the form gh with
g = γ, h = h,deg(g) = deg(γ)”. The proof is not very easy and requires a
serious preparation. Here we will roughly follow the same process as in [2], [50],
[58] and more precisely in [58], with a few corrections.

Notation: Given a field E and g, h ∈ IL[x], here (g, h) will denote the

monic greatest common divisor of g and h. Given Q(x) =
n∑
j=0

bjx
j ∈ UIL[x],

as in Chapter A.3 we denote by Q the polynomial
q∑
j=0

aj x
j ∈ L[x]. In this

chapter P (x) =
q∑
j=0

ajx
j ∈ L[x] will denote a polynomial of degree q.

Lemma A.4.1. is immediate :

Lemma A.4.1: The quotient ring
UIL[x]
MIL[x]

is isomorphic to L[x].

Lemma A.4.2: For all α ∈ IL we have Ψ(P (α)) ≤ Ψ(P, 0) + max(0, qΨ(α)).

Proof. By Lemma A.3.12 we have Ψ(P (α)) ≤ max
0≤j≤q

(Ψ(aj)+jΨ(α)) ≤ max
0≤j≤q

Ψ(aj)+

max
0≤j≤q

jΨ(α). But max
0≤j≤q

Ψ(aj) = Ψ(P, 0) and max
0≤j≤q

jΨ(α) = max(0, qΨ(α)).

Definition : A polynomial
q∑
j=0

ajx
j ∈ L[x] will be said to be quasi-monic

if |aq| = 1.

Lemma A.4.3: Let F,D ∈ UIL[x] with D quasi-monic. Let Q,R ∈ UIL[x]
satisfy F = DQ + R and deg(R) < deg(D). Then we have Ψ(Q, 0) ≤ Ψ(F, 0)
and Ψ(R, 0) ≤ Ψ(F, 0).

Proof. We can clearly assume F 6= 0. Then, by multiplying F by a suitable
constant λ, we can also assume Ψ(F, 0) = 0. Since D is quasi-monic, the
Euclidean division of F by D is clearly possible in UIL[x] and therefore Q is the
quotient, R is the rest of this division, due to the fact that deg(R) < deg(D).
So we have Ψ(Q, 0) ≤ 0, Ψ(R, 0) ≤ 0 because both Q, R belong to UIL[x].
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Corollary A.4.4: Let F,D ∈ K[x] with D having all its zeros in d(0, 1).
Let Q,R ∈ UK[x] satisfy F = DQ + R and deg(R) < deg(D). Then we have
Ψ(Q, 0) ≤ Ψ(F, 0)−Ψ(D, 0) and Ψ(R, 0) ≤ Ψ(F, 0). Moreover, if F has all its
zeros in d(0, 1), then Ψ(Q, 0) = Ψ(F, 0)−Ψ(D, 0).

Proof. The first statement is just an application of Lemma A.4.3. Next, if F
has all its zeros in d(0, 1), we can assume that both F, D are monic and satisfy
‖F‖ = ‖D‖ = 1. Consequently, Q also must be monic and hence ‖Q‖ = 1,
which ends the proof.

Lemma A.4.5: Let g, h ∈ UIL[x] be quasi-monic, such that (g, h) = 1 and
deg(P ) < deg(g) + deg(h). There exist V,W ∈ IL[x] satisfying Ψ(V g + Wh −
P, 0) < Ψ(P, 0),Ψ(V, 0) ≤ Ψ(P, 0), Ψ(W, 0) ≤ Ψ(P, 0), deg(V ) < deg(h), deg(W ) <
deg(g).

Proof. Since (g, h) = 1, by Bezout’s Theorem there exists υ and τ ∈ L[x] such
that υg + τh = 1, deg(υ) < deg(h), deg(τ) < deg(g). Let S, T ∈ U IL[x]
satisfy S = υ, T = τ,deg (S) = deg (υ),deg (T ) = deg (τ). Thus we have
Sg + Th− 1 = 0 i.e.
(1) Ψ(Sg + Th− 1) < 0.

We now consider the Euclidean division of SP by h and TP by g, respec-
tively. We obtain SP = S0h+V and TP = T0g+W . By Lemma A.4.2, it is seen
that max(Ψ(V, 0),Ψ(S0, 0)) ≤ Ψ(SP, 0) ≤ Ψ(P, 0). Moreover, by hypothesis we
have
(1) deg(V ) < deg(h) and
(2) deg(W ) < deg(g)
Let M = Sg + Th − 1. Then we have MP = (S0 + T0)gh + V g + Wh − P .
Since deg(P ) < deg(g) + deg(h), by (1) and (2) we see that deg(V g + Wh −
P ) < deg(g) + deg(h) and therefore V g + Wh − P is just the remainder of
the Euclidean division of BP by gh. But then, by Lemma A.4.3, we have
Ψ(V g + Wh − P, 0) ≤ Ψ(MP, 0) = Ψ(M, 0) + Ψ(P, 0), and therefore by (1)
and by definition of M it is seen that Ψ(M, 0) < 0. This finishes proving that
Ψ(V g +Wh− P, 0) < Ψ(P, 0) and this ends the proof of Lemma A.4.5.

Notation: Let g, h ∈ UIL[x], be monic and satisfy (g, h) = 1. We will denote
by B(f, g) the set of constants c ∈ R+ such that, for every polynomial Q ∈ IL[x]
satisfying deg(Q) < deg(g) + deg(h), there exist V,W ∈ IL[x] satisfying
Ψ(V g +Wh−Q, 0) ≤ Ψ(Q, 0) + c, Ψ(V, 0) ≤ Ψ(Q, 0),
Ψ(W, 0) ≤ Ψ(Q, 0), deg(V ) < deg(h), deg(W ) < deg(g).

Lemma A.4.6: Let g, h ∈ UIL[x], be quasi-monic and satisfy (g, h) = 1 and
let d = deg(g)+deg(h). Then B(f, g) is a not empty interval whose lower bound
is 0. Moreover, given λ ∈ B(f, g) and monic polynomials s, t ∈ UIL[x] such that
Ψ(g − s, 0) ≤ λ, Ψ(h− t, 0) ≤ λ, then B(s, t) = B(g, h).
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Proof. Let d = deg(g) + deg(h). We can apply Lemma A.4.5 to each polyno-
mial Qn = xn for every n = 0, . . . , d − 1. Thus, we have polynomials Vn,Wn

satisfying Ψ(Vng +Wnh− xn, 0) < 0, Ψ(Vn, 0) ≤ 0, Ψ(Wn, 0) ≤ 0, deg(Vn) <
deg(h), deg(Wn) < deg(g). We put

λn = Ψ(Vng + Wnh − xn, 0), (0 ≤ n ≤ d − 1). Now let Q =
d−1∑
n=0

anx
n, let

V =
d−1∑
n=0

anVn, Wn =
d−1∑
n=0

anWn and let λ(g, h) = max
0≤n≤d−1

λn. Clearly we have

Ψ(V g + Wh −Q, 0) ≤ max
0≤n≤d−1

(Ψ(an) + λn) ≤ max
0≤n≤d−1

Ψ(an) + max
0≤n≤d−1

λn =

Ψ(Q, 0) + λ(g, h).
But trivially

Ψ(V, 0) ≤ max
0≤n≤d−1

Ψ(an), Ψ(W, 0) ≤ Ψ(Q, 0), deg(V ) ≤ max
0≤n≤d−1

(deg(Vn))

< deg(h), deg(W ) ≤ max
0≤n≤d−1

(deg(Wn)) < deg(h).

So, λ(g, h) lies in B(f, g) and hence it is obviously seen that B(f, g) is a not
empty interval and that its lower bound is 0.

Now, let c ∈ B(f, g) and let s, t ∈ UIL[x] be monic and satisfy Ψ(g− s, 0) <
c, Ψ(h− t, 0) < c. Since Ψ(V, 0) ≤ Ψ(Q, 0), Ψ(W, 0) ≤ Ψ(Q, 0), it is easily seen
that Ψ(V (g−s)+W (h− t), 0) < c+Ψ(Q, 0) and therefore Ψ(V s+Wt−Q, 0) <
c + Ψ(Q, 0). This shows that λ(s, t) ≤ c and therefore B(f, g) ⊂ B(s, t). But
similarly we have B(s, t) ⊂ B(g, h) and this ends the proof of Lemma A.4.6.

Lemma A.4.7: Let Q ∈ L[x] and let g, h ∈ UIL[x] be quasi-monic and satisfy
(g, h) = 1. Let c ∈ B(g, h). There exist monic polynomials V, W ∈ L[x]
satisfying
Ψ(V g +Wh−Q, 0) ≤ c+ Ψ(Q, 0),
deg(W ) < deg(g), deg(V ) ≤ max(deg(h),deg(Q)− deg(g)),
Ψ(V, 0) ≤ Ψ(Q, 0), Ψ(W, 0) ≤ Ψ(Q, 0).

Proof. We consider the Euclidean division of Q by gh : Q = `gh + Q1. Hence
deg(Q1) < deg(g) + deg(h). By Lemma A.4.3 we have
(1) Ψ(Q1, 0) ≤ Ψ(Q, 0),
(2) Ψ(`, 0) ≤ Ψ(Q, 0).
By lemma A.4.6. there exist V1,W1 ∈ IL[x] satisfying
(3) Ψ(V1g +W1h−Q1, 0) ≤ Ψ(Q1, 0) + c
(4) Ψ(V1, 0) ≤ Ψ(Q1, 0),
(5) Ψ(W1, 0) ≤ Ψ(Q1, 0),
(6) deg(V1) < deg(h),
(7) deg(W1) < deg(g),

Now we put V = V1 + `h, W = W1. So we have V g+Wh−Q = V1 + `gh+
W1h−`gh−Q1 and therefore by (3) we obtain Ψ(V g+Wh−Q, 0) ≤ Ψ(Q1, 0)+c.
Hence by (1) we obtain
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(8) v(V g +Wh−Q) ≥ v(Q) + c.
Now, by (1) , (5) it is seen that
(9) Ψ(W, 0) ≤ Ψ(Q, 0).
We will check
(10) Ψ(V, 0) ≤ Ψ(Q, 0).
Indeed we have Ψ(h, 0) = 0, hence by (2) we see
(11) Ψ(`h, 0) ≤ Ψ(Q, 0).
But by (4) we have Ψ(V1, 0) ≤ Ψ(Q, 0) and therefore by (11) we obtain (10).
Finally, by definition we have deg(`) = deg(Q)− deg(gh) and therefore
(12) deg(V ) ≤ max(deg(V1),deg(`h)) ≤ max(deg(h),deg(Q)− deg(g)).
Thanks to (7), (8) , (9) , (10), (12), Lemma A.4.7 is now proven.

Theorem A.4.8 (Hensel Lemma): L is suppposed to be complete. Let P ∈
UIL[x] be such that P splits in L[x] in the form γη with γ, η relatively prime.
There exists g, h ∈ UIL[x] such that P = gh, g = γ, h = η,deg(g) = deg(γ).

Proof. We can obviously take quasi-monic polynomials g0, h0 ∈ UIL[x] such that
g0 = γ, h0 = η. We put ξ = Ψ(P − g0h0, 0) and take ζ ∈ B(g0, h0) satisfying
ζ ≤ ξ. We will construct sequences (gn)n∈N, (hn)n∈N in IL[x] satisfying for all
n ≥ 0:
in) Ψ(P − gnhn, 0) ≤ (n+ 1)ζ,
iin) Ψ(gn − gn−1, 0) ≤ nζ, Ψ(hn − hn−1, 0) ≤ nζ,
iiin) deg(hn) ≤ deg(P )− deg(g0), deg(gn) = deg(g0),
ivn) gn = γ, hn = η,
vn) ζ ∈ B(gn, hn).

First we put P1 = P − g0h0. We notice that deg(P1) = deg(P ). We now ap-
ply Lemma A.4.7, to the case when (Q, g, h) = (P1, g0, h0) : there exist V1,W1 ∈
IL[x] satisfying (1) deg(W1) < deg(g0), (2) deg(V1) < deg(P ) − deg(g0),

(3) Ψ(V1, 0) ≤ ζ, (4) Ψ(W1, 0) ≤ ζ, (5) Ψ(V1g0 + W1h0 − P1, 0) ≤

ζ + Ψ(P1, 0) Next we put g1 = g0 + W1, h1 = h0 + V1. We check that
i1), ii1), iii1), iv1) are satisfied. Moreover, by (3) and (4) and by Lemma A.4.6,
ζ lies in B(g1, h1), hence v1 is satisfied.

Now we suppose we have already constructed the pairs (gm, hm) satisfying
im), iim), iiim), ivm), vm) for every m = 0, . . . , n. Then we put Pn+1 = P−gnhn.

We can apply Lemma A.4.7 to the case when (Q, g, h) is equal to (Pn+1, gn, hn).
So, we can obtain Vn+1,Wn+1 ∈ L[x] satisfying (6) Ψ(Wn+1gn + Vn+1hn −
Pn+1, 0) ≤ ζ + Ψ(Pn+1, 0) (7) deg(Wn+1) < deg(gn), (8) deg(Vn+1) ≤

max(deg(hn),deg(Pn+1)−deg(gn)) (9) Ψ(Vn+1, 0) ≤ Ψ(Pn+1, 0), Ψ(Wn+1, 0) ≤
Ψ(Pn+1, 0). By (6) and by vn) we obtain (10) Ψ(Wn+1gn+Vn+1hn−Pn+1, 0) ≤

(n+ 2)ζ. Now we put gn+1 = gn +Wn+1, hn+1 = hn +Wn+1. We check that
P − gn+1hn+1 = (Pn+1 − hnWn+1 − gnVn+1)− Vn+1Wn+1 =
= Pn+1−hWn+1−gn+1Vn+1 +(hn+1−hn)Wn+1 +(gn+1−gn)Vn+1 +Vn+1Wn+1.



Ultrametric fields 33

By iim) true for m ≤ n, we notice that
(11) Ψ(gn − gn+1, 0) ≤ (n+ 1)ζ, Ψ(hn − hn+1, 0) ≤ (n+ 1)ζ,
and then, by (9) and (10), we obtain i)n+1 Ψ(P − gn+1hn+1, 0) ≤ (n+ 2)ζ.

Relation in+1) is true by definition and iiin+1), ivn+1) are easily checked.
By (11) and by Lemma A.4.6 Relation vn+1) is also clear.

Therefore the sequences (gn)n∈N, (hn)n∈N satisfying in), iin), iiin), ivn), vn)
are now constructed. Since IL is complete, the vector space ILq[x] of polynomial
of degree m ≤ q is obviously complete with respect to the Gauss norm ‖ · ‖
which is characterized by log ‖Q‖ = Ψ(Q, 0).

Then by Relations iin) the sequences (gn)n∈N, (hn)n∈N converge in ILq[x].
We put g = lim

n→∞
gn, h = lim

n→∞
hn. By iiin) we have deg(g) = deg(g0) = deg(γ).

By ivn) we have g = γ, h = η and finally by in) we have Ψ(P − gh, 0) = +∞
hence P = gh. That ends the proof of Theorem A.4.8.
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A.5. Extensions of ultrametric fields: the field Cp

All considerations on analytic and meromorphic functions require to consider
a complete ultrametric algebraically closed field K. Here we will construct
the field Cp and study finite extensions of Qp. And we show that Cp is not
spherically complete.

Notation: As in the previous chapters, IL denotes a complete ultrametric field
whose absolute value is not trivial and whose residue class field is L. We will
denote by F an algebraically closed ultrametric field whose absolute value is not
trivial.

Let E be a field, let IB be a finite algebraic extension of E and let q = [IB : E].
We will denote by N the algebraic norm of IB over E. Given a ∈ IB, we will
denote by irr(a,E) the minimal polynomial of a over E.

Lemma A.5.1 is classical in algebra [70]:

Lemma A.5.1: Let q = [IB : E], and let N be the norm of IB over E. Let
a ∈ IB, let Pa = irr(a,E) and let d = deg(Pa). Then N satisfies N (a) =(
(−1)dPa(0)

) q
d and N (ab) = N (a)N (b), ∀b ∈ IB.

Theorem A.5.2: Let E be an algebraic extension of IL, let a ∈ E and let
P = irr(a, IL). Then a is integral over UIL if and only if |P (0)| ≤ 1. Moreover,
if |P (0)| ≤ 1, then ‖P‖ = 1. Finally, if |P (0)| = 1, then irr(a,L) = P.

Proof. First we assume a to be integral over UIL. Then there exists a monic
polynomial Q ∈ UIL[x] such that Q(a) = 0. Therefore, P divides Q in IL[x]. Let
Q(x) = P (x)T (x). Since both P, Q are monic, so is T . Therefore, Ψ(P (, 0) ≥
0, Ψ(T (, 0) ≥ 0. But since Ψ(Q, 0) = 0 and since Ψ(Q, 0) = Ψ(P, 0) + Ψ(T, 0),
P, T must satisfy Ψ(P, 0) = Ψ(T, 0) = 0 and therefore |P (0)| ≤ 1.

Now we assume |P (0)| ≤ 1. Suppose Ψ(P, 0) > 0. There exists b ∈MIL such
that Ψ(bP, 0) = 0 and then |bP (0)| < 1, hence 0 is a zero of bP . Further, we
notice
(1) deg(bP ) < deg(P ).

Let bP = xdφ with φ(0) 6= 0. Then xd and φ are relatively prime in L[x].
Therefore, by Theorem A.4.8 there exist g, h ∈ UIL[x] such that g = xd, h =
φ, deg(g) = d and P = gh. But since P is irreducible in IL[x] and since
d > 0, h must be a constant and therefore deg(P ) = d a contradiction to (1).
Consequently, Ψ(P, 0) = 0. Now, suppose |P (0)| = 1. Since P is irreducible in
IL[X], by Theorem A.4.8 so is P in L[X], hence irr(a,L) = P.

Corollary A.5.3: Let E be an algebraic extension of IL equipped with the
unique extension of the absolute value of IL. Let a ∈ E be such that |a| = 1, of
degree l over IL. Then the residue class a of a in the residue class field of E is
algebraic, of degree l over L .
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Proof. Let P (x) =
∑m
j=0 ajx

j = irr(a, IL). Since |a| = 1 we have |a0| = 1, hence
by Theorem A.5.2 we have ‖P‖ = 1 and a satisfies irr(a,L) = P, which ends
the proof.

Theorem A.5.4: Let E be an algebraic extension of IL. There exists a unique
absolute value ϕ on E that extends the one of IL. Further, this absolute value is
ultrametric and defined as follows: given a ∈ E, Q = irr(a, IL) and t = deg(Q),
then ϕ(a) = t

√
|Q(0)|.

Proof. We first notice that ϕ(a) = |a| whenver a ∈ IL. We will show that ϕ is
an ultrametric absolute value on E. Clearly we have ϕ(a) 6= 0 whenver a ∈ E.
By Lemma A.5.1 it is easily seen that we have ϕ(ab) = ϕ(a)ϕ(b) whenver
a, b ∈ E and therefore ϕ(a)−1 = ϕ(a−1). So it remains to show the ultrametric
inequality. For this, we will show ϕ(1+z) ≤ 1 for every z ∈ UE. For convenience,
we put again Pz = irr(z,E) whenver z ∈ E. Let z ∈ UE. So we have |Pz(0)| ≤ 1
and then by Theorem A.5.2, z is integral over UIL, hence so is 1 + z. Hence by
Theorem A.5.2 we have |P1+z(0)| ≤ 1 and therefore ϕ(1 + z) ≤ 1. Now, the
ultrametric inequality will be easily derived. Let a, b ∈ E satisfy 0 < |a| ≤ |b|.
We have ϕ(a+ b) = ϕ

(
b(1+ a

b )
)

= ϕ(b)ϕ(1+ a
b ). But ϕ(1+ a

b ) ≤ 1, hence finally
ϕ(a + b) ≤ ϕ(b). Thus we have now proven ϕ to be an ultrametric absolute
value that extends that of IL. Then by Theorem A.1.6, this absolute value on
E is unique, which ends the proof.

Corollary A.5.5: Let Ω be an algebraic closure of IL. There exists a unique
absolute value ϕ on Ω that extends the one of IL. Further, this absolute value is
ultrametric and defined as follows: given a ∈ Ω, Q = irr(a, IL) and t = deg(Q),
then ϕ(a) = t

√
|Q(0)|.

Corollary A.5.6: Let P (x) ∈ IL[x] be irreducible over IL, let Ω be an algebraic
closure of IL provided with the absolute value extending that of IL and let b1, ..., bq
be the zeros of P in Ω. Then |bi| = |bj | ∀i, j ≤ q.

Corollary A.5.7: Let Ω be an algebraic closure of IL provided with the unique
absolute value | . | that extends the one of IL. Then UΩ is equal to the integral
closure of UIL. Moreover |Ω| = { n

√
r | r ∈ |IL|, n ∈ N∗}.

Corollary A.5.8: Suppose that the value goup of IL is Z. Let E be a finite
algebraic extension of IL of degree t provided with the unique absolute value | . |
that extends the one of IL. There exists a rational r of the form

s

t
such that the

value group of E is rZ.

Lemma A.5.9: Let IB be an algebraic extension of E provided with an absolute
value extending that of E. Then the residue class field of IB is algebraic over the
residue class field of E.
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Proof. Let t ∈ UIB and let Ê be the completion of E with respect to the absolute
value of E. Since t is algebraic over E, so much the more it is algebraic over
Ê. Then by Corollary A.5.5, the residue class t of t is agebraic over the residue
class field of Ê. But Ê obviously has the same residue class field as E.

Corollary A.5.10: Let IB be an algebraic extension of IL provided with the
unique absolute value that extends the one of IL. Then the residue class field of
IB is an algebraic extension of the residue class field of IL. Moreover, if IB is
finite over IL then residue class field of IB is finite over the residue class field of
IL.

Proof. Suppose first that IB is of the form IL[u]. Without loss of generality, we
may assume that |u| = 1. Then the residue class field of IB is L[u]. Next, we
can generalize by induction.

Theorem A.5.11: Let Ω be an algebraic closure of IL provided with the
unique absolute value extending the one of IL. Then the residue class field of Ω
is an algebraic closure of L.

Proof. Let T be the residue class field of Ω. Let u ∈ UΩ and let P = irr(u, IL).
By Corollary A.5.7, P belongs to UIL[x] and obviously satisfies P (u) = 0, hence
u is algebraic over L. So T is an algebraic extension of L. Now let q ∈ L[x],
and let Q ∈ UIL[x] be a polynomial such that Q = q. Then Q factorizes in Ω[x]

in the form
s∏
j=1

(x− aj) with |aj | ≤ 1 ∀j = 1, ..., s, hence aj belongs to T and

q(x) = aj =
s∏
j=1

(x− aj). So, T contains the algebraic closure of L. And since

it is an algebraic extension of L, then it is the algebraic closure of L.

Corollary A.5.12: The residue class field K of K is algebraically closed .

Lemma A.5.13: Let P (x) =
t∑

j=0

ajx
j , Q(x) =

t∑
j=0

bjx
j be monic, belong to

IB[x] and satisfy ‖P‖‖Q‖ = 1. For each zero α of P , Q admits at least one zero
β such that |α− β|t ≤ max

0≤j≤t
|aj − bj |.

Proof. Let s = max
0≤j≤t

|aj − bj | and let α be a zero of P . By Lemma A.3.6 we

have |(P − Q)(x)| ≤ s whenver x ∈ d(0, 1), hence in particular |Q(α)| ≤ s.
Let β1, ...βt be the zeros of Q (taking multiplicities into account). So we have
t∏

j=1

|βj − α| ≤ s and then that at least one of the βj satisfies |βj − α| ≤ s
1
t .
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Theorem A.5.14: Let IB be an algebraically closed extension of IL provided
with the unique absolute value that extends the one of IL. The completion of IB
also is algebraically closed.

Proof. Let ĨB be the completion of IB and let P (x) =
t∑

j=0

ajx
j ∈ ĨB[x] be monic.

Let Ω be an algebraic closure of ĨB, provided with the unique absolute value
extending that of ĨB and let α1, ..., αt be the zeros of P in Ω. Up to a change
of variable, we may assume that |αj | ≤ 1 ∀j = 1, ..., t. Let ε ∈]0, 1[ and let

Q(x) =
t∑

j=0

bjx
j ∈ IB[x] be such that max

0≤j≤t
|aj − bj | ≤ εt. For each j = 1, ..., t,

by Lemma A.5.13 Q admits a zero β such that |αj − β|t ≤ ε. Since Q ∈ IB[x],
obviously β belongs to IB and therefore we see that αj belongs to ĨB. That ends
the proof.

The following theorem is due to Marc Krasner [69], [74].

Theorem A.5.15 (M. Krasner): Let IL have characteristic zero. Let Ω be
an algebraic closure of IL provided with the unique absolute value extending the
one of IL. Let a ∈ Ω, let a2, ...an be the conjugates of a in Ω and let b ∈ Ω
satisfy |b− a| < |b− aj | for every j = 2, ...n. Then we have IL[a] ⊂ IL[b].

Proof. Let a1 = a and let P (x) = irr(a, IL). In Ω[x], the polynomial P splits

in the form
n∏
j=1

(x− aj). Let Q(x) = irr(a, IL[b]). Then Q divides P . Let

t = deg(Q) and suppose the aj ranged in such a way that Q(x) =
t∏

j=1

(x− aj).

Let R(y) = Q(b+ y). Then R(y) is seen to be irreducible in IL[b][y] like Q(x) in
IL[b][x]. Moreover the zeros of R are just the aj − b, with 1 ≤ j ≤ t. Thus we
have R = irr(a− b, IL[b]). But since IL is complete, by Corollary A.5.5 we have
|aj − b| = q

√
|R(0)| for every j = 1, ..., t. In particular, for j = 2, ...t, we have

|aj − b| = |a− b| and this contradicts the hypothesis. Finally, we have t = 1 and
therefore a lies in IL[b].

Corollary A.5.16: Let IL have characteristic zero. Let Ω be an algebraic
closure of IL provided with the unique absolute value extending the one of IL. Let
a ∈ Ω, let a2, ...an be the conjugates of a in Ω and let b ∈ Ω satisfy |b−a| < |b−aj |
for every j = 2, ...n and [IL[b] : IL] ≤ n. Then we have IL[a] = IL[b].

We can now recall the construction of p-adic fields.

Notation and definition: Let p be a prime number. On Z, the p-adic
absolute value is defined as follows: given n ∈ Z∗, it factorizes in a unique way
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in the form psq, with q ∈ Z∗, prime to p. So, here we take θ = p and set
|n|p = p−s.

Lemma A.5.17 is immediate.
Lemma A.5.17: | . |p is an ultrametric absolute value on Z that has contin-
uation to Q and defines an ultrametric absolute value on Q and N is dense in

Z. Then |n| ≥ 1
n
∀n ∈ N∗,

UQ = {pn
(a
b

)
| n ∈ N, a ∈ Z, b ∈ Z∗, gcd(a, p) = gcd(b, p) = 1}

MQ = {pn
(a
b

)
| n ∈ N∗, a ∈ Z, b ∈ Z∗, gcd(a, p) = gcd(b, p) = 1}

and the residue characteristic of Q is p. The residue class field of Q is the field
of p elements Fp. The valuation group of Q is isomorphic to the additive group
Z.

Remarks and notations: Now Q admits a completion with respect to the
p-adic absolute value and its completion is denoted by Qp. The closure of Z in
Qp is denoted by Zp.

On Qp, we extend the valuation and the absolute value | . |p defined on Q
and we set again Ψp(x) = −vp(x).

An algebraic closure Ωp of Qp is equipped with the unique extension of the
p-adic absolute value defined on Qp and we will again denote it by | . |p. The
valuation group of Qp is obviously equal to the one of Q. Next, the valuation
group of Ωp is easily seen to be isomorphic to ( Q,+). In Chapter A.8, we will
see that Ωp is not complete.

By Theorem A.5.14 Ωp has a completion denoted by Cp that is algebraically
closed. The valuation group of Cp is then isomorphic to ( Q,+) like the one of
Ωp. Moreover by Theorem A.5.11, the residue class field of Ωp is an algebraic
closure of lFp and the one of Cp is seen to be the same. The absolute value | . |p
defined on Ωp has a natural extension to Cp and the associated valuation will
be denoted by vp again. and we set again Ψp(x) = −vp(x) ∀x ∈ Cp. However,
when there is no risk of confusion, we will just write Ψ instead of Ψp.

Theorem A.5.18: Let a be integral over Z and let a2, ..., aq be the conjugates
of a over Q. Then |a| ≤ 1 and aj | ≤ 1 ∀j = 2, ..., q.
Proof: Since a is integral over Z, it is integral over Zp. Let P (X) = irr(a,Q)
and let B(X) = irr(a,Qp). Let a1, ..., ah be the conjugates of a over Qp (with
a1 = a). Then P (0) =

∏q
j=1 aj . Then B divides P in Qp[X]. Moreover,

‖P‖ = 1 and ‖B‖ = 1. Next, B(0) =
∏h
j=1 aj . By Corollary A.5.6 we have

|a1| =, ..., |ah|, while |B(0)| ≤ 1, hence |aj | ≤ 1, i.e. |a| ≤ 1. Next, what is true
for a1 also holds for evry aj , ..., j = 2, ...q, hence |aj |/leq1.

In the future, we will use the following lemma:
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Lemma A.5.19: Let a ∈ Cp be algebraic over Qp, such that logp(|a|) is of

the form
λ

t
, with λ ∈ Z and t in N∗. Take m, n ∈ N and b ∈ Cp such that

logp(|b|) is of the form
u

w
with u ∈ N and w ∈ N prime, prime with u and such

that w > max(m,n, t).
Let f, g ∈ Qp[a] be such that |fbm|p = |gbn|p. Then m = n.

Proof. We notice that for every x ∈ Qp[a], Ψp(|x|) is of the form `
t with ` ∈ Z.

Consequently, Ψp(|f |) is of the form
h

t
and logp(|g|) is of the form

k

t
with h

and k ∈ Z. Consequently, Ψp(|fbm|) =
h

t
+
mu

w
and Ψp(|gbn|) =

k

t
+
nu

w
and

therefore, due to the equality |fbm|p = |gbn|p, we have (h − k)w = ut(n −m).
But since w > t, it is prime with ut, hence it must divide n − m, which is
impossible because max(m,n) < w, except if m = n.

Lemma A.5.20: Let | . | be an ultrametric absolute value on Q. If this
absolute value is trivial, the residue characteristic is zero. If the absolute value
is not trivial, there exists a prime number q such that | . | is equivalent to | . |q.

Proof. If this absolute value is trivial, it is clear that the residue characteristic
is zero. So we suppose that the absolute value is not trivial. For every n ∈ N∗
we have |n| ≤ 1. Since | . | is not trivial, there certainly exists s ∈ N∗ such that
|s| < 1. Let q be the smallest s ∈ N∗ such that |s| < 1. It is easily checked that
q is prime. Since MQ is a principal ideal of Z, we have MQ = qZ.

Let t =
∣∣1
q

∣∣. It is easily checked that given m ∈ Z∗, of the form qsn, with

n ∈ Z∗, prime to q, we have |m| = t−s. Let w be the valuation associated to
this absolute value. Then w is clearly proportional to vq and by Lemma A.1.2
is equivalent to vq. This ends the proof.

Lemma A.5.21 is easily seen.

Lemma A.5.21: N is dense in Zp, the invertible elements in Zp are the ones
whose absolute value is 1, Zp is compact, equal to UQp , pZp is equal to MQp .
Qp is locally compact. The residue class field of Qp is equal to the field of p

elements lFp. Finally Up is the union of p disks d(u,
1
p

).

Proof. All statements are immediate except the compacity of Zp. Consider a
sequence (an) in Zp. Since it is bounded, by Lemma A.2.1 we can extract
either a monotonous distances sequence or an equal distances sequences, or a
converging sequence. But since each circle d(a, r) with r ∈ |Qp| only has p
classes, there are no equal distances sequence in Qp. And since the absolute
value is discrete there is no monotonous distances sequence in Qp. Hence we
can extract a converging sequence from the sequence (an).
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Corollary A.5.22: For each m ∈ N, Up is the union of pm distinct disks

d(u,
1
pm

). Let E be a finite algebraic extension of Qp. There exists a constant

B > 0 such that for all m ∈ N the number of distinct d(u,
1
pm

) is inferior or

equal to Bpm.

By definition and construction of Cp, we have this corollary:
Corollary A.5.23: The field of algebraic numbers is dense in Cp. Hence,
Cp contains a dense countable subset.

In Theorem A.5.24 we will follow the method of [85].

Theorem A.5.24: Cp is not spherically complete.

Proof. Let (rn)n∈N be a real sequence such that 0 < r < rn+1 < rn < 1 ∀n ∈ N.
Let S be the set of sequences of the set {0, 1}. Suppose that for each n = 0, ..., q
we have defined 2n disks d(an,k, rn), k = 0, 1, such that for each n = 1, ..., q
and for each k = 0, 1 the disks d(an,0, rn) and d(an,1, rn) are included in some
d(an−1,k, rn−1) (with k = 0 or k = 1) and have an empty intersection. It is
then immediate to define in each disk d(aq,krq) two disks d(aq+1,0, rq+1) and
d(aq+1,1, rq+1) having an empty intersection. So, the family is defined for every
n ∈ N.

Now, let (un) ∈ S and let (Vn) be a decreasing sequence of disks defined
as follows: suppose defined (Vn) for n ≤ q. If uq+1 = 0 we set Vq+1 =
d(aq+1,0, rq+1) and if uq+1 = 1 we set Vq+1 = d(aq+1,1, rq+1). That mapping
which associates to each sequence (un) the decreasing sequence of disks (Vn) is
clearly injective. Now, consider two distinct such sequences (un) and (u′n). Let
q be the smallest integer such that uq 6= u′q. The distance from Vq to V ′q is at
least rq. Consequently, for every n ≥ q, the distance between Vn and V ′n is at
least rq ≥ r

Suppose now that Cp is spherically complete. For each sequence (un) the
intersection of the decreasing sequence of disks (Vn) contains a point α((un))
and hence, by the last conclusion, if (un) and (u′n) are two different sequences,
we have |α((un)) − α((u′n))| ≥ r. But we know that the set of sequences (un)
is not countable and hence the set of the α((un)), ((un) ∈ S) is not countable.
Consequently Cp contains an uncountable subset Σ such that |x− y| ≥ r ∀x 6=
y, x, y ∈ Σ. This contradicts the fact that Cp contains a dense countable
subset.
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A.6. Normal extensions of Qp inside Cp

Notation: Recall that IL is a complete field with respect to an ultrametric

absolute value. For every s ∈ N∗, we put us =
1

ps−1(p− 1)
and rs = p−us . We

will study the ps-th roots of 1 and we will show that they lie in circles of center
1 and radius rs. We will examine normal extensions of Qp and totally ramified
extensions and show the role of Eisenstein polynomials.

Remark: In [50], due to a misprint, us is defined as
1

ps(p− 1)
instead of

1
ps−1(p− 1)

.

We will need certain technical lemmas.

Lemma A.6.1: Let s ∈ N∗. For every n ∈ N∗ such that n < ps, we have∣∣∣(ps
n

) ∣∣∣
p
=

1
ps|n|p

.

Proof. We notice that for any n ∈ N∗ such that n < ps, n is a multiple of ph for
some h < s, if and only if so is ps−n. Now, let B be the bijection from {1, ..., n−
1} onto {(ps − n+ 1), .., ps − 1}, defined as B(j) = ps − j. Thus, for every j =

1, ...n−1, we have |j|p = |B(j)|p. Now, obviously,
∣∣∣(ps
n

) ∣∣∣
p
=
∣∣∣ps
n

∣∣∣
p
.
∣∣∣n−1∏
j=1

B(j)
j

∣∣∣
p
.

But as we just saw, each factor
∣∣∣B(j)
j

∣∣∣
p

is equal to 1 and therefore the conclusion

is clear.

Notation: Let s ∈ N. We will denote by Ws the group of the ps-th roots
of 1 in Cp i.e. the ζ ∈ Cp such that ζp

s

= 1 and we will denote by Bs the set
Ws \Ws−1 and we set W =

⋃
s∈N

Ws.

Fs will denote the polynomial
p−1∑
j=0

xjp
s−1

and we put Gs(x) = Fs(1 + x).

Definition : A monic polynomial P (x) =
q∑
j=0

ajx
j ∈ IL[x] will be called an

Eisenstein polynomial if it satisfies aj ∈ MIL whenever j = 0, . . . , q − 1 and
a0 /∈ (MIL)2.

Theorem A.6.2 (Eisenstein): Let IL have a discrete valuation. Let P (x) =
q∑
j=0

ajx
j ∈ IL[x] be an Eisenstein polynomial. Then P is irreducible in IL[x].
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Proof. We suppose P not irreducible. Then P splits in IL[x] in the form

S(x)T (x) with S(x) =
m∑
j=0

αjx
j , T (x) =

n∑
j=0

βjx
j and αm = βn = 1. Since S, T

are monic we have ‖S‖ ≥ 1, ‖T‖ ≥ 1 and since ‖S‖‖T‖ = ‖ST‖ = ‖P‖ = 1, we
have ‖S‖ = ‖T‖ = 1. Hence, both S, T belong to UIL[x]. First we notice that if
α0 belongs to MIL then β0 does not, because a0 /∈ (MIL)2. Hence we may assume
α0 ∈ MIL and β0 /∈ MIL. Further we have αj ∈ MIL for every j = 0, . . . ,m− 1.
Indeed let ` be the smallest of the integers h such that |αh| = 1. Then we

have |al| = |β0α` +
∑̀
j=1

βjα`−j | = 1 because |β0α`| = 1 and
∑̀
j=1

βjα`−j ∈ MIL.

Consequently, ` = q, therefore P is irreducible.

Lemmas below will be useful in the sequel.

Lemma A.6.3: Let G be a subgroup of the multiplicative group (K∗, ·) in-
cluded in C(0, 1) and let u ∈ G. The bijection γ from G onto G defined as
γ(x) = ux is isometric.

Lemma A.6.4: Let (j, n) ∈ N× N∗ be such that j < n. Then we have(
n

j + 1

)
=
n−1∑
h=j

(
h
j

)
.

Lemma A.6.5: For every s ∈ N, Gs is an Eisenstein polynomial.

Proof. First we suppose s = 1. We have

G1(x) =
p−1∑
h=0

( h∑
j=0

(
h
j

)
xj
)

=
p−1∑
j=0

(p−1∑
h=j

(
h
j

) )
xj .

Hence by Lemma A.6.4, we have G1(x) =
p−1∑
j=0

(
p

j + 1

)
xj . Moreover, by Lemma

A.6.1, we have
∣∣∣( p
j + 1

) ∣∣∣
p
=

1
p

for every j = 0, . . . , p− 2 and therefore G1 is an

Eisenstein polynomial.
Now we consider the general case s ∈ N∗. First we put Ts(x) = (1 + x)p

s

.
By Lemma A.6.1, it is seen that T1(x) is of the form 1+xp+γ1(x) with γ1(x) ∈
pxZp[x] and deg(γ1) = p − 1. Then by an immediate induction, we see that
Ts(x) is of the form 1 + xp

s

+ γs(x) with γs(x) ∈ pxZp[x] and deg(γs) = ps − 1.
As a consequence it is easily seen that Gs is an Eisenstein polynomial if and

only if so is the polynomial gs(x) =
p−1∑
j=0

(1+xp
s

)j . But we have gs(x) = G1(xp
s

).

Since G1 is an Eisenstein polynomial, so is gs. This ends the proof.
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Theorem A.6.6: For each s ∈ N∗, Bs consists of ps − ps−1 roots of 1 of
order ps that lie in C(1, rs). For every t ∈ Bs, irr(t,Qp) is equal to Fs and
Bs ∩ d(t, r−s ) is equal to tWs−1.

Proof. Let t ∈ Bs and let F (x) = irr(t,Qp). Then F divides xp
s − 1 and has a

degree d > ps−1. Since xp
s − 1 = (xp

s−1 − 1)Fs, F divides Fs. But by Lemma
A.6.5 and Theorem 6.1, Gs is irreducible over Qp, hence so is Fs and therefore

F = Fs. Then by Corollary A.5.5 we have Ψp(t−1) =
Ψp(Gs(0))
ps − ps−1

= −us. Hence

Bs is included in C(1, rs) and obviously consists of ps− ps−1 different points in
this circle. Let φ be the mapping defined in Ws−1 as φ(ξ) = tξ. Since t is of order
ps and any element of Ws−1 is of order < ps, one sees that φ is an injection from
Ws−1 into Bs and then, by Lemma A.6.3, we have φ(Ws−1) ⊂ Bs ∩ d(t, rs−).
Conversely, given u ∈ Bs ∩ d(t, rs−), then t−1u lies in Ws−1 which shows that
φ is a bijection from Ws−1 onto Bs ∩ d(t, rs−).

Corollary A.6.7: For every ξ, ζ ∈W1 of ξ 6= ζ, we have Ψp(ξ−ζ) = − 1
p−1 .

Theorem A.6.8: Let n ∈ N∗ and let ζ be a n-th root of 1 of order n. Then
ζ belongs to d(1, 1−) if and only if n is of the form ps (s ∈ N).

Proof. By Theorem A.6.6 we know that if n is of the form ps then ζ belongs
to d(1, 1−). Now we suppose ζ ∈ d(1, 1−) and put n = q ps with q prime to
p. Let ξ = ζ(ps). It is seen that ξ also belongs to d(1, 1−), because |ξ − 1|p =

|ζ − 1|p
∣∣∣ ps−1∑
j=0

ζj
∣∣∣
p
. Let P (x) = xq − 1. If ξ 6= 1, then P (x) admits 1 as a zero of

order t ≥ 2. But P
′
(1) = q 6= 0, hence ξ = 1. Therefore we have q = 1 and this

ends the proof.

Definitions: Let E be a finite extension of Qp. Recall that the residue class
field of Qp is Fp. Let E be the residue class field of E. Since E is finite over Qp,
it is locally compact, hence sup{|x| |x ∈ E |x| < 1} < 1. So, we can choose an
element s ∈ E such that |s| < 1 and such that |s| = sup{|x| |x ∈ E |x| < 1}.
Such an element s is called a uniformizer of E. Since s is algebraic over Qp, |p|
is of the form |s|e with e ∈ N∗. The number e is called ramification index of E.

Next, by Corollary A.5.3 we know that if a ∈ E is algebraic over Qp of degree
q and such that |a| = 1, then its residue class a is algebraic over Fp, of degree
≤ q. Consequently, if E is finite over Qp, then E is finite over Fp. The number
[E : Fp] is called residual degree of E and will be denoted by f .

The extension E is said to be ramified if e > 1 and unramified if e = 1

Lemma A.6.9 is just a remark:
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Lemma A.6.9: Let T be an unramified extension of Qp and let E be an ex-
tension of Qp such that E ⊂ T . Then E is unramified.

Theorem A.6.10: Let n ∈ N∗ be prime to p and let u, w be two distinct roots
of 1 in Ωp of order n. Then in Ωp we have |u− w| = 1.

Proof. Let h =
u

w
. Then hn = 1. Suppose |h− 1| < 1. By Theorem A.6.8, n is

of the form ps, a contradiction.
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A.7. Spherically complete extensions

Several problems on p-adic analytic functions require one to consider an
ultrametric algebraically closed extension of K which is spherically complete, in
order to give every circular filter a center. Others require to have a complete
algebraically closed extension which admits a non countable residue class field.
Proving the existence of a spherically complete algebraically closed extension of
the ground field K isn’t easy, most of the ways involving basic considerations in
logic. Here we will follow the method proposed by Bertin Diarra in [58], that is
only based on the notion of ultraproducts [41], [42].

Notation and definitions: Here we denote by (Ei)i∈I an infinite family
of field extensions of IL, provided each with an utrametric absolute value | . |i
extending that of IL. Next, U will denote an ultrafilter on I. We remember that
U is said to be principal if there exists α ∈ I such that U is the set of the subsets
of I that contain α. Then U is said to be incomplete if there exists a decreasing
sequence (Xn)n∈N of elements of U , such that

⋂
n∈N

Xn = ∅. Since I is infinite,

there obviously exist incomplete ultrafilters on I. In particular, any incomplete
ultrafilter is not principal. R will denote the subring of

∏
i∈I

Ei that consists of

the set (ai)i∈I ∈
∏
i∈I

Ei such that sup
i∈I
|ai|i < +∞. Of course R is a IL-algebra.

We will denote by ϕ the mapping from R into R+ defined as ϕ((ai)i∈I) =
lim
U
|ai|i. Then ϕ is seen to be a multiplicative semi-norm of the IL-algebra R.

We put J = Ker(ϕ) and S =
R
J

and we denote by ψ the canonical surjection

from R onto S. Then S is obviously provided with an absolute value | . | defined
as
|ψ(a)| = ϕ(a), (a ∈ R).

On the other hand R is seen to be provided with a norm of IL-algebra ‖ . ‖
defined as ‖(ai)i∈I‖ = sup

i∈I
|ai|. Next we denote by ||| . ||| the semi-norm quotient

of the norm of L-algebra by the ideal J , defined on R as |||a||| = inf
t∈J
‖a− t‖.

Theorem A.7.1 (B.Diarra): S is a field extension of IL and its absolute
value | . | extends the one of IL. Moreover, if U is non-principal and if each
Ei has a dense valuation group, then S has a valuation group equal to (R,+).
Further, if each Ei is algebraically closed, then so is S.

Proof. Let α ∈ S \ {0} and let a = (ai)i∈I ∈ R be such that ψ(a) = α. By
definition we have lim

U
|ai|i 6= 0. Hence there exists J ∈ U such that for every

i ∈ J we have
ϕ(a)

2
< |ai|i <

3ϕ(a)
2

, hence ai 6= 0, and therefore

(1)
2

3ϕ(a)
< |a−1

i |i <
2

ϕ(a)
whenever i ∈ J .
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Now let b = (bi)i∈I ∈
∏
i∈I

Ei be defined as bi = a−1
i whenever i ∈ J and bi = 1

whenever i ∈ I \J . By (1) it is seen that b does belong to R. But now, ab−1 is
an element (ci)i∈I of R that satisfies ci = 0 whenever i ∈ J , hence lim

U
|ci| = 0.

Therefore ab − 1 belongs to J and finally, in S we have ψ(a)ψ(b) = 1. This
shows S to be a field.

Next we suppose that for each i ∈ I the valuation group of Ei is dense.
Let r ∈]0,+∞[. We can obviously find a family (εi)i∈I in ]0,+∞[ such that
lim
U
εi = 0. For every i ∈ I, let ai ∈ Ei satisfy r − εi < |ai| < r and let

a = (ai)i∈I . Of course, a belongs to R and satisfies lim
U
|ai|i = r, hence r

belongs to |S|. This shows that the valuation group of S is equal to R.
Finally we suppose that each field Ei is algebraically closed. Let

P (x) =
q∑

n=0

λnx
n ∈ S[x]

with λq = 1, and q > 0. We will show that P admits at least one zero in
S. For every n = 0, 1, ..., q − 1, let (ai,n)i∈I ∈ R satisfy ψ((ai,n)i∈I) = λn
and let ai,q = 1 whenever i ∈ I. So, we have ψ((ai,n)i∈I) = λn whenever

n = 0, ..., q. For every i ∈ I, we put Ti(x) =
q∑

n=0

ai,nx
n. Since Ei is algebraically

closed, and since ai,q = 1 for every i ∈ I, at least one of the zeros αi of Ti in
Ei satisfies |αi|q ≤ |ai,0|. But by hypothesis (ai,0)i∈I belongs to R, hence so
does (αi)i∈I . Hence we can put α = ψ((αi)i∈I) and then we have P (α) = 0.
This finishes showing that S is algebraically closed and this ends the proof of
Theorem A.7.1.

Lemma A.7.2 (B.Diarra): Let a = (ai)i∈I ∈ R. Then we have |||a||| =
ϕ(a).

Proof. Let J ∈ U and let e = (ei)i∈I ∈ R be defined as ei = 0 whenever i ∈ J
and ei = 1 whenever i /∈ J . For convenience we put b = ae. Clearly b belongs
to J , hence, we have |||a||| = inf

t∈J
‖a− t‖ ≤ ‖a− b‖. But now, we check that

‖a − b‖ = sup
i∈J
|ai|i. Further, this is true for every J ∈ U . Hence we obtain

|||a||| ≤ inf
J∈U

(
sup
i∈J
|ai|i

)
= lim
U
|ai|i = ϕ(a). On the other hand, for all t ∈ J , we

have ϕ(a − t) = ϕ(a) ≤ ‖a − t‖, hence ϕ(a) ≤ |||a|||. This ends the proof of
Lemma A.7.2.

Theorem A.7.3 (B.Diarra): If U is incomplete, then S is spherically com-
plete.
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Proof. Let (αn)n∈N be a decreasing distances sequence in S and for every n ∈ N,
let an ∈ R be such that ψ(an) = αn. By induction we can easily construct
another sequence (bn)n∈N in R satisfying

(Vn) ψ(bn) = αn for every n ∈ N.
(Wn) ‖bn − bn−1‖ < rn−2 whenever n > 1.

Indeed, let q ∈ N∗ suppose that we have defined b0, ..., bq satisfying (Vn) for
every n = 0, ..., q. Of course we have
(1) ϕ(bq − aq+1) = ϕ(aq − aq+1) = rq < rq−1.
By Lemma A.7.2 we have ϕ(bq − aq+1) = |||bq − aq+1|||, hence by (1 ) there
exists c ∈ J such that ‖bq − aq+1 − c‖ < rq−1. So, we put bq+1 = aq+1 + c
and then (Vq+1), (Wq+1) are satisfied. In order to begin the induction, we put
b0 = a0, b1 = a1 and then, we can define the sequence (bn)n∈N for every n ∈ N,
satisfying (Vn) and (Wn).
Now for each n ∈ N we put bn = (bi,n)i∈I . Since U is incomplete, we can take
a decreasing sequence (Xn)n∈N of elements of U such that

⋂
n∈N

Xn = ∅. We put

I0 = I \X0 and for each n ∈ N∗, In+1 = Xn \Xn+1. Thus the family (In)n∈N
makes a partition of I. Further, for each q ∈ N, (In)n≥q makes a partition of
Xq. Hence we can define a surjective mapping g from I onto N as g(i) = n
whenever i ∈ In. Now for every i ∈ I, we put hi = bi,g(i). By (Wn), we have
‖bn‖ ≤ r0 whenever n ∈ N, hence |hi|i ≤ r0 for each i ∈ I and therefore (hi)i∈I
belongs to R. We put h = (hi)i∈I and w = ψ(h). We will show
(2) |w − αn| ≤ rn−1 whenever n ∈ N∗.

Let n ∈ N∗ be fixed. It is seen that for every m > n, we have ‖bn − bm‖ <
rn−1, hence for every i ∈ I we have |bi,n − bi,m|i < rn−1. Moreover, since
(Im)m>n makes a partition of Xn+1, for every i ∈ Xn+1 there exists m > n
such that i ∈ Im and then we have |bi,n−hi|i = |bi,n− bi,g(i)|i = |bi,n− bi,m|i <
rn−1 whenever i ∈ Xn+1. But Xn+1 belongs to U and therefore in S we have
|bn − h| = lim

U
|bi,n − hi|i ≤ rn−1. This is true for every n ∈ N∗ and finally this

shows (2). Hence w belongs to
⋂
n∈N

dS(αn+1, rn) and this finishes proving that

S is spherically complete.

Theorem A.7.4: K admits a spherically complete algebraically closed ex-
tension whose residue class field is not countable and whose valuation group is
equal to R.

Proof. First we will construct a complete algebraically closed extension of K
whose residue class field is not countable. Let T be a transcendental extension of
the form K((xj)j∈R) provided with the absolute value | . | defined on K[(xj)j∈R]
by ∣∣ ∑

j1,...,jq≤N

aj1,...,jqx
t1
j1
...x

tq
jq

∣∣= max
j1,...,jq≤N

|aj1,...,jq |.

It is seen that |xj−xh| = 1 whenever j, h ∈ R such that j 6= h and therefore the
residue class field of T is not countable. Let T ′ be the completion of T and let
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E be an algebraic closure of T ′, provided with the unique absolute value that
extends the one of T ′. Let E′ be the completion of E. By Theorem A.5.14, E′ is
algebraically closed. Obviously, its residue class field contains the one of T and
therefore is not countable.

Now, we can construct S by taking I = N and Ei = E′ for every i ∈
N. Since E′ is algebraically closed, by Theorem A.7.1 so is S. Moreover, the
valuation group of E′ obviously is dense and therefore, by Theorem A.7.1, S
has a valuation group equal to R. Finally, by Theorem A.7.3 S is spherically
complete. That ends the proof of Theorem A.7.4.

Thanks to Theorem A.7.3, we can generalize Corollary A.4.4:

Theorem A.7.5: Let P, F ∈ K[x] with F having all its zeros in d(0, r).
Let Q,R ∈ K[x] satisfy P = FQ + R and deg(R) < deg(F ). Then we have
Ψ(Q, log r) ≤ Ψ(P, log r)−Ψ(F, log r) and Ψ(R, log r) ≤ Ψ(P, log r). Moreover,
if P has all its zeros in d(0, r), then Ψ(Q, log r) = Ψ(P, log r)−Ψ(F, log r)

Proof. Without loss of generality, we can assume that the valuation group of
K is R. Consequently, up to a change of variable, we can suppose that r = 1.
We can also assume that F is monic. Now, since F has all zeros in d(0, r),
this means that Ψ(F, 0) = 0 and hence Theorem A.7.5 is reduced to Corollary
A.4.4.

Notation: Henceforth, K̂ will denote an algebraically closed spherically com-
plete extension of K.

For every disk d(a, r−) (resp. d(a, r)) in K, we will denote by d̂(a, r−) (resp.
d̂(a, r)) the disk of same center and diameter in K̂. Similarly, we will denote by
Ĉ(a, r) the circle {x ∈ K̂ | |x− a| = r}.

Remark: There exists another way to construct a spherically complete ex-
tension, due to Irving Kaplansky [67].

Definition: Let E be an extension of IL provided with an ultrametric absolute
value that extends that of IL. The extension E is said to be immediate if its
residue class field is identical to that of IL and its value group also is identical
to that of IL.

The following theorem is due to I. Kaplansky [67]:

Theorem A.7.6: IL admits an immediate extension that is maximal with
respect to the inclusion.

An immediate extension of IL is spherically complete if and only if it is
maximal with respect to the inclusion.

A maximal immediate extension of IL is unique up to an IL-isomorphism.
The proof of this theorem represents a very big work. In what follows, we will

not need Theorem A.7.6.
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A.8. Transcendence order and transcendence type

In Cp we can define a notion of transcendence order stating that if a is tran-
scendental over Qp and has a transcendence order ≤ t and if b is trenscendental
over Qp but algebraic over Qp[a], then b also has a transcendence order ≤ t. We
will show the existence of numbers of order less than 1 + ε for every ε > 0.

Definition: Let τ ∈]0,+∞[. Let F be a transcendental extension of Qp pro-
vided with an absolute value | . | extending that of Qp. An element a ∈ F
will be said to have transcendence order ≤ τ or order ≤ τ in brief, if there
exists a constant Ca ∈]0,+∞[ such that every polynomial P ∈ Qp[x] satisfies
logp(|P (a)|) ≥ log(‖P‖) − Ca(deg(P ))τ . Moreover, a will be said to have weak
transcendence order ≤ τ+ or weak order ≤ τ+ in brief if a has transcendence
order ≤ τ + ε for every ε > 0.

Notation: We will denote by S(τ) the set of numbers x ∈ Cp having tran-
scendence order ≤ τ and by S(τ+) the set of numbers x ∈ Cp having weak
transcendence order ≤ τ+.

Finally we will say that a number x ∈ Cp is of infinite order if it does not
belong to S(τ) for all τ ∈ R∗+.

Remark: By definition, an element a ∈ Cp having transcendence order ≤ τ
or weak transcendence order ≤ τ+ is transcendental over Qp.

Theorem A.8.1: Let τ ∈]0,+∞[. If S(τ) 6= ∅ then τ ≥ 1.

Proof. Let a ∈ Cp, a 6= 0, be trenscendental over Qp and have transcendence
order ≤ τ . We can find b ∈ Ωp, (b 6= 0) such that |a − b|p < 1. Consider the
minimal polynomial Q of b over Qp. Let b2, ..., bq be the conjugates of b over Qp

and set b1 = b. We notice that by Corollary A.5.6 all conjugates bj of b over Qp

satisfy |bj |p = |b|p.
Suppose first that |a|p ≤ 1. Since |bj |p = |b|p = |a|p ≤ 1, all coefficients

of Q belong to Zp. Obviously Q is monic, hence ‖Q‖ = 1. By hypothesis,
there exists Ca ∈]0,+∞[ such that Ψp(P (a)) ≥ logp(‖P‖)−Ca(deg(P ))τ ∀P ∈
Qp[x]. Consequently, −nΨp(Q(a)) = −Ψp((Q(a))n) ≤ Ca(ndeg(Q))τ ∀n ∈ N∗.
Since Q(b) = 0 and since, by Corollary A.3.5, Q is 1-Lipschitzian in U , we
have −Ψp(Q(a)) > 0 and therefore, if τ < 1, the inequality −nΨp(Q(a)) ≤
Ca(n deg(Q))τ ∀n ∈ N∗ is impossible when n tends to +∞.

Suppose now |a|p > 1. Set Q(X) =
q∑

k=0

ckX
k. Since the bj satisfy |bj |p =

|a|p, (1 ≤ j ≤ q), we have |ck|p ≤ (|a|p)q−k and particularly |c0|p =
∏q
j=1 |bj |p =

(|a|p)q. Consequently, ‖Q‖ = (|a|p)q and therefore, considering the sequence
(Qn)n∈N, for every n ∈ N∗ we have,

(1) −nΨp(Q(a)) ≤ −nqΨp(a) + Ca(nq)τ .
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On the other hand, Q(a) = Q(a) − Q(b) = (a− b)
q∑

k=1

ck

k∑
j=0

ajb
k−j−1 and

hence |Q(a)|p ≤ |a− b|p(|a|p)q−1. Consequently, we obtain
−nΨp(a− b)− n(q − 1)Ψp(a) ≤ Ψp(Q(a) and hence, by (1):
−nΨp(a− b)− n(q − 1)Ψp(a) ≤ −nqΨp(a) + Ca(nq)τ . Finally,
n(Ψp(a)−Ψp(a− b)) ≤ Ca(nq)τ . Since |a|p > 1 and |a− b|p < 1, this inequality
is impossible again when n tends to +∞, which ends the proof.

Theorem A.8.2: There exists b ∈ Cp transcendental over Qp, of order ≤ 1+ε,
for every ε > 0.

Proof. Consider first a strictly decreasing sequence (εn)n∈ such that limn→+∞ εn =
0 and limn→+∞ εn log(n) = +∞.

We can always divide any polynomial P ∈ Qp[x] by some λ ∈ Qp such that
|λ|p = ‖P‖ and hence we go back to the hypothesis ‖P‖ = 1. So, if we can
find some b ∈ Cp and, for every ω > 0, a constant C(ω) > 0 and show that for
every P ∈ Q[X] such that ‖P‖ = 1, we have − log(|P (b)|p) ≤ C(ω)(deg(P ))1+ω,
Theorem A.8.2 will be proven.

By induction we can define a strictly increasing sequence (rn)n∈N of Q and
a sequence (an)n∈N of Cp with rn =

un
vn

, irreducible and (vn)n∈N a strictly

increasing sequence of prime numbers satisfying further the following properties:
i) lim

n→+∞
rn = +∞,

ii) for every n ∈ N, nεn < rn < (n+ 1)εn ,
iii) vn >

∏n−1
j=1 vj

iv) (an)vn = pun

By construction, the sequence (|an|p)n∈N is strictly decreasing and tends to

0 and all terms belong to U . Set b =
∞∑
n=1

an. Now, let us fix ε > 0. We will

show that b is transcendental over Qp and has a transcendence order ≤ 1 + ε.

Since the sequence (εn) tends to 0, we can find an integer t(ε) such that
εm < ε ∀m ≥ t(ε). Thus, as a first step, let us take q ≥ t(ε) and let us find a
constant C(ε) > 0, not depending on b, such that for every P ∈ Q[X] satisfying
‖P‖ = 1 and deg(P ) = q, we have − logp(|P (b)|p) ≤ C(ε)q1+ε.

For each n ∈ N∗, set bn =
n∑

m=1

am. Since the sequence (|am|p)m∈N is strictly

decreasing, we have |b− bn|p = |an+1|p and since P is obviously 1-Lipschitzian
in the disk U , we have |P (b)− P (bn)|p ≤ |an+1|p hence

(1) logp(|P (b)− P (bn)|p) ≤ logp(|an+1|p) = −rn+1.

Now, since the sequence εn logp(n) tends to +∞, we can choose n(q) such
that (n(q) + 1)εn(q)+1 > (q + 1)1+ε. Then by (1) we have
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(2) logp(|P (b)−P (bn(q))|p) < logp(|an(q)+1|p) = −(rn(q)+1) < −(n(q)+1)εn(q)+1 <
−(q + 1)1+ε.

We will show the following inequality (3) (3) − logp(|P (bn(q))|p) ≤ (q + 1)1+ε.

Thus, suppose (3) is wrong. Set hq =
n(q)∑
m=q

am. Then bn(q) = bq−1 +hq. Now,

developping P at the point bq−1, we have

(4) logp(|P (bn(q))|p) = logp
(∣∣∣ q∑

m=0

P (m)(bq−1)
m!

(hq)m
∣∣∣
p

)
< −(q + 1)1+ε

Consider now the sum
q∑

m=0

P (m)(bq−1)
m!

(hq)m. Since the sequence |am|p is strictly

decreasing, we have |hq|p = |aq|p, hence logp(|hq|p) = −rq. We notice that

Qp[a1, ..., aq1 ] is an algebraic extension of Qp of degree at most
q−1∏
j=1

vj . Con-

sequently, by Corollary A.5.8, the extension Qp[a1, ..., aq1 ] has a value group

of the form
s

t
Z with t ≤

q−1∏
j=1

vj . On the other hand, due to the hypothesis

rq =
uq
vq

, it appears that vq is a prime integer, prime to uq and bigger than

q and than
q−1∏
j=1

vj . Consequently we can apply Lemma A.5.19 with hq in the

role of c and bq−1 in the role of a. Therefore for each m = 0, ..., q − 1, all the∣∣∣P (m)(bq−1)
m!

(hq)m
∣∣∣
p

are pairwise distinct. Consequently we have

(5)
∣∣∣ q∑
m=0

P (m)(bq−1)
m!

(hq)m
∣∣∣
p

= max
1≤m≤q

∣∣∣P (m)(bq−1)
m!

(hq)m
∣∣∣
p
.

Next, since −Ψp(hq) = rq < (q + 1)ω, for each integer m = 1, ..., q, we have
Ψp(hq)m) = −mrq > −m(q + 1)ω ≥ −q(q + 1)ω, hence

(6) Ψp((hq)m) ≥ −q(q + 1)ω > −(q + 1)1+ω ∀m ≤ q.

Consequentlly, by (4), (5) and (6), the polynomialQ(X) =
q∑

m=0

P (m)(bq−1)
m!

(X)m

has all coefficients in d(0, 1−) and hence we have ‖Q‖ < 1. But since |bq−1|p < 1,
by Lemma A.3.5, we have ‖P‖ = ‖Q‖ < 1, a contradiction to the hypothesis
‖P‖ = 1. Therefore, Relation (3) is proven for every polynomial P ∈ Qp[X] of
degree q ≥ t(ω), such that ‖P‖ = 1. Consequently, by (3) we obviously have a
constant C > 0, not depending on b, such that −Ψp(P (b)) ≤ C(deg(P ))1+ω for
every P ∈ Qp[X] such that deg(P ) ≥ t(ω) and ‖P‖ = 1.
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Particularly b is transcendental over Qp because if it were algebraic, the
degrees of polynomial P ∈ Qp[X] such that P (b) = 0 wouldn’t be bounded.
Finally, by Lemma A.8.2 there exists a constant m > 0 such that |Q(b)|p ≥ m
for every polynomial Q ∈ Qp[X] of degree q ≤ t(ω) and ‖Q‖ = 1. Therefore b
is clearly of order ≤ 1 + ω.

Corollary A.8.3: Ωp is not complete.

The transcendence type is defined in Cp in the same way as in C [91].

Definitions and notation: Given a complex number z, we denote by |z|∞
its modulus. Throughout this chapter, a number a ∈ Cp will just be said to be
algebraic (resp. transcendental) if it is algebraic (resp. transcendental) over Q.
When a is algebraic or transcendental over Qp we will precise this. Throughout
the chpter, we will denote by Ω the field of algebraic numbers and by AΛ the ring
of algebraic integers.

Let a ∈ Ω. We call denominator of a any strictly positive integer n such
that na and we denote by den(a) the smallest denominator of a. Let a2, ..., an
be the conjugates of a over Q in C and put a1 = a. For convenience, we will
use the logarithm of base p denoted by logp. We set |a| = maxj=1,...,n(|aj |∞)
and s(a) = max(logp(|a|, log(den(a))).

The following relations are classical and immediate:

Lemma A.8.4: Let a, b ∈ Ω and let m ∈ N. Then den(ab) ≤ den(a)den(b), den(a+
b) ≤ den(a)den(b), den(ma) ≤ mden(a),den(am) ≤ (den(a))m and
|ab| ≤ |a|.|b|, |a+ b| ≤ |a|+ |b|, |ma| ≤ m|a|, |am| = (|a|)m.

Let P (X1, ..., Xn) =
∑

i1,...,in

ai1,...,in(X1)i1 ...(Xn)in ∈ C[X1, ..., Xn]. We put

H(P ) = max
i1,...,in

|ai1,...,in |∞ and t(P ) = max(logp(H(P ),deg(P ) + 1).

A number a ∈ Cp will be said to have transcendence type less than α if
there exists a constant Ca > 0 such that, for every Q ∈ Z[X], we have either
Q(a) = 0 or −Ψp(Q(a)) ≤ Ca(t(Q))α. We denote by T (α) the set of numbers
a ∈ Cp having a transcendance type less than or equal to α.

If a number a ∈ Cp does not belong to T (α) for all α > 0, we will say that
a is of infinite type.

By Lemma A.5.17, Lemmas A.8.5, A.8.6 and A.8.7 are immediate:

Lemma A.8.5: Let P ∈ Z[X]. Then −Ψp(P, 0) ≤ logp(H(P )).

Lemma A.8.6: Let P ∈ Z[X] be of degree k and let a ∈ Ω. Then

|P (a)| ≤ H(P )(k + 1)
(

max(|a|, 1)
)k
.
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Lemma A.8.7: Let α1, α2 ∈]0,+∞[ satisfy α1 ≤ α2. Then T (α1) ⊂ T (α2).

There exists a link between transcendence order over Qp and transcendence
type over Q [57].

Theorem A.8.8: Let α ∈ [1,+∞[. Then S(α) ⊂ T (α).

Proof. Let a ∈ S(α). By hypothesis there exists C > 0 such that

−Ψp(Q(a)) ≤ −Ψp(Q, 0) + C
(

deg(Q)
)α
∀Q ∈ Qp[X].

Hence, by Lemma 9.1, we have −Ψp(Q(a)) ≤ logp(H(Q)) +C
(

deg(Q)
)α
∀Q ∈

Q[X]. Then, taking C ≥ 1, we can derive

−Ψp(Q(a)) ≤ C
(

logp(H(Q)) +
(

deg(Q)
)α) ≤ 2C(t(Q))α ∀Q ∈ Q[X].

which proves that a ∈ T (α).

By Theorem A.8.2, we can now state the following corollary [45]:

Corollary A.8.9: There exists b ∈ Cp, transcendental over Qp, such that
b ∈ T (1 + ε) for every ε > 0.

Proof. Indeed, in Theorem A.8.2, we saw that there exists b ∈ Cp that belongs
to S(1 + ε) for all ε > 0.

By Lemma A.5.17, we can immediately derive the following inequality:

Theorem A.8.10: Let a ∈ Ω∗ be integral of degree q, over Z. Then |a|p ≥
1(
|a|
)q .

Proof. Let Q(X) = irr(a,Q) and let a1, ..., aq be the conjugates of a over Z,
with a1 = a. Then

∏q
j=1 aj belongs to Z∗, hence by Lemma A.5.18 we have

|aj | ≤ 1 ∀j = 2, ..., q.

(1)
∣∣ q∏
j=1

aj
∣∣
p
≥ 1
|
∏q
j=1 aj |∞

.

Consequently,

(2) |a|p ≥ |
q∏
j=1

aj |p ≥
1∏q

j=1

∣∣aj∣∣∞ .
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Now, |
∏q
j=1 aj |∞ =

∏q
j=1 |aj |∞ ≤

(
|a|
)q. Thus, by (2), we obtain

|a|p ≥
1(
|a|
)q .

Corollary A.8.11: Let a ∈ Ω∗ be of degree q over Q and let t = den(a). Then

|a|p ≥
1

tq
(
|a|
)q .

Corollary A.8.12: Let a ∈ Ω∗ be of degree q over Q and let t = den(a). Then
log(|a|p) ≥ −2q(s(a)).
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B. Analytic elements and analytic functions

B.1. Algebras R(D)

The idea of considering rational functions with no pole inside a domain
D, in order to define analytic functions in D, is due to Marc Krasner [68].
The behaviour of rational functions in K is determined by circular filters which
characterize all multiplicative norms on rational functions. We will make a
general study of the set of multiplicative semi-norms of a normed algebra which
is locally compact with respect to the topology of pointwise convergence. Results
are first due to B. Guennebaud and G. Garandel [61], [62]. Henceforth, the idea
of considering the topologic space of multiplicative semi-norms continuous with
respect to the topology of a normed algebra, was used for many works on Banach
algebra [50], [58], [61].

Notation: In this chapter, we denote by D an infinite subset of K and then
KD is provided with the topology UD of uniform convergence on D.

We denote by R(D) the K-algebra of rational functions h(x) ∈ K(x) with
no pole in D. Since D is infinite, R(D) is clearly a K-subalgebra of KD and is
provided with the topology induced by UD, that makes it a topological subgroup
of KD. Algebraically, R(D) is a K-subalgebra of K(x) and more precisely, is
of the form S(D)−1K[x] with S(D) the multiplicative set of polynomials whose
zeros do not belong to D.

We denote by Rb(D) the K-subalgebra of R(D) consisting of the f ∈ R(D)
which are bounded in D. Finally, if D is not bounded, we denote by R0(D) the
K-subagebra ofR(D) that consists of the f ∈ R(D) such that lim

|x|→+∞, x∈D
f(x) = 0.

For every f ∈ KD we set ‖f‖D = sup
x∈D
|f(x)| ∈ [0,+∞].

Recall that an algebra-semi-norm ψ of a K-algebra A is said to be semi-
multiplicative or power multiplicative if it satisfies ψ(xn) = (ψ(x))n ∀x ∈ A and
is said to be multiplicative if ψ(xy) = ψ(x)ψ(y) ∀x, y ∈ A.

Lemma B.1.1 is then immediate.

Lemma B.1.1: R(D) is a principal ideal ring. Every ideal is of the form
P (x)R(D) with P a polynomial whose zeros belong to D.

The following Lemma B.1.2 is an immediate application of general properties
of the supremum, once the set [0,+∞] is provided with the classical extensions
of the addition and the multiplication :
a+ (+∞) = +∞ for every a ∈ [0,+∞]
a.(+∞) = +∞ for every a ∈]0,+∞]

Lemma B.1.2: For every g, h ∈ R(D) we have
i) ‖h‖D = 0 if and only if h = 0
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ii) ‖λh‖D = |λ| ‖h‖D for every λ ∈ K∗
iii) ‖h+ g‖D ≤ max(‖h‖D, ‖g‖D)
iv) If (‖f‖D, ‖g‖D) is different from (0,+∞) and from (+∞, 0), then
‖hg‖D ≤ ‖h‖D.‖g‖D.
v) ‖hn‖D = (‖h‖D)n whenever n ∈ N.

Theorem B.1.3: Rb(D) = R(D) if and only if D is closed and bounded.
Moreover, if D is closed and bounded, then ‖ . ‖D is a semi-multiplicative ul-
trametric norm of K-algebra.

Proof. We first suppose D to be bounded. By Lemma B.1.2 we just have to
show that ‖h‖D < +∞ for every h ∈ R(D) in order to show that ‖ . ‖D is a
norm of K-algebra such that ‖hn‖D = ‖h‖nD. Since D is bounded, obviously
every polynomial P satisfies ‖P‖D < +∞, hence by Lemma B.1.2 iv) we just

have to check that
∥∥∥ 1
Q

∥∥∥
D
< +∞. To show this, it is sufficient to prove that∥∥∥ 1

x− a

∥∥∥
D
< +∞ for every a ∈ K \D. Since D is closed, the distance r from a

to D is not zero, hence
∥∥∥ 1
x− a

∥∥∥
D
≤ 1
r

.

Now if D is not bounded, obviously ‖x‖D = +∞. If D is not closed there
exists at least one point a ∈ K\D with a sequence (an)n∈N in D which converges

to a, hence
∥∥∥ 1
x− a

∥∥∥
D

= +∞. That ends the proof of Theorem B.1.3.

Theorem B.1.4 (G.Garandel, B. Guennebaud) [60], [61]: Let F be a
large circular filter on K of diameter s > 0. The following three assertions are
equivalent
i) ϕF (h) ≤ ‖h‖D whenever h ∈ R(D)
ii) ϕF is a continuous ultrametric multiplicative norm on R(D) with respect to
the topology of uniform convergence.
iii) F is secant with D.

Proof. First i) and ii) are obviously equivalent. Next, iii) clearly implies i)
because if F is secant with D then lim

F
|h(x)| = lim

F∩D
|h(x)| ≤ ‖h‖D.

Hence we just have to show that i) implies iii). For this, we assume iii) to be
false and will prove that i) is false. We first assume F to have center a. There
exist annuli Γ(ai, r′i, r

′′
i ) (1 ≤ i ≤ q) with |ai − aj | = s whenever i 6= j and

r′i < s < r′′i , such that the set B =
q⋂
i=1

Γ(ai, r′i, r
′′
i ) belongs to F and satisfies

B∩D = ∅. We put r′ = max
1≤i≤q

r′i and r′′ = min
1≤i≤q

r′′i . Let ρ′ ∈]r′, s[, let ρ′′ ∈]s, r′′[

and for every i = 1, ..., q set bi ∈ Γ(ai, ρ′, s) and set b ∈ Γ(a, s, ρ′′).
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We put h(x) =
( q∏
i=1

(x− ai
x− bi

))( λ

x− b
)

with |λ| = b. We first notice that

ϕF (h) = 1 because ϕF
(x− ai
x− bi

)
= 1 whenever i = 1, ..., q and ϕF

( λ

x− b
)

= 1.

Next, it is easily seen that ‖h‖D ≤ max
( r′
ρ′
,
ρ′′

r′′
)
. Indeed |h(x)| = | x

bi
| ≤ r′

ρ′

when |x− ai| ≤ r′ and |h(x)| = | λ

x− b
| ≤ ρ′′

r′′
when |x− a| ≥ r′′. Hence we have

‖h‖D < 1 while ϕF (h) = 1 and that contradicts the assertion i).
We now suppose that F has no center. Let d(a, r) belong to F such that

d(a, r) ∩D = ∅ and let ρ ∈]s, r[. There still exists a disk d(α, ρ) ∈ F such that
d(α, ρ) ⊂ d(a, r). Let us take b ∈ Γ(α, ρ, r) and λ ∈ K such that |λ| = |b|. We

just put h(x) =
λ

x− b
and we have ϕF (h) = 1 because |h(x)| = 1 whenever

x ∈ d(α, ρ), while |h(x)| ≤ |b− α|
r

< 1 whenever |x − α| ≥ r, hence finally

‖h‖D < 1. That ends the proof of Theorem B.1.4.

In order to describe properties of the multiplicative semi-norms on R(D)
and next on analytic elements, we must recall a classical result on continuous
multiplicative semi-norms on a normed K-algebra A.

Notation: We denote by Mult(A) the set of K-algebra multiplicative semi-
norms of a K-algebra A. Given ψ ∈ Mult(A), we denote by Ker(ψ) the set of
x ∈ A such that ψ(x) = 0 and Ker(ψ) is called the kernel of ψ.

Suppose now A is a normed K-alebra whose norm is denoted by ‖ . ‖. We
denote by Mult(A, ‖ . ‖) the set of K-algebra multiplicative semi-norms of A
that are continuous functions on A with respect to the norm ‖ . ‖ of A. Similarly,
we denote by Multm(A, ‖ . ‖) the set of K-algebra multiplicative semi-norms
of A whose kernel is a maximal ideal that are continuous functions on A and
by Mult1(A, ‖ . ‖) the set of K-algebra multiplicative semi-norms of A whose
kernel is a maximal ideal of codimension 1, that are continuous functions on A.

Lemma B.1.5: Let A be a K-algebra provided with a K-algebra norm ‖ . ‖ and
let ϕ ∈Mult(A). Then ϕ belongs to Mult(A, ‖ . ‖) if and only if ϕ(x) ≤ ‖ x ‖
whenever x ∈ A. Moreover, if A has a unity u and if ϕ is not identically 0, then
ϕ(λu) = |λ| whenever λ ∈ K. Further if ϕ belongs to Mult(A), Ker(ϕ) is a
prime ideal and if Mult(A, ‖ . ‖), then Ker(ϕ) is a closed prime ideal.

Proof. Suppose that for some x ∈ A we have ϕ(x) > ‖ x ‖. Since the valuation
group of K is dense, it contains a subgroup of the form a
Z, with a > 0. Let q ∈ N be such that q(log(ϕ(x))− log(‖x‖)) > a. Then there
clearly exists λ ∈ K satisfying ‖ x ‖q < |λ| < ϕ(x)q. So much the more, we have
‖ xq ‖ < |λ| < ϕ(xq). Let t = xq. Then

lim
n→∞

( t
λ

)n
= 0 but lim

n→∞
ϕ
(( t

λ

)n)
= +∞, and then ϕ is not continuous.
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Now let u be a unity in A. Either ϕ(u) = 0 and then ϕ(x) = 0 whenever
x ∈ A, or ϕ(u) = 1 and then we have ϕ(λu) = |λ|ϕ(u) = |λ| whenever λ ∈ L.
The last statement is immediate. This ends the proof of Lemma B.1.5.

The following Theorem B.1.6 is well known and may be found in [61] and in
Theorems 6.9 and 6.19 of [51].

Theorem B.1.6: Let A be a K-algebra provided with a K-algebra norm ‖ . ‖.
For every x ∈ A the sequence

(
‖ xn ‖ 1

n

)
n∈N has a limit denoted by ‖ x ‖si ,

satisfying ‖x‖si ≤ ‖x‖ ∀x ∈ A and ‖x‖si = sup{φ(x) | φ ∈ Mult(A, ‖. .‖).
Moreover, ‖fn‖si = (‖f‖si)n ∀f ∈ A,∀n ∈ N.

Theorem B.1.7: Let A be a K-algebra provided with a K-algebra norm ‖ . ‖.
Then Mult(A,‖ . ‖) is compact with respect to the topology of pointwise conver-
gence.

Proof. Let B be the unit ball of A. By Lemma B.1.5 each ϕ ∈ Mult(A, ‖ . ‖)
has a restriction ϕ̂ to B which satisfies ϕ̂(B) ⊂ [0, 1]. Hence Mult(B, ‖ . ‖) is a
closed subset of [0, 1]B provided with the topology of pointwise convergence on
B. But by Tykhonov’s Theorem, [0,1] is compact for this topology and then
so is Mult(B, ‖ . ‖). Moreover the mapping ϕ → ϕ̂ from Mult(A, ‖ . ‖) into
Mult(B, ‖ . ‖) is a bijection. Indeed it is clearly injective and it is surjective
because given ψ ∈ Mult(B, ‖ . ‖), we may extend ψ to A by putting ψ(x) =
|λ|ψ(

x

λ
) with λ ∈ K, |λ| ≥ ‖x‖. Finally this bijection is bicontinuous with

respect to the pointwise convergence on both Mult(A, ‖ . ‖) and Mult(B, ‖ . ‖)
and this ends the proof of Theorem B.1.7.

Theorem B.1.8 was given in several works [42], [53] . This proof mainly is
given in [53] .

Theorem B.1.8: Let IB be a field extension of K provided with a non zero
semi-norm of K-algebra ‖ . ‖. Then ‖ . ‖ is a norm of K-algebra, and there
exists an absolute value ϕ on F extending that of K, such that ϕ(x) ≤ ‖x‖
whenever x ∈ A.

Proof. Let SM(A, ‖ . ‖) denote the set of continuous semi-norms φ of A satis-
fying φ(fn) = (φ(f))n ∀f ∈ A, ∀n ∈ N. It is seen that ‖ . ‖ is a norm because
Ker‖ . ‖ = {0}. In the same way, so is the spectral semi-norm ‖ . ‖si associated
to ‖ . ‖. Now SM(A, ‖ . ‖si) is easily checked to be inductive with respect to the
order ≥, i.e. given a totally ordered subset W of SM(A, ‖ . ‖si), the mapping
ψ defined in A by ψ(x) = inf{θ(x)|θ ∈W} belongs to SM(A, ‖ . ‖si). Then by
Zorn’s Lemma, SM(A, ‖ . ‖si) admits a minimal element ϕ. As we just saw, ϕ is
a norm of K-algebra and we have ϕ(x) ≤ ‖x‖si whenever x ∈ A. We will prove
that ϕ(ab) = ϕ(a)ϕ(b) whenever a, b ∈ A. Let a ∈ A \ {0}. For every x ∈ A,



Analytic elements and analytic functions 59

we put un(x) =
ϕ(anx)
ϕ(a)n

. The sequence (un(x))n∈N is seen to be decreasing. We

put σ(x) = lim
n→+∞

ϕ(anx)
ϕ(a)n

whenever x ∈ A.

First we will check that σ is a norm of K-algebra. Obviously, it is seen that for
every n ∈ N, un is a norm of K-vector space, hence so is σ. Next, we have

un(x)un(y) =
φ(anx)φ(any),
φ(an)φ(an)

=
φ(anx)φ(any)

φ(a2n)
≥ φ(a2nxy)

φ(a2n)
≥ σ(xy), whenever

x, y ∈ A, hence σ(x)σ(y) ≥ σ(xy). So, σ is a norm of K-algebra. Now, we
check that σ is semi-multiplicative, because:

lim
n→+∞

(ϕ(anxq)
ϕ(an)

)
= lim
n→+∞

(ϕ(aqnxq)
ϕ(aqn)

)
= lim
n→+∞

(ϕ(anx)
ϕ(an)

)q
= σ(x)q

Then, since σ satisfies (1) σ(x) ≤ ϕ(x) ≤ ‖x‖si whenever x ∈ A, it clearly
belongs to SM(A, ‖ . ‖si) . But since ϕ is minimal in SM(A, ‖ . ‖si), actually
ϕ is equal to σ. Now, as the sequence (un)n∈N is decreasing, we have σ(x) ≤
ϕ(ax)
ϕ(a)

≤ ϕ(x), and finally by (1), ϕ(ax) = ϕ(a)ϕ(x) whenever a, x ∈ A. This

ends the proof of Theorem B.1.8.

Theorem B.1.9 is immediate.

Theorem B.1.9: Let A be a Banach K-algebra. For every maximal ideal
M of A, there exists ϕ ∈ Mult(A, ‖ . ‖) such that Ker(ϕ) = M. If M is of
codimension 1, the maping τ from A onto K admitting M for kernel satisfies
|τ(f)| ≤ ‖f‖ ∀f ∈ A.

Proof. Let M be a maximal ideal of A and let IB be the field
A

M
. Since A

is complete, M is closed, therefore IB is provided with the quotient norm. By
Theorem B.1.9, IB admits an absolute value | . | which extends that of K. Let
ψ be the canonical surjection from A to IB. On A we put ϕ(x) = |ψ(x)|. Then
ϕ is an element of Mult(A, ‖ . ‖) such that Ker(ϕ) =M.

Suppose now M is of codimension 1 and suppose |τ(f)| > ‖f‖. Then the

series
+∞∑
n=0

( f

τ(f)

)n
converges and shows that f − τ(f) is invertible in A, a

contradiction since τ(f − τ(f)) = 0.

Corollary B.1.10: Let A be a Banach K-algebra . Every K-algebra homo-
morphism from A to K is continuous .

The characterization of the continuous multiplicative norms of (R(D), ‖ . ‖D)
by means of the large circular filters secant with D suggests us extending this
characterization to the multiplicative semi-norms of R(D).
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Theorem B.1.11 [62], [61]: Let D be a closed bounded subset of K. The
mapping Ξ from Φ(D) into Mult(R(D)) defined as Ξ(F) = ϕF is a bijection
from Φ(D) onto Mult(R(D),UD). Moreover, ϕF is an absolute value if and
only if F does not converge in D. Further Mult(R(D, ‖ . ‖D)) is provided with
the topology of pointwise convergence for which it is compact.

Proof. On the one hand, by Theorem A.3.10 and Theorem B.1.4, it is clearly
seen that the mapping defined on Φ◦(D) by F −→ ϕF is a bijection from this
set onto the set of continuous multiplicative norms on R(D).

On the other hand, every a ∈ D defines a multiplicative semi-norm ψ by
ψ(h) = |h(a)|, the kernel of which is the maximal ideal (x − a)R(D). Thus
we have a mapping from the set of convergent circular filters on D into the set
of multiplicative semi-norms which are not norms: this mapping is obviously
injective.

Finally let ψ be a multiplicative semi-norm whose kernel is not zero. Then
Ker(ψ) is a prime ideal hence a maximal ideal of R(D) and therefore it is of
the form (x− a)R(D) with a ∈ D. Then ψ(x− a) = 0, hence ψ(x− b) = |a− b|
whenever b ∈ K and therefore ψ is of the form ϕFa with Fa the filter of the neigh-
bourhoods of a in D. Thus Ξ is a bijection from Φ(D) onto Mult(R(D),UD)
and ϕF is a norm if and only if F is not convergent. Finally, by Theorem
B.1.7 Mult(R(D, ‖ . ‖D)) is compact with respect to the topology of pointwise
convergence. That ends the proof of Theorem B.1.11.

Corollary B.1.12 [62], [61]: Mult(K[X]) is provided with the topology of
pointwise convergence for which it is locally compact.
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B.2. Analytic elements

Due to the fact that any disk d(a, r) is exactly the same as d(b, r) for every

b ∈ d(a, r), it is easily seen that a power series
∞∑
n=0

an(x− a)n which admits the

disk d(a, r) for disk of convergence, may not be extended outside its convergence
disk as it is done in complex analysis, by means of a change of origin.

However by Runge’s Theorem we remember that a holomorphic function in a
compact subset D of C is equal to the limit of a sequence of rational functions
with respect to the uniform convergence on D. This is why Marc Krasner
introduced analytic elements on a subset D of K directly by considering limits
of sequences of rational functions with respect to the uniform convergence on
D [68].

Actually Marc Krasner constructed a theory of analytic functions f defined
on a quasi-connected set D equal to the union of a chained family of quasi-
connected sets (Di)i∈I such that the restriction of f to each Di is an analytic
element on Di. (This construction was widen to the analytic infraconnected
sets by Philippe Robba [83], [74]).

Another theory was defined by John Tate, consisting (in one variable) of
using infraconnected affinoid sets. Here we will only describe some basic prop-
erties of analytic elements on infraconnected sets in order to apply them to
power series and various Laurent series that are used for studying meromorphic
functions. A comparison between Krasner’s theory and Tate’s theory was made
in [44] and Krasner-Tate’s algebras were examined again in [50]. Here we aim
at studying meromorphic functions in the field K and applications to problems
of value distribution. This is why we will not repeat the study of Krasner-Tate
algebras.

We will examine algebras of analytic elements, particularly Banach algebras
of bounded analytic elements. We will see the characterization of sets D such
that the space of analytic elements on D is a K-algebra. We will examine some
basic properties of analytic elements such as poles when the set D is not closed
and we will see that analytic elements on a closed bounded set D are uniformly
continuous. If D has finitely many infraconnected components, for each one, its
characteristic function is an analytic element on D.

Notations and definitions: Let D be an infinite subset of K. We will denote
by H(D) the completion of R(D) for the topology UD of uniform convergence
on D. The elements of H(D) are called the analytic elements on D [68].

The set H(D) is then provided with the topology of uniform convergence on
D for which it is complete and every f ∈ H(D) defines a function on D which
is the uniform limit (on D) of a sequence (hn)n∈N in R(D). Thus, given two
infinite sets D, D′ such that D ⊂ D′, the restriction to D of elements of H(D′)
enables us to consider that H(D′) is included in H(D).

Next, H(D) is a K-vectorial space and a complete topological group with
respect to the topology UD. The question whether the product of two analytic
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elements on D is an analytic element on D will be studied later. However it is
easily seen that given f ∈ H(D), the function fn also belongs to H(D).

Lemma B.2.1: For every f, g ∈ H(D) we have
i) ‖f‖D = 0 if and only if f = 0,
ii) ‖λf‖D = |λ| ‖f‖D whenever λ ∈ K∗,
iii) ‖f + g‖D ≤ max(‖f‖D, ‖g‖D),
iv) If (‖f‖D, ‖g‖D) is different from (0,+∞) and from (+∞, 0) then the

function fg satisfies ‖fg‖D ≤ ‖f‖D ‖g‖D,
v) ‖fn‖D = ‖f‖nD whenever n ∈ N∗.

Notation: We will denote by Hb(D) the set of elements f ∈ H(D) bounded
on D. Then Hb(D) is clearly a K-vectorial subspace of H(D) and is closed in
H(D). Moreover ‖ . ‖D is a norm on Hb(D) that makes it a Banach K-algebra.
If D is unbounded, we will denote by H0(D) the set of the f ∈ H(D) such that

lim
|x|→+∞
x∈D

f(x) = 0.

Theorem B.2.2 is an immediate consequence of Theorem B.1.3.
Theorem B.2.2: Hb(D) is a Banach K-subalgebra of KD. The following
three conditions are equivalent

i) Hb(D) = H(D),
ii) H(D) is topological K-vector space,
iii) (H(D), ‖ . ‖D) is a Banach K-algebra,
iv) D is closed and bounded.

If these conditions are satisfied, then ‖ . ‖D is a semi-multiplicative norm.

Definition: Let f ∈ H(D) have no zero in D. The element f will be said to

be invertible in H(D) if the function
1
f

(also denoted by f−1) belongs to H(D).

This definition holds even if H(D) is not a ring.

The following Lemma is classical.
Lemma B.2.3: Let f ∈ H(D) be such that inf

x∈D
|f(x)| > 0. Then f−1 belongs

to H(D). Moreover, if D is closed and bounded, f−1 belongs to H(D) if and
only if inf

x∈D
|f(x)| > 0.

Let g ∈ H(D) satisfy |g(x)| = 1 for all x ∈ D and ‖f − 1‖D > ‖g − 1‖D.
Then we have ‖fg − 1‖D = ‖f − 1‖D

Proof. We suppose inf
x∈D
|f(x)| = λ > 0. Let (hn)n∈N be a sequence in R(D) such

that lim
n→∞

‖hn−f‖D = 0. For n big enough we have |hn(x)| ≥ λ whenever x ∈ D

hence
∣∣ 1
hn(x)

− 1
f(x)

∣∣= ∣∣f(x)− hn(x)
hn(x)f(x)

∣∣≤ ‖f − hn‖D
λ2

, hence the sequence
1
hn

converges to
1
f

.
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Conversely if D is closed and bounded and if
1
f
∈ H(D),

1
f

has to be bounded

by some M ∈ R+ hence |f(x)| ≥ 1
M

whenever x ∈ D.

Now let g ∈ H(D) satisfy |g(x)| = 1 for all x ∈ D and ‖f − 1‖D > ‖g− 1‖D.
For every x ∈ D, we have |f(x)− 1||g(x)| > |g(x)− 1| and therefore
|f(x)g(x) − 1| = |f(x) − 1||g(x)| = |f(x) − 1|. This finishes proving Lemma
B.2.3.

Theorem B.2.4: Let f ∈ H(D) and let h ∈ Rb(D). Then fh belongs to
H(D).

Proof. Let ε be > 0 and let g ∈ R(D) satisfy ‖f − g‖
D
< ε . Then we have

‖hf − hg‖
D
< ε‖h‖

D
and this clearly shows that fh ∈ H(D).

When D is not closed or is not bounded, we will show how to split an element
f ∈ H(D).

Theorem B.2.5: The vector space H(D) is equal to the direct sum
R0(K \ (D \D))⊕H(D). Moreover if D is not bounded, then H(D) is equal to
the direct sum K[x]⊕H0(D).

Proof. Let (fn)n∈N be a sequence in R(D) such that lim
n→∞

‖fn − f‖D = 0. In
particular there exists N ∈ N such that fn − fN is bounded when n ≥ N .
We put gn := fn − fN . The sequence gn converges in H(D) to f − fN . Let
g := f − fN . On the other hand, since each fn − fN belongs to R(D) and is
bounded in D, fn−fN belongs to R(D). Obviously ‖fn−fN‖D = ‖fn−fN‖D,
hence finally g belongs to Hb(D). Now we may obviously split fN in the form
E(x) + h1(x) + h2(x) with E(x) ∈ K[x], h1 ∈ R0(D), h2 ∈ R0(K \ (D \ D)).
We put f∗ = h2 and f = E + h1 + g. We have clearly split f in the form
f∗ + f with f∗ ∈ R0(K \ (D \ D)), f ∈ H(D). Hence we have proven that
H(D) = R0(K \ (D \D)) +H(D).

This sum is easily seen to be direct. Indeed, suppose that we have
h ∈ R0(K \ (D \ D)) and g ∈ H(D) such that h + g = 0, with h 6= 0. Then

h has a pole α ∈ D \ D and it may be written in the form
q∑
i=1

λi
(x− α)i

+ hα

with λi 6= 0 (1 ≤ i ≤ q) and hα ∈ R0(K \ (D \ (D ∪ {α}))). But g is obviously
bounded around α, hence h has to be bounded when x approaches α, hence
finally α does not exist. This shows that the sum is direct.

Now, we suppose D is unbounded. First we will prove that every element
f ∈ Hb(D) admits a limit when |x| tends to +∞. Let ε ∈ R∗+ and let h ∈ R(D)
satisfy ‖f − h‖D < ε. Since f is bounded in D, so is h. But then h is of the

form
P

Q
, with deg(P ) = deg(Q) and therefore h has a limit λ when |x| tends to

+∞. Let ε > 0 be such that |h(x)−λ| < ε whenever x ∈ D \ d(0, r). Clearly we
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have |f(x)− λ| < ε whenever x ∈ D \ d(0, r). This proves that f does converge
along the filter F which admits as a basis the family of sets D \ d(0, r) (r > 0).

Let f ∈ H(D) be unbounded. Let (xn)n∈N be a sequence such that
lim
n→∞

|f(xn)| = +∞. Suppose the sequence (xn)n∈N does not tend to +∞. Then

there exists a bounded subsequence (xnq )q∈N such that lim
q→∞

|f(xnq )| = +∞, but

this is impossible due to Theorem B.2.2, because such a sequence lies in a closed
bounded set D′ included in D. Now there exists h ∈ R(D) such that f − h is
bounded and therefore, we have lim

n→∞
|h(xn)| = +∞. Let h(x) = P (x) + u(x)

with P ∈ K[x] and u ∈ R0(D). Since f − h is bounded, clearly f − P belongs
to Hb(D), hence we have proven that H(D) = K[x] + Hb(D). Moreover, since
u has a limit when |x| tends to +∞ in D, we have Hb(D) = H0(D) + K and
therefore H(D) = K[x] + H0(D). Finally, by considering elements when |x|
tends to +∞, this sum is easily seen to be direct and this ends the proof.

Definition: Let α ∈ D \ D and f ∈ H(D), and let f = f∗ + f , with f∗ ∈
R0(K \ (D \ D)) and f ∈ H(D). Let α ∈ D \ D be a pole of f∗ and let

f∗(x) =
q∑
j=1

λj
(x− α)j

+ u(x), with u ∈ R0(K \ (D \ (D ∪ {α}))). The pole α

of order q of f∗ will be called a pole of order q of f and λ1 will be called the
residue of f at α and will be denoted by res(f, α).

Let ai, 1 ≤ i ≤ n be the poles of f and for each i let qi be the order of

ai. The polynomial
n∏
i=1

(x− ai)qi will be named the polynomial of poles of f in

D \D.

Corollary B.2.6: Let α ∈ D\D and f ∈ H(D) be such that |f(x)| is bounded
in d(α, r) ∩D with r > 0. Then f ∈ H(D ∪ {α}).

Proof. Indeed, as f is obviously bounded in D ∩ d(α, r), so is f∗ and therefore
f∗ has no pole at α.

Corollary B.2.7: H(D) = Hb(D)+R(K\(D\D)), Hb(D) = Hb(D) ⊂ H(D)
and Hb(D) = Hb(D). If D is bounded, then Hb(D) = H(D). If D is not
bounded, for every unbounded f ∈ H(D) there exists a unique q ∈ N∗ such that
x−qf(x) has a finite non-zero limit when |x| tends to +∞, x ∈ D. Let d(a, r−)
be a hole of D. If f belongs to H(D) and if x−qf(x) has a finite non-zero limit,

then
f(x)

(x− a)q
belongs to Hb(D).

Corollary B.2.8: If D = K then H(D) = R(D).
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Corollary B.2.9 comes from the definition of the poles and from Theorem
B.2.5.

Corollary B.2.9: Let f ∈ H(D) and let α ∈ D \ D. Then α is a pole of
order n > 0 for f if and only if (x−α)nf(x) has a finite non-zero limit at α. If
there exists no r ∈ R∗+ such that |f(x)| is bounded in d(α, r) \ {α} then α is a
pole of order n ≥ 1 for f and (x− α)nf(x) has a finite non-zero limit at α.

Theorem B.2.10: Let f ∈ H(D) and let α ∈ D \ D. Either f belongs to
H(D ∪ {α}) or α is a pole for f .

Proof. If f does not belong to H(D ∪{α}), by Corollary B.2.6, f is unbounded
in any disk d(α, r) whenever r > 0. Hence by means of the notation of Theorem
B.2.5, α is clearly a pole of f∗ and therefore is a pole of f .

We must notice Theorem B.2.11:

Theorem B.2.11: Let D be closed and bounded and let f ∈ H(D). Then f
is uniformly continuous in D.

Proof. The claim is immediate when f is a polynomial. Suppose now that

f(x) =
P (x)
Q(x)

∈ R(D). Since D is closed and bounded, there exists m > 0 such

that |Q(x)| ≥ m ∀x ∈ D. Consequently,
P (x)
Q(x)

also is uniformly continuous.

Then, when f ∈ H(D), since f is a uniform limit of rational functions, f is also
uniformly continuous.

Notation: We will denote by Alg the family of sets E such that H(E) is a
K-subalgebra of KE .

Theorem B.2.12: Let f ∈ H(D). There exists W ∈ Rb(D), whose zeros

lie in D \ D and h ∈ H(D) such that f =
h

W
. Further, if D is bounded or if

D ∈ Alg then there exists g ∈ H(D) such that f =
g

Q
with Q the polynomial of

poles of f in D \D.

Proof. We may summarize Theorem B.2.5 in this way: f is of the form f̃(x) +
f̂(x) with f̃ ∈ R(K \ (D \ D)) and f̂ ∈ Hb(D). Indeed if D is bounded we
just take f̂ = f and if D is not bounded, f̂ is the one defined in Theorem

B.2.5. Thus f̃(x) can be written in the form
P (x)
Q(x)

with Q(x) =
n∏
i=1

(x − ai)qi

i.e. the polynomial of the poles of f in D \D, and P (x) ∈ K[x]. Let q =
n∑
i=1

qi.
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Theorem B.2.12 is obviously trivial if D has no hole, hence we may assume D

to have at least one hole T = d(a, r−). Let W (x) =
Q(x)

(x− a)q
. We know that

W ∈ Rb(D) hence Wf̂ ∈ Hb(D). On the other hand, we see that Wf̃ ∈ R(D)

hence Wf ∈ H(D). We just put h = Wf and have the factorization f =
h

W
.

If D is bounded we see that both Q, h are bounded in D hence Qf̂ belongs
to Hb(D) and then Qf belongs to H(D). In the same way if H(D) is supposed
to be a ring, then Qf̂ belongs to H(D) and then Qf = P+Qf̂ belongs to H(D).
This ends the proof.

Corollary B.2.13: Let S(D) be the set of polynomials whose zeros belong to
D \D. If D ∈ Alg, then H(D) = S(D)−1H(D).

Theorem B.2.14: Let D be closed. Let g ∈ H(D) and let P ∈ K[x] be such
that Pg belongs to H(D). For every Q ∈ K[x] such that deg(Q) ≤ deg(P ), Qg
also belongs to H(D).

Proof. Theorem B.2.14 is clearly trivial when D belongs to Alg. Now, suppose
that D does not belong to Alg, hence D is unbounded. If D has no hole,
then D = K, hence by Corollary B.2.8 H(D) is equal to K[x]. Thus, we may
assume that D admits at least one hole and then, without loss of generality,
we can assume that this hole is d(0, r−). Let q = deg(P ). Let Pq = P and

let Pq−1 =
P (x)− P (0)

x
. Then Pq−1 is a polynomial of degree q − 1. We see

that (P (x) − P (a))g(x) belongs to H(D). But
∥∥∥ 1
x

∥∥∥
D

is bounded and then by

Lemma B.2.4, Pq−1(x)g(x) belongs to H(D). Hence by induction, it is seen
that for each j = 1, ..., q there exists a polynomial Pj of degree j such that Pjg
belongs to H(D) and this clearly completes the proof.

Now when D is not infraconnected we have to notice an easy result on
characteristic functions that shows how rich the algebra H(D) is.

Proposition B.2.15: Let D have an empty annulus Λ. Let w1, w2 be the
functions defined on D by w1(x) = 1, w2(x) = 0 if x ∈ I(Λ) and w1(x) =
0, w2(x) = 1 if x ∈ E(Λ). Then w1 and w2 belong to H(D).

Proof. Let Λ = Γ(a, r1, r2), with a ∈ D. With no loss of generality we may obvi-
ously assume a = 0. Let α ∈ Λ be such that r1 < |α| < r2 and for each n ∈ N∗, let

un =
1

1−
(x
α

)n . Then
∥∥∥1−

(x
α

)n − 1
∥∥∥
I(Λ)
≤
( r1

|α|
)n while

∣∣1− (x
α

)n∣∣ ≥ ( r2

|α|
)n

for every x ∈ E(Λ) hence finally ‖un − w1‖D ≤ max
(( r1

|α|
)n
,
( |α|
r2

)n). Thus we

see that w1 = lim
n→∞

un ∈ H(D) and w2 = 1− w1 ∈ H(D).
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Theorem B.2.16: Let E have finitely many infraconnected components E1, .., Eq.
For each i = 1, ..., q, the characteristic function of Ei belongs to H(E).

Proof. Let A be one of the infraconnected components of E. By Proposition
A.1.21, there exist empty annuli (Λj)0≤j≤n such that A is either of the form

α) IE(Λ0)
⋂( n⋂

j=1

EE(Λj)
)

or of the form β)
n⋂
j=1

EE(Λj).

But by Proposition B.2.15, the characteristic function uj of EE(Λj) belongs to
Hb(E), (1 ≤ j ≤ n) and so does the characteristic function u0 of IE(Λ0). Since

all the uj belong to Hb(E), we see that the products u =
n∏
j=0

uj and w =
n∏
j=1

uj

belong to H(E) . Then when A is of the form α) (resp. β)), its characteristic
function is equal to u (resp. w ) and therefore belongs to H(E).
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B.3. Composition of analytic elements

Given A and B ⊂ K, f ∈ H(A) such that f(A) ⊂ B and g ∈ H(B), a basic
question is whether g ◦ f ∈ H(A). There is an immediate application to the
study of homomorphisms from an algebra H(D) to another H(D′).

Lemma B.3.1: Let A and B be subsets of K and let f ∈ H(A) be such that
f(A) ⊂ B. For every λ ∈ K \ B, f − λ is invertible in H(A). Moreover, if for
every h ∈ R(B), h ◦ f belongs to H(A), then for every g ∈ H(B), g ◦ f belongs
to H(A) and for every λ ∈ B \B, f − λ is invertible in H(A).

Proof. Let r = δ(λ,B). If λ /∈ B we have r > 0 and then |f(x) − λ| ≥ r
whenever x ∈ A. Hence by Lemma B.2.3, f − λ is invertible in H(A).

Now we assume that for every h ∈ R(B), h ◦ f belongs to H(A). Let
g ∈ H(B), let ε be > 0 and let h ∈ R(B) satisfy ‖g − h‖B ≤ ε. It is seen that
‖g ◦ f − h ◦ f‖A ≤ ε. Since h ◦ f belongs to H(A), then so does g ◦ f .

Finally, let λ ∈ B \ B and let h(u) =
1

u− λ
. Since h ◦ f belongs to H(A),

f − λ is invertible in H(A).

Theorem B.3.2: Let A, B be subsets of K and let f ∈ H(A) satisfy f(A) ⊂
B.
i) If f ∈ R(A), then g ◦ f ∈ H(A) whenever g ∈ H(B).
ii) If A ∈ Alg, then g ◦ f ∈ H(A) for all g ∈ H(B) if and only if f − λ is
invertible in H(A) for all λ ∈ B \B.

Proof. By Lemma B.3.1 we just have to show that for every g ∈ R(B), g ◦ f
belongs to H(A) in each one of these two hypotheses:

H1) f ∈ R(A).
H2) f − λ is invertible in H(A) for all λ ∈ B \B.

So we take g(u) =
P (u)
Q(u)

∈ R(B) and will show that g ◦ f ∈ H(A) in each

hypothesis. Let λ1, ..., λq be the poles of g in K \B.
H1) For every j = 1, ..., q, f − λj is invertible in R(A) because f − λj has

no zero in A. Hence Q ◦ f is invertible in R(A) and then g ◦ f belongs to R(A).
H2) For each j = 1, ..., q, either λj belongs to B\B, or it belongs to K\B. In

both cases, by Lemma B.3.1 each f − λj is invertible in H(A). Since A belongs
to Alg, Q ◦ f is clearly invertible in H(A) and P ◦ f belongs to H(A). Hence so
does g ◦ f .

Corollary B.3.3: Let A ∈ Alg and let B be a closed subset of K. Let
f ∈ H(A) satisfy f(A) ⊂ B and let g ∈ H(B). Then g ◦ f belongs to H(A).

Example : Let r, s ∈ R∗+, let f ∈ H(d(0, r)) be such that f(d(0, r)) ⊂ d(0, s)
and let g ∈ H(d(0, s)). Then g ◦ f belongs to H(d(0, r)).
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Lemma B.3.4: Let h ∈ R(D) and let D′ = h(D). Let f ∈ H(D′). If f is
invertible in H(D′) then f ◦h is invertible in H(D). If h is a Moebius function,
f is invertible in H(D′) if and only if f ◦ h is invertible in H(D).

Proof. First we suppose f invertible in H(D′). Let g =
1
f

. Then by Theorem

B.3.2 g ◦ h belongs to H(D) and is clearly equal to
1

f ◦ h
. Now we assume that

h is a Moebius function and we put ` = h−1. If f ◦ h is invertible in H(D),
(f ◦ h) ◦ ` is invertible in H(D′) and this ends the proof of Lemma B.3.4.

We are now going to study the K-algebra homomorphisms from H(D) into
H(D′). First we will consider homomorphisms from R(D) into R(D′).

Proposition B.3.5: Let D, D′ be subsets of K and let γ ∈ R(D′) satisfy
γ(D′) ⊂ D. Let φγ be the mapping from R(D) into R(D′) defined as φγ(f) =
f ◦γ (f ∈ R(D)). Then φγ is a homomorphism from R(D) into R(D′) and this
homomorphism is injective if and only if γ is not a constant. Every K-algebra
homomorphism is of this form and the mapping γ → φγ is a bijection from
the set of the γ ∈ R(D′) such that γ(D′) ⊂ D onto the set of the K-algebra
homomorphisms from R(D) into R(D′).

Proof. Let γ ∈ R(D′) satisfy γ(D′) ⊂ D. Then it is seen that φγ takes values
in R(D′), is a K-algebra homomorphism and is obviously injective if and only
if γ is not a constant.

Conversely, let ψ be a K-algebra homomorphism from R(D) into R(D′) and
let γ = ψ(ID′) with ID′ the identical mapping in D′. Then we have ψ(P ) = P ◦γ
for every polynomial P . On the other hand, if α /∈ D then (x− α) is invertible

in R(D) and ψ
( 1
x− α

)
= (ψ(x − α))−1 = (γ − α)−1. Therefore ψ(h) = h ◦ γ

whenever h ∈ R(D). The mapping γ → φγ is obviously injective and hence is a
bijection.

Proposition B.3.6: Let D, D′ be sets in K and let γ ∈ H(D′) satisfy
γ(D′) ⊂ D and f ◦ γ ∈ H(D′) for all f ∈ H(D). Let φγ be the mapping from
H(D) into H(D′) defined as φγ(f) = f ◦ γ. Then φγ is a linear mapping from
H(D) into H(D′) continuous with respect to the topology of uniform convergence
on D for H(D) and on D′ for H(D′). Moreover, given f, g ∈ H(D) such that
fg ∈ H(D) we have φγ(fg) = φγ(f)φγ(g). The restriction of φγ to Hb(D) is a
Banach K-algebra homomorphism from Hb(D) into Hb(D′).

If γ is a bijection from D′ onto D and if γ−1 ∈ H(D) then φγ is a K-
vector space isomorphism from H(D) onto H(D′) bicontinuous with respect to
the topology of uniform convergence on D for H(D) and on H(D′) for H(D′),
satisfying

(
φγ
)−1 = φγ−1 and the restriction of φγ to Hb(D) is a Banach K-

algebra isomorphism from Hb(D) onto Hb(D′). Further, if γ(D′) = D, then the
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equality ‖φγ(f)‖D′ = ‖f‖D is true for every f ∈ H(D) and the restriction of
φγ to Hb(D) is an isometric Banach K-algebra isomorphism from Hb(D) onto
Hb(D′).

Proof. It is easily seen that φγ is linear and satisfies φγ(fg) = φγ(f)φγ(g) when
fg ∈ H(D). Next, φγ is clearly continuous because
‖φγ(f)‖

D′ = ‖f ◦ γ‖
D

= sup
x∈D′

|f(γ(x))| ≤ sup
u∈D
|f(u)| = ‖f‖

D
. In particular, we

notice that if γ(D′) = D, we have ‖φγ(f)‖
D′ = ‖f ◦ γ‖

D
= sup

x∈D′
|f(γ(x))| =

sup
u∈D
|f(u)| = ‖f‖

D
.

If f ∈ Hb(D) obviously f ◦ γ ∈ Hb(D′). Now let γ be a bijection from
D′ onto D such that γ−1 ∈ H(D). It is seen that (φγ−1) ◦ φγ = IH(D) while

φγ ◦(φγ−1) = IH(D′), hence φγ is an isomorphism such that φγ−1 =
(
φγ

)−1

.

We will study the K-algebra homomorphisms from H(D) into H(D′).

Notation: Given subsets D and D′ of K, we will denote by Ξ(D′, D) the set
of the γ ∈ H(D′) such that γ(D′) ⊂ D and such that for every λ ∈ D\D, γ−λ
is invertible in H(D′).

Given two K-algebras A and B we will denote by Hom(A,B) the set of
K-algebra homomorphisms from A into B.
Remark : In particular Ξ(D′, D) contains the set of the h ∈ R(D′) such that
h(D′) ⊂ D.

Theorem B.3.7: Let D,D′ ∈ Alg and let γ ∈ Ξ(D′, D). The mapping φγ
defined in H(D) by φγ(f) = f ◦ γ has values in H(D′) and is a K-algebra
homomorphism from H(D) into H(D′). Conversely, every K-algebra homo-
morphism from H(D) into H(D′) is continuous and of this form. Further,
the mapping γ → φγ from Ξ(D′, D) onto Hom(H(D), H(D′)) is a bijection.

Let D′′ ∈ Alg and let τ ∈ Ξ(D′′, D′). Then γ ◦ τ ∈ Ξ(D′′, D) and φγ◦τ =
φγ ◦ φτ .

Further, a homomorphism φγ from H(D) into H(D′) is an isomorphism if
and only if γ is a bijection from D′ onto D such that γ−1 ∈ H(D) and then,

when it is satisfied, we have
(
φγ

)−1

= φγ−1 .

Proof. By Corollary B.3.3, f ◦ γ belongs to H(D′) whenever f ∈ H(D) and
then by Proposition B.3.6 φγ is a K-algebra homomorphism from H(D) into
H(D′). Let ψ ∈ Hom(H(D), H(D′)) and first let us show that ψ satisfies
‖ψ(f)‖

D′ ≤ ‖f‖D whenever f ∈ H(D). Indeed suppose that for some f ∈ H(D)
we have ‖ψ(f)‖

D′ > ‖f‖D′ . Let g = ψ(f). There exists α ∈ D′ such that

|g(α)| > ‖f‖
D′ . Let λ = g(α). The series

f

λ

∞∑
n=0

(f
λ

)n
does converge in H(D) to

(λ−f)−1. Thus λ−f is invertible in H(D) and then λ−g = ψ(λ−f) is invertible
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in H(D′). But by hypothesis α is a zero for λ−g, hence λ−g is not invertible in
H(D′) and this shows that ‖ψ(f)‖

D′ ≤ ‖f‖D . Now let γ = ψ(ID) ∈ H(D′) and
let us show that γ ∈ Ξ(D′, D). Let α ∈ K\D. Since ψ ∈ Hom(H(D), H(D′)), ψ

must satisfy ψ
( 1
x− α

)
=

1
ψ(x)− α

=
1

γ − α
hence γ − α has to be invertible

in H(D′) for every α ∈ K \D. But this just means that γ ∈ Ξ(D′, D).
In the same way, we see that for every h ∈ R(D), we have ψ(h) = h(ψ(x)) =

h ◦ γ. Finally since ψ is continuous, the equality ψ(f) = f ◦ γ holds in all
H(D). Obviously, given γ, τ ∈ Ξ(D′, D), if φγ = φτ then φγ(ID) = φτ (ID)
hence γ = τ . The mapping γ → φγ is then a bijection from Ξ(D′, D) onto
Hom(H(D), H(D′)).

Now let D′′ ∈ Alg and τ ∈ Ξ(D′′, D′). It is seen that γ ◦ τ ∈ Ξ(D′′, D) and
φγ◦τ (ID) = γ ◦ τ = φτ (γ) = φτ (φγ(ID)) = φτ ◦ φγ(ID), hence φγ◦τ = φτ ◦ φγ .

By Proposition B.3.6, if γ is a bijection from D′ onto D and such that γ−1 ∈
H(D) then φγ is an isomorphism of K-vector space, hence it is an isomorphism of
K-algebra and then, by Proposition B.3.6, we have

(
φγ
)−1 = φγ−1 . Conversely,

if φγ is an isomorphism, then
(
φγ
)−1 is in the form φτ , with τ ∈ Ξ(D,D′) and

φτ ◦φγ(ID) = γ ◦τ(ID) = ID and φγ ◦φτ (ID′) = τ ◦γ(ID′) = ID′ . Hence γ
is a bijection from D′ onto D such that γ−1 = τ ∈ H(D). That finishes showing
Theorem B.3.7.

Definition: Let A, B be subsets of K. If there exists a bijection f ∈ H(A)
from A onto B such that f−1 belongs to H(B), then f will be named a bianalytic
element from A onto B.

The following Propositions B.3.8 and B.3.9 will be often useful to transform
unbounded domains into bounded domains.

Proposition B.3.8: Let D ∈ Alg and let h ∈ R(D) be a Moebius function.
Let D′ = h(D). Then D′ belongs to Alg and H(D′) is isomorphic to H(D) with
respect to the mapping ψ defined in H(D′) as ψ(f) = f ◦ h.

Proof. By Theorem B.3.2, for every f ∈ H(D′), f ◦ h belongs to H(D) and
by Proposition B.3.6 this mapping is a K-vector space isomorphism which sat-
isfies ψ(fg) = ψ(f)ψ(g) whenever f, g ∈ H(D′). Hence the space H(D′) =
ψ−1(H(D)) is a K-algebra isomorphic to H(D). In particular D′ belongs to Alg
and ψ is a K-algebra isomorphism.

Proposition B.3.9: Let D be a set with a hole T = d(a, r−), let γ(x) =
1

x− a
and let D′ = γ(D). Then D′ ∈ Alg and H(D′) is isomorphic to Hb(D).

Proof. Without loss of generality we may clearly assume D to be closed because
by Corollary B.2.7, Hb(D) is equal to Hb(D). For every f ∈ H(D) let ψ(f) =
f ◦ γ ∈ H(D′). Then ψ(Hb(D)) is a K-algebra included in H(D′). If D is
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bounded, D′ is bounded and closed like D, hence by Proposition B.3.8, ψ is an
isomorphism from H(D) onto H(D′) . Now we suppose D unbounded. Then D′

is bounded and ψ(Hb(D)) is obviously included in Hb(D′) which, by Corollary
B.2.7, is just equal to H(D′). On the other hand γ clearly maps Rb(D) onto
R(D′) hence ψ(Hb(D)) = H(D′).

Theorem B.3.10: Let T = d(a, r−) be a hole of D and let γ(x) =
1

x− a
. Let

D′ = γ(D). The mapping ψ from Hb(D′) into Hb(D) defined as ψ(f) = f ◦ γ
is a K-algebra isomorphism.

Proof. D′ is bounded, hence by Corollary B.2.7, Hb(D′) is equal to the Banach
K-algebra H(D′). Now by Theorem B.3.2, we see that γ ∈ Ξ(D,D′) and γ−1 ∈
Ξ(D′, D). Hence ψ is clearly a K-Banach space isomorphism from Hb(D′) onto
Hb(D). Now, ψ satisfies ψ(fg) = ψ(f) ψ(g) whenever f, g ∈ H(D) such that
fg ∈ H(D′). But both Hb(D), Hb(D′) are Banach K-algebras, hence ψ is a
Banach K-algebra isomorphism.

Theorem B.3.11: Let a be a point in D which is not isolated. Let γ(x) =
1

x− a
and let D′ = γ(D \ {a}). Then given f ∈ H(D′), f ◦ γ belongs to H(D)

if and only if f(x) has a limit when |x| tends to +∞.

Proof. If f ◦ γ belongs to H(D) then we just have

lim
|x|→+∞

f(x) = lim
x→a

f ◦ γ(x) = f ◦ γ(a).

Conversely, if f has a limit l when |x| tends to +∞, then f ◦ γ is bounded
in certain disks d(a, r) \ {a}. Therefore by Corollary B.2.6, f ◦ γ belongs to
H(D).

Corollary B.3.12: Let D ∈ Alg, let a be a point in D which is not isolated,

such that (D \ {a}) belongs to Alg. Let γ(x) =
1

x− a
and let D′ = γ(D \ {a}).

Then H(D) is isomorphic to the subalgebra of H(D′) which consists of the f
such that |f(x)| is bounded when |x| approaches +∞.
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B.4. Multiplicative spectrum of H(D)

In Chapter B.1 we studied and characterized the multiplicative semi-norms
on a K-algebra R(D) of rational functions. We will apply these properties to
the completion H(D) of R(D) by considering multiplicative semi-norms that
are continuous with respect to the topology of H(D). On H(D) as on R(D),
the role of circular filters is obviously crucial: each continuous multiplicative
semi-norm of H(D) is defined by a circhular filter secant with D exactly as it
was explained for rational functions. However circular filters that are not secant
with D play no role with regards to H(D).

Notation: Throughout the chapter, D is an infraconnected subset of K. We
will denote by Mult(H(D),UD) the set of continuous multiplicative semi-norms
ψ of the K-vector space H(D) that satisfy ψ(fg) = ψ(f)ψ(g) whenever f, g ∈
H(D) such that fg ∈ H(D).

Remark: This notation does not require H(D) to be a K- algebra, though it
coincides with the notation already introduced for any topological algebra when
H(D) is a normed K-algebra. Multiplicative semi-norms appeared to be the
main tool for studying analytic elements [43], [49], [68]. They also are at the
basis of Berkovich theory [6].

Theorem B.4.1: (G. Garandel) [61], [50], [58] For every F ∈ Φ(D), the
multiplicative semi-norm ϕF defined on R(D) extends by continuity to H(D) to
a continuous semi-norm of K-vector space

D
ϕF of H(D) that satisfies

D
ϕF (f.g) =

D
ϕF (f)

D
ϕF (g) whenever f, g ∈ H(D) such that fg ∈ H(D). Moreover, the

mapping: F →
D
ϕF , from Φ(D) into Mult(H(D),UD), is a bijection.

Proof. We may obviously extend ϕF by continuity to
D
ϕF satisfying

D
ϕF (fg)

=
D
ϕF (f)

D
ϕF (g) whenever f, g ∈ H(D) such that fg ∈ H(D). We now check

that the mapping F →
D
ϕF from Φ(D) into Mult(H(D),UD) is a bijection.

It is obviously injective because if
D
ϕF1

=
D
ϕF2

then ϕF1
= ϕF2

, hence by
Theorem B.1.10 F1 = F2. Now let ψ ∈ Mult(H(D),UD). The restriction of ψ
to R(D) is an element ψ0 of Mult(R(D),UD), hence by Theorem B.1.10, ψ0 is
of the form ϕF and then, by continuity, we have ψ =

D
ϕF .

From Theorem B.1.4, the following theorem is immediate concerning a space
H(D).

Corollary B.4.2: Let F be a large circular filter on K of diameter s > 0.
The following three assertions are equivalent
i) ϕF (h) ≤ ‖h‖D whenever h ∈ H(D)
ii) ϕF is a continuous ultrametric multiplicative norm on H(D) with respect to
the topology of uniform convergence.
iii) F is secant with D.

By Theorem B.1.10, we have Corollary B.4.3:
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Corollary B.4.3: Let D be a closed bounded subset of K. Then
Mult(H(D), ‖ . ‖D) is compact with respect to the topology of pointwise conver-
gence.

Remark : If F is a large circular filter, we know that ϕF is a norm on R(D).
But we don’t know whether

D
ϕF is a norm on H(D). This not trivial question

is linked to the problem of T -filters which is a so big question that it would
require another book [49].

Definitions and notations: For convenience, for every a ∈ D, we put
ϕa(f) = |f(a)| whenever f ∈ H(D) and so we define the semi-norms ϕa ∈
Mult(H(D),UD).
An element ψ ∈Mult(H(D),UD) will be said to be punctual if it is of the form
ϕa with a ∈ D, i.e. if its circular filter is punctual.

Let F be a monotonous filter on D. By Proposition A.2.14, there exists a
unique circular filter G on D less thin than F . Then we put

D
ϕF (f) =

D
ϕG (f)

for all f ∈ H(D).
For simplicity, when G has center 0 and diameter r, we set |f |(r) =

D
ϕG (f).

So, when f belongs to R(D) this is the definition already given in Chapter A.3.
Now let D be infraconnected. Let a ∈ D̃ and let r satisfy δ(a,D) ≤ r ≤

diam(D). The circular filter F of center a and diameter r is then secant with
D. We put

D
ϕa,r =

D
ϕF . Let A be a bounded subset of D̃ and let Ã = d(a, r).

If δ(a,D) ≤ r ≤ diam(D) we put
D
ϕ
A

=
D
ϕa,r. In particular this notation

applies to holes of an infraconnected set D.
Let F be a circular filter or a monotonous filter on D. We will denote by

J (F) the set of the f ∈ H(D) such that lim
F
f(x) = 0. Hence J (F) is equal

to Ker(
D
ϕF ) and therefore, if D ∈ Alg, Ker(

D
ϕF ) is a closed prime ideal of

H(D).
If F is a monotonous filter on D, we will denote by J0(F) the set of the

f ∈ H(D) such that f(x) = 0 whenever x ∈ B(F).
Finally, given a ∈ D we will denote by J (a) the set of the f ∈ H(D) such

that f(a) = 0. Then, if D ∈ Alg, J0(F) and J (a) are closed prime ideals of
H(D).

Among many ultrametric properties, we notice the following.
Lemma B.4.4 : Let F be a circular filter or a monotonous filter on D and let
f ∈ H(D). There exists A ∈ F such that |f(x)| is bounded in A. Moreover, for
every sequence (an)n∈N thinner than F , we have lim

n∈N
ϕan = ϕF . Given a, b ∈ D

and r ∈]0,diam(D)[ such that |a− b| ≤ r, we have
D
ϕa,r =

D
ϕb,r.

Proof. Indeed, there does exist A ∈ F such that |f(x)| ≤
D
ϕF (f) + 1 for all

x ∈ A. The last statements come from properties seen on R(D).

Lemma B.4.5: Let f ∈ H(D) be invertible in H(D). Then for every ψ ∈
Mult(H(D),UD) we have ψ(f) 6= 0.
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Proof. Indeed we have ψ(f)ψ(
1
f

) = 1.

Lemma B.4.6 : Let
D
ϕF ∈ Mult(H(D),UD), let f ∈ H(D) and g ∈ H(D)

be such that ‖f − g‖
D
<

D
ϕF (f). Then

D
ϕF (f) =

D
ϕF (g).

Proof. Indeed we know that
D
ϕF (f−g) ≤ ‖f−g‖

D
, hence

D
ϕF (f−g) <

D
ϕF (f)

and therefore
D
ϕF (g) =

D
ϕF (f).

Lemma B.4.7: Let D be unbounded and let f ∈ Hb(D). Then |f(x)| has
a limit

D
ϕ
D

(f) when |x| tends to +∞ while x lies in D and
D
ϕ
D

belongs to
Mult(Hb(D), ‖ . ‖D).

Proof. By Corollary B.2.7, f(x) admits a limit λ when |x| tends to +∞, (x ∈
D). Hence lim

|x|→+∞, x∈D
|f(x)| = |λ|. Thus the mapping ϕ∞, defined as ϕ∞(f) =

lim
|x|→+∞

|f(x)|, belongs to Mult(Rb(D), ‖ . ‖D) and obviously has continuation by

continuity to an element
D
ϕ
D
∈Mult(Hb(D), ‖ . ‖D) which satisfies

D
ϕ
D

(f) =
lim

|x|→+∞, x∈D
|f(x)|.

Notation: When there is no risk of confusion about the set D, we will just
write ϕF , (resp. ϕa,r, resp. ϕ

D
, resp. ϕ

A
), instead of

D
ϕF (resp.

D
ϕa,r, resp.

D
ϕ
D

, resp.
D
ϕ
A

). Next, when D is unbounded,
D
ϕ
D

will also be denoted by
D
ϕ∞ .

Theorem B.4.8: Let ψ ∈ Mult(Hb(D), ‖ . ‖D) \Mult(H(D),UD). If D is
bounded, ψ is of the form ϕa with a ∈ D \D. If D is not bounded, ψ is either
of the form ϕa, with a ∈ D \D or of the form

D
ϕ∞ .

Proof. First we suppose D bounded. By Corollary 11.7 we have Hb(D) = H(D).
Hence ψ is equal to some

D
ϕF , with F a circular filter on D. If F is large, it is

a large circular filter secant with D and then ψ belongs to Mult(H(D),UD). If
F is not large, it is the filter of neighbourhoods of a point a ∈ D . But if a ∈ D,
obviously ϕa belongs to Mult(H(D),UD). Hence a ∈ D \D.

Now we suppose D unbounded. If D has no hole we just have Hb(D) =
Rb(D) = K, hence Mult(Hb(D), ‖ . ‖D) = Mult(H(D),UD). Thus we may
assume D to have a hole T = d(a, r−). Without loss of generality we may

assume a = 0. Let γ(x) =
1
x

and let D′ = γ(D). Then D′ is bounded and,

by Proposition B.3.9, we know that the algebra Hb(D) is isomorphic to H(D′).
By Proposition B.3.8, the mapping f → f ◦ γ defines a K-vector space isomor-
phism from H(D) onto H(D′) and a K-algebra isomorphism from Hb(D) onto
Hb(D′) = H(D′). Hence we may define ψ′ ∈Mult(H(D′)) by ψ′(f ◦ γ) = ψ(f)
whenever f ∈ Hb(D). If ψ′ belonged to Mult(H(D′),UD′), then we would have
ψ(f) = ψ′(f ◦ γ) whenever f ∈ H(D) and therefore ψ ∈ Mult(H(D),UD).
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Hence ψ′ does not belong to Mult(H(D′),UD′) and then ψ′ is of the form ϕb
with b ∈ D′ \D. If b 6= 0 then ψ = ϕ 1

b
. If b = 0, then ψ =

D
ϕ
D

and this ends
the proof.

Theorem B.4.9: Let (αn)n∈N be a bounded sequence in D such that no
subsequence converges to any point of D\D. There exists a subsequence (αns)s∈N
such that the sequence (ϕαns )s∈N converges in Mult(H(D),UD).

Proof. By Theorem A.2.1 we may extract either a convergent subsequence, or a
monotonous distances subsequence, or an equal distances subsequence from the
sequence (αn)n∈N. Let (αns)s∈N be such a subsequence. If this subsequence con-
verges to a point α ∈ K, then by hypothesis α lies in D, hence lim

s→+∞
ϕαns = ϕα.

If this subsequence is a monotonous distances subsequence, or an equal dis-
tances subsequence, then by Proposition A.2.18, on D there exists a large cir-
cular filter F less thin than the sequence (αns) and then we see that for every
f ∈ H(D) we have lim

s→+∞
|f(αns)| = D

ϕF (f), hence lim
s→+∞

ϕαns (f) = ϕF (f).

Thus, in every case we have proven that the subsequence ϕαns converges in
Mult(H(D),UD).
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B.5. Power and Laurent series

A power series on a p-adic field admits a disk of convergence whose radius
is defined in the same way as on C. The difference of behaviour between power
series in C and in a field such as K concerns what happens when |x| is equal
to the radius of convergence. We show that the norm of uniform convergence
in a disk d(a, s) ⊂ d(0, R−) is multiplicative and satisfies ‖

∑+∞
n=0 anx

n‖d(0,s) =
supn∈N |an|sn. As a consequence, the product of two power series converging
in d(0, R−) is bounded if and only if both are bounded. We show that the
algebra of power series with a radius of convergence equal to R is equal to the
intersection of algebras of analytic elements H(d(0, s)) when s < R. We show
that all analytic elements in d(0, R−) are power series converging in d(0, R−).
The converse is false. However, we will see that the analytic elements in d(0, R)
are exactly the power series converging in this disk.

Definitions: Let f(x) =
∞∑
n=0

anx
n be a power series with coefficients in K.

As usual, when lim sup
n→∞

n
√
|an| 6= 0, we call radius of convergence of f the

number
r =

1

lim sup
n→∞

n
√
|an|

(with r = 0 when lim sup
n→∞

n
√
|an| = +∞).

When lim sup
n→∞

n
√
|an| = 0, we define the radius of convergence of f as +∞

Examples: Let f(x) =
∞∑
n=1

nxn. The radius of convergence of this series is 1.

This function obviously defines the rational function
x

(1− x)2
in d(1, 1−) .

Remark: If a sequence of positive numbers (un)n∈N is such that the sequence(un+1

un

)
n∈N

converges to a limit l ≥ 0, then so does the sequence ( n
√
un)n∈N.

On the field K, as in Archimedean analysis, it is a way to compute easily many
radii of convergence.

Lemma B.5.1 is immediate.

Lemma B.5.1: Let f =
∞∑
n=0

anx
n be a power series with coefficients in

K. The series converges if and only if lim
n→∞

|anxn| = 0. Let r be its radius of

convergence. If |x| < r, then the series converges. If |x| > r, then the series
diverges.

Notations and definitions: Power series whose radius of convergence is ∞
are called entire functions on K and the set of entire functions will be denoted
by A(K).
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For every a ∈ K, r ∈ R∗+, similarly we will denote by A(d(a, r−)) the set
of power series in x − a whose radius of convergence is superior or equal to r
and by Ab(d(a, r−)) the set of functions f ∈ A(d(a, r−)) that are bounded in
d(a, r−). The set A(d(a, r−)) \ Ab(d(a, r−)) will be denoted by Au(d(a, r−)).

Similarly, we will denote by A(K\d(a, r)) the set of Laurent series converging
whenever |x − a| > r, by Ab(K \ d(a, r)) the set of bounded Laurent series
converging whenever |x − a| > r and by Au(K \ d(a, r)) the set of unbounded
Laurent series converging whenever |x− a| > r.

Finally, given r′, r′′ such that 0 < r′ < r′′, we will denote by A(Γ(a, r′, r′′))
the set of Laurent series converging whenever r′ < |x − a| < r′′. And we
will denote by Ab(Γ(a, r′, r′′)) the set of functions f ∈ A(Γ(a, r′, r′′)) that are
bounded in Γ(a, r′, r′′).

From Lemma B.5.1 we can derive Corollary B.5.2:

Corollary B.5.2: Let
+∞∑
−∞

anx
n be a Laurent series with coefficients in K,

let r′′ =
1

lim sup
n→∞

n
√
|an|

with r′′ = 0 whenever lim sup
n→∞

n
√
|an| = +∞ and let

r′ =
1

lim supn→−∞
−n
√
|an|

with r′ = 0 whenever lim sup
n→−∞

−n
√
|an| = +∞. If

r′ < |x| < r′′, the series converges. If |x| > r′′ or if |x| < r′ the series diverges.

Corollary B.5.3: Let r′, r′′ ∈ R+ satisfy 0 < r′ < r′′. Then A(Γ(0, r′, r′′))

is the set of Laurent series
+∞∑
−∞

anx
n such that r′ ≤ 1

lim supn→−∞
n
√
|an|

≤ r′′.

Corollary B.5.4: Let r′, r′′ ∈ R+ be such that r′ < r′′ and let

f(x) =
+∞∑
−∞

anx
n ∈ A(Γ(a, r′, r′′)). For each r ∈]r′, r′′[, one has

lim
n→+∞

|an|rn = lim
n→−∞

|an|rn = 0.

Lemma B.5.5 will be useful in certain further problems:

Lemma B.5.5: Let q ∈ N∗ and let IL be a complete algebraically closed ex-
tension of K. Let f ∈ A(d(a,R−)) and suppose that there exists a power series
g with coefficients in IL, with radius of convergence ≥ R such that (g(x))q =
f(x) ∀x ∈ d(a,R−). Then g has all coefficients in K and belongs to A(d(a,R−)).

Proof. Without loss of generality we can obviously suppose a = 0. Let f(x) =
+∞∑
n=0

bnx
n (with bn ∈ K) and let g(x) =

+∞∑
n=0

anx
n. Then (a0)q = b0, hence
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a0 ∈ K because K is algebraically closed. Now suppose we have proven that
an ∈ K ∀n ≤ t− 1. We can see that bt is of the form at(a0)q−t + h where h is a
polynomial in a0, a1, ..., at−1. Therefore at also belongs to K. Consequently, g
has all coefficients in K, which ends the proof.

Notation: Let r ∈ R∗+ and let
+∞∑
−∞

anx
n ∈ H(C(0, r)). By hypothesis, we have

lim
n→+∞

|an|rn = lim
n→−∞

|an|rn = 0. Generalizing notation already introduced for

rational functions, we denote by ν+(f, log r) the highest of the integers m ∈ Z
such that |am|rm = supn∈Z |an|rn and by ν−(f, log r) the lowest of the inte-
gers m ∈ Z such that |am|rm = supn∈Z |an|rn. Next, when ν+(f, log r) =
ν−(f, log r), we just set ν(f, log r).

Recall that we have, given a circular filter F of center 0 and diameter r,
for every element of H(d(0, r)) and particularlly for every analytic function
f ∈ A(K), we put |f |(r) = lim

F
|f(x)|.

Theorem B.5.6: Let r ∈ R∗+, let F be the circular filter of center 0 and
diameter r on K and let E = d(0, r). Then H(E) is the set of power series

f(x) =
∞∑
n=0

anx
n such that lim

n→∞
|an|rn = 0 and we have ‖f‖

E
= |f |(r) =

max
n∈N
|an|rn =

E
ϕF (f) = ‖f‖C(0,r).

For every α ∈ E, H(E) is also equal to the set of series f(x) =
∞∑
n=0

bn(x−α)n

such that lim
n→∞

|bn|rn = 0.

Let B = K \ d(0, r−). Then H(B) is the set of Laurent series f(x) =
∞∑
n=0

an
xn

such that lim
n→∞

|an|r−n = 0 and we have ‖f‖
B

= max
n∈N
|an|r−n =

B
ϕF (f) =

‖f‖C(0,r).
For every α ∈ d(0, r−), H(B) is also equal to the set of series f(x) =

∞∑
n=0

bn
(x− α)n

such that lim
n→∞

|bn|r−n = 0.

Let r′ ≥ r and let D = ∆(0, r, r′)). Then H(D) is the set of Laurent series

f(x) =
∞∑
−∞

anx
n such that lim

n→−∞
|an|rn = 0 and lim

n→+∞
|an|(r′)n = 0 and we

have
‖f‖

D
= max(max

n<0
|an|rn,max

n≥0
|an|(r′)n). Moreover, for every α ∈ d(0, r−), H(D)

is also equal to the set of power series f(x) =
∞∑
−∞

bn(x− α)n such that

lim
n→−∞

|bn|rn = 0 and lim
n→+∞

|bn|(r′)n = 0.
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Proof. Let S(r) be the set of power series f(x) =
∞∑
n=0

anx
n such that lim

n→∞
|an|rn =

0. Such a power series obviously is a uniform limit of polynomials because
|f(x)−

∑
n=0q anx

n| ≤ supn≥q |an|rn and hence it belongs to H(E). Moreover,
E is closed and bounded, hence by Theorem B.2.2 H(E) is a K-Banach algebra
with respect to the norm of uniform convergence on E. By Lemma A.3.7, on
K[x] the norm ‖ . ‖E is ϕF and by Theorem B.4.1 that equality has continuation
to H(E).

Now, for a polynomial P (x) =
q∑

n=0

anx
n, by Lemma A.3.7 we have ‖P‖E

= sup
0≤n≤q

|an|rn hence this equality also has continuation to f . Consequently,

‖f‖E = lim
F
|f(x)| = ϕF (f). Particularly, S(r) is a subset of H(E).

In order to show that S(r) = H(E), we will first show that S(r) is closed
in H(E). Since F is secant with C(0, r) we have ‖f‖

C(0,r) =
E
ϕF (f). But we

know that ϕF (Pn) ≤ max
0≤i≤n

|ai|ri. Since ϕF extends continuously to
E
ϕF ∈

Mult
(
H(E), ‖ . ‖

E

)
, for n big enough, we have

E
ϕF (f) =

E
ϕF (Pn) = |aj |rj

with j < n and |an|rm < |aj |rj whenever m < j, hence finally
E
ϕF (f) =

|aj |rj = max
n∈N
|an|rn. Consequently, we have ‖f‖

C(0,r) = ‖f‖E ≤ |aj |rj =

max
0≤n
|an|rn and therefore ‖f‖

C(0,r) = ‖f‖E = max0≤n |an|rn. This finishes

showing that S(r) is a closed subset of H(E).
Now we will show that R(E) is included in S(r). For this, we just have to

show that, given any β ∈ K \ E,
( 1
x− β

)q
=
(
− 1
β

∞∑
n=0

(x
β

)n)q
belongs to

F . When developping
( ∞∑
n=0

(x
β

)n)q
, we see that for every fixed q ∈ N, the

coefficient Aq of xq is a sum of terms of the form
s

βq
, with s ∈ N, hence finally

|Aq| ≤
1
|β|q

and therefore |Aq|rq ≤
( r

|β|

)q
. Since |β| > r, this shows that( 1

x− β

)q
∈ S(r). So, we have proven the inclusion R(E) ⊂ S(r) ⊂ H(E).

Since S(r) is closed, we have S(r) = H(E).

Now let α ∈ E. Since d(α, r) = d(0, r), after the change of variable x = α+u,

the same reasoning shows that a series f(x) =
∞∑
n=0

an x
n ∈ H(E) is also of the

form
∞∑
n=0

bn(α)(x − α)n with lim
n→∞

|bn(α)|rn = 0. Conversely, H(E) is clearly

equal to the set of series
∞∑
n=0

bn(x + α)n such that lim
n→∞

|bn|rn = 0 because
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any series g of the form
∞∑
n=0

bn un, with lim
n→∞

|bn|rn = 0, can be written as

∞∑
n=0

an(u+ α)n.

The statements about H(B) are an obvious consequence of those about

H(E) after the change of variable y =
1
x

and more generally, y =
1

x− α
. So

are the statements about H(D).

We can easily check the following corollaries :

Corollary B.5.7: Let f ∈ A(K). The following three statements are equiva-
lent:

i) lim
r→+∞

|f |(r)
rq

= +∞ ∀q ∈ N,

ii) there exists no q ∈ N such that lim
r→+∞

|f |(r)
rq

= 0,

iii) f is not a polynomial.

Corollary B.5.8: Let f, g ∈ AK). Then f.g is a polynomial if and only if
both f, g are polynomials.

Corollary B.5.9: Let r ∈ R∗+ and let D = d(0, r). Then H(D) is the set of

power series f(x) =
∞∑
n=0

anx
n such that lim

|n|∞→∞
|an|rn = 0 and we have

‖f‖
D

= max
n∈N
|an|rn =

D
ϕF (f).

Moreover, the norms ‖ . ‖C(0,r), | . |(r) and ‖ . ‖d(0,r) are equal and are multi-
plicative.

Corollary B.5.10: Let r ∈ R∗+ and let D = d(0, r) (resp. D = d(0, r−)).
Then the norm ‖ . ‖D on H(D) is multiplicative.

Corollary B.5.11: Let α ∈ D and r ∈ R∗+ be such that d(α, r) ⊂ D. Let

f ∈ H(D). In d(α, r), f(x) is equal to a power series of the form
∞∑
n=0

an(x−α)n

such that lim
n→∞

|an|rn = 0. If f(α) = 0 and if f(x) is not identically zero in

d(α, r), then there exists a unique integer q ∈ N∗ such that an = 0 for every
n < q and aq 6= 0 and α is an isolated zero of f in d(α, r).

Proposition B.5.12: Let r ∈ R∗+ and let f(x) =
∞∑
n=0

anx
n. The following

statements are equivalent:
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a) f ∈ A(d(0, r−))
b) f ∈

⋂
s<r

H(d(0, s))

c) The series f is convergent in all of d(0, r−).

Proof. b) and c) are clearly equivalent to the condition lim
n→∞

|an|sn = 0 whenever
s < r and, in the same way as in archimedean analysis, it is shortly checked

that this is also equivalent to lim sup
n→∞

n
√
|an| ≤

1
r
.

Remark: If f is convergent for some α ∈ C(0, r), then lim
n→∞

|an|rn = 0,

hence f belongs to H(d(0, r)).

Corollary B.5.13: Let r ∈ R∗+ and let f(x) =
0∑
−∞

anx
n. The following

statement are equivalent:
a) f ∈ A(K \ d(0, r))
b) f ∈

⋂
s>r

Hb(K \ d(0, s))

c) The series f is convergent in all of K \ d(0, r)

Corollary B.5.14: Let r1, r2 ∈ R∗+ with r1 < r2 and let f(x) =
+∞∑
−∞

anx
n.

The following statement are equivalent:
a) f ∈ A(Γ(0, r1, r2))
b) f ∈

⋂
r1<s1<s2<r2

H(∆(0, s1, s2))

c) The series f is convergent in all of Γ(0, r1, r2)

Corollary B.5.15: Let f ∈ A(d(0, r−)) be not identically zero. For every

α ∈ d(0, r−), f(x) is equal to a power series
∞∑
n=0

bn(α)(x− α)n. If f is not

identically zero and if α is a zero of f in d(0, r−), α is an isolated zero and f
factorizes in A(d(0, r−)) in the form (x − α)qg(x), with g ∈ A(d(0, r−)), q ∈
N∗ g(α) 6= 0.

Definition: Let f ∈ H(D) and let α ∈
◦
D, let r > 0 be such that d(α, r) ⊂ D

and suppose f(x) =
∞∑
n=q

bn(x− α)n whenever x ∈ d(α, r), with bq(α) 6= 0 and

q > 0. Then α is called a zero of multiplicity order q, or more simply, a zero of
order q. In the same way, q will be named the multiplicity order of α.
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Remark: In particular, these definitions apply to functions f ∈ A(d(a, r−)),
at any point α ∈ d(a, r−).

Corollary B.5.16: Let a ∈ K, R ∈ R∗+ and let f ∈ A(d(a,R−)) (resp.
f ∈ A(K)). Let a1, ..., aq be zeros of f of respective order sj and let P (x) =
q∏
j=1

(x− aj)sj . Then f factorizes in the form P (x)u(x) with u ∈ A(d(a,R−))

(resp. u ∈ A(K).

Corollary B.5.17: Let a ∈ K, R, R′ ∈ R∗+ with R < R′ and let Λ =
d(a,R−), (resp. Λ = K \ d(a,R), resp. Λ = Γ(a,R,R′))) and let C(b, r) be a
circle included in Λ. Then Λϕb,r applies to A(Λ).

Corollary B.5.18: Let f(x) =
∞∑
n=0

anx
n ∈ A(K). If f is not a constant,

then lim
r→+∞

|f |(r) = +∞.

Notation: Let R ∈ R∗+ and let f ∈ A(d(a,R−)). Given r ∈]0, R[, by Proposi-
tion B.5.12 f belongs to H(d(a, r)), hence for every circular filter F secant with
d(a, r), ϕF (f) is defined. Particularly, if a = 0, |f |(r) is defined.

Theorem B.5.19: Let R ∈ R∗+ and let f ∈ A(d(a,R−)). Then f is invertible
in A(d(a,R−)) if and only if f has no zero in d(a,R−).

Proof. Suppose that f has no zero in d(a,R−). For each r ∈]0, R[, f belongs
to H(d(a, r)) and hence by Lemma B.2.3, it is invertible in H(d(a, r)). Conse-

quently, the function defined in d(a, r) as g(x) =
1

f(x)
belongs to H(d(a, r)).

This is true for all r ∈]0, R[ and shows that f−1 belongs to A(d(a,R−)). The
converse is obvious.

Theorem B.5.20: Let R ∈ R∗+. The K-subalgebra Ab(d(0, R−)) of A(d(0, R−))
is a Banach K-algebra with respect to the norm ‖ . ‖d(0,R−). Further, this norm
is multiplicative and satisfies ‖f‖d(0,R−) = lim

r→R
|f |(r) = sup

n∈N
|an|Rn.

Let f(x) =
∞∑
n=0

anx
n ∈ A(d(0, R−)). Then f is bounded in d(0, R−) if

and only if so is the sequence (|an|Rn)n∈N. Moreover, if f is bounded, then
‖f‖d(0,R−) = sup

n∈N
|an|Rn.

Proof. Let f(x) =
∞∑
n=0

anx
n ∈ Ab(d(0, R−)). By Theorem B.5.21 we have

‖f‖d(0,R−) = supn∈N |an|Rn. The norm ‖ . ‖d(0,R−) is a norm of K-algebra hence
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‖f g‖d(0,R−) ≤ ‖f‖d(0,R−) ‖g‖d(0,R−). On the other hand, by Theorem B.5.6,
the norm ‖ . ‖d(0,s) is multiplicative on H(d(0, s)) for every s < R, hence
‖fg‖d(0,R−) ≥ ‖fg‖d(0,s) = ‖f‖d(0,s) ‖g‖d(0,s) whenever s < R, and therefore
‖ . ‖d(0,R−) is multiplicative on Ab(d(0, R−)). Now let (fm)m∈N be a Cauchy

sequence in Ab(d(0, R−)). We put fm(x) =
∞∑
n=0

an,mx
n. By hypothesis, for every

ε > 0 we have an integer N(ε) such that |an,m − an,q|Rn ≤ ε for every n ∈ N,
whenever m, q ≥ N(ε). Thus it is easily seen that each sequence (an,m)m∈N
converges in K to a limit an that satisfies |an−an,m|Rn ≤ ε whenever m ≥ N(ε)

and then the series f(x) =
∞∑
n=0

anx
n satisfies ‖f − fm‖d(0,R−) ≤ ε. Obviously

f belongs to H(d(0, s)) for all s < R and then the sequence (fm) is proven to
converge in Ab(d(0, R−)).

For every s ∈]0, R[, we have

|f |(s) = ‖f‖d(0,s) = sup
n∈N
|an|sn ≤ sup

n∈N
|an|Rn = ‖f‖d(0,R−)

and hence we can check that the real increasing bounded function h defined
in ]0, R[ as h(s) = supn∈N |an|sn is obviously continuous at R. Consequently,
‖f‖d(0,R−) = lim

r→R
|f |(r) = sup

n
|an|Rn. Therefore, obviously, f is bounded in

d(0, R−) if and only if so is the sequence (|an|Rn)n∈N.

Corollary B.5.21: Let R ∈ R∗+ and let f, g ∈ A(d(a,R−)). Then fg belongs
to Ab(d(a,R−)) if and only if so do both f, g and Ab(d(a,R−)) is K-subalgebra
of A(d(a,R−)).

Theorem B.5.22: Suppose that K has characteristic different from 2. Let
f, g ∈ A(K) \K (resp. f, g ∈ Au(d(0, r−))) be distinct. Then f2 − g2 belongs
to A(K) \K (resp. f2 − g2 ∈ Au(d(0, r−))).

Proof. Indeed, f2 − g2 = (f − g)(f + g). Suppose that |f + g|(r) is bounded
when r tends to +∞ (resp. to R). Since the characteristic of K is different
from 2, |f − g|(r) is obviously unbounded when r tends to +∞ (resp. to R).
Consequently, since the norm | . |(r) is multiplicative, |f2 − g2|(r) cannot be
bounded when r tends to +∞ (resp. to R). Therefore f2 − g2 belongs to
A(K) \ K (resp. to Au(d(0, r−))). Similarly, if |f − g|(r) is bounded when r
tends to +∞ (resp. to R) we have the symmetric proof.

Theorem B.5.23: For every r ∈ R∗+, H(d(0, r−)) is included in Ab(d(0, r−)).

Proof. Since Ab(d(0, r−)) is complete with respect to the norm ‖ . ‖d(0,r−), we
just have to show that R(d(0, r−)) ⊂ Ab(d(0, r−)), hence finally we just have to

show that given α ∈ K \ d(0, r−) ,
1

x− α
∈ Ab(d(0, r−)). But we have
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1
x− α

= − 1
α(1− x

α )
= − 1

α

∞∑
n=0

(x
α

)n
for all x ∈ d(0, r−) because

∣∣∣x
α

∣∣∣ < 1, hence

1
x− α

∈ Ab(d(0, r−)) and that finishes proving Theorem B.5.23.

Remarks: We will see later thatH(d(0, r−)) is much smaller thanAb(d(0, r−)).
In particular, we will see that q

√
1 + x belongs to Ab(d(0, 1−), but does not be-

long to H(d(0, 1−)).

Let
+∞∑

0

anx
n be a power series whose radius of convergence is r. Suppose

first that r ∈ |K|. If there is at least one point α ∈ C(0, r) such that the series
converges at α, then this implies that lim

n→+∞
|an|rn = 0 and hence the series

converges in all C(0, r) and defines an element of H(d(0, r)). If r does not
belong to |K|, the power series converging in d(0, r) are just the power series
converging in d(0, r−). This is why we don’t have to consider analytic functions
inside a disk d(a, r).

Theorem B.5.24: Let f(x) =
∞∑
n=0

anx
n ∈ A(d(0, R−)) and suppose that

an ∈ Qp ∀n ∈ N. Then for every x ∈ d(0, R−), if x is algebraic over Qp, so is
f(x).

Proof. Suppose x is algebraic, of degree q over Qp and let E = Qp[x]. For every

m ∈ N,
m∑
n=0

anx
n belongs to E. But since E is a finite extension of Qp, it is

complete hence f(x) also belongs to E.
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B.6. Krasner- Mittag-Leffler Theorem

The wonderful Mittag-Leffler Theorem for analytic elements is due to Marc
Krasner who showed it on quasi-connected sets [68]. The same proof holds on
infraconnected sets as it was shown by Philippe Robba [83]. The theorem shows
that a Banach space Hb(D) is a direct topological sum of elementary subspaces
and is indispensable to have a clear image of the space H(D). Further, it appears
necessary when studying meromorphic functions as we will see later.

Throughout this chapter, D is supposed to be infraconnected.We remember

that if D is unbounded, H0(D) denotes the set of the f ∈ H(D) such that
lim

|x|→+∞
x∈D

f(x) = 0.

Theorem B.6.1: (M.Krasner) [68], [83] Let D be closed and bounded
(resp. unbounded) and let f ∈ Hb(D). There exists a unique sequence of
holes (Tn)n∈N∗ of D and a unique sequence (fn)n∈N in H(D) such that f0 ∈
H(D̃) (resp. f0 ∈ K), fn ∈ H0(K \ Tn) (n > 0), lim

n→∞
fn = 0 satisfying

further

(1) f =
∞∑
n=0

fn and ‖f‖
D

= sup
n∈N

‖fn‖D .

For every hole Tn = d(an, r−n ) , we have
(2) ‖fn‖D = ‖fn‖K\Tn

=
D
ϕan,rn(fn) ≤

D
ϕan,rn(f) ≤ ‖f‖

D
.

If D is bounded and if D̃ = d(a, r) we have
(3) ‖f0‖D = ‖f0‖fD =

D
ϕa,r(f0) ≤

D
ϕa,r(f) ≤ ‖f‖

D
.

If D is not bounded then |f0| = lim
|x|→∞
x∈D

|f(x)| ≤ ‖f‖
D

.

Let D′ = D̃ \
( ∞⋃
n=1

Tn

)
. Then f belongs to H(D′) (resp. Hb(D′)) and its

decomposition in H(D′) is given again by (1) and f satisfies ‖f‖
D′ = ‖f‖

D
.

Proof. Since f ∈ Hb(D), by Corollary B.2.7 we know that f ∈ H(D). Hence
without loss of generality we may assume that D is closed. Obviously we may
also assume 0 ∈ D̃.

First we suppose f ∈ R(D). Then f has decomposition in the form E(x) +
t∑

j=1

λj
(x− αj)qj

with E(x) ∈ K[x] and αj ∈ K \ D. Now for each j, either αj

belongs to a hole T or αj belongs to K\D̃. Let T1, . . . Ts be the holes that contain

some αj . Then
t∑

j=1

λj
(x− αj)qj

is of the form
s∑

n=1

fn + h0 with fi ∈ H0(K \ Ti)

and h0 ∈ Hb(D̃). Finally we put f0 = E(x) + h0 and we have the announced
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decomposition: f =
s∑

n=0

fi with fi ∈ H0(K \ Ti) and f0 ∈ Hb(D̃). In the case

when D is unbounded, f0 is just a constant.
For each i = 1, ..., s, f − fi clearly belongs to Hb(D ∪ Ti) and obviously f

belongs to Hb

(
D̃ \

( s⋃
i=1

Ti

))
.

First we will show that for any n ∈ N∗, we have ‖fn‖D = ‖fn‖K\Tn
. Let Fn

be the circular filter on K of center αn and diameter rn. By Theorem B.5.6 we
have
(4) ‖fn‖K\Tn

= lim
Fn∩(K\Tn)

|fn(x)|.

But by Proposition A.2.17, Fn, is secant with D hence
(5) lim

Fn∩(K\Tn)
|fn(x)| = lim

Fn∩D
|fn(x)|

and obviously
(6) lim

Fn∩D
|fn(x)| ≤ ‖fn‖D ≤ ‖fn‖K\Tn

.

Finally by (4), (5), (6) we obtain
(7) ‖fn‖K\Tn

= ‖fn‖D =
D
ϕFn (fn).

In the same way, when D is bounded, say D̃ = d(0, r), we consider the
circular filter F0 of center 0 and diameter r, in order to prove that
(8) ‖f0‖D = ‖f0‖fD =

D
ϕF0

(f).
Now let us show that ‖f‖

D
≥ ‖fn‖D for any n ∈ N∗. Since f ∈ R(D), there

exists an annulus Γ(an, rn, r′n) such that f has neither any zero nor any pole
inside Γ(an, rn, r′n). We put I =] log(rn), log(r′n)[. By hypothesis fn has no pole
in K \ d(0, rn). Hence, since lim

|x|→∞
fn(x) = 0, by Corollary 3.17. we see that

dΨan

dµ
(fn, µ) < 0 whenever µ ∈ I. Let gn = f − fn ∈ R(D ∪ Tn). Since gn has

no pole inside Tn, by Corollary A.3.17 we see that
drΨan

dµ
(gn, µ) ≥ 0 whenever

µ < log(rn).
Therefore the equation Ψan(fn, µ) = Ψan(gn, µ) has at most one solution in

I and then Ψan(f, µ) is equal to max(Ψan(fn, µ),Ψan(gn, µ)) whenever µ ∈ I,
hence Ψan(f, µ) ≥ Ψan(fn, µ) whenever µ ∈ I. It follows that the multiplicative
semi-norm ϕFn defined on R(D) satisfies log(ϕFn (fn)) = Ψan(fn, log(rn)) ≤
Ψan(f, log(rn)) = log(ϕFn )(f) hence
(9) ϕFn (fn) ≤ ϕFn (f).

But ϕFn (fn) = ‖fn‖D and ϕFn (f) ≤ ‖f‖
D

, hence by (9) we have ‖f‖
D
≥

‖fn‖D . Finally by (7), we see that (2) is clearly proven.
When D is bounded we put D̃ = d(0, r) and we prove (3) in the same way

as above when proving (2) by considering an annulus Γ(0, r, r′) such that f has
neither any zero nor any pole inside Γ(0, r, r′). Then the element g0 = f − f0 is

of the form
P

Q
with P,Q ∈ K[x], all the zeros of Q in D̃ and deg(P ) < deg(Q)

because g0 ∈ R0(K \ D̃). Hence we have
d Ψ
dµ

(g0, µ) < 0 while
dΨ
dµ

(f0, µ) ≥ 0
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whenever µ ∈] log r, log r′[, so we have
D
ϕF0

(f0) ≤
D
ϕF0

(f) and hence by (8)
we obtain (3).

When D is not bounded the inequality |f0| ≤ ‖f‖D is obvious because
lim
|x|→∞
x∈D

f(x) − f0 = 0. This finishes proving the Mittag-Leffler Theorem when

f ∈ R(D).
Now let f ∈ H(D) and let (hm)m∈N be a sequence in R(D) that converges

to f in H(D). The set of holes of D that contain at least one pole of some hm
is clearly countable. Hence there exists a sequence of holes (Tn)n∈N∗ such that,

denoting by D′ the set D̃ \
( ∞⋃
n∈N∗

Tn

)
, then hm belongs to H(D′) whenever

m ∈ N. For each m ∈ N, hm splits in H(D′) in the form hm =
∞∑
n=0

hm,n with

hm,0 ∈ H(D̃), hm,n ∈ H0(K \ Tn). In particular, for each fixed n ∈ N, we
have ‖hm,n − hq,n‖D ≤ ‖hm − hq‖D . Thus we see that the sequence (hm,n)m∈N

converges in H(K \ Tn) for n > 0 (resp. in H(D̃) for n = 0) to a limit fn

and then we have f =
∞∑
n=0

fn in H(D′). Obviously ‖f‖
D

= sup
n∈N
‖fn‖D , whereas

‖fn‖D = ‖fn‖D′ whenever n ∈ N and so, ‖f‖
D

= ‖f‖
D′ . This ends the proof of

Theorem B.6.1.

Corollary B.6.2: Let (Ti)i∈I be the family of holes of D. Let J be a subset
of I and let S = I \ J. Let E = D

⋃(⋃
i∈J

Ti
)

and let F = D
⋃(⋃

i∈S
Ti
)
. Then

we have H(D) = H0(E) ⊕H(F ) and for each g ∈ H0(E), h ∈ H(F ), we have
‖g + h‖D = max(‖g‖E , ‖h‖F ).

The Mittag-Leffler Theorem suggests some new definitions.

Definitions and notations: Let f ∈ Hb(D). We consider the series
∞∑
n=0

fn

obtained in Theorem B.6.1, whose sum is equal to f in H(D), with f0 ∈
H(D̃), fn ∈ H(K \ Tn) \ {0} and with the Tn holes of D. Each Tn will be
called a f -hole and fn will be called the Mittag-Leffler term of f associated to
Tn, whereas f0 will be called the principal term of f . For each f -hole T of D,
the Mittag-Leffler term of f associated to T will be denoted by fT whereas the

principal term of f will be denoted by f0. The series
∞∑
n=0

fn will be called the

Mittag-Leffler series of f on the infraconnected set D. More generally, let E

be an infraconnected set and let f ∈ H(E). According to Theorem B.2.5, f
is of the form g + h with g ∈ R(K \ (E \ E)) and h ∈ Hb(E) whereas such a
decomposition is unique, up to an additive constant. For every hole T of E, we
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will denote by fT the Mittag-Leffler term of h associated to T and fT will still
be named the Mittag-Leffler term of f associated to T .

Corollary B.6.3: Let f ∈ Hb(D), let (Tn)n∈N∗ be the sequence of the f -
holes, with Tn = d(an, ρ−n ), let f0 = f0 and fn = fTn for every n ∈ N∗. Let
D̃ = d(a, s), (resp. D̃ = K). There exists q ∈ N such that ‖f‖

D
= ‖fq‖D . If

q ≥ 1 then ‖f‖
D

=
D
ϕaq,rq (f) =

D
ϕaq,rq (fq). If q = 0 and if D is bounded

(resp. is not bounded) then ‖f‖
D

=
D
ϕa,s(f) =

D
ϕa,s(f0) (resp. ‖f‖

D
= |f0| ).

Further, given a hole T of D, if f belongs to Hb(D) and if g belongs to H0(K\T )
and satisfies f − g ∈ H(D ∪ T ), then fT is equal to g.

Definition: Let D be bounded, of center α and diameter r. A circular filter
F on D will be called the specific filter of a hole T = d(a, r−) if it is the circular
filter on D of diameter r. If D is bounded and D̃ = d(a,R), the circular filter
of center a and diameter R will be called the specific filter of D̃. In general, a
specific filter of a hole of D or of D̃ will be called a specific filter of D.

Corollary B.6.4: Let f ∈ Hb(D). There exists a large circular filter F with
center α ∈ D̃ secant with D such that

D
ϕF (f) = ‖f‖

D
. If D is bounded, there

exists a specific filter F of D such that
D
ϕF (f) = ‖f‖D.

Corollary B.6.5: Let f ∈ H(d(0, 1−)) and let (d(αm, 1−))m∈N∗ be the family
of the f-holes. Then f is of the form

(1)
∞∑
n=0

an,0x
n +

∑
m,n∈N∗

an,m
(x− αm)n

with lim
n→∞

an = 0, lim
n→∞

|an,m| = 0 whenever m ∈ N∗ and lim
m→∞

(
sup
n∈N∗

|an,m|
)

= 0.

On the other hand, f satisfies ‖f‖d(0,1−) = sup
m,n∈N∗

|an,m|.

Conversely, every function of the form (1), with the αm satisfying
|αm| = |αj − αm| = 1 whenever m 6= j, belongs to H(d(0, 1−)). The norm
‖ . ‖d(0,1−) is multiplicative and equal to d(0,1−)ϕ0,1.

Corollary B.6.6: Let r1, r2 ∈ R+ satisfy 0 < r1 < r2. Then H(∆(0, r1, r2))

is equal to the set of the Laurent series
+∞∑
−∞

anx
n with lim

n→−∞
|an|rn1 = lim

n→∞
|an|rn2 =

0 and we have
∥∥∥+∞∑
−∞

anx
n
∥∥∥

∆(0,r1,r2)
= max

(
sup
n≥0
|an|rn1 , sup

n<0
|an|rn2

)
.

Proof. On Theorem B.5.6 we saw that H(∆(0, r1, r2)) is equal to the set of

the Laurent series
+∞∑
−∞

anx
n with lim

n→−∞
|an|rn1 = lim

n→∞
|an|rn2 = 0. Then the

conclusions on the norm come from Theorem B.6.1.
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Theorem B.6.7: Let r ∈ R+. Then H(C(0, r)) is equal to the set of the

Laurent series
+∞∑
−∞

anx
n with lim

|n|∞→∞
|an|rn = 0 and we have ‖

∑
anx

n‖C(0,r) =

sup
n∈Z
|an|rn. Next, the norm ‖ . ‖C(0,r) is multiplicative and equal to C(0,r)ϕ0,r.

Proof. We put Λ = C(0, r). We may apply Theorem B.5.6 by taking r1 = r2 = r
and we obtain all the conclusions but the fact that ‖ . ‖Λ is multiplicative. Let

us show this. Let h ∈ R(Λ). Hence h is of the form
P

Q
, with P,Q ∈ K[x]

and Q(x) has no zero in Λ. Let Θ be a class of Λ. By Lemma A.3.9 we have
|Q(x)| = ϕ0,r(Q) whenever x ∈ Θ and |P (x)| ≤ ϕ0,r(P ) whenever x ∈ Θ.

Hence we see that
∥∥∥P
Q

∥∥∥
Λ

≤ ϕ0,r

(P
Q

)
and therefore ‖h‖Λ = ϕ0,r(h) whenever

h ∈ R(Λ). Consequently, we have ‖f‖Λ = Λϕ0,r(f) whenever f ∈ H(Λ).

Proposition B.6.8: Let r1, r2 ∈ R∗+, with r1 < r2.
i) A(Γ(0, r1, r2)) = A(d(0, r−2 ))⊕A0(K \ d(0, r1)) and
Ab(Γ(0, r1, r2)) = Ab(d(0, r−2 ))⊕A0,b(K \ d(0, r1))

ii) Let f(x) =
+∞∑
−∞

anx
n ∈ A(Γ(0, r1, r2)). Then f ∈ Ab(Γ(0, r1, r2)) if and

only if max
(

sup
n≥0
|an|rn2 , sup

n<0
|an|rn1

)
< +∞. Moreover, if f ∈ Ab(Γ(0, r1, r2))

then
‖f‖Γ(0,r1,r2) = max

(
sup
n≥0
|an|rn2 , sup

n<0
|an|rn1

)
iii) Ab(Γ(0, r1, r2)) is a Banach K-algebra that contains H(Γ(0, r1, r2)).

Proof. i) is obvious. We will show ii). Let f ∈ Ab(Γ(0, r1, r2)) and let f = f1+f2

with f2 ∈ Ab(d(0, r−2 )) and f1 ∈ A0,b(K\d(0, r1)). We put Λ = Γ(0, r1, r2). It is

obviously seen that ‖f‖Λ ≤ max
(
‖f1‖Λ , ‖f2‖Λ

)
≤ max

(
sup
n≥0
|an|rn2 , sup

n<0
|an|rn1

)
.

Now for every s1, s2 such that r1 < s1 < s2 < r2 we know that f belongs to
H(∆(0, s1, s2)) because so do both f1, f2. Then by Theorem B.6.1 we have

‖f‖∆(0,s1,s2) = max
(
‖f2‖d(0,s2), ‖f1‖K\d(0,s−1 )

)
.

Finally ‖f2‖d(0,s2) = sup
n∈N
|an|sn2 while ‖f1‖K\d(0,s−1 ) = sup

n<0
|an|sn1 . Thus we see

that
‖f‖Γ(0,r1,r2) ≥ ‖f‖∆(0,s1,s2) = max

(
sup
n≥0
|an|sn2 , sup

n<0
|an|sn1

)
. This is true for ev-

ery s1, s2 ∈]r1, r2[ hence finally ‖f‖Λ = max
(

sup
n≥0
|an|rn2 , sup

n<0
|an|rn1

)
. All state-

ments in ii) are then proven.
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We will now prove iii). By ii) Ab(Λ) is just the Banach K-algebra

Ab(d(0, r−2 ))⊕A0,b(K \ d(0, r1))

provided with the norm ‖f1 + f2‖Λ = max
(
‖f2‖d(0,r−2 ), ‖f1‖K\d(0,r1)

)
. We saw

that R(d(0, r−2 )) ⊂ Ab(d(0, r−2 )) hence R(d(0, r−2 )) ⊂ Ab(Λ).
In the same way we have R(K \ d(0, r1)) ⊂ Ab(K \ d(0, r1)) and then

Ab(K\d(0, r1)) is obviously included in Ab(Λ). Since R(Λ) = R(d(0, r−2 ))+R(K\
d(0, r1)), R(Λ) is included in Ab(Λ) which is complete for the norm ‖ . ‖Λ , hence
H(Λ) ⊂ Ab(Λ). This finishes proving Proposition B.6.8.

Notation: Given a subset A of K̂, we will denote by Ĥ(Â) the set of the
analytic elements in A, taking K̂ as a ground field.

Now we will apply the Mittag-Leffler Theorem to the analytic extension of
analytic elements.

Theorem B.6.9: For all f ∈ H(D), f has continuation to a unique element
f̂ ∈ Ĥ(D̂). Further, if f ∈ Hb(D) the Mittag-Leffler series of f̂ in D̂ is the
same as this of f in D.

Proof. By Theorem B.2.5 we may easily assume that f belongs to Hb(D). The
Mittag-Leffler series of f on D obviously converges on D̂, to an element of Ĥ(D̂).
This is unique because so is the Mittag-Leffler series of f on D.

Theorem B.6.10: Let E be an infraconnected set such that D ∩ E is infra-
connected and such that every hole of D∩E is either a hole of D or a hole of E.
Let F ∈ H(D), G ∈ H(E), satisfying F (x) = G(x) whenever x ∈ D ∩ E. Then
there exists h ∈ H(D∪E) such that h(x) = F (x) whenever x ∈ D, h(x) = G(x)
whenever x ∈ E, such that for every h-hole V of D ∪ E, hV is either of the
form FS, when V is a F -hole S of D, or of the form GT when V is a G-hole T
of E.

Proof. By Theorem B.2.5 it is eaily seen that we may assume F ∈ Hb(D), G ∈
Hb(E) without loss of generality. Let A = D ∪ E, B = D ∩ E. Let h be the
restriction of F and G to B. Let (Vn)n∈N∗ be the sequence of h-holes that are
holes of D and let (Wn)n∈N∗ be the sequence of h-holes that are holes of E, but
not of D. For each q ∈ N∗, as h(x) is equal to F (x) in B, hWq is an element of

H0(D) of the form
∞∑
m=1

FSqm with Sqm some F -holes of D included in Wq. We put

fq,m = FSqm for every (q,m) ∈ (N∗2). In the same way, for each q ∈ N∗, hVq is an

element of H0(E) of the form
∞∑
m=1

GT qm with T qm the G-holes of E included in Vq.
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We put gq,m = GT qm for every (q,m) ∈ (N∗2). Without loss of generality we may

obviously assume D̃ ⊂ Ẽ, we put h0(x) = G0(x). We notice that A is clearly
included in the set A′ = Ẽ \

(( ⋃
(q,m)∈(N∗2)

Sqm
)⋃( ⋃

(q,m)∈(N∗2)

T qm
))

. Then, it is

easily seen that the series h0(x) +
∑

(m,q)∈N∗2
fq,m +

∑
(m,q)∈N∗2

gq,m converges in

H(A′) because by Corollary B.6.2 we have ‖fq,m‖A′ = ‖FSqm‖D and ‖gq,m‖A′ =
‖GT qm‖E , whereas

lim
q+m→+∞

‖FSqm‖E = lim
q+m→+∞

‖GT qm‖E = 0. Further, by construction, h(x) is

equal to F (x) and G(x) in B and is such that for every h-hole V of D ∪E, hV

is either of the form FS , when V is a F -hole S of D, or of the form GT when V
is a G-hole T of E. This clearly ends the proof of Theorem B.6.10.

Corollary B.6.11: Let E be an infraconnected set suchthat D ⊂ E and such
that each hole of D contains a unique hole of E. Let f ∈ H(E) and let f = f0 +∑+∞
n=1 fTn be the Mittag-Leffler series of f on the infraconnected E. For every

n ∈ N∗, let Vn be the hole of D containing Tn. Then the Mittag-Leffler series of
f on the infraconnected D is of the form f0+

∑+∞
n=1 fVn with fVn = fTn ∀n ∈ N∗.

In the particular case of affinoid subsets, we can be more accurate for The-
orem B.6.10:

Theorem: B.6.12 Let D1, D2 be infraconnected affinoid subsets of K such
that D1 ∩D2 6= ∅ and let fj ∈ H(Dj), j = 1, 2 be such that f1(x) = f2(x) ∀x ∈
D1∩D2. Then the function f defined in D1∪D2 as f(x) = fj(x) ∀x ∈ Dj , j =
1, 2, belongs to H(D1 ∪D2).

Proof. Let D = D1 ∪ D2. Without loss of generality, we can assume that D̃1

contains D̃2 and hence D̃ = D̃1. We can also assume that 0 ∈ D1 ∩ D2. Set
A = D1 \ D2. Then A is included in a finite union of holes of D1. Consider
such a hole T = d(a, r−) of D1 (with r ∈ |K|) such that T ∩ D2 6= ∅. Since
D1 ∩ D2 6= ∅, both D1, D2 have points on C(a, r). Moreover, since both are
affinoid, D1 contains all classes of C(a, r) except maybe finitely many because
T is a hole of D1. On the other hand, D2 also contains all classes of C(a, r)
except maybe finitely many because it has points on C(a, r) and inside d(a, r−).
Consequently, f1(x) and f2(x) coincide in all classes of C(a, r) except maybe in
finitely many: Λ1, ...,Λq.

Let g be the Mittag-Leffler term of f1 relative to T . Let Sk, 1 ≤ k ≤ t be the
holes of D2 included in T and for each k = 1, ..., t, let hk be the Mittag-Leffler
term of f2 relative to the hole Sk. Consider now the restrictions f1 of f1 and f2

of f2 on the set D′ = D1 ∩D2.
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The two functions are equal in D′ and of course have the same Mittag-
Leffler term relative to the hole d(a, r−). Concerning h2, this term is

∑t
k=1 hk.

Consequently, g =
∑t
k=1 hk. Since g and the hk are Laurent series converging

in K \ d(a, r−), g and
∑t
k=1 hk coincide in all this set. Consequently, in the

Mittag-Leffler series of f1, we can replace g by
∑t
k=1 hk. Thus f1 becomes an

element of D1 ∪
(
(d(a, r−) ∩ D2

)
. We can do the same with each hole of D1

containing points of D2 and hence, after finitely many similar change, we obtain
an element f of H(D) such that f(x) = fj(x) ∀x ∈ Dj , j = 1, 2.

Notation: Let E be a K-Banach space. We will denote by E◦∗ the K-Banach
space of continuous linear forms of E provided with its usual norm. The dual
of a Banach space H(D) was thoroughly studied by Yvette Amice [3].

Theorem B.6.13: (Y. Amice) Let r ∈ R+. Given h(t) =
∞∑
n=0

bn
tn
∈

Ab(K \ d(0, r)) there exists a unique φh ∈ H(d(0, r))◦∗ satisfying φh(xq) = bq, (q ∈
N). Moreover, on the space Ab(K \ d(0, r)) provided with the norm ‖ . ‖K\d(0,r),
the mapping h → φh is an isometric isomorphism from Ab(K \ d(0, r)) onto
H(d(0, r))◦∗

Proof. Let F = K \ d(0, r). First let h(t) =
∞∑
n=0

bn
tn
∈ Ab(F ) and let f(x) =

∞∑
n=0

anx
n ∈ H(d(0, r)). Since the sequence

|bn|
rn

is bounded and lim
n→∞

|an|rn = 0,

it is seen that lim
n→∞

anbn = 0 and then the series
∞∑
n=0

anbn is convergent. Hence

we may put φh(f) =
∞∑
n=0

anbn. Thus, we define a linear form φh of H(d(0, r))

that satisfies

|φh(f)| ≤ sup
n∈N
|anbn| ≤

(
sup
n∈N
|an|rn

)(
sup
n∈N

|bn|
rn

)
= ‖f‖d(0,r)‖h‖F .

Therefore, with respect to the norm ‖ . ‖ of H((d(0, r))◦∗, we have ‖φh‖ ≤ ‖h‖F .
Now we check that the equality is satisfied. Indeed let q ∈ N. We have

|φh(xq)|
‖xq‖d(0,r)

=
|φh(xq)|
rq

=
|bq|
rq
≤ sup

f 6=0

|φh(f)|
‖f‖d(0,r)

for all q ≥ 0. Hence we have ‖h‖F = sup
q∈N

|bq|
rq
≤ ‖φh‖. So we obtain the an-

nounced equality. Thus we have defined an isometric homomorphism from
Ab(F ) into H(d(0, r))◦∗.

Now we check that this mapping is surjective. Indeed, let ψ ∈ H(d(0, r))◦∗

and for each n ∈ N, let bn = ψ(xn). Obviously we have ‖ψ‖ ≥ |bn|
rn

for every
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n ∈ N, hence the sequence (|bn|r−n)n∈N is bounded and therefore defines a

function f(t) =
∞∑
n=0

bn
tn
∈ Ab(F ). Thus ψ is equal to φh and therefore the

mapping h→ φh is surjective. This ends the proof of Theorem 8.6.13.

Remark: There obviously exists an isometric homomorphism from H(d(0, 1))
into
H(d(0, 1))◦∗ defined as follows: Let f =

∑+∞
n=0 anx

n ∈ H(d(0, 1−)) and let f(x) =
f( 1

x ) ∈ Ab(K \ d(0, 1)). Then we have an element f∗ ∈ H(d(0, 1))∗ equal to φf .
The question whether this homomorphism is surjective depends on the ground
field K. If K is spherically complete, this homomorphism is not surjective. If K
is not spherically complete, this homomorphism is surjective [89].

Corollary B.6.14: Let r ∈ R+. For each h(t) =
∞∑
n=0

bnt
n ∈ Ab(d(0, r−)),

there exists a unique φh ∈ H(K \ d(0, r−))◦∗ satisfying φh(x−q) = bq (q ∈ N).
Moreover, the space Ab(d(0, r−)) being provided with the norm ‖ . ‖d(0,r−), the
mapping h → φh is an isometric isomorphism from Ab(d(0, r−)) onto H(K \
d(0, r−))◦∗.

Corollary B.6.15: Let r ∈ R+. For each h(t) =
∞∑
n=0

bnt
n ∈ Ab(d(0, r−))

such that h(0) = 0 there exists a unique φh ∈ H0(K \ d(0, r−))◦∗ satisfying
φh(x−q) = bq (q ∈ N∗). Moreover, this mapping h → φh from the subspace of
the h ∈ Ab(d(0, r−)) such that h(0) = 0 into H0(K \ d(0, r−))◦∗, is an isometric
isomorphism.

Now applying Theorem B.6.13 to H(D̃) and Corollary B.6.15 to the spaces
H0(K \ Ti) for each hole Ti of an infraconnected set D, we obtain Corollary
B.6.16.

Corollary B.6.16: (Y. Amice) Let D be closed bounded infraconnected.
Let (Ti)i∈J be the family of its holes and for every i ∈ J , let ai ∈ Ti. Let
M ∈ R∗+. Let h0 ∈ Ab(K \ D̃) and let (hi)i∈J be a family such that for each
i ∈ J , hi belongs to Ab(Ti) and satisfies
(1) hi(ai) = 0
and
(2) ‖hi‖Ti ≤M for all i ∈ J .

There exists a unique ψ ∈ H(D)◦∗ satisfying
ψ(f) = φh0(f) for every f ∈ H(D̃)
ψ(f) = φhi(f) for every f ∈ H0(K \ Ti), whenever i ∈ J .

Further, for every element ψ of H(D)◦∗ there exists a unique h0 ∈ Ab(K\d(0, r))
and a unique family (hi)i∈J satisfying (1) and (2) for some M ∈ R∗+ such that
ψ is defined as above.
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Now we will use the continuous linear forms to define the residue of an
element on a hole.

Theorem B.6.17: Let f ∈ Hb(K \ d(a, r−)), and for each α ∈ d(a, r−), let

f(x) =
∞∑
n=0

bn(α)
(x− α)n

. Then b1(α) does not depend on α in d(a, r−).

Proof. Let E = K \ d(a, r−)). We know that
|b1(α)|
r

≤ ‖f‖E and therefore,

fixing α in d(a, r−), the linear form ψα on Hb(E) defined as ψα(f) = b1(α)
is obviously continuous. We will show that ψα(f) = ψa(f). First, for every

q ∈ N, we put fq(x) =
1

(x− α)q
. We have fq(x) =

1
(x− a)q

( ∞∑
j=0

(α− a
x− a

)j)q.
Therefore, for every q ≥ 2 we have ψa(fq) = 0 and that ψa(f1) = 1. Hence
ψα(fq) = ψa(fq) for every q ∈ N. This shows that ψα(f) = ψa(f) for every
f ∈ Hb(E).

Definition and notation: Let f ∈ Hb(D), let T be a hole of D and let a ∈ T .

Let fT (x) =
∞∑
n=1

bn(a)
(x− a)n

. By Theorem B.6.17, b1(a) actually does not depend

on a in T . We set res(f, T ) = b1(a) and this number res(f, T ) will be called the
residue of f on the hole T .

By Theorem B.6.1, Theorem B.6.18 is obvious:

Theorem B.6.18: Let f ∈ H(D) and let T be a hole of D of diameter r.
Then

|res(f, T )| ≤ r‖fT ‖K\T ≤ r‖f‖D.

We can now characterize K-algebra homomorphisms among the continuous

linear forms.

Theorem B.6.19: Let D be a closed bounded infraconnected, let a ∈ D̃,
let (Ti)i∈J be the family of holes of D and for every i ∈ J , let ai ∈ Ti. Let
M ∈ R∗+. Let h0 ∈ Ab(K \ D̃) and let (hi)i∈J be a family such that for each
i ∈ J , hi belongs to Ab(Ti) and satisfies Conditions (1) and (2):
(1) hi(ai) = 0
and
(2) ‖hi‖Ti ≤M for all i ∈ J .

Let ψ ∈ H(D)∗ satisfy
ψ(f) = φh0(f) for every f ∈ H(D̃)
ψ(f) = φhi(f) for every f ∈ H0(K \ Ti), whenever i ∈ J .
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Then ψ is a homomorphism of K-algebra from H(D) onto K if and only if there
exists α ∈ D such that
(3) h0(t) =

t− a
t− α

,

and for every i ∈ J ,

(4) hi(t) =
t− ai
α− t

.

Moreover, every K-algebra homomorphism from H(D) to K is continuous
and is of this form.

Proof. First we suppose that ψ is a K-algebra homomorphism from H(D)

onto K and we put ψ(x) = a. As h0 is of the form h0(t) =
∞∑
n=0

bn
(t− a)n

,

here for every n ∈ N we have bn = ψ((x − a)n) = (α − a)n and therefore

h0(t) =
∞∑
n=0

(α− a
t− a

)n =
t− a
t− α

. Next, we fix i ∈ J . Then hi is of the form hi(t) =

∞∑
n=1

bi,n(t− ai)n. Hence for every n ∈ N∗, we have bi,n = ψ
( 1

(x− ai)n
)

=
( 1
α− ai

)n
and therefore hi(t) =

∞∑
n=1

( t− ai
α− ai

)n =
t− ai
α− t

.

Conversely, we suppose (3) and (4) are satisfied. Then it is easily checked

that h0(t) =
∞∑
n=0

(α− a
t− a

)n and therefore for every n ∈ N, we have ψ((x−a)n) =

(α− a)n. Hence for every f ∈ H(D̃), we have ψ(f) = f(α).

In the same way, we check that, fixing i ∈ J , we have ψ
( 1

(x− ai)n
)

=
( 1
α− ai

)n,

hence ψ(f) = f(α) for every f ∈ H0(K \ Ti). This clearly finishes proving that
ψ(f) = f(α) for every f ∈ H(D).

Now, let ψ be a K-algebra homomorphism from H(D) to K. By Corollary
B.1.10, ψ is continuous, hence belongs to H(D)∗. Consequently it is of the form
defined by the theorem.
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B.7. Factorization of analytic elements

In C, it is well known that when a (not identically zero) holomorphic func-
tion admits a zero at a point α, this zero has a finite order of multiplicity.
Actually this is a generalization of a property of rational functions. In the non-
Archimedean context, we find again that property among analytic elements and
it is essential [43]. In this chapter, D is just a subset of K.

Lemma B.7.1: Let α ∈
◦
D. Let q ∈ N∗ and let (gn) be a sequence of H(D)

such that the sequence (x−α)qgn converges in H(D). Then the sequence (gn)n∈N
also converges in H(D).

Proof. Without loss of generality, we can assume α = 0. Set fn = xqgn, n ∈ N.

Since 0 lies in
◦
D, there exists a disk d(0, r) ⊂ D. Let E = D \ d(0, r). Clearly,

we have ‖fs− fn‖d(0,r) = ‖xq‖d(0,r)‖gs− gn‖d(0,r) = rq‖gs− gn‖d(0,r) and hence

‖gs − gn‖E ≤
‖fs − fn‖

rq
. Consequently, ‖gs − gn‖D ≤ ‖fs−fn‖

rq and therefore

the sequence (gn) is a Cauchy sequence, which ends the proof.

Theorem B.7.2: Let α belong to D ∩
◦
D and let f ∈ H(D) be such that

f(α) = 0. Then f has factorization in H(D) in the form (x−α)g with g ∈ H(D).
If there is no neighborhood V of α such that f(x) = 0 whenever x ∈ V , then
there exists a unique integer q ∈ N and h ∈ H(D) such that f(x) = (x−α)q h(x)
and h(α) 6= 0 and then α is a zero of order q of f .

Proof. First we will prove the main factorization in the form (x−α)g. We may
obviously assume α = 0. By hypothesis, there exists a disk d(0, s) included in
D. And then, by Theorem B.2.5, there exists a disk d(0, r) included in d(0, s)
such that f has no pole in d(0, r). Consequently, f belongs to H(D ∪ d(0, r)).
So we can assume that 0 is interior to D and that d(0, r) ⊂ D without loss
of generality. By Corollary B.5.11, the restriction of f to d(0, r) is equal to a

power series
∞∑
n=1

anx
n for all x ∈ d(0, r).

Now let tn be a sequence in R(D) such that lim
n→∞

tn = f . Clearly |tn(0)| ≤
‖tn−f‖D because f(0) = 0, so we have ‖tn− tn(0)−fn‖D ≤ ‖tn−f‖D . We put
hn = tn − tn(0) (n ∈ N). The sequence (hn) of R(D) approaches f in H(D)
and satisfies hn(0) = 0 whenever n ∈ N, hence hn has factorization in R(D)
in the form xgn. By Lemma B.7.1 the sequence (gn)n∈N converges in H(D).
Let g be its limit. We will show that lim

q→∞
‖xgq − xg‖D = 0. Let ε > 0 and let

N ∈ N be such that ‖hn − f‖D ≤ ε whenever n ≥ N . We fix q ≥ N . Then
‖hn − hq‖D ≤ ε, hence |xgn(x) − xgq(x)| ≤ ε whenever x ∈ D. So, when n
tends to +∞, we see that |xg(x)− xgq(x)| ≤ ε whenever x in D. Thus we have
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‖xg − xgq‖D ≤ ε, and therefore lim
q→∞

‖xgq − xg‖D = 0. But by hypothesis we

have lim
q→∞

‖f − xgq‖D = 0 and then f = xg.

Now we suppose that f is not identically zero in d(0, r). Then at least
one of the coefficients an of its power series is not zero. By Corollary B.5.11,
f admits 0 as a zero of order q and then q is the smallest integer such that

aq 6= 0. In d(0, r) we have f(x) =
∞∑
n=q

anx
n = xg(x) hence g(x) =

∞∑
n=q

anx
n−q

whenever x ∈ d(0, r). Suppose that f has been proven to be factorized in the

form xsgs with s < q and gs ∈ H(D). Clearly gs(x) =
∞∑
n=q

anx
n−s whenever

x ∈ d(0, r) hence gs(0) = 0 and therefore gs has factorization in the form
xgs+1 with gs+1 ∈ H(D). Thus by induction we obtain f = xqgq(x) with

gq(x) =
∞∑
n=q

anx
n−q and then gq(0) = aq 6= 0. That finishes proving Theorem

B.7.2.

Notation: Let a ∈
◦
D and let f ∈ H(D) be such that f(a) = 0, f(x) 6= 0 in a

disk d(a, r). The order of the zero a of f will be denoted by ωa(f).

Corollary B.7.3: Let D be open, let f ∈ H(D) and let α be a zero of f in D.
Either there exists a disk d(α, r) such that f(x) 6= 0 whenever x ∈ d(α, r) \ {α},
or there exists a disk d(α, r) such that f(x) = 0 whenever x ∈ d(α, r).

Corollary B.7.4: Let f ∈ H(D) have a zero of order q at a point α ∈
◦
D.

Then for every s = 1, ..., q, f factorizes in the form (x−α)sgs, with gs ∈ H(D)
having a zero of order q − s at α.

Corollary B.7.5: Let α ∈
◦
D and let f ∈ H(D). Let

∞∑
n=0

an(x− α)n be its

power series in a disk d(α, r) ⊂ D. Let P (x) =
q∑

n=0

an(x− α)n and let g(x) =

f(x)− P (x). Then g factorizes in the form (x− α)qh(x), with h ∈ H(D).

Definitions: Let A ⊂ D be an open subset of K, let f ∈ H(D) have finitely
many zeros a1, ..., an in A of multiplicity order of q1, ..., qn respectively. The

polynomial
n∏
i=1

(x− ai)qi will be named the polynomial of zeros of f in A.

We are now able to give the following Corollary.

Corollary B.7.6: Let A be a subset of D open in K, let f ∈ H(D) have
finitely many zeros in A and let P be the polynomial of its zeros in A. Then f
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has a factorization in the form f = Pg, with g ∈ H(D) and g(x) 6= 0 whenver
x ∈ A.

Definitions: An element f ∈ H(D) will be said to be semi-invertible (resp.
quasi-invertible ) if it factorizes in the form P (x) g(x), with g invertible in H(D)

and with P a polynomial whose zeros belong to D (resp. to D∩
◦
D ).

An element f ∈ H(D) will be said to be quasi-minorated if for every bounded
sequence (an)n∈N of D such that lim

n→∞
f(an) = 0 we can extract a subsequence

that converges in K.

Remarks: 1) If a semi-invertible element of H(D) has no zero in D, it
is invertible in H(D). 2) Let D belong to Alg. If f1, f2 are semi-invertible

(resp. quasi-invertible) elements of H(D), then f1f2 is also semi-invertible,
(resp. quasi-invertible). However when D does not belong to Alg, counter-
examples show that the product of two semi-invertible (resp. quasi-invertible)
elements is not always semi-invertible (resp. quasi-invertible). Such counter-
examples will be given in a further remark.

Lemma B.7.7: Let D ∈ Alg, let f ∈ H(D) be quasi-invertible (resp. quasi-
minorated) and h ∈ R(D) be a Moebius function. Let D′ = h(D) and let
g = f ◦ h−1. Then g is a quasi-invertible (resp. quasi-minorated) element of
H(D′) .

Proof. Suppose first f to be quasi-invertible in H(D). Let u = h(x). So, f is
of the form P (x)φ(x) with P a polynomial whose zeros are interior to D and
φ is an invertible element of H(D). Then φ ◦ h−1 is invertible in H(D′) and

P ◦h−1 belongs to R(D′) and is of the form
Q(u)

(u− b)s
where b is the unisue pole

of h−1. Consequently g is of the form Q(u)
φ(u)

(u− b)s
. Thus

φ(u)
(u− b)s

is invertible

in H(D′) and hence g is quasi-invertible.
Now suppose f quasi-minorated. Let (an)n∈N be a sequence in D′ such

that lim
n→∞

g(an) = 0 and let bn = h−1(an), (n ∈ N) . Then lim
n→∞

f(bn) = 0

. Since f is quasi-minorated, one can extract a subsequence (bq(m))m∈N that
either converges or satisfies lim

m→∞
|bq(m)| = ∞. But then, the sequence (aq(m))

either converges or satisfies lim
m→∞

|aq(m)| =∞. Hence f is quasi-minorated.

Theorem B.7.8: Let D be bounded, open, closed and let f ∈ H(D). If f is
quasi-minorated then it is quasi-invertible .

Proof. We suppose f is not quasi-invertible and we will prove that f is not
quasi-minorated either.
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First we suppose f to have finitely many zeros. Since D is open, by Corollary
B.7.6, f has factorization in the form P (x) g(x), with P a polynomial whose
zeros are interior to D and g an element of H(D) which has no zero in D, but
is not invertible in H(D) since f is not quasi-invertible. Hence there exists
a bounded sequence (αn)n∈N in D such that lim

n→∞
g(αn) = 0. If f were quasi-

minorated we could extract a convergent subsequence from the sequence (αn)n∈N
whose limit would belong to D and would be a zero of g. Hence f is not quasi-
minorated when it has finitely many zeros in D.

Now we suppose that f has a sequence of (distinct) zeros (αn) in D and that
f is quasi-minorated. Hence we may extract a convergent subsequence of limit
α. Obviously α is another zero of f , hence by Corollary B.7.3 f(x) is equal to
zero inside a disk d(α, r) and then f is not quasi-minorated, a contradiction.
That ends the proof of Theorem B.7.8.

Theorem B.7.9: Let D be closed and bounded. Let f ∈ H(D) be quasi-
minorated and have no zero in D. Then f is invertible in H(D).

Proof. Assume that inf
x∈D
|f(x)| = 0 and let (an)n∈N be a sequence in D such

that lim
n→∞

f(an) = 0. Since D is bounded and since f is quasi-minorated, we

can extract a subsequence (an) which converges in K to a point a ∈ D. Since D
is closed, a belongs toD and satisfies f(a) = 0, which contradicts the hypothesis.
Thus there exists λ > 0 such that |f(x)| ≥ λ whenver x ∈ D and then by Lemma
B.2.3, f is invertible in H(D).
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B.8. Algebras H(D)

We have seen that H(D) is a Banach K-algebra if and only if D is closed and
bounded. But studying analytic elements, analytic functions require to know
algebras of analytic elements which are not necessarily bounded. Thus we have
to examine the class Alg of subsets D of K such that H(D) is a K-algebra with
respect to usual laws [43].

Notation: Throughout the chapter, D denotes a subset of K. Let f ∈ H(D).
According to Theorem B.2.5, f is of the form f∗+f , with f∗ ∈ R0(K\ (D̃ \D))
and f ∈ H(D). We will keep that notation throughout the chapter.

Proposition B.8.1: Let α belong to
◦
D and let f ∈ H(D \ {α}). For every

q ∈ N,
f

(x− α)q
belongs to H(D \ {α}).

Proof. Since α belongs to
◦
D, there exists a disk d(α, s) included in D. On the

other hand, there exists r ∈]0, s[ such that f∗ has no pole in d(α, r)\{α}. Hence
by Theorem B.2.10 f is of the form

g

(x− α)t
with g ∈ H(D∪d(α, r)) and t ∈ N.

Then
f

(x− α)q
=

g

(x− α)q+t
. Thus without loss of generality we may assume

that α belongs to D and that f belongs to H(D ∪ d(α, r)).

By Corollary B.5.11, in d(α, r), f(x) is equal to a power series
∞∑
n=0

an(x−α)n.

Let P (x) =
q∑

n=0

an(x − α)n. By Theorem B.7.2, f(x) − P (x) factorizes in the

form (x − α)qh with h ∈ H(D). Hence we see that
f(x)

(x− α)q
=

P (x)
(x− α)q

+ h.

Since
P

(x− α)q
∈ R(D) it is clear that

f

(x− α)q
belongs to H(D).

Corollary B.8.2: Let f ∈ H(D) and let P be a polynomial whose zeros are

interior to D. Let a1, ..., an be the zeros of P . Then
f

P
belongs to H(D \

{a1, ..., an}).

Proposition B.8.3: If D is bounded and satisfies D\D ⊂
( ◦
D
)

thenD ∈ Alg.

Proof. Let f, g ∈ H(D) and let us show that fg ∈ H(D). By Theorem B.2.5,
we have f = f∗+f , g = g∗+g with f∗, g∗ ∈ R0(K\ (D \D)) and f, g ∈ H(D).
Since D is bounded, by Corollary B.2.7, we have H(D) = Hb(D) and then fg
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obviously belongs to H(D) while f∗g∗ ∈ R0(K \ (D \D)). Finally by Corollary
B.8.2, both f∗g and g∗f belong to H(D) and therefore so does fg.

Definition: Let F be a filter in D. An element f ∈ H(D) will be said to be
vanishing along F if lim

F
f(x) = 0. Further f will be said to be properly vanishing

along F if lim
F
f(x) = 0 and if ‖f‖

A
6= 0 whenever A ∈ F .

Lemma B.8.4 is a polyvalent result which helps us characterize the sets
D ∈ Alg but also find conditions for H(D) not to be a noetherian algebra.

Proposition B.8.4: Let F be a pierced filter on D, let (Tn)n∈N be a sequence

of holes of D that runs F and let E = K \ (
∞⋃
n=0

Tn). Let g1, . . . , gq ∈ Hb(E)

be vanishing along F , with g1 properly vanishing. For every x ∈ E let S(x) =
sup

1≤i≤q
|gi(x)|, let J be the ideal generated by g1, . . . , gq in Hb(E) and let J be

its closure in Hb(D).
There exists a sequence (zn)n∈N in D, thinner than F , such that g1(zn) 6= 0

and an element G ∈ J such that lim
n→∞

|G(zn)|
S(zn)

= +∞.

Proof. Without loss of generality we may assume F to be a decreasing filter or
a Cauchy filter. Indeed if F is an increasing filter of center α and diameter R,

consider a hole of D T (b, ρ) included in d(α,R−), take γ(x) =
1

x− b
and set

D′ = γ(D). Then by Theorem A.2.11 D′ admits a decreasing pierced filter F ′,
image of F by γ. Next, D′ is clearly bounded. By Theorem B.3.7, the mapping
φ from D onto D′ defined by φ(f) = f ◦γ−1 is an isomorphism from H(D′) onto
Hb(D). Hence J is isomorphic to the ideal generated by {gj ◦ γ−1|1 ≤ j ≤ q}
in H(D′). Hence we will assume F to be a decreasing pierced filter or a Cauchy
pierced filter.

Without loss of generality we may now clearly assume D = E. Since the gj
are bounded, we may obviously assume ‖gj‖D ≤ 1 whenever j = 1, . . . , q. Let
R = diam(F) and let (xm)m∈N be a sequence in D thinner than F , such that
g1(xm) 6= 0 whenever m ∈ N, with |xm+2 − xm+1| < |xm+1 − xm|. Since F
is pierced, there exists a subsequence (xmq )q∈N of the sequence (xm) together
with a sequence of holes (Tq)q∈N of D such that

Tq ⊂ d(xmq+1 , dmq ) \ d(xmq+2 , dmq+1).
Hence without loss of generality we may assume that we have a sequence of
holes (Tm)m∈N of D such that Tm ⊂ d(xm+1, dm) \ d(xm+2, dm+1).

We put Dm = d(xm+1, dm) ∩D and An = D2n+1 \D2n+3. For each n, let
un ∈ An be such that |g1(un)| ≥ ‖g1‖An

( n

n+ 1

)
. For each j = 1, . . . , t, let

M j
n = ‖gj‖An and let Mn = max

1≤j≤t
M j
n. Since g1(xm) 6= 0 we have Mn > 0

whenever n ∈ N and since ‖gj‖D ≤ 1 for all j, we have Mn ≤ 1 whenever n ∈ N.
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We will construct a sequence (Un) in Hb(D) satisfying

(1) |Un(x)| ≤ 1
n+ 1

whenever x ∈ D \An.

(2)
√
Mn

(n+ 1
n

)
> ‖g1Un‖An >

√
Mn.

For every n ∈ N, set Tn = d(βn, ρ−n ), un = x2n+2, an = βn+1, bn =
βn+2, cn = β2n+3 and set εn ∈ d(0, 1

n ). Let us fix n ∈ N. It is seen that
|un − an| > |un − bn|, hence there exists qn ∈ N such that

(3) |εn|
∣∣∣un − an
un − bn

∣∣∣qn g(un) >
√
Mn

and of course there exists q′n such that

(4)
(d2n+1

d2n+2

)qn (d2n+3

d2n+2

)q′n
< 1.

We put hn(x) = εn

(x− an
x− bn

)qn (x− cn
x− bn

)q′n
.

Then by (4) we see that:
when |x− cn| > d2n+1 we have |hn(x)| = |εn| < 1

n ,
when |x− cn| ≤ d2n+3 we have |x− an| = |an − cn| = d2n+1 and |x− bn| =

|bn − cn| = d2n+2 hence |hn(x)| ≤ |εn|
(d2n+1

d2n+2

)qn(d2n+3

d2n+2

)q′n
<

1
n

.

But now we notice that x belongs to D \An if and only if it satisfies : either
|x− cn| > d2n+1 or |x− cn| ≤ d2n+3, hence we have proven that |hn(x)| < 1

n
whenever x ∈ D \An. This shows hn satisfies (1).

When x ∈ An i.e. when d2n+3 < |x− cn| < d2n+1, we see that ‖g1hn‖An ≥
|g1(un)hn(un)| hence by (3) we have ‖g1hn‖An ≥

√
Mn. Hence there trivially

exists λn ∈ d(0, 1) such that
(n+ 1

n

)√
Mn > |λng1hn|An >

√
Mn.

Now we put Un = λnhn and we see that Un satisfies (1) and (2). In particular

we have ‖g1Un‖D ≤ max
(√

Mn

(n+ 1
n

)
,
‖g1‖D
n+ 1

)
hence lim

n→∞
‖g1Un‖D = 0. Let

T =
∞∑
n=0

g1Un. By definition T belongs to F because for every t ∈ N, g
t∑

n=0

Un

belongs to F .
By (2) there exists a sequence (zn)n∈N in D satisfying zn ∈ An and

(5)
√
Mn < |g1(zn)U(zn)| < Mn

(n+ 1
n

)
hence we have

(6) |Un(zn)| >
√
Mn

|g1(zn)|
≥ 1√

Mn

because |g1(zn)| ≤Mn.

When j 6= n, zn belongs to D \Aj hence by (1) and (6) we have

|Uj(zn)| < 1
j + 1

<
1√
Mn

< |Un(zn)| whenever j 6= n. Hence we see that |T (zn)| =

|g1(zn)Un(zn)| whenever n ∈ N. But then, by (5) we see that
|T (zn)|
S(zn)

=
|T (zn)|
Mn

>
1√
Mn

.

Consequently, lim
n→∞

|T (zn)|
S(zn)

= +∞ and this finishes the proof of Lemma B.8.4.
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Corollary B.8.5: Let a ∈ D\
◦
D and let F be the pierced filter of the neigh-

borhoods of a. There exists a sequence (zn)n∈N in D of limit a and an element

G ∈ Hb(D) vanishing along F such that lim sup
n→∞

|G(zn)|
|zn − a|

= +∞.

Lemma B.8.6: Let D have a hole T = d(a, r−). Let γ(x) = b+
λ

x− a
with

λ ∈ K and let D′ = γ(D). For every α ∈ D,α belongs to
( ◦
D
)

if and only if

γ(α) belongs to
( ◦
D′
)

. Moreover if D is not bounded then K \D is bounded if

and only if b belongs to
( ◦
D′
)

.

Proof. γ is obviously a bicontinuous bijection from K \ {a} onto K \ {b}. Let

α ∈
( ◦
D
)
. There exists a disk d(α, r) included in D. Since a /∈ d(α, r) , γ is

bounded in d(α, r). Since γ is bicontinuous, γ(d(α, r)) is open in K \ {a}, hence

it is clearly open in K. So γ(α) belongs to γ
( ◦
D
)

. But γ(D) ⊂ γ(D) hence

γ(α) ∈
( ◦
D′
)

. Let ξ = γ−1. Then ξ(u) = a+
λ

u− b
and then what is true for γ

is also true for ξ. Hence conversely, if γ(α) ∈
( ◦
D′
)

we see that α = ξ(γ(α)) ∈
◦
D′

because D = ξ(D′).
We now suppose D unbounded. If K \D is bounded then D contains a set

E of the form {|x| |x−a| ≥ s} with s > |a−b| whose image E′ is d(a,
|λ|
s

)\{a},

hence D′ contains d(a,
|λ|
s

) and so does
◦
D′.

Finally we suppose that K \ D is not bounded. Then γ((K \ {a}) \ D) is
an open set E in K whose closure contains b. Since b ∈ D′ \ D′, it is easily
seen that there is a sequence of holes of D′, (Tn)n∈N, that approaches b, (each

one is obviously included in E) hence b /∈
( ◦
D′
)

. This ends the proof of Lemma
B.8.6.

Corollary B.8.7: Let D have a hole T = d(a, r−), satisfy D \ D ⊂
( ◦
D
)

and be such that K \ D is bounded. Let γ =
1

x− a
and let D′ = γ(D). Then

D′ \D′ ⊂
( ◦
D′
)
.

Lemma B.8.8: The following two conditions are equivalent:
A) D̃ \D is bounded
A’) either D is bounded or K \D is bounded.
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Proof. If D is bounded, A) and A’) are clearly satisfied hence we have nothing
to show. Now we suppose D to be unbounded. Hence D̃ = K and then D̃ \D =
K \D, so D̃ \D is bounded if and only if K \D is bounded. Finally A) and A’)
are equivalent.

Theorem B.8.9: D belongs to Alg if and only if it satisfies the following two
conditions.

A) D̃ \D is bounded

B) D \D ⊂
( ◦
D
)
.

Proof. Suppose first that D satisfies A and B. By Lemma B.8.8 it satisfies A’
and B. Suppose first that D is bounded. Since D satisfies B, by Proposition
B.8.3, D ∈ Alg. Suppose now that K\D is bounded. We may obviously assume
D to have a hole T = d(a, r−) because if D has no hole then by Corollary B.2.8,

we have H(D) = R(D). Let γ =
1

x− a
and let D′ = γ(D). The set D′ is

then bounded and by Corollary B.8.7, D′ satisfies D′ \ D′ ⊂
( ◦
D′
)

and hence
D′ ∈ Alg, therefore by Proposition B.8.3, D belongs to Alg.

We now suppose that B) is not satisfied and will prove that D /∈ Alg.

Indeed let α ∈ (D \ D) \
( ◦
D
)

. By definitions D has a Cauchy pierced fil-

ter F that converges in K to α. Let T = d(a, r−) be a hole of D and let

f =
x− α
x− a

. Then f ∈ Rb(D). By Lemma B.8.4 there exists S ∈ Hb(D) such

that S(α) = 0 together with a sequence (zn)n∈N in D such that lim
n→∞

zn = α,

while lim
n→∞

∣∣∣S(zn)
f(zn)

∣∣∣ = +∞.

Let us assume D ∈ Alg. Then
S(x)
f(x)

∈ H(D) because
x− a
x− α

∈ R(D). Since∣∣∣S(x)
f(x)

∣∣∣ is not bounded in any neighbourhood of α, by Theorem B.2.10 and

Corollary B.2.9 there exists an integer n ≥ 1 such that (x − α)n
S(x)
f(x)

has a

non-zero limit ` at α. But when x ∈ D∩ d(α, |a|), we have
∣∣∣(x−α)n

(S(x)
f(x)

)∣∣∣ =∣∣∣(x − α)n−1(x − a)S(x)
∣∣∣ = |a| |x − α|n−1 |S(x)| hence ` = 0, a contradiction.

Consequently D /∈ Alg.
Suppose now that D satisfies B) but does not satisfy A). Both D and K \D

are unbounded. Since K \D is unbounded, D has a hole T = d(α, r−) and then

by Lemma B.8.6, the inversion γ(x) =
1

x− α
maps D onto a bounded set D′

such that α ∈ (D′ \ D′) ⊂
( ◦
D′
)
. Hence D′ does not belong to Alg and then
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neither does D. This ends the proof of Theorem B.8.9.

Corollary B.8.10: If D is bounded and if D is open, then D belongs to Alg.

Notation: Throughout the book, Conditions A) and B) will be those given
in Theorem B.8.9.

Theorem B.8.11: Let D belong to Alg and have a hole T = d(a, r−). Let

h(x) =
1

x− a
and let D′ = h(D). Then D′ is bounded and belongs to Alg.

Proof. Since D ∈ Alg, by Theorem B.8.10, D satisfies Conditions A) and B)
and hence we can we can check that D′, being obviously bounded, satisfies A)
and B) too. If D is bounded, this is immediate. If D is not bounded, then 0

is the unique point that might not belong to D
′ \ D′ ⊂

( ◦
D
′)
. But if 0 is the

limit of a sequence of holes of D′, then D̃ \D is not bounded, which contradicts
Condition A).

Lemma B.8.12: Let D be open. Then D satisfies Condition B if and only
if D is open.

Proof. Since D is open, D is open if and only if for every α ∈ D\D, α is interior
to D. This is just equivalent to Condition B).

Notation: Let D ∈ Alg and let a ∈ D. We will denote by J (a) the ideal of
the f ∈ H(D) such that f(a) = 0.

Theorem B.8.13: Let D ∈ Alg and let a ∈ D. If a belongs to
◦
D, then

I(a) = (x− a)H(D). Else, J (a) is not of finite type.

Proof. Suppose first a ∈
◦
D. By Theorem B.7.2 it is clearly seen that J (a) =

(x − a)H(D). Now let a /∈
◦
D. Then the filter of the neighbourhoods of a is a

Cauchy pierced filter. We will denote it by F . Suppose that J (a) is of finite
type and let {g1, ..., gq} be a system of generators. For each j = 1, ..., q let Qj
be the polynomial of poles of gj in D \D. Now, let d(b, r−) be a hole of D. By
Corollary B.2.7, for each j = 1, ..., q there exists a rational function of the form

1
(x− b)tj

such that the function hj =
gj

Qj(x− b)tj
belongs to Hb(D).

Of course, at least one of the gj is properly vanishing along F , otherwise all
the elements of J (a) would be equal to 0 inside a neighbourhood of a and then
J (a) couldn’t contain x − a. Consequently, we can assume that g1 is properly
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vanishing and so is h1. For every x ∈ D, we put S(x) = max
1≤j≤q

|hj(x)|. We notice

that J (a) is obviously closed in H(D), hence by Lemma B.8.4, there exists
f ∈ J (a) together with a sequence (zn)n∈N in D, of limit a, such that S(zn) 6= 0

whenever n ∈ N and that lim
n→∞

|f(zn)|
S(zn)

= +∞. This obviously contradicts the

fact that f should be of the form
q∑
j=1

fjgj with the fj in H(D). Thus we

have shown that J (a) is not of finite type and this ends the proof of Theorem
B.8.13.

Corollary B.8.14: Let D ∈ Alg. If D \
◦
D 6= ∅ then H(D) is not noetherian.
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B.9. Derivative of analytic elements

Given an infraconnected set, the main question we consider here is whether
an element f of H(D) has a derivative that belongs to H(D) and when it does,
whether its Mittag-Leffler series is obtained by deriving that of f [58]. Another
question is whether an analytic element on D whose derivative is identically
zero is a constant. Both questions are answered on an infraconnected clopen
set. Throughout this chapter D is a subset of K and is supposed to be open and

infraconnected and we fix R > 0.

Theorem B.9.1: Let f(x) =
+∞∑
n=0

anx
n ∈ H(d(0, R)). Then f has a deriva-

tive f ′(α) at each point α ∈ d(0, R) and f ′(0) = a1.Moreover, the function f ′

also belongs to H(d(0, R)), is equal to
+∞∑
n=0

nanx
n−1 and satisfies

|f ′|(r) ≤ |f |(r)
r
∀r ∈]0, R].

Further, f is indefinitely derivable in d(0, R) and

fk)(x) =
∞∑
n=k

n(n− 1)...(n− k + 1)anxn−k.

Proof. Without loss of generality, we can suppose that R ≤ 1. Obviously,

lim
x→0

f(x)− a0

x
= a1, hence f ′(0) exists and is equal to a1. More generally, take

α ∈ d(0, R) \ {0} and consider

f(x)− f(α)
x− α

=
∑∞
n=1 an(xn − αn)

x− α
=
∞∑
n=1

an(xn−1 + αxn−2 + ...+ αn−1).

Then |(xn−1 + αxn−2 + ...+ αn−1)− nαn−1| ≤ |x− α|
(

max(|α|, |x|)
)n−1. Par-

ticularly, when x is close enough to α, since α 6= 0, we have |x| = |α|, hence

|an||(xn−1 + αxn−2 + ...+ αn−1)− nαn−1| ≤ |an||α|n−1|x− α|.

That proves that
(
an(xn−1 + αxn−2 + ... + αn−1)

)
− nanαn−1 converges to 0

uniformly with respect to n and uniformly with respect to x inside a disk of

center α. Consequently, f ′(α) =
∞∑
n=1

nan(x− α)n ∀α ∈ d(0, R). Then

|f ′|(r) = sup
n∈N

(|nan|rn−1) ≤ sup
n∈N

(|an|rn−1) =
1
r
|f |(r).

The last statement concerning f (k) is then immediate.



Analytic elements and analytic functions 109

More generally, we can derive the following:

Theorem B.9.2: Let f ∈ H(∆(0, R,R′)). Then f (k) also belongs to

H(∆(0, R,R′)) for every k ∈ N∗ and satisfies |f ′|(r) ≤ |f |(r)
r
∀r ∈]R,R′[. More-

over, if the residue characteristic does not divide ν+(f, log r) or ν−(f, log r),

then |f ′|(r) =
|f |(r)
r

.

Proof. f(x) is equal to a Laurent series
+∞∑
−∞

anx
n with lim

n→+∞
|an|R′n = 0 and

lim
n→−∞

|an|Rn = 0, hence obviously lim
n→−∞

|nan|Rn−1 = 0 and lim
n→+∞

|nan|R′n−1 =

0. Consequently, f ′(x) belongs to H(∆(0, R,R′)). Then

|f ′|(r) = sup
n∈Z

(|nan|rn−1) ≤ sup
n∈Z

(|an|rn−1) =
1
r
|f |(r).

Suppose now that the residue characteristic p does not divide ν+(f, log r)
or ν−(f, log r). If ν+(f, log r) = ν−(f, log r) is an integer q, it is obvious that

|f |(r) = |aq|rq and |qaq| = |aq|, hence |f ′|(r) =
|f |(r)
r

, provided q 6= 0. Next,

the property has continuation by continuity to the points µ such that ν+(f, µ) 6=
ν−(f, µ).

Corollary B.9.3: Let R, R′ ∈]0,+∞[ (R < R′) and let f ∈ A(d(0, R−))

(resp. f ∈ A(Γ((0, R,R′). Then |f ′|(r) ≤ |f |(r)
r
∀r ∈]0, R[ (resp. ∀r ∈]R,R′[).

Corollary B.9.4: Suppose K has characteristic zero and f belongs to H(d(0, R)).

Then an =
f (n)(0)
n!

for every n ∈ N and if α is a zero of multiplicity order q

of f , then we have f (j)(α) = 0 for every j < q and f (q)(α) 6= 0.

Corollary B.9.5: Let h ∈ K(x). Then for all r > 0, we have |h′|(r) ≤ |h|(r)
r

.

Theorem B.9.6: Let f(x) =
∞∑
n=0

anx
n ∈ A(d(0, r−)). The power series

∞∑
n=1

nanx
n−1 also belongs to A(d(0, r−)) and is equal to the derivative of f in

d(0, r−). The radius of convergence of f ′ is superior or equal to the one of f .
Further, if K has characteristic 0, the radius of convergence of f ′ is the same
as that of f .
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Proof. By Theorem B.9.1, the first statement is clear. Now we suppose that K
has characteristic zero. If K has residue characteristic zero, then |n| = 1 for all
n ∈ N∗ and therefore the last statement is clear. Now, we assume that K has

residue characteristic p 6= 0. By Lemma A.5.17, we have
1
n
≤ |n| ≤ 1 for every

n ∈ N∗ and therefore lim
n→+∞

n
√
|n| = 1. Consequently,

lim sup
n→+∞

n
√
|an| = lim sup

n→+∞

n−1
√
|nan| and finally f ′ has the same radius of conver-

gence as f .

Corollary B.9.7: Suppose K has characteristic 0. Let f(x) =
∞∑
n=0

anx
n ∈

A(d(0, r−)). The power series
∞∑
n=0

an
n+ 1

xn+1 also belongs to A(d(0, r−)) and has

the same radius of convergence as that of f and is a primitive of f in d(a, r−).

Remark: Unlike in Archimedean analysis, when the characteristic p of K
is not zero, there do exist power series f whose derivatives have a radius of

convergence bigger than that of f . For example, let f(x) =
∞∑
n=0

xp
n

: the radius

of convergence of f is 1 while this of f ′ is +∞.

Theorem B.9.8: Let a ∈ K and let R ∈ R+. Let (fm)m∈N∗ be a se-
quence of H(d(a,R)) converging uniformly to a function f . Then the sequence
(f ′m)m∈N∗ converges uniformly to f ′ in H(d(a,R)) and we have ‖f ′m−f ′‖d(a,R) ≤
‖fm−f‖d(a,R)

R ∀m ∈ N.

Proof. For each m ∈ N, set fm(x) =
∞∑
n=0

an,mx
n and let f(x) =

∞∑
n=0

bnx
n. Then

for each m ∈ N, we have lim
n→+∞

|an,m|Rn = 0, lim
n→+∞

|bn|Rn = 0. Now, the

Banach norm of fm − f tends to zero when m goes to ∞, hence
lim

m→+∞

(
sup
n∈N

(|an,m − bn|Rn)
)

= 0. Consequently, considering the respective deriva-

tives, we have
lim

m→+∞

(
sup
n∈N

(|nan,m − nbn|Rn)
)

= 0

and therefore, by Theorem B.9.1, we have ‖f ′m − f ′‖d(a,R) ≤
‖fm − f‖d(a,R)

R
.

We are done.

Corollary B.9.9: Let a ∈ K and let R ∈ R+. Let (fm)m∈N∗ be a sequence
of H(K \ d(a,R−)) converging uniformly to a function f . Then the sequence
(f ′m)m∈N∗ converges uniformly to f ′ in H(K \ d(a,R−)) and we have
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‖f ′m − f ′‖K\d(a,R−) ≤ R‖fm − f‖K\d(a,R−) ∀m ∈ N.

Theorem B.9.10: Suppose K has characteristic 0. Let a ∈ K and let
R ∈ R+. Let (fm)m∈N∗ be a sequence of A(d(a,R−)) such that the sequence
(f ′m)m∈N∗ converges uniformly to a function h in H(d(a, r)) ∀r ∈]0, R[ and such
that the sequence fm(a) converges in K. Then the sequence (fm)m∈N∗ converges
to a function f ∈ A(d(a,R−)) such that f ′ = h and the convergence is uniform
in d(a, r) for every r ∈]0, R[.

Proof. Without loss of generality, we can assume a = 0. Let us fix r ∈]0, R[
and let us show that the sequence (fm)m∈N∗ converges uniformly to a function

f ∈ H(d(a, r)) such that f ′ = h. For every m ∈ N, let f ′m =
+∞∑
n=0

bn,mx
n and let

h(x) =
+∞∑
n=0

bnx
n. Take s ∈]r,R[. By hypothesis, we have

(1) lim
m→+∞

sup
n∈N
|bn,m − bn|sn = 0.

But since |n| ≥ 1
n

, we have lim
n→+∞

ρn+1

|n+ 1|
= 0 ∀ρ < 1, therefore, by (1) we have

lim
m→+∞

(
sup
n∈N

∣∣bn,m − bn
n+ 1

∣∣rn+1
)

= 0. Consequently, the sequence (fm−fm(0))m∈N

converges uniformly to the function g(x) =
+∞∑
n=0

bn
n+ 1

xn+1. Set lim
m→+∞

fm(0) = b0.

Then the sequence (fm)m∈N converges to g(x)+b0 uniformly in d(0, r) for every
r < R.

Corollary B.9.11: Suppose K has characteristic 0. Let α ∈ K and let
R ∈ R+ and let a ∈ K \ d(α,R). Let (fm)m∈N∗ be a sequence of A(K \ d(α,R))
be such that the sequence (f ′m)m∈N∗ converges uniformly to a function h in
H(K \ d(α, r−)) ∀r > R and that the sequence (fm(a))m∈N converges in K.
Then the sequence (fm)m∈N∗ converges to a function f ∈ A(K \ d(α,R)) such
that f ′ = h and the convergence is uniform in K \ d(α, r−) for every r > R.

Theorem B.9.12: Let r > 0. If K has characteristic 0, then an element
f ∈ H(d(0, r)) has a derivative identically equal to 0 if and only if it is equal to
a constant.

If K has a characteristic p 6= 0, then an element f ∈ H(d(0, r)) has a
derivative identically equal to 0 if and only if there exists g ∈ H(d(0, r)) such
that f(x) = (g(x))p.

Proof. By Theorem B.5.6, each element of H(d(0, r) is a convergent power series
hence the statement about the case when K has characteristic zero is obvious.
Now, suppose that K has a characteristic p 6= 0. If there exists g ∈ H(d(0, r))
such that f(x) = (g(x))p, obviously we have f ′(x) identically equal to 0.
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Now, we suppose f ′(x) identically equal to 0. Hence f(x) is of the form
∞∑
j=0

bjx
jp, with lim

j→∞
|bj |rjp = 0. For each j ∈ N, we can take cj ∈ K such

that (cj)p = bj . Then, it is seen that lim
j→∞

|cj |rj = 0. Now, we can put g(x) =
∞∑
n=0

cnx
n and therefore g belongs to H(d(0, r)). Since K has characteristic p, we

have (g(x))p = f(x). This ends the proof.

Corollary B.9.13: Let r > 0. If K has characteristic 0, then an element
f ∈ H(K \ d(0, r−)) (resp. f ∈ H0(K \ d(0, r−))) has a derivative identically
equal to 0 if and only if it is equal to a constant (resp. to 0).

If K has a characteristic p 6= 0, then an element f ∈ H(K \ d(0, r−)) (resp.
f ∈ H0(K \ d(0, r−))) has a derivative identically equal to 0 if and only if there
exists g ∈ H(K\d(0, r−)) (resp. g ∈ H0(K\d(0, r−))) such that f(x) = (g(x))p.

Corollary B.9.14: Let r > 0. If K has characteristic 0, then a power series
f(x) ∈ A(d(0, r−)) has a derivative identically equal to 0 if and only if it is
equal to a constant.

If K has a characteristic p 6= 0, then a power series f(x) ∈ A(d(0, r−)) has
a derivative identically equal to 0 if and only if there exists g ∈ A(d(0, r−)) such
that f(x) = (g(x))p.

Theorem B.9.15 improves Theorems B.9.1 and B.9.2 concerning derivatives
of order k > 1.

Theorem B.9.15: Let a ∈ K, let R,R′, R′′ ∈ R∗+ with R′ < R′′ and let
f ∈ H(d(0, r)) (resp. let f ∈ H(K \ d(0, R−)), resp. let f ∈ H(Γ(0, R′, R′′))).
Then, for every k ∈ N∗, for every r < R (resp. r > R, resp. r ∈]R′, R′′[), we
have

|f (k)|(r) ≤ |k!| |f |(r)
rk

.

Proof. Let f(x) =
∑∞
n=0 anx

n ∈ H(d(0, R−)). By Theorem B.5.6 we have

|f |(r) = supn∈N |an|rn and |f (k)|(r) = sup
n≥k

∣∣∣ (n!)
((n− k)!)

an

∣∣∣rn−1. But
(n!)

((n− k)!)

is an integer multiple of k! because the combination
(
n
k

)
belongs to N. Conse-

quently,∣∣∣ (n!)
((n− k)!)

∣∣∣ ≤ |k!| and therefore we obtain |f (k)|(r) ≤ sup
n≥k
|k!||an|rn−k. The

proof is similar when f belongs to H(K \ d(0, r)) or to H(Γ(0, r′, r′′)).
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Corollary B.9.16: Let a ∈ K, let r ∈ R∗+ and let f ∈ H(d(a, r)). Then

‖fk‖d(a,r) ≤ |k!|
‖f‖d(a,r)

rk
.

Theorem B.9.17: Let f ∈ Hb(D), let ρ = δ(D, (K \D)). If ρ > 0 then f ′

belongs to Hb(D) and satisfies ‖f ′‖
D
≤ 1
ρ
‖f‖

D
.

Proof. Let (Tn)n∈S be the sequence of the f -holes and let D′ = D̃ \
(⋃
n∈S

Tn

)
.

By Theorem B.6.1 we know that f ∈ Hb(D′) and that

(1) ‖f‖
D′ = ‖f‖

D
.

By Theorem B.9.1, f has a derivative f ′ in D′ and we will first check that the

function f ′ satisfies ‖f ′‖
D′ ≤

1
ρ
‖f‖. Let a ∈ D′. The disk d(a, ρ−) is obviously

included in D because if a point b ∈ d(a, ρ−) belonged to K\D′, since D is closed
there would be a disk d(b, r−) ⊂ K \D′ with r < ρ. Thus, when x ∈ d(a, ρ−),

f(x) is of the form
∞∑
n=0

an(x−a)n and hence the conclusion comes from Theorem

B.9.1.

Corollary B.9.18: Let f ∈ H(D) be such that the set of diameters of the
f -holes has a strictly positive lower bound. Then f ′ ∈ H(D).

Proof. By Theorem B.2.5 we know that f is in the form g + h with h ∈ R(D)
and g ∈ Hb(D). Obviously h′ belongs to R(D) and by Theorem B.9.17, we have
g′ ∈ Hb(D).

Theorem B.9.19: Let D ∈ Alg be closed and open. Let f ∈ Hb(D), let

(Vn)n∈N∗ be the set of f -holes, and let
∞∑
n=0

fn be its Mittag-Leffler series on

D defined as f0 = f0 and for every n ∈ N∗, fn = fVn . The following three
conditions are equivalent

a) f ′ belongs to H(D)

b) the series
∞∑
n=0

f ′n converges in H(D)

c) the series
∞∑
n=0

f ′n converges to f ′ in Hb(D).
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Proof. We will first prove the equivalence between b) and c). For each q ∈ N,

the sum
q∑

n=0

f ′n clearly belongs to Hb(D). Thus we assume that this series
∞∑
n=0

f ′n

converges to an element h ∈ H(D) and we will prove that h = f ′ ∈ Hb(D). Let
α ∈ D. There exists a disk d(α, r) ⊂ D. We will show that h(α) = f ′(α). For
every ψ ∈ H(D), ψ̃ will denote the restriction of ψ to d(α, r). Since the sequence( ñ∑
j=0

fj

)
converges to f̃ , by Theorem B.9.17 the sequence of the derivatives

( ñ∑
j=0

f ′j

)
does converge to f̃ ′, hence it is clearly seen that f ′(α) = h(α) and

therefore f ′ = h. We will check that f ′ is bounded in D. The sequence ‖f ′n‖D
has limit 0, hence is obviously bounded and therefore its sum f ′ is bounded in
D. Thus b) and c) are equivalent.

Since c) trivially implies a), we just have to prove that a) implies b). Thus
we suppose a) to be true and will prove b).

First, we suppose D bounded. For each hole T of D that is either a f -hole
or a f ′-hole, we denote by fT (resp. gT ) the Mittag-Leffler term of f (resp. f ′).
Let S be the set of holes T such that (fT )′ 6= gT and let T be the set of f -holes
such that (fT )′ = gT . If we can show that S = ∅, then b) is clearly proven.

Hence we suppose S 6= ∅. All the gT are equal to zero except maybe a
countable family of them. The series

∑
T∈T

gT and
∑
T∈S

gT obviously converge in

H(D), and then we have f ′ =
∑
T∈T

(fT )′ +
∑
T∈S

gT . Since b) implies c), the

series
∑
T∈T

(fT )′ is clearly equal to the derivative of
∑
T∈T

fT . Let h =
∑
T∈S

fT =

f −
∑
T∈T

fT . Then h′ = f ′ −
∑
T∈T

(fT )′ =
∑
T∈S

gT . Let D be the family of

diameters of the holes T that belong to S and let λ be its lower bound. Suppose
λ > 0. By Theorem B.9.17, the series

∑
T∈S

(fT )′ converges to h′, hence
∑
T∈S

(fT )′

is the Mittag-Leffler series of h′ on D, hence (fT )′ = gT for all T ∈ S and that
contradicts the definition of S. Hence λ = 0.

Now, we will prove that there exists a hole V = d(a, r−) ∈ S with an
annulus Γ(a, r, s) such that the set U of the diameters ρ of the f -holes included
in Γ(a, r, s) has a strictly positive lower bound. Indeed, suppose such a hole V
does not exist. Then we can easily construct a sequence of f -holes (Tn)n∈N∗ of

the form Tn = d(an, r−n ) with (1) rn ≤
1
n

and

(2) |an+1 − an| ≤
2
n
.

For example, asssume the sequence has just been constructed up to the rank q,
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satisfying (1) and (2) for n ≤ q. Since V does not exist, then in Γ(aq, rq,
2
q

) we

can find a f -hole Tq+1 = d(aq+1, r
−
q+1) with rq+1 <

2
q + 1

and then the sequence

is clearly constructed by induction by taking first any f -hole T1 = d(a1, r
−
1 ).

The sequence (Tn)n∈N∗ clearly converges to a point w ∈ D and that contradicts
the hypothesis ”D is closed and open”. Hence we have now proven the existence
of the f -hole V with an annulus Γ(a, r, s) and a number ξ > 0 such that every
f -hole T ⊂ Γ(a, r, s, ) satisfies
(3) diam (T ) ≥ ξ.
Let L be this family of f -holes included in Γ(a, r, s). Let l =

∑
T∈L

fT . By

Theorem B.9.17 the series
∑
T∈L

(fT )′ converges to l′ in H(D). Now let ψ =

h− l− fV . Clearly ψ belongs to H(D) and no hole T (of D) included in d(a, s)
is a ψ-hole. Hence ψ extends to an element of H(D ∪ d(a, s)). In d(a, s), ψ(x)
is equal to a power series φ(x) ∈ H(d(a, s)), hence φ′ ∈ H(d(a, s)). Thus in
D ∩ d(a, s), ψ′(x) is equal to the series φ′(x) and then for every hole T of D
included in d(a, s) the Mittag-Leffler term of ψ associated to T (with respect to
D) is zero.

On the other hand, we have ψ′ = h′− l′− (fV )′ =
∑
T∈S

gT −
∑
T∈L

(fT )′− (fV )′

and then the Mittag-Leffler term of ψ′ associated to V (with respect to D) is
gV − (fV )′ 6= 0. Hence we have a contradiction with ψ ∈ H(d(a, s)). This
finishes proving that b) is true when D is bounded.

Now, we suppose D unbounded. Since D ∈ Alg, there exists a disk d(0, S)
such that all holes of D are included in this disk. Then for every element
h ∈ H(D), its Mittag-Leffler series in H(D) is the same as in H(D′). This is
true for both f, f ′ and therefore b), which is true in H(D′), is obviously true
in H(D). That ends the proof of Theorem B.9.19.

When K has characteristic zero, in most of the cases, we are now able to an-
swer the question ”does f ′ = 0 implies f = ct”. When D is not infraconnected,
it admits an empty annulus Λ = Γ(a, r′, r”) and hence by Proposition B.2.15
we know that there exists w ∈ H(D) such that w(x) = 1 whenever x ∈ I(Λ)
while w(x) = 0 whenever x ∈ E(Λ). Thus the condition ”D is infraconnected”
is certainly necessary to be able to answer ”yes” the question above.

The two Theorems that follow show this condition to be sufficient too, pro-
vided D satisfies a little extra condition like to be closed or to belong to Alg.

By Theorems B.6.1, B.9.19, B.9.8, B.9.9, we can derive the following:

Corollary B.9.20: Let D be an open closed bounded infraconnected subset of
K and let (fn)n∈N be a sequence of H(D) converging uniformly to a function f .
Then the sequence (f ′n)n∈N converges uniformly to f ′.
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Remark: Let D be an open closed infraconnected bounded subset of K, let
α ∈ D and let (fn)n∈N be a sequence of H(D) such that the sequence fn(α) con-
verges in K and that the sequence (f ′n)n∈N converges in H(D) to a function h ∈
H(D). Comparatively to the Archimedean context, we could expect that the
sequence (fn)n∈N converges in H(D) to a function f such that f ′ = h. Actually,

that’s wrong. For example, define the sequence (fn)n∈N as fn(x) =
n∑
k=0

xp
2k

pk
.

Then f ′n(x) = 1 +
n∑
k=1

pkxp
2k−1

and hence, the sequence (f ′n)n∈N converges in

H(d(0, 1)) to the function 1 +
+∞∑
k=1

pkxp
2k−1

, whereas fn(0) = 1 ∀n ∈ N. How-

ever, the function
+∞∑
k=0

xp
2k

pk
is unbounded in d(0, 1) and hence does not belong

to H(d(0, 1)). That remark does not contradict Theorem B.9.10 which only
concerned analytic functions in an ”open” disk d(0, r−).

Theorem B.9.21: K is supposed to have characteristic zero. Let E be an
open subset of K such that E also is open. Then E is infraconnected if and only
if for every f ∈ H(E) such that f ′(x) = 0 whenever x ∈ E, we have f = ct.

Proof. If E is not infraconnected, it admits at least an empty annulus Λ and
then by Proposition B.2.15, the characteristic function u of I(Λ) belongs to
H(E). Hence there do exist non constant elements f ∈ H(E) whose derivative
is identically 0. Now let E be infraconnected and let f ∈ H(E) satisfy f ′(x) = 0
whenever x ∈ E. We just have to prove that f is a constant.

Suppose first that E is bounded. By Theorem B.2.5, f is in the form f∗+ f

with f∗ ∈ R0(K\ (E \E)) and f ∈ H(E), so f∗′(x) +f
′
(x) = 0 whenever x ∈ E

and therefore f∗′ = −f ′. Hence f
′ ∈ R0(K \ (E \ E)) ∩ H(E). Thus f∗ is a

rational function that has no pole in K and then it is a polynomial. Now, as an
element of R0(K \ (E \ E)) it tends to 0 when |x| goes to +∞, hence f∗ = 0
and therefore f∗′ is identically 0. Since f∗ belongs to R0(K \ (E \ E)) clearly,
f∗ = 0, and therefore f belongs to H(E).

Let a ∈ E and let
∑
n∈S

hn be the Mittag-Leffler series of f in E, with h0 = f0

and for each n ∈ S, set hn = fTn , for any f -hole Tn. Since E is open, we
can apply Theorem B.9.19 to E and then we have (hn)′ = 0 for every n ∈ N.
Since E is bounded of diameter r, then by Theorem B.7.8 we know that h0 is a
constant. In the same way, by Corollary B.9.13, for each q ∈ N, we know that
hq = 0. Hence f is a constant.

Finally let E be unbounded. Then for all r > 0 the set Er = E ∩ d(0, r) is
such that Er is open hence f is constant in Er and therefore in all of E.

Remark: In particular, Theorem B.9.21 applies to open closed sets.
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Corollary B.9.22: K is supposed to have characteristic zero. Let E be open
and belong to Alg. Then E is infraconnected if and only if for every f ∈ H(E)
such that f ′(x) = 0 whenever x ∈ E, f is a constant in E.

Proof. Indeed, since E belongs to Alg, it satisfies Condition B) in Theorem

B.8.9: D \D ⊂
( ◦
D
)
. But then, as it is also open, we check that E is open.

We will now study thoroughly the question whether all analytic elements in
a set D have derivative in H(D).

Definition: We call piercing of D the number δ(D,K \D) > 0 and D will be
said to be well pierced if δ(D,K \D) > 0.

Theorem B.9.23: Let D be open. Then D is well pierced if and only if for
every f ∈ H(D), f ′ also belongs to H(D).

Proof. If D is well pierced, by Corollary B.9.18 we know that for every f ∈
H(D), f ′ belongs to H(D). Now let us suppose D has piercing zero and let
(Tn)n∈N be a sequence of holes Tn = d(αn, ρ−n ) such that lim

n→∞
ρn = 0. Let

λn be a sequence in K such that lim
n→∞

|λn|
ρn

= 0 while lim
n→∞

|λn|
ρ2
n

= +∞. It is

seen that the series
∞∑
n=1

λn
x− αn

converges in H(D) to an element f , while the

series
∞∑
n=1

λn
(x− αn)2

does not. On the other hand,
∞∑
n=1

λn
x− αn

obviously is

the Mittag-Leffler series of f . If f ′ belongs to H(D), by Theorem B.9.19 its

Mittag-Leffler series must be
∞∑
n=1

λn
(x− αn)2

. Since this series does not converge

this is just impossible.

Before closing this chapter we will notice the following result that may be
sometimes helpful in differential equations.

Theorem B.9.24: Let D be open. We suppose that both f and f ′ belong to
H(D). For every ε > 0 there exists h ∈ R(D) such that ‖f − h‖

D
≤ ε together

with ‖f ′ − h′‖
D
≤ ε.

Proof. First we suppose that f belongs to Hb(D). We have to introduce a
notation. Let g ∈ Hb(D̃). If D is bounded, D̃ is a disk d(a, r) and g is of the

form
∞∑
m=0

λm(x− a)m. Then for every q ∈ N we put (g)q =
q∑

m=0

λm(x− a)m. If

D is unbounded, then g is a constant λ◦ and we put (g)q = g whenever q ∈ N.
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Let T = d(b, r−) be a hole of D and let l(x) =
∞∑
m=1

µm
(x− b)m

. For each q ∈ N∗,

we put (l)q =
q∑

m=1

µm
(x− b)m

. Now let
∞∑
n=0

fn be the Mittag-Leffler series of f ,

with f0 = f0 and for each n ∈ N∗, fn = fTn , for any f -hole Tn. By Theorem

B.9.19, the Mittag-Leffler series of f ′ is
∞∑
n=0

f ′n and therefore there exists an

integer N(ε) such that

(1) ‖
N(ε)∑
n=0

fn − f‖D ≤ ε

and

(2) ‖
N(ε)∑
n=0

f ′n − f ′‖D ≤ ε.

Obviously we have an integer Q(ε) such that ‖fn−(fn)Q(ε)‖D ≤ ε whenever n =

0, . . . , N(ε) and then by (1) and (2) it is easily seen that ‖
N(ε)∑
n=0

(fn)Q(ε) − f‖D ≤ ε

and

‖
∞∑
n=0

(f ′n)Q(ε)−f ′‖D ≤ ε. By putting h =
N(ε)∑
n=0

(fn)Q(ε) we obtain the h ∈ R(D)

we want.
Now we can consider the general case. By Corollary B.2.7, f is of the form

l + ψ, with l ∈ Hb(D) and ψ ∈ R(D). Hence f ′ = l′ + ψ′. Since f ′ belongs to
H(D), so does ψ′. Hence by Theorem B.9.21, ψ′ belongs to Hb(D). We have
just proven that there exists t ∈ Hb(D) such that ‖l−t‖

D
≤ ε and ‖l′−t′‖

D
≤ ε.

Hence we just have to consider h = t+ ψ and this ends the proof.

Theorem B.9.25: Let D be open. Suppose 0 ∈ D. Let f ∈ H(D) and let

r ∈ [δ(0, D),diam(D)]. Then |f ′|(r) ≤ |f |(r)
r

.

Proof. Suppose first that |f |(r) 6= 0. Let ε > 0 and let η > 0 be such that
|f |+ η

r
+η <

|f |
r

+ ε. Now, by Theorem B.9.24 we can find h ∈ R(D) such that

|h′|(r) ≤ |f ′|+η and |h|(r) ≤ |f |+η. By Corollary B.9.3 we have |h′|(r) ≤ |h|(r)r ,
hence

|f ′|(r) ≤ |h′|(r) + η ≤ |h|(r)
r

+ η ≤ |f |(r) + η

r
+ η ≤ |f |(r)

r
+ ε.

Now suppose |f |(r) = 0. then by Theorem B.9.24 we can find h ∈ R(D) such

that max(|h′|(r), |h|(r)) ≤ ε hence we have again |f ′| ≤ |f |(r)
r

. This is true for
all ε > 0 and hence the claim is proven.
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In the case when K has a characteristic p 6= 0, we have Theorem B.9.26.
Theorem B.9.26: Let K have characteristic p 6= 0, let D be closed and let
f ∈ Hb(D). Then f ′(x) is identically 0 if and only if there exists g ∈ Hb(D)
such that f = gp.

Proof. Indeed, if there exists g ∈ Hb(D) such that f = gp, of course we have
f ′ = 0. Now, suppose that f ′(x) is identically 0. Let a ∈ D and let

∑
n∈S

hn be

the Mittag-Leffler series of f in D, with h0 = f0 and for each n ∈ S, hn = fTn ,
for any f -hole Tn. By Theorem B.9.19 we have (hn)′ = 0 for every n ∈ N.

If D is unbounded, h0 is a constant and then we can find g0 ∈ K such that
(g0)p = h0. If D is bounded of diameter r, then by Corollary 18.13 we can
find g0 ∈ H(d(a, r)) such that (g0)p = h0. In the same way, for each q ∈ N, by
Corollary B.9.13 we can find gq ∈ H0(K\Tq) such that (gq)p = hq and then, it is
seen that lim

n→∞
‖gn‖D = 0 because for each n ∈ N∗, we have (‖gn‖D )p = ‖hn‖D .

So, the series
( ∞∑
n=0

gn
)

converges in Hb(D) to an element g which clearly satisfies

gp = f . This ends the proof of Theorem B.9.26.
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B.10. Properties of the function Ψ for analytic elements

Throughout this chapter D is infraconnected.

The function Ψ(f, µ) was defined for rational functions in Chapter A.3. Here
we will generalize that function to anlaytic elements. Its interest is to transform
the multiplicative property of the norm | . | into an additive property. Overall,
Ψ is piecewise affine. Long ago, such a function was first defined in classical
works such as the valuation function of an analyitc element [2], [58], [72] de-
noted by v(f, µ). However the function v(f, µ) has the inconvenient of being
contravariant: µ = − log(|x|) and v(f,− log(|x|)) = − log(|f |(r)). Here we will
change both senses of variation: Ψ(f, µ) = −v(f,−µ).

Among applications, we can show that a set E is infraconnected if and only if
for all f ∈ H(E), f(E) is infraconnected and that an analytic element converges
along a monotonous filter F if and only if f ′ is vanishing along F .

Notations: For every a ∈ D̃, we put λ(a) = log(δ(a,D)) if δ(a,D) > 0 and
λ(a) = −∞ if δ(a,D) = 0. We denote by S the diameter of D, with S = +∞ if
D is not bounded.

Let a ∈ D̃ and let F be a circular filter of center a and diameter r ∈
[δ(a,D), S] ∩ R. By Proposition A.2.17, F is secant with D and then defines
an element

D
ϕF of Mult(H(D),UD).

For every f ∈ H(D) such that
D
ϕF (f) 6= 0 we put Ψa(f, log r) = log

(
D
ϕF (f)

)
.

Next, for an f ∈ H(D) such that
D
ϕF (f) = 0 we put Ψa(f, log r) = −∞.

When a = 0 for simplicity we just put Ψ(f, µ) = Ψ0(f, µ). Then by defini-
tion, we have Ψ(f, log r) = log(|f |(r)).

In the same way, consider an annulus Γ(0, r, t) and f ∈ A(Γ(0, r, t)). Then
for any s ∈]r, t[, f belongs to H(C(0, s), so we can put consider Ψ(f, log(s)) =
log(|f |(s)). If we consider f ∈ A(a, r−), so much the more, we can consider
Ψa(f, `) for each ` < log(r)[.

Remark: Let f(x) =
+∞∑
−∞

anx
n ∈ H(C(0, r)) for some r > 0. By Theorem

B.6.7 we have Ψ(f, log r) = log
(
C(0,r)ϕ0,r(f)

)
= log ‖f‖C(0,r) = sup

n∈Z
Ψ(an) +

n log r.

Proposition B.10.1: Let a ∈ D̃, let µ ∈ [λ(a), log(S)] ∩ R and let f, g ∈
H(D). Then Ψa(f + g, µ) ≤ max(Ψa(f, µ),Ψa(g, µ)) and when Ψa(f, µ) >
Ψa(g, µ), then Ψa(f + g, µ) = Ψa(f, µ). Moreover, Ψa(fg, µ) = Ψa(f, µ) +
Ψa(g, µ).

Let r, t ∈]0, +∞[ be such that r ≤ t. Let f ∈ H(D) be such that Ψa(f, µ)
is bounded in [log(r), log(t)]. Then Ψa(f, µ) is continuous and piecewise affine in
[log(r), log(t)]. Further, there exists h ∈ R(D) such that Ψa(f, µ) = Ψa(h, µ) ∀µ ∈
[log(r), log(t)].
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Inside D ∩ Γ(a, r, t), the relation Ψ(f(x)) = Ψa(f,Ψ(x − a)) holds in all
classes of all circles C(a, s), except maybe in finitely many classes of finitely
many circles C(a, s).

Moreover, if Γ(a, r, t) ⊂ D, the function Ψa(f, µ) is convex in [log r, log t].

Proof. Without loss of generality, we can assume a = 0. The first statements
concerning operations and inequalities come directly from those of multiplicative
semi-norms Dϕ. Now, suppose that Ψ(f, µ) is bounded in [log(r), log(t)], hence
there exists ε > 0 such that Ψ(f, µ) > log ε ∀µ ∈ [log r, log t].

L et h ∈ R(D) satisfy ‖f − h‖D < ε. Particularly, for every circular filter
F secant with D, we have DϕF (f − h) < ε and particularly Dϕa,ρ(f − h) <
ε ∀ρ ∈ [r, t] i.e. Ψ(f − h, µ) < log(ε) < Ψ(f, µ) ∀µ ∈ [log r, log t]. Consequently,
Ψ(f, µ) = Ψ(h, µ) ∀µ ∈ [log r, log t]. Now, by Corollary A.3.18, the function
Ψ(h, µ) is continuous, piecewise in [log r, log t] and so is Ψ(f, µ). Moreover, if
Γ(a, r, t) ⊂ D, the function Ψ(h, µ) is convex in [log r, log t], hence so is Ψ(f, µ).

By Lemma A.3.13 the relation Ψ(h(x)) = Ψa(h,Ψ(x−a)) holds in all classes
of all circles C(a, s), except maybe in finitely many classes of finitely many circles
C(a, s). Therefore the same relation holds for f .

Proposition B.10.2: Let a ∈ D and let f ∈ H(D) satisfy f(a) 6= 0. There
exists µ◦ ∈ R such that Ψa(f, µ) = Ψ(f(a)) whenever µ ≤ µ◦. Let r ∈ R∗+, let
Λ = C(0, r) and let f and g ∈ H(Λ) satisfy ‖f − g‖Λ < ‖f‖Λ . Then we have
ν+(f, log r) = ν+(g, log r), ν−(f, log r) = ν−(g, log r).

Proof. Indeed let us take r > 0 such that |f(x) − f(a)| < |f(a)| whenever
x ∈ d(a, r) ∩ D hence |f(x)| = |f(a)| whenever x ∈ d(a, r) ∩ D and therefore
Ψa(f, µ) = Ψ(f(a)) whenever µ ≤ log(r).

Let f(x) =
+∞∑
−∞

anx
n and let g(x) =

+∞∑
−∞

bnx
n. From the hypothesis we see

that ‖f‖Λ = ‖g‖Λ . By Corollary B.5.9 we have
(1) sup

n∈Z
|an|rn = ‖f‖Λ = sup

n∈Z
|bn|rn

and ‖f − g‖Λ = sup
n∈Z
|an − bn|rn.

Let s = ν−(f, log r) and let t = ν+(f, log r). We see that
|as − bs|rs ≤ ‖f − g‖Λ < ‖f‖Λ = |as|rs hence
(2) |bs| = |as|.
In the same way we have
(3) |at| = |bt|.
Now for every n < s and for every n > t we have |an|rn < |as|rs = ‖f‖Λ
hence |bn|rn < ‖f‖Λ . Finally by (1), (2), (3) we see that ν−(g, log r) =
s, ν+(g, log r) = t.

By Propositions B.10.1, B.10.2 and A.3.19 we can derive Corollary B.10.3
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Corollary B.10.3: Let f(x) ∈ H(Γ(0, r1, r2)) (resp. f(x) ∈ H(∆(0, r1, r2)))

(with 0 < r1 < r2) and let
+∞∑
−∞

anx
n be its Laurent series. The function

µ→ Ψ(f, µ) is bounded in ] log r1, log r2[ (resp. in [log(r1), log(r2)]) and equal to
sup
n∈Z

(Ψ(an)+nµ). Next, we have Ψ(f(x)) ≤ Ψ(f,Ψ(x)) whenever x ∈ Γ(0, r1, r2)

(resp. whenever x ∈ ∆(0, r1, r2)) and the equality holds in all of Γ(0, r1, r2)
(resp. un all of ∆(0, r1, r2)) except in finitely many classes of finitely many
circles C(0, r) (r1 < r < r2) (resp. r1 ≤ r <≤ r2). The right side derivative
(resp. the left side derivative) of the function Ψ(f, .) at µ is equal to ν+(f, µ)
(resp. to ν−(f, µ)). Moreover, if the function in µ Ψ(f, µ) is not derivable at
µ, then µ lies in Ψ(K).

Further, the function Ψ(f, .) is convex in ] log r1, log r2[ (resp. in [log r1, log r2]).
Next, given another g ∈ H(Γ(0, r1, r2)), (resp. g ∈ H(∆(0, r1, r2))) the func-
tions ν+ and ν− satisfy ν+(fg, µ) = ν+(f, µ)+ν+(g, µ), ν−(fg, µ) = ν−(f, µ)+
ν−(g, µ). Further, the function ν+(f, .) is continuous on the right and the func-
tion ν−(f, .) is continuous on the left at each point µ. They are continuous at
µ if and only if they are equal.

Proposition B.10.4: Let a ∈ D̃ and let f ∈ H(D). If f(a) 6= 0, there exists
s > 0 such that Ψ(f, µ) = Ψ(f(a)) ∀µ ≤ s. Let b ∈ D be such that |a − b| = r
and d(b, r−) ⊂ D, Then we have Ψb(f, µ) = Ψa(f, µ) ∀µ ≤ Ψ(b− a).

Proof. Since f(a) 6= 0, the first statement is immediate since |f(x)| is a constant
inside a disk of center a. Next, by Lemma A.3.14 the relation Ψa(f, µ) =
Ψb(f, µ) when Ψ(a − b) ≤ µ is true for every f ∈ R(D), hence by (2), is
obviously generalized to every f ∈ H(D).

Proposition B.10.5: Let µ ∈ R and let f(x) =
+∞∑
−∞

anx
n ∈ H(C(0, θµ)).

Then Ψ(f, µ) is equal to sup
n∈Z

Ψ(an) + nµ and we have Ψ(f(x)) ≤ Ψ(f, µ) for all

x ∈ C(0, θµ). Moreover, the equality holds in every class except in finitely many
classes where f admits zeros. Further, if ν+(f, µ) = ν−(f, µ), then Ψ(f(x)) =
Ψ(f, µ) whenever x ∈ C(0, θµ).

If h ∈ H(C(0, θµ)) satisfies Ψ(f − h, µ) < Ψ(f, µ), then ν+(f, µ) = ν+(h, µ)
and ν−(f, µ) = ν−(h, µ).

Proof. Let Λ = C(0, θµ), let s = ν−(f, µ) and let t = ν+(f, µ). By the Remark
above Ψ(f, µ) is obviously equal to sup

n∈Z
(Ψ(an) + nµ). Let x ∈ C(0, θµ). The

inequality Ψ(f(x)) ≤ Ψ(f, µ) is true because Ψ(f, µ) = log ‖f‖Λ ≥ Ψ(f(x)).
Finally by Proposition B.10.1 the equality holds in all the classes except in
finitely many. If ν+(f, µ) = ν−(f, µ) then Ψ(asxs) = Ψ(as) + sµ > Ψ(anxn)
whenever n 6= s hence Ψ(f(x)) = Ψ(f, µ).
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Now, let h ∈ H(Λ) satisfy Ψ(f − h, µ) < Ψ(f, µ) and let h(x) =
+∞∑
−∞

bnx
n.

We have Ψ(an − bn) + nµ < Ψ(as) + sµ whenever n ∈ Z hence Ψ(bs) = Ψ(as),
Ψ(bt) = Ψ(at), Ψ(bn) + nµ < Ψ(as) + sµ whenever n < s and n > t and
Ψ(bn) + nµ ≤ Ψ(as) + sµ whenever n ∈ [s, t], hence finally ν+(h, µ) = ν+(f, µ)
and ν−(h, µ) = ν−(f, µ).

Corollary B.10.6: Let f(x) =
+∞∑
−∞

anx
n ∈ A(Γ(0, r1, r2)) (with 0 < r1 <

r2). The function µ→ Ψ(f, µ) defined in ] log r1, log r2[ is equal to sup
n∈Z

(Ψ(an) +

nµ). Next, we have Ψ(f(x)) ≤ Ψ(f,Ψ(x)) whenever x ∈ Γ(0, r1, r2) and the
equality holds in all of Γ(0, r1, r2) except in finitely many classes of each circle
C(0, r) (r1 < r < r2). The right side derivative (resp. the left side derivative)
of the function Ψ(f, .) at µ is equal to ν+(f, µ) ( resp. to ν−(f, µ)). Moreover,
if the function in µ Ψ(f, µ) is not derivable at µ, then µ lies in Ψ(K).

Further, the function Ψ(f, .) is convex in ] log r1, log r2[. Next, given another
g ∈ A(Γ(0, r1, r2)) the functions ν+ and ν− satisfy

ν+(fg, µ) = ν+(f, µ) + ν+(g, µ), ν−(fg, µ) = ν−(f, µ) + ν−(g, µ).

Moreover, the function ν+(f, .) is continuous on the right and the function
ν−(f, .) is continuous on the left at each point µ. They are continuous at µ
if and only if they are equal.

Proof. All statements hold in all annuli Γ(0, r′, r′′) with r1 < r′ < r′′ < r2

because the restriction of f to Γ(0, r′, r′′) belongs to H(Γ(0, r′, r′′)).

Proposition B.10.7: Let µ ∈ R and let f, g ∈ H(C(0, θµ)). Then
ν+(fg, µ) = ν+(f, µ) + ν+(g, µ) and ν−(fg, µ) = ν−(f, µ) + ν−(g, µ).

Proof. By Proposition B.10.2 the relations are obvious when f and g ∈ R(C(0, θµ))
because there is an annulus Γ(0, r1, r2) ⊃ C(0, θµ) such that f, g ∈ R(Γ(0, r1, r2)).
Now by Proposition B.10.6, we may extend them to H(C(0, θµ)) by taking h and
` ∈ R(C(0, θµ)) such that Ψ(f − h, µ) < Ψ(f, µ) and Ψ(g − `, µ) < Ψ(g, µ).

Proposition B.10.8: Let r1, r2 ∈ R and let f, g ∈ A(Γ(0, r1, r2)) having no
zero in Γ(0, r1, r2) and satisfying ν(f, µ) 6= ν(g, µ), ∀µ ∈] log r1, log r2[. Then
both ν+(f + g, µ) and ν−(f + g, µ) are equal either to ν(f, µ) or to ν(g, µ).

Proof. Let µj = log(rj), j = 1, 2. Since both f, g have no zero in Γ(0, r1, r2),
ν(f, µ) is a constant integer s and ν(g, µ) is a constant integer t 6= s. Con-
sequently, Ψ(f, µ) is of the form a + sµ, Ψ(g, µ) is of the form b + tµ, there-
fore the two functions in µ can coincide at most at one point in [µ1, µ2]. So,
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by Proposition B.10.1, we have Ψ(f + g, µ) = max(Ψ(f, µ),Ψ(g, µ)) for all
µ ∈ [log(r1), log(r2)] except maybe at all point. But then, by continuity, the
equality holds in all [log(r1), log(r2)].

Let us fix µ0 ∈]µ1, µ2[. Suppose Ψ(f + g, µ) = Ψ(f, µ) in a neighborood
]µ1, µ2[ of µ0. Then of course, ν(f + g, µ0) = ν(f, µ0). Suppose now that Ψ(f +
g, µ) = Ψ(f, µ) in a left neighborhood ]µ1, µ0] of µ0 and Ψ(f+g, µ) = Ψ(g, µ) in
a right neighborhood [µ0, µ2[ of µ0, which implies Ψ(f, µ) > Ψ(g, µ) ∀µ ∈]µ1, µ0[
and Ψ(f, µ) < Ψ(g, µ) ∀µ ∈]µ0, µ2[. Then we have ν(f + g, µ) = ν(f, µ)∀µ ∈
]µ1, µ0[ and ν(f + g, µ) = ν(g, µ)∀µ ∈]µ0, µ2[. Consequently, since ν+ is con-
tinuous on the left and ν− is continuous on the right, we can check that both
ν+(f + g, µ0) and ν−(f + g, µ0) are equal either to ν(fµ0) or to ν(g, µ0).

Theorem B.10.9: Let f ∈ A(K \ d(0, R)). There exists q ∈ N such that

lim
r→+∞

|f |(r)rq = +∞.

Proof. Let s ∈]R,+∞[ be such that ν+(f, log s) = ν−(f, log s) and let τ =
ν+(f, log s). Thus Ψ(f, µ) has a derivative at log s equal to τ . Consequently,
since by Proposition B.10.1 Ψ(f, µ) is convex, we have Ψ(f, µ) − Ψ(f, log s) ≥
τ(µ− log s). Therefore

lim
µ→+∞

[Ψ(f, µ) + (1− τ)µ] = +∞

i.e. lim
r→+∞

|f |(r)r(1−τ) = +∞. Finally we can take q = max(0, 1− τ).
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B.11. Vanishing along a monotonous filter

Throughout this chapter, the set D is supposed to be infraconnected.
By Chapter A.7 we know that there exists a spherically complete alge-

braically closed extension K̂ of K whose residue class field is not countable
and whose valuation group is equal to R. Given a subset D of K, we will denote
by D̂ the subset

D ∪ {
⋃
a∈
◦
D

d̂(a, δ(a, (K \D))}.

The question whether an analytic element can tend to zero along a monotonous
filter is known to be one of the main problems which happen with p-adic analytic
functions [49], [50], [58]. Here we will not describe T -filters [49]. However, we
will describe sufficient conditions to prevent analytic elements to vanish along a
monotonous filter, which is sufficient to study analytic and meromorphic func-
tions inside disks or annuli.

We will apply results to characteristic functions and to the image of an
infraconnected set.

Definitions: Let f ∈ H(D) and let F be a monotonous filter on D. When
F is decreasing (resp. increasing) of center a and diameter S, f will be said to
be strictly vanishing along F if lim

F
f(x) = 0 and if there exists S′ > S (resp.

S′ < S) such that for every r ∈]S, S′] (resp. r ∈ [S′, S[) we have
D
ϕa,r(f) 6= 0.

When F is decreasing with no center in K, it admits a canonical basis
(Dn)n∈N with Dn = d(an, rn)∩D and then f will be said to be strictly vanishing
along F if lim

F
f(x) = 0 and if there exists S′ > S such that

D
ϕan+1,r(f) 6= 0

whenever r ∈ [rn, S′], whenever n ∈ N. Actually F admits a center α in K̂ and
then the definition given for decreasing filters with a center in K also applies
and is obviously equivalent.

Lemma B.11.1 just translates these definitions by using the function Ψ.

Lemma B.11.1: Let f ∈ H(D) and let F be a decreasing (resp. an in-
creasing) filter of center a and diameter S on D. Then f is strictly van-
ishing along F if and only if there exists S′ > S (resp. S′ ∈]0, S[) such
that Ψa(f, logS) = −∞,Ψa(f, µ) > −∞ whenever µ ∈] logS, logS′] (resp.
[logS′, logS[).

Let G be a decreasing filter with no center, of diameter S and canonical
basis (Dn)n∈N, with Dn = d(an, rn) ∩ D. Then f is strictly vanishing along
G if and only if there exists S′ > S such that lim

n→∞
Ψan(f, log rn) = −∞ and

Ψan(f, log r) > −∞ for rn ≤ r < S′, ∀n ∈ N.

Lemma B.11.2: Let f ∈ H(D) and let F be a monotonous filter such that
f is strictly vanishing along F . Then f is properly vanishing along F .
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Proof. Let S = diam(F). Let (Dn) be a canonical basis of F and suppose
that f is not properly vanishing along F . Since f is vanishing along F , there
exists q ∈ N such that f(x) = 0 whenever x ∈ Dq. But then, we can check
that f does not satisfy the definition of an analytic element strictly vanishing
along F , because for every multiplicative semi-norm

D
ϕa,r whose circular filter

is secant to Dq, we have
D
ϕa,r(f) = 0. In particular, this applies to

D
ϕa,r, for

rq < r < S, (resp. S < r < rq) when F is increasing, (resp. decreasing) of
center a, and Dq = D∩Γ(a, rq, S), (resp. Dq = D∩Γ(a, S, rq)) and this applies
to ϕaq+1,rq , when F has no center, whereas Dq = D ∩ d(aq+1, rq).

Proposition B.11.3: Let a ∈ D̃ and b ∈ D and let f ∈ H(D) satisfy f(b) 6= 0
and

D
ϕa,r(f) = 0 for some r ∈]0, |a− b|]. If

D
ϕa,|a−b|(f) = 0, then f is strictly

vanishing along an increasing filter of center b and diameter S ≤ |a − b|. If
D
ϕa,|a−b|(f) 6= 0 then f is strictly vanishing along a decreasing filter of center

a and diameter S ∈ [r, |a− b| [.

Proof. First suppose
D
ϕa,|a−b|(f) = 0, hence we have

Ψb(f, log |a− b|) = Ψa(f, log |a− b|) = −∞.

Since f(b) 6= 0, by Proposition B.10.4 we know that lim
µ→−∞

Ψb(f, µ) = Ψ(f(b))

hence there exists a unique γ ≤ log |a − b| such that Ψb(f, γ) = −∞ and
Ψb(f, µ) > −∞ whenever µ ∈]γ, log |a − b|[. Therefore f is strictly vanishing
along the increasing filter of center b and diameter S = θγ .

Now suppose
D
ϕa,|a−b|(f) 6= 0. Since

D
ϕa,r(f) = 0 we have Ψa(f, log r) =

−∞ and Ψa(f, log |a−b|) > −∞ hence there exists a unique γ ∈ [log r, log |a−b|[
such that Ψa(f, γ) = −∞ and Ψa(f, µ) > −∞ whenever µ ∈]γ, log |a−b|], so f is
strictly vanishing along the decreasing filter of center a and diameter S = θγ .

Proposition B.11.4: Let a ∈ D̃ and b ∈ D and let f ∈ H(D) satisfy
f(b) 6= 0 and

D
ϕa,r(f) = 0 for some r ∈ R+. Then f is strictly vanishing along

a monotonous filter with a center.

Proof. If r ≤ |a−b| the statement comes directly from Proposition B.11.3. If r >
|a−b|, then we have Ψb(f, log r) = Ψa(f, log r) = −∞ whereas lim

µ→−∞
Ψb(f, µ) =

Ψ(f(b)), hence there exists a unique γ ≤ log r such that Ψb(f, γ) = −∞ and
Ψb(f, µ) > −∞ whenever µ < γ. Thus f is strictly vanishing along the increasing
filter of center b and diameter S = θγ .

Proposition B.11.5: Let F be a monotonous filter on D and let f ∈ H(D)
be strictly vanishing along F . Then F is pierced.
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Proof. Suppose that F is increasing (resp. decreasing) of center a and diameter
S and is not pierced. There exists an annulus Γ(a, S, S′) (resp. Γ(a, S′, S))
included in D such that Ψa(f, logS) = −∞ and Ψa(f, µ) > −∞ whenever
µ ∈ [logS′, logS[ (resp. µ ∈] logS, logS′]). Hence by Corollary B.10.3 we know
that Ψa(f, µ) is bounded in ] logS′, logS[ (resp. ] logS, logS′[), a contradiction
to the hypothesis.

When F has no center, we consider a center a of F in K̂ and we consider f
as an element of Ĥ(D̂). Then the disks d̂(an, rn) contain no hole of D̂ when n

is big enough. Therefore, the restriction of f̂ to d(an, rn) is a power series and
therefore we have the same conclusion.

Corollary B.11.6: Let a, b ∈ D and let f ∈ H(D) satisfy f(b) 6= 0 and
D
ϕa,r(f) = 0 for some r ∈ R+. Then f is strictly vanishing along a pierced

monotonous filter with a center.

Proposition B.11.7: Let a ∈ D̃. Let r, r′ ∈] log(δ(a,D)), log(diam(D))[,
with r < r′. Let f ∈ H(D) be such that the function Ψa(f, µ) is neither bounded
nor identically equal to −∞ in [log r, log r′]. Then there exists a monotonous
filter F of center a and diameter s ∈ [r, r′] such that f is strictly vanishing along
F .

Proof. For convenience we assume a = 0. By compacity of [log r, log r′] there
exists µ ∈ [log r, log r′] such that Ψ(f, µ) = −∞. Since the function Ψ(f, µ)
is not identically −∞ in [log r, log r′], by continuity, either there exists ξ, ζ ∈
[log r, log r′] with ξ < ζ such that Ψ(f, ξ) = −∞, Ψ(f, µ) > −∞ whenever
µ ∈]ξ, ζ] and then f is strictly vanishing along a decreasing filter of center 0 and
diameter θξ, or there exist ξ, ζ ∈ [log r, log r′] with ξ < ζ, such that Ψ(f, ζ) =
−∞, Ψ(f, µ) > −∞ whenever µ ∈ [ξ, ζ[ and then f is strictly vanishing along
an increasing filter of center 0 and diameter θζ . This ends the proof.

Proposition B.11.8: Let f ∈ H(D) be vanishing along an increasing (resp.a
decreasing) filter F of diameter s. Let a be a center of F in K̂ and let E =
D̂ ∪ (K̂ \ d̂(a, s−)) (resp. E = D̂ ∪ d̂(a, s)). Then f has continuation to an
element F of Ĥ(E) such that F (x) = 0 whenever x ∈ K̂ \ d̂(a, s−), (resp.
x ∈ d̂(a, s)).

Proof. We suppose F increasing. By Theorem B.6.9 f has an extension f̂ to
D̂. For every r > 0, the set of classes of C(a, r) which contain f̂ -holes is
countable. Since the residue class field of K̂ is not countable, in Ĉ(a, r) there
exist classes Λ = d(b, r−) which contain no f̂ -holes. Thereby f̂ has continuation
to an infraconnected set D′ which contains D̂ and satisfies D̃′ = K̂, such that
every hole is of the form d̂(α, ρ−), with d(α, ρ−) a hole of D. In this set, we
have
(1)

D′ϕa,s(f̂) = DϕF (f) = 0.
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First, we suppose that F is increasing. Let V = d(a, s−) and let D′′ = D′ \ V .
Clearly V is a hole of D′′. Then, as an element of Ĥ(D′′), by Theorem B.6.1,
(1) implies

(2) (f̂)V = 0.
Now, by Theorem B.6.1, f̂ has a decomposition of the form g + h with g ∈
H0(D′ ∪ (K̂ \ d̂(a, s−))) and h ∈ H(D′ ∪ d̂(a, s−)). By (2), it is seen that

D′ϕa,s(h) = 0, hence h = 0 because h belongs to Ĥ(d̂(a, s)). As a consequence,
f̂ belongs to H0(D′ ∪ (K̂ \ d̂(a, s−))) and therefore in K, f belongs to H(D ∪
(K \ d(a, s−))). Moreover, by (2) we have f̂(x) = 0 whenever x ∈ D′′, hence
f̂(x) = 0 whenever x ∈ K \ d(a, s−).

If F is decreasing, we can easily perform a symmetric proof.

Theorem B.11.9: Let f ∈ H(D) be vanishing along an increasing (resp. a
decreasing ) filter F of center a and diameter s. Let E = D ∪ (K \ d(a, s−))
(resp. E = D ∪ d(a, s)). Then f has continuation to an element of H(E) such
that f(x) = 0 whenever x ∈ K \ d(a, s−), (resp. whenever x ∈ d(a, s)).

Proof. By Proposition B.11.8, f has continuation to an element f̂ ∈ Ĥ(D̂ ∪
(K̂ \ d̂(a, s−))), (resp. to H(D̂ ∪ d̂(a, s))). Therefore in K, f belongs to H(D ∪
(K \ d(a, s−))). Moreover, we have f̂(x) = 0 whenever x ∈ K̂ \ d̂(a, S−), (resp.
x ∈ d̂(a, s)), hence f(x) = 0 whenever x ∈ K\d(a, s−), (resp. f(x) = 0 whenever
x ∈ d(a, s)).

Definition: Let F be a monotonous filiter on D and let f ∈ H(D). Then, f
is said to be collapsing along F if there exists b ∈ K such that f − b is vanishing
along F

Theorem B.11.10: Let D be open and closed and let F be a monotonous
filter on D. Let f ∈ H(D) be such that f ′ ∈ H(D). Then f is collapsing along
F if and only if f ′ is vanishing along F .

Proof. Without loss of generality, we can suppose that D is bounded because
F is obviously secant with a bounded subset of K.

Suppose first that F is decreasing, of center a and diameter R. Without loss
of generality we can obviously assume a = 0. Suppose f is collapsing along F , of

limit `. Since lim
r→R

|f − `|(r)
r

= 0, by Theortem B.9.25 we have lim
r→R
|f ′|(r) = 0,

hence f ′ is vanishing along F .
Conversely, suppose that f ′ is vanishing along F . Let (Ti)i∈I be the family

of holes of D included in K \ d(0, R) and let (Ti)i∈J be the family of holes of D
included in d(0, R). Then the pair (I, J) makes a partition of the set of holes
of D. Let D1 = D∪d(0, R) and let D2 = D∪ (K \d(0, R)). By Corollary B.6.2,
we have H(D) = H(D1) ⊕ H(D2). For every g ∈ H(D) we set g = g1 + g2

with gk ∈ H(Dk), k = 1, 2. Then ‖g‖D = max(‖g1‖D1 , ‖g2‖D2). By Theorem
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B.9.19, we can check that the decomposition of f ′ in the form f ′ = (f ′)1 + (f ′)2

is such that (f ′)k = (fk)′, k = 1, 2. When we take numbers S′ > R and
S′′ < R, we have lim

S′→R+
‖f ′‖D∩d(0,S′) = 0 = lim

S′′→R−
‖f ′‖D\d(0,S′′), hence

lim
S′→R−

‖f ′1‖D∩d(0,S′) = 0 = lim
S′′→R+

‖f ′1‖D\d(0,S′′) and

lim
S′→R−

‖f ′2‖D∩d(0,S′) = 0 = lim
S′′→R+

‖f ′2‖D\d(0,S′′). Consequently, passing to the

limit, we get ϕ0,R(f ′1) = ϕ0,R(f ′2) = 0. Therefore, by Corollary B.11.6, f ′2,
which belongs to H(K \ d(0, R)) and satisfies ϕ0,R(f ′2) = 0, is identically zero in
K \ d(0, R). Consequently, f ′(x) = f ′1(x) ∀x ∈ D ∩ (K \ d(0, R)). On the other
hand, since f ′1 belongs to H(d(0, R)) and satisfies ϕ0,R(f ′1) = 0, is identically
zero in d(0, R) and hence f1(x) is a constant C in d(0, R). Therefore ϕ(f1−C) =
0 hence f1 − C is vanishing along F . But since f2(x) = 0 ∀x ∈ D \ d(0, R),
actually, f −C is vanishing along F . This finishes showing that f is collapsing
along F when F is a decreasing filter with a center.

Now suppose that F has no center. We can place ourselves in an algebraically
closed spherically complete extension of K and prove the same property for the
expansion of f , hence it holds for f . Finally, if F is increasing, we can make an
inversion and prove the same.

Thanks to monotonous filters we are now able to complete the study of the
characteristic functions.

Theorem B.11.11: Let E be a subset of K whose interior is not empty.
Then E is not infraconnected if and only if there exists a proper subset B of E
whose characteristic function belongs to H(E).

Proof. If E is not infraconnected, it admits an empty annulus Γ(a, r′, r′′) and
then by Proposition B.2.15 the characteristic functions of IE(Γ(a, r′, r′′)) and
EE(Γ(a, r′, r′′)) belong to H(E).

Now we suppose E to be infraconnected and assume that there is a subset
B of E, B 6= E and B 6= ∅, whose characteristic function u belongs to H(E).
Since u, by definition, belongs to Hb(E), it belongs to Hb(E). And of course,
E has an interior that is not empty. Hence, without loss of genearality, we can
assume that E is closed. Let A = E \B. Suppose A and B are different from ∅.
Since u is locally constant in all E, at least one of the two subsets A and B has
an interior that is not empty. Without loss of generality we can assume that
the interior of A is not empty and hence there exists a ∈ A and r > 0 such that
d(a, r) ⊂ A and u(x) = 0 whenever x ∈ d(a, r) and then we have

D
ϕa,r(u) = 0.

By Proposition B.11.3 there exists a monotonous filter F with center α ∈ E
such that u is strictly vanishing along F , hence by Lemma B.11.2 f is properly
vanishing along F . But this contradicts the hypothesis ”f(x) = 0 or 1 for all
x ∈ E”. This finishes proving Theorem B.11.11.

Corollary B.11.12: Let E ∈ Alg. The algebra H(E) has non-trivial idem-
potents if and only if E is not infraconnected.
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Theorem B.11.13: Let f ∈ H(D). Then f(D) is infraconnected.

Proof. Let D′ = f(D) and let us suppose that D′ admits an empty annulus
Γ(a, r′, r′′). Let D′′ = D′. It is seen that Γ(a, r′, r′′) also is an empty annulus
of D”.

Let A′′ = ID”(Γ(a, r′, r′′)) and let B′′ = ED”(Γ(a, r′, r′′)). Let u be the
characteristic function of A′′. By Proposition B.2.15 we know that u belongs to
H(D′′). Since D′′ is closed and contains f(D), by Corollary B.3.3, u◦f belongs
to H(D). Let A = f−1(A′′) and B = f−1(B′′). Obviously we have A ∩ B = ∅
and A∪B = D. Now, u◦f(x) = 1 ∀x ∈ A, u◦f(x) = 0 ∀x ∈ B. But since D is
infraconnected, by Theorem B.11.11, H(D) contains no characteristic function
of any proper subset. This ends the proof of Theorem B.11.13.



Analytic elements and analytic functions 131

B.12. Quasi-minorated elements

Throughout this chapter, the set D is supposed to be infraconnected.
The main results given here were published in [43], [49], [58]. According to

the definition of quasi-minorated elements, Theorem B.12.1 is easy:

Theorem B.12.1: Let f ∈ H(D). Then, f is not quasi-minorated if and
only if there exists a large circular filter F secant with D, such that DϕF (f) = 0.

Proof. By Lemmas B.8.12 and B.7.7, without loss of generality we can assume
that D is bounded.

Suppose first that there exists a large circular filter F secant with D, such
that DϕF (f) = 0. Let (an) be a monotonous distances sequence thinner than
F such that lim

n→+∞
f(an) = 0. Then f is not quasi-minorated.

Conversely, suppose that f is not quasi-minorated. Then there exists a
bounded sequence (an) of D such that lim

n→+∞
f(an) = 0 and such that one can’t

extract a sequence converging in K. By Theorem A.2.1 we can extract from the
sequence (an) either a monotonous distences sequence or a constant distances
sequence. In both cases, there exists a circular filter F less thin than this
subsequence and hence we have lim

F
f(x) = 0.

Theorem B.12.2: Let f be a non-identically zero element of H(D). Then
f is not quasi-minorated if and only if there exists a pierced monotonous filter
F on D such that f is strictly vanishing along F .

Proof. By Theorem B.12.1, if f is vanishing along a monotonous filter, it is
not quasi-minorated. Now suppose that f is not quasi-minorated. Since f is
not identically zero, we can find a bounded sequence (an)n∈N in D such that
lim
n→∞

f(an) = 0 such that no subsequence converges in K.

Suppose first we can extract form the sequence (an)n∈N a constant distances
sequence (aq(m))m ∈ N, let c = aq(1), let r = |aq(1) − aq(2)| and let φ = ϕb,r.
Since lim

m→+∞
f(aq(m)) = 0, we have ϕc,r(f) = 0. Since f is not identically zero

in D, there exists b ∈ D such that f(b) 6= 0. If b ∈ d(0, r) then by Proposition
B.11.3, f is strictly vanishing along an increasing filter of center c, of diameter
ρ ∈]0, r]. If b /∈ d(c, r), by Proposition B.11.3, if ϕc,|b−c|(f) 6= 0, then f is
strictly vanishing along a decreasing filter of center c, of diameter ρ ∈ d(c, |b−c|).
Finally, if ϕc,|b−c|(f) = 0, then f is strictly vanishing along an increasing filter
of center b, of diameter ρ ∈ d(0, |b− c|) and by Proposition B.11.5, that filter is
pierced.

Suppose now we can’t extract from the sequence (an)n∈N a constant dis-
tances sequence. Then we can extract form the sequence (an)n∈N a monotonous
distances sequence (aq(m))m∈N. There exists a unique monotonous filter F less
thin than the subsequence (aq(m))m∈N. Suppose first that F has a center c and
let r = diam(F). Then we have ϕc,r(f) = 0 and hence the same reasonning
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shows that f is strictly vanishing along a monotonous filter which by Proposi-
tion B.11.5 is pierced. Finally, suppose F is decreasing, with no center. We can
find a center in a spherically closed extension and make the same reasonning
again.

Corollary B.12.3: If D has no monotonous pierced filter, every element of
H(D) different from zero is quasi-minorated and takes every value finitely many
times.

Definition: A subset D of K is said to be analytic if for every disk d(a, r)
included in D and for every f ∈ H(D), the property f(x) = 0 ∀x ∈ d(a, r)
implies that f is identically zero in D.

Corollary B.12.4: If D has no monotonous pierced filter, D is analytic.
Particularly, if D has finitely many holes, D is analytic. Particularly, if D is
infraconnected affinoid, it is analytic.

Theorem B.12.5: Let f1, f2 be quasi-minorated elements of H(D). If f1f2

belongs to H(D), then it is also quasi-minorated.

Proof. Indeed suppose that f1f2 is not quasi-minorated. By Theorem B.12.2
there exists a pierced monotonous filter F on D such that

D
ϕF (f1f2) = 0.

Hence, either
D
ϕF (f1) = 0 or

D
ϕF (f2) = 0. But by Theorem B.12.1 both

options are impossible because both f1, f2 are quasi-minorated. Hence so is
f1f2.

Theorem B.12.6: Let f ∈ H(D). If f is semi-invertible then it is quasi-
minorated.

Proof. Let f be semi-invertible, of the form P (x)g(x) with g invertible in H(D)
and P a polynomial whose zeros a1, . . . , aq belong to D. We then suppose f not
quasi-minorated. By Theorem B.12.5, g is not quasi-minorated either. Hence
there exists a pierced monotonous filter F on D such that

D
ϕF (g) = 0. But by

Lemma B.2.3 that contradicts the hypothesis ”g invertible in H(D)”. Hence f
is quasi-minorated.

Theorem B.12.7: Suppose that D is open. Then an element of H(D) is
quasi-minorated if and only if it is quasi-invertible.

Proof. If f is quasi-invertible, it is semi-invertible and then by Theorem B.12.6
it is quasi-minorated. Now, assume f to be quasi-minorated. We will prove
it to be quasi-invertible. As in Theorem B.12.1, by Lemmas B.8.12 and B.7.7,
without loss of generality we can assume that D is bounded. Let S(D) be the
set of polynomials whose zeros belong to D \ D. If D ∈ Alg then H(D) =
S(D)−1H(D). By Corollary B.2.13, there exists Q ∈ S(D) and h ∈ H(D) such
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that f =
h

Q
. If h is not quasi-minorated, there exists a monotonous filter F

on D such that
D
ϕF (h) = 0 and then we have

D
ϕF (f) = 0: this contradicts

the hypothesis ”f quasi-minorated” and therefore h is quasi-minorated. Then
by Theorem B.7.8, h is quasi-invertible, in the form Pg with P a polynomial
whose zeros are interior to D and g an element invertible in H(D). Since D is
bounded and open, by Corollary B.8.10 D belongs to Alg, hence

g

Q
is invertible

in H(D). Let P = P1P2 with P1 (resp. P2) the polynomial of the zeros of

P in
◦
D ∩ D (resp. in D \ D). Then

P2g

Q
is invertible in H(D) and then f is

quasi-invertible.

Theorem B.12.8: If D belongs to Alg and has no pierced filter, every ele-
ment of H(D) different from zero is quasi-invertible

Proof. As in Theorem B.12.1, by Lemmas B.8.12 and B.7.7, without loss of
generality we can assume that D is bounded. Now, since D has no pierced
filter, by Corollary B.12.3 every element of H(D) is quasi-minorated. But since
D has no pierced filter, D is open, hence by Theorem B.12.7 every element of
H(D) is quasi-invertible.

Corollary B.12.9: Let D be closed and let T be the set of holes of D. If
{T̃ |T ∈ T } is finite, then every element of H(D) different from zero is quasi-
invertible.

Corollary B.12.10: If D is closed and has finitely many holes then every
element of H(D) different from zero is quasi-invertible.

Corollary B.12.11: If D is a disk d(a, r) or d(a, r−), or if D is an annulus
Γ(a, r1, r2) (with 0 < r1 < r2) or ∆(a, r1, r2) (with 0 < r1 < r2 ) or a circle
C(a, r), then every element of H(D) different from zero is quasi-invertible.

Proof. (Corollaries B.12.9, B.12.10, B.12.11) Indeed D has no pierced filter
hence the elements different from zero are quasi-minorated and are quasi-invertible
because D is open.

We will see that when D belongs to Alg, a quasi-minorated element that has
no zero in D, actually is invertible in H(D).

Lemma B.12.12: Let f ∈ H(D) be quasi-minorated in H(D). Then f is
quasi-minorated in H(D).
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Proof. Indeed let (an)n∈N be a bounded sequence inD such that lim
n→∞

f(an) = 0.

There obviously exists a sequence (bn)n∈N in D such that lim
n→∞

an − bn = 0

and lim
n→∞

f(bn) = 0. So, the sequence (bn) is bounded as the sequence (an).

Since f is quasi-minorated in H(D), then we can extract a Cauchy sequence
(bq(m))m∈N from the sequence (bn)n∈N and then the sequence (aq(m))m∈N is a
Cauchy subsequence of the sequence (an)n∈N. Thus we have proven that f is
quasi-minorated in H(D).

Theorem B.12.13: Let D ∈ Alg. Let f ∈ H(D) be quasi-minorated and
have no zero in D. Then f is invertible in H(D).

Proof. If D is closed, the statement is given by Theorem B.7.9. Consider now
the general case. As in Theorem B.12.1, by Lemmas B.8.12 and B.7.7, without
loss of generality we can assume that D is bounded. Let Q be the polynomial
of the poles of f in D \ D and let h(x) = Q(x)f(x). By Theorem B.12.5 h
is quasi-minorated in H(D). But by Theorem B.12.11 h belongs to H(D) and
therefore by Lemma B.12.12, it is quasi-minorated in H(D). We will prove that
h has finitely many zeros in D. Indeed we assume that h admits infinitely many
zeros in D. So we can find a sequence (an)n∈N in D \ D such that h(an) = 0
whenever n 6= m, n,m ∈ N. Since h is quasi-minorated in H(D) and since D
is bounded, we can extract a cauchy subsequence from the sequence (an)n∈N.
This Cauchy subsequence obviously converges to a point a ∈ D and therefore
we have h(a) = 0. But, as h has no zero in D, a belongs to D \D. And now,

since D belongs to Alg, then a belongs to
◦
D. But by Corollary B.7.3, a zero of

h which is interior to D is isolated in D and this contradicts the definition of a.
Thus we have proven that h has finitely many zeros (bj)1≤j≤q in D, all of them

in the set D \D which is included in
◦
D. Then each zero bj has a multiplicity

order nj , (1 ≤ j ≤ q). Let P (x) =
q∏
j=1

(x− bj)nj be the polynomial of the zeros

of h in
◦
D. By Corollary B.7.6 the function g(x) =

h(x)
P (x)

belongs to H(D) and

obviously has no zero in D. As we have already seen when D is closed, g is
invertible in H(D). Now, since both P, Q have all their zeros in D \ D, they

are invertible in R(D) and so is
P

Q
. But then f =

P

Q
g and hence f is invertible

in H(D).

Theorem B.12.14: Let D be closed, bounded, having finitely many holes and
let f ∈ H(D). Then f(D) is an infraconnected closed and bounded subset of K.

Proof. SinceD has finitely many holes, by Corollary B.12.10, f is quasi-minorated.
By Theorem B.11.13 f(D) is infraconnected. Since f is bounded on a closed
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bounded subset, f(D) is bounded. Let b belong to the closure of f(D) and let
(an)n∈N be a sequence of D such that lim

n→+∞
f(an) = b. Since the sequence (an)

is bounded, there exists a subsequence thinner than a circular filter F secant
with D. If F is large, then we have DϕF (f) = 0 and hence, by Proposition
B.12.1 f is not quasi-minorated, a contradiction. Consequently, F converges to
a point a. Since D is closed, a belongs to D. Consequently, f(a) = b and hence
b belongs to f(D). Therefore f(D) is closed.

The following Theorem B.12.15 shows an example of very simple increasing
T -filter, without describing the general theory of T -filters [49], [50].

Theorem B.12.15: Let (rn)n∈N be a sequence in |K| such that 0 < rn < rn+1

and lim
n→+∞

rn = R, let (qn)n∈N be a sequence of N prime to the characteristic

of K, such that qn ≤ qn+1 and lim
n→+∞

( rn
rn+1

)qn = 0. Let l ∈]0, R[ and for each

n ∈ N, let bn ∈ C(0, (rn)qn), let an,1, ..., an,qn be the qn-th roots of bn and

let E = d(0, R−) \
( ⋃
n∈N

(∪qnj=1d(an,j , l−))
)

. Set fn(x) =
n∏
k=1

qk∏
j=1

( 1
1−

(
x
ak,j

)).

Then each fn belongs to R(E) and the sequence (fn)n∈N converges in H(E) to
an element strictly vanishing along the pierced increasing filter of center 0 and
diameter R.

Proof. Let us first show that the sequence (fn)n∈N converges inH(E). We notice
that each pole ak,j of fn lies in a hole of diameter l and is unique in that hole
and in the class. Moreover, since each qn is prime to the residue characteristic
of K, each pole ak,j of fn is unique in the class d(ak,j , r−k ). Consequently, we

have |fn(x)| ≤ |x||fn|(|x|)
l

∀x ∈ E and hence

(1) |fn(x)| ≤ R|fn|(|x|)
l

∀x ∈ E.

Let us now show that the sequence (fn)n∈N converges in H(E). We first notice

that each factor Qk =
qk∏
j=1

( 1
1−

(
x
ak,j

)) satisfies |Qk|(r) ≤ 1 ∀r < R because

|Qk|(r) = 1 ∀r ≤ rk and |Qk|(r) < r ∀r ∈]rk, R[. Consequently, we have

(2) |fn|(r) ≤
n∏
k=0

qk∏
j=1

(rk
r

)qk
≤
(rn−1

rn

)qn−1

∀r ≥ rn.

On the other hand, when r < rn, we have

|1−Qn+1|(r) =
∣∣∣1− 1

1−
(

x
bn+1

)qn+1

∣∣∣(r) ≤ ( rn
rn+1

)qn+1
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hence

(3) |fn+1 − fn|(r) = |fn|(r)|1−Qn+1|(r) ≤ |fn|(r)
( rn
rn+1

)qn+1

∀r < rn.

By (2) and (3), we can see that lim
n→+∞

(
sup
r<R
|fn+1(r)− fn(r)|

)
= 0 and hence by

(1) we have lim
n→+∞

‖fn+1 − fn‖E = 0, hence the sequence fn converges to an ele-

ment f ∈ H(E). Moreover, by (1) and (2) we can see that lim
|x|→R−, x∈E

f(x) = 0,

so f is vanishing along the increasing pierced filter F of center 0 and diameter
R. Further, we may notice that |Qn|(r) = 1 ∀r ≤ rn, hence, when r ≤ rn, we
have |f |(r) = |fs|(r) ∀s ≥ n. Consequently, |f |(r) 6= 0 ∀r < R and hence f is
strictly vanishing along F .
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B.13. Zeros of power series

Most of classical results on zeros of polynomials will now be extended to
power series. In particular, power series converging inside a disk satisfy a
Schwarz Lemma that is even simpler than in C.

Throughout this chapter, r is a strictly positive real number and r′, r′′ are
strictly positive real numbers satisfying r′ < r′′.

Theorem B.13.1: Let f ∈ H(C(0, r)). The number of zeros of f in C(0, r)
is equal to ν+(f, log r)− ν−(f, log r), (taking multiplicity into account).

Proof. This equality was given for a polynomial in Theorem A.3.16. First
we prove it when f is an element of H(C(0, r)) invertible in H(C(0, r)). By

Proposition B.10.7 we have ν+(
1
f
, log r) = −ν+(f, log r) and ν−(

1
f
, log r) =

−ν−(f, log r). Since any h ∈ H(C(0, r)) satisfies ν+(h, log r) ≥ ν−(h, log r) we
see that ν+(f, log r) = ν−(f, log r).

We now consider the general case. By Corollary B.12.11, f has a factor-
ization of the form Pg with P a polynomial whose zeros belong to C(0, r) and
g invertible in H(C(0, r)). Then ν+(f, log r) − ν−(f, log r) = ν+(P, log r) −
ν−(P, log r) = deg(P ) and this just ends the proof of Theorem B.13.1.

Corollary B.13.2: Let a ∈ K and r > 0. Let f(x) ∈ H(C(a, r−)). Let
K̂ be a complete algebraically closed extension of K and let Ĉ(a, r) = {x ∈
K̂ | |x−a| = r}. Then the zeros of f in Ĉ(a, r) are exactly those of f in C(a, r)
(taking multiplicity into account). Similarly, the zeros of f in d̂(a, r) = {x ∈
K̂ | |x− a| ≤ r} (resp. in d̂(a, r−) = {x ∈ K̂ | |x− a| < r}) are exactly those of
f in d(a, r) (resp. in d(a, r−)) (taking multiplicity into account).

Corollary B.13.3: Let f ∈ H(C(0, r)) have t zeros in C(0, r).

Let q = ν+(f, log r)− ν−(f, log r). Then r = q

√∣∣∣ at
aq+t

∣∣∣.
Theorem B.13.4: Let Λ = C(0, r) and let f(x) =

+∞∑
−∞

anx
n be a convergent

Laurent series in Λ, having no zero in Λ. Let µ = log r. Then ν+(f, µ) =
ν−(f, µ) = q ∈ Z and |f(x)| = |aqxq| whenever x ∈ Λ. Moreover, if q 6= 0, then
f(Λ) = C(0, |aq|rq).

Proof. By Proposition B.10.7 we see that ν+(f, µ) = ν−(f, µ). Thus we have
Ψ(f, µ) = Ψ(aq) + qµ whenever µ ∈ I. Consequently, f(C(0, r)) ⊂ C(0, |aq|rq).
Now, suppose q 6= 0 and let s = |aq|rq. Let b ∈ C(0, s) and let g = f − b. So, by

definition, g(x) =
−1∑
−∞

anx
n+(a0−b)+

+∞∑
1

anx
n and by hypothesis |a0| < |aq|rq,
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hence |a0−b| = |aq|rq. Consequently, ν−(g, µ) < ν+(g, µ), therefore by Theorem
B.13.1, g admits at least one zero in C(0, r) and hence b lies in f(C(0, r)). This
proves that f(C(0, r)) = C(0, |aq|rq).

Corollary B.13.5: Let f(x) =
+∞∑
−∞

anx
n be a convergent Laurent series in

Λ = Γ(a,R′, R′′) (resp. in Λ = ∆(a,R′, R′′)), having no zero in Γ(a,R′, R′′).
Then we have ν+(f, µ) = ν−(f, µ) = q ∈ Z whenever µ ∈] log r′, log r′′[ (resp.
µ ∈ [log r′, log r′′] ) and |f(x)| = |aqxq| whenever x ∈ Λ. Moreover, if q > 0,
putting s′ = |aq|r′q, s′′ = |aq|r′′q we have f(Λ) = Γ(0, s′, s′′) (resp.f(Λ) =
∆(0, s′, s′′)) and if q < 0, putting s′ = |aq|r′′q, s′′ = |aq|r′q we have f(Λ) =
Γ(0, s′, s′′) (resp.f(Λ) = ∆(0, s′, s′′)).

Corollary B.13.6: Let Λ = Γ(0, r′, r′′) and let f(x), g(x) be convergent Lau-
rent series in Λ, having no zero in Λ such that |f |(r) = |g|(r) ∀r ∈]r′, r′′[. Then
ν(f, log r) = ν(g, log r) ∀r ∈]r′, r′′[.

Proof. By hypothesis, we have Ψ(f, µ) = Ψ(g, µ) ∀µ ∈] log r′, log r′′[. But

ν(f, log r) =
dΨ(f)
dµ

(log r) and ν(g, log r) =
dΨ(g)
dµ

(log r), hence ν(f, log r) =

ν(g, log r).

Theorem B.13.7: Let f ∈ H(d(0, r)). The number of zeros of f in d(0, r) is
equal to ν+(f, log r), (taking multiplicity into account).

Proof. This equality was given for a polynomial in Corollary A.3.17 First we
prove it when f is an invertible element of H(d(0, r)). By Theorem B.13.1 we
have ν+(f, µ) = ν−(f, µ) = 0 ∀µ ≤ log(r). Consequently, ν+(f, log r) = 0.
Consider now the general case. Since by Theorem B.12.11, f is quasi-invertible,
it has a factorization of the form P (x)h(x) with P a polynomial whose zeros lie
in d(0, r) and h is an invertible element of H(d(0, r)). Then by Corollary A.3.17
ν+(P, log(r)) is the number of zeros of P (hence of f) and by Proposition B.10.7
we have ν+(f, log(r)) = ν+(P, log(r))+ν+(h, log(r)) = ν+(P, µ) which ends the
proof.

Corollary B.13.8: Let Λ = Γ(0, r′, r′′) and let f(x), g(x) be convergent Lau-
rent series in Λ, such that |f |(r) = |g|(r) ∀r ∈]r′, r′′[. Then for each r ∈]r′, r′′[,
f and g have the same number of zeros in C(0, r) (taking multiplicity into ac-
count).

Theorem B.13.9: Let f(x) =
∞∑
n=0

an(x − a)n ∈ H(d(a, r)) and let s =

sup
n≥1
|an|rn. Then f(d(a, r)) = d(a0, s) and Ψa(f − a0, log r) = log s.
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Proof. Without loss of generality we can suppose that a = 0. Let b ∈ d(a0, s)
and consider f(x) − b = a0 − b +

∑+∞
n=1 anx

n. By hypothesis, |a0 − b| ≤ s
hence ν+(f − b, log(r) = ν+(f − a0, log(r)) ≥ 1 and hence f − b has at least
one zero in d(0, r). Consequently, d(0, s) ⊂ f(d(0, r)). Conversely, when x ∈
d(0, r), we have |f(x) − a0| ≤ s hence d(0, s) = f(d(0, r)). As a consequence,
Ψa(f − a0, log r) = log s.

Corollary B.13.10: Let f(x) =
∞∑
n=0

an(x − a)n ∈ Ab(d(a, r−)) (not identi-

cally zero) and let s = sup
n≥1
|an|rn. Then f(d(a, r−)) = d(a0, s

−).

Proof. On the one hand f(d(a, r−)) is obviously included in d(a0, s
−). On the

other hand, given b ∈ d(a0, s
−) and ρ ∈]0, r[ such that sup

n≥1
|an|ρn ≥ |b− a0|, by

Theorem B.13.9, b belongs to f(d(a, ρ)) because f ∈ H(d(a, ρ)).

Corollary B.13.11: Let f(x) =
∞∑
n=0

an(x−a)n ∈ H(d(a, r−)) (not identically

zero) and let s = sup
n≥1
|an|rn. Then f(d(a, r−)) = d(a0, s

−).

Lemma B.13.12: Let f ∈ H(d(0, r)) satisfy ν+(f, log r) ≥ 1, let b ∈
f(d(0, r)) and let g(x) = f(x)− b. Then we have ν+(g, log r) = ν+(f, log r).

Proof. Let f(x) =
∞∑
n=0

anx
n and let t = ν+(f, log r). By hypothesis we have

|at|rt ≥ |an|rn whenever n < t and |at|rt > |an|rn whenever n > t. Now let

g(x) =
∞∑
n=0

bnx
n. Hence b0 = a0− b, bn = an whenever n ≥ 1. By hypothesis we

have |b0| ≤ sup
n≥1
|an|rn hence |b0| ≤ |bt|rt and finally ν+(g, log r) = t.

Lemma B.13.13: Let f ∈ H(d(a, r)) have t zeros in d(a, r) with t ≥ 1
(taking multiplicity into account) and let b ∈ f(d(a, r)). Then f − b also admits
t zeros in d(a, r) (taking multiplicity into account).

Proof. We assume a = 0. By Lemma B.13.12 we know that ν+(f, log r) =
t. Hence we have ν+(f, log r) = t and Ψ(f, log r) = Ψ(at) + t log r. Next,
Ψ(f(x)) ≤ Ψ(f, log r) for all x ∈ d(0, r) hence Ψ(b) ≤ Ψ(f, log r) and therefore
Ψ(b) ≤ Ψ(at) + t log r. Hence ν+(f − b, log r) = t. That ends the proof.
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Theorem B.13.14: If an entire function f ∈ A(K) is bounded or has no zero,
it is a constant.

Proof. Let f(x) =
∞∑
j=0

ajx
j . By Theorem B.13.12, the number of zeros of f

in any disk d(0, r) is equal to the biggest of the integers l such that |al|rl =
sup
j∈N
|aj |rj and this is also equal to lim

|x|→r,|x|6=r
|f(x)|. Hence, if f is bounded, or

has no zero in K, obviously we have an = 0 ∀n > 0.

Theorem B.13.15: Let f(x) ∈ A(K) \K. Then f admits at least one zero in
K. Moreover, if f is not a polynomial, then f has infinitely many zeros in K
and the zeros make a sequence (αn)n∈N such that lim

n→+∞
|αn| = +∞.

Proof. Suppose first that f has finitely many zeros in K. Then by Theorem
B.5.16 there exists a polynomial P such that f factorizes in the form Pg with
g ∈ A(K) and g(x) 6= 0∀x ∈ K. Hence by Theorem B.13.14, g is a constant,
hence f is a polynomial. Next, by Theorem B.13.7, f has finitely many zeros
in each disk, hence the sequence (αn)n∈N tends to +∞.

Theorem B.13.16: Let Λ be a disk of the form d(a, r) (resp. d(a, r−) ) and
let f ∈ H(Λ) have no zero in Λ. Then |f(x)| is equal to a constant in Λ and f
is invertible in H(Λ).

Proof. By Corollary B.12.11 and Theorems B.12.13 f is invertible in H(Λ).
We may obviously assume a = 0. By Theorem B.13.12, we have ν+(f, µ) =
ν−(f, µ) = 0 whenver µ ≤ log r (resp. µ < log r) hence by Proposition B.10.7
Ψ(f, µ) has a derivative equal to 0 and therefore is equal to a constant in ] −
∞, log r[. Then by Corollary B.10.6 we have Ψ(f(x)) = Ψ(f,Ψ(x)), hence
Ψ(f(x)) is equal to a constant in Λ.

Theorem B.13.17: Let Λ be a set in one of the following forms:
i) Λ = d(0, r)
ii) Λ = d(0, r−)
iii) Λ = C(0, r).

Let f ∈ H(Λ) (f not identically 0) and let h ∈ H(Λ) satisfy ‖f − h‖Λ < ‖f‖Λ .
Then f and h have the same number of zeros in Λ (taking multiplicity into
account).

Proof. Regardless of the case i), ii), iii) we know that ‖f‖Λ = Λϕ0,r(f) and
then we have log ‖f‖Λ = Ψ(f, log r). Since ‖f − h‖Λ < ‖f‖Λ then Ψ((f −
h, log r) < Ψ(f, log r). Hence by Proposition B.10.5 we know that ν+(f, log r) =
ν+(h, log s) and ν−(f, log r) = ν−(h, log r). Consequently, f has as many zeros
as h in Λ, by Theorem B.13.7 if Λ = d(0, r) and by Theorem B.13.1 if Λ =
C(0, r).
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We now suppose Λ = d(0, r−). By Corollary B.12.11 both f, h are quasi-
invertible in H(Λ). Let ρ ∈]0, r] be such that d(0, ρ) contains all zeros of h in
Λ. According to the statements i) and ii) already proven, we see that f has as
many zeros as h in d(0, ρ) (taking multiplicity into account) and has no zero in
C(0, s) whenver s ∈]ρ, r[. This ends the proof.

Theorem B.13.18: If f ∈ H(C(a, r)), it satisfies |f(x)| ≤ Dϕa,r(f) ∀x ∈
C(a, r) and the equality |f(x)| = Dϕa,r(f) holds in all classes except finitely
many that are the classes where f has at least one zero.

Proof. Let f ∈ H(C(a, r)) anet Λ = C(a, r). We can find h ∈ R(Λ) such that
‖f − h‖λ < ‖f‖Λ, hence by Theorem B.13.17 f has the same number of zeros
as h in each class of Λ (taking multiplicity into account). So, in each class of
Ξ = d(b, r−) where f has no zero, |f(x)| is equal to Dϕb,r(f). But by Lemma
B.4.4 we have Dϕb,r(f) = Dϕa,r(f), which ends the proof.

Corollary B.13.19: Let f(x) ∈ A(d(0, r−)) have infinitely many zeros in
d(0, r−). Then the set of zeros of f in d(0, r−) is a sequence (αn)n∈N, such that

lim
n→+∞

|αn| = r.

Proof. Indeed, by Proposition B.5.12, for each ρ ∈]0, r[, f belongs to H(d(0, ρ))
and hence has finitely many zeros in d(0, ρ).

Theorem B.13.20: Let f(x) =
∞∑
n=0

anx
n ∈ A(d(0, r−)). Then f has finitely

many zeros in d(0, r−) if and only if there exists q ∈ N such that |aq|rq ≥ sup
n∈N
|an|rn.

Moreover, if t is the smallest of the integers q such that |aq|rq ≥ sup
n∈N
|an|rn,

then f has exactly t zeros in d(0, r−). Further, the three following statements
are equivalent:

i) f has no zero in d(0, r−),
ii) f is invertible in A(d(0, r−)),
iii) |f(x)| is a non-zero constant.

Proof. First we suppose that there exists q ∈ N such that |aq|rq ≥ sup
n∈N
|an|rn.

Let t ∈ N be the smallest of the integers q such that |aq|rq ≥ sup
n∈N
|an|rn. There

exists a unique s ∈]0, r[ such that |at|st ≥ |an|sn for every n < t. Then for all
ρ ∈]s, r[, in H(d(0, ρ)) we have ν+(f, log ρ) = ν−(f, log ρ) = t, hence f admits
exactly t zeros in d(0, ρ), whenever ρ ∈]s, r[.

Conversely, suppose that f admits exactly t zeros in d(0, r−). There then
there exists s ∈]0, r[ such that f admits exactly t zeros in d(0, s) and of course in
each disk d(0, ρ) for every ρ ∈]s, r[. Hence we have ν+(f, log ρ) = ν−(f, log ρ) =
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t for every ρ ∈]s, r[. Therefore, we have |at|ρt > |an|ρn for every n 6= t and for
every ρ ∈]s, r[. Finally we see that |at|rt ≥ sup |an|rn.

Further, the equivalence between i) and ii) is shown at Theorem B.5.19. The
equivalence of i) with iii) comes from the fact that f has no zero if and only if
|a0| > |an|sn ∀n ∈ N, ∀s ∈]0, r[.

Theorem B.13.21: Let f(x) =
+∞∑
−∞

anx
n ∈ A(K \ d(0, R)) be not identically

zero, let R′ > R and let q = ν+(f, log(R′)). The family of zeros of f in K \
d(0, R′−) either is finite or is a sequence (αn)n∈N such that lim

n→+∞
|αn| = +∞.

Proof. By definition, f is of the form g+h with g(x) =
−1∑
−∞

anx
n ∈ A(K \ d(0, R))

and h(x) =
+∞∑

0

anx
n ∈ A(K). Particularly, by Theorem B.5.6 for everyR′, R′′ ∈

]R,+∞[ (with R′ < R′′) both g, h belong to H(∆(0, R′, R′′)). Then, so does f .
Therefore, by Corollary B.13.3, f has finitely many zeros in ∆(0, R′, R′′) which
are on the circles C(0, r) such that ν+(f, log r) > ν−(f, log r). Thus, the family
of zeros of f in K \ d(0, R′−) either is finite or is a sequence (αn)n∈N such that

lim
n→+∞

|αn| = +∞.

Theorem B.13.22: Let R, S ∈]0,+∞[, R < S, and let

f(x) =
+∞∑
−∞

anx
n ∈ A(K \ d(0, R))

have infinitely many zeros in K \ d(0, S)). Then for every fixed t ∈ N, we have

lim
r→+∞

|f |(r)
rt

= +∞.

Proof. By Theorem B.13.21, the sequence of zeros (αn)n∈N is such that lim
n→+∞

|αn| = +∞.

Set rn = |αn|. The sequence ν+(f, log(rn) is strictly increasing and hence there
exists q ∈ N such that ν+(f, log(rq) > t, therefore ν+(f, µ) ≥ 1 ∀µ > log(rq).

Set g(x) =
f(x)
xt

. Then clearly |g|(r) =
|f |(r)
rt

and hence ν+(g, µ) ≥ 1 ∀µ ≥
log(rq). Thus, the function (in µ) Ψ(f, µ) is a convex function, piecewise affine,
whose deivative when it is derivable, is grater than 1 whenever µ ≥ log(rq).

Consequently lim
r→+∞

|g|(r) = +∞ and therefore lim
r→+∞

|f |(r)
rt

= +∞.

Corollary B.13.23: Let f(x) ∈ A(K) \K[x]. Then for every fixed t ∈ N, we

have lim
r→+∞

|f |(r)
rt

= +∞
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Theorem B.13.24: Let r ∈ R+, let r1, r2 ∈]0, R[) satisfy r1 < r2 and let
f ∈ A(d(0, R−)). If f admits exactly q zeros in d(0, r1) (taking multiplicity into
account) and has no zeros in Γ(0, r1, r2), then f satisfies

Ψ(f, log r2)−Ψ(f, log r1) = q(log r2 − log r1).

Proof. By Theorem B.13.13, we have ν+(f, log r1) = q and by Theorem B.13.4
we have Ψ(f, µ)−Ψ(f, log r1) = q(µ− log r1) for every µ ∈ [log r1, log r2[, hence
by continuity we have Ψ(f, log r2)−Ψ(f, log r1) = q(log r2 − log r1).

Theorem B.13.25: Let f(x) ∈ A(d(a, r−)). If f is not bounded, then f has
infinitely many zeros in d(a, r−).

Proof. Without loss of generality, we can suppose a = 0. Suppose f has t zeros
in d(0, r−). Let d(0, s) be a disk containing all zeros of f , with s < r. Then
by Theorem B.13.22, for all ρ ∈ [s, r[, we have Ψ(f, log(ρ)) ≤ Ψ(f, log(s)) +
t(log(ρ) − log(s)) ≤ Ψ(f, log(s)) + t(log(r) − log(s)). So, ψ(f, µ) is bounded,
hence by Theorem B.5.20 f is bounded in d(0, r−), a contradiction.

Theorem B.13.26: Let f ∈ A(d(0, R−)) and let r1, r2 ∈]0, R[ satisfy r1 < r2.
If f admits exactly q zeros in d(0, r1) (taking multiplicity into account) and t
different zeros αj, of respective multiplicity order mj (1 ≤ j ≤ t) in Γ(0, r1, r2),
then f satisfies

Ψ(f, log r2)−Ψ(f, log r1) =
t∑

j=1

mj(log(r2)−Ψ(αj)) + q(log r2 − log r1).

Proof. Let C(0, ρh) 1 ≤ h ≤ s be the circles containing at least one zero of f .
For each h = 1, ..., s, let αn(h), ..., αn(h+1)−1 be the zeros of f in C(0, ρh). Let
u =

∑t
j=1mj

First by Theorem B.13.24 we notice that
(1) Ψ(f, log(ρ1))−Ψ(f, log(r1)) = q(log(ρ1)− log(r1))
and similarly
(2) Ψ(f, log(r2))−Ψ(f, log(ρs)) = (q + u)(log(r2)− log(ρs)).

Next, for each h = 1, ..., s− 1, set lh = q +
n(h+1)−1∑

j=1

mj . Then, f has no zero in

Γ(0, ρh, ρh+1) and has lh zeros in d(0, ρh), hence by Theorem B.13.24 we have
(3) Ψ(f, log(ρh+1))−Ψ(f, log(ρh)) = lh(log(ρh+1)− log(ρh))

Then by (1), (2), (3) we can check the conclusion.

Corollary B.13.27: Let f(x) ∈ A(d(0, R−)) be such that f(0) 6= 0, let r ∈
]0, R[ and let aj , 1 ≤ j ≤ q be the zeros of f in d(0, r), of respective multiplicity
mj. Then
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Ψ(f, log r) = Ψ(f(0)) +
q∑
j=1

mj(log r −Ψ(aj)).

Corollary B.13.28: Let f(x) =
∞∑
n=0

anx
n ∈ A(d(0, r−)) have a set of zeros

in d(0, r−) that consists of a sequence (αn)n∈N, such that αn 6= 0 ∀n ∈ N and
where each αn is of order un. Then f is unbounded if and only if the sequence

(αn)n∈N satisfies
∞∏
n=0

( |αn|
r

)un = 0.

Corollary B.13.29: Let f(x) =
∞∑
n=0

anx
n ∈ A(d(0, r−)) have a set of zeros

in d(0, r−) that consists of a sequence (αn)n∈N such that αn 6= 0 ∀n ∈ N and

where each αn is of order un. Then ‖f‖D = |f(0)|
∞∏
n=0

( r

|αn|
)un

.

Corollary B.13.30: (Schwarz Lemma) Let D = d(a, s), let f ∈ H(D)
have at least (resp. at most) q zeros in d(a, r) with q > 0 and 0 < r < s. Then

we have
ϕa,s(f)
ϕa,r(f)

≥ (
s

r
)q, (resp.

ϕa,s(f)
ϕa,r(f)

≤ (
s

r
)q.

Corollary B.13.31: Let f ∈ A(K). The following two statements are equiv-
alent:

f is a polynomial of degree q,

there exists q ∈ N such that
|f |(r)
rq

has a finite limit when r tends to +∞.

Corollary B.13.32: Let r, s, R ∈]0,+∞[ satisfy 0 < r < s < R and let
f ∈ H((0, R)). Then

Ψ(f, log(s))−Ψ(f, log(r)) ≤
(

Ψ(f, log(R))−Ψ(f, log(s))
)( log(s)− log(r)

log(R)− log(s)

)
.

Proof. Let q be the total number of zeros of f in d(0, s), each counted with its
multiplicity. Then by Theorem B.13.30, we have Ψ(f, log(s)) − Ψ(f, log(r)) ≤
q(log(s)− log(r)). On the other hand, Ψ(f, log(R))−Ψ(f, log(s)) ≥ q(log(R)−
log(s)). Consequently,

q ≤ Ψ(f, log(R))−Ψ(f, log(s))
log(R)− log(s)

and hence the proof is over.
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Theorem B.13.33: Let f(x) =
∞∑
n=0

anx
n ∈ A(K) (resp.

f(x) =
∞∑
n=0

anx
n ∈ A(d(0, r−))). All zeros of f are of order one and the set

of zeros of f is a sequence (αn)n∈N such that |αn| < |αn+1| if and only if the
sequence

∣∣∣ an
an+1

∣∣∣ is strictly increasing. Moreover, if these properties are satisfied,

then the sequence of zeros of f in K (resp. in d(0, r−)) is a sequence (αn)n∈N∗

such that lim
n→+∞

|αn| = +∞ (resp. lim
n→+∞

|αn| = r) and |αn| =
∣∣∣ an
an+1

∣∣∣.
Proof. Suppose first that f ∈ A(d(0, r−)). First we suppose that the set of
zeros of f in d(0, r−) is an increasing distances sequence (αn)n∈N∗ . Then by
Corollary B.13.19, we know that lim

n→+∞
|αn| = r. By Corollary B.13.3, for each

q ∈ N∗, we have ν+(f,Ψ(αq)) − ν−(f,Ψ(αq)) = 1 and |α0| =
∣∣a0

a1

∣∣. Then by

an immediate induction we deduce that |αn| =
∣∣∣ an
an+1

∣∣∣ for every n ∈ N∗ and

therefore the sequence
∣∣∣ an
an+1

∣∣∣ is strictly increasing.

Conversely, we suppose that
∣∣∣ an
an+1

∣∣∣ is a strictly increasing sequence. Hence

we have
∣∣∣ an
an+1

∣∣∣< ∣∣∣an+1

an+2

∣∣∣ for every n ∈ N. For each m ∈ N∗, we put sm =

Ψ(am)−Ψ(am−1) and rm = θsm . Clearly, we have ν+(f, sm)−ν−(f, sm) = 1 for
every m ∈ N∗ and ν+(f, µ) = ν−(f, µ), for every µ ∈

(
]−∞, log r[\{sm| m ∈

N∗}
)
. Hence by Theorem B.13.1, f admits exactly one zero in each circle

C(0, rm) and no other zero in d(0, r−).
Suppose now that f ∈ A(K). The same proof applies with lim

n→+∞
|αn| = +∞.

Corollary B.13.34: Let f(x) =
∞∑
n=0

anx
n and suppose that the sequence( |an|

|an+1|

)
n∈N

is strictly increasing, of limit +∞ (resp. of limit R). Then f

belongs to A(K) (resp. A(d(0, R−))). Moreover, putting rn =
|an|
|an+1|

, n ∈ N, f

admits a unique zero on each circle C(0, rn) and has no other zero in K (resp.
in d(0, R)).

Proof. Indeed, thanks to the remark at the beginning of Chapter B.5, the radius
of convergence of f is +∞ (resp. R). Then conclusion comes from Theorem
B.13.33.
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Remark: We can easily construct a sequence (rn)n∈N satisfying the hypoth-
esis of Corollary B.13.34 and thereby the function h.

It is often uneasy to determine whether a function defined in an infracon-
nected set is an analytic element. The following example may be useful.

Theorem B.13.35: Let R > 0 and let (an)n∈N be a sequence of d(a,R−)

such that |an| < |an+1, lim
n→+∞

|an| = R,
+∞∏
k=0

|an|
R

= 0 and set rn = |an|, n ∈ N..

Let f ∈ A(d(a,R−)) admit each an as a zero of order 1 and no other zero in

d(a, rn). Let E = d(a,R−) \
( ⋃
n∈N

C(a, rn)
)

. Then the function
1
f

defined in E

belongs to H(E).

Proof. Without loss of generality we can obviously suppose a = 0 and f(0) = 1.
By Corollary B.13.28 f belongs to Au(d(0, R−)). For each n ∈ N, set rn = |an|.
Let r ∈]0, R[. If r 6= rn ∀n ∈ N, then |f(x)| = |f |(r) ∀x ∈ C(0, r). Now let
x ∈ C(0, rn). If |x − an| = rn, we have |f(x)| = rn. And if x belongs to E so
that |x− an| < rn, then |f(x)| ≥ |f |(rn)

rn
s

. Consequently,

(1) |f(x)| = |f |(|x|) ∀x ∈ E.

Let f(x) =
+∞∑
n=0

cnx
n and for each k ∈ N, let Pk(x) =

k∑
n=0

cnx
n. Of course,

the sequence (Pk)k∈N converges to f uniformly in every disk d(0, r) with r ∈

]0, R[. Moreover, by Theorem B.13.34, each zero ak of f satisfies |ak| =
|ck−1|
|ck|

.

Consequently, for n > k, Pn also admits a unique zero an,k in C(0, rn) and has
no other sero in E. Therefore, we have |Pn|(r) = |f |(r) ∀r ≤ rn. We will show

that the sequence (
1
Pn

)n∈N converges to
1
f

in H(E). Indeed, let us fix ε > 0

and let us choose q ∈ N such that |f |(rq) >
1
ε

. Consider now integers n > q

such that |f(x)− Pn(x)| < ε ∀x ∈ d(0, rq). Then obviously,

1
f(x)

− 1
Pn(x)

| < ε ∀x ∈ E ∩ d(0, rq).

On the other hand, given x ∈ E \ d(0, rq), we have |Pn|(r) ≥ |Pn|(rq) >
1
ε

, hence
∣∣∣ 1
Pn(x)

− 1
f(x)

∣∣∣ < ε. Therefore
∥∥∥ 1
Pn(x)

− 1
f(x)

∥∥∥
E
≤ ε. This finishes

proving that
1

f(x)
belongs to H(E).

Notation: Let f ∈ A(K) and let n ∈ N∗. We will denote by f<n> the function
f ◦ f ◦ f ◦ ... ◦ f , n times.
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Theorem B.13.36: Suppose the residue characteristic p is different from 0.
There exists functions A(K) and points a ∈ K such that lim

n→+∞
|f<n>(a)| = +∞.

Proof. Let t(n) = n2, n ∈ N Let f(x) =
+∞∑
n=0

p2t(n)x2n+1. For each n ∈ N, put

rn =
pt(n−1)

pt(n)
. Then, we can check that f admits exactly two zeros (taking multi-

plicity into account) in the circle C(0, rn) and has no zeros outside
∞⋃
n=1

C(0, rn),

except {0}.
Consider now a number s ∈]rn, rn+1[ of the form q

√
p, with q ∈ Q. In-

side the disk d(0, s), f admits 2n + 1 zeros (taking multiplicity into account).

Consquently, |f |(s) = |p2t(n)|s2n+1 =
p−2t(n)|q|2n+1p−2n

√
p

=
p−2t(n)−2n|q|2n+1

√
p

.

Thus we can see that |f |(s) is of the form q′
√
p with q′ ∈ Q. Moreover, since q

belongs to Q, f has no zero in C(0, s) hence |f(x)| = |f |(s) =
|q′|
√
p
∀x ∈ C(0, s).

Now consider
|f |(s)
s

=
|p2t(n)|s2n+1

s
= p−2t(n)s2n.

On the other hand, by (1) rn = pt(n)−t(n−1). Since rn < s, we can derive

p−2t(n)s2n > p−2t(n)p2n(t(n)−t(n−1).

Now −2t(n)+2n(t(n)−t(n−1) = 2
(
−t(n)+n(t(n)−t(n−1))

)
= 2(−n2+n(2n−

1)) = 4n2 − 2n. Consequently, when s > rn, we have
|f |(s)
s

> p4n2−2n. Now,
let us take s2 > r2 and for each n ∈ N, n ≥ 2, let us define by induction sn+1 =
|f |(sn). So, we have

sn+1

sn
≥ p8, hence lim

n→+∞
sn = +∞. But by construction,

for all x ∈ C(0, sn), we have |f(x)| = |f |(sn). Consequently, taking a ∈ C(0, s2),
we have |f<k>(a)| = sk and hence lim

n→+∞
|f<n>(a)| = +∞.



148 Analytic elements and analytic functions

B.14. Image of a disk

In this chapter D is just an open subset of K.

Theorem B.14.1: Let f(x) =
∞∑
n=0

an(x− a)n ∈ H(d(a, r)). Then the fol-

lowing statements a), b), c), d), e) are equivalent:
a) |a0| > |an|rn for all n > 1,
b) ‖f − f(a)‖d(a,r) < |f(a)|,
c) f has no zero in d(a, r),
d) |f(x)|is constant and different from 0 in d(a, r),
e) f is invertible in H(d(a, r)).

Proof. First a), b) are equivalent by Theorem B.5.6. Second, a), c), d) are
equivalent by Theorems B.13.7 and B.13.16. Third, by Lemma 11.3, d) implies
e) and finally e) obviously implies c).

Corollory B.14.2: Let f(x) =
∞∑
n=0

an(x− a)n ∈ A(d(a, r−)) (resp. let

f(x) =
∞∑
n=0

an(x− a)n ∈ H((d(a, r−))). Then Statements a), b), c), d),e) are

equivalent:
a) |a0| ≥ |an|rn for all n > 1,
b) |f − f(a)| < |f(a)| ∀x ∈ d(a, r−),
c) f has no zero in d(a, r−),
d) |f(x)|is constant and different from 0 in d(a, r−),
e) f is invertible in A(d(a, r−)) (resp. f is invertible in H(d(a, r−))).

Proof. Concerning A(d(a, r−)), we just have to apply Theorem B.14.1 to f in
H(d(a, ρ)) for every ρ ∈]0, r[. Concerning H(d(a, r−)), we can use Lemma B.2.3
to check that an element of H(d(0, r−)) having no zero is invertible.

Theorem B.14.3: Let a, b ∈ K and r, s ∈ R∗+, and let f ∈ A(d(a, r−)),
g ∈ A(d(b, s−)) be such that f(d(a, r−)) ⊂ d(b, s−). Then g ◦ f belongs to
A(d(a, r−)).

Proof. Without loss of generality we can clearly assume a = b = 0. First,
suppose that f has no zero in d(0, r−). Then |f(x)| is equal to a constant c
in d(0, r−), with c < s. Hence, of course, f(d(0, r−)) is included in d(0, c).
Now, let ρ ∈]0, r[. The restriction of f to d(0, ρ) belongs to H(d(0, ρ−)) and the
restriction of g to d(0, c) belongs to H(d(0, c)). Hence the restriction of g ◦ f to
d(0, ρ) belongs to H(d(0, ρ)). Consequently, by Corollary B.3.3 g ◦ f belongs to
H(d(0, ρ)). This is true for every ρ ∈]0, r[ and therefore this shows that g ◦ f
belongs to A(d(0, r−)).



Analytic elements and analytic functions 149

Now, we suppose that f admits at least one zero in d(0, r−). Hence there
exists r′ ∈]0, r[ such that f has at least one zero in d(0, r′). Therefore by
Corollary B.13.30, ‖f‖d(0,ρ) is strictly increasing in ρ in the interval [r′, r[. Now,
let ρ ∈]0, r[ and let σ = ‖f‖d(0,ρ). The restriction of f to d(0, ρ) belongs to
H(d(0, ρ)) and further, f(d(0, ρ)) is included in d(0, σ). Since g belongs to
H(d(0, σ)), g ◦ f belongs to H(d(0, ρ)). As previously, this is true for every
ρ ∈]0, r[, hence g ◦ f belongs to A(d(0, r−)).

Theorem B.14.4: (Dieudonné-Dwork) Let f ∈ A(d(0, R−)) satisfy
f(0) = 1 and have no zero in d(0, R−). There exists a sequence (uk)k∈N∗ in

d(0, R) such that f(x) =
∞∏
k=1

(1− ukxk) whenever x ∈ d(0, R−).

Proof. Since f(0) = 1, we can write f(x) in the form 1 +
∞∑
n=1

bnx
n. Since f has

no zero in d(0, R−), by Corollary B.14.2 we have |bn|Rn ≤ 1 for every n ∈ N∗.
Now, suppose that we have already found u1, ..., uk such that f(x) factorizes in
the form

(Rk)
k∏
j=1

(1− ujxj)
(
1 + xk+1

∞∑
n=0

βn,k+1x
n
)

with |βn,k+1| ≤ 1
R for every n ∈

N.

Actually, we have (1 + β0,k+1x
k+1)

(
1 +

∞∑
n=1

(−β0,k+1x
k+1)n

)
= 1 and therefore

we can factorize
(
1 + xk+1

∞∑
n=0

βn,k+1x
n
)

in the form

(1 + β0,k+1x
k+1)

(
1 +

∞∑
n=1

(−β0,k+1x
k+1)n

)(
1 + xk+1

∞∑
n=0

βn,k+1x
n
)

Now, consider the function gk+1 defined as

gk+1(x) =
(
1 +

∞∑
n=1

(−β0,k+1x
k+1)n

)(
1 + xk+1

∞∑
n=0

βn,k+1x
n
)
.

In gk+1, it is seen that the term in xk+1 is equal to 0, so gk+1 is of the form(
1 + xk+2

∞∑
n=0

βn,k+2x
n
)
, with |βn,k+2| ≤

1
R

, for every n ∈ N.

Now we just put uk+1 = β0,k+1 and then we have proven (Rk+1). Since (R0) is
trivially satisfied, by induction we can construct a sequence (uk)k∈N∗ in d(0, R−)
and a sequence (gk)k∈N∗ in A(d(0, R−)), such that for each k ∈ N, gk is of the
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form 1 + xk+1
∞∑
n=0

βn,k+1x
n and satisfies f(x) =

k∏
j=1

(1− ujxj)gk(x). For each

k ∈ N∗, let fk(x) =
k∏
j=1

(1− ujxj).

It is seen that for each r ∈]0, R[, we have ‖gk−1‖d(0,r) ≤ rk+1. As a consequence,
for every r ∈]0, R[, the sequence (fk)k∈N∗ converges to f in H(d(0, r)) and

therefore we have f(x) =
∞∏
k=1

(1− ukxk) for all x ∈ d(0, R−). That ends the

proof.

Proposition B.14.5: Let D be a set of the form
⋃
i∈I

d(αi, r−) with |αi −

αj | = r whenever i 6= j. Let ` be fixed in I, let f ∈ H(D) be such that

f(x) =
∞∑
n=0

an(x− α`)n ∈ H(D) whenever x ∈ d(α`, r−) and let s = sup
n≥1
|an|rn.

For every i ∈ I, let βi = f(αi). Then we have f(d(αi, r−)) = d(βi, s−) for
every i ∈ I and |βi − βj | ≤ s whenever i, j ∈ I. Moreover, if I is not finite, the
equality |βi − β`| = s holds for every i ∈ I but finitely many.

Proof. We set a = α` and g = f − β`. By Theorem B.13.9, for every ρ ∈]0, r[
we have Ψa(g, log ρ) = sup

n≥1
Ψ(an) + n log ρ hence by continuity:

Ψa(g, log r) = sup
n≥1

Ψ(an) + n log r = log s.

Now let j ∈ I, j 6= ` and set b = αj . Since |b − a| = r, by Proposition B.10.4
we have Ψa(g, log r) = Ψb(g, log r) hence Ψ(g(x)) ≤ Ψa(g, log r) = log s for all
x ∈ d(b, r−). Thus we see that |f(x) − β`| ≤ s for all x ∈ d(b, r−). Hence, by
Corollary B.13.11 f(d(b, r−)) is a disk d(βj , t−) with t ≤ s. Since α` and αj play
the same role, in the same way we show that s ≤ t and therefore s = t. Thus
we have proven that f(d(αi, r−)) = d(βi, s−) for every i ∈ I and |βi − βj | ≤ s
whenever i, j ∈ I.

Now we suppose that I is infinite. By Proposition B.10.1, the equality
Ψ(g(x)) = Ψa(g, log r) = log s holds in all the classes of C(a, r) but finitely
many ones, hence we have |βj − β`| = s for every j ∈ I but finitely many and
this ends the proof of Proposition B.14.5.

Theorem B.14.6: Let D be an open analytic subset of K, let f ∈ H(D) and
let D′ = f(D). Then D′ is open and satisfies codiam(D′) ≥ codiam(D) inf

x∈D
|f ′(x)|.

Proof. Let b ∈ f(D) and let a ∈ D be such that f(a) = b. Since D is open,

there exists a disk d(a, r) included in D. Let f(x) =
∞∑
j=0

an(x− a)n ∀x ∈ d(a, r).
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Since D is an analytic set, f is not identically zero in any disk included in D,
hence by Theorem B.13.9 ||f−b||d(a,r) is a number s = supn≥1 |an|rn. Then, by
Theorem B.13.9, f(d(a, r)) is the disk d(b, s), hence d(b, s) ⊂ D, which proves
that f(D) is open. Particularly, |f ′(a)| = |a1| hence ||f − b||d(a,r) ≥ r|f ′(a)|,
therefore δ(D′, (K \D′)) ≥ δ(D, (K \D)) inf

x∈D
|f ′(x)|.

Theorem B.14.7: Let f ∈ H(d(0, r)), let t = ν+(f, log r) and assume t ≥ 1.
Suppose that f ′ is not identically zero and let α1, ..., αq be the zeros of f ′ in
d(0, r). For every b ∈ f(d(0, r)) \ f({α1, ..., αq}), f − b admits exactly t zeros of
order 1 in d(0, r).

Proof. Let b ∈ f(d(0, r)) \ f({α1, ...αq}). By Theorem B.13.7 f − b admits t
zeros in d(0, r) (taking multiplicity into account). But for each zero α of f − b,
(as α 6= αj whenever j = 1, ..., q) we have f ′(α) 6= 0 hence the t zeros of f − b
are of order one.

Definition: Let f ∈ H(D). Then f will be said to be strictly injective in D
if f is injective and if f ′(x) 6= 0 whenever x ∈ D.

In the same way, given a ∈ K and r > 0, an analytic function f(x) ∈
A(d(a, r−)) will be said to be strictly injective in d(a, r−) if f is injective and if
f ′(x) 6= 0 whenever x ∈ D.

Theorem B.14.8: Let K have characteristic zero and let f ∈ H(D) be
injective in D. Then f is strictly injective.

Proof. Suppose that f is not strictly injective and let α ∈ D be a zero of f ′.
Let d(α, r) be a disk included in D. Without loss of generality we may assume

α = 0. Hence in d(0, r), f(x) is equal to a series of the form a0 +
∞∑
n=q

anx
n with

q ≥ 2 and aq 6= 0. Therefore we have ν+(f, log r) ≥ q ≥ 2. Let t = ν+(f, log r).
Since K has characteristic zero, f ′ is not identically zero and therefore admits
finitely many zeros α1 = 0, α2, ..., αs in d(0, r). Let b ∈ f(d(0, r))\f({α1, ...αs}).
By Theorem B.14.7 f − b admits t simple zeros in d(0, r) and this contradicts
the hypothesis ”f injective in d(0, r)”.

Theorem B.14.9: Let a ∈ K, r ∈ R+, let f(x) =
∞∑
n=0

an(x−a)n ∈ H(d(a, r))

and let s = sup
n≥1
|an|rn be > 0. Then the following statements are equivalent:

α) |a1| > |an|rn−1 whenever n > 1
β) |f(x)− f(y)| = |x− y||a1| whenever x, y ∈ d(a, r)
γ) f is strictly injective in d(a, r).

Moreover when conditions α), β), γ) are satisfied, then we have s = |a1|r and
|f ′(x)| = |a1| whenever x ∈ d(a, r).
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Proof. Without loss of generality we may obviously assume a = 0.
First, we suppose α) is satisfied and consider

f(x)− f(y) = (x− y)

(
a1 +

∞∑
n=2

an

(
n−1∑
j=0

xjyn−1−j

))
.

For every n ≥ 2 it is seen that |xjyn−1−j | ≤ rn−1. Hence we have

|a1| >

∣∣∣∣∣
∞∑
n=2

an

(
n−1∑
j=0

xjyn−1−j

)∣∣∣∣∣ and thereby |f(x)− f(y)| = |a1| |x− y|. At the

same time we notice that α) implies |f ′(x)| = |a1| whenever x ∈ d(a, r) while,
by Theorem B.13.9, we have s = |a1|r. So α) implies β).

Second, we suppose β) is satisfied. Since s > 0 by Corollary B.13.10 f is
not a constant hence a1 6= 0. Then by β) we have f(x) 6= f(y) whenever x 6= y.
Moreover, |f ′(x)| = |a1| 6= 0, hence γ) is satisfied.

Third, we suppose γ) is satisfied. Let b ∈ f(d(a, r)), let g = f − b and let
t = ν+(g, log r). If t ≥ 2 either g admits several different zeros or g admits a
zero α of order t. In both cases we see that g is not strictly injective, hence
neither is f . Finally we have t = 1 and hence α) is satisfied. This ends the
proof of Theorem B.14.9.

Theorem B.14.9 is easily applied to analytic functions inside a disk.

Corollary B.14.10: Let f(x) =
∞∑
n=0

an(x − a)n ∈ Ab(d(a, r−)) and suppose

that the number s = sup
n≥1
|an|rn is strictly positive. Then conditions α), β), γ), δ)

are equivalent.
α) |a1| ≥ |an|rn−1 whenever n > 1
β) |f(x)− f(y)| = |x− y| |a1| whenever x, y ∈ d(a, r−)
γ) f is strictly injective in d(a, r−).
δ) s = |a1|r.

Moreover, when conditions α), β), γ), δ) are satisfied, we have |f ′(x)| = |a1|
whenever x ∈ d(a, r−).

Proof. For every ρ ∈]0, r[ we apply Theorem B.14.9 to f ∈ H(d(a, ρ)).

Lemma B.14.11: Let f ∈ A(d(α, r−)) be injective and such that f ′ is not
identically zero. Then f is strictly injective.

Proof. We may obviously assume that f ′(α) 6= 0 and α = 0. Hence, f is of the

form
∞∑
n=0

anx
n with a1 6= 0. If f ′ has a zero β, there exists an integer q > 1 such

that
(1) |qaq| |β|q−1 = |a1|.
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Let g(x) = f(x) − f(0). Then g is also injective and has a simple zero at 0.
But by (1) we have |aq| |β|q ≥ |a1| |β| hence we have ν+(g, µ) ≥ q when µ is
close enough to log(r). Then, by Theorem B.13.7 we know that g has at least q
zeros in d(0, r−) and then admits another zero γ 6= 0, which contradicts the fact
that it is injective. Consequently, f ′ has no zero in d(α, r−) i.e., f is strictly
injective.

We are now able to study the inverse functions of an analytic element inside
a disk d(a, r).
Theorem B.14.12: Let a ∈ K, r ∈ R+, let f(x) ∈ H(d(a, r)) be strictly
injective in d(a, r), let s = |f ′(a)|r and let b = f(a). The homomorphism Θ from
H(d(b, s)) into H(d(a, r)) defined as Θ(h) = h ◦ f is an isometric isomorphism
from H(d(b, s)) onto H(d(a, r)).

Proof. Without loss of generality we may obviously suppose a = b = f(a) = 0
and f ′(0) = 1. We put E = d(0, r). Hence, by Theorem B.14.9 in d(0, r)

f(x) is equal to a series of the form x +
∞∑
j=2

ajx
j with sup

j≥2
|aj |rj < r. Next,

by Theorem B.13.9 r is equal to s. It is obviously seen that ‖Θ(h)‖E = ‖h‖E
for every h ∈ H(E). So, we only have to prove that Θ is surjective. Let
λ = inf

P∈K[x]
‖Θ(P )− x‖E and suppose λ > 0.

Set λ =
infP∈K[x](‖P (f)− x)‖)

r
and suppose that λ > 0. By definition,

λ < 1 because ‖f −x‖ < r. Let P ∈ K[x] be such that ‖P (f)−x‖ < rλ
2
3 . Then

we can write x = P (f) + h(x) with h ∈ H(d(0, r)) and h(x) =
∞∑
k=0

ckx
k with

|cn| < rλ
2
3 ∀n ∈ N and lim

n→+∞
cn = 0.

Let q ∈ N be such that |cn < rλ2 ∀n > q, let ω(x) =
q∑

n=0

cnx
n. We first

notice that for all n ∈ N, we have
(1) ‖(P (f) + h(x))n − (P (f) + ω(x))n‖ ≤ ‖h− ω‖ ≤ rλ 2

3

Now, for each n ∈ N, set (P (f) + h(x))n = (P (f) + ω(x))n + ωn(x). Then by
(1), we have

(2) ‖ωn‖ ≤ rλ2 ∀n ∈ N.
On the other hand, ‖(P (f) + ω(x))n − (P (f))n| ≤ ‖ω‖ ≤ rλ

2
3 ∀n ∈ N.

Consequently, we can write (3) ‖(P (f) +ω(x))n = (P (f))n+ `n(x) with ‖`n‖ ≤

rλ
2
3 ∀n ∈ N.

Now, we have

x−P (f) =
q∑

n=0

cn

(
(P (f)+ω(x))n+ωn(x)

)
+

∞∑
n=q+1

cn

(
(P (f)+ω(x))n+ωn(x)

)
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therefore by (2) and (3) we can write

(4)

x−P (f) =
q∑

n=0

cn(P (f))n+
q∑

n=0

cn

(
`n(x)+ωn(x)

)
+

∞∑
n=q+1

cn

(
(P (f)+ω(x))n+ωn(x)

)
with ‖cn

(
(P (f) + ω(x))n + ωn(x)

)
‖ < rλ2 ∀n ≥ q and ‖`n + ωn‖ < rλ

2
3 ∀n =

0, ..., q, hence ‖
q∑

n=0

cn

(
`n(x) + ωn(x)

)
‖ ≤ rλ 4

3 . Consequently,

∥∥∥x− P (f)−
q∑

n=0

cn(P (f))n
∥∥∥ ≤ rλ 4

3 . Set Q(x) = P (x)−
q∑

n=0

cn(P (x))n. Then

the polynomial Q satisfies ‖x−Q(f)‖ ≤ rλ 4
3 , a contradiction to the hypothesis

λ > 0. Consequently, λ = 0 and therefore x does belong to the closure of
Θ(H(E)). But since Θ is isometric, Θ(H(E)) is obviously closed in H(E) and
therefore x belongs to Θ(H(E)). As a consequence Θ(H(E)) = H(E).

Corollary B.14.13: Let f ∈ H(d(a, r)) be strictly injective and let d(b, s) =

f(d(a, r)). Then
−1

f belongs to H(d(b, s)).

Corollary B.14.14: Let K have characteristic 0, let f ∈ H(a, r)) be injective

and let d(b, s) = f(d(a, r)). Then
−1

f belongs to H(d(b, s)).

Corollary B.14.15: Let f ∈ A(d(0, r−)) be strictly injective in d(0, r−) and

let s = r|f ′(0)|. Then
−1

f belongs to A(d(0, s−)).

Proof. Indeed, by Corollary B.14.13
−1

f belongs to H(d(0, u)) for every u ∈
[0, s].

Corollary B.14.16: Let K have characteristic 0, let f ∈ A(d(0, r−)) be

injective in d(0, r−) and let s = r|f ′(0)|. Then
−1

f belongs to A(d(0, s−)).

Definition: An injective analytic function f ∈ Ab(d(a, r−)) will be said to
be bianalytic if f−1 belongs to A(f(d(a, r−))).

We will use the following lemma in topology:

Lemma B.14.17: Let E be a topological space and let F and G be subsets
dense in E. If F is open then F ∩G is dense in E.

Proof. Indeed let a ∈ E, let V be an open neighbourhood of a and let u ∈ V ∩F .
Since F is open, V ∩F is a neighbourhood of u. Hence as G is dense in E, there
exists x ∈ (V ∩ F ) ∩G. Therefore, V ∩ (F ∩G) 6= ∅.
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Lemma B.14.18: Let D be open. Let a be a point of D \ D and let f ∈
H(D ∪ {a}) be strictly injective in D. There exists an open set E satisfying:

E is open,
D ∪ {a} ⊂ E ⊂ D
f belongs to H(E) and is strictly injective in E.

Proof. By Theorem B.2.5 we know that f is of the form g + h with g ∈ H(D)
and h ∈ R(K \ (D \ (D ∪ {a}))). Since D is open, there exists σ > 0 such
that d(a, σ) ⊂ D. Now, as h ∈ R(D ∪ {a}) there exists τ > 0 such that
h ∈ R(D ∪ d(a, τ)). Let ρ = min(σ, τ) and let E = D ∪ d(a, ρ). It is seen that
E = D∪d(a, ρ) and therefore E is open. Next, both g, h belong to H(E), hence
so does f .

We suppose that f is not injective in E. Let b and c ∈ E be such that
f(b) = f(c) and let ω = f(b). Let r ∈ R∗+ be such that d(b, r) ∪ d(c, r) ⊂ E
whereas d(b, r)∩ d(c, r) = ∅. Then f(d(b, r)) is a disk d(ω, s) whereas f(d(c, r))
is a disk d(ω, t). We may obviously assume s ≤ t. Let Σ = d(b, r) ∩ D and
let Λ = d(c, r) ∩ D. Obviously, Σ is dense in d(b, r) whereas Λ is dense in
d(c, r) hence f(Σ) is dense in d(ω, s) whereas f(Λ) is dense in d(ω, t). Hence
f(Λ)∩d(ω, s) is dense in d(ω, s). Since Σ and Λ are open sets in K, by Corollary
B.13.10, both f(Σ) and f(Λ) are open sets in K because f is not a constant
in d(b, r) or in d(c, r). Hence both f(Λ) ∩ d(ω, s), f(Σ) are dense open subsets
of d(ω, s). Therefore, by Lemma B.14.17 we see that f(Σ) ∩ f(Λ) is dense in
d(ω, s) and certainly is not empty. Let y ∈ f(Σ) ∩ f(Λ) and α ∈ Σ, β ∈ Λ
satisfy f(α) = f(β) = y. By definition of Σ and Λ we see that α and β ∈ D
whereas α 6= β. This contradicts the hypothesis ”f is injective in D” and finally
shows f to be injective in E.

Now since f is strictly injective in d(a, r−)∩D we have f ′(x) 6= 0 whenever
x ∈ d(a, r−) ∩ D, hence by Lemma B.14.11 f is strictly injective in d(a, r−).
Finally, we have f ′(x) 6= 0 whenever x ∈ E and this ends the proof of Lemma
B.14.18.

We remember that Condition B) was defined in Chapter B.8.

Theorem B.14.19: Let D be open, let D′ satisfy D ⊂ D′ ⊂ D and let
f ∈ H(D′) be strictly injective in D. There exists an open set D′′ satisfying
D′ ⊂ D′′ ⊂ D such that f belongs to H(D′′) and is strictly injective in D′′.

Proof. By Lemma B.14.18, for every a ∈ D′ there exists an open set Da such
that Da is open, satisfying Condition B), such that D∪{a} ⊂ Da ⊂ D and such
that f belongs to H(Da) and is strictly injective in Da. Let D′′ =

⋃
a∈D′

Da.

Then D′′ is open and such that D′ ⊂ D′′ ⊂ D. By Theorem B.2.5 f has a
unique decomposition in the form g+h with g ∈ H(D) and h ∈ R(K\(D\D′)).
Since f ∈ H(Da) obviously h ∈ H(Da). Hence h has no pole in Da whenever
a ∈ D′, therefore h ∈ R(D′′). Hence f belongs to H(D′′). Moreover, by Lemma
B.14.18 we have f ′(x) 6= 0 whenever x ∈ Da, hence whenever x ∈ D′′.



156 Analytic elements and analytic functions

Now we just have to check that f is injective in D′′. Let a, b ∈ D′ satisfy
f(a) = f(b). Since Da satisfies Condition B), we may apply Lemma B.14.18 to
Da and b and then we have an open set E such that Da ∪ {b} ⊂ E ⊂ Da = D
and such that f belongs to H(E) and is strictly injective in E. Hence the
hypothesis f(a) = f(b) is impossible and therefore f is injective in D′. But the
hypothesis made on D′ actually is satisfied on D′′. Hence f is injective in D′′

and this finishes proving Theorem B.14.19.

Proposition B.14.20: Let (d(αi, r−i ))i∈I be a partition of D. Let h ∈ H(D)
be injective in D and let f ∈ H(D) satisfy

i) |f ′(αi)− h′(αi)| < |h′(αi)| whenever i ∈ I
ii) ‖f − h‖d(αi,r

−
i ) < |h

′(αi)|ri whenever i ∈ I
Then f is strictly injective. Furthermore, for all i ∈ I we have f(d(αi, r−i )) =
h(d(αi, r−i )).

Proof. By i) h′ is not identically zero in d(αi, r−i ) hence by Lemma B.14.11 h
is strictly injective in d(αi, r−i ). For every i ∈ I we put si = |h′(αi)|ri. By
Corollary B.13.10 we have h(d(αi, r−i )) = d(h(αi), s−i ) hence by ii) it is seen
that f(d(αi, r−i )) ⊂ d(h(αi), s−i ). Let f(d(αi, r−i )) = d(f(αi), t−i ). Therefore,
we have
(1) ti ≤ si
while obviously
(2) ti ≥ |f ′(αi)|ri.

But by i) we have |f ′(αi)| = |h′(αi)|, hence by (1) and (2) we can derive
ti = si hence ti = |f ′(αi)|ri and therefore by Theorem B.14.9 f is strictly
injective in d(αi, r−i ). Suppose that f is not injective in all of D. Then there
exists a and b ∈ D such that f(a) = f(b). Since f is injective in each disk
d(αi, r−i ) we see that there exist j and m ∈ I with j 6= m such that a ∈ d(αj , r−j )
and b ∈ d(αm, r−m). Since we have just proven that f(d(αi, r−i )) = h(d(αi, r−i ))
for all i ∈ I we see that there exist a′ ∈ d(αj , r−j ) and b′ ∈ d(αm, r−m) such
that h(a′) = f(a), h(b′) = f(b). This clearly contradicts the hypothesis ”h is
injective in D” . Consequently, f is injective in all of D. Therefore by Lemma
B.14.11 f is strictly injective.

Theorem B.14.21 shows the set of the strictly injective elements to be open
in H(D).

Proposition B.14.21: Let D be such that δ(D,K \ D) = ρ > 0. Let λ ∈
]0,+∞[. Let h ∈ H(D) be injective and satisfy |h′(x)| ≥ λ whenever x ∈ D.
For every f ∈ H(D) such that ‖f − h‖D < λρ, f is strictly injective in D and
satisfies f(d(α, ρ−)) = h(d(α, ρ−)) for all α ∈ D.

Proof. Let h ∈ H(D) satisfy ‖f−h‖
D
< λρ. Since the distance from D to K\D

is ρ > 0, there exists a partition of D in the form (d(αi, ρ−))i∈I and then we
have
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‖f − h‖d(αi,ρ−) < λρ ≤ |h′(αi)|ρ. Moreover, given any g ∈ H(d(α, ρ−)), by

Theorem B.9.1 we have ‖g′‖d(α,ρ−) ≤
1
ρ
‖g‖d(α,ρ−) hence

|f ′(αi)− h′(αi)| ≤
1
ρ
‖f − h‖d(αi,ρ−) < λ ≤ |h′(αi)|.

So Conditions i) and ii) of Proposition B.14.20 are clearly satisfied.

Remark: As we know, when D has holes, ρ is just the lower bound of the
diameters of the holes.

Theorem B.14.22: Let d(αi, r−i )i∈I be a partition of D, let h ∈ H(D) and
let u ∈]0, 1[. Let φ ∈ H(D) satisfy ‖φ‖

D
< 1 and ‖hφ‖d(αi,r

−
i ) ≤ uri‖h′‖d(αi,r

−
i )

for all i ∈ I. Then for every t ∈] max(u, ‖φ‖D), 1[ there exists a family (βi)i∈I
with βi ∈ d(αi, r−i ) such that

i) |h(βi)φ′(βi)| ≤ t|h′(βi)| whenever i ∈ I
ii) ‖hφ‖d(αi,r

−
i ) ≤ t|h′(βi)|ri whenever i ∈ I.

Let h be strictly injective and let f = h(1 + φ). Then f is strictly injective and
satisfies f(d(αi, r−i )) = h(d(αi, r−i )) for all i ∈ I.

Proof. Let us fix i ∈ I and put α = αi, r = ri. For every g ∈ H(d(α, r−)) we
have ‖g‖d(α,r−) = lim

|x−α|→r−
|g(x)| hence there clearly exists β ∈ d(α, r−) such

that
(1) |h′(β)| ≥ u

t
‖h′‖d(α,r−), hence the hypothesis implies

(2) ‖hφ‖d(β,r−) ≤ t
u

t
|h′(β)|r

Moreover we know that ‖φ′‖d(α,r−) ≤
1
r
‖φ‖d(α,r−) hence we have

|h(β)φ′(β)| ≤ |h(β)|1
r
‖φ‖d(α,r−) ≤

1
r
‖h‖d(α,r−)‖φ‖d(α,r−).

As the norm ‖ . ‖d(a,r−) is multiplicative, we have |h(β)φ′(β)| ≤ 1
r
‖hφ‖d(α,r−)

hence by the above hypothesis |h(β)φ′(β)| ≤ u‖h′‖d(α,r−) and finally by (1) we
obtain
(3) |h(β)φ′(β)| ≤ t|h′(β)|
Hence, we just have to put βi = β and do this for every i ∈ I in order to obtain i)
and ii) from (2) and (3). Since ‖φ‖

D
≤ 1 we may take t ≥ ‖φ‖

D
. We see that f ′−

h′ = h′φ+hφ′ hence by Condition i) we obtain |f ′(βi)−h′(βi)| ≤ t|h′(βi)|. Then,
as t < 1 , and as h′(x) 6= 0 whenever x ∈ D, we see that |f ′(βi)−h′(βi)| < |h′(βi)|
whenever i ∈ I. This is just Condition i) in Proposition B.14.20. Moreover,
Condition ii) implies Condition ii) in Proposition B.14.20 Hence by Proposition
B.14.20, f is strictly injective and satisfies f(d(αi, r−i ) = h(d(αi, r−i )) for all
i ∈ I.
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Theorem B.14.23: Let D be analytic and let F be the set of the injective
elements of H(D). The closure of F in H(D) is equal to F ∪K.

Proof. Let F be the closure of F and let f ∈ F \ K. Suppose that f is not
injective and let a, b ∈ D be such that f(a) = f(b). Without loss of generality
we may obviously assume f(a) = 0. Now let r ∈]0, |a− b|[ be such that d(a, r)∪
d(b, r) is included inD. Suppose that f is not identically zero inD. SinceD is an
analytic set, the restriction of f to d(a, r), (resp. d(b, r)), is not identically zero.
Let h ∈ F satisfy ‖f − h‖D < min(‖f‖d(a,r), ‖f‖d(b,r)). By Theorem B.13.16 h
admits a zero in d(a, r) and another in d(b, r). But since r < |a− b|, these two
zeros are different and therefore this contradicts the hypothesis ”h ∈ F”. That
ends the proof.
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B.15. Quasi-invertible analytic elements

Throughout this chapter D is supposed to be infraconnected.
Some of the results given here were obtained in [43]. We will show that when
an ideal of an algebra H(D) contains a quasi-invertible element, this ideal is
principal and generated by a polynomial.

Lemma B.15.1: Let T be a hole of D and let f ∈ H(D ∪ T ) be invertible in
H(D). If f has no zero in T then f is invertible in H(D ∪ T ).

Proof. Let (fn)n∈N be a sequence in R(D∪T ) which converges to f in H(D∪T ).
Let T = d(a, r−). Since f has no zero in T , by Theorem B.13.15 we have
|f(x)| = |f(a)| for all x ∈ T and therefore, |f(x)| =

D
ϕa,r(f) for all x ∈ T .

Now since D is infraconnected, by Corollary B.4.2 we have
D
ϕa,r(g) ≤ ‖g‖

D

whenever g ∈ H(D) hence for n big enough:∣∣∣ 1
f(x)

− 1
fn(x)

∣∣∣= |fn(x)− f(x)|
|f(x)|2

≤ ‖fn − f‖D
(
D
ϕa,r(f))2

whenever x ∈ T . Hence we see that the sequence
1
fn

converges to
1
f

in H(D ∪

T ).

Theorem B.15.2: Let D ∈ Alg. If an ideal contains a quasi-invertible

element, then it is generated by a polynomial whose zeros belong to
◦
D ∩D.

Proof. Let J be an ideal of H(D) that contains a quasi-invertible element f
that is of the form Pg with g invertible in H(D) and P (x) ∈ K[x], all the zeros

of P lying inside D ∩
◦
D. Then P belongs to J . Consequently, the set J0 of

polynomials that belong to J is not empty and hence is an ideal of K[x], hence
J0 is of the form Q(x)K[x] with Q ∈ K[x]. On the other hand, by hypothesis f
factorizes in H(D) in the form Pg with g invertible in H(D) and P (x) ∈ K[x],

all the zeros of P lying inside D ∩
◦
D. Since fg−1 belongs to J , obviously P

belongs to J0. Hence Q divides P and then all zeros of Q lie in D∩
◦
D. We will

show that J = QH(D).
First we suppose that D is bounded. Let α1, ..., αq be the zeros of Q and

suppose that there exists some h ∈ J \QH(D). Since D is bounded, by Theorem

B.2.12, h is of the form
`

S
with ` ∈ H(D) and S a polynomial whose zeros belong

to D \D. Hence ` belongs to J . Now we can find r > 0 such that d(αi, r) ⊂ D,

whenever i = 1, ..., q. Let Λ =
q⋃
i=1

d(αi, r) and let D′ = D ∪ Λ. Since the zeros

of Q lie in Λ, there exists λ > 0 such that |Q(x)| ≥ λ whenever x ∈ D \ Λ.
Now since D is closed and bounded, there exists b ∈ K such that ‖b`‖

D
< λ.
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We put φ = Q + b`. Clearly outside Λ, we have |φ(x)| ≥ λ. Next, by Theorem
B.13.18, in each disk d(αi, r), φ has finitely many zeros, hence in D′, φ has
finitely many zeros, all of them in Λ. Therefore, by Theorem B.7.2, it factorizes
in the form V (x)W (x) with W ∈ H(D′),W (x) 6= 0 whenever x ∈ D′ and V a
polynomial whose zeros belong to Λ. By Theorem B.13.16, |W (x)| has a strictly
positive lower bound in Λ and another non-zero lower bound in D′ \ Λ because
|V (x)| is obviously bounded in D′. Finally W has a non-zero lower bound in
D′, therefore it is invertible in H(D′). Hence V belongs to J . But then Q
divides V in K[x]. But since Q+ b` is equal to VW , then Q divides Q+ b` and
hence it divides ` and h too. This contradicts the hypothesis h ∈ J \ QH(D)
and finishes proving that Q generates J when D is bounded.

Now we suppose D unbounded. We may obviously assume D to have at
least one hole d(a, r−) and without loss of generality, we may assume a = 0.

Let γ(x) =
1
x

and let D′′ = γ(D). Then D′′ is a bounded set that belongs to

Alg, such that 0 /∈ D′. We also have γ = γ−1 and γ(D′′) = D. Let ψ be the
mapping from H(D) onto H(D′′) defined as ψ(f) = f ◦γ. Then ψ is a K-algebra
isomorphism from H(D) onto H(D′′). Moreover, ψ(J ) is an ideal J ′′ of H(D′′).
Let u = 1

x and T (u) = Q(x). Then we can check that J ′′ = TH(D′′), which
ends the proof.

Notations: For any integer n ∈ N we will denote by Qn(D) the set of the
quasi-invertible elements f ∈ H(D) that have exactly n zeros, taking multiplic-

ity into account and by Q(D) the set
∞⋃
n=0

Qn(D).

Theorem B.15.3 shows that if two analytic elements f, g are close enough,
then the zeros of f and g also are respectively close, once correctly ordered. It
is known as the convergence of zeros theorem.

Theorem B.15.3: Let D be closed and bounded. Let n ∈ N, let f ∈ Qn(D)
and let α1, ..., αn be the zeros of f (taking multiplicity into account). For every
ε > 0 there exists η > 0 such that for every h ∈ H(D) satisfying ‖f−h‖

D
≤ η, h

belongs to Qn(D) and the zeros β1, ..., βn of h, once correctly ordered, satisfy
|αi − βi| ≤ ε (1 ≤ i ≤ n).

Proof. Let f = Pg ∈ Qn(D) with g invertible in H(D) and P a n-degree monic
polynomial whose zeros are interior to D. Let γ1, ..., γq be the different zeros

of P , each γj of order sj (with obviously
q∑
j=1

sj = n). Let ξ = inf
j 6=`
|γj − γ`|, let

ε ∈]0, ξ[, let Λj(ε) = d(γj , ε) and let Λ(ε) =
q⋃
j=1

d(γj , ξ). It is easily seen that

|P (x)| has a non-zero lower bound in D \Λ(ε). Since D is closed and bounded,
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|g(x)| has a non-zero lower bound in D. Hence |f(x)| has a lower bound λ > 0
in D \ Λ(ε). Let η = min(λ, min

1≤j≤q
‖f‖Λj(ε)) and let h ∈ H(D) satisfy

(1) ‖f − h‖D < η.
Obviously we have |f(x)| = |h(x)| ≥ λ whenever x ∈ D \ Λ(ε). But then
by (1) and by Theorem B.13.17, we see that h has exactly si zeros like f in
Λi(ε), (1 ≤ i ≤ q) taking multiplicity into account. Thus we have alrealy
proven the statement when all zeros of f have order 1.

Now extending this to the general case is just a question of writing. We may
assume the αi to be ordered in such a way that
α1 = ... = αs1 = γ1, αs1+1 = ... = αs1+s2 = γ2,

αs1+...sq−1+1 = ... = αs1+...+sq = γq.

Thus, for every j = 1, ..., q in Λj(ε) , we can check that γj is equal to
αs1+...+sj−1+k whenver k = 1, ...sj . Since f admits sj zeros in Λj(ε), as does h,
we may denote them by βs1+...sj−1+1, ..., βs1+...+sj (some of them being eventu-
ally equal). So we obtain |αi − βi| ≤ ε whenever i = 1, ..., n.

Corollary B.15.4: Let D be closed and bounded. For every n ∈ N, Qn(D)
is open in H(D) and so is Q(D).

Lemma B.15.5: Let a ∈ D satisfy a /∈
◦
D. There exists a quasi-minorated

element f ∈ Hb(D) which is not semi-invertible, satisfying lim
x→a
x∈D

f(x) = 0 and

lim sup
x→0
x∈D

∣∣f(x)
x

∣∣ = +∞.

Proof. Without loss of generality we may obviously assume a = 0. Then the
Cauchy filter F of base {d(0, r) ∩ D | r > 0} is pierced. Let (Tm)m∈N be a

sequence of holes of D that runs F and let D′ = K \ (
∞⋃
m=0

Tm). By Corol-

lary B.8.5, there exists f ∈ Hb(D′) such that lim
x→0
x∈D′

f(x) = 0 and such that

lim sup
x→0
x∈D

∣∣f(x)
x

∣∣ = +∞. We check that D′ has no monotonous pierced filter be-

cause its only holes are the Tm. Hence by Corollary B.12.3, f is quasi-minorated.

If 0 belongs to D it is seen that f(0) = 0 while lim sup
x→0
x∈D

∣∣f(x)
x

∣∣ = +∞ hence f

can’t factorize in the form xg(x) with g ∈ H(D) and therefore f is not semi-
invertible.

Now, suppose 0 /∈ D and that f semi-invertible. Then it factorizes in the

form P (x)g(x) with P the polynomial of the zeros of f in
◦
D and g an invertible

element in H(D). Since 0 /∈ D, we have P (0) 6= 0, hence lim
x→0
x∈D

g(x) = 0. But

since lim
x→0
|g(x)| = +∞, by Corollary B.2.9,

1
g(x)

admits a pole at 0. Let n be
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its order. Then by Corollary B.2.9,
xn

g(x)
has a finite limit different from zero at

0. But since
f(x)
x

is unbounded in any set d(0, r) ∩ (D′ \ {0}), so is
g(x)
x

and

therefore we have lim inf
x→0

∣∣ xn
g(x)

∣∣= 0. Hence g can’t be invertible. This finally

shows that f is not semi-invertible and finishes the proof of Lemma B.15.5.

Lemma B.15.6: Let D be such that D̃ \D is not bounded. Then there exists
a quasi-minorated element f ∈ Hb(D) satisfying
(1) lim

|x|→∞
x∈D

f(x) = 0

and
(2) lim sup

|x|→∞
x∈D

|xf(x)| = +∞.

Moreover, xf does not belong to H(D).

Proof. Since D has holes, we may obviously assume that 0 belongs to a hole.

Let γ(x) =
1
x

and let D′ = γ(D). Then D′ is bounded and 0 belongs to D′\
◦
D′.

By Lemma B.15.5, there exists a quasi-minorated element h ∈ Hb(D′) satisfying
(3) lim

x→0
x∈D

f(x) = 0

and

(4) lim sup
x→0
x∈D

∣∣f(x)
x

∣∣ = +∞.

Then we set f = h◦γ. By (3), f satisfies (1), by (4), f satisfies (2). Now, by
Lemma B.7.7, f is quasi-minorated. Finally we check that xf does not belong
to H(D). Indeed suppose xf ∈ H(D). By Theorem B.2.5, xf is of the form
g(x) + P (x), with g ∈ Hb(D) and P ∈ K[x]. Let q = deg(P ). Since xf is not
bounded, we have q > 0. Then x1−qf has a limit different from 0 when |x| tends
to +∞ and this contradicts (1). This ends the proof of Lemma B.15.6.

Theorem B.15.7: If D does not belong to Alg, there exist invertible elements
f, g ∈ H(D) such that fg belongs to H(D) but is not semi-invertible.

Proof. First we suppose that there exists a ∈ (D \ D)\
◦
D. Without loss of

generality, we assume a = 0. By Lemma B.15.5, there exists f ∈ Hb(D) such

that lim
x→0
x∈D

f(x) = 0 while
f(x)
x

is not bounded in any set D ∩ d(0, r) (r > 0).

Since f ∈ Hb(D), we can find A ∈ K such that |A| > ‖f‖
D

. Let g = A+f . Then
g is invertible in H(D). Let T = d(b, ρ−) be a hole of D and let F =

x

(x− b)g
.

Then both
x

x− b
, g−1 belong to Hb(D), hence so does F . But by definition,
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F is the product of two invertible elements of H(D). We also notice that F

has no zero in D. Next, we notice that
f(x)(x− b)

x
is not bounded in any set

D ∩ d(0, r) (r > 0), although lim
x→0
x∈D

f(x)(x− b) = 0. Thus,
f(x)(x− b)

x
cannot

admit a pole at 0 and therefore, by Corollary B.2.9,
f(x)(x− b)

x
does not

belong to H(D). But then, since
A(x− b)

x
does belong to H(D), we see that

F−1 does not belong to H(D). Since F has no zero in D, it is not semi-invertible
although both

x

x− b
, g−1 are invertible in H(D).

Now we suppose that D̃ \ D is not bounded. Since D has holes, we may

obviously assume that 0 belongs to a hole. Let γ(x) =
1
x

and let D′ = γ(D).

Then D′ is bounded, and 0 belongs to ∈ D′\
◦
D′. Hence, as we just saw, there

exist invertible elements h, g ∈ Hb(D′) such that hg belongs to Hb(D′) and
has no zero in D′ but is not invertible in H(D′). Then we put τ = h ◦ γ, ψ =
g ◦ γ, φ = (hg) ◦ γ. By Theorem B.3.7, both τ, ψ are invertible in H(D), φ
belongs to H(D) and has no zero in D. Since hg is not invertible in H(D′),
by Theorem B.3.7 again, φ is not invertible in H(D). Since it has no zero
in D, it is not semi-invertible in H(D) and that finishes the proof of Theorem
B.15.7.

Theorem B.15.8: The following three statements are equivalent:
i) D belongs to Alg and D is open,
ii) D̃ \D is bounded and D is open,
iii) The set of the quasi-minorated elements of H(D) is equal to the set of

the quasi-invertible elements.

Proof. By Theorem B.8.9 we know that i) implies ii). Conversely, suppose ii) is
satisfied. Particularly D is open. Suppose i) is not satisfied. Then D does not
belong to Alg. Since D̃\D is bounded, there must exist a ∈ D\D that does not

belong to
◦
D and therefore this contradicts ii). Hence i) and ii) are equivalent.

Now, since ii) implies i), we can apply Theorem B.12.7, hence ii) implies iii).
Finally it just remains to show that if D̃ \D is not bounded or if D is not open
then there exist quasi-minorated elements that are not quasi-invertible.

On one hand, if D is not open, by Lemma B.15.5 such an element does exist.
On the other hand, if D̃ \D is not bounded then D does not belong to Alg and
therefore, by Theorem B.15.7, there exist invertible elements f, g in H(D) such
that fg is not semi-invertible, hence is not quasi-invertible. But, by Theorem
B.12.6, both f, g are quasi-minorated and then by Theorem B.12.5, fg also is
quasi-minorated. That ends the proof of Theorem B.15.8.
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Theorem B.15.9: Let D be closed, let T be a hole of D and let f ∈ H(D∪T ),
have no zero in T . There exists a bounded closed infraconnected set E, such that
T ⊂ E ⊂ D ∪ T , T 6= E and such that the restriction of f to E is invertible in
H(E).

Proof. Let T = d(a, r−) and let λ =D ϕa,r(f). By Theorem B.13.16 we know
that |f(x)| = λ for all x ∈ T . Moreover, since the restriction of f to T is not

identically zero, we have λ > 0. Let ` =
λ

2
.

First, we suppose C(a, r) ∩D 6= ∅. Let b ∈ D ∩ C(a, r). Then we have
lim

|x−b|→r, |x−b|<r,
x∈D

|f(x)| =D ϕb,r(f) =D ϕa,r(f) = λ. Hence, there exists s ∈]0, r[

such that |f(x)| ≥ ` for every x ∈ d(b, r−)∩D. Then, the set E = T ∪
(
d(b, r−)∩

D
)

is clearly infraconnected, closed and bounded and we have |f(x)| ≥ ` for all
x ∈ E. Hence the restriction of f to E is invertible in H(E).

Now, we suppose C(a, r) ∩D = ∅. There exists s > r such that |f(x)| ≥ `
for every x ∈ Γ(a, r, s) ∩ D. So, we consider the set E = T ∪

(
Γ(a, r, s) ∩ D

)
.

It is infraconnected, closed and bounded and we have |f(x)| ≥ ` for all x ∈ E.
Hence the restriction of f to E is invertible in H(E).

In both cases, we can see that T is strictly included in E. That ends the
proof of Theorem B.15.9.

We can now briefly examine the ideals of an algebra H(D) when all elements
are quasi-invertible.

Theorem B.15.10: Let D ∈ A. If an ideal contains a quasi-invertible

element, then it is generated by a polynomial whose zeros belong to
◦
D ∩D.

Proof. LetH be an ideal of H(D) that contains a quasi-invertible element f , and
let H0 be the set of polynomials that belong to H. By hypothesis f factorizes
in H(D) in the form Pg with g invertible in H(D) and P (x) ∈ K[x], all the

zeros of P lying inside D ∩
◦
D. Since fg−1 belongs to H, obviously P belongs

to H0. Hence T divides P , and then all the zeros of T lie in D ∩
◦
D. We will

show that H = TH(D).
First we suppose that D is bounded. It is clearly seen that H0 is an ideal of

K[x], hence there exists T (x) ∈ K[x] such that H0 = T (x)K[x].
Let α1, ..., αq be the zeros of T . Now we suppose that there exists some

h ∈ H \ TH(D). Since D is bounded, by Theorem B.2.12, h is of the form
`

S
with ` ∈ H(D) and S a polynomial whose zeros belong to D \ D. Hence

` belongs to H. Now we can find r > 0 such that d(αi, r) ⊂ D, whenever

i = 1, ..., q. Let Λ =
q⋃
i=1

d(αi, r) and let D′ = D ∪ Λ. Since the zeros of T

lie in Λ there exists λ > 0 such that |T (x)| ≥ λ whenever x ∈ D \ Λ. Now
since D is closed and bounded, there exists b ∈ K such that ‖b`‖

D
< λ. We
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put φ = T + b`. Clearly outside Λ , we have |φ(x)| ≥ λ. Besides by Corollary
B.13.18, in each disk d(αi, r), φ has finitely many zeros, hence in D′, φ has
finitely many zeros, all of them in Λ. Hence it factorizes in the form Q(x)W (x)
with W ∈ H(D′),W (x) 6= 0 whenever x ∈ D′ and Q a polynomial whose zeros
belong to Λ. By Theorem B.13.16 , |W (x)| has a strictly positive lower bound
in Λ and another non zero lower bound in D′ \ Λ because |Q(x)| is obviously
bounded in D′. Finally W has a non zero lower bound in D′, therefore it is
invertible in H(D′). Hence Q belongs toH. But then T divides Q in K[x]. Since
T +b` is equal to WQ, then T divides T +b`, and `, and h too. This contradicts
the hypothesis h ∈ H \ TH(D), and finishes proving that T generates H when
D is bounded.

Now we suppose D unbounded. We may obviously assume D to have at
least one hole d(a, r−), and without loss of generality, we may assume a = 0.

Let γ(x) =
1
x

, and let D′ = γ(D). Then D′ is a bounded set that belongs

to A, such that 0 /∈ D′. We also have γ = γ−1, and γ(D′) = D. Let ψ be
the mapping from H(D) into H(D′) defined as ψ(f) = f ◦ γ. Then ψ is a
K-algebra isomorphism from H(D) onto H(D′). Besides, ψ(H) is an ideal H′

of H(D′). Let P (x) =
q∏
j=1

(x − ai), for every j = 1, ..., q, let a′i =
1
ai

, and let

B(u) =
q∏
j=1

(u−a′i). Clearly, ψ(P ) =
B(u)
uq

. As 0 /∈ D′, u is invertible in H(D′),

and B belongs to H′. Hence J ′ is generated by a polynomial whose zeros lie

inside D′ ∩
◦

D
′
. Now, let W (u) =

t∏
j=1

(u − cj). Since the cj lie in D′, they are

different from 0. For every j = 1, ..., t, let ej =
1
cj

, and let S(x) =
t∏

j=1

(x−ej). It

is seen that for each j = 1, ..., t, ej does belong to D∩
◦
D. Now, let h ∈ H. Then

ψ(h) belongs to H′ and is of the form W (u)G(u), with G ∈ H(D′). Putting

F = ψ−1(G), in H(D) we have h = (−1)tS(x)
F (x)

xt
∏t
i=1 ej

. As
F (x)
xt

is an

invertible element of H(D), this finishes showing that S generates H.

Corollary B.15.11: Suppose D ∈ Alg and all elements are quasi-invertible,
except 0. Then H(D) is a principal ring and each ideal is generated by a poly-
nomial whose zeros lie in the opening of D and every maximal ideal of H(D) is
of the form (x− a)H(D) with a ∈ D.

By Corollaries B.12.9, B.12.10 and B.15.11 we can derive again Corollaries
B.15.12 and B.15.13:

Corollary B.15.12: Suppose D ∈ Alg be closed and let T be the set of holes
of D. If {T̃ |T ∈ T } is finite, H(D) is principal, each ideal is generated by a
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polynomial whose zeros lie in D and every maximal ideal of H(D) is of the form
(x− a)H(D), with a ∈ D.

Corollary B.15.13: If D is a disk d(a, r) or d(a, r−), or if D is an annulus
Γ(a, r1, r2) (with 0 < r1 < r2) or ∆(a, r1, r2) (with 0 < r1 < r2 ) or a circle
C(a, r), then H(D) is principal, each ideal is generated by a polynomial whose
zeros lie in D and every maximal ideal of H(D) is of the form (x−b)H(D) with
b ∈ D.



Analytic elements and analytic functions 167

B.16. Logarithm and exponential in a p-adic field

In this chapter the field K is supposed to have characteristic zero.

We will define the p-adic logarithm and the p-adic exponential and will
shortly study them, in connection with the study of the roots of 1 made in the
previous Chapter B.15. Both functions are also defined in [2]. Here, as in [58],
we compute the radius of convergence of the p-adic exponential by using results
on injectivity seen in Chapter B.14.

Lemma B.16.1: K is supposed to have residue characteristic p 6= 0. Let
r ∈]0, 1[ and for each n ∈ N, let hn(x) = (1 + x)p

n

. The sequence hn converges
to 1 with respect to the uniform convergence on d(0, r).

Proof. Without loss of generality, we may assume |p| =
1
p

. Let E = d(0, r)

and for each n ∈ N, let un = pn and let qn be the integral part of
n

2
. Now we

put tn = pqn and we denote by h the identical function on E. Then hn − 1 =

un∑
j=1

(
un
j

)
hj . By Lemma 6.1 we have

∣∣(un
j

)∣∣∣ ≤ p−n
|j|

hence

(1)
∣∣∣(un

j

)∣∣∣ ≤ j p−n ≤ tn p−n ≤ p−n2 whenever j = 1, ..., tn.

Next, we have

hn − 1 =
tn∑
j=1

(
un
j

)
hj +

un∑
j=tn+1

(
un
j

)
hj . By (1) it is seen that

(2)
∥∥∥ tn∑
j=1

(
un
j

)
hj
∥∥∥
E

≤ p−n2

while

(3)
∥∥∥ un∑
j=tn+1

(
un
j

)
hj
∥∥∥
E

≤ ‖h‖
tn+1

E
.

Now by (2) and (3) we see that lim
n→∞

‖hn − 1‖
E

= 0.

Notation: As previously defined, for each q ∈ N∗ we denote by Rq the positive

number such that logp(Rq) = − 1
pq−1(p− 1)

. We denote by f(x) the series
∞∑
n=1

(−1)n−1x
n

n
.

Theorem B.16.2: f has a radius of convergence equal to 1. If the residue
characteristic of K is p 6= 0, then f is unbounded in d(0, 1−). If the residue
characteristic is zero, then |f(x)| is bounded by 1 in d(0, 1−). The function
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defined in d(1, 1−) as Log(x) = f(x−1) has a derivative equal to
1
x

and satisfies

Log(ab) = Log(a) + Log(b) whenever a, b ∈ d(1, 1−).

Proof. It is clearly seen that the radius of f is 1, because |n| ≥ 1
n

. As in the

Archimedean case the property Log(ab) = Log(a) +Log(b) comes from the fact
that both Log and the function ha defined as ha(x) = Log(ax) have the same
derivative. The other statements are immediate.

In Chapter A.6. when K has residue characteristic p 6= 0, we have introduced
the group W of the ps-th roots of 1, i.e. the set of the u ∈ K satisfying up

s

= 1
for some s ∈ N.

Theorem B.16.3: K is supposed to have residue characteristic p 6= 0 (resp.
0). All zeros of Log are of order 1. The set of zeros of the function Log is
equal to W , (resp. 1 is the only zero of Log). The restriction of Log to the
disk d(1, (R1)−) (resp. d(1, 1−)) is injective and is a bijection from d(1, (R1)−)
onto d(0, (R1)−) ( resp. from d(1, 1−) onto d(0, 1−)).

Proof. It is obvious that the zeros of Log are of order 1 because the derivative
of Log has no zero. First, we suppose K to have residue characteristic p 6= 0.
Each root of 1 in d(1, 1−) is a zero of Log. Moreover by Theorem A.6.8 we know
that the only roots of 1 in d(1, 1−) are the pn-th roots. Now we can check that
Log admits no zero other than the roots of 1. Indeed, suppose that a is a zero
of Log but is not a root of 1, and for each n ∈ N, let bn = ap

n

. Since bn belongs
to d(1, 1−), by Lemma B.16.1 we have lim

n→∞
bn = 1. But obviously Log(bn) = 0

for every n ∈ N, hence this contradicts the fact that 1 is an isolated zero of Log.
Thus, Log has no zero in the disk d(1, (R1)−), except 1 and therefore by

Theorem B.13.7 the series f(x) =
∞∑
n=1

(−1)n−1x
n

n
satisfies ν+(f, logp r) = 1 for

every r ∈]0, R1[, hence r >
rn

|n|
for all r ∈]0, R1[, for every n ∈ N∗. Therefore,

by Corollary B.14.10 it is injective in d(0, R−1 ). Then by Corollary B.13.10 we
see that Log(d(1, R−1 )) = d(0, R−1 ).

Now we suppose that K has residue characteristic zero. Then, the function

f(x) =
∞∑
n=1

(−1)n−1x
n

n
satisfies ν+(f, logp r) = 1 for every r ∈]0, 1[, hence r >

rn

n
for all r ∈]0, 1[, for every n ∈ N∗. Therefore, f has no zero different from 1

in d(0, 1−) and, by Corollary B.14.10, is injective in d(0, 1−). Then by Corollary
B.13.10 we see that Log(d(1, 1−)) = d(0, 1−). This ends the proof.

Corollary B.16.4: K is supposed to have residue characteristic 0. There is
no root of 1 in d(1, 1−), except 1.
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Proof. Indeed any root of 1 should be a zero of Log in d(1, 1−).

Notation: If K has residue characteristic p 6= 0, we denote by exp the inverse
(or reciprocal) function of the restriction of Log to d(1, R−1 ) which obviously
is a function defined in d(0, R−1 ), with values in d(1, R−1 ). If K has residue
characteristic 0 we denote by exp the inverse function of Log which is obviously
defined in d(0, 1−) and takes values in d(1, 1−).

Theorem B.16.5: K is supposed to have residue characteristic p 6= 0 (resp.
p = 0). The function exp belongs to Ab(d(0, R−1 )), (resp. Ab(d(0, 1−))), is
a bijection from d(0, R−1 ) onto d(1, R−1 ) (resp. from d(0, 1−) onto d(1, 1−)),

and satisfies exp(x) = exp′(x) =
∞∑
n=0

xn

n!
whenever x ∈ d(0, R−1 ), (resp. x ∈

d(0, 1−)). Moreover, the disk of convergence of its series is equal to d(0, R−1 )
(resp. d(0, 1−)). Further, if p 6= 0, then exp does not belong to H(d(0, R−1 )).

Proof. By Corollary B.14.15 we know that the function exp belongs toAb(d(0, R−1 ))
(resp. Ab(d(0, 1−))) and is obviously a bijection from d(0, R−1 ) onto d(1, R−1 )
(resp. from d(0, 1−) onto d(1, 1−)). As it is the reciprocal of Log, it must sat-
isfy exp(x) = exp′(x) for all x ∈ d(0, R−1 ), (resp. x ∈ d(0, 1−)) and therefore

exp(x) =
∞∑
n=0

xn

n!
whenever x ∈ d(0, R−1 ), (resp. x ∈ d(0, 1−)). Thus the radius

of convergence r is at least R1 (resp. 1). If the residue characteristic is 0, it
is obviously seen that the series cannot converge for |x| = 1, hence the disk of
convergence is d(0, 1−).

Now we suppose that the residue characteristic is p 6= 0. Suppose that the
power series of exp converges in d(0, R1). Then exp has continuation to an
element of H(d(0, R1)). On the other hand, since ν(f, logp r) = 1 for all r ∈
]0, R1[, we have ν−(f, logpR1) = 1 and then by Theorem B.13.9 Log(d(1, R1))
is equal to d(0, R1). Hence we can consider exp(Log(x)) in all the disk d(0, R1).
By Corollary B.3.3 this is an element of H(d(1, R1)). But this element is equal
to the identity in all of d(1, R−1 ) and therefore in all of d(1, R1). Of course this
contradicts the fact that Log is not injective in the circle C(1, R1). This finishes
proving that the disk of convergence of exp is just d(0, R−1 ).

Let us show that exp does not belong to H(d(0, R−1 )). Indeed, suppose exp
belongs to H(d(0, R−1 )). Consider the Mittag-Leffler decomposition of exp on

the infraconnected set d(0, R−1 ). It is of the form
∞∑
n=0

gn with g0 ∈ H(d(0, R1)

and gn ∈ H0(K \ d(an, R−n )) with an ∈ C(0, R1). Set Tn = d(an, R−1 ), n ∈ N∗
and S =

⋃∞
n=1 Tn.

Let K be the residue class field of K. By Theorem A.7.4 we can consider
a complete algebraically closed extension K̂ of K whose residue class field K̂
is not countable. Thus we can find a class G of Ĉ(0, R1) that has an empty
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intersection with S and then, by Theorem B.6.1, exp has continuation to an
element of H(d(0, R−1 ) ∪G. Let c ∈ G. Since |c| = R1, by Theorem B.16.3, the

function h(x) = Log(1 + x) − c = −(c +
∞∑
n=1

(−x)n

n
) satisfies ν−(h, logp(R1) =

0, ν+(h, logp(R1) > 1 hence h admits a zero a ∈ Ĉ(0, R1). Then a does not
belong to K because if a ∈ K then Log(1 + a) ∈ K, a contradiction. Now, let ζ
be a p-th root of 1 different from 1, let t = ζ(1+a). Since |ζ−1| = R1, t is of the
form 1 + b with b ∈ Ĉ(0, R1). We then have Log(1 + a) = Log(1 + b). Set E =
d̂(a,R−1 ), F = d̂(b, R−1 ), D′ = d(0, R−1 )∪E∪F and D′′ = d(0, R−1 )∪G. Since the
image of d(0, R−1 ) by Log(1+x) is d(0, R−1 ) and since the derivative of Log(1+x)
has no zero, by Corollary B.13.10 we can check that for each u ∈ Ĉ(0, R1), the
image of d(u,R−1 ) by Log(1+x) is d(Log(1+u), R−1 ). Consequently, both images
of E and F by Log(1 + x) are equal to G. Now, Log(1 + x) belongs to Ĥ(D′),
the image of D′ by the function f(x) = Log(1 + x) is D′′ and exp belongs to
Ĥ(D′′). Consequently, by Corollary B.3.3, exp ◦ Log(1 + x) belongs to Ĥ(D′)
and we have exp ◦ Log(1 + x) = 1 + x ∀x ∈ d(0, R−1 ). Finally, since D′ has
no pierced filter, by Proposition B.11.5 it is an analytic set. Consequently the
equality exp ◦Log(1 + x) = 1 + x ∀x ∈ d(0, R−1 ) holds in all D′, a contradiction
since Log(1 + x) is not injective in D′. That finishes showing that exp does not
belong to H(d(0, R−1 )).

Remark: The exponential function admits an extension to a continuous group
isomorphism defined in Cp onto a subgroup E of d(1, 1−) [89].

Notation: Henceforth, we put ex = exp(x).

Theorem B.16.6: Suppose that p 6= 0. Let x ∈ d(0, R−1 ). Then ex is
algebraic over Qp if and only if so is x. Let u ∈ d(0, 1−). Then log(1 + u) is
algebraic over Qp if and only if so is u.

Proof. By Theorem B.5.24, if x is algebraic over Qp, so is ex. Similarly, if u is
algebraic over Qp, so is log(1 + u). Consequently, suppose that ex is algebraic
over Qp. Then ex is of the form 1 + t with |t| < 1, hence log(1 + t) is algebraic
over Qp. But then, log(1 + t) = log(ex) = x, hence x is algebraic over Qp. Now,
more generally, suppose log(1+u) is algebraic over Qp, with |u| < 1. Take q ∈ N
such that |pq log(1 + u)| < R1. We have pq log(1 + u) = log((1 + u)p

q

). Since
|pq log(1+u)| < R1, we have | log((1+u)p

q

)| < R1, hence exp
(

log((1+u)p
q

)
)

=
(1 + u)p

q

. Consequently, (1 + u)p
q

is algebraic over Qp and hence so is u.

We can show a similar result when p = 0:

Theorem B.16.7: Suppose that p = 0. Let x ∈ d(0, 1−). Then ex is algebraic
over Qp if and only if so is x. Let u ∈ d(0, 1−). Then log(1 + u) is algebraic
over Qp if and only if so is u.
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B.17. Problems on p-adic exponentials

Most of results presented in this chapter come from [91] ]. The author
is grateful to Michel Waldschmidt for his advices. On the other hand, most of
results first proven in the field K, also hold (with slide changes) in an ultrametric
field K of residue characteristic 0, as for example the Levi-Civita field [88].

We will use the following classical notation:

Notation: Throughout Chapter B.17, we will denote by K an algebraically
closed complete ultrametric field of residue characteristic 0.

Given three functions φ, ψ, ζ defined in an interval J =]a,+∞[ (resp. J =
]a,R[), with values in [0,+∞[, we shall write φ(r) ≤ ψ(r) + O(ζ(r)) if there
exists a constant b ∈ R such that φ(r) ≤ ψ(r) + bζ(r). We shall write φ(r) =
ψ(r) +O(ζ(r)) if |ψ(r)− φ(r)| is bounded by a function of the form bζ(r).

Hermite-Lindemann’s theorem is well known in complex analysis. The same
holds in p-adic analysis. We will need Siegel’s Lemma in all the following theo-
rems of this chapter. We will choose a particular form of this lemma [91]:

Lemma B.17.1 (Siegel): Let E be a finite extension of Q of degree q and
let λi,j 1 ≤ i ≤ m, 1 ≤ j ≤ n be elements of E integral over Z. Let
M = max(|λi,j | 1 ≤ i ≤ m, | 1 ≤ j ≤ n) and let (S) be the linear system

{
n∑
j=1

λi,jxj = 0, 1 ≤ i ≤ m}. There exists solutions (x1, ..., xn) of (S) such that

xj ∈ Z ∀j = 1, ..., n and

log(|xj |∞) ≤ log(M)
qm

n− qm
+

log(2)
2
∀j = 1, ..., n.

The p-adic version of Hermite-Lindemann’s theorem was proved by K. Mahler
[73]. Here we give another proof, using specific ultrametric tools.

Notation: We denote by D0 the disk d(0, 1−) and if the residue characteristic
of K is p > 0 we put R1 = p

−1
p−1 and denote by D1 the disk d(0, R−1 ).

Given a positive real number a, we denote by [a] the biggest enteger n such
that n ≤ a.

Remark: In particular Levi-Civita’s fields have residue characteristic 0 [3].

Theorem B.17.2: Suppose that K has residue characteristic p > 0. Let α ∈
D1 be algebraic. Then eα is transcendental.
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Proof. We suppose that α and eα are algebraic. Let h = |α|. Let E be the
field Q[α, eα], let q = [E : Q] and let w be a common denominator of α and eα.
We will construct a sequence of polynomials (PN (X,Y ))N∈N in two variables

such that degX(PN ) = [
N

log(N)
], degY (PN ) = [(logN)3] and such that the

function FN (x) = PN (x, ex) satisfiy further, for every s = 0, ..., N − 1 and for
every j = 0, ..., [log(N)]

ds

dxs
FN (jα) = 0.

According to computations in the proof of Hermite Lindeman’s Theorem in the
complex context, (Theorem 3.1.1 in [4]) we have
(1)

dMFN (γN )
dxM

=
u1(N)∑
l=0

u2(N)∑
m=0

bl,m,N

u1(N)∑
σ=0

( u1(N)!
σ!(u1(N)− σ)!

)( l!
(u1(N)− σ)!

)
mu1(N)−σ

ju1(N)−σ.(α)u1(N)−σ.(eα)ju2(N).

We put u1(N) = degX(PN ), u2(N) = degY (PN ). We will solve the system

wu1(N)+u2(N) d
s

dxs
FN (jα) = 0, 0 ≤ s ≤ N − 1, j = 0, ..., [log(N)]

where the undeterminates are the coefficients bl,m,N of PN . We then write the
system under the form

u1(N)∑
l=0

u2(N)∑
m=0

bl,m,N

min(s,l)∑
σ=0

( s!
σ!(s− σ)!

)( l!
(l − σ)!

)
ms−σ.jl−σ.

(2) (wα)l−σ(weα)jm.wu1(N)−(l−σ)+u2(N)−jm = 0.

That represents a system of N [log(N)] equations of at least N([log(N)])2 un-
determinates, with coefficients in E, integral over Z.

According to computations of Hermite-Lindemann’s Theorem in the com-
plex context (Theorem 3.1.1 in [4]), it appears that in the system (2), each factor( s!
σ!(s− σ)!

)
,
( l!

(l − σ)!

)
,ms−σ, jl−σ, (wα)l−σ, (weα)jm, wu1(N)−(l−σ)+u2(N)−jm

admits a bounding of the form SN(log(log(N)) when N goes to +∞. On one
hand wu1(N)+u2(N) is a common denominator and we have

log(wu1(N)+u2(N)) ≤ log(ω)
( N

log(N)
+ (log(N)3

)
and hence we have a constant T > 0 such that

(3) log(wu1(N)+u2(N)) ≤ TM

logM
.
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Next we notice that

(4) log
( u1(N)!
σ!(u1(N)− σ)!

)
≤ u1(N) log(u1(N)) ≤ N

log(N)
log(

N

log(N)
) ≤ N

and similarly,

(5) log
( l!

(u1(N)− σ)!
)
≤ u1(N) log(u1(N)) ≤ N.

and

(6) log(mu1(N)−σ) ≤ 3N
log(N)

log(log(N)).

Now, we check that

log
(
ju1(N)−σ.(|α|)u1(N)−σ.(|eα|)ju2(N)

)
≤ N+

N

log(N)
log(|α|)+log(N)(log(N))3 log(|eα|)

and hence there exists a constant L > 0 such that

(7) log
(
ju1(N)−σ.(|α|)u1(N)−σ.(|eα|)ju2(N)

)
≤ LN.

Therefore by (2), (3), (4), (5), (6), (7) we have a constant C > 0 such that
each coefficient a of the system satisfies

(8) s(a) ≤ CN(log(log(N)).

By Siegel’s Lemma B.17.1 and by (8) there exist integers bl,m,N , 0 ≤ l ≤
u1(N), 0 ≤ m ≤ u2(N) in Z such that
(9)

0 < max
l≤u1(N), m≤u2(N)

log(|bl,m,N |∞) ≤ qN log(N)
N(log(N))2 − qN log(N)

(CN log(log(N))

and such that the function

(10) FN (x) =
u1(N)∑
l=0

u2(N)∑
m=0

bl,m;Nx
lemx

satisfies

ds

dxs
FN (jα) = 0, 0 ≤ s ≤ N − 1, j = 0, 1, ..., [log(N)].

Now, by (9), we can check that there exists a constant G > 0 such that

(11) max
l≤u1(N), m≤u2(N)

(log(|bl,m,N |∞) ≤ GN log(log(N))
log(N)

.



174 Analytic elements and analytic functions

The function FN we have defined in (10) belongs to A(D1) and is not identi-

cally zero, hence at least one of the numbers
ds

dxs
FN (0) is not null. Let M be

the biggest of the integers such that
ds

dxs
FN (jα) = 0 ∀s = 0, ...,M − 1, j =

0, 1, 2, ..., [log(N)]. Thus we have M ≥ N and there exists j0 ∈ {0, 1, ..., [log(N)]}

such that
dM

dxM
FN (j0α) 6= 0. We put γN =

dM

dxM
FN (j0α).

Let us now give an upper bound of s(γN ). On one hand wu1(N)+u2(N) is a
common denominator and by (2) we have a constant T > 0 such that

log(wu1(N)+u2(N)) ≤ TM

logM
.

On the other hand, by (1) we have

dMFN (γN )
dxM

=
u1(N)∑
l=0

u2(N)∑
m=0

bl,m,N

u1(N)∑
σ=0

( u1(N)!
σ!(u1(N)− σ)!

)( l!
(u1(N)− σ)!

)
mu1(N)−σ.

ju1(N)−σ.(α)u1(N)−σ.(eα)ju2(N).

Now, by (2), (3), (6), (7), (8), (10) and taking into account that the number
of terms is bounded by N(logN)2, we can check that there exists a cosntant B
such that

(12) s(γN ) ≤ BN.

Let us now give an upper bound of |γN |. For convenience, we first suppose

that j0 = 0, hence
dM

dxM
FN (0) 6= 0. Set h = |α|. Then by Theorem B.9.1 we

have |γN | ≤
|FN |(h)
hM

. Moreover, we notice that FN admits at least M [log(M)]

zeros in d(0, h) and therefore by Corollary B.13.30 we have

|FN |(h) ≤
( h

R1

)M [log(M)]

because |FN |(r) ≤ 1 ∀r < R1. Consequently, |γN | ≤

hM(log(M−1)

(R1)M logM
and hence

log(|γN |) ≤M(log(M)− 1)(log(h))−M log(M)(log(R1))).

Let λ = log(h)− log(R1). Then λ < 0. And we have log(|γN |) ≤ λM log(M)−
M log(h), therefore there exists a constant A > 0 such that

(13) log(|γN |) ≤ −AM log(M).

Let us now stop assuming that j0 = 0. Putting z = x − jα and g(z) =
f(x), since all points jα belong to d(0, h), it is immediate to go back to the
case j0 = 0, which confirms (13) in the general case. But now, by Lemma
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A.8.10, relations (12) and (13) make a contradiction to the relation −2qs(γN ) ≤
log(|γN |) satisfied by algebraic numbers and shows that γN is transcendental.
But then, so is eα.

In K we have a similar version:

Theorem B.17.3: Let α ∈ K be algebraic, such that |α| < 1. Then eα is
transcendental over Q.

Proof. Eerything works in K as in a field of residue characteristic p 6= 0 up to
Relation (8) in the proof of Theorem B.17.2. Here we can replace R1 by 1 and
therefore the conclusion is the same as in Theorem B.17.2.

The six exponential problem is well known on C and was solved by Serge
Lang [71] and K. Ramachandra. The problem is the following: let a1, a2, a3,
(resp. b1, b2 ∈ C) be Q-linearly independant. Then at least one of the six
numbers eaibj is transcendental. Next, consider the same problem with only
four exponentials: let a1, a2, (resp. b1, b2 ∈ C) be Q-linearly independant.
The question is whether one of the numbers eaibj is transcendental: this is the
four exponentials conjecture on C due to Serge Lang.

The problem, however has a solution somewhat similar to that of the six
exponentials problem, in the particular case when one of the ratios a1

a2
and b1

b2
is algebraic.

The same problems make sense on a p-adic field such as Cp (provided the
numbers aibj lie in the disk of convergence of the exponential). Here we give the
solution of the six p-adic exponentials problem on the field Cp and this of the
four p-adic exponentials problem when one of the ratios a1

a2
or b1

b2
is algebraic.

This was described by Jean-Pierre Serre [90].

Theorem B.17.4: Let a1, a2, a3, (resp. b1, b2 ∈ Cp) be Q-linearly indepen-
dant and such that maxi=1,2,3 j=1,2 |aibj | < R. Then at least one of the numbers
eaibj is transcendental.

Proof. Assume that all numbers eaibj are algebraic, put E = Q[(eaibj )i=1,2,3, j=1,2]
and q = [E : Q]. Without loss of generality, we can assume that a1 =

1, |a2|, |a3| ≤ 1 and that max(|b1|, |b2|) ≤
1
p2

.

Let t ∈ N∗ be such that teaibj is integral over Z for every i = 1, 2, 3 and
every j = 1, 2 and let B = log

(
tmax{|eaibj | , i = 1, 2, 3, j = 1, 2}

)
. Let

` ∈ N be such that ` > 9
√

2B(q + 1).
Consider now the linear system of `2N2 equations with coefficients in E:

(SN )
∑

1≤m≤N,1≤n≤N,1≤s≤N

cm,n,s,Ne
(ma1+na2+sa3)(ib1+jb2) = 0, 1 ≤ i ≤ `N,
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1 ≤ j ≤ `N. We notice that the coefficients e(ma1+na2+sa3)(ib1+jb2) of (SN )
satisfy

log
(
|e(ma1+na2+sa3)(ib1+jb2)|

)
≤ 6B`N2

1 ≤ m ≤ N, 1 ≤ n ≤ N, 1 ≤ s ≤ N, 1 ≤ i ≤ `N,
1 ≤ j ≤ `N. Now, by Siegel’s Lemma B.17.1 there exists a family of solutions
(cm,n,s,N )1≤m≤N,1≤n≤N,1≤s≤N, in Z such that

(1) log |cm,n,s,N |∞ ≤
log 2

2
+ 6B

(q`2N2)`N2

(N3 − q`2N2)
.

Let fN (x) =
∑

1≤m≤N, 1≤n≤N,

cm,n,s,Ne
(ma1+na2+sa3)x. Then by definition of

(SN ) we have fN (ib1 + jb2) = 0 ∀i = 1, ..., `N, j = 1, ..., `N , hence fN admits

at least `2N2 zeros in the disk d(0,
1
p2

). Let u be a point of the form ib1 + jb2

with i, j ∈ N, such that fN (ib1 + jb2) 6= 0 and such that i + j is minimum
and let h be this minimum: say h = i0 + j0. Thus we can check that when i
and j are two positive integers such that i + j < h, then fN (ib1 + jb2) = 0.
Consequently by construction, we have h > 2`N and the number of zeos of fN

in d(0, 1
p2 ) is at least

(h− 1)2

2
. We notice that ‖fN‖ ≤ 1 because |ex| = 1 ∀x ∈

d(0, R−1 ) and cm,n ∈ Z ∀m,n ∈ N. Consequently, by Corollary B.13.30 we have
log(|fN |( 1

p )) ≤ −(h− 1)N2 and therefore

(2) log |fN (u)| ≤ − (h− 1)2

2
.

Consider now some cm,n,s,Ne(ma1+na2+sa3)(ib1+jb2) at the point u. By (1), we

have log(|cm,n,s,N |∞ ≤
6B(q`2N2)`N2

N3 − q`2N2
+ and log |e(ma1+na2+sa3)(i0b1+j0b2)| ≤

6BNh. Consequently, by (1) we can derive

log |cm,n,s,Ne(ma1+na2+sa3)(i0b1+j0b2)| ≤ 6BNh+
log 2

2
+

6Bq`3N4

N3 − q`2N2
,

therefore

(3) log(|fN (u)| ≤ 6BNh+
log 2

2
+

6Bq`3N4

N3 − q`2N2
+ 3 logN.

Here we notice that the denominator of FN (u) is bounded by t3Nh because
t3Nh us clearly multiple of the denominator of each term e(ma1+na2+sa3)(ib1+jb2)

whenever i+ j ≤ h. Therefore by Corollary A.8.12, we can derive

log(|FN (u)|) ≥ −3Nh(q+1) log(t)−q
(
6BNh+

log 2
2

+
6B`3N4

N3 − q`2N2
+3 log(N)

)
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Consequently, by (2) and (3) we obtain

(3)
(h− 1)2

2
≤ (q + 1)

(
9BNh+

log 2
2

+
6B`3N4

N3 − q`2N2
+ 3 log(N)

)
.

therefore (h−1)2

2 ≤ (q + 1)
(
9BNh+O(N)) and hence

h− 2 ≤ (h− 1)2

h
≤ 18B(q + 1)N +O(1)

and hence h − 1 ≤ 18B(q + 1)N + O(1). Now, since (h−1)2

2 ≥ `2N2, we have√
2`N ≤ 18B(q+ 1)N +O(1), hence ` ≤ 9

√
2B(q+ 1) when N is big enough, a

contradiction to the hypothesis on `.

And similarly:

Theorem B.17.5: Let a1, a2, a3, (resp. b1, b2 ∈ K) be Q-linearly indepen-
dant and such that maxi=1,2,3 j=1,2 |aibj | < 1. Then at least one of the numbers
eaibj is transcendental over Q.

As explained above, when reducing to 4 exponentials eaibj , i = 1, 2, j =
1, 2, the transcendence of one of the four numbers is just a conjecture in the
general case. Here we give a proof in the particular case when one of the ratios
a1
a2

or b1
b2

is algebraic.

Theorem B.17.6: Let a1, a2, (resp. b1, b2 ∈ Cp) be Q-linearly independant
and such that maxi=1,2 j=1,2 |aibj | < R and such that a1

a2
is algebraic. Then at

least one of the numbers eaibj is transcendental.

Proof. Assume that all numbers eaibj are algebraic. Without loss of generality,
we can assume that |bi| ≤ 1

p2 , i = 1, 2. Put a =
a1

a2
. Let t ∈ N∗ be such that

all the teaibj and ta are integral over Z for every i = 1, 2 and every j = 1, 2
and let B = log

(
tmax(|a|,max{|eaibj | , i = 1, 2, j = 1, 2}

)
. Without loss of

generality, we can asume that a1 = 1, hence a = a2. Since a is algebraic, we can
put E = Q[a, (eaibj )i=1,2, j=1,2] and q = [E : Q]. We can find integers s, l ∈ N
satisffying

(1) s > (q + 1)Bl(12 +
qs

l2 − qs
).

Consider now the linear system of sN2 equations with coefficients in E:

(SN )
∑

1≤m≤lN,1≤n≤lN

cm,n,N (m+ na)ke(m+na)(ib1+jb2) = 0, 1 ≤ i ≤ N,
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1 ≤ j ≤ N. We notice that the coefficients (m + na)ke(m+na)(ib1+jb2) of (SN )
satisfy

(2) log
(
|(m+ na)ke(m+na)(ib1+jb2)|

)
≤ 2BlN2 + k log(2N +B)

1 ≤ m ≤ lN, 1 ≤ n ≤ lN, 1 ≤ i ≤ N, 1 ≤ j ≤ N, 1 ≤ k ≤ s.

By Siegel’s Lemma B.17.1 and by (2) there exists a family of solutions
(cm,n,N )1≤m≤lN,1≤n≤lN in Z such that

log |cm,n,N |∞ ≤
log 2

2
+ (BlN2 + s(log 2N +B))

qsN2

(l2N2 − qsN2)

therefore

(3) log |cm,n,N |∞ ≤
qsBlN4

l2N2 − qsN2 +O(log(N))
.

Now, let h be the smallest integer such that (fN )(h)(ib1 + jb2) 6= 0 for some
pair (i0, j0) such that i0 ≤ N, j0 ≤ N . By definition, s < h. Consequently, the
number of zeros of fN in d(0, 1

p2 ) is at least (h− 1)N2, taking multiplicity into
account. Set u = i0b1 + j0b2. Consider now some cm,n,Ne(m+na)(ib1+jb2) at the
point u. First, we have

log |e(m+na)(i0b1+j0b2)| ≤ 4BlN2.

Consequently, by (3), when N is big enough we can derive

log |cm,n,Ne(m+na)(i0b1+j0b2)| ≤ qsBlN4

l2N2 − qsN2
+ 4BlN2 +O(log(N))

hence and therefore

log |f (h)
N (u)| ≤ qsBlN4

l2N2 − qsN2
+ 4BlN2 +O(log(N)).

On the other hand, we can check that

log(den((m+ na)he(m+na)(i0b1+j0b2)) ≤ 2BlN2 + hB +O(log(N))

hence log(den(f (h)
N (u))) ≤ 2BlN2+sB+O(log(N)). Consequently, by Corollary

A.8.11, we can derive

(4)

log(|f (h)
N (u)|) ≥ −(q+ 1)(

qsBlN4

l2N2 − qsN2
+ 4BlN2 + 8BlN2 + 2hB+O(log(N))).
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As in Theorem B.17.4, we have ‖fN‖ ≤ 1, hence by Theorem B.9.1, we can
derive ‖f (h)

N ‖ ≤
1
ph

. Next, cm,n,N ∈ Z ∀m,n ∈ N consequently, by Corol-
lary B.13.30 we have log(|fN |( 1

p2 )) ≤ −(h − 1)N2 and by Theorem B.9.1,

log(|f (h)
N |(

1
p2 )) ≤ −(h− 1)N2 + h. Therefore by (2) and (4), we obtain

(5) (h− 1)N2 − h ≤ (q + 1)(
qsBlN4

l2N2 − qsN2
+ 12BlN2 + 2hB) +O(log(N)).

Now, by (1) we have s > (q + 1)Bl(12 +
qs

l2 − qs
) and since h > s, we can see

that (5) is impossible when N is big enough, which ends the proof.

Similarly:

Theorem B.17.7: Let a1, a2, (resp. b1, b2 ∈ K) be Q-linearly independant
and such that maxi=1,2 j=1,2 |aibj | < 1 and such that a1

a2
is algebraic. Then at

least one of the numbers eaibj is transcendental over Q.
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B.18. Divisors of analytic functions

In this paragraph we shall define divisors in K or in a disk d(a,R−). We then
shall define the divisor of an analytic function and of an ideal. Given a divisor
T on K, there is no problem to construct an entire function whose divisor is
T . But given a divisor T on a disk d(a, r−), it is not always possible to find
an analytic function (in that disk) whose divisor is T . This is Lazard’s problem
that we will examine in the next chapter.

Definition: We call a divisor in K (resp. a divisor in a disk d(a,R−)) a
mapping T from K (resp. from d(a,R−)) to N whose support is countable and
has a finite intersection with each disk d(a, r), ∀r > 0 (resp. ∀r ∈]0, R[). Thus,
a divisor on K (resp. of d(a,R−)) is characterized by a sequence (an, qn)n∈N
with an ∈ K, limn→∞ |an| = ∞, (resp. an ∈ d(a,R−), limn→∞ |an − a| = R),
|an| ≤ |an+1| and qn ∈ N∗ ∀n ∈ N. So, we will frequently denote a divisor by
the sequence (an, qn)n∈N which characterizes it.

The set of divisors on K (resp. on d(a,R−)) is provided with a natural
additive law that makes it a semi-group. It is also provided with a natural
order relation: given two divisors T and T ′, we can set T ≤ T ′ when T (α) ≤
T ′(α) ∀α ∈ d(a,R−). Moreover, if T, T ′ are two divisors such that T (α) ≥

T ′(α) ∀α ∈ d(0, R−), we can define the divisor
T

T ′
.

Given f ∈ A(K) (resp. f ∈ A(d(a,R−))), we can define the divisor of f ,
denoted by D(f) on K (resp. of d(a,R−)) as D(f)(α) = 0 whenever f(α) 6= 0
and D(f)(α) = s when f has a zero of order s at α.

Similarly, given an ideal I of A(K) (resp. of A(d(a,R−))) we will denote by
D(I) the lower bound of the the D(f) f ∈ I and D(I) will be called the divisor
of I.

Finally, given a divisor T = (an, qn)n∈N, we shall denote by T the divisor
(an, 1)n∈N. Let T = (an, qn)n∈N be a divisor on K (resp. of d(a,R−)). For every

r > 0 (resp. r ∈]0, R[) we set |T |(r) =
∏
|aj |≤r

( r

|aj |

)qj
. The divisor T on d(a,R−)

is said to be bounded if lim
r→R
|T |(r) <∞ and then we put ‖T‖ = lim

r→R
|T |(r).

The K-algebra A(K) is provided with the following topology of K-algebra:
given f ∈ A(K), the neighborhoods of f are the setsW(f, r, ε) = {h ∈ {A(K) | |f−
h|(r) ≤ ε}, with r > 0, ε > 0. Similarly, given a ∈ K and R > 0, the
K-algebra A(d(a,R−)) is provided with the following topology of K-algebra:
given f ∈ A(d(a,R−)), the neighborhoods of f are the sets W(f, r, ε) = {h ∈
{A(d(a,R−)) | |f − h|(r) ≤ ε}, with 0 < r < R, ε > 0.

Remark: Let f ∈ A(d(a,R−)) and let (an, qn)n∈N = D(f). Then ωan(f) =
qn ∀n ∈ N and ωα(f) = 0 ∀α ∈ d(a,R−) \ {an | n ∈ N}.

Theorem B.18.1 is immediate:
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Theorem B.18.1 Let a ∈ K, R > 0. Let f, g ∈ A(K) (resp. f, g ∈
calA((.a,R

−))) be such that D(f) ≥ D(g). Then there exists h ∈ A(K) (resp.
h ∈ A(d(a,R−))) such that f = gh.

Proof. Let T = D(g) = (an, qn)n∈N. Let us fix r > 0 (resp. r ∈]0, R[), let s ∈ N

be such that |an| ≤ r ∀n ≤ s and |an| > r ∀n > s. Let Pr(x) =
s∏

n=0

(1− x

an

qn
.

We can factorise f in the form Prf̂ and similarly, we can factorize g in the form

Pr ĝ, hence
f

g
=
f̂

ĝ
. Since ĝ has no zero in d(0, r) it is invertible in H(d(0, r)),

hence
f

g
belongs to H(d(0, r)). This is true for all r > 0 (resp. for all r ∈]0, R[)

and hence
f

g
belongs to A(K) (resp. to A(d(a,R−))).

Corollary B.18.2 Let a ∈ K, R > 0. Let I be an ideal of A(K) (resp. an
ideal of A(d(a,R−))) and suppose that there exists g ∈ I such that D(g) = D(I).
Then I = gA(K) (resp. I = gA(d(a,R−))).

As an immediate application of the definitions, by Theorem B.13.26 we have
Lemma B.18.3:

Lemma B.18.3: Let R ∈ R∗+ and let f, g ∈ A(d(0, R−) be such that D(f) ≤
D(g). Then, given r, s ∈]0, R[ such that r < s we have Ψ(f, log s)−Ψ(f, log r) ≤
Ψ(g, log s)−Ψ(g, log r).

In the whole field K, given a divisor T , it is always possible to find an entire
function admitting T for divisor.

Theorem B.18.4: Let T = (αn, qn)n∈N be divisor of K The infinite product
∞∏
n=1

(1− x

αn
)qn is uniformly convergent in all bounded subsets of K and defines

an entire function f ∈ A(K) such that D(f) = T . Moreover, given g ∈ A(K)
such that D(g) = T , then g is of the form λf .

Proof. We assume that |αn| ≤ |αn+1| ∀n ∈ N. Let us fix R > 0 and set
fm(x) =

∏m
n=1(1− x

αn
)qn . Consider N ∈ N such that |αN | > R and m ≥ N .

On the one hand, |fm|(R) = |fN |(R). Set M = |fN |(R). On the other hand we
check that

|fm+1(x)− fm(x)| = |
m∏
n=1

(1− x

αn
)qn ||(1− x

αm+1
)qm+1 − 1)| ≤

≤M
∣∣∣ qm+1∑
k=1

(−1)k
(
qm+1

k

)
(

x

αm+1
)k
∣∣∣ ≤M R

|αm+1|
∀x ∈ d(0, R).



182 Analytic elements and analytic functions

Consequently, |fm+1 − fm|(R) ≤ M
R

|αm+1|
, which shows that the sequence

(fm)m∈N is uniformly converging in d(0, R) to an element of H(d(0, R)), hence
to a power series. This is true for all R > 0, hence the limit f defined in K
belongs to A(K). Now, for each m ∈ N, let rm = |αm|. By construction, the
zeros of fm in d(0, rm) are the αn with 1 ≤ n ≤ m, each with multiplicity qn.
And next, we notice that |(1− x

αn
)qn | = 1 ∀n > m, ∀x ∈ d(0, rm). Consequently,

the zeros of f in d(0, rm) are exactly those of fm. Now, consider g ∈ A(K) such
that D(g) = T . The function h ∈ A(K) such that f = gh has no zero in K and
hence is a constant.

Corollary B.18.5: For every divisor T on K, there exists f ∈ A(K) such that
D(f) = T . Moreover, if f(0) = 1, f satisfies |f |(r) = |T |(r) ∀r > 0.

Corollary B.18.6: Let T be a divisor on K, let g ∈ A(K) be such that D(g) =
T and let f ∈ A(K) be such that D(f) ≥ T . Then there exists h ∈ A(K) such
that f = gh.

Proof. Indeed, let E =
D(f)
T

and let h ∈ A(K) be such that D(h) =
D(f)
T

.

Then D(f) = D(gh) hence by Theorem B.18.4
f

gh
is a constant and we can

choose h such that the constant is 1.

Theorem B.18.7: Let f ∈ A(K) have a divisor of the form (an, sqn) with
s ∈ N∗. Then, there exists g ∈ A(K) such that f = gs.

Proof. By Corollary B.18.5 there exists h ∈ A(K) such that D(h) = (an, qn).

Then,
f

hs
has no zero and no pole and therefore it is a constant λ. Let l ∈ K

be such that ls = λ and let g = lh. Then gs = f .

So, by Theorem B.18.4, given a divisor T on K, we can find an entire function
whose divisor is just T . It is natural to consider the same problem inside a disk
d(a, r−). Indeed, in C, it is known that the similar problem always admits a
solution: in the whole field C as well as well as inside an open disk. Actually,
in the general context of a complete ultrametric algebraically closed field K, the
problem has no solution when K is not spherically complete.

This problem was first considered by M. Lazard [72] and we will detail the
solutions he gave. First, we will construct a function f whose divisor is bigger
than the given divisor but narrows it [58].

We shall deal with the problem by showing that given a sequence (an)n∈N
such that |an − a| < R for all n ∈ N and lim

n→∞
|an − a| = R, a sequence of

integers (qn)n∈N and a number ε > 0, there exists an analytic function f ∈
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A(d(0, R−)) that admits each an as a zero of order tn ≥ qn and such that
|f |(r) ≤ (1 + ε) |T |(r). First we need Lemma B.18.8

Lemma B.18.8 Let T = (an, qn)n∈N be a divisor on d(a,R−) and let f ∈
A(d(a,R−)) satisfy f(0) = 1, D(f) ≥ T and |f |(r) = |T |(r) ∀r ∈]0, R[. Then
D(f) = T .

Proof. Since f(0) = 1, we may write f in the form
∞∏
j=0

(1− x

aj
)sj with qj ≤

sj ∀j ∈ N. By hypothesis, we have qj ≤ sj ∀j ∈ N. Suppose that sk > qk
for some index k and let rn = |an|, n ∈ N. Since |f |(rk) = |T |(rk), when
r ∈]rk, rk+1[, we have |f |(r) = |f |(rk)(

r

rk
)sk , |T |(r) = |f |(rk)(

r

rk
)qk and since

|f |(r) = |T |(r) ∀r ∈]0, R[, clearly sk = qk.

Notation: For each divisor E of K, we denote by T (E) the set of f ∈ A(K)
such that E ≤ D(f). Similarly, for each divisor E of d(a,R−), we denote by
TR(E) the set of f ∈ A(d(a,R−)) such that E ≤ D(f).

Theorem B.18.9: For every divisor E of K, T (E) is a closed ideal of A(K).
Moreover, T is a bijection from the set of divisors of K onto the set of closed
ideals of A(K). Further, given a closed ideal I of A(K), then I = T (D(I)).

Similarly, we have Theorem B.18.10:

Theorem B.18.10: Let a ∈ K and take R > 0. For every divisor E of
d(a,R−), TR(E) is a closed ideal of A(d(a,R−)). Moreover TR is a bijection
from the set of divisors of d(a,R−) onto the set of closed ideals of A(d(a,R−)).
Further, given a closed ideal I of A(d(a,R−))), then I = TR(D(I)).

Proof. (Theorems B.18.9 and B.18.10) Let E be a divisor of K (resp. of d(a,R−)).
First, let us check that T (E) (resp. TR(E)) is a closed ideal of A(K) (resp. of
A(d(a,R−))). Let E = (an, qn)n∈N and let (fm)m∈N be a sequence of elements
of T (E) (resp. of TR(E)) converging to a limit f in A(K) (resp. in A(d(a,R−))).
For every n ∈ N, each fm admits an as a zero of order at least qn, hence by
Lemma B.7.1, so does f . Consequently, f belongs to T (E) (resp. f belongs to
TR(E)).

Now, let us show that T (resp. TR) is injective Let E, F be two distinct
divisors of K (resp. of d(a,R−)). Without loss of generality, we can suppose
that E admits a pair (b, s) with s > 0 and that F either does not admit any pair
(b,m) or admits a pair (b,m) with m < s. Let f ∈ T (F ) (resp. let f ∈ TR(F )
and suppose that ωb(f) ≥ s. Then by Lemma B.7.1 f factorizes in the form
(x− b)s−mg with g ∈ A(K) (resp. g ∈ A(d(a,R−))) and of course g belongs to
T (F ) (resp. to TR(F )). But by construction, g does not belong to T (E) (resp.
to TR(E)) because ωb(g) < s. Therefore T (E) 6= T (F ) (resp. TR(E) 6= TR(F )).
So, T (resp. TR) is injective.
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Now, let us show that T (resp. TR) is injectif. Let E, F be two distinct
divisors of K (resp. of d(a,R−)). By Theorem B.18.4 there exists f ∈ A(K)
(resp. f ∈ A(d(a,R−))) such that D(f) = F , hence D(f) 6= E. Therefore,
D(f) /∈ T (E) and hence T (E) 6= T (F ). So, T is injective (resp. TR(E) 6=
TR(F ). So, TR is injective).

Let us show that it is also surjective. Let I be a closed ideal of A(K) (resp.
of A(d(a,R−))) and let E = D(I). Then E is of the form (an, qn)n∈N with
|an| ≤ |an+1| and lim

n→+∞
|an| = +∞ (resp. lim

n→+∞
|an| = R), hence there is a

unique s ∈ N such that an ∈ d(0, r) ∀n ≤ s and an /∈ d(0, r) ∀n > s.
Let J = T (E) (resp. J = TR(E)). Then of course, I ⊂ J . Let us show

that J ⊂ I. Let f ∈ J and take r > 0. Denoting by Pr the polynomial
s∏
i=0

(X − ai)qi by Theorem B.15.2, I∩H(d(0, r)) = Pr(x)H(d(0, r)). But now all

functions g ∈ J ∩H(d(0, r)) also are of the form Pr(x)h(x) with h ∈ H(d(0, r)).

Consequently, in H(d(0, r)) we can write f in the form f =
m∑
j=1

gjhj with gj ∈ I

and hj ∈ H(d(0, r)). Let ε > 0 be fixed.
For each j = 1, ...,m, narrowing each hj by a polynomial `j in H(d(0, r)),

we can find `j ∈ K[x] such that |gj(hj − `j)|(r) ≤ ε. Now, let φr =
m∑
j=1

gj`j .

Then φr belongs to I and satisfies |φr − f |(r) ≤ ε. This is true for each r > 0
and for every ε > 0. Consequently, since I is closed, f belongs to I. This
finishes proving that T (rep. TR) is surjective. Further, we have proven that
I = T (D(I)) (resp. I = TR(D(I))).

Corollary B.18.11: Every closed ideal of A(K) is principal.

Proof. Indeed, consider a closed ideal I and let E = D(I). By Theorem B.18.9
I is of the form T (E) with E = D(I). By Theorem B.18.4 there exists g ∈ A(K)
such that D(g) = E and of course, g belongs to I. Hence gA(K) ⊂ I. Now, let
f ∈ I. Then D(f) ≥ E, hence by Theorem B.18.1, f factorizes in the form gh
with h ∈ A(K), hence I = gA(K).

Theorem B.18.12 Let r ∈ |K∗|, let f ∈ H(C(0, r)) and let P ∈ K[x] have
all its zeros in d(0, r). There exists g ∈ H(C(0, r)) and L ∈ K[x] unique such
that f = Pg + L, deg(L) < deg(P ), Ψ(R, log r) ≤ Ψ(f, log r), Ψ(g, log r) ≤
Ψ(f, log r)−Ψ(P, log r). Moreover, if f belongs to H(d(0, r)), then so does g.

Proof. Since r ∈ |K|, without loss of generality we may assume that r = 1.
Similarly, we may also assume that Ψ(P, 0) = Ψ(f, 0) = 0, so P is quasi-monic.
Thus, the problem now consists of finding g ∈ H(C(0, 1)) and L ∈ K[x], each
unique, satisfying the statements.
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Let f(x) =
∞∑
−∞

amx
m and for each n ∈ N, let fn(x) =

n∑
m=−n

amx
m. For

each n ∈ N, set un = sup
|j|∞>n

|aj |. Then lim
n→+∞

an = lim
n→−∞

an = 0. Next, we

notice that xnP is quasi-monic like P . By applying Lemma A.4.3 to xnfn, we
have a Euclidean division of xnfn by xnP in the form xnfn = xnPgn + Sn
with Sn ∈ K[x], deg(Sn) < n + deg(P ), Ψ(Sn, 0) ≤ 0, Ψ(gn, 0) ≤ 0. Now, by
construction Sn = xn(fn−Pgn), hence Sn is of the form xnLn, with Ln ∈ K[x],
deg(Ln) < deg(P ) and Ψ(Ln, 0) = Ψ(Sn, 0) ≤ 0. So, fn = Pgn + Ln.

Consequently, fn+1 − fn = P (gn+1 − gn) + Ln+1 − Ln. By applying again
Lemma A.4.3 to xn+1(fn+1−fn) we can check that Ψ(gn+1−gn, 0) ≤ log(un) and
Ψ(Ln+1−Ln, 0) ≤ log(un), hence both sequences (gn)n∈N, (Ln)n∈N converge in
H(C(0, 1)) and more precisely, the sequence (Ln) converges to a polynomial L
of degree < deg(P ). Moreover, setting g = lim

n→∞
gn, clearly we have f = Pg+L

and Ψ(g, 0) ≤ 0, Ψ(L, 0) ≤ 0, which shows the existence of g and L in the first
claim.

Now let us check that they are unique satisfying these relations. Suppose
we have h ∈ H(C(0, 1)) and S ∈ K[x] satisfying the same properties, with
particularly f = Ph + S, deg(S) < deg(P ). Then P (g − h) = S − L. Since
deg(S − L) < deg(P ), S − L is an element of H(C(0, 1)) having strictly less
zeros than P in C(0, 1), a contradiction, except if g = h, hence L = S.

Now, assume that f lies in H(d(0, 1)). Then by Corollary B.12.9, f −L is a
quasi-invertible element of H(d(0, 1)), hence is of the form Qφ with φ invertible
in H(d(0, 1)) and Q ∈ K[x], having all its zeros in d(0, 1). Hence, Pg = Qφ.
This holds in H(C(0, 1)). But since P has all its zeros in C(0, 1), P must divide
Q: say Q = PV , with V ∈ K[x] having all its zeros in d(0, 1). So, Pg = V φ,
hence g = V φ and by hypothesis both V, φ lie in H(d(0, 1)), hence so does g,
which completes the proof.

Definition: Given r ∈ |K∗|, the division of an element f of H(C(0, r)) by a
polynomial P having all its zeros in d(0, r), as defined in Theorem B.18.12, will
be called Euclidean division of f by P in H(C(0, r)) or r-Euclidean division of
f by P .

Lemma B.18.13: Let (un)n∈N be a sequence in R+ such that
∞∑
n=0

un < +∞.

Let A =
∞∑
n=0

un and let B > A. There exists an increasing sequence (qn)n∈N

such that lim
n→∞

qn = +∞ and such that
∞∑
n=0

qnun ≤ B.

Proof. Let E = B − A. For every n ∈ N we denote by sn the smallest integer

such that
∞∑
j=sn

uj ≤ 4−nE. Then for every j ∈ N such that sn ≤ j < sn+1 we
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set qj = 2n. We have
sn+1−1∑
j=sn

qjuj ≤ 2−nE, hence
sn+1−1∑
j=0

qjuj ≤ A + E

n∑
k=1

2−k

and finally
∞∑
j=0

qjuj ≤ B.

Theorem B.18.14: Let T = (an, qn)n∈N be a divisor on the disk d(a,R−)
with an 6= 0 ∀n ∈ N and let ε > 0. There exists f ∈ A(d(a,R−)) such that
D(f) ≥ T , f(a) = 1 and |f |(r) ≤ |T |(r)(1 + ε) ∀r ∈]0, R[.

Proof. Without loss of generality, we can assume a = 0. The set {|aj | |j ∈ N}
is obviously equal to the image of a strictly increasing sequence of limit R that we
will denote by (rm)m∈N. For each m ∈ N, the set Sm of the aj lying in C(0, rm)

is of the form {ahm , ahm+1 , ..., akm}. We set B = 1+ε and Pm =
km∏
j=hm

(1− x

aj
)qj .

We can construct a polynomial whose divisor is (an, qn)n<t. For every m ∈ N
we set µm = log rm, and λ = log(B).

Now, by Lemma B.18.13 there exists an increasing sequence (tn)n∈N in N
such that lim

n→∞
tn = +∞ and such that

(1)
∞∑
j=0

tj(µj+1 − µj) ≤ λ.

For every s ∈ N we put τ(s) =
s∑
j=0

tj(µj+1 − µj), and gs =
s∏

m=0

Pm. We notice

that Ψ(gq, µ) = Ψ(gs, µ) whenever µ ≤ µq and q ≤ s. So, we can define the func-
tion ` from ]−∞, logS[ into R as `(µ) = lim

s→∞
Ψ(gs, µ). Then ` is an increasing

function in µ that satisfies

(2) `(µ) =
k(m)∑
j=0

qj(µ−Ψ(aj)) whenever µ ∈ [µm, µm+1].

We will construct a sequence (fs)s∈N in K[x] satisfying the following relations
(αs), (βs), (γs), (δs) for every s ∈ N and (εs), (ϕs) for every s ∈ N∗.
(αs) fs(0) = 1,
(βs) Pj divides fs for every j ≤ s,
(γs) Ψ(fs, µs+1) ≤ `(µs+1) + τ(s),
(δs) Ψ(fs, µ) ≤ `(µ) + λ whenever µ < logS,
(εs) Ψ(fs − fs−1, µ) ≤ `(µ) + ts(µ− µs) + λ whenever µ ≤ µs,
(ϕs) Ψ(fs − fs−1, µ) ≤ `(µs) + ts(µ− µs) + τ(s) whenever µ ∈]µs, logS].

We will proceed by induction and will prove that when (αs), (βs), (γs), (δs)
are satisfied for s ∈ N, then we can derive (αs+1), (βs+1), (γs+1), (δs+1), (εs+1), (ϕs+1).
By taking f0 = P0, we check that (α0), (β0), (γ0), (δ0) are obviously satisfied.
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We now suppose already constructed fm satisfying (αm), (βm), (γm), (δm) for
every m = 0, ..., s and (εm), (ϕm) for every m = 1, ..., s. We will define fs+1

satisfying
(αs+1), (βs+1), (γs+1), (δs+1), (εs+1), (ϕs+1). It is seen that each polynomial Ps
has all its zeros in C(0, rs).

Let Rs+1 be the rest of the Euclidean division of fs by Ps+1 in H(C(0, rs+1)).
Let Qs+1 = xts+1gs. We have
(3) Ψ(Qs+1, µ) = µts+1 + Ψ(gs, µ) whenever µ ∈ R.
We notice that Qs+1 admits no zero in C(0, rs+1) and then is invertible in
H(C(0, rs+1)). As a consequence, according to Theorem B.18.12, we can perform

the rs+1-Euclidean division of
Rs+1

Qs+1
by Ps+1 in H(C(0, rs+1)). Let Vs+1 be

the rest of this division. Thus,
Rs+1

Qs+1
is of the form Ts+1Ps+1 + Vs+1 with

Ts+1 ∈ H(C(0, rs+1)) and
(4) Ψ(Qs+1Vs+1, µs+1) ≤ Ψ(Rs+1, µs+1)
we have Rs+1 = Qs+1(Ts+1Ps+1 + Vs+1). Now we put fs+1 = fs − Qs+1Vs+1.
Of course, fs+1 satisfies (αs+1). We will check that fs+1 satisfies (βs+1). By
definition, each Pj divides gs for every j = 0, ..., s and hence it divides Qs+1.
Next, by (βs), Pj also divides fs. Consequently, Pj divides fs+1 for every
j = 0, ..., s.. Moreover, Ps+1 divides both fs −Rs+1 and Qs+1Ts+1Ps+1. Hence
it also divides fs+1 and thereby (βs+1) is satisfied.

Now we will prove (ϕs+1). By (4)Rs+1 satisfies Ψ(Rs+1, µs+1) ≤ Ψ(fs, µs+1).
Hence by Relation (γs) we have
(5) Ψ(Rs+1, µs+1) ≤ `(µs+1) + τ(s) = Ψ(gs+1, µs+1) + τ(s).

Since deg(Rs+1) < deg(Ps+1) < deg(gs+1) and since all zeros of gs+1 lie
in d(0, rs+1), gs+1 has more zeros than Rs+1 in d(0, rs+1) and therefore, by
Theorem B.13.26 we have

Ψ(Rs+1, µ)−Ψ(Rs+1, µs+1) ≤ Ψ(gs+1, µ)−Ψ(gs+1, µs+1)

whenever µ ∈]µs+1, logS] and therefore by (5) we obtain
(6) Ψ(Rs+1, µ) ≤ Ψ(gs+1, µ) + τ(s) whenever µ ∈]µs+1, logS].

Since
Rs+1

Qs+1
= Ts+1Ps+1 + Vs+1, by Theorem B.18.12 we have Ψ(Qs+1Vs+1, µs+1)) ≤

Ψ(Rs+1, µs+1) and hence by (5), Ψ(Qs+1Vs+1, µs+1) ≤ `(µs+1) + τ(s). But
`(µs+1) = Ψ(gs+1, µs+1), hence by (6) we obtain

(7) Ψ(Qs+1Vs+1, µs+1) ≤ Ψ(gs+1, µs+1) + τ(s).

We notice that deg(Qs+1Vs+1) < deg(gs+1) + ts+1 and that all zeros of gs+1 lie
in d(0, rs+1). Hence by Theorem B.13.26 and by (3) and (7) we have

(8) Ψ(Qs+1Vs+1, µ) ≤ Ψ(gs+1, µ)+ts+1(µ−µs+1)+τ(s) for every µ ∈]µs+1, logS].

Actually, by definition of fs+1, we have Ψ(Qs+1Vs+1, µ) = Ψ(fs+1 − fs, µ) and
Ψ(gs+1, µ) ≤ `(µ) for every µ ∈]µs+1, logS], hence by (7) we have proved ϕs+1.
We will deduce (εs+1).
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In particular when µ = µs+2, we obtain

Ψ(Qs+1Vs+1, µs+2) ≤ `(µs+2) + ts+1(µs+2 − µs+1) + τ(s).

But we notice that ts+1(µs+2 − µs+1) + τ(s) = τ(s+ 1), hence

(9) Ψ(Qs+1Vs+1, µs+2) ≤ `(µs+2) + τ(s+ 1).

And, by (8) and (1) we obtain (10) Ψ(fs+1 − fs, µ) ≤ `(µ) + λ whenever

µ ∈]µs+1, logS]

Now we take µ ≤ µs+1. It is seen that

Ψ(Qs+1, µ)−Ψ(Qs+1, µs+1) = `(µ)− `(µs+1) + ts+1(µ− µs+1).

Therefore we have

Ψ(Qs+1Vs+1, µ) ≤ Ψ(Qs+1Vs+1, µs+1) + `(µ)− `(µs+1) + ts+1(µ− µs+1).

But by (8) we have Ψ(Qs+1Vs+1, µs+1) ≤ `(µs+1) + λ, hence we obtain
Ψ(Qs+1Vs+1, µ) ≤ `(µ) + λ + ts+1(µ − µs+1) whenever µ ≤ µs+1, and this is
(εs+1). In particular we have Ψ(fs+1−fs, µ) ≤ `(µ) +λ whenever µ ≤ µs+1 and
therefore by (δs) we obtain (δs+1).

Now we will show (γs+1). Obviously we have
(10) Ψ(f0, µs+2) ≤ `(µs+2).
Next, by Relations (ϕm)1≤m≤s+1 for every m ∈ N∗ we have

Ψ(fm − fm−1, µs+2) ≤ `(µm) + [tm(µs+2 − µm) + τ(m)].

But as the sequence (tm)m∈N is increasing, it is seen that

τ(m) + tm(µs+2 − µm) ≤
s+1∑
j=0

tj(µj+1 − µj) = τ(s+ 1).

Obviously `(µs+2) ≥ `(µm), hence we obtain Ψ(fm − fm−1, µs+2) ≤ `(µs+2) +
τ(s+1) whenever m = 1, ..., s+1. Finally by (10), fs+1 satisfies Ψ(fs+1, µs+2) ≤
`(µs+2) + τ(s+ 1) and this is (γs+1).

We notice that (εs) and (ϕs) are not used to prove

(αs+1), (βs+1), (γs+1), (δs+1), (εs+1), (ϕs+1).

Consequently, (ε1) and (ϕ1) are clearly proven by (α0), (β0), (γ0), (δ0) and

therefore we are now done with the recurrence. Therefore, we can now construct
the sequence (fs)s∈N satisfying (αs), (βs), (γs), (δs), (εs), (ϕs). By Relations
(εs) the sequence is easily seen to converge in each algebra H(d(0, u)) whenever
u ∈]0, S[. Indeed, given u ∈]0, S[ and N ∈ N such that µN < log u, by (εs+1) we
have

log(‖fs+1 − fs‖d(0,u)) = Ψ(fs+1 − fs, log u) ≤ `(log u)− ts(log u− µs+1) + λ
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hence log(‖fs+1 − fs‖d(0,u)) ≤ `(log u) − ts(log u − µN ) + λ, whenever s > N.
As lim

s→+∞
ts = +∞, it is seen that lim

s→∞
‖fs+1 − fs‖d(0,u) = 0.

Let f be the function defined in d(0, R−) as the limit of the sequence (fs)s∈N
in each disk d(0, u). Obviously, as an element of H(d(0, u)) for every u ∈]0, S[, f
belongs to A(d(0, R−)). By Relations (αs), f satisfies f(0) = 1.

We will check |f |(r) ≤ B|T |(r). Let u ∈]0, R[ be such that µN ≤ log u ≤
µN+1. We have log ‖f‖d(0,u) = Ψ(f, log u).

When s is big enough, Ψ(fs, log u) is clearly equal to Ψ(f, log u), hence f
satisfies log ‖f‖d(0,u) = Ψ(fs, log u) ≤ `(log u) + λ. Hence by (2) we obtain
|f |(r) ≤ B|T |(r). Now we just have to check that every aj is a zero of f of order
zj ≥ qj . Let m be such that hm ≥ j. For every s ≥ m, (1 − x

aj
)qj divides fs in

H(d(0, u)) (for every u ∈]0, S]), hence by Lemma B.7.1 (1− x

aj
)qj divides f in

H(d(0, u)) and this finishes the proof of Theorem B.18.14.

We can obtain a small improvement of Theorem B.18.14:

Theorem B.18.15: Let T = (an, qn)n∈N be a divisor on the disk d(a,R−)
with an 6= 0 ∀n ∈ N, let ε > 0 and ρ ∈]0, R[. There exists g ∈ A(d(a,R−)) such
that D(g) ≥ T , g(a) = 1 and |g|(r) ≤ |T |(r)(1 + ε) ∀r ∈]0, R[ and D(g)(α) =
T (α) ∀α ∈ d(a, ρ).

Proof. By Theorem B.18.14, we have a function f ∈ A(d(a,R−)) such that
D(f) ≥ T , f(a) = 1 and |f |(r) ≤ |T |(r)(1+ε) ∀r ∈]0, R[. Now, we can construct
a polynomial P (x) such that P (0) = 1 and admitting in d(a,R−) a divisor D(P )

satisfying D(P )(α) =
D(f)(α)
T (α)

∀α ∈ d(a, ρ) and D(P )(α) = 0 ∀α ∈ d(a,R−) \

d(a, ρ). Then the function g =
f

P
satisfies D(g)(α) = T (α) ∀α ∈ d(a, ρ),

T ≤ D(g) ≤ D(f) and hence |g|(r) ≤ |f |(r) ≤ |T |(r)(1 + ε) ∀r ∈]0, R[.

Remark: Here we may notice that H(d(0, R−)) is much smaller than
Ab(d(0, R−)). Indeed, by Theorem B.18.15, there exist functions f ∈ Ab(d(0, R−))
having infinitely many zeros in d(0, R−). But by Theorem B.12.8 any element
of H(d(0, R−)) is quasi-invertible and hence has finitely many zeros.
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B.19. Michel Lazard’s problem

This chapter is aimed at studying the following problem mentioned in Chap-
ter B.18 and first considered by M. Lazard in a tremendous work [72]. Let T be
a divisor on a disk d(a,R−). Does exist a function f ∈ A(d(a,R−)) such that
D(f) = T? The answer depends on whether or not K is spherically complete.

Theorems B.19.1 and B.19.4 were first proven in [72]. Proofs are long and
much technical. Here we shall try to give an easier presentation of the proofs
which is due to Labib Haddad. More precisely, when K is spherically complete,
Theorem B.19.4 shows the following result, as it was done in [72]: let T =
(an, qn) be a divisor on d(a,R−), with |an| ≤ |an+1| and |au(m)| < |au(m)+1|.

For each m ∈ N, let Pm(x) =
u(m+1)∏
j=u(m)+1

(x− aj) and let (Qm) ∈ K[x] be such

that |Qm|(ρm) ≤ |T |(ρm). Then there exists a function f ∈ A(d(a,R−)) such
that Pm divides f − Qm. Hence, in particular, given a divisor T on d(a,R−),
there exists a functions f analytic in d(a,R−), whose divisor is T .

Theorem B.19.1: Let K be not spherically complete and let (Dn)n∈N be a de-

creasing sequence of disks d(un, ρn) such that
∞⋂
n=0

Dn = ∅. Let R =
1

limn→∞ diam(Dn)
.

There exists sequences (cn)n∈N of d(0, R−) such that lim
n→∞

|cn| = R and such that

no function f ∈ A(d(0, R−)) admits for divisor the divisor T = (cn, 1)n∈N.

Proof. Without loss of generality, we may obviously assume that R > 1, hence
1
R

< 1 < R. Consequently, we may assume that D0 ⊂ d(0, R−). For each

n ∈ N, we set ρn = diam(Dn), hence ρn > ρn+1. For every n ∈ N we can take
αn ∈ Dn \Dn+1. Let βn = αn+1 − αn, n ∈ N, hence
(1) ρn+1 < |βn| ≤ ρn.

Consider the divisor T = (
1
βn
, 1)n∈N and suppose that there exists f ∈ A(d(0, R−))

whose divisor is exactly T . Without loss of generality we can assume that

f(x) =
∏
n∈N

(1 − βnx). Then f(x) is a series of the form 1 +
∞∑
n=1

anx
n. We will

show that α1 − a1 ∈ Dn ∀n ≥ 1.

Let us fix n ∈ N. We can check that αn − α1 =
n−1∑
j=1

βj , hence

αn− (α1−a1) = a1 +
n−1∑
j=1

βj . Since αn ∈ Dn, then α1−a1 lies in Dn if and only

if |a1 +
n−1∑
j=1

βj | ≤ ρn.
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For all n ∈ N, we set tn = |(βn)−1|. By (1) the sequence (tn) is strictly
increasing and satisfies:

(2) |an| =
n∏
j=1

tj ∀n ≥ 1.

Particularly, an 6= 0 ∀n ≥ 1. For each s ≥ 1, we put fs =
s∑

n=0

anx
n. Then

deg(fs) = s. By (2) we see that the s zeros of fs are distinct and are of the

form γsj , 1 ≤ j ≤ s, with |γsj | = tj . Thus, fs is of the form
s∏
j=1

(1− βs,jx), with

|βs,j | = |βj | = t−1
j . By identification of coefficients we obtain a1 = −

s∑
j=1

βs,j .

Consequently, when n ≤ s, we have

(3)
s∑
j=1

βj − βs,j = a1 +
s∑
j=1

βj .

Let us fix n ∈ N∗. By Theorem B.15.3 we can see that for each j = 1, ..., n,
we have lim

s→∞
βs,j = βj . Consequently, when s is big enough, we can see that

|
n−1∑
j=1

βj −
s∑
j=1

βs,j | ≤ ρn. Therefore by (3), we have |a1 +
n−1∑
j=1

βj | ≤ ρn.

Consequently, α1−a1 lies in Dn. This is true for every n ∈ N, a contradiction

to the hypothesis
∞⋂
n=0

Dn = ∅.

In order to prove Theorem B.19.4, we must introduce a set of notations that
will hold throughout the chapter.

Notation: We consider a divisor T on d(0, R−) of the form (ai,m,, qi,m)i≤um,m∈N,
where the points ai,m lie in the circle C(0, ρm) with 0 < ρm < ρm+1 ∀m ∈ N and

lim
m→+∞

ρm = R. We denote by (Pm)m∈N the polynomial Pm =
um∏
i=1

(
1− x

ai,m

)qi,m
whose zeros by definition, belong to the circle C(0, ρm) and for each m ∈ N, we
set dm = deg(Pm).

We denote by (Qm)m∈N a sequence of K[x] satisfying
|Qm|(ρm) ≤ |T |(ρm), deg(Qm) < dm ∀m ∈ N. We notice that |T |(r) =
s−1∏
m≥1

( r

ρm

)dm
whenever r ∈ [ρs−1, ρs]. Given q ∈ N, s ∈ N, r ∈]0, R[, we

set
ζ(q, s, r) = |T |(r)

(
r
R

)q
min

(
1,
(
r
ρs

))
, i.e.

ζ(q, s, r) = |T |(r)
(
r
R

)q(
r
ρs

)
∀r ∈]0, ρs],

ζ(q, s, r) = |T |(r)
(
r
R

)q
∀r ∈ [ρs, R[.
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Particularly, we notice that ζ(q, s, r) ≤ |T |(r) ∀r < R. Now, given n ∈ N, we

set τ(q, s, n) = inf
r<R

(ζ(q, s, r)
rn

)
.

Recall that the Euclidean division in H(C(0, r)) is defined in Chapter B.18.
We will denote by Σ(q, s) the subset of the h ∈ A(d(0, R−)) satisfying

α) h(0) = 1
β) |h|(r) ≤ |T |(r) ∀r < R,
γ) Pm divides h−Qm in A(d(0, R−)) ∀m = 0, ..., s
δ) the rest Xm of the Euclidean division of h by Pm in H(C(0, ρm)) satisfies

|Xm −Qm|(ρm) ≤ ζ(q,m, ρm) = |T |(ρm)
(ρm
R

)q
∀m ≥ 0.

Remark: By definition, q and n being fixed, the sequence in s: (τ(q, s, n))s∈N
is decreasing.

In the proof of Theorem B.19.4, we will use Lemmas B.19.2 and B.19.3.
Lemma B.19.2 is immediate:

Lemma B.19.2 Σ(q + 1, s) ⊂ Σ(q, s) and Σ(q, s) is a closed subset of A(d(0, R−)).

Lemma B.19.3 Let q ∈ N, s ∈ N∗, f ∈ Σ(q, s− 1). There exists g ∈ Σ(q, s)
such that |g − f |(r) ≤ ζ(q, s, r) ∀r < R.

Proof. Let h =
s−1∏
m=0

Pm and u = xq+1h. Then Pm and x have no zero in C(0, ρs)

hence they are invertible in H(C(0, ρs)) and hence so is u. For each m ∈ N,
we denote by Rm the rest of the Euclidean division of f by Pm in H(C(0, ρm)).
Since f ∈ Σ(q, s − 1), by γ) above, Pm divides f − Qm for every m ≤ s − 1,
hence Rm = Qm ∀m = 0, ..., s− 1.

Consider now the Euclidean division of (Qs −Rs)u−1 by Ps in H(C(0, ρs)):
(Qs −Rs)u−1 = EPs + S, with deg(S) < ds, E ∈ H(C(0, ρs)) and
|S(ρs)| ≤ |(Qs −Rs)u−1|(ρs), hence

(1) |Su|(ρs) ≤ |(Qs −Rs)|(ρs).
We then take g = f + Su, hence g = f + Shxq+1. We shall show that g

belongs to Σ(q, s) and that |g − f |(r) ≤ ζ(q, s, r) ∀r < R. We notice that g
belongs to A(d(0, R−)) and that g(0) = f(0) = 1.

Next, by hypothesis, Ps divides f − Rs and by construction divides Su +
Rs −Qs. But g −Qs = f + Su−Qs = f −Rs + Su+Rs −Qs ∈ A(d(0, R−)),
hence Ps divides g −Qs in A(d(0, R−)).

Now, by hypothesis, f lies in Σ(q, s − 1) hence particularly |f |(r) ≤ |T |(r)
and we have

(2) |Qm −Rm|(ρm) ≤ |T |(ρm)
(ρm
R

)q
∀m ≥ 1.

Thus, by (1) and (2) we have

(3) |g − f |(ρs) ≤ |T |(ρs)
(ρs
R

)q
.
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But since |S| is an increasing function in r, we have |S|(r) ≤ |S|(ρs) whenever
r ≤ ρs. On the other hand, |h|(r) = |T |(r) ∀r ≤ ρs. And, as we saw,

|g − f |(ρs) = |Su|(ρs) = |Shxq+1|(ρs) = |S|(ρs)|T |(ρs)(ρs)q+1 ≤ |T |(ρs)
(ρs
R

)q
.

Consequently, |S|(r) ≤ |S|(ρs) ≤
1

Rqρs
∀r ≤ ρs and hence

(4) |g − f |(r) = |Shxq+1|(r) = |S|(r)|h|(r)rq+1 ≤ |T |(r)
(ρs
R

)q( r
ρs

)
∀r ≤ ρs.

Now, when r ≥ ρs, we have

|T |(r) =
∏
m≥1

|Pm|(r) = |h|(r)
∏
m≥s

|Pm|(r) ≥ |h|(r)|Ps|(r) = |h|(r)
( r
ρs

)ds
.

Next, Sxq+1 is of the form λ
∏m
j=1(x − xj) and is a polynomial of degree

m ≤ q + ds, hence

|xq+1S|(r)
|xq+1S|(ρs)

=
m∏
j=1

|x− xj |(r)
|x− xj |(ρs)

≤
( r
ρs

)q+ds
.

Thus,

|g−f |(r) = |Shxq+1|(r) = |Sxq+1|(r)|h|(r) ≤ |Sxq+1|(ρs)
( r
ρs

)q+ds(ρs
r

)ds
|T |(r)

= |T |(r)
( r
ρs

)q
|Sxq+1|(ρs) = |T |(r)

( r
ρs

)q
(ρs)q+1|S|(ρs)

≤ |T |(r)rq(ρs)
1

Rqρs
= |T |(r)

( r
R

)q
.

And finally, with (4) we obtain |g − f |(r) ≤ ζ(q, s, r) ∀r ∈]0, R[.

Theorem B.19.4: Suppose K is spherically complete. Assume that |Qm|(ρm) ≤
|T |(ρm) ∀m ∈ N. Let R ∈]0,+∞[. There exists f ∈ A(d(0, R−)) satisfying

i) f(0) = 1,
ii) |f |(r) ≤ |T |(r) ∀r < R,
iii) Pm divides f −Qm in A(d(0, R−)).

Proof. We mean to construct a sequence of functions (fq)q∈N which belong to
A(d(0, R−)), converging in A(d(0, R−)) to a function f satisfying the claim.

We first fix q ∈ N and take fq ∈ Σ(q, 0). Let fq(x) =
∞∑
n=0

anx
n. We will

construct a sequence (gq,s)s∈N satisfying gq,s ∈ Σ(q, s) and |gq,s − gq,s−1|(r) ≤
ζ(q, s, r), with gq,0 = fq. Suppose already constructed the gq,j for j = 0, ..., s−1.
By Lemma B.19.3 there exists h ∈ Σ(q, s) such that |h− gq,s−1|(r) ≤ ζ(q, s, r).
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So, we can set gq,s = h and the sequence is then defined by induction for all
s ∈ N.

Now, for each s ∈ N we set gq,s(x) =
∞∑
n=0

bq,s,nx
n. Since by construction the

sequence gq,s satisfies
(1) |gq,s − gq,s−1|(r) ≤ ζ(q, s, r)∀r < R,
then for each fixed n ∈ N, the sequence (bq,s,n)s∈N satisfies |bq,s,n − bq,s−1,n| ≤
τ(q, s, n). Thus, for each fixed n ∈ N, we consider the sequence of disks
(Ds,n)s∈N defined asDq,s,n = d(bq,s,n, τ(q, s, n)). Since the sequence (τ(q, s, n))s∈N
is decreasing and since |bq,s,n − bq,s−1,n| ≤ τ(q, s, n), the sequence of disks
(Dq,s,n)s∈N is decreasing with respect to the inclusion. Consequently, since

K is spherically complete, for each n ∈ N, there exists aq+1,n ∈
∞⋂
s=0

Dq,s,n. Par-

ticularly, since τ(q, s, n) = 0 ∀n ≤ q, we notice that bq,s,0 = bq,s−1,0 = 1 because
gq,s−1 ∈ Σ(q, s− 1). Consequently, aq+1,0 = 1.

Now, we will show that fq+1 belongs to Σ(q+1, 0). Let fq+1(x) =
∞∑
n=0

aq+1,nx
n.

Since aq+1,0 = 1, fq+1 satisfies Relation α). Next, by construction, we have
|aq+1,n − bq,s−1,n| ≤ τ(q, s, n) ≤ τ(q, 1, n) ∀n ∈ N hence obviously |aq+1,n −
aq,n| ≤ τ(q, 1, n) ∀n ∈ N. Consequently, |aq+1,n − aq,n|rn ≤ ζ(q, 1, r) ∀r < R,
hence

(2) |fq+1 − fq|(r) ≤ ζ(q, 1, r) ≤ |T |(r)
(
r
R

)q
∀r < R. Now since, by hypothesis,

|fq|(r) ≤ |T |(r), by (2) we can see that |fq+1|(r) ≤ |T |(r) and therefore fq+1

satisfies Relation β). Since γ) is trivial when s = 0, it only remains to show
that fq+1 satisfies δ).

For each m ∈ N, let Sm,q+1 be the rest of the Euclidean division of fq+1 by
Pm in H(C(0, ρm)). For each s ≥ m, since Pm divides gq,s−Qm, the rest of the
Euclidean division of gq,s−fq+1 by Pm in H(C(0, ρm)) is equal to Qm−Sm,q+1.
Consequently, by (1) we have
(3) |Qm − Sm,q+1|(ρm) ≤ |gq,s − fq+1|(ρm) ≤ ζ(q, s, ρm)
and hence
(4) |Qm − Sm,q+1|(ρm) ≤ |T |(ρm)

(ρm
R

)q(
min

(
1,
ρm
ρs

))
∀s ≥ m.

Now, since lim
s→∞

ρs = R, by (4) we have |Qm − Sm,q+1|(ρm) ≤ |T |(ρm)
(ρm
R

)q+1

.

This finishes showing that δ) is satisfied by gq+1,s and therefore gq+1,s belongs
to Σ(q + 1, 0). This true for all s, hence by Lemma B.19.2 fq+1 also belongs to
Σ(q + 1, 0).

Thus we have constructed a sequence (fq)q∈N of A(d(0, R−)) satisfying fq ∈
Σ(q, 0)∀q ∈ N. By (2) we can see that the sequence (fq)q∈N converges in all
H(d(0, ρ)), for every ρ < R, to a limit f which thereby belongs to H(d(0, ρ))
for all ρ < R. Consequently, that function f belongs to A(d(0, R−)). Moreover,
since Σ(q, 0) is closed, f belongs to Σ(q, 0) for every q ∈ N. Consequently, by
Relation δ) true for every q, the rest Xm of the Euclidean division of fq by Pm in
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H(C(0, ρm)) satisfies |Xm −Qm|(ρm) ≤ |T |(ρm)
(ρm
R

)q
for every q ∈ N, hence

Xm = Qm. So, Pm divides f − Qm for every m ∈ N. And by construction f
satisfies α) and β), which completes the proof.

Corollary B.19.5: Suppose K is spherically complete. Let (an)n∈N be a
sequence of d(0, R−) such that |an| ≤ |an+1| ∀n ∈ N and lim

n→+∞
|an| = R

and let (bn)n∈N be a sequence of K. There exists f ∈ A(d(a,R−)) such that
f(an) = bn ∀n ∈ N.

Proof. Indeed we can define a sequence of integers (sn)n∈N such that the divisor
T = (an, sn)n∈N satisfies |T |(|an|) ≥ |bn| ∀n ∈ N.

Theorem B.19.6: Suppose K is spherically complete. Let T be a divisor on
d(a,R−). There exists f ∈ A(d(a,R−)) such that D(f) = T .

Proof. Without loss of generality, we may obviously assume a = 0. Take Qm =
0 ∀m ∈ N. By Theorem B.19.4, there exists f ∈ A(d(0, R−)) such that

i) f(0) = 1,
ii) |f |(r) ≤ |T |(r) ∀r < R,
iii) Pm divides f in A(d(0, R−)).
By iii), clearly D(f) ≥ T . Thus we only have to check that D(f) ≤ T .

Indeed, for all s ∈ N we have

|T |(ρs) =
s∏
j=1

um∏
i=1

∣∣∣(1− x

ai,m

)qi,m ∣∣∣(ρs) =
s∏
j=1

um∏
i=1

( ρs
ρm

)qi,m
.

Now, suppose that T 6= D(f). Then there exists α ∈ d(0, R−) such that ωα(f) >
T (α). Let s be such that ρs > |α|. Since f(0) = 1, we have

|f |(ρs) ≥
ρs
|α|

s∏
j=1

um∏
i=1

∣∣∣(1− x

ai,m

)qi,m∣∣∣(ρs) > s∏
j=1

um∏
i=1

( ρs
ρm

)qi,m
= |T |(ρs),

a contradiction to iii).

Similarly to A(K), the algebra A(d(a,R−)) is provided with the natural
topolgy of uniform convergence on each disk d(0, r) whenever 0 < r < R. Such
a topology makes A(d(a,R−)) a topological K-algebra.

In Chapter B.18 we showed that in A(K) every closed ideal is principal.
Here, following the same methods, provided that K is spherically complete, we
can prove similar results with algebras A(d(a,R−)):

Theorem B.19.7: Suppose K is spherically complete. All closed ideals of
A(d(a,R−)) are principal.
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Proof. Let I be a closed ideal of A(d(a,R−)) and let E = D(I). By Theorem
B.18.10 we have I = TR(E). Now, by Theorem B.19.6 there exists g ∈ A(K)
such that D(g) = E and of course g belongs to TR(E) hence to I. Consequently,
gA(d(a,R−)) ⊂ I. Conversely, by Corollary B.18.2, we have I = gA(d(a,R−)).
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B.20. Motzkin factorization and roots of analytic functions

Troughout this chapter, D is a closed infraconnected set and f belongs to
H(D).

The idea of factorizing semi-invertible analytic elements into a product of
singular factors is a remarkable idea due to E. Motzkin [75]. This factorization
has tight links with the Mittag-Leffler series, as it was shown in [58], [68].

Lemma B.20.1: Let T = d(a, r−), with a ∈ K and r > 0, let E = K \ T and
take b ∈ T . Let g ∈ H(E) be invertible in H(E). Then there exist λ ∈ K, q ∈ Z
and h ∈ H(E) invertible in H(E), satisfying ‖h − 1‖

E
< 1, lim

|x|→+∞
h(x) = 1

and g(x) = λ(x− b)qh(x). Moreover, λ, q, h, are respectively unique, satisfying

those relations. Further, both λ, q do not depend on b in T and
g′

g
belongs to

H0(E).

Proof. Without loss of generality we may obviously assume a = 0. As g is

invertible, if g belongs to H0(E), then
1
g

does not. So, we may clearly assume

that g does not belong to H0(E). By Theorem B.2.5. g is of the form g̃+ ĝ, with
g̃ ∈ K[x], g̃ 6= 0, and ĝ ∈ H0(E). Let q = deg(g̃) and let λ be its coefficient of

degree q. Now we put h(x) =
g(x)

λ(x− b)q
. By definition both λ, q do not depend

on b in T . Hence we may also assume b = 0. Clearly, h satisfies lim
|x|→+∞

h(x) = 1.

Since H(E) is a K-algebra and since g is invertible, h is invertible in H(E). In
particular we notice that h is bounded and admits no zero in E. Now we check

that ‖h − 1‖
E
< 1. Let s =

1
r

, let A = d(0, s) and let φ(u) = h( 1
u ) whenever

u ∈ d(0, s), u 6= 0. Then φ belongs to H(d(0, s) \ {0}). But since h is bounded
in E, φ is bounded in d(0, s) \ {0}. Moreover, the condition lim

|x|→+∞
h(x) = 1

shows that lim
x→0

φ(x) = 1, hence φ belongs to H(d(0, s)).

Thus φ(u) is of the form
∞∑
n=0

anu
n with a0 = 1 and hence, by Theorem

B.13.7, we have |an|sn < 1 ∀n > 0. Let ε = sup{|an|sn |n > 0}. Then we
have ‖φ − 1‖d(0,s) = ‖h − 1‖

E
= ε. Now, h, q, λ are easily seen to be unique.

Indeed let g(x) = αxtl(x) with l invertible in H(E), satisfying lim
|x|→+∞

l(x) = 1.

Then we have 1 = xq−t
λh(x)
αl(x)

. Consequently, considering the limit when |x|

tends to +∞, we have q = t, λ = α and therefore h = l. Finally, we check that
g′

g
belongs to H0(E). Indeed

g′

g
=

q

x− b
+
h′

h
. Obviously,

q

x− b
belongs to

H0(E). Since lim
|x|→∞

|h(x)| = 1, it is seen that h(x) is of the form 1+
∞∑
n=1

an
xn

with
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lim
n→∞

|an
sn
| = 0 and therefore h′ is an element ofH(E) such that lim

|x|→∞
|h′(x)| = 0.

As a consequence
h′

h
belongs to H0(E). Hence so does

g′

g
and this ends the proof

of Lemma B.20.1.

Definitions: Let E = K \ d(a, r−) with a ∈ K and r > 0. Let f ∈ H(E) be
invertible in H(E) and let λ(x − a)qh(x) be the factorization given in Lemma
B.20.1. The integer q will be named the index of f associated to d(a, r−) and
will be denoted by m(f, d(a, r−)). If λ = 1, the element f will be called a pure
factor associated to d(a, r−). Let GT be the group of invertible elements of
H(K \ T ).

The following Corollary is then immediate:

Corollary B.20.2: Let T = d(a, r−). The set of pure factors associated to T
is a sub-multiplicative group of the group GT . Further, every element of GT is
of the form λh with h a pure factor associated to T and λ ∈ K∗.

Lemma B.20.3: Let T = d(a, r−), let E = K \ T with a ∈ K and let f be a
pure factor associated to T such that ‖f − 1‖

E
< 1. Then m(f, T ) = 0.

Proof. Without loss of generality, we can assume a = 0. Let q = m(f, T ).
By Lemma B.20.1, there exists a unique element h invertible in H(E) such
that f = xqh and lim

|x|→+∞
|h(x)| = 1. Therefore, by Theorem B.5.6, h(x) is of

the form 1 +
+∞∑
n=1

an
xn

, hence ‖h‖E < 1. So, if q > 0, then f is unbounded, a

contradiction. Next, by Corollary B.20.2,
1
f

is a pure factor satisfying again the

hypothesis of Lemma B.20.2, hence the hypothesis q < 0 gets to a contradiction
again.

Definition: Let f belong to H(D). Let T be a hole of D and let h be a pure

factor associated to T . If
f

h
belongs to H(D ∪T ) and has no zero inside T , h is

called Motzkin factor of f in the hole T .

Theorem B.20.4: Let T be a hole of D and let f have a Motzkin factor h in
T . Then h is unique. Further, if T is not a f -hole, h is the polynomial of the
zeros of f inside T . Moreover, if E is another infraconnected set included in D
admitting T as a hole and if g denotes the restriction of f to E, then g admits
a Motzkin factor in the hole T as an element of H(E) and this Motzkin factor
is equal to h.
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Proof. Let f have another Motzkin factor l in T , let F =
f

h
and let G =

f

l
.

Since G has no zeros inside T , by Theorem B.15.9 there exists a closed bounded
infraconnected set D′ satisfying T ⊂ D′ ⊂ (D ∪ T ), T 6= D′, such that G is

invertible in H(D′). Hence in H(D′) we have
F

G
=

l

h
and hence

l

h
belongs

to H(D′). Since T 6= D′ it is seen that D′ ∩ (K \ T ) is an infraconnected
closed bounded set included in D that admits T as a hole. Moreover, we have

D′∪(K\T ) = K. Therefore by Theorem B.6.10, we see that
l

h
belongs to H(K)

and hence is a polynomial P . Since
F

G
belongs to H(D′) and has no zeros in T ,

it is seen that m(h, T ) = m(l, T ), so we have lim
|x|→∞

h(x)
l(x)

= 1. Hence P = 1 and

this proves that h is unique.
Now we assume that T is not a f -hole, hence f belongs to H(D ∪ T ). Let

Q be the polynomial of the zeros of f inside T . Then by Corollary B.7.6,
f

Q
belongs to H(D ∪ T ) and has no zeros inside T . Since its Motzkin factor h
is unique, we have h = Q. The last statement about g is obvious because

g

h
clearly belongs to H(E ∪ T ) and has no zero inside T . This ends the proof of
Theorem B.20.4.

Definitions and notation: We will call the f-supersequence of D the sequence
of the holes (Tn)n∈I such that either Tn is a f -hole or f belongs to H(D ∪ T )
and has at least one zero inside Tn. If f admits a Motzkin factor h in a hole T ,
it will be denoted by fT and m(h, T ) will be called the Motzkin index of f in T .
For every hole which does not belong to the f -supersequence, we put fT = 1.

Lemma B.20.5 is immediate.
Lemma B.20.5: Let D ∈ Alg, let T be a hole of D and let f, g ∈ H(D)
admitting Motzkin factors in T . Then (fg)T = fT gT and m(fg, T ) = m(f, T )+
m(g, T ). Moreover, if f is invertible in H(D), then (f−1)T = (fT )−1 and
m(f−1, T ) = −m(f, T ).

Lemma B.20.6: Let f ∈ H(D) and let (Tn)n∈N be the f -supersequence. Sup-
pose that for each n ∈ N, f admits Motzkin factors in Tn. Then there exists
N ∈ N such that m(fTn , Tn) = 0 whenever n > N . Moreover, if D ∈ Alg, the

product
( t∏
n=1

fTn
)( ∞∏
n=t+1

fTn
)

does not depend on t whenever t ≥ N .

Proof. Indeed, there exists N ∈ N such that we have ‖fTn − 1‖
D
< 1 whenever

n ≥ N and therefore, by Lemma B.20.2, m(fTn , Tn) = 0. Now in Hb(D), we

have
( ∞∏
n=N+1

fTn
)

=
( t∏
n=N+1

fTn
)( ∞∏
n=t+1

fTn
)
.
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But then, if D belongs to Alg, we have
( t∏
n=1

fTn
)( ∞∏
n=t+1

fTn
)

=

( N∏
n=1

fTn
)( t∏
n=N+1

fTn
)( ∞∏
n=t+1

fTn
)

=
( N∏
n=1

fTn
)( ∞∏
n=N+1

fTn
)
.

Definitions: Let (Tn)n∈I be the f -supersequence of D with I a subset of N
which is either finite or equal to N.

If I is finite, f will be said to have a finite Motzkin factorization if it factorizes
in H(D) in the form

(
f0
∏
n∈I

fTn
)

with f0 an element of H(D̃) whose zeros

belong to D and for each n ∈ N, fTn a Motzkin factor in Tn.
If I is infinite and equal to N, f will be said to have an infinite Motzkin factor-

ization if it admits a sequence of Motzkin factors fTn satisfying lim
n→∞

fTn − 1 = 0

such that f factorizes in H(D) in the form
(
f0

t∏
n=1

fTn
)( ∞∏
n=t+1

fTn
)
, with f0 an

element of H(D̃) whose zeros belong to D. In both cases, f0 will be called the
principal factor of f.

Corollary B.20.7: Let D be bounded and let f have an infinite Motzkin

factorization with a f -supersequence (Tn)n∈N. Then we have f = f0
( ∞∏
n=1

fTn
)
.

Corollary B.20.8: Let f have an infinite Motzkin factorization with a f -
supersequence (Tn)n∈N such that m(fTn , Tn) = 0 for all n > 0. Then we have

f = f0
( ∞∏
n=1

fTn
)
.

Remark 1: Let f ∈ H(D) be unbounded and have Motzkin factorization

of the form
(
f0

N∏
n=1

fTn
)( ∞∏
n=N+1

fTn
)
. One cannot claim that the product

(
f0
∞∏
n=1

fTn
)

converges in H(D), even if D is closed and belongs to Alg. In-

deed, let r ∈]0, 1[, let (an)n∈N be a sequence in d(0, 1) such that |an − am| = 1
whenever n 6= m and a1 = 0. For every n ∈ N∗, we put Tn = d(an, r−) and

E = K \
( ∞⋃
n=1

Tn
)
. The holes of E are the Tn. Let (λn)n≥2 be a sequence in

d(0, r−) such that lim
n→∞

λn = 0. For every n ≥ 2, we put gn = 1 +
λn

x− an
. The

sequence (gn)n≥2 is seen to satisfy ‖gn − 1‖E ≤
|λn|
ρ

< 1 and therefore we
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have lim
n→∞

‖gn − 1‖E = 0. Hence the product h =
∞∏
n=2

gn obviously converges in

H(E).
Since E clearly belongs to Alg, we see that x2h belongs to H(E) and is

invertible in H(E). Now, f clearly has Motzkin factorization with fTn = gn
for every n ≥ 2, fT1 = x2 and f0 = 1. However, we will check that the

sequence (fn)n∈N∗ defined by fn = x2

n∏
j=2

gj does not converge in H(E). Indeed

we have fn+1(x) − fn(x) = x2
( n∏
j=2

gj(x)
)
(gn+1(x)− 1). For every x ∈ K \

d(0, 1), we have
∣∣x2

n∏
j=2

gj(x)
∣∣| = |x2| and |gn+1(x)−1| =

∣∣λn+1

x

∣∣ hence |fn+1(x)−

fn(x)| = |x||λn+1|. Thus fn+1 − fn is not bounded in H(E) and therefore the
sequence (fn)n∈N∗ does not converge in H(E). According to Theorem 4 in [72]

the product
∞∏
n=1

fn should converge to x2h in H(E). Here we see that this

is not true in the general case. Actually the proof given in [72] only shows
the simple convergence of the sequence (fn) and the uniform convergence on
bounded subsets of D.

By Lemma B.20.5, Lemma B.20.9 is immediate.
Lemma B.20.9: Let D ∈ Alg, let f, g ∈ H(D) have Motzkin factorization.
Then so does fg. Moreover, we have (fg)0 = f0g0. Further, if f is invertible,
f−1 also has Motzkin factorization and it satisfies (f−1)0 = (f0)−1.

Corollary B.20.10: (K.Boussaf) Let D ∈ Alg, let f have an infinite

Motzkin factorization of the form
(
f0

t∏
n=1

fTn
)( ∞∏
n=t+1

fTn
)
. Let N ∈ N be such

that m(fTn , Tn) = 0 for all n > N . Then we have

f = f0
( N∏
n=1

fTn
)( ∞∏
n=N+1

fTn
)
.

Proposition B.20.11 : Let f ∈ H(D) satisfy ‖f−1‖
D
< 1 and have Motzkin

factorization of the form f0
( ∞∏
n=1

fTn
)

with
(
Tn
)
n∈N∗ the f -supersequence of D.

Then for each n ≥ 1 we have m(fTn , Tn) = 0.

Proof. For every n ∈ N∗, we put qn = m(fTn , Tn). By Lemma B.20.6, we may
assume the (Tn)n∈N∗ ranged in such a way that qn 6= 0 for n ≤ N while qn = 0
whenever n > N. When n ≤ N , fTn is of the form (x − αn)qn(1 + ωn) with
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ωn ∈ H0(K \ Tn), ‖ ωn ‖K\Tn
< 1 and αn ∈ Tn. When n > N , fTn is just in the

form (1+ωn) with ωn ∈ H0(K\Tn) and ‖ωn‖K\Tn
< 1. On the other hand, since

f has no zero in D, obviously f0 has no zero in D and therefore it has no zero in
D̃. Hence by Theorem B.13.7, f0 is of the form A(1 + ω0(x)) with ω0 ∈ H(D̃),

‖ω0‖D < 1. Let h(x) = A

N∏
n=1

(x − αn)qn . We see that f factorizes in the form

h
( ∞∏
n=0

(1 + ωn)
)

. Since ‖ωn‖D < 1 for every n ∈ N and since lim
n→∞

ωn = 0 it

is seen that h satisfies (1) ‖h − 1‖
D
< 1 as does f . Let us suppose q1 6= 0.

We may obviously assume α1 = 0. Let T1 = d(0, r−). Thus, in T1, h admits
0 as a zero of order q1 if q1 > 0 (resp. a pole of order −q1 if q1 < 0) and has
neither any zero nor any pole different from 0. Anyway, when x ∈ T1, we have

(2) |h(x)| = B|xq1 | with B = |A|
N∏
n=2

|αn|qn .

We will show that (2) contradicts (1), except if q1 = 0.

Suppose q1 > 0. In T1, h(x) is a series of the form
+∞∑
n=q1

cnx
n and h − 1 =

(
+∞∑
n=q1

cnx
n)− 1, hence 1 ≤ ‖h− 1‖T1 ≤ ‖h− 1‖D, which contradicts (1).

Now suppose q1 < 0. By definition h is obviously invertible in R(D). Hence

we put F =
1
h

and we see that F satisfies ‖F − 1‖D < 1 and admits 0 as a
unique zero in T1 while it has no pole in T1. Hence the same process lets us
get to the same contradiction and finishes showing that q1 = 0 and similarly,
qn = 0 for every n ≥ 1.

Proposition B.20.12: Let f ∈ H(D) be invertible in H(D) and have Motzkin

factorization and let a ∈ D. Then f satisfies
∥∥∥ f

f(a)
− 1
∥∥∥
D

< 1 if and only if for

every hole T of the f -supersequence of D we have m(f, T ) = 0.

Proof. Without loss of generality, we may obviously assume f(a) = 1. By
Proposition B.20.11, we already know that if f satisfies ‖f − 1‖

D
< 1, then

for every hole of the f -supersequence, we have m(f, T ) = 0. Now we suppose
that for every hole T of the f -supersequence we have m(f, T ) = 0 and we will
prove that ‖f − 1‖

D
< 1. Indeed, by Lemma 30.1, for each hole of the f -

supersequence, we have ‖fT − 1‖
D
< 1. Moreover, since f is invertible, f0 must

also be invertible, hence by Theorem B.14.1 it is of the form (1 + ψ(x)), with
‖ψ‖

D
< 1. Then ‖f − 1‖

D
< 1.

We will show that all semi-invertible elements have Motzkin factorization,
step after step and first we consider rational functions.
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Proposition B.20.13: Let f ∈ R(D). Then f admits Motzkin factorization.

Proof. The f -supersequence is obviously finite. Let T1, ..., Ts be this
f -supersequence. We can obviously factorize f in a unique way, in the form
s∏
j=1

(hj
lj

)
whereas for each j = 1, ...s, both hj , lj are monic polynomials whose

zeros lie in Tj . Thus we can check that
hj
lj

is the Motzkin factor fTj of f in

the hole Tj . Therefore, putting f0 =
f∏s

j=1

(
hj
lj

) , we have the Motzkin factor-

ization: f = f0
s∏
j=1

fTj .

Proposition B.20.14: Let φ ∈ H(D) satisfy ‖φ − 1‖
D
< 1. Then φ ad-

mits Moztkin factorization φ0
( ∞∏
n=1

φTn
)

with
(
Tn
)
n∈N∗ the f -supersequence.

For every φ -hole T we have ‖φT − 1‖
D

= ‖φT ‖D . Moreover φ0 satisfies
‖φ0 − 1‖

D
= ‖φ0 − 1‖

D
.

Proof. First we suppose φ ∈ R(D). Then by Proposition B.20.13, φ admits
Motzkin factorization. Now by Proposition B.20.12, for each n > 0 we have
m(φ, Tn) = 0 and therefore, φTn is of the form 1 + ωn with ‖ωn‖D < 1
whenever n > 0 while φ0 = 1 + ω0 with ‖ω0‖D < 1. Hence we see that

φTn =
(
ωn
∏
j 6=n
j∈N

(1 + ωj)
)
Tn . Clearly,

∏
j 6=n
j∈N

(1 + ωj) is of the form 1 + φn with

‖φn‖D < 1, hence ‖(ωnφn)‖
D
< ‖ωn‖D and we obtain (1) ‖(ωnφn)Tn‖D ≤

‖ωnφn‖D < ‖ωn‖D .

But ωn is clearly equal to (φTn)Tn and then we have (2) ‖(ωn)Tn‖D = ‖ωn‖D >

‖ωnφn‖D ≥ ‖(ωnφn)Tn‖D .

Moreover, (ωn + ωnφn)Tn = (ωn)Tn + (ωnφn)Tn hence by (1) and (2) we have

‖(ωn(1 + φn))Tn‖D = ‖ωn‖D and finally

(3) ‖φTn‖D = ‖(ωn(1 + φn))Tn‖D = ‖ωn‖D = ‖φTn − 1‖
D
.

In the same way we put
∞∏
n=1

(1 + ωn) = 1 + ψ with

(4) ‖ψ‖
D
< 1.

It is seen that ψ belongs to H0(K \ (
∞⋃
n=1

Tn)). Hence Theorem B.6.1, when

applied to ψ, shows that
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(5) ψ0 = 0.
Next, we have φ = (1 + ω0)(1 + ψ) = 1 + ω0 + ψ + ω0ψ hence
φ0 = 1+(ω0)0+φ0+(ω0ψ)0. By defintion ω0 ∈ H(D̃) hence ω0 = (ω0)0 and then

by (5) we have φ0 = 1 + ω0 + (ω0ψ)0. But by (4) it is seen that ‖(ω0ψ)0‖D <

‖ω0‖D hence finally we obtain ‖φ0 − 1‖
D

= ‖ω0‖D = ‖φ0 − 1‖
D

. Thus we
have proven the inequalities satisfied by the φTn and by φ0 when φ belongs to
R(D).

Now we consider the general case when φ ∈ H(D). Let (fm)m∈N be a se-
quence in R(D) such that lim

m→∞
‖φ − fm‖D = 0. Let ε ∈]0, 1[ and let N ∈ N

be such that ‖fm − φ‖
D
≤ ε whenever m ≥ N . Let T be a hole of the φ-

supersequence. We will show that the sequence ((fm)T )m∈N converges in H(D)
and that this convergence is uniform with respect to the φ-supersequence. We fix
m ≥ N . It is seen that ‖fm−1‖

D
< 1 and then by Lemmas B.20.1 and Proposi-

tion 30.11 we have ‖(fm)T−1‖
D
< 1 and in particular ‖(fm)T ‖

D
= 1. Moreover,

we remember that in H(K \ T ), the norm ‖ . ‖
D

is multiplicative and actually

equal to
D
ϕ
T

. Now let s ≥ N . We have ‖(fm)T − (fs)T ‖D = ‖ (fm)T

(fs)T
− 1‖

D
.

But by Lemma B.20.5 we have
(fm)T

(fs)T
=
(fm
fs

)T
and then by (3), in R(D), we

have
∥∥∥(fm

fs

)T
− 1
∥∥∥
D

=
∥∥∥(fm

fs

)
T

∥∥∥
D

. Finally, by Theorem B.6.1, we obtain:

(6) ‖(fm)T − (fs)T ‖D ≤ ε. Relation (6) does not depend on the hole T and
it shows that, for each fixed n ∈ N∗, the sequence ((fm)Tn)m∈N is a Cauchy
sequence which converges in H(K \ Tn), to an element whose index is equal
to 0 and this convergence is uniform with respect to n. For each n ∈ N∗,

we put φn = lim
m→∞

(fm)Tn . Then it is seen that
∞∏
n=1

φn = lim
m→∞

∞∏
n=1

(fm)Tn .

As a consequence, the sequence (fm)0 is also convergent in H(D) and actu-
ally in Hb(D̃). Let φ0 be its limit. Then we have this factorization: φ =
∞∏
n=0

φn. We recognize the Motzkin factorization for φ. Obviously, for each

fixed n > 0, the equality satisfied by the (fm)Tn holds for φTn and shows
that ‖(φ)Tn‖D = ‖(φ)Tn − 1‖

D
. In the same way, the equality satisfied by the

(fm)0 shows that ‖(φ)0 − 1‖
D

= ‖(φ)0 − 1‖
D
. This ends the proof of Proposition

B.20.14.

Theorem B.20.15 is given in [48] (see also [46] and [47]).

Theorem B.20.15: Let a ∈ D. Let φ ∈ Hb(D) be such that |φ(a)| 6= 0. The
following statements i) , ii) , iii) are equivalent

i) ‖φ− φ(a)‖
D
< |φ(a)|.

ii) For every hole T we have ‖φT ‖D < |φ(a)| and ‖φ0−φ0(a)‖
D
< |φ(a)|.
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iii) φ is invertible, admits a Motzkin factorization and for every hole T ,
φT satisfies ‖φT − 1‖

D
< 1 and φ0 satisfies ‖φ0 − φ0(a)‖

D
< |φ(a)|.

Further, if statements i) , ii) , iii) are satisfied then we have
(u) m(φ, T ) = 0 for every hole T.
(v) ‖φT ‖D = ‖φT − 1‖

D
|φ(a)| for every hole T.

(w) ‖φ0 − φ0(a)‖
D

= ‖φ0 − φ0(a)‖
D
.

Proof. Without loss of generality we may obviously assume |φ(a)| =1 and
(1) |φ(a)− 1| < 1. Let (Tm)m∈I be the φ-supersequence of D. We notice that
when i) is satisfied, φ is obviously invertible.

First we suppose i) is satisfied and will show that so is ii). By Theorem B.6.1
we have
(2) ‖(φ− φ(a))Tm‖D ≤ ‖φ− φ(a)‖

D
.

But it is seen that (φ− φ(a))Tm = φTm . Hence by (2) we have

(3) ‖φTm‖D ≤ ‖φ− φ(a)‖
D
< 1, whenever m ∈ I.

In the same way (φ− φ(a))0 = φ
0
− φ(a) and then by Theorem B.6.1 we have

(4) ‖φ
0
− φ(a)‖

D
< 1.

Besides by (3) we see that ‖
∞∑
m=1

φTm‖D < 1 hence ‖φ−φ
0
‖
D

= ‖
∞∑
m=1

φTm‖D < 1

and therefore |φ(a)− φ
0
(a)| < 1, hence by (4) we see that

(5) ‖φ
0
− φ

0
(a)‖

D
< 1.

Finally by (3) and (5), Statement ii) is clearly proven.
Now we will show that each of the statements ii) and iii) separately implies

i). We suppose ii) satisfied. Hence we have

(6) ‖
∑
m∈I

φTm‖D < 1.

If D is bounded, by Statement ii) and by (6) we obtain i). Now let D be not

bounded. Then φ
0

is a constant λ. Hence φ is in the form λ +
∞∑
m=1

φTm with

‖φTm‖D < 1 whenever m ≥ 1 hence

(7) ‖
∞∑
m=1

φTm‖D < 1.

Now we have φ− φ(a) =
∞∑
m=0

φTm − φTm(a) =
∞∑
m=1

(φTm − φTm(a)). By (7) we

see that ‖
∞∑
m=1

(φTm − φTm(a))‖
D
< 1 hence finally i) ‖φ− φ(a)‖

D
< 1.

We now suppose iii) is satisfied. Hence we have (8) ‖φTm − 1‖
D
< 1 for all

m ∈ I.



206 Analytic elements and analytic functions

If D is bounded we have ‖φ0 − φ0(a)‖
D
< 1 hence by (8) we directly have i). If

D is not bounded then φ0 is a constant B such that φ(a) = B
∏
m∈I

φTm(a) hence

by (8) and (1) we see that |B − 1| < 1 hence by (8) we obtain i) again.
Thus, i) is implied as well by ii) as by iii). Obviously by (1), i) implies

‖φ− 1‖
D
< 1 and therefore we may apply Proposition 30.14. Next, we suppose

that either ii) or iii) is satisfied. Hence so is i) and so are (u) and (v) by
Proposition B.20.14.

Finally, we will show w) and at the same time we will finish proving the
equivalence between ii) and iii). Let ψ = (φ0(a))−1φ. We may apply Proposition
30.14 to ψ and we have

(9) ‖ψ0 − 1‖
D

= ‖ψ0 − 1‖
D
.

But we have

(10) ‖ψ0 − 1‖
D
≥ ‖ψ0 − ψ0(a)‖

D
= ‖φ0 − φ0(a)‖

D

(11) ‖φ0 − φ0(a)‖
D

= ‖ψ0 − ψ0(a)‖
D

= ‖ψ0 − 1‖
D
.

Hence by (9), (10), (11) we obtain

(12) ‖φ0 − φ0(a)‖
D
≤ ‖φ0 − φ0(a)‖

D
.

Now let γ = φ0(a) and let χ = γ−1φ. By (1) and (7) we see that |γ − 1| < 1,
hence we may apply Proposition 30.14 to χ and we have

(13) ‖χ0 − 1‖
D

= ‖φ0 − φ0(a)‖
D

while ‖φ0 − φ0(a)‖
D

= ‖χ0 − χ0(a)‖
D
≤ ‖χ0 − 1‖

D
and ‖χ0 − 1‖

D
=

‖χ0 − χ0(a)‖
D

= ‖φ0 − φ0(a)‖
D
. Hence by (13) we see that ‖φ0 − φ0(a)‖

D
≤

‖φ0 − φ0(a)‖
D

and therefore by (12) we obtain w). This finishes proving the
equivalence between ii) and iii) and ends the proof of Theorem B.20.15.

Remark 2: If D is not bounded, as φ is bounded, both φ0 , φ0 are constant
and therefore, the statements ‖φ0−φ0(a)‖

D
< |φ(a)| and ‖φ0−φ0(a)‖

D
< |φ(a)|

are automatically satisfied. Statement ii) is then equivalent to:
ii’) For every hole T we have ‖φT ‖D < |φ(a)|
and Statement iii) is equivalent to:
iii’) φ is invertible and for every hole T , φT satisfies ‖φT − 1‖

D
< 1.

Theorem B.20.16: Let D ∈ Alg. Then f has Motzkin factorization if and
only if it is semi-invertible.

Proof. Without loss of generality we may assume the f -supersequence to be
infinite. We denote it by (Tn)n∈N∗ . Let f have Motzkin factorization

f0
( t∏
n=1

fTn
)( ∞∏
n=t+1

fTn
)
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where the product
( ∞∏
n=t+1

fTn
)

converges in H(D). By definition, f0 is semi-

invertible in H(D̃) hence in H(D). Moreover
( t∏
n=1

fTn
)( ∞∏
n=t+1

fTn
)

is clearly

invertible in H(D). So f is semi-invertible.
Now, we suppose f to be semi-invertible and will show it to have Motzkin

factorization. By Lemma B.20.9 we may clearly suppose that f is invertible
without loss of generality.
First, we suppose that there exists M in R∗+ satisfying
(1) M ≤ |f(x)|, whenever x ∈ D.
Let h ∈ R(D) satisfy

(2) ‖f − h‖
D
<
M

2
,

and let h0

N∏
n=1

hTn be the Motzkin factorization of h. For every n = 1, ...N , let

qn = m(h, Tn), let an ∈ Tn, let hn = (x − an)−qnhTn and let h0 = h0. Let

u(x) =
N∏
n=1

(x− an)qn and let l(x) = h0

N∏
n=1

hn. By (1), (2) it is seen that h has

no zero in D. Let a ∈ D. Then, by Theorem B.14.1, h0 satisfies ‖h0−h0(a)‖
D
<

|h0(a)| and of course for every n > 0, hn satisfy ‖hn−1‖
D
< 1. Hence , we have

(3) ‖l − l(a)‖
D
< |l(a)|. Let b = |l(a)|.

In particular, we have |l(x)| = b whenever x ∈ D. Moreover, we notice that we
have

(4)
M

|l(a)|
≤ |u(x)|.

Let F =
f

u
. Then F does belong to Hb(D). By (3) and (4) we check that

|F (x) − l(x)| < b

2
and therefore by (3) again, we have |F (x)| = b and ‖F −

F (a)‖
D
≤ |F (a)|

2
. Now we can apply Theorem B.20.15 to F and then F has

Motzkin factorization F 0

∞∏
n=1

FTn , with m(F, Tn) = 0 whenever n > 0. As

a consequence f also has Motzkin factorization
(
f0

N∏
n=1

fTn
)( ∞∏
n=N+1

fTn
)

with

f0 = F 0 and for each n = 1, ..., N , fTn = (x − an)qnFTn and finally for each
n > N , fTn = FTn .

Now we suppose that inf{|f(x)| |x ∈ D} = 0. Since D is closed and since f

is invertible, we see that D is unbounded and that the element G =
1
f

is not

bounded in D. Hence by Corollary B.2.7 there exists q ∈ N∗ such that
x−q

f
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has a non zero limit when |x| tends to +∞, (x ∈ D). Then it is easily seen
that there exists c > 0 such that |G(x)| ≥ c for all x ∈ D. Indeed, on one hand
there exists r such that |G(x)| ≥ 1 for all x ∈ D \ d(0, r) and on the other hand
f is bounded in D ∩ d(0, r), hence we can find c ∈]0, 1[ such that |G(x)| ≥ c
whenever x ∈ D \ d(0, r). Thus G admits Motzkin factorization and then by
Lemma B.20.9 so does f . This ends the proof of the Theorem.

Remark 3: If a closed set B does not belong to Alg, there are counter-
examples of invertible elements F which admit certain Motzkin factor FT such

that
F

FT
does not belong to H(B) (and obviously does not belong to H(B∪T )).

Indeed, don’t let B belong to Alg. Since by hypothesis B is closed we know that
B̃ \B is not bounded. Hence by Lemma B.20.6, there exists a quasi-minorated
element f ∈ Hb(B) satisfying
(1) lim

|x|→∞
x∈B

f(x) = 0

and such that xf does not belong to H(B). Since f ∈ Hb(B) we can take it
such that ‖f‖

B
< 1. Without loss of generality, we may assume that 0 belongs

to a hole of B. Let T = d(a, r−) be another hole of B and let F =
x(1 + f)
(x− a)

.

Then it is seen that F belongs to Hb(B) and is invertible in Hb(B) because both
x

(x− a)
, 1 + f are invertible in Hb(B). Hence F admits Motzkin factorization.

In particular we see that FT =
1

(x− a)
. However we check that (x− a)F does

not belong to H(B) because (x − a)F = x(1 + f) and by hypothesis, xf does
not belong to H(B).

In the same way, let G =
1
F

. Since F is invertible in Hb(B), so is G. But then

we see that
1

x− a
G does belong to Hb(B) and has no zero in B, but obviously

its inverse does not belong to H(B). Therefore
1

x− a
G is not semi-invertible

in H(B). Thus, there exist invertible elements h, g in H(B) such that hg is
not semi-invertible, although it belongs to H(B). This contradicts Theorem 1

in [72] which states that
f

fT
extends to an element of H(D ∪ T ).

Theorem B.20.17: (K. Boussaf) Let D belong to Alg and let T = d(a, r−)
be a hole of D. Then f admits a Motzkin factor in the hole T if and only if
D
ϕa,r(f) 6= 0.

Proof. On the one hand, we suppose that f admits a Motzkin factor in the hole
T . Let f = gfT . Since g belongs to H(D ∪ T ) and has no zero in T , of course,
by Theorem B.13.16 we have

D
ϕa,r(g) 6= 0. Next, as an invertible element of

H(D), it is seen that
D
ϕa,r(fT ) 6= 0. Hence

D
ϕa,r(f) 6= 0.
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On the other hand, we suppose
D
ϕa,r(f) 6= 0. Let F be the circular filter of

center a, of diameter r and let M =
D
ϕa,r(f). There do exist a1, ..., aq ∈ d(a, r)

and s, t satisfying s < r < t, such that |f(x)| ≥M whenever

x ∈ D
⋂( q⋂

j=1

Γ(aj , s, t)
)
. Let F = D

⋂( q⋂
j=1

Γ(aj , s, t)
)
. Then T is clearly a

hole of F . Next, the restriction g of f to F is invertible in H(F ) and therefore,
by Theorem B.20.16, it admits a Motzkin factor gT in the hole T . But then,
f

gT
belongs to H(D) and to H(F ∪ T ). Let E = F ∪ T . Clearly, a hole of

D ∩ E is either a hole of D included in E, or a hole of E. Hence D and E are

infraconnected sets that satisfy the hypothesis of Theorem B.6.10 and then
f

gT

belongs to H(D ∪ F ) = H(D ∪ T ). Finally, as gT is the Motzkin factor of g in
T ,

g

gT
has no zero inside T . This ends the proof.

Theorem B.20.18: Let D ∈ Alg and let G be the multiplicative group of the
invertible elements in H(D). Let T be the set of the holes of D. Let G0 be the
subgroup of the elements invertible in H(D̃). Let H = G0

∏
T∈T
GT . The product

H is a direct product and is dense in G.

Proof. The product is direct because for each element, Motzkin factorization is
unique. Thus H is the set of the invertible elements whose Motzkin factorization
is finite. Since every element of G has Motzkin factorization, it obviously belongs
to the closure of H.

Thanks to the Motzkin factorization, the question on whether the n-th root
of an analytic element is an analytic element appears to be linked to the number
of zeros of each Motzkin factor. Several of these results were given in [58].

Theorem B.20.19: Let D be a closed bounded infraconnected set and let
f ∈ H(D) be semi-invertible. Let T be a hole of D. We assume fs to have
continuation to an element of H(D ∪ T ) for some s ∈ N∗. Then the number of
the zeros of fs inside T is a multiple of s (taking mutiplicities into account).
Moreover, if f does not belong to H(D ∪ T ), then the number of the zeros of fs

inside T is different from 0.

Proof. By Theorem B.20.9 we have (fs)T = (fT )s. But as fs belongs to H(D∪
T ), by Theorem B.20.4 (fs)T is the polynomial of the zeros of fs inside T .
Let Q = (fs)T . Then we have deg(Q) = m((fs), T ) = sm(f, T ). So s divides
deg(Q). Now assume deg(Q) = 0. We have Q = 1, m(f, T ) = 0 and therefore
(fT )s = 1 and lim

|x|→∞
fT (x) = 1. Thus fT is just the constant 1 and therefore f

belongs to H(D ∪ T ), which ends the proof of Theorem B.20.19.
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In particular Theorem B.20.19 applies to open disks.

Theorem B.20.20: Let r ∈ |K| and let f ∈ H(d(0, r−)) \ H(d(0, r)) satisfy
fs ∈ H(d(0, r)). Then f has continuation to an analytic element in a set D of

the form d(0, r) \
( t⋃
i=1

d(ai, r−)
)

with |ai| = r = |ai − aj | whenever i 6= j, such

that for each i = 1, ..., t the number of zeros of fs in d(ai, r−) is a multiple of s
different from 0.

Proof. The Mittag- Leffler series of f in d(0, r−) is of the form
∞∑
n=0

fn with

f0 = f0 ∈ H(d(0, r)), and for every n > 0, fn = fTn , with Tn = d(an, r−)
and |an − aj | = |an| = r whenever n 6= j. Since f /∈ H(d(0, r)), at least one of
the fn is different from 0. Let l be an integer such that fl 6= 0. Now since fs

belongs to H(d(0, r)), by Theorem B.20.19, fs has a number of zeros inside Tl
which is different from 0 and a multiple of s. Since any element of H(d(0, r))
has finitely many zeros in d(0, r), we see that there are finitely many integers
l such that fl 6= 0. Let I be the finite set of the l ∈ N∗ such that fl 6= 0 and
let D = d(0, r) \

(⋃
l∈I

d(an, r−)
)
. Then by definition f belongs to H(D) and for

every l ∈ I, the number of zeros of fs in Tn is different from 0 and a multiple
of s. This ends the proof Theorem B.20.20.

Corollary B.20.21: Let f be a power series whose radius of convergence is
r though f does not belong to H(d(0, r)). If for some s ∈ N∗, fs has a radius
of convergence r′ strictly superior to r and if fs has strictly less than s zeros
inside C(0, r) (taking multiplicities into account), then f does not belong to
H(d(0, r−)).

Proof. Since r′ > r obviously we have s > 1. We assume that f belongs to
H(d(0, r−)) and therefore r must belong to |K|. Since r′ > r, fs belongs to
H(d(0, r)) and then by Theorem B.20.20, its number of zeros inside C(0, r) is
different from 0 and is a multiple of s, which contradicts the hypothesis. Hence
finally f does not belong to H(d(0, r−)).

We have now got to recall the definition of the function q
√
u when u ∈

d(1, 1−).

Notation: Henceforth and up to the end of the chapter, we suppose that K
has characteristic zero and residue characteristic p. Let q ∈ N∗. Let (1 + x)q =

1 + qx+
q∑
j=2

bjx
j . So, |q| = 1 and |bj | ≤ 1 whenever j = 2, ..., q. Recall that rk

was defined at Chapter A.6.
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Theorem B.20.22: Let q ∈ N∗. If q is prime to p, the mapping gq(x) =
(1 +x)q is injective in d(1, 1−) and maps d(1, 1−) onto d(1, 1−). If p 6= 0 and if
q = p, the mapping gp(x) = (1+x)p is injective in d(1, r−1 ) and maps d(1, (r1)−)
onto d(1, (r2)−).

Proof. Suppose first q prime to p. Since |q| = 1 ≥ |bj | ∀j ≥ 2, by Corollary
B.13.10 and Corollary B.14.14 the mapping gq defines a bijection from d(0, 1−)
onto d(1, 1−).

Suppose now p 6= 0 and take q = p. By Theorems B.16.3 and B.16.5, inside
d(0, (r1)−) we can write gp(x) = exp(pLog(1 + x)). This way, we notice that
when x ∈ d(0, (r1)−), gp is injective and that we have |Log(1 + x)| = |x| and
|exp(x)− 1| = |x|, hence

|(1 + x)p − 1| = |exp(pLog(1 + x))− 1| = x

p
.

Consequently, the image of d(0, r−1 ) by gp is the disk d(1, (
r1

p
)−) = d(1, (r2)−).

Notation: Suppose q ∈ N∗ prime to p. the mapping ηq defined in d(1, 1−)
by ηq(u) = uq is a bijection from d(1, 1−) onto d(1, 1−). We denote by q

√
u

the inverse mapping from d(1, 1−) onto d(1, 1−) and we put φq(x) = q
√

1 + x
whenever x ∈ d(0, 1−).

Suppose now p 6= 0 and take q = p. The mapping ηp defined in d(1, (r1)−)
by ηp(u) = up is a bijection from d(1, (r1)−) onto d(1, (r2)−). So, we can
denote by p

√
u that inverse mapping from d(1, (r2)−) onto d(1, (r1)−) and we

put φp(x) = p
√

1 + x whenever x ∈ d(0, (r2)−).

Theorem B.20.23: Let q ∈ N∗. If q is prime to p, φq belongs to Ab(d(0, 1−))
but does not belong to H(d(0, 1−)). Next, suppose now p > 0. Then φp belongs
to Ab(d(0, r−1 )) but does not belong to H(d(0, r−1 )).

Proof. Suppose first that q is prime to p. By construction and by Corollary
B.14.15, φq belongs to Ab(d(0, 1−)). Suppose that φq belongs to H(d(0, 1)).
Then it must satisfy
(φq(−1))q = 0, hence φq(−1) = 0 and therefore φq(x)q admits a zero of order
q at −1. But this contradicts the identity (φq(x))q = 1 + x and therefore
φq(x) does not belong to H(d(0, 1)). Finally, Since (φ′qx))q has a unique zero in
C(0, 1), by Corollary B.20.21 we see that φq does not belong to H(d(0, 1−)).

Suppose now p > 0. By Theorem B.20.22 the function f(x) = (1 + x)p is
strictly injective inside d(0, r−1 ) and maps d(0, r−1 ) onto itself. So by Corollary
B.14.15, it admits an inverse mapping φp defined inside d(0, r−1 ) that belongs
to Ab(d(0, r−1 )).

Let us show that φp does not belong to H(d(0, r−1 )). Indeed, suppose φp
belongs to H(d(0, r−1 )). Consider the Mittag-Leffler decomposition of φp on the
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infraconnected set d(0, r−1 ). It is of the form
∞∑
n=0

gn with g0 ∈ H(d(0, r1) and

gn ∈ H0(K \ d(an, r−n )) with an ∈ C(0, r1). Now, by Theorem A.7.4, we can
consider a complete algebraically closed extension K̂ of K whose residue class
field is not countable.

Let χ be the residue class field of K. Thus we can find a class G of Ĉ(0, r1)

that has an empty intersection with
∞⋃
n=1

d(an, r−1 ) and then φp has continuation

to an element of H(d(0, r−1 )∪G. Let c ∈ G. Since |c| = r1, the function h(x) =
(1 +x)p− c satisfies ν−(h, log(r1) = 0, ν+(h, log(r1) > 1, hence h admits a zero
a ∈ Ĉ(0, r1). Then of course a does not belong to K. Now, let ζ be a p-th root
of 1 different from 1 and let t = ζ(1 + a). By Corollary 6.7 we have |ζ− 1| = r1,
hence t is of the form 1 + b with b ∈ Ĉ(0, r1). We then have (1 + a)p = (1 + b)p.
Set E = d̂(a, r−1 ), F = d̂(b, r−1 ), D′ = d(0, r−1 ) ∪ E ∪ F and D′′ = d(0, r−1 ) ∪G.
Since the image of d(0, r−1 ) by the function f is d(0, r−1 ) we can check that for
each u ∈ Ĉ(0, r1), the image of d(u, r−1 ) by f is d(1, r−1 ). Consequently, both
images of E and F by f are equal to G. Now, since f belongs to Ĥ(D′), the
image of D′ by f is D′′ and φp belongs to Ĥ(D′′). Consequently, by Corollary
B.3.3 φp ◦ f belongs to Ĥ(D′) and we have φp ◦ f(x) = 1 + x ∀x ∈ d(0, r−1 ).
But since D′ has no pierced filter, by Corollary B.12.4 it is an analytic set.
Consequently the equality φp ◦ f(x) = 1 + x ∀x ∈ d(0, r−1 ) holds in all D′, a
contradiction since f is not injective in D′. That finishes showing that φp does
not belong to H(d(0, r−1 )).

Remark 4: Let q be prime to p. Since φq belongs to Ab(d(0, 1−)), obviously
φq belongs to H(d(0, r)), whenever r ∈]0, 1[. Now, let E be a closed bounded
set in K and let h ∈ H(E) satisfy ‖h‖

E
< 1. Then by Corollary B.3.3, φq ◦ h

belongs to H(E). In other words, if g ∈ H(E) and if ‖g − 1‖
E
< 1, then q

√
g

also belongs to H(E).

Remark 5: Theorems B.20.19 and B.20.20 couldn’t be significantly improved
as this example shows. Let q be an integer prime to p, let a, b ∈ d(1, 1−), with
a 6= b, and let P (x) = (a − x)q−1(b − x). It is easily seen that |P (x) − 1| < 1
whenever x ∈ d(0, 1−) and then we can consider f(x) = q

√
P (x). We will show

that f ∈ H(d(0, 1−)) \H(d(0, 1)). Indeed we have

f(x) = q

√
(a− x)q

( b− x
a− x

)
= (a− x) q

√
1 +

( b− a
a− x

)

= (a− x)
∞∑
n=0

( 1
q

n

)( b− a
a− x

)n = a− x+
1
q

(b− a) +
∞∑
j=1

( 1
q

j + 1

)
(b− a)j+1

(a− x)j
.
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This is just a Mittag-Leffler series of the form f0 + f1 ∈ H(d(0, 1−)), with

f0 = −x+ a+
1
q

(b− a) ∈ H(d(0, 1)),

f1 = −
∞∑
j=1

( 1
q

j + 1

)
(a− b)j+1

(x− a)j
∈ H0(K \ d(1, 1−)).

Thus we see that f belongs to H(d(0, 1−)) and more precisely
f ∈ H(K \ d(1, 1−)), but f /∈ H(d(0, 1)). Actually fq has exactly q zeros in
d(1, 1−).
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B.21. Order of growth for entire functions

Here we mean to introduce and study the notion of order of growth of an
entire function on K in relation with the distribution of zeros in disks and in
relation with the question whether an entire function can be devided by its
derivative inside the algebra of entire functions. Results were published in [20].

Definition and notation: Let f ∈ A(K). Similarly to the definition known

on complex entire functions, lim sup
r→+∞

log(log(|f |(r)))
log(r)

is called the order of growth

of f or the growth order of f in brief and is denoted by ρ(f). We say that f
has finite order if ρ(f) < +∞. In this chapter and in Chapters B.22 and B.23,
for simplicity in certain calculations, we put θ = e, i.e. we denote by log the
Neperian logarirhm function. However, we can check that the definitions do not
depend on the basis b > 1 of the logarithm.

Theorem B.21.1 is easily proven:

Theorem B.21.1: Let f, g ∈ A(K). Then
i) if c(|f |(r))α ≥ |g|(r) with α and c > 0, when r is big enough, then ρ(f) ≥

ρ(g),
ii) ρ(f + g) ≤ max(ρ(f), ρ(g)) and if ρ(g) < ρ(f), then ρ(f + g) = ρ(f),
iii) ρ(fg) = max(ρ(f), ρ(g)).

Proof. Suppose c(|f |(r))α ≥ |g|(r) with α and c > 0 when r is big enough. Then

we check that
(

lim sup
r→+∞

log(log(c(|f |(r))α))
log(r)

)
≥ lim sup

r→+∞

log(log(|g|(r)))
log(r)

hence ρ(f) ≥

ρ(g).

Next, we have |f + g|(r) ≤ max(|f |(r), |g|(r)), hence

log(log(|f + g|(r)))
log(r)

≤ max
( log(log(|f |(r)))

log(r)
,

log(log(|g|(r)))
log(r)

)
and hence ρ(f + g) ≤ max(ρ(f), ρ(g)).

Now, suppose ρ(f) > ρ(g). Then when r is big enough, we have |f |(r) >
|g|(r), hence |f + g|(r) = |f |(r) and therefore ρ(f + g) = ρ(f).

Let us now show that ρ(fg) = max(ρ(f), ρ(g)). Since |h|(r) tends to +∞
with r for every h ∈ A(K) and since, by Corollary B.5.9, | . |(r) is an absolute
value on A(K), we have

max(|f |(r), |g|(r)) ≤ |fg|(r) = |f |(r)|g|(r) ≤
(

max(|f |(r), |g|(r))
)2

,

hence

log(max(|f |(r), |g|(r))) ≤ log(|fg|(r)) ≤ log(max(|f |(r), |g|(r))) + log(2)

and therefore we can easily conclude that ρ(fg) = max(ρ(f), ρ(g)).
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Corollary B.21.2: Let f, g ∈ A(K). Then ρ(fn) = ρ(f) ∀n ∈ N∗.

Notation:: Given a number t ≥ 0, we will denote by A(K, t) the K-algebra of
entire functions of order inferior or equal to t and we put A∗(K) =

⋃
t>0

A(K, t).

Corollary B.21.3: For any t ≥ 0, A(K, t) is a K-subalgebra of A(K) and so
is A0(K).

Corollary B.21.4: Consider the differential equation

(E) f (n) + an−1(x)f (n−1)(x) + ...+ a0(x)f(x) = 0

with aj ∈ A∗(D), j = 0, ..., n − 1 and ρ(aj) < ρ(a0) ∀j = 1, ..., n − 1. Then
every non-trivial solution f of (E) satisfies ρ(f) ≥ ρ(a0).

Theorem B.21.5: Let f ∈ A(K) and let P ∈ K[x]. Then ρ(P ◦ f) = ρ(f)
and ρ(f ◦ P ) = deg(P )ρ(f).

Proof. Let n = deg(P ). For r big enough, we have

log(log(|f |(r))) ≤ log(log(|P ◦ f |(r))) ≤ log((n+ 1) log(|f |(r)))

= log(n+ 1) + log(log(|f |(r))).
Consequently,

lim sup
r→+∞

(
log(log(|f |(r)))

log(r)

)
≤ lim sup

r→+∞

(
log(log(|P ◦ f |(r)))

log(r)

)

≤ lim sup
r→+∞

(
log(n+ 1) + log(log(|f |(r)))

log(r)

)
and therefore ρ(P ◦ f) = ρ(f).

Next, for r big enough, we have

log(log(|f |(r)))
log(r)

≤ log(log(|f ◦ P |(r)))
log(r)

=
( log(log(|f ◦ P |(r))

log(|P |(r))

)( log(|P |(r))
log(r)

)
Now,

lim sup
r→+∞

( log(log(|f ◦ P |(r))
log(|P |(r))

)
= lim sup

r→+∞

( log(log(|f |(r))
log(r)

)
because the function h defined in [0,+∞[ as h(r) = |P |(r) is obviously an
increasing continuous bijection from [0,+∞[ onto [|P (0)|,+∞[. On the other

hand, it is obviously seen that lim sup
r→+∞

( log(|P |(r))
log(r)

)
= n. Consequently,

lim sup
r→+∞

( log(log(|f ◦ P |(r))
log(|P |(r))

)
= n lim sup

r→+∞

( log(log(|f |(r))
log(r)

)
and hence ρ(f ◦ P ) = nρ(f).
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Theorem B.21.6: Let f, g ∈ A(K) be transcendental. Then ρ(f ◦ g) ≥
max(ρ(f), ρ(g)). If ρ(f) 6= 0, then ρ(f ◦ g) = +∞.

Proof. Let f(x) =
∑∞
j=0 anx

n and g(x) =
∑∞
j=0 bnx

n. Since g is transcendental,
for every n ∈ N, there exists rn such that ζ(rn, g) ≥ n. Then |g|(r) ≥ |bn|rn ∀r ≥
rn and hence, by Theorem B.21.5, we have

(1) ρ(f ◦ g) ≥ nρ(f).

Therefore, ρ(f ◦ g) ≥ ρ(f).
Now, let k ∈ N be such that ak 6= 0 and let s0 be such that ζ(s0, f) ≥ k.

Then |f |(r) ≥ |ak|rk ∀r ≥ s0, hence |f ◦ g|(r) ≥ |ak|(|g|(r))k ∀r ≥ s0, hence
by Theorems B.21.1 and B.21.5 we have ρ(f ◦ g) ≥ ρ(g). Next, Relation (1)
is true for every n ∈ N. Suppose now that ρ(f) 6= 0. Then by (1) we have
ρ(f ◦ g) = +∞.

Notation: Let f ∈ A(d(0, R−)). For each r ∈]0, R[, we denote by ζ(r, f)
the number of zeros of f in d(0, r), taking multiplicity into account and set
ξ(r, f) = ζ(r, 1

f ).

Theorem B.21.7: Let f ∈ A(K) be not identically zero and such that for

some t ≥ 0, lim sup
r→+∞

ζ(r, f)
rt

is finite. Then ρ(f) ≤ t.

Proof. Set lim sup
r→+∞

ζ(r, f)
rt

= b ∈ [0,+∞[. Let us fix ε > 0. We can find R > 0

such that
ζ(r, f)
rt

≤ b + ε ∀r ≥ R and hence, by Corollary B.13.30, we have

|f |(r)
|f |(R)

≤
( r
R

)ζ(r,f) ≤
( r
R

)rt(b+ε)). Therefore, putting M = |f |(R), we have

log(|f |(r)) ≤ log(M) + rt(b+ ε)(log(r)− log(R)).

Now, when u > 2, v > 2, we know that log(u+ v) ≤ log(u) + log(v). Applying
that inequality with u = M and v = rt(b + ε)(log(r) − log(R)) when rt(b +
ε)(log(r)− log(R)) > 2, since logR ≥ 0, that yields,

log(log(|f |(r))) ≤ log(log(M)) + t log(r) + log(b+ ε) + log(log(r)− logR))

≤ log(log(M)) + t log(r) + log(b+ ε) + log(log(r)).

Consequently,

log(log(|f |(r)))
log(r)

≤ log(log(M)) + t log(r) + log(b+ ε) + log(log(r))
log(r)

and hence we can check that

lim sup
r→+∞

log(log(|f |(r)))
log(r)

≤ t.
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Theorem B.21.8: Let f ∈ A(K) be not identically zero. If there exists s ≥ 0
such that

lim sup
r→+∞

(ζ(f, r)
rs

)
< +∞

then ρ(f) is the lowest bound of the set of s ∈ [0,+∞[ such that

lim sup
r→+∞

(ζ(f, r)
rs

)
= 0.

Moreover, if lim sup
r→+∞

(ζ(f, r)
rt

)
is a number b ∈]0,+∞[, then ρ(f) = t.

If there exists no s such that lim sup
r→+∞

(ζ(f, r)
rs

)
< +∞, then ρ(f) = +∞.

Proof. The proof holds in two statements. First we will prove that given

f ∈ A(K) nonconstant and such that for some t ≥ 0, lim sup
r→+∞

ζ(f, r)
rt

is finite,

then ρ(f) ≤ t.

Set lim sup
r→+∞

(ζ(f, r)
rt

)
= b ∈ [0,+∞[. Let us fix ε > 0. We can find R > 1

such that |f |(R) > e2 and
ζ(f, r)
rt

≤ b + ε ∀r ≥ R and hence, by Corollary

B.13.30, we have
|f |(r)
|f |(R)

≤
( r
R

)ζ(f,r) ≤ ( r
R

)rt(b+ε)). Therefore, since R > 1, we

have
log(|f |(r)) ≤ log(|f |(R)) + rt(b+ ε)(log(r)).

Now, when u > 2, v > 2, we check that log(u+ v) ≤ log(u) + log(v). Applying
that inequality with u = log(|f |(R)) and v = rt(b + ε)(log(r)) when rt(b +
ε)(log(r)) > 2, that yields

log(log(|f |(r))) ≤ log(log(|f |(R))) + t log(r) + log(b+ ε) + log(log(r)).

Consequently,

log(log(|f |(r)))
log(r)

≤ log(log(|f |(R))) + t log(r) + log(b+ ε) + log(log(r))
log(r)

and hence we can check that

lim sup
r→+∞

log(log(|f |(r)))
log(r)

≤ t

which proves the first claim.

Second, we will prove that given f ∈ A(K) not identically zero and such

that for some t ≥ 0, we have lim sup
r→+∞

ζ(f, r)
rt

> 0, then ρ(f) ≥ t.
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By hypotheses, there exists a sequence (rn)n∈N such that limn→+∞ rn = +∞

and such that lim
n→+∞

ζ(f, rn)
rtn

> 0. Thus there exists b > 0 such that lim
n→+∞

ζ(f, rn)
rtn

≥ b.

We can assume that |f |(r0) ≥ 1, hence by Theorem B.13.27, |f |(rn) ≥ 1 ∀n.
Let λ ∈]1,+∞[. By Corollary B.13.30 we have

|f |(λrn)
|f |(rn)

≥ (λ)ζ(f,rn) ≥
(
λ
)[b(rn)t]

hence
log(|f |(λrn) ≥ log(|f |(rn)) + b(rn)t log(λ).

Since |f |(rn) ≥ 1, we have log(log(|f |(λrn))) ≥ log(b log(λ))+t log(rn) therefore

log(log(|f |(λrn))
log(rn)

≥ t+
log(b log(λ))

log(rn)
∀n ∈ N

and hence

lim sup
r→+∞

log(log(|f |(r)))
log(r)

≥ t

which ends the proof of the scond claim.

Definition and notation: Let t ∈ [0,+∞[ and let f ∈ A(K) of order t. We

set ψ(f) = lim sup
r→+∞

ζ(r, f)
rt

and call ψ(f) the cotype of growth of f , or just the

cotype of f in brief.

Lemma B.21.9: Let f, g ∈ A(K). Then max
(
ζ(r, f), ζ(r, g)

)
≤ ζ(r, fg) =

ζ(r, f) + ζ(r, g).

Proof. Let r′ > r be such that both ζ(u, f) and ζ(u, g) are constant in [r, r′].
Then, when µ = log(u), by Corollary B.10.3 we have

ζ(u, f) =
dΨ(f, µ)
dµ

, ζ(u, g) =
dΨ(g, µ)
dµ

∀µ ∈] log(r), log(r′)[.

But since Ψ(fg, µ) = Ψ(f, µ) + Ψ(g, µ), the inequalities

max
(
ζ(r, f), ζ(r, g)

)
≤ ζ(r, fg) = ζ(r, f) + ζ(r, g)

are clear.

Theorem B.21.10: Let f, g ∈ A∗(K). Then ψ(fg) ≤ ψ(f)+ψ(g). Moreover,
if ρ(f) ≥ ρ(g), then ψ(f) ≤ ψ(fg). If ρ(f) = ρ(g), then max

(
ψ(f), ψ(g)

)
≤

ψ(fg).
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Proof. Set s = ρ(f), t = ρ(g) and suppose s ≥ t. By Theorem B.21.1,
we have ρ(f.g) = ρ(f) = s. By Lemma B.21.9, for each r > 0, we have
max

(
ζ(r, f), ζ(r, g)

)
≤ ζ(r, f.g) = ζ(r, f) + ζ(r, g). Consequently,

lim sup
r→+∞

ζ(r, f.g)
rs

≤ lim sup
r→+∞

ζ(r, f)
rs

+lim sup
r→+∞

ζ(r, g)
rs

≤ lim sup
r→+∞

ζ(r, f)
rs

+lim sup
r→+∞

ζ(r, g)
rt

= ψ(f) + ψ(g).

Moreover, assuming again s ≥ t, then

ψ(f) = lim sup
r→+∞

ζ(r, f)
rs

≤ lim sup
r→+∞

ζ(r, fg)
rs

= lim sup
r→+∞

ζ(r, fg)
rρ(fg)

= ψ(fg).

Consequently, if ρ(f) = ρ(g), then max
(
ψ(f), ψ(g)

)
≤ ψ(fg).

Theorem B.21.11: Let f(x) =
+∞∑
n=0

anx
n ∈ A(K). Then

ρ(f) = lim sup
n→+∞

( n log(n)
− log |an|

)
.

Proof. We will follow a similar way as this of [86] when ρ(f) < +∞.
Let t = ρ(f) and suppose first that t < +∞. Let α = lim supn→+∞

n log(n)
− log |an| .

Take s > t. For all n ∈ N, we have |an|rn ≤ |f |(r) and therefore |an|rn ≤ e(rs)

and hence |an| ≤ r−ne(rs) i.e.

(1) log |an| ≤ rs − n log(r)

when r is big enough.

Now, choose r =
(n
s

) 1
s

. So, we have log |an| ≤
n

s
− n

s
log(

n

s
), i.e.

− log(|an|) ≥ −
n

s
+
n

s
log(

n

s
).

Consequently, when n is big enough we have

n log n
(− log |an|)

≤ n log n
n
s log(ns )− n

s

≤ s+O(1)

Therefore we have α ≤ s and since this is true for each s > t, that shows that
α ≤ t.

Now, take β > α so that
n log n

(− log |an|)
< β for n big enough. Then, when n

is big enough, we have n log(n) ≤ β(− log |an|) hence n
n
β ≤ 1

|an|
and hence

|an| ≤
1
n
n
β

. Consequently, |an|rn ≤
rn

n
n
β

. Now, for r big enough, |f |(r) =

sup
n∈N
|an|rn ≤ sup

n∈N

rn

n
n
β

.
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Putting ϕ(n) = n
β and R = r

β , we have

|f |(r
1
β ) ≤ sup

n∈N

rϕ(n)

nϕ(n)
≤ sup

x>0

Rx

xx

Now we check that the maximum on [0,+∞[ of the function g(x) =
Rx

xx
is

reached when x =
R

e
and hence is e

R
e = e

r
βe . Therefore, we have |f |(r

1
β ) ≤ e

r
βe .

Putting now u = r
1
β , we can derive |f |(u) ≤ e

uβ

βe , hence

log(log(|f |(u))) ≤ β log(u)− log(eβ).

Consequently,

lim sup
r→+∞

log(log(|f |(r)))
log(r)

≤ β.

So we have t ≤ β and since this is true for all β > α, we have proven that t ≤ α,
which ends the proof when t < +∞.

Suppose now that t = +∞ and suppose that lim sup
n→+∞

n log n
(− log |an|)

< +∞. Let

us take s ∈ N such that

(2)
n log n

(− log |an|)
< s ∀n ∈ N.

By Theorem B.21.8, we have lim sup
r→+∞

ζ(f, r)
rs

= +∞. So, we can take a se-

quence (rm)m∈N such that

(3) lim
m→+∞

ζ(f, rm)
(rm)s

= +∞.

For simplicity, set um = ζ(f, rm), m ∈ N. By (2), for m big enough we have

um log(um) < s(− log(|aum |) = s log
( 1
|aum |

)
hence

1
(um)um

> |aum |s,

therefore

|aum |s(rm)sum <
(rm)sum

(um)um

i.e.

(|f |(rm))s <
( (rm)s

um

)um



Analytic elements and analytic functions 221

But by Theorem B.13.27, we have lim
r→+∞

|f |(rm) = +∞, hence (rm)s > um

when m is big enough and therefore lim sup
m→+∞

ζ(f, rm)
(rm)s

≤ 1, a contradiction to

(3). Consequently, (2) is impossible and therefore

lim sup
n→+∞

( n log(n)
− log |an|

)
= +∞ = ρ(f).

Remark: Of course, polynomials have a growth order equal to 0. On K as on
C we can easily construct transcendental entire functions of order 0 or of order
∞.

Example 1: Suppose that for each r > 0, we have ζ(r, f) ∈ [rt log r, rt log r+

1]. Then of course, for every s > t, we have lim sup
r→+∞

ζ(r, f)
rs

= 0 and lim sup
r→+∞

ζ(r, f)
rt

= +∞, so there exists no t > 0 such that
ζ(r, f)
rt

have non-zero superior limit

b < +∞. Consequently, ρ(f) = +∞.

Example 2: Let (an)n∈N be a sequence in K such that

− log |an| ∈ [n(log n)2, n(log n)2 + 1]. Then clearly, lim
n→+∞

log |an|
n

= −∞ hence

the function
∞∑
n=0

anx
n has radius of convergence equal to +∞. On the other

hand, lim
n→+∞

n log n
− log |an|

= 0 hence ρ(f) = 0.

Example 3: Let (an)n∈N be a sequence in K such that

− log |an| ∈ [n
√

log n, n
√

log n+1]. Then lim
n→+∞

log |an|
n

= −∞ again and hence

the function
∞∑
n=0

anx
n has radius of convergence equal to +∞. On the other

hand,

lim
n→+∞

( n log n
− log |an|

)
= +∞ hence ρ(f) = +∞.

Theorem B.21.12: Let f ∈ A∗(K). Then

ρ(f) = inf{s ∈]0,+∞[ | lim
r→+∞

log(|f |(r))
rs

= 0}.
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Proof. Indeed, let M = inf{s ∈]0,+∞[ | limr→+∞
log(|f |(r))

rs = 0}. First we
will prove that ρ(f) ≤ M Let s be such that limr→+∞

log(|f |(r))
rs = 0. Let us

fix ε > 0. For r big enough, we have
log(|f |(r))

rs
≤ ε, hence log(|f |(r)) ≤ εrs,

therefore log(log(|f |(r))) ≤ log ε+ s log(r), hence
log(log(|f |(r)))

log(r)
≤ s+

ε

log(r)
.

This is true for every ε > 0, therefore lim sup
r→+∞

log(log(|f |(r)))
log(r)

≤ s i.e. ρ(f) ≤ s

and hence, ρ(f) ≤M .
On the other hand, we notice that

M = sup{s ∈]0,+∞[ | lim sup
r→+∞

log(|f |(r))
rs

> 0}.

Now, suppose that for some s > 0, we have lim sup
r→+∞

log(|f |(r))
rs

= b > 0. Let us

fix ε ∈]0, b[. There exists a sequence (rn)n∈N such that, when n is big enough,

we have b− ε ≤ log(|f |(rn))
(rn)s

≤ b+ ε, hence

s log(rn) + log(b− ε) < log(log(|f |(rn))) < s log(rn) + log(b− ε) therefore

s+
log(b− ε)
log(rn)

<
log(log(|f |(rn)

log(rn)
< s+

log(b+ ε)
log(rn)

Consequently, lim
n→+∞

log(log(|f |(rn))
log(rn)

= s and therefore ρ(f) ≥ s, hence ρ(f) ≥

M . Finally, ρ(f) = M .
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B.22. Type of growth for entire functions

Definition and notation: In complex analysis, the type of growth is defined

for an entire function having a finite order of growth t as σ(f) = lim sup
r→+∞

log(Mf (r))
rt

,

with t < +∞. Of course the same notion may be defined for f ∈ A(K). Here,
as in Chapters B.21 and B.23, we put θ = e and we denote by log the Neperian

logarithm. Then, given f ∈ A∗(K) of order t, we set σ(f) = lim sup
r→+∞

log(|f |(r))
rt

.

Moreover, we put σ̃(f) = lim inf
r→+∞

log(|f |r))
rt

.

Theorem B.22.1: Let f, g ∈ A∗(K). Then σ(fg) ≤ σ(f) + σ(g). If ρ(f) ≥
ρ(g), then σ(f) ≤ σ(fg) and if ρ(f) = ρ(g), then max(σ(f), σ(g)) ≤ σ(fg).
Moreover, if ρ(f) = ρ(g) and if c|f |(r) ≥ |g|(r) with c > 0 when r is big enough,
then σ(f) ≥ σ(g). If ρ(f) = ρ(g) and σ(f) > σ(g) then ρ(f + g) = ρ(f) and
σ(f + g) = σ(f). If ρ(f + g) = ρ(f) ≥ ρ(g) then σ(f + g) ≤ max(σ(f), σ(g)).

Proof. Let t = ρ(g) and s = ρ(f) and suppose s ≥ t. When r is big enough, we
have max(log(|f |(r)), log(|g|(r)) ≤ log(|f.g|(r)) = log(|f |(r)) + log(|g|(r)). By
Theorem B.21.1, then ρ(fg) = s. Therefore

σ(fg) = lim sup
r→+∞

( log(|f.g|(r))
rs

)
≤ lim sup

r→+∞

( log(|f |(r))
rs

)
+ lim sup

r→+∞

( log(|g|(r))
rs

)
≤ lim sup

r→+∞

( log(|f |(r))
rs

)
+ lim sup

r→+∞

( log(|g|(r))
rt

)
= σ(f) + σ(g).

Now, suppose s > t. Then by Theorem B.21.1, ρ(f + g) = ρ(f) = s.
Consequently,

σ(f + g) = lim sup
r→+∞

( log |f + g|(r)
rs

)
≤ lim sup

r→+∞

(max(log |f |(r), log |g|(r))
rs

)
= max

(
lim sup
r→+∞

( log |f |(r)
rs

)
, lim sup
r→+∞

( log |g|(r)
rs

))
≤ max

(
lim sup
r→+∞

( log |f |(r)
rs

)
, lim sup
r→+∞

( log |g|(r)
rt

))
= max

(
σ(f), σ(g)

)
.

Now, just suppose s ≥ t. Then

σ(f) = lim sup
r→+∞

log(|f |(r))
rs

≤ lim sup
r→+∞

log(|fg|(r))
rs

.

But by Theorem B.21.1, ρ(fg) = s, hence σ(f) ≤ σ(fg).
Now, suppose ρ(f) = ρ(g) = s. Then

max
(

lim sup
r→+∞

(
log(|f |(r))

rs
), lim sup

r→+∞
(
log(|g|(r))

rs
)
)
≤ lim sup

r→+∞

( log(|f.g|(r))
rs

)
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because the two both |f |(r) and |g|(r) tend to +∞ with r. Consequently,
σ(fg) ≥ max(σ(f), σ(g)).

Suppose now c|f |(r) ≥ |g|(r) when r is big enough, then, assuming again
that s = t, it is obvious that σ(f) ≥ σ(g).

Now, suppose again that ρ(f) = ρ(g) and suppose σ(f) > σ(g). Let s =
ρ(f), b = σ(f). Then b > 0. Let (rn)n∈N be a sequence such that limn→+∞ rn =

+∞ and lim
n→+∞

log(|f |(rn))
(rn)s

= b. Since σ(g) < σ(f), we notice that when n is

big enough we have |g|(rn) < |f |(rn). Consequently, when n is big enough, we
have |f + g|(rn) = |f |(rn) and hence

(1) lim
n→+∞

log(|f + g|(rn))
(rn)s

= b.

Now, by definition of σ we have σ(f+g) ≥ lim
n→+∞

log(|f + g|(rn))
(rn)ρ(f+g)

. By Theorem

B.21.1, we have ρ(f + g) ≤ s, hence

σ(f + g) ≥ lim
n→+∞

log(|f + g|(rn))
(rn)ρ(f+g)

≥ lim
n→+∞

log(|f + g|(rn))
(rn)s

= lim
n→+∞

log(|f |(rn))
(rn)s

= σ(f)

therefore by (1), σ(f + g) ≥ σ(f).
Suppose that σ(f + g) > σ(f). Putting h = f + g, we have f = h − g

with σ(g) < σ(h), hence σ(h− g) ≥ σ(h) i.e. σ(f) > σ(f + g), a contradiction.

Consequently, σ(f + g) = σ(f). Thus, lim sup
r→+∞

log(|f + g|(r))
rs

= b > 0. But

then, lim sup
r→+∞

log(|f + g|(r))
rm

= 0 ∀m > s. Therefore, by Therorem B.21.12 we

have ρ(f + g) = ρ(f).
Finally, suppose now that ρ(f + g) = ρ(f) ≥ ρ(g). Then,

σ(f+g) = lim sup
r→+∞

log(|f + g|(r))
rs

≤ max
(

lim sup
r→+∞

log(|f |(r))
rs

, lim sup
r→+∞

log(|g|(r))
rs

)
≤ max

(
lim sup
r→+∞

log(|f |(r))
rs

, lim sup
r→+∞

log(|g|(r))
rt

)
= max(σ(f), σ(g)).

The last statement derives from the previous ones and from Theorem B.21.1
iii).

Corollary B.22.2: Let f, g ∈ A(K) be such that ρ(f) 6= ρ(g). Then σ(f +
g) ≤ max(σ(f), σ(g)).

Proof. Indeed, assuming that ρ(f) > ρ(g), we have ρ(f + g) = ρ(f) and hence
the conclusion comes from the last statement of Theorem B.22.1.
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Now we will show that σ(f) may be computed by the same formula as on
C.

Theorem B.22.3: Let f(x) =
∞∑
n=0

anx
n ∈ A(K) be such that 0 < ρ(f) < +∞.

Then σ(f)ρ(f)e = lim sup
n→+∞

(
n n

√
|an|ρ(f)

)
.

Proof. Let t = ρ(f). First, let us show that etσ(f) ≥ lim sup
n→+∞

n|an|
t
n . We will

follow a similar way as in [86]. Let u = σ(f) and let us take w > σ(f). For r
big enough we have log(|f |(r)) ≤ wrt hence for all n ∈ N, we can derive

(1) |an| ≤
|f |(r)
rn

≤ ewr
t

rn
.

Now, let us take r such that the derivative of the logarithm of the function
ewr

t

rn
vanishes: we have wtrt−1− n

r = 0. So, we can choose rn =
(
n
wt

) 1
t

and we
can check that

|an| ≤
e
n
t(

n
wt

)n
t

=
(ewt
n

)n
t

.

Consequently, we have n|an|
t
n ≤ ewt, therefore lim sup

n→+∞
n|an|

t
n ≤ etw. This is

true for all w > σ(f) and hence lim sup
n→+∞

n|an|
t
n ≤ etσ(f).

Now let us show the reverse inequality. Take c >
1
et

lim sup
n→+∞

n|an|
t
n . When n

is big enough we have |an| ≤
(
ect
n

)n
t

hence |an|rn ≤
(
ect
n

)n
t

rn and consequently

|f |(r) ≤ sup
n≥1

(ect
n

)n
t

rn. Therefore |f |(r) ≤ sup
x>1

(ect)
x
t rx

x
x
t

. Now, set y =
x

t
and

R = ecr. Then

|f |(r 1
t ) ≤ sup

y>0

(ect)yry

(ty)y
= sup

y>0

(ecr
y

)y
= sup

y>0

Ry

yy
= e

R
e = ecr.

Thus, we have |f |(r) ≤ ecrt and hence lim sup
r→+∞

log(|f |(r))
rt

≤ c. Therefore σ(f) ≤

c, which ends the proof.

In the proof of Theorem B.22.5, we will use the following trivial lemma:

Lemma B.22.4 : Let g, h be the real functions defined in ]0,+∞[ as g(x) =
etx − 1
x

and h(x) =
1− e−tx

x
with t > 0. Then:

i) inf{|g(x)| |x > 0} = t.
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ii) sup{|h(x)| |x > 0} = t.

Notation: Given f ∈ A∗(K), we put σ̃(f) = lim inf
r→+∞

log(|f |r))
rt

.

Theorem B.22.5: Let f ∈ A∗(K) be not identically zero. Then

ρ(f)σ(f) ≤ ψ(f) ≤ ρ(f)
(
eσ(f)− σ̃(f)

)
.

Moreover, if ψ(f) = lim
r→+∞

q(f, r)
rρ(f)

or if σ(f) = lim
r→+∞

log(|f |(r))
rρ(f)

, then ψ(f) =

ρ(f)σ(f).

Proof. Without loss of generality we can assume that f(0) 6= 0. Let t = ρ(f)
and set ` = log(|f(0|). Let (an)n∈N be the sequence of zeros of f with |an| ≤
|an+1|, n ∈ N and for each n ∈ N, let wn be the multiplicity order of an. For ev-
ery r > 0, let k(r) be the integer such that |an| ≤ r ∀n ≤ k(r) and |an| > r ∀n >

k(r). Then by Theorem B.13.27, we have log(|f |(r)) = `+
k(r)∑
n=0

wn(log(r)− log(|an|))

hence

σ(f) = lim sup
r→+∞

(`+
∑k(r)
n=0 wn(log(r)− log(|an|))

rt

)
.

Given r > 0, set cn = |an| and let us keep the notations above. Then

(1) σ(f) = lim sup
r→+∞

σ(f, r), ψ(f) = lim sup
r→+∞

ψ(f, r).

We will first show the inequality ρ(f)σ(f) ≤ ψ(f). By the definition of
σ(f, r) we can derive

σ(f, r) ≤
k(re−α)∑
n=0

wn
(

log(r)− log(re−α)
)

rt

+
k(re−α)∑
n=0

wn
(

log(re−α)− log(cn)
)

rt
+ α

∑
k(re−α)<n≤k(r)

wn
rt

hence

σ(f, r) ≤ α
k(re−α)∑
n=0

wn
rt

+
k(re−α)∑
n=0

wn
(

log(re−α)− log(cn)
)

rt

+α
∑

k(re−α)<n≤k(r)

wn
rt

therefore
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σ(f, r) ≤ α
k(re−α)∑
n=0

wn
rt

+
k(re−α)∑
n=0

wn
(

log(re−α)− log(cn)
)

rt

+α
∑

k(re−α)<n≤k(r)

wn
rt

hence

σ(f, r) ≤ α
k(re−α)∑
n=0

wn
rt

+ e−tα
k(re−α)∑
n=0

wn(log(re−α)− log(cn))
(re−α)t

+α
∑

0≤n≤k(r)

wn
rt
− α

∑
0≤n≤k(re−α)

wn
rt
,

hence

σ(f, r) ≤ e−tα
k(re−α)∑
n=0

wn(log(re−α)− log(cn))
(re−α)t

+ α
∑

0≤n≤k(r)

wn
rt
.

Thus we have
σ(f, r) ≤ e−tασ(f, re−α) + αψ(f, r).

We check that we can pass to superior limits on both sides, so we obtain σ(f) ≤

e−tασ(f)+αψ(f) therefore σ(f)
(1− e−tα)

α
≤ ψ(f). That holds for every α > 0,

hence by Lemma B.22.4.ii), we can derive

(2) ψ(f) ≥ ρ(f)σ(f).

We will now show the inequality

ψ(f) ≤ ρ(f)(eσ(f)− σ̃(f)).

Let us fix α > 0. We can write

σ(f, r) =
k(re−α)∑
n=0

wn(log(r)− log(re−α))
rt

+
k(re−α)∑
j=0

wj(log(re−α)− log(cn))
rt

+
∑

k(re−α)<j≤k(r)

wj(log(r)− log(cj))
rt

hence

σ(f, r) ≥ α
k(re−α)∑
n=0

wn
rt

+
k(re−α)∑
j=0

wj(log(re−α)− log(cn))
rt



228 Analytic elements and analytic functions

hence

σ(f, r) ≥ αe−tα
k(re−α)∑
n=0

wn
(re−α)t

+ e−tα
k(re−α)∑
j=0

wn(log(re−α)− log(cn))
(re−α)t

and hence
σ(f, r) ≥ αe−tαψ(f, re−α) + e−tασ(f, re−α).

Therefore, we can derive

αe−tαψ(f) ≤ lim sup
r→+∞

(
σ(f, r)− e−tασ(f, re−α))

)
and therefore

(3) αe−tαψ(f) ≤ σ(f)− e−tασ̃(f)).

That holds for every α > 0 and hence, when tα = 1, by (3) we obtain ψ(f) ≤
ρ(f)

(
eσ(f)− σ̃(f)

)
which is the left hand inequality of the general conclusion.

Now, suppose that σ(f) = lim
r→+∞

log(|f |(r))
rt

. Then by (3) we have

lim sup
r→+∞

ψ(f, r) ≤ σ(f)
(etα − 1

α

)
and hence ψ(f) ≤ σ(f)

(etα − 1
α

)
. That holds

for every α > 0 and then, by Lemma B.22.4.i) we obtain ψ(f) ≤ tσ(f), i.e.
ψ(f) ≤ ρ(f)σ(f), hence by (2) we have, ψ(f) = ρ(f)σ(f).

Now, suppose that

ψ(f) = lim
r→+∞

k(r)∑
n=0

wn
rt

= lim
r→+∞

ψ(f, r).

We can obviously find a sequence (rn)n∈N in ]0,+∞[ of limit +∞ such that
σ(f) = limn→+∞ σ(f, rne−α). Then, by (1) we have

σ(f, rn) ≥ αe−tαψ(f,
rn
eα

) + e−tασ(f,
rn
eα

)

hence
lim sup
n→+∞

σ(f, rn) ≥ αe−tαψ(f) + e−tασ(f)

and hence
σ(f) ≥ αe−tαψ(f) + e−tασ(f)

therefore, ψ(f) ≤
(etα − 1

α

)
σ(f). Finally, by Lemma B.22.4.i) we have, ψ(f) ≤

ρ(f)σ(f) and hence by (2), ψ(f) = ρ(f)σ(f).
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Remark: The conclusions of Theorem B.22.4 hold for ψ(f) = σ(f) = +∞.

We will now present Example 1 where neither ψ(f) nor σ(f) are obtained
as limits but only as superior limits: we will show that the equality ψ(f) =
ρ(f)σ(f) holds again.

Example 1: Let rn = 2n, n ∈ N and let f ∈ A(K) have exactly 2n ze-
ros in C(0, rn) and satisfy f(0) = 1. Then ζ(rn, f) = 2n+1 − 2 ∀n ∈ N.

We can see that the function h(r) defined in [rn, rn+1[ by h(r) =
ζ(r, f)
r

is

decreasing and satisfies h(rn) =
2n+1 − 2

2n
and lim

r→rn+1
h(r) =

2n+1 − 2
2n+1

. Con-

sequently, sup
(
h(r) |rn ≤ r < rn+1

)
=

2n+1 − 2
2n

. Therefore lim sup
r→+∞

h(r) = 2

and lim inf
r→+∞

h(r) = 1. Particularly, by Theorem B.21.8, we have ρ(f) = 1 and of

course ψ(f) = 2.

Now, let us compute σ(f) and consider the function in r: E(r) =
log(|f |(r))

r
.

When r belongs to [rn, rn+1], we have

E(r) =
(2n+1 − 2) log r − (log 2)(

∑n
k=1 2k)

r

and its derivative is E′(r) =
∑n
k=1 2k(1 + k log(2))− log(r))

r2
. We will need to

compute

(1)
n∑
k=1

k2k = 2(n2n+1 − (n+ 1)2n + 1).

Now, the numerator of E′(r) is U(r) =
∑n
k=1 2k(1 + k log(2)) − log(r)) is de-

creasing in the interval [rn, rn+1] and has a unique zero αn satisfying, by (1),

log(αn) =
2n
(

(log 2)(n− 1 + 2−n) + 2− 2−n+1
)

2n − 2

thereby log(αn) is of the form n log(2) + εn with lim
n→+∞

εn = 0.

Since E′(r) is decreasing in [rn, rn+1], we can check that E(r) passes by a
maximum at αn and consequently,

σ(f) = lim sup
n→+∞

E(αn)
αn

Therefore σ(f) = 2 = ψ(f).

Now, we can check that lim inf
r→+∞

E(r)
r

< σ(f). Indeed consider

E(rn)
rn

=
(2n+1 − 2)(log rn)− (log 2)

∑n
k=1 k2k

rn
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=
(2n+1 − 2)(n log 2)− (log 2)

∑n
k=1 k2k

2n

hence by (1), we obtain

E(rn) =
(2n+1 − 2)(n log 2)− 2(log 2)(n2n+1 − (n+ 1)2n + 1)

2n

=
2(log 2)(2n − n− 1)

2n

therefore lim
n→∞

E(rn) = 2 log 2 and hence lim inf
r→+∞

E(r) < σ(f). Thus, in that Ex-

ample 1, we have lim inf
r→+∞

E(r) < σ(f) but however, ψ(f) = ρ(f)σ(f).

Therefore Theorem B.22.5 and Example 1 suggest the following conjecture:

Conjecture: Let f ∈ A∗(K) be such that either σ(f) < +∞ or ψ(f) < +∞.
Then ψ(f) = ρ(f)σ(f).

Example 2: infinite type and cotype: Here is an example of f ∈ A(K, 1)
such that σ(f) = ψ(f) = +∞.

For each n ∈ N, set φ(n) =
√

log n and let un be defined by log(un) =

− n log n
1 + 1

φ(n)

. For simplicity, suppose first that the set of absolute values of |K| is

the whole set [0,R[. We can take a sequence (an) of K such that |an| = un ∀n ∈

N∗, with a0 = 1. Then
log |an|
n

= − (log n)φ(n)
φ(n) + 1

hence lim
n→+∞

log |an|
n

= −∞,

therefore f ∈ A(K). Next,
n log n
− log[an|

=
φ(n)

φ(n) + 1
hence lim

n→+∞

n log n
− log[an|

= 1 therefore ρ(f) = 1.

Henceforth, log(n|an|
1
n ) = log n+

log |an|
n

= log n− φ(n) log n
φ(n) + 1

=
log n

φ(n) + 1
and hence σ(f) = +∞.

Let us now compute ψ(f). Now, for each n ∈ N∗, take rn =
un−1

un
. We

will first check that the sequence (rn)n∈N∗ is strictly increasing when n is big
enough. Indeed, we just have to show that there exists M ∈ N such that

(1) log(un)− log(un+1) > log(un−1)− log(un) ∀n > M.

Let g be the function defined in ]0,+∞[ as g(x) = − x log x
1 + 1√

log x

. Then we can

check that g is convex and therefore (1) is proven.
Now, since the sequence (rn)n∈N∗ obviously tends to +∞, there exists a rank

N ≥ M such that rn+1 > rn ∀n ≥ M and rM > rk ∀k < N . Consequently, for
each n > N, we have |an|rn > |ak|rk ∀k 6= n and therefore, f admits n−1 zeros
inside d(0, (rn)−) and a unique zero in C(0, rn), hence f admits exactly n zeros
in d(0, rn). Consequently, we have

(3) ζ(rn, f) = n ∀n ≥ N.
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Since ζ(r, f) remains equal to ζ(rn, f) for all r ∈ [rn, rn+1[, by (2) we can derive
that

(4) lim sup
r→+∞

ζ(r, f)
r

= lim sup
n→+∞

ζ(rn, f)
rn

Now, for n ≥ N , we have

log
ζ(rn, f)
rn

= log(n)−log(un−1)+log(un) = log(n)− n log n
1 + 1

φ(n)

+
(n− 1) log(n− 1)

1 + 1
φ(n−1)

Set Sn =
n log n

1 + 1
φ(n)

− (n− 1) log(n− 1)
1 + 1

φ(n−1)

. Then

(5) log(
ζ(rn, f)
rn

) = log n− Sn.

Now, we have Sn =

φ(n)φ(n− 1)
(
n log(n)− (n− 1) log(n− 1)

)
+ n log(n)φ(n)− (n− 1) log(n− 1)φ(n− 1)

(φ(n) + 1)(φ(n− 1) + 1)
.

Set An =
φ(n)φ(n− 1)

(
n log(n)− (n− 1) log(n− 1)

)
(φ(n) + 1)(φ(n− 1) + 1)

and

Bn =
n log(n)φ(n)− (n− 1) log(n− 1)φ(n− 1)

(φ(n) + 1)(φ(n− 1) + 1)
. Then Sn = An + Bn and the

two both An, Bn are positive. By finite increasings theorem applied to the
function g(x) = x log x, we have

(6) An ≤
φ(n)φ(n− 1)(log n)

(φ(n) + 1)(φ(n− 1) + 1)
.

On the other hand, by finite increasings theorem applied to the function h(x) =
x(log x)

3
2 , we have

(7) Bn ≤
φ(n)(log n+ 3

2 )
(φ(n) + 1)(φ(n− 1) + 1)

Then by (1), (6), (7) we have log(ζ(rn, f))−An −Bn

≥
log n

(
φ(n) + 1)(φ(n− 1) + 1)− φ(n)φ(n− 1)− φ(n)

)
− 3

2φ(n)

(φ(n) + 1)(φ(n− 1) + 1)

=
log(n)

(
φ(n) + φ(n− 1) + 1− φ(n)

)
− 3φ(n)

2

(φ(n) + 1)(φ(n− 1) + 1)

=
log n

φ(n) + 1
− 3φ(n)

2(φ(n) + 1)(φ(n− 1) + 1)
.

Now, since φ(n) =
√

log n, it is obvious that

lim
n→+∞

log(ζ(rn, f))− Sn = +∞

and therefore by (3), (4) and (5), ψ(f) = +∞.
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B.23. Growth of the derivative of an entire function

Similarly to the situation in complex entire functions, here we will see that
the order and the type of the derivative of an entire function f are respectively
equal to those of f . As in Chapters B.21 and B.22, we put θ = e and denote by
log the Neperian logarithm.

Throughout the chapter, K is supposed to have characteristic 0.

Theorem B.23.1: Let f ∈ A(K) be not identically zero. Then ρ(f) = ρ(f ′).

Proof. By Theorem B.21.11 ρ(f ′) = lim sup
n→+∞

( n log(n)
− log(|(n+ 1)an+1|)

)
. But since

1
n
≤ |n| ≤ 1, we have

log(|an+1|)− log(n+ 1) ≤ log(|(n+ 1)an+1|) ≤ log(|an+1|)

hence

− log(|an+1|)
n log(n)

≤ − log(|(n+ 1)an+1|)
n log(n)

≤ − log(|an+1|)− log(n+ 1)
n log(n)

hence

lim inf
n→+∞

(− log(|an+1|)
n log(n)

)

≤ lim inf
n→+∞

(− log(|(n+ 1)an+1|)
n log(n)

≤ lim inf
n→+∞

(− log(|an+1|)− log(n+ 1)
n log(n)

).

But since

lim
n→+∞

log(n+ 1)
n log(n)

= 0,

we have

lim inf
n→+∞

(− log(|an+1|)
n log(n)

) = lim inf
n→+∞

(− log(|an+1|) + log(n+ 1)
n log(n)

)

therefore

lim inf
n→+∞

(
− log(|an+1|)
n log(n)

) = lim inf
n→+∞

(− log((n+ 1)|an+1|)
n log(n)

).

But since all quantities are positive, we can derive

lim sup
n→+∞

n log n
− log(|an+1|

= lim sup
n→+∞

(
n log n

− log(|(n+ 1)an+1|
)

therefore

lim sup
n→+∞

n log n
− log(|an+1|

= lim sup
n→+∞

(
(n+ 1) log(n+ 1)
− log(|(n+ 1)an+1|

) = ρ(f)

and hence ρ(f ′) = ρ(f).
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Corollary B.23.2: Consider the differential equation

(E) f (n) + an−1(x)f (n−1)(x) + ...+ a0(x)f(x) = 0

with aj ∈ A∗(K), j = 0, ..., n − 1 and ρ(aj) < ρ(a0) ∀j = 1, ..., n − 1. Then
every non-trivial solution f of (E) satisfies ρ(f) ≥ ρ(a0).

Corollary B.23.3: The derivation on A(K) restricted to the algebra A(K, t)
(resp. to A∗(K)) provides that algebra with a derivation.

In complex analysis, it is known that if an entire function f has order t <
+∞, then f and f ′ have same type. We will check that it is the same here.

Theorem B.23.4: Let f ∈ A(K) of order t ∈]0,+∞[. Then σ(f) = σ(f ′).

Proof. By Theorem B.22.3 we have,

eρ(f ′)σ(f ′) = lim sup
n→+∞

(
n
(
|n+ 1||an+1|

) t
n
)

= lim sup
n→+∞

((
(n+ 1)

(
|n+ 1||an+1|

) t
n
) n
n+1 ( n

n+ 1
))

= lim sup
n→+∞

(
(n+ 1)

(
|n+ 1||an+1|

) t
n+1
)

= eρ(f)σ(f).

But since ρ(f) = ρ(f ′) and since ρ(f) 6= 0, we can see that σ(f ′) = σ(f).

Theorem B.23.4 shows a way to compare the growth of an entire function f
to this of its derivative. Of course, we know that the inequality |f ′|(r) ≤ |f |(r)
holds allways. But we don’t have an inequality in the other side. However,
thanks to Theorem B.23.4, we can get this corollary:

Corollary B.23.5: Let f ∈ A∗(K) be not identically zero, of order t < +∞.
Given ε > 0, there exists a sequence of intervals [r′n, r

′′
n], with lim

n→+∞
r′n = +∞,

such that
|f ′|(r) ≥ |f |(r)e−(εrt) ∀r ∈

⋃
n∈N

[r′n, r
′′
n].

By Theorems B.22.5 and B.23.4, we can now derive Corollary B.23.6:

Corollary B.23.6: Let f ∈ A∗(K) be not identically zero, of order t < +∞.
If

ψ(f) = lim
r→+∞

ζ(f, r)
rt

and if ψ(f ′) = lim
r→+∞

ζ(f ′, r)
rt

, then ψ(f ′) = ψ(f).

Remarks: If the conjecture presented in Chapter B.22 is true, then ψ(f) =
ψ(f ′) ∀f ∈ A∗(K). Of course, polynomials have a growth order 0. On K as on
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C we can easily construct transcendental entire functions of order 0 or of order
∞.

Example 1: Let (an)n∈N be a sequence in K such that

− log |an| ∈ [n(log n)2, n(log n)2 + 1]. Then clearly, lim
n→+∞

log |an|
n

= −∞ hence

the function
∞∑
n=0

anx
n has a radius of convergence equal to +∞. On the other

hand,

lim
n→+∞

n log n
− log |an|

= 0 hence ρ(f) = 0.

Example 2: Let (an)n∈N be a sequence in K such that

− log |an| ∈ [n
√

log n, n
√

log n+1]. Then lim
n→+∞

log |an|
n

= −∞ again and hence

the function
∞∑
n=0

anx
n has radius of convergence equal to +∞. On the other

hand,

lim
n→+∞

( n log n
− log |an|

)
= +∞ hence ρ(f) = +∞.

Similary, comparing the number of zeros of f ′ to this of f inside a disk is
very uneasy. Now, we can give some precisions thanks to Theorems B.21.8 and
B.23.1.

Theorem B.23.7: Let f, g ∈ A(K) be transcendental and of order t ∈
[0,+∞[. Then for every ε > 0,

lim sup
r→+∞

(rεζ(r, g)
ζ(r, f)

)
= +∞.

Proof. Suppose first t = 0. The proof then is almost trivial. Indeed, for all

ε > 0, we have lim
r→+∞

ζ(r, f)
rε

= 0 hence lim
r→+∞

rε

ζ(r, f)
= +∞, therefore

lim
r→+∞

rεζ(r, g)
ζ(r, f)

= +∞.

Now suppose t > 0. By Theorem B.21.8, there exists λ > 0 such that

(1) ζ(r, f) ≤ λrt ∀r > 1.

Let us fix s ∈]0, t[. By hypothesis, ρ(g) = ρ(f) and hence by Theorem B.21.8,

we have lim sup
r→+∞

ζ(r, g)
rs

= +∞ so, there exists an increasing sequence (rn)n∈N of

R+ such that lim
n→+∞

rn = +∞ and
ζ(rn, g)
(rn)s

≥ n. Therefore, by (1), we have

λ(rn)tζ(rn, g)
(rn)sζ(rn, f)

>
ζ(rn, g)
(rn)s

> n
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and hence

λ lim
n→+∞

( (rn)t−sζ(rn, g)
ζ(rn, f)

)
= +∞.

Consequently,

(2) lim sup
r→+∞

( (r)t−sζ(r, g)
ζ(r, f)

)
= +∞.

Now, since that holds for all s ∈]0, t[, the statement comes from (2).

By Theorem B.23.1 we can derive Corollary B.23.8:

Corollary B.23.8: Let f ∈ A(K) be transcendental and of order t ∈ [0,+∞[.

Then for every ε > 0, we have lim sup
r→+∞

(rεζ(r, f ′)
ζ(r, f)

)
= +∞ and

lim sup
r→+∞

(rεζ(r, f)
ζ(r, f ′)

)
= +∞.
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B.24. Growth of an analytic function in an open disk

In Chapters B.21, B.22, B.23 we defined the order of growth and the type
of growth for entire functions in K in a similar way as it is done for complex
entire functions and we also defined a cotype of growth strongly linked to the
order and the type: in most of the cases the cotype is the product of the order
of growth by the type of growth.

Here we consider analytic functions in an ”open” disk d(a,R−) that we will
denote by E throughout the chapter.

Notations and definitions: Let f =
∞∑
n=0

anx
n ∈ A(E). In order to define a

growth order similarly as it was done in the algebra of entire functions in K we
can define in A(E) a growth order in the following way: given r ∈]0, R[, as it
was done in complex analysis, given an unbounded function f ∈ A(E), when r is

close enough to R, we put ρ(f, r) =
log(log(|f |(r)))
− log(R− r)

and ρ(f) = lim sup
r→R−

ρ(f, r),

hence ρ(f) = lim sup
r→R−

log(log(|f |(r)))
− log(R− r)

. Then ρ(f) is called the order of growth

of f .
On the other hand, for every r ∈]0, R[, if the set of the s > 0 such that

lim
r→R−

ζ(f, r)(R− r)s = 0 is empty, we put θ(f) = +∞. Else, we then denote

by θ(f) the lowest bound of the s > 0 such that lim
r→R−

ζ(f, r)(R− r)s = 0.

Similarly, if the set of the s > 0 such that lim
r→R−

log(|f |(r))(R− r)s = 0 is empty,

we put λ(f) = +∞. Else, we denote by λ(f) the lowest bound of the s > 0 such
that lim

r→R−
log(|f |(r))(R− r)s = 0. And if 0 < ρ(f) < +∞, we put σ(f, r) =

log(|f |(r))(R − r)ρ(f), σ(f) = lim sup
r→R−

σ(f, r), ψ(f, r) = ζ(f, r)(R − r)ρ(f) and

ψ(f) = lim sup
r→R−

ψ(f, r). We call σ(f) the type of growth of f and ψ(f) the cotype

of growth of f .
Let us recall that, as far as ultrametric entire functions are concerned,

the order of growth is equal to the lowest bound of the s > 0 such that

lim
r→+∞

log(|f |(r))
rs

= 0 and to the lowest bound of the s > 0 such that lim
r→+∞

ζ(f, r)
rs

= 0.

Here we will try to prove similar results. This paper is aimed at showing rela-
tions between these expressions ρ(f), σ(f), ψ(f).

Notation: We will denote by A∗(E) the set of unbounded functions f ∈ A(E)
such that 0 < ρ(f) < +∞.

Theorems B.24.1 and B.24.3 are easy and don’t need any proof:

Theorem B.24.1: Let f, g ∈ A∗(E). Then ρ(f + g) ≤ max(ρ(f), ρ(g)) and
ρ(fg) = max(ρ(f), ρ(g)).
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Corollary B.24.2: Let f, g ∈ A∗(E). Then ρ(fn) = ρ(f) ∀n ∈ N0. If
ρ(f) > ρ(g), then ρ(f + g) = ρ(f).

Theorem B.24.3: Let f ∈ A∗(E) and let P ∈ K[x] be non-constant. Then
ρ(P ◦ f) = ρ(f).

Theorem B.24.4: Let f, g ∈ A∗(E). Then ψ(fg) ≤ ψ(f) + ψ(g). Moreover,
if ρ(f) = ρ(g) then max(ψ(f), ψ(g)) ≤ ψ(fg).

Proof. Set ρ(f) = s, ρ(g) = t. Without loss of generality we can assume
s ≥ t. By Theorem 1, we have ρ(f.g) = ρ(f) = s. Now, for each r > 0, we have
ζ(f.g, r) = ζ(f, r) + ζ(g, r) hence

ψ(fg) = lim sup
r→R−

(ζ(f, r)+ζ(g, r))(R−r)s ≤ lim sup
r→R−

ζ(f, r)(R−r)s+lim sup
r→R−

ζ(g, r)(R−r)t

hence ψ(fg) ≤ ψ(f) + ψ(g). Now, suppose s = t. Then

ψ(fg) = lim sup
r→R−

(ζ(f, r) + q(g, r))(R− r)s ≥ lim sup
r→R−

max(ζ(f, r), ζ(g, r))(R− r)s

= max(ψ(f), ψ(g)).

Remark 2: Let f ∈ A∗(E). If s > θ(f), then by definition, lim
r→R−

ζ(f, r)(R− r)s = 0.

But if s < θ(f) then lim sup
r→R−

ζ(f, r)(R− r)s = +∞ because if lim sup
r→R−

ζ(f, r)(R− r)s < +∞,

we can find s′ ∈]s, θ(f)[ and then we can check that lim
r→R−

ζ(f, r)(R− r)s
′

= 0,

a contradiction.

Thanks to the classical inequality |f ′|(r) ≤ |f |(r)
r

[58], the following Theo-
rem B.24.5 is then immediate:

Theorem B.24.5: Suppose K has characteristic 0. Let f ∈ A∗(E). Then
ρ(f ′) ≤ ρ(f).

Remark 3: In a field of characteristic p 6= 0, certain analytic functions have
a null derivative. This is why we must suppose that K has characteristic 0 in
all statement involving derivatives.

In complex analysis, many estimates were given concerning the growth or-
der of solutions of linear differential equations. Here, by Corollary B.24.2 and
Theorem B.24.5 we can immediately obtain Corollary B.24.6:

Corollary B.24.6: Suppose K has characteristic 0. Consider the differential
equation

(E) f (n) + an−1(x)f (n−1)(x) + ...+ a0(x)f(x) = 0
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with aj ∈ A∗(E), j = 0, ..., n − 1 and ρ(aj) < ρ(a0) ∀j = 1, ..., n − 1. Then
every non-trivial solution f of (E) satisfies ρ(f) ≥ ρ(a0).

Theorem B.24.7: Suppose K has residue characteristic 0. Then for every
f ∈ A∗(D) we have ρ(f ′) = ρ(f), θ(f ′) = θ(f), σ(f ′) = σ(f) and ψ(f ′) = ψ(f).

Remark 4: Theorem 8 does not hold in residue characteristic p > 0 because
there exist functions f ∈ A∗(D) such that ρ(f) > 0 and that f ′ is bounded,

as shows the following example with R = 1: g(x) =
∞∑
m=0

xp
m

pm
. We can see

that g′(x) =
∞∑
n=0

xp
m−1 hence g′ is bounded and therefore ρ(g′) = 0. However,

consider the sequence (rm)m∈N defined as rm = 1 − 1
pm

. We can check that

|g|(rm) ≥ pm(rm)p
m

, hence

log(|g|(rm)) ≥ m+ pm log(rm) = m+ pm log
(
1− 1

pm
)
.

When m is big enough, we have log
(
1− 1

pm

)
≥ −2

pm , hence

log
(
|g|(rm)) ≥ m− pm

( 2
pm

)
= m− 2.

Therefore, when m is big enough, we have

log
(

log(|g|(rm)))
− log(rm)

≥ log(m− 2)
− log(1− 1

pm )
>

log(m− 2)
2
pm

=
pm

2
log(m− 2).

Thus, we have ρ(g) = +∞.

Remark 5: Theorem B.24.7 applies for instance to the complex Levi-Civita
field whose residue characteristic is 0 [12].

Theorem B.24.8: Let f ∈ A∗(E). Then λ(f) = ρ(f).

Proof. First we will prove that ρ(f) ≤ λ(f). Obviously, we can assume
that λ(f) < +∞. Let s be such that lim

r→R−
log(|f |(r))(R− r)s = 0. Let us

fix ε > 0. For r close enough to R, we have log(|f |(r))(R − r)s ≤ ε, hence
log(|f |(r)) ≤ ε

(R− r)s
, therefore

log(log(|f |(r))) ≤ log ε− s log(R− r) hence

log(log(|f |(r)))
(− log(R− r))

≤ log(ε)
(− log(R− r))

+ s,

and hence
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lim sup
r→R−

log(log(|f |(r)))
(− log(R− r))

≤ s

i.e. ρ(f) ≤ s. This is true for every s such that lim
r→R−

log(|f |(r))(R− r)s = 0

and hence ρ(f) ≤ λ(f).
On the other hand, we notice that, by definition of λ(f), either λ(f) = 0

and then λ(f) ≤ ρ(f), or

λ(f) = sup{s ∈]0,+∞[ | lim sup
r→R−

log(|f |(r))(R− r)s > 0}.

Thus, suppose that λ(f) > 0. Let us take s ∈]0, λ(f)[. We have a number b > 0
such that

lim sup
r→R−

(log(|f |(r)(R− r)s) ≥ b > 0.

Let us fix ε ∈]0, b[. There exists a sequence (rn)n∈N in ]0, R[ such that lim
n→+∞

rn = R

and such that, when n is big enough, we have b− ε ≤ log(|f |(rn))(R− rn)s,
hence
−s log(R− rn) + log(b− ε) < log(log(|f |(rn))) therefore

s+
log(b− ε)

(− log(R− rn))
≤ log(log(|f |(rn))

(− log(R− rn))
.

Consequently, lim sup
n→+∞

log(log(|f |(rn))
(− log(R− rn))

≥ s, therefore ρ(f) ≥ s. But this holds

for every s < λ(f). Thus, ρ(f) ≥ λ(f) and finally, ρ(f) = λ(f).

Theorem B.24.9: Let f, g ∈ A∗(E). Then σ(fg) ≤ σ(f) + σ(g). If ρ(f) ≥
ρ(g), then σ(f) ≤ σ(fg). If ρ(f) = ρ(g), then max(σ(f), σ(g)) ≤ σ(fg).

If ρ(f) = ρ(g) and σ(f) > σ(g) then σ(f + g) ≥ σ(f). If ρ(f + g) = ρ(f) ≥
ρ(g) then σ(f + g) ≤ max(σ(f), σ(g)).

Proof. Let s = ρ(f), t = ρ(g) and suppose s ≥ t. When r is close enough to
R, we have max(log(|f |(r)), log(|g|(r)) ≤ log(|f.g|(r)) = log(|f |(r)) + log(|g|(r))
and by Theorem 1, we have ρ(fg) = s. Therefore

σ(fg) = lim sup
r→R−

(
log(|f.g|(r))(R− r)s

)
≤ lim sup

r→R−

(
log(|f |(r))(R− r)s

)
+ lim sup

r→R−

(
log(|g|(r))(R− r)t

)
= σ(f) + σ(g).

On the other hand,

σ(f) = lim sup
r→R−

log(|f |(r))(R− r)s ≤ lim sup
r→+R−

(log(|fg|(r))(R− r)s.

But ρ(fg) = s, hence σ(f) ≤ σ(fg). Particularly, if ρ(f) = ρ(g), then max(σ(f), σ(g)) ≤
σ(fg).
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Now, suppose again that ρ(f) = ρ(g) = s and suppose σ(f) > σ(g). Let s =
ρ(f), b = σ(f). Then b > 0. Let (rn)n∈N be a sequence such that limn→+∞ rn =
R and

lim
n→+∞

(log(|f |(rn))(R− rn)s) = b. Since σ(g) < σ(f), we notice that when n is

big enough we have |g|(rn) < |f |(rn). Consequently, when n is big enough, we
have |f + g|(rn) = |f |(rn) and hence

(1) lim
n→+∞

(log(|f + g|(rn)))(R− rn)s) = b.

By definition of σ we have σ(f + g) ≥ lim
n→+∞

(log(|f + g|(rn)))(R− rn)ρ(f+g).

By Theorem 1, we have ρ(f + g) ≤ s, hence

σ(f+g) ≥ lim
n→+∞

(log(|f+g|(rn)))(R−rn)ρ(f+g) ≥ lim
n→+∞

(log(|f+g|(rn)))(R−rn)s

= lim
n→+∞

log(|f |(rn))(R− rn)s = σ(f)

therefore by (1), σ(f + g) ≥ σ(f).
Finally, suppose now that ρ(f+g) = ρ(f) ≥ ρ(g). Let s = ρ(f) and t = ρ(g).

Then,
σ(f + g) = lim sup

r→R−
(log(|f + g|(r)))(R− r)s

≤ max
(

lim sup
r→R−

(log(|f |(r)))(R− r)s, lim sup
r→R−

(log(|g|(r)))(R− r)s
)

≤ max
(

lim sup
r→R−

(log(|f |(r)))(R−r)s, lim sup
r→R−

(log(|g|(r)))(R−r)t
)

= max(σ(f), σ(g))

which ends the proof.

Corollary B.24.10: Let f, g ∈ A∗(E) be such that ρ(f) 6= ρ(g). Then

σ(f + g) ≤ max(σ(f), σ(g)).

Lemma B.24.11: Let a ∈ [1,+∞[ and b ∈ [0,+∞[. Then log(a + b) ≤
log(a) + log(b+ 1).

Proof. Indeed, since a ≥ 1, we have log(a + b) ≤ log(a(b + 1)) = log(a) +
log(b+ 1).

Theorem B.24.12: Let f ∈ A∗(E). Then θ(f)−1 ≤ ρ(f) ≤ θ(f). Moreover,
if 0 < ψ(f) <∞, then ρ(f) = θ(f).
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Proof. We will denote by | . |∞ the Archimedean absolute value of R. Let us
first choose s > θ(f). Then lim

r→R−
ζ(f, r)(R− r)s = 0. Now, since lim

r→R−
|f |(r) = +∞,

we can take ` ∈]0, R[ such that |f |(`) > 1. Then we can take b > 0 such that

ζ(f, r) ≤ b(R− r)−s ∀r ∈ [`, R[.

Now, taking r ∈ [`, R[, by Theorem TB.13.26 we have

log(|f |(r)) ≤ log(|f |(`))) + ζ(f, r)(log(
r

`
))

which leads to

log(|f |(r)) ≤ log(|f |(`))) + b(R− r)−s(log(
r

`
))

hence
log(log(|f |(r))) ≤ log

(
log(|f |(`))) + b(R− r)−s(log(

r

`
))
)

therefore, by Lemma B.24.11, we can derive

(1) log(log(|f |(r))) ≤ log(log(|f |(`))) + log
(
b(R− r)−s(log(

r

`
)) + 1

)
.

Now, since s > 0, there obviously exists h ∈ [`, R[ such that b(R−r)−s ≥ 1 ∀r ∈
[h,R−[, therefore by Lemma B.24.11 again,

log(log(|f |(r))) ≤ log(log(|f |(`))) + log
(
b(R− r)−s(log(

r

`
)
)

+ log(1 + 1)

i.e.

(2)
log(log(|f |(r))) ≤ log(log(|f |(`))) + log(b)− s log(R− r) + log((log(

r

`
)) + log(2)

Consequently, by (2), we obtain

log(log(|f |(r)))
− log(R− r)

≤ log(log(|f |(`)))
− log(R− r)

+
log(b)

− log(R− r)
+ s+

log(log( r` )) + log(2)
− log(R− r)

.

We can check that

lim
r→R−

log(log(|f |(`))) + log(b)
− log(R− r)

= lim
r→R−

log(log( r` ) + log(2)
− log(R− r)

= 0

and hence lim sup
r→R−

log(log(|f |(r)))
− log(R− r)

≤ s. Consequently, choosing ε > 0, there ex-

ists u ∈ [`, 1[ such that
log(log(|f |(r)))
− log(R− r)

≤ s+ε ∀r ∈ [u,R[ and hence ρ(f) ≤ s+ε.

But since that holds for every s > θ(f) and for every ε > 0, we have ρ(f) ≤ s
and hence ρ(f) ≤ θ(f).
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Let us now show that ρ(f) ≥ θ(f)− 1. By Theorem B.13.26, we have
(3)

log(|f |(r))−log(|f |(r
2

R
)) ≥ ζ(f,

r2

R
)(log(r)−log(

r2

R
)) = ζ(f,

r2

R
)(log(R)−log(r)).

Consider now a number s < θ(f) and a sequence (rn)n∈N of ]0, R[ such that
lim

n→+∞
rn = R and such that lim sup

n→+∞
ζ(f, rn)(R− rn)s ≥ b > 0. Then by (3) we

have

log(|f |(rn)) ≥ b(log(R)− log(rn))(
R− r2

n

R

)s
Consequently,

log(log(|f |(rn))) ≥ log(b)+log(log(R)−log(rn)))−s
(

log(R−rn)+log(R+rn)
)
+2s log(R)

and therefore
log(log(|f |(rn)))
− log(R− rn)

≥ log(b)
− log(R− rn)

+
log(log(R)− log(rn))
− log(R− rn)

+s
(
1+

log(R+ rn) + 2 log(R)
− log(R− rn)

)
.

Clearly,

lim
n→+∞

( log(b)
log(R− rn)

)
= lim
n→+∞

log(R+ rn) + 2 log(R)
log(R− rn)

= 0

and by elementary reasonings, we can check that

lim
t→R−

log(log(R)− log(t))
log(R− t)

= 1,

therefore

lim
n→+∞

log(log(R)− log(rn))
log(R− rn)

= 1.

Consequently,

lim sup
n→+∞

log(log(|f |(rn)))
− log(R− rn)

≥ s− 1

and therefore

lim sup
r→R−

log(log(|f |(r)))
− log(R− r)

≥ s− 1.

That holds for every s < θ(f) and shows that if θ(f) < +∞, then ρ(f) ≥
θ(f)−1. Next, if θ(f) = +∞, then we would have ρ(f) = +∞, which is excluded
by hypothesis since f ∈ A∗(E). Consequently, the inequality ρ(f) ≥ θ(f)− 1 is
established.

Let us now show that ρ(f) ≥ θ(f) when ψ(f) < +∞. Suppose θ(f) > ρ(f)
and let s ∈]ρ(f), θ(f)[. Then by Remark 2 we have lim sup

r→R−
ζ(f, r)(R− r)s = +∞,

but then lim sup
r→R−

ζ(f, r)(R− r)ρ(f) = +∞, i.e. ψ(f) = +∞, a contradiction.

Therefore θ(f) ≤ ρ(f) and hence whenever ψ(f) < +∞, we have θ(f) =
ρ(f).
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Theorem B.24.12 obviously suggests the following conjecture:

Conjecture: Let f ∈ A∗(E). Then ρ(f) = θ(f).

The following Theorem B.24.13 is much different from the relations concern-
ing ρ, σ, ψ obtained for entire functions.

Theorem B.24.13: Let f ∈ A∗(E) be such that, ψ(f) < +∞. Then σ(f) = 0.

Proof. Without loss of generality we can assume that f(0) 6= 0. Let us fix ε > 0
and let R′ be such that log(R) − log(R′) = ε. Leq (an)n∈N be the sequence of
zeros of f , for each n ∈ N, let wn be the order of an and let rn = |an|. Now,
let u be the biggest integer n such that rn < R′ and for each r > 0, let m(r) be
the bigest integer n such that rn ≤ r

Let Au =
∑u
n=0 wn and let Bu = log(|f(0)|) +

∑u
n=0 wn(log(R′)− log(rn)).

Let us take r ∈]R′, R[. Now,we can write

σ(r, f)
ψ(r, f)

=
Bu +

∑m(r)
n=u+1 wn(log(r)− log(rn))

Au +
∑m(r)
n=u+1 wn

.

But by hypothesis, log(r)− log(rn) ≤ ε ∀n ≥ u, hence

σ(r, f)
ψ(r, f)

≤
Bu + ε

∑m(r)
n=u+1 wn

Au +
∑m(r)
n=u+1 wn

.

Let us put φ(r) =
∑m(r)
n=u+1 wn. Thus

σ(f, r)
ψ(f, r)

≤ Bu + εφ(r)
Au + φ(r)

.

But since f belongs to A∗(D), it has infinitely many zeros in D, hence φ(r) is an
increasing unbounded function tending to +∞ when r tends to R. Consequently,
it is obvious that

lim
r→R

σ(r, f)
ψ(r, f)

= 0.

Therefore, If lim supr→R− ψ(r, f) < +∞, then σ(f) = 0.
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C. Meromorphic functions and Nevanlinna Theory

C.1. Meromorphic functions in K

In this chapter, we will define and examine the basic properties of mero-
morphic functions: relations with poles of analytic elements, absolute values on
fields of meromorphic functions defined by circular filters, value of the derivative
on a circular filter, developement in a Laurent series in an annulus, existence of
primitives [51], [52], [53].

Definitions and notation: We denote by M(K) the field of fractions of
A(K). The elements of M(K) are called meromorphic functions in K.

In the same way, given a ∈ K and r > 0, we denote by M(d(a, r−)) (resp.
Mb(d(a, r−)), resp. Mu(d(a, r−))) the field of fractions of A(d(a, r−)) (resp.
the field of fractions of Ab(d(a, r−)), resp. the setM(d(a, r−)) \Mb(d(a, r−))).

Let b ∈ K (resp. b ∈ d(a,R−)) and let r ∈ R∗+ (resp. r ∈]0, R[). The absolute
value ϕb,r defined on A(K) (resp. on A(d(a,R−))) has an immediate continu-
ation to M(K) (resp. to M(d(a,R−))) that we shall denote again by ϕb,r. In
the same way, ϕ0,r will be denoted by | . |(r) on M(K) and on M(d(0, R−)).
Similarly, the function Ψ( . µ) defined on A(K) and on A(d(0, R−)) has an imme-

diate continuation toM(K) and toM(d(0, R−)) as Ψ(
h

l
, µ) = Ψ(h, µ)−Ψ(l, µ),

with h, l ∈ A(K) (resp h, l ∈ A(d(0, R−))).

Let f =
h

l
∈ M(K) (resp. f =

h

l
∈ M(d(a,R−))). For each α ∈ K (resp.

α ∈ d(a,R−)) the number ωα(h) − ωα(l) does not depend on the functions

h, l choosed to make f =
h

l
. Thus, we can generalize the notation by setting

ωα(f) = ωα(h) − ωα(l). If ωα(f) is an integer q > 0, α is called a zero of f of
order q.

If ωα(f) is an integer q < 0, α is called a pole of f of order −q.
If ωα(f) ≥ 0, f will be said to be holomorphic at α.

Similarly as for A(K), given f ∈ M(K) (resp. f ∈ M(d(a,R−))), we can
define the divisor D(f) on K (resp. of d(a,R−)) as D(f)(α) = 0 whenever
f(α) 6= 0 and D(f)(α) = s when f has a zero of order s at α.

Lemma C.1.1: Let r,R ∈ R∗+ with 0 < r < R and let f ∈M(d(a,R−)). Then
f has finitely many poles a1, ..., aq in d(a, r−). Let E = d(a, r) \ {a1, ..., aq}.
Then f belongs to H(E). If there exists s ∈ N∗ such that fs is a constant, then
so is f .

Proof. Without loss of generality, we can assume a = 0. Let f =
h

l
with

h, l ∈ A(d(0, R)). Since l belongs to A(d(0, R)), by Corollary B.13.19 l has
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finitely many zeros in d(0, r), hence f has finitely many poles a1, ..., aq in d(0, r).

Suppose first f is of the form
1
l

with l ∈ A(d(0, R−)). By Corollary B.5.16 l

factorizes in the form P (x)u(x) with P ∈ K[x] a polynomial whose zeros in
d(a, r) are a1, ..., aq and u ∈ A(d(0, R−)) is invertible in H(d(0, r)). On the

other hand,
1

P (x)
obviously belongs to R(E). And by Proposition B.8.3 E

belongs to Alg. Consequently, l is invertible in H(E). Consider now the general

case f =
h

l
with h, l ∈ A(d(0, R)). Then both h,

1
l

belong to H(E)), hence by
Proposition B.8.3, so does f .

Suppose now that fs is a constant. Since K is algebraically closed and since
M(d(a,R−)) is a field extension of K, f belongs to K.

Corollary C.1.2: Let f ∈M(d(a,R−)), let r ∈]0, R[, let αj , 1 ≤ j ≤ q be the
poles of f in d(a, r), let ρ ∈]0,mini 6=j |αi − αj |[, and for each j = 1, ..., q, let
ρj ∈]0, ρ[, let Tj = d(αj , ρ−j ). Let D = d(a, r) \

(⋃q
j=1 Tj

)
. Then f belongs to

H(D).

Lemma C.1.3: Let f ∈M(K). There exists h ∈ A(K) such that D(h) = D(f)

and then the function l =
h

f
belongs to A(K). Then D( 1

f ) = D(l) and we can

write f in the form
h

l
with h, l ∈ A(K), having no common zero.

Proof. Indeed, by Theorem B.18.4 there exists h ∈ A(K) such that D(h) = D(f)
and hence conclusion follows.

Remark: Let f ∈ M(d(a,R−)), let r ∈]0, R[ and let αj , 1 ≤ j ≤ n be the
poles of f in d(a, r), of respective order qj . By Lemma C.1.1, f belongs to
H(d(a, r) \ {α1, ..., αn}). Now, according to the definition of poles for analytic
elements, (see Chapter B.2) f also admits each αj as a pole of order qj , consid-
ered as an element of H(d(a, r) \ {α1, ..., αn}).

By Theorem B.18.4, we have already seen that if f ∈M(K) has no zero and
no pole in K, then it is a constant. Here we can generalize that with functions
inside a disk.

Theorem C.1.4 Let f ∈ M(K) (resp. f ∈ M(d(a,R−))) have no pole in K
(resp. in d(a,R−)). Then f belongs to A(K) (resp. to A(d(a,R−))).

Proof. Suppose f ∈ M(K) has no pole in K. By Lemma C.1.3 we can write f

in the form
h

l
with D(f) = D(h). Since f has no pole in K, l has no zero and

hence is a constant, which ends the proof when f belongs to M(K).
Suppose now that f belongs to M(d(a,R−)) and has no pole in d(a,R−).

By Proposition B.5.12 it is sufficient to show that for each ρ ∈]0, R[, f belongs
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to H(d(a, ρ)). Let f =
h

l
, with h, l ∈ A(d(a,R−)). By Proposition B.5.12,

both h, l belong to H(a, ρ)).
By hypothesis, each zero α of l is a zero of h such that ωα(h) ≥ ωα(l). Let

P be the polynomial admitting for zeros the zeros of l inside d(a, ρ) with the
same multiplicity and no other zero. Then P divides h and l in A(d(a,R−)),
say h = Pφ, l = Pψ. So, ψ is a power series that has no zero in d(a, ρ), hence
by Theorem B.7.9 , it is an invertible element of H(d(a, ρ)), which ends the
proof.

Corollary C.1.5 Let f, g ∈ A(K) (resp. f, g ∈ A(d(a,R−))) be such that
D(g) ≤ D(f). There exists h ∈ A(K) (resp. h ∈ A(d(a,R−)) such that f = gh.

Proof. Indeed,
f

g
belongs toM(K) (resp. toM(d(a,R−))) and has no pole.

Corollary C.1.6: Let f ∈ M(K) (resp. f ∈ M(d(a,R−))) have no zero and
no pole in K (resp. in d(a,R−)). Then it is a constant (resp. an invertible
element of Ab(d(a,R−))).

Corollary C.1.7: Let f, g ∈ A(K) (resp. f, g ∈ A(d(a,R−))) satisfy D(f) =

D(g). Then
f

g
belongs to K (resp. is invertible in Ab(d(a,R−))).

Corollary C.1.8: Let f ∈ A(K) be such that D(f) = (an, qn)n∈N with an 6=

0 ∀n ∈ N, lim
n→+∞

|an| = +∞. Then f(x) is of the form λ

∞∏
n=0

(
1− x

an

)qn
with

λ ∈ K.

By Theorem B.19.6, Lemmas C.1.9 and C.1.10 are immediate:

Lemma C.1.9: Let K be spherically complete, let a ∈ K, r ∈ R∗+, let B, C be
divisors on d(a,R−). There exists f ∈ M(d(a,R−)) such that D(f) = B and

D(
1
f

) = C.

Corollary C.1.10: Let K be spherically complete, let a ∈ K, r ∈ R∗+ and let
f ∈ M(d(a,R−)). There exist g, h ∈ A(d(a,R−)), having no common zero,
such that f =

g

h
.

Lemma C.1.11: Let a ∈ K, r ∈ R∗+ and let f ∈ A(d(a,R−)). If K is
spherically complete, there exists h ∈ A(d(a,R−)) such that D(h) = D(f) and

then the function l =
h

f
belongs to A(d(a,R−)). We have D( 1

f ) = D(l) and we

can write f in the form
h

l
with h, l ∈ A(d(a,R−)), having no common zero.
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Remark: If K is not spherically complete, in the general case, as shows The-
orem B.19.1, we cannot find an analytic function h ∈ A(d(a,R−)) such that
D(h) = D(f). Consequently, in a field such as Cp, we can’t write f in the form

f =
h

l
with h, l ∈ A(d(a,R−)), having no common zero (this gap was forgotten

in several works).
However, by Theorem A.7.4 we can take an algebraically closed spherically

complete extension K̂ of K and consider f as an analytic function on the disk

d̂(a,R−) in the field K̂: then f may be writen in the form f =
ĥ

l̂
with ĥ, l̂ ∈

A(d̂(a,R−)), with ĥ, l̂ having no common zero.

Theorem C.1.12: Let r ∈ R∗+, let f(x) =M(K), (resp. f ∈ M(d(a, r−))),
let S be the set of zeros and poles of f in K (resp. in d(a, r−)), let t be the
g.c.d. of {ωα(f) | α ∈ S} and let n ∈ N∗. If there exists g ∈ M(K) (resp.
g ∈M(d(a, r−))) such that gq = f , then q divides t. Conversely, if q divides t,
then there exists g ∈ M(K) such that gq = f , (resp. if p is prime to q and if q
divides t then there exists g ∈M(d(a,R−)) such that gq = f) .

Proof. If there exists g ∈ M(d(a, r−)), (resp. g ∈ M(K)) such that gq = f ,
then of course, ωα(g) divides ωα(f) for every α ∈ S and hence it divides t.
Now suppose q divides t and set t = lq. For each α ∈ S, ωα(f) is of the form
tsα = qlsα.

Suppose first f ∈M(K). By Lemma C.1.3, inM(K) there exists g ∈M(K)
admitting each zero α of f as a zero of order lsα and each pole α of f as a

pole of order −lsα. Then
f

gq
has no zero and no pole in K, hence, by Corollary

C.1.6, it is a constant λ. Let υ be a q − th root of λ. Then f = (υg)q.
Now suppose that q is prime to p and suppose f ∈ M(d(a,R−)). Sup-

pose first that K is spherically complete. By Lemma C.1.9 there exists g ∈
M(d(a,R−)) admitting each zero α of f as a zero of order lsα and each pole

α of f as a pole of order −lsα. Then
f

gq
has no zero and no pole in d(a,R−),

hence, it belongs to A(d(a, r−)). But since it has no zero, by Corollary B.14.2

it satisfies |h(x) − h(a)| < |h(a)| ∀x ∈ d(a, r−). Let ψ(x) =
h(x)
h(a)

. Then we

have |ψ(x) − 1| < 1 ∀x ∈ d(a, r−) and then, since q is prime to p, by The-
orem B.20.23 we can apply the function q

√
. to ψ(x) in order to get a fonc-

tion q
√
ψ(x) ∈ A(d(a, r−)). Now, let υ be a q-th root of h(a). We have

f(x) = h(a)ψ(x)(g(x))q =
(
υ n
√
ψ(x)g(x)

)q which ends the proof when K is
spherically complete.

Consider now the general case, when K is no longer supposed to be spher-
ically complete. Let K̂ be a spherically complete algebraically closed exten-
sion of K. The function f has continuation to a function f̂ which belongs
to A(d̂(α,R−)) and hence there exists a function g ∈ A(d̂(α,R−)) such that
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gq = f . Then by Lemma B.5.5, g is a power series that has all coefficients in K
and hence belongs to A(d(a,R−)).

Corollary C.1.13: Let f(x) ∈ M(K), let S be the set of zeros and poles of
f in K and let t be the g.c.d. of {ωα(f) | α ∈ S}. Then t is the greatest of the
integers n such that there exists g ∈M(K) satisfying gn = f .

Theorem C.1.14: Let f ∈ M(K) (resp. f ∈ M(d(a,R−)), resp f ∈ M(D))
be constant inside a disk included in K (resp. in d(a,R−), resp. inD). Then f
is constant in K (resp. in d(a,R−), resp. in D).

Proof. For a non-identically zero meromorphic function, the zeros and the poles
of f are isolated. Consequently, if f(x) is equal to a constant inside a disk, it is
constant in the set of definition.

Definition: Given f ∈ M(K) (resp. f ∈ M(d(a,R−)), resp. f ∈ M(D)) we

will call divisor of the poles of f on K (resp. on d(a,R−)) the divisor of
1
f

on

K (resp. on d(a,R−), resp. on D).

Lemma C.1.15: Let f ∈M(K)\A(K) (resp. f ∈M(d(0, R−))\A(d(0, R−)))
and suppose 0 is not a pole of f . Let r be the minimal distance of the poles of
f to 0. Then f belongs to A(d(0, r−)) and its radius of convergence is r.

Proof. Consider the divisor T of the poles of f on d(0, R−). If f ∈M(K)\A(K),

there is no problem to write f in the form
h

l
with h, l ∈ A(K) where l has no zero

in d(0, r−). Consequently, by Corollary B.14.2, the restriction of l to d(0, r−)

is invertible in A(d(0, r−)). Therefore
h

l
belongs to A(d(0, r−)) and hence it

radius of convergence is ≥ r. Conversely, since f has a pole in C(0, r), it is not
equal to a power series in x in d(0, r) and hence, the radius of convergence is r.

Now suppose f ∈ M(d(0, R−)) \ A(d(0, R−)). By Theorem B.18.15 we can
find a function l ∈ A(d(0, R−)) such that D(l) ≥ T and such that none of the
zeros of l lie in d(0, r−). Next, we set h = fl and see that h has no pole in

d(0, R−). So, in both cases, we have made f in the form
h

l
with h, l ∈ A(K)

where l has no zero in d(0, r−). The proof is then similar to the case f ∈
A(K).

Corollary C.1.16: Let f ∈M(K)\A(K) (resp. f ∈M(d(0, R−))\A(d(0, R−))).
If 0 is not a pole, f(x) has a development in a power series whose radius of con-
vergence is the minimal distance of poles of f to 0. If 0 is a pole of order q of
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f , then f(x) has a development in a Laurent series
∞∑

k=−q

akx
k with a−q 6= 0 and

the radius of convergence of the series
∞∑
k=0

akx
k is equal to the minimal distance

of non-zero poles of f to 0.

Theorem C.1.17: Let f ∈M(d(0, R−)) have no pole in an annulus Γ(0, r, s)

with s < R. Then f(x) is equal to a Laurent series
+∞∑
−∞

anx
n converging in all

Γ(0, r, s). For each µ ∈ [log r, log s], if f has q zeros and t poles in d(0, θµ)
taking multiplicity into account, one has ν+(f, µ) = q − t and if f has q′ zeros
and t′ poles in d(0, (θµ)−), one has ν−(f, µ) = q′ − t′. Then the functions in ρ:
ν+(f, log ρ), ν−(f, log ρ) and |f |(ρ) are increasing. Let k = ν+(f, log r). Tthen
|f |(ρ) ≥ |ak|ρk ∀ρ ∈ [r, s].

Proof. Since f belongs to M(d(0, R−)) and since s < R, f has finitely many

zeros and poles in d(0, s), hence we can write it
h

l
with h, l ∈ A(d(0, R−))

having no common zero in d(0, s). Since f has no pole in Γ(0, r, s), l has no zero
in Γ(0, r, s). Let ρ = θµ. By Corollary B.10.3 we have ν+(f, µ) = ν+(h, µ) −
ν+(l, µ) = q− t. Similarly, in d(0, ρ−) we have ν−(f, µ) = ν−(h, µ)− ν−(l, µ) =
q′ − t′.

We can write f(x) in the form
h(x)
Q(x)

with h ∈ A(d(0, s−) and Q ∈ K[x].

Then Q has no zero in Γ(0, r, s) and hence ν+(Q,µ) is constant in [log r, log s[.
On the other hand ν+(h, µ) is increasing, hence so is ν+(f, µ). Consequently,
the function |f |(ρ) is increasing. Therefore |f |(ρ) ≥ |ak|ρk ∀ρ ∈ [r, s].

Corollary C.1.18: Let f ∈ M(d(0, R−)) have no pole in Γ(0, r, s), with 0 <
r < s < R and let q = ν−(f, log s), k = ν+(f, log r). Then(s

r

)k
≤ |f |(s)
|f |(r)

≤
(s
r

)q
.

Corollary C.1.19: Let f ∈M(K) \K(x) have finitely many poles. For every

q ∈ N, f satisfies lim
r→∞

|f |(r)
rq

= +∞.

Proof. Let f =
h

Q
with Q a monic polynomial and h ∈ A(K). Since f /∈ K(x),

h does not lie in K[x] hence it has infinitely many zeros and therefore infinitely
many terms an 6= 0 when n > 0.
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We will also need the following lemma in the future:

Lemma C.1.20: Let f ∈ M(K) be transcendental and have finitely many
poles and let P be a polynomial. There exists s > 0 such that |f + P |(r) =
|f |(r) ∀r ≥ s and then f has the same number of zeros as f + P in d(0, r).

Proof. Let R ∈ R∗+ be such that all poles of f and all zeros of P lie in d(0, R),
let q be the number of poles of f and let t = deg(P ). Then f(x) is of the

form
g(x)

q∏
j=1

(x− bj)
with g(x) of the form

∞∑
n=0

anx
n. Now, when r > R, we have

|f |(r) =
|g|(r)
rq

and |P |(r)| =
|P |(R)
Rt

rt. Consequently, by Theorem B.13.22,

|f |(r) gets bigger than |P |(r) when r is big enough and hence there exists s > R
such that |P |(r) < |f |(r) ∀r > s. But then, by Corollary B.13.23 we have
ν(f, log r) = ν(f + P, log r) ∀r > s and hence f and f + P have the same
number of zeros in d(0, r).

Definitions: Let f ∈ M(K) (resp. f ∈ Mu(d(a,R−))) and let b ∈ K.
Then b will be said to be an exceptional value for f if f − b has no zero in
K (resp. in d(a,R−)) and b will be said to be a pseudo-exceptional value for f if
lim
r→∞

|f − b|(r) = 0 (resp. lim
r→R−

|f − b|(r) = 0). Moreover, if f ∈ M(K) \ K(x)

(resp. if f ∈ Mu(d(a,R−))), b will be said to be a quasi-exceptional value for
f if f − b has finitely many zeros in K (resp. in d(a,R−)).

Theorem C.1.21: Let f ∈ M(K) \ K, (resp. f ∈ Mu(d(a,R−))). If b
is an exceptional value for f then it is a pseudo-exceptional value for f . Let
f ∈ M(K) \ K(x), (resp. f ∈ Mu(d(a,R−))). If b is a quasi-exceptional value
for f then it is a pseudo-exceptional value for f .

Proof. Without loss of generality we may assume that a = b = 0. Suppose

first that f ∈ M(K) \ K and that 0 is an exceptional value for f . So,
1
f

has no pole in K (resp. in d(0, R−)), hence it is a function h ∈ A(K) \K (resp.

h ∈ Au(d(0, R−))) so that f =
1
h

. Then, by Corollary B.5.18 (resp. by Theorem

B.5.20) we have lim
r→+∞

|h|(r) = +∞ (resp. lim
r→R−

|h|(r) = +∞).

Suppose now that f ∈M(K) \K(x) and that 0 is a quasi-exceptional value

for f . Then f is of the form
P (x)
h(x)

with P ∈ K[x] and h ∈ A(K) \ K(x).

By Corollary B.5.7, we have lim
r→+∞

|P |(r)
|h|(r)

= 0, which proves the claim when

f ∈M(K) \K(x).
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Next, suppose that f ∈Mu(d(0, R−)) admits 0 as a quasi-exceptional value.

Then f is of the form
P (x)
h(x)

with P ∈ K[x] and h ∈ Au(d(0, R−)). So P is

bounded in d(0, R−) hence of course lim
r→+∞

|P |(r)
|h|(r)

= 0, which ends the proof.

Theorem C.1.22: Let f ∈ M(K) \ K, (resp. f ∈ Mu(d(a,R−))). Then f
admits at most one pseudo-exceptional value. Moreover, if f ∈ A(K) \K, (resp.
f ∈ A(d(a,R−))), then f has no pseudo-exceptional value.

Proof. Suppose that b is a pseudo-exceptional value for f . Without loss of
generality we may assume that a = b = 0. Let t ∈ K∗. Since lim

r→+∞
|f |(r) = 0

(resp. lim
r→R−

|f |(r) = 0), it is obvious that lim
r→+∞

|f − t|(r) = |t|
(resp. lim

r→R−
|f − t|(r) = |t|), so t is not a pseudo-exceptional value for f .

Now, suppose f ∈ A(K) \ K. Since lim
r→+∞

|f |(r) = +∞, of course 0 is not

a pseudo-exceptional value of f . Finally, suppose A(d(0, R−))). Then if f ∈
Au(d(0, R−)), we have lim

r→R
|f |(r) = +∞ hence 0 is not a pseudo-exceptional

value of f . And if f ∈ Ab(d(0, R−)), we have lim
r→R
|f |(r) = ‖f‖d(0,R−) which is

not 0 hence 0 is not a pseudo-exceptional value of f either.

Corollary C.1.23: Let f ∈ M(K) \ K, (resp. f ∈ Mu(d(a,R−))). Then f
admits at most one exceptional value. Moreover, if f ∈ M(K) \ K(x), (resp.
f ∈Mu(d(a,R−))), then f admits at most one quasi-exceptional value. Further,
if f ∈ A(K)\K (resp. if f ∈ Au(d(a,R−))) then f admits no exceptional value.
And if f ∈ A(K) \ K[x] (resp. if f ∈ Au(d(a,R−))) then f admits no quasi-
exceptional value.
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C.2. Residues of meromorphic functions

Throughout this chapter, D is infraconnected, T is a hole of D and V is a
disk of the form d(a, r) or d(a, r−), included in D̃, such that Ṽ ∩D 6= ∅.

Definition and notation: Let f ∈ M(K) (resp. f ∈ M(d(0, R−)) have a

pole α of order q and let f(x) =
−1∑
k=−q

ak(x− α)k + h(x) with a−q 6= 0 and

h ∈ M(K) (resp. f ∈ M(d(0, R−)) and h holomorphic at α. Accordingly to
previous notations for analytic elements in Chapters B.2 and B.6, the coefficient
a−1 is called residue of f at α and denoted by res(f, α).

We can now compare residues on a hole defined for analytic elements and
residues at a point, we just defined for a meromorphic function:

Theorem C.2.1: Let a ∈ K, let R ∈ R∗+, let f ∈ M(d(a,R−)) and let r ∈
]0, R[. Let αj , 1 ≤ j ≤ q be the poles of f in d(a, r), let ρ ∈]0,mini 6=j |αi − αj |[
and for each j = 1, ..., q, let ρj ∈]0, ρ[, let Tj = d(αj , ρ−j ). Let D = d(α, r) \(⋃q

j=1 Tj
)
. Then f belongs to H(D) and res(f, αj) = res(f, Tj), j = 1, ..., q.

Proof. By Corollary C.1.2, f belongs to H(D). On the other hand, assuming
that αj is a pole of order sj , by Corollary C.1.16 f(x) has a development at

αj in a Laurent series
∞∑

m=−sj

bm,j(x− αj)m. Consequently, by Theorem B.6.1,

the Mittag-Leffler term of f on Tj with respect to the infraconnected set D

is
−1∑

m=−sj

bm,j(x− αj)m. Then res(f, Tj) = b−1,j = res(f, αj), which ends the

proof.

Corollary C.2.2: Let f ∈ Hb(D) be meromorphic in T = d(b, r−) and admit
only one pole b inside T . Let q be the multiplicity order of b. Then the Mittag-

Leffler term of f associated to T is of the form
q∑
j=1

aj
(x− b)j

, with aq 6= 0 and

also is of the form
P

(x− aj)q
where P is a polynomial of degree s < q. Moreover,

it does not depend on r when r tends to 0.

Definition: Let f ∈M(d(a,R−)) and let b be a pole of order t of f , let r > 0

be such that d(b, r−) contains no pole of f other than b and let
P (x)

(x− α)t
be the

Mittag-Leffler term of f associated to d(b, r−). Then
P (x)

(x− b)t
will be called the

singular part of f at b.
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An element f ∈ H(D) will be said to be meromorphic in V if there exist
finitely many points (ai)(1≤i≤n) in V such that f has continuation to an element
of H((D ∪ V ) \ {ai| 1 ≤ i ≤ n}).

Let f be meromorphic in V and belong to H((D∪V ) \ {ai| 1 ≤ i ≤ n}). For
each i = 1, ..., n if f /∈ H((D ∪ V ) \ {ah |h 6= i}) then by Corollary B.2.9 and
Theorem B.2.10, ai is a pole of f as an element of H((D∪V )\{aj |1 ≤ j ≤ n}).
Let qi be its order. Then ai will be called a pole of f of order qi in V . The

polynomial P (x) =
n∏
i=1

(x− ai)qi will be called the polynomial of the poles of f

in V .

Lemma C.2.3: Let D be bounded or belong to Alg and let f ∈ H(D). If f is
meromorphic in T , the polynomial of its poles P in T satisfies Pf ∈ H(D ∪ T ).

Proof. Indeed, let D′ = (D ∪ T ) \ {a1, ..., an}. If D is bounded, then so is D′

and therefore by Theorem B.2.4, Pf belongs to H(D′). But by construction
Pf is bounded at each point ai and therefore by Corollary B.2.6, Pf belongs
to H(D ∪ T ).

Now, suppose D ∈ Alg. Then by Theorem B.8.9, D′ belongs to Alg and
therefore Pf belongs to H(D′) so we have the same conclusion.

Lemma C.2.4: Let D be bounded, (resp. let D ∈ Alg) and let f be invertible

in H(D). Then f is meromorphic in T if and only if so is
1
f

.

Proof. First we suppose f meromorphic in T . Let P be the polynomial of its
poles in T and let g(x) = f(x)P (x). Since D is bounded, (resp. belongs to Alg)
by Lemma C.2.3, g belongs to H(D ∪ T ). Let Q be the polynomial of the zeros
of g in T . Since f has no zero in D, Q actually is the polynomial of the zeros of
g in D ∪ T and then g is of the form Q(x)h(x) with h an element of H(D ∪ T )

that has no zero in T . Hence we have
1
h

=
1
f

Q

P
. If D ∈ Alg,

1
h

obviously

belongs to H(D). If D is bounded, we have
Q

P
∈ Rb(D) and then by Lemma

B.2.4,
1
h

belongs to H(D). Thus
1
h

belongs to H(D) anyway. Now, by Lemma

B.15.1, h is invertible in H(D∪T ). Hence f factorizes in the form
P

Q
h and then

1
f

=
1
Q

P

h
. But

P

h
belongs to H(D ∪ T ) and therefore

1
f

is meromorphic in T

and admits Q as the polynomial of its poles in T . We may obviously apply the

same reasonning to
1
f

and this shows the converse.

Theorem C.2.5: Let F ∈ H(D) be meromorphic in T and satisfy ‖F−1‖
D
<

1. Then F has as many poles as many zeros in T .
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Proof. Without loss of generality we may obviously assume that D is bounded
because the hypothesis remains true in any set D∩d(0, R). We may also assume
that T = d(0, r−). Let P (resp. Q) be the polynomial of the zeros (resp. the

poles) of F in T . Then by Lemma C.2.3 F factorizes in the form
f

Q
with

f ∈ H(D ∪ T ). Now, the zeros of f inside T are just those of F , hence f
factorizes in the form Pg with g ∈ H(D ∪ T ), g having no zero in T . Let

h =
P

Q
. Since g has no zero in T , by Theorem B.13.14 |g(x)| is equal to a

constant inside T . Let s ∈]0, r[ be such that all zeros of P and of Q lie in
d(0, s). Then obviously F belongs to H(Γ(0, s, r)). Now by hypothesis there
exists λ > 0 such that Ψ(F, µ) ≤ λ for all µ ≥ log r. Hence by continuity , there
exists λ′ > 0 and s′ in ]s, r[ such that Ψ(F, µ) ≤ λ′ for all µ ≥ log s′. Thus
there exists b ∈]0, 1[ and t in ]s′, r[ such that |F (x)− 1| ≤ b for all x ∈ Γ(0, t, r)

and then, |h(x)| is constant in Γ(0, t, r). Hence we have
d

dµ
Ψ(h, µ) = 0 for

all µ ∈ [log t, log r]. Since h has neither any zero nor any pole in C(0, t), by
Corollary A.3.17, h has as many zeros as many poles in d(0, t) and therefore in
d(0, r) and this ends the proof.

It is useful to consider again elements meromorphic at a point.
Lemma C.2.6: Let a ∈ D and let f ∈ H(D) be meromorphic but not holo-
morphic at a. Then a is a pole of f .

Proof. By hypothesis, there exists r > 0 such that f belongs to H
(
D∪

(
d(a, r)\

{a}
))

. Suppose that a is not a pole of f . Then by Theorem 11.10 in [58], f
belongs to H(D ∪ d(a, r)) and then f is holomorphic at a.

Corollary C.2.7: Let a ∈ D and let f ∈ H(D). Then f is meromorphic at
a and admits a as a pole of order q if and only if there exists a disk d(a, r)
included in D and an element h ∈ H(d(a, r)) such that f(x)(x − a)q = h(x)
whenever x ∈ d(a, r) \ {a} and h(a) 6= 0.

Corollary C.2.8: Let D satisfy Condition B) and let f ∈ H(D). For every
a ∈ D, f is meromorphic at a. For every a ∈ D, f is holomorphic at a.

Remark: Let a ∈ D\
◦
D and let f admit a as a pole of order q. This does

not imply that f is meromorphic at a. Indeed, by [43], [49] we know that there

exist infraconnected sets E with a point a ∈ E\
◦
E and elements h ∈ H(E) such

that lim
|x−a|→0

h(x) = 0 and such that lim sup
|x−a|→0

∣∣ h(x)
x− a

∣∣= +∞. Let E′ = E \ {a}

and let g =
1 + h

x− a
. It is easily seen that a is a pole of order 1 for g. But h does

not belong to any space H(d(a, r)), whenever r > 0 (because if it did, it should
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factorize in H(d(a, r)) in the form (x− a)`(x), with ` ∈ H(d(a, r)) ). Thus it is
seen that (x−a)g does not belong to H(E) and therefore g is not meromorphic
at a.

Concerning the derivation, Theorem C.2.9 is easy and follows the classical
rules:

Theorem C.2.9: Let f ∈M(K) (resp. f ∈M(d(a,R−)) ). For each α ∈ K
(resp. α ∈ d(a,R−)) such that f is holomorphic at α, f has a derivative f ′(α)
at α. Further, given a point β ∈ K (resp. β ∈ d(a,R−)) and the Laurent

development of f at β:
∞∑

k=−q

ak(x− β)k with a−q 6= 0, the development of f ′ at

β is
0∑

k=−q

kak(x− β)k−1 +
∞∑
k=1

kak(x− β)k−1.

Proof. Suppose first f is holomorphic at α. By Theorem C.1.4 f(x) is equal

to a power series
∞∑
k=0

ak(x− α)k converging inside a disk d(α, r−) where r is

the minimal distance from α to the various poles. Then by Theorem B.9.1 we
know that f has a derivative whose development is obtained by deriving term
by term.

Suppose now that β is a pole of order q and let r ∈]0, R[ be strictly in-
ferior to the minimal distance from β to the other poles (with just r < R
if β is the unique pole of f). By Lemma C.1.1, for every ρ ∈]0, r[, f be-
longs to H(d(β, r) \ d(β, ρ−)) and the Laurent development of f at β is its
Mittag-Leffler development as an element of H(d(β, r) \ d(β, ρ−)): the Mittag-

Leffler term associated to the hole d(β, ρ−) is
−1∑
k=−q

ak(x− β)k with a−q 6= 0

and the term associated to d(β, r) is
∞∑
k=0

ak(x− β)k with a−q 6= 0. Conse-

quently, by Theorem B.9.19 the derivative has a Mittag-Leffler development at

β:
−1∑
k=−q

kak(x− β)k−1 +
∞∑
k=1

kak(x− β)k−1. This is true for all r ∈]0, R[ strictly

inferior to the minimal distance from β to the other poles and for every ρ ∈]0, r[,
which ends the proof.

The following Theorem C.2.10 is an improvement of the classical upper
bound f ′ in function of f . That is due to J.P. Bézivin [8].

Theorem C.2.10: For each n ∈ N and for all r ∈]0, R[, we have

|f (n)|(r) ≤ |n!| |f |(r)
rn

.
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Moreover, given r ∈]0, R[ such that ν+(f, log r) = ν−(f, log r), if the residue
characteristic p does not divide ν(f, log r), then ν(f ′, log r) = ν(f, log r)−1 and

|f ′|(r) =
|f |(r)
r

.

Proof. When f ∈ A(d(0, R−)), this was shown at Corollary B.9.16. Now, con-

sider the general case and set f =
U

V
with U, V ∈ A(d(0, R−)). The stated

inequality is trivial when q = 1. So, we assume it holds for q ≤ n − 1 and

consider f (n). Writing U = V
(U
V

)
, by Leibniz Theorem we have

U (n) =
n∑
q=0

(
n
q

)
V (n−q)

(U
V

)(q)

and hence

V
(U
V

)(n)

= U (n) −
n−1∑
q=0

(
n
q

)
V (n−q)

(U
V

)(q)

.

Now, by Theorem B.9.16 we have

(1) |U (n)|(R) ≤ |n!| |U |(R)
Rn

and for each q ≤ n− 1, we have |V (n−q)|(R) ≤ |(n− q)!| |V |(R)
Rn−q

and
∣∣∣(U
V

)(q)∣∣∣(R) ≤ |q!| |U |(R)
|V |(R)Rq

. Consequently,

∣∣∣(U
V

)(q)∣∣∣(R)
∣∣∣(U
V

)(n−q)∣∣∣(R) ≤ |((n− q)!)q!| |U |(R)
|V |(R)Rn

and then we can derive .

(2)
∣∣∣ (n
q

) ∣∣∣∣∣∣(U
V

)(q)∣∣∣(R)
∣∣∣(U
V

)(n−q)∣∣∣(R) ≤ |n!| |U |(R)
|V |(R)Rn

.

So, by (1) and (2) the first conclusion holds for q = n.
Suppose now that ν+(f, log r) = ν−(f, log r) and that the residue character-

istic of K does not divide ν(f, log r). Without loss of generality we may assume
that f has no pole in C(0, r) because all conclusions hold by continuity. In

C(0, r), f(x) is equal to a power series
+∞∑
−∞

anx
n. Set q = ν(f,− log(r)). Then

|f |(r) = |aq|rq and |f ′|(r) = |q||aq|rq−1 = |aq|rq−1 which ends the proof.
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It seems obvious that the condition for a meromorphic function to admit
primitives is that all residues are null. This is stated by Theorem C.2.11 but
the proof is not this immediate [22].

Let us remark that the topology of uniform convergence in all disks of K
(resp. of all disk included inside an open disk d(a,R−)) is obviously defined on
the algebraM(K) (resp. M(d(a,R−))) and thatM(K) (resp. M(d(a,R−))) is
complete for that topology.

We are now able to solve the problem of Bezout rings A(K) and A(d(a,R−)).
Theorem C.2.13 is a Mittag-Leffler theorem similar to this known in complex
analysis.

Theorem C.2.11: Let (am, qm)m∈N be a divisor of K (resp. of d(a,R−)),
a ∈ K, R > 0) and for every n ∈ N, let Qm ∈ K[x] be of degree < qm. There
exists f ∈M(K) (resp. f ∈M(d(a,R−))) admitting for poles each am of order

qm and no other pole and such that its singular part is
Qm

(x− am)qm
.

Proof. The proof is similar to that in the complex case [40]. Without loss of
generality, we can suppose that |am| ≤ |am+1|. Let (t(n))n∈N be the strictly
increasing sequence such that at(n)| < |at(n+1)| and let rn = |at(n)| n ∈ N.

For each m ∈ N, set Sm(x) =
Qm(x)

(x− am)qm
. Now, for each n ∈ N, we can

set fn =
∑
m∈Ln

Sm(x). So, by construction, fn belongs to H(d(0, rn−1)) hence

there exists Pn ∈ K[x] such that ‖fn − Pn‖d(0;rn−1) ≤
(1

2

)n
. Consequently, the

sequence (fn − Pn)n∈N converges to 0 with respect to the topology of M(K)

(resp. of M(d(a,R−))). Set f(x) = f1(x) +
∞∑
n=2

(fn(x)− Pn(x)). By construc-

tion, f belongs to M(d(0, r−)) ∀r > 0, hence f belongs to M(K) (resp. to
M(d(a,R−))). Moreover, the poles of f are the points am, m ∈ N. Let us take
q ≥ 1 and ρ > 0 such that |am − aq| ≥ ρ ∀m 6= q. Then f − Sq belongs to
H(d(a, ρ)), so Sq is the singular part of f at Sq.

Now, we can give an easy proof of the following Theorem already proven in
[22] in a more complicated way.

Theorem C.2.12: K is supposed to have characteristic 0. A function f ∈
M((K) (resp. f ∈ M((d(a,R−)), a ∈ K, R > 0) admits primitives in M(K)
(resp. in M((d(a,R−))) if and only if all residues of f are nul.

Proof. Let a be a pole of f . According to the Laurent series of f at a, if f admits
primitives then f has no residue different from zero at a because the function

1
x−a has no primitive in M(d(a, r)) (whenever r > 0). Now let (am)m∈N be the
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sequence of poles of f , each of respective degree qm and suppose that suppose
that res(f, am) = 0. Since resam(f) = 0, the singular part of f at am is of

the form
Qm(x− am))
(x− am)qm

with qm ≥ 2 and Qm(X) is a polynomial of degree

≤ qm − 2. Consequently, the singular part of f at am admits a primitive of

the form
Pm(x− am)

(x− am)qm−1
with deg(Pm(X)) ≤ qm − 2. Then by Theorem C.2.11,

there exisis G ∈ M(K) (resp. G ∈ M(d(a,R−))) admitting the am for poles

with respective singular part
Pm

(x− am)qm−1
and no other pole. By construction,

for each m ∈ N, the singular part of G′ at am is
Qm(x− am))
(x− am)qm

hence G′− f has

no pole at am and hence has no pole in K (resp. in d(a,R−)). Consequently,
G′ − f belongs to A(K) (resp. to A(d(a,R−))). But then by Corollary B.9.7,
G′ − f admits a primitive L ∈ A(K) (resp. L ∈ A(d(a,R−))) and hence the
function F = G − L is a primitive of f that belongs to L ∈ M(K) (resp. to
L ∈M(d(a,R−))).

Corollary C.2.13: The field K is supposed to have characteristic 0. Let
f ∈M((K) (resp. f ∈M((d(a,R−)), a ∈ K, R > 0). Then f ′ belongs to K(x)
if and only if so does f .

Proof. If f belongs to K(x), of course, so does f ′. Now, suppose f ′ belongs to

K(x). We can write it in the form
q∑
j=1

bj
(x− aj)qj

. And by Theorem C.2.11, we

have qj ≥ 2 ∀j = 1, ..., q. Consequently, since K has characteristic 0, f(x) is of

the form −
q∑
j=1

bj
qj(x− aj)qj−1

+ c with c ∈ K and hence f belongs to K(x).

We can now show the Bezout property of rings A(K), A(d(a,R−)).

Lemma C.2.14: Let E be a divisor of K (resp. a divisor of d(a,R−), a ∈
K, R > 0) and for each r > 0 (resp. r ∈]9, R[), let gr ∈ H(C(0, r)). There exists
g ∈ A(K) (resp. g ∈ A(d(a,R−))), not depending on r, such that D(g − gr) ≥
Er.

Proof. Let f ∈ A(K) (resp. f ∈ A(d(a,R−))) be such that D(f) ≥ E. By
Theorem C.2.11, there exists F ∈ M(K) whose principal parts at the poles
located in C(0, r) are respectively the same as those of grf−1 for each r > 0.
Then fF belongs to A(K) (resp. to A(d(a,R−))). Putting g = fF , we can see
that D(g − gr) ≥ Er, which ends the proof.

Theorem C.2.15: Every ideal of finite type of A(K) (resp. of A(d(a,R−)),
a ∈ K, R > 0 ) is closed and is of the form T (E) (resp. TR(E)) with E a
divisor of K (resp. of d(a,R−)).
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Proof. Let I be an ideal of finite type of A(K) (resp. of A(d(a,R−))) generated
by f1, ..., fq and let E = D(I). By Theorem B.18.9 the closure J of I is T (E)
(resp. by Theorem B.18.10 the closure J of I is TR(E)). Consequently, we
can see that E = min(D(f1), ...,D(fq)). Let us fix r > 0. In H(C(0, r)), there

exist g1,r, ..., gq,r ∈ H(C(0, r)) such that g =
q∑
j=1

gj,rfj . For each j = 2, ..., q,

let fj,r be the polynomial of the zeros of fj in C(0, r). By Lemma C.2.14
there exists gj ∈ A(K) (resp. gj ∈ A(d(a,R−)), not depending on r, such that

gj,r − gj be divisible in H(C(0, r)) by D(f1,r). Now, set h = g −
q∑
j=2

gjfj . We

have D(h) ≥ D(f1) hence h factorizes in the form g1f1 with g1 ∈ A(K) (resp.
g1 ∈ A(d(a,R−))) and then

g = h+
q∑
j=2

gjfj =
q∑
j=1

gjfj .

Corollary C.2.16: A(K) is a Bezout ring.

Proof. Indeed, consider an ideal of finite type I. By Theorem C.2.15, it is closed
and hence, by Corollary B.18.11 it is principal.

And by Corollary B.19.8, we have Corollary C.2.17

Corollary C.2.17: Let a ∈ K and let R > 0. If K is spherically complete,
A(d(a,R−)) is a Bezout ring.

Proof. Indeed, consider an ideal of finite type I. By Theorem C.2.15, it is of
the form TR(E) with E a divisor of d(a,R−) and hence it is closed. But then,
by Theorem B.19.7, it is principal.
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C.3. Meromorphic functions out of a hole

Notation: We fix R > 0 and denote by I the interval [R,+∞[. Throughout
the chapter, we denote by S the disk d(0, R−) and put D = K \ S.

We denote by H0(D) the K-subvector space of the f ∈ H(D) such that
lim

|x|→+∞
f(x) = 0.

By classical properties of analytic elements, we know that given a circle

C(a,R) and an element f ofH(C(a,R)) i.e. a Laurent series f(x) =
+∞∑
−∞

cn(x− a)n

converging whenever |x| = r, then |f(x)| is equal to sup
n∈Z
|cn|rn in all classes

of the circle C(a, r) except maybe in finitely many. When a = 0, we put
|f |(r) = sup

n∈Z
|cn|rn. Then |f |(r) is a multiplicative norm on H(C(0, r)).

We denote by A(D) the K-algebra of Laurent series converging in D and
by Ac(D) the set of f ∈ A(D) having infinitely many zeros in D. Similarly,
we will denote by M(D) the field of fractions of A(D) that we will call field
of meromorphic functions in D and we denote by Mc(D) the set of functions
f ∈M(D) which have infinitely many zeros or poles in D.

Similarly as we did in K and inside a disk, here we define a pseudo-exceptional
value and a quasi-exceptional value in D. Given a meromorphic function f ∈
M(D)) a value b ∈ K is called a pseudo-exceptional value for f if lim

|x|→+∞
f(x) = 0,

it is called a quasi-exceptional value for f if f − b has finitely many zeros in
D) and it is called an exceptional value for f if has no zero in in K (resp. in
d(a,R−), resp. in D).

Proposition C.3.1: Let f ∈ MC(D) and let b be a quasi-exceptional value.
Then b is a pseudo-exceptional value.

Proof. Without loss of generality, we may assume that b = 0. Therefore

we can write f in the form
P

h
with P a polynomial whose zeros lie in D and

h ∈ Ac(D). On the other hand, h(x) is a Laurent series
+∞∑
−∞

anx
n converging in

all D, having infinitely many zeros, hence infinitely many coefficients an with

n > 0, are diiferent from zero, therefore one sees that lim
|x|→+∞

|P |(r)|
|h|(r)

= 0, and

hence lim
|x|→+∞

|P (x)|)|
|h(x)|

= 0.

Proposition C.3.2: Let f ∈ M(D). If f has infinitely many zeros in D
(resp. nfinitely many poles in D), the set of zeros (resp. the set of poles) is a
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sequence (αn)n∈N such that lim
n→+∞

|αn| = +∞. If f has no zero in D, then it is

of the form
+∞∑
−∞

anx
n with |aq|rq > |an|rn ∀n ∈ Z, n 6= q,∀r ≥ R.

Proof. Suppose first f ∈ A(D). For each L > R, f belongs toH(Delta(0, R, L))
and by Corollary B.12.11 it is quasi invertible in H(Delta(0, R, L)), hence it
has finitely many zeros in Delta(0, R, L), for every L > R. Consequently, if f
has infinitely many zeros in D, the zeros form a sequence (αn)n∈N such that

lim
n→+∞

|αn| = +∞. Suopose now f ∈ M(D). Then f is of the form
g

h
with

g, h ∈ f ∈ A(D). If f has infinitely many zeros, so does g, and each zero
of f is a zero of g, hence the zeros of f form a sequence (αn)n∈N such that

lim
n→+∞

|αn| = +∞. Similarly, if f has infinitely many poles, the h has infinitely

many zeros, and each pole of f is a zero of h, hence the poles of f form a
sequence (βn)n∈N such that lim

n→+∞
|βn| = +∞.

Theorem C.3.3: Let f ∈ M(D) have no zero and no pole in D. Then f(x)

is of the form
q∑
−∞

anx
n with |aq|rq > |an|rn ∀n < q, ∀r ≥ R and |f(x)| =

|aq|rq ∀x ∈ D.

Proof. For every r ≥ R, f belong to H(C(0, r)) and by Theorem B.13.1 we
have ν+(f, log(r)) = ν−(f, log(r)). Consequently, by continuity, ν(f, log(r) is a
constant q in log(R),+∞[. It is then clear that |f(x)| = |aq|rq ∀x ∈ D.

Theorem C.3.4: Let f ∈ M(D) have at least infinitely many zeros or in-
finitely many poles in D. Then f admits at most one pseudo-exceptional value.

Proof. Suppose that f ∈ Mc(D) has two distinct pseudo-exceptional values
a and b. Without loss of generality, we can assume that a = 0 and hence f

is of the form
φ

ψ
with phi and ψ ∈ A(D), ψ admitting infinitely many zeros

and satisfying lim
r→+nfty

φ|(r)
|psi|(r)

= 0.. Then f − b =
φ− bψ
ψ

. But when r is big

enough, we have |φ− bψ(r)| = |bψ|(r), therefore P − bψ(r) does not admit 0 as
a pseudo-exceptional value, a contradiction.

Corollary C.3.5: Let f ∈ M(D) have at least infinitely many zeros or in-
finitely many poles in D. Then f admits at most one exceptional value.

Definition: Let f ∈ H(D) have no zero in D, f(x) =
q∑
−∞

anx
n with |aq|Rq >

|an|Rn ∀n < q and aq = 1. Then f is a Motzkin factor associated to S and the
integer q is called the Motzkin index of f and will be denoted by m(f, S).
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Theorem C.3.6: Let f ∈M(D). We can write f in a unique way in the form
fSf0 with fS ∈ H(K \ D) a Motzkin factor associated to S and f0 ∈ M(K),
having no zero and no pole in S.

Proof: Suppose first f ∈ A(D) and take V > R. Then as a quasi-invertible
element of H(∆(0, R, V )), by Theorem B.20.16, f admits a factorization in the
form fSf0 where fS is a Motzkin factor and f0 belongs to H(d(0, V )) and has no
zero in S. Moreover by Lemma B.20.6, fS does not depend on V . Consequently,
since fS is obviously invertible in A(D), we can factorize f ∈ A(D) in the form
fSf0 where f0 belongs to A(K) and has no zero in S.

Consider now the general case: f =
g

h
with g, h ∈ A(D). Then we can

write g = gSg0, h = hSh0, hence f =
( gS
hS

)( g0

h0

)
. Then we can check that this

is the factorization announced in the statement: fS =
gS

hS
and f0 =

g0

h0
.

The following Lemma C.3.7 is immediate:

Lemma C.3.7: The set of Motzkin factors associated to S makes a multi-

plicative group. Let f, g ∈ M(D). Then (fg)S = (fS)(gS),
( 1
f

)S
=

1
fS

,

(fg)0 = (f0)(g0),
( 1
f

)0

=
1
f0

and m(fg, S) = m(f, S) + m(g, S), m(
1
f
, S) =

−m(f, S).

Definitions and notations: We will denote byM∗(D) the set of f ∈M(D)
such that f0 /∈ K(x) i.e. the set of f admitting at least infinitely many zeros in
D or infinitely many poles in D. Similarly, we will denote by A∗(D) the set of
f ∈ A(D) such that f0 /∈ K[x] i.e. the set of f admitting infinitely many zeros
in D. Next, we set M0(D) =M(D) \M∗(D) and A∗(D) = A(D) \ A∗(D).
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C.4. Nevanlinna Theory in K and in an open disk

Throughout the chapter the field K is supposed to have characteristic 0. The

Nevanlinna Theory was made by Rolf Nevanlinna on complex functions [64], [77].
It consists of defining counting functions of zeros and poles of a meromorphic
function f and giving an upper bound for multiple zeros and poles of various
functions f − b, b ∈ C.

A similar theory for functions in a p-adic field was constructed and correctly
proved by A. Boutabaa [29] in the field K, after some previous work by Ha Huy
Khoai [63]. In [31] the theory was extended to functions in M(d(0, R−)) by
taking into account Lazard’s problem. A new extension to functions out of a
hole was made in C.6.

Notations: Recall that given three functions φ, ψ, ζ defined in an interval
J =]a,+∞[ (resp. J =]a,R[), with values in [0,+∞[, we shall write φ(r) ≤
ψ(r) + O(ζ(r)) if there exists a constant b ∈ R such that φ(r) ≤ ψ(r) + bζ(r).
We shall write φ(r) = ψ(r) +O(ζ(r)) if |ψ(r)− φ(r)| is bounded by a function
of the form bζ(r).

Similarly, we shall write φ(r) ≤ ψ(r) + o(ζ(r)) if there exists a function

h from J =]a,+∞[ (resp. from J =]a,R[) to R such that lim
r→+∞

h(r)
ζ(r)

= 0

(resp. lim
r→R

h(r)
ζ(r)

= 0) and such that φ(r) ≤ ψ(r) + h(r). And we shall write

φ(r) = ψ(r) + o(ζ(r)) if there exists a function h from J =]a,+∞[ (resp. from

J =]a,R[) to R such that lim
r→+∞

h(r)
ζ(r)

= 0 (resp. lim
r→R

h(r)
ζ(r)

= 0) and such that

φ(r) = ψ(r) + h(r).

Throughout the next paragraphs, we will denote by I the interval [t,+∞[
and by J an interval of the form [t, R[ with t > 0.

We have to introduce the counting function of zeros and poles of f , counting
or not multiplicity. Here we will choose a presentation that avoids assuming
that all functions we consider admit no zero and no pole at the origin.

Definitions: We denote by Z(r, f) the counting function of zeros of f in d(0, r)
in the following way.

Let (an), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that
0 < |an| ≤ r, of respective order sn.

We set Z(r, f) = max(ω0(f), 0) log r+
σ(r)∑
n=1

sn(log r − log |an|) and so, Z(r, f)

is called the counting function of zeros of f in d(0, r), counting multiplicity.
In order to define the counting function of zeros of f without multiplicity,

we put ω0(f) = 0 if ω0(f) ≤ 0 and ω0(f) = 1 if ω0(f) ≥ 1.
Now, we denote by Z(r, f) the counting function of zeros of f without mul-

tiplicity:
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Z(r, f) = ω0(f) log r+
σ(r)∑
n=1

(log r − log |an|) and so, Z(r, f) is called the counting

function of zeros of f in d(0, r) ignoring multiplicity.

In the same way, considering the finite sequence (bn), 1 ≤ n ≤ τ(r) of poles
of f such that 0 < |bn| ≤ r, with respective multiplicity order tn, we put

N(r, f) = max(−ω0(f), 0) log r +
τ(r)∑
n=1

tn(log r − log |bn|) and then N(r, f) is

called the counting function of the poles of f , counting multiplicity
Next, in order to define the counting function of poles of f without multi-

plicity, we put ω0(f) = 0 if ω0(f) ≥ 0 and ω0(f) = 1 if ω0(f) ≤ −1 and we
set

N(r, f) = ω0(f) log r+
τ(r)∑
n=1

(log r − log |bn|) and then N(r, f) is called the count-

ing function of the poles of f , ignoring multiplicity
Now we can define the the Nevanlinna function T (r, f) in I or J as

T (r, f) = max(Z(r, f), N(r, f)) and the function T (r, f) is called characteristic
function of f or Nevanlinna function of f .

Finally, if S is a subset of K we will denote by ZS0 (r, f ′) the counting function
of zeros of f ′, excluding those which are zeros of f − a for any a ∈ S.

Remark: If we change the origin, the functions Z, N, T are not changed, up
to an additive constant.

By Corollary B.13.2, Lemma C.4.1 is easy:
Lemma C.4.1: Let K̂ be a complete algebraically closed extension of K whose
absolute value extends that of K and let f ∈M(K) (resp. let f ∈M(d(0, R−))).
Let d̂(0, R) = {x ∈ K̂ | |x| < R}. The meromorphic function f̂ defined by f in
d̂(0, R) has the same Nevanlinna functions as f .

In a p-adic field such as K, the first Main Theorem is almost immediate and
is an immediate consequence of Corollary B.13.27.

Theorem C.4.2: Let f ∈ M(K) (resp. f ∈ M(d(0, R−))) have no zero and
no pole at 0. Then log(|f |(r)) = Ψ(f, log r) = log(|f(0)|) + Z(r, f)−N(r, f).

Proof. We can write f(x) =
h

l
with h, l ∈ A(K), (resp. h, l ∈ A(d(0, R−)))

such that l(0)h(0) 6= 0. By Corollary B.13.27 we have log(|h|(r)) = log(|f(0)|)+
Z(r, h), log(|l|(r)) = log(|l(0)|) +N(r, l), so the conclusion is obvious.

Theorem C.4.3 is now immediate:

Theorem C.4.3: Let f, g ∈ M(K) (resp. f, g ∈ M(d(0, R−))). Then
Z(r, fg) ≤ Z(r, f) +Z(r, g), N(r, fg) ≤ N(r, f) +N(r, g), T (r, fg) ≤ T (r, f) +
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T (r, g), T (r, f + g) ≤ T (r, f) + T (r, g) + O(1), T (r, cf) = T (r, f) ∀c ∈ K∗,

T (r,
1
f

) = T (r, f)), T (r,
f

g
) ≤ T (r, f)) + T (r, g).

Suppose now f, g ∈ A(K) (resp. f, g ∈ A(d(0, R−))). Then Z(r, fg) =
Z(r, f) + Z(r, g), T (r, f) = Z(r, f)), T (r, fg) = T (r, f) + T (r, g) +O(1) and
T (r, f + g) ≤ max(T (r, f), T (r, g)). Moreover, if lim

r→+∞
T (r, f)− T (r, g) = +∞

then T (r, f + g) = T (r, f) when r is big enough.

Lemma C.4.4: Let α1, · · · , αn ∈ K be pairwise distinct, let P (u) =
n∏
i=1

(u−αi)

and let f ∈M(d(0, R−)). Then Z(r, P (f)) =
n∑
i=1

Z(r, f −αi) and Z(r, P (f)) =

n∑
i=1

Z(r, f − αi).

Lemma C.4.5: Let f ∈ M(K). Then f belongs to K(x) if and only if
T (r, f) = O(log r).

Proof. If f belongs to K(x), one can write it
P (x)
Q(x)

with P, Q ∈ K[x] having

no common zeros, hence Z(r, f) = Z(r, P ) and N(r, f) = Z(r,Q) and hence
T (r, f) = O(log r).

Now suppose that f /∈ K(x). Suppose for instance that f has infinitely many
zeros (an) of respective order qn. Then let us fix s ∈ N and let t ∈ N be > s+ 1.

For r big enough, we have Z(r, f) >
t∑

n=1

(log r −Ψ(an)) > s log r, hence Z(r, f)

is not O(log r). Similarly, if f has infinitely many poles we get to the same
conclusion.

Applying Theorem C.4.1 and Theorem C.2.10 to
f ′

f
, up to a change of origin,

we can derive Corollary C.4..6:

Corollary C.4.6: Let f ∈M(K) (resp. f ∈M(d(0, R−))). Then

Z(r,
f ′

f
)−N(r,

f ′

f
) ≤ − log r +O(1).

Theorem C.4.7: Let f ∈ A(K) (resp. f ∈ A(d(0, R−))) and let b ∈ K. Then
Z(r, f) = Z(r, f − b) +O(1) r ∈ I (resp. r ∈ J).
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Proof. Let f(x) =
∞∑
n=0

anx
n and let ρ ∈ R∗+ (resp. ρ ∈]0, R[) be such that

ν+(f, log ρ) > 0 and ν+(f − b, log ρ) > 0. Then we have ν+(f, µ) = ν+(f −
b, µ) ∀µ > log ρ (resp. ∀µ ∈] log ρ, logR[). Consequently, on each circle C(0, r)
such that r > ρ (resp. r ∈]ρ,R[), f and f − b have the same number of zeros,
taking multiplicity into account. Let (an) be the sequence of zeros of f , with
respective mutiplicity qn, with |an| ≤ |an+1|, n ∈ N∗ and |an| > ρ if and only if
n ≥ t.

Similarly, let (bn) be the sequence of zeros of f−b, with respective mutiplicity
sn, with |bn| ≤ |bn+1|, n ∈ N∗ and |bn| > ρ if and only if n ≥ u. Since f and
f − b have the same number of zeros in d(0, ρ), we also have
(1)

∑t
n=1 qn =

∑u
n=1 sn.

Consequently, for all r > ρ (resp. r ∈]ρ,R[) we have∑
n≥t,
|an|≤r

qn(log r −Ψ(an)) =
∑
n≥u
|bn|≤r

sn(log r −Ψ(bn)).

Now, suppose that both f(0), f(0)− b are not 0. Then

Z(r, f) =
∑
|an|≤r

qn(log r −Ψ(an)), Z(r, f − b) =
∑
|bn|≤r

sn(log r −Ψ(bn)).

Therefore, Z(r, f)− Z(r, f − b) is reduced to∑
|an|≤r,
|an|≤ρ

(log r −Ψ(an))−
∑
|bn|≤r,
|bn|≤ρ

(log r −Ψ(bn))

=
t∑

n=1

qn(log r −Ψ(an))−
u∑
n=1

sn(log r −Ψ(bn))

that this is a constant by (1), for r > ρ (resp. for r ∈]0, R[).
And now, suppose that 0 is a zero of order q1 of f . Then,

Z(r, f) = q1 log r +
∑

n≥2,|an|≤r

qn(log r −Ψ(an))

and therefore Z(r, f)− Z(r, f − b) is reduced to

q1 log r +
∑
n≥2,
|an|≤ρ

qn(log r −Ψ(an))−
∑
|bn|≤ρ

sn(log r −Ψ(bn))

= q1 log r +
t∑

n=2

qn(log r −Ψ(an))−
u∑
n=1

sn(log r −Ψ(bn))

and we check that this is a constant again thanks to (1).
Similarly, if f(0) = b, then f and f − b playing the same role, we have the

same conclusion.
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Theorem C.4.8 (First Main Fundamental Theorem): Let f, g ∈M(K)
(resp. let f, g ∈ M(d(0, R−))). Then T (r, f + b) = T (r, f) + O(1). Let h be a
Moebius function. Then T (r, f) = T (r, h ◦ f) +O(1). Let P (X) ∈ K[X]. Then
T (r, P (f)) = deg(P )T (r, f) +O(1) and T (r, f ′P (f) ≥ T (r, P (f)).

Suppose now f, g ∈ A(K) (resp. f, g ∈ A(d(0, R−))). Then Z(r, fg) =
Z(r, f) + Z(r, g), T (r, f) = Z(r, f)), T (r, fg) = T (r, f) + T (r, g) + O(1) and
T (r, f + g) ≤ max(T (r, f), T (r, g)). Moreover, if lim

r→+∞
T (r, f)− T (r, g) = +∞

then T (r, f + g) = T (r, f) when r is big enough.

Proof. T (r, f + b) ≤ T (r, f) + O(1) ≤ T (r, f + b) + O(1), hence T (r, f + b) =
T (r, f) + O(1) ∀b ∈ K. Now, consider T (r, f + g) when f, g ∈ A(K) (resp. if
f, g ∈ A(d(0, R−))). We have T (r, f+g) = Z(r, f+g) = (Ψ(f+g, log r)+O(1) ≤
max(Ψ(f, log r),Ψ(g, log r)) = max(T (r, f) +O(1), T (r, f) +O(1)).

Let h(X) =
aX + b

cX + d
be a Moebius function and let g(x) = h ◦ f(x). We can

write h(X) =
a

c
+

λ

cX + d
with λ = d(1− a

c
). Then

T (r, g) = T (r,
λ

cf(x) + d
) +O(1) = T (r, cf(x) + d) +O(1) = T (r, f(x)) +O(1).

Now, let P (X) =
q∏

k=1

(X − ak) ∈ K[x] be a polynomial of degree q and

let F (x) = P (f(x)). Then T (r, f − ak) = T (r, f) + O(1) ∀k = 1, ..., q and
hence T (r, F ) = qT (r, f) + O(1). Moreover, zeros of P (f) are not poles of f ′

and poles of f ′ are poles of f and hence are not zeros of P (f). Consequently,
N(r, f ′P (f) = N(r, P (f)) +N(r, f ′) = N(r, P (f)) +N(r, f) +N(r, f),
Z(r, f ′P (f)) = Z(r, P (f) + Z(r, f ′). Therefore T (r, f ′P (f) ≥ T (r, P (f)).

It now only remains to prove that T (r, P (f)) = qT (r, f)+O(1). Let P (X) =∏q
j=1(X − aj). It is immediate to check that Z(r, P (f)) =

∑q
j=1 Z(r, f −

aj) = qZ(r, f) + O(1) and that N(r, P (f)) = qN(r, f) therefore T (r, P (f)) =
qT (r, f) +O(1).

Theorem C.4.9: Let f ∈ M(K) (resp. f ∈ M(d(0, R−))). There exists

φ, ψ ∈ A(K) (resp. φ, ψ ∈ A(d(0, R−))) such that f =
φ

ψ
and max(T (r, φ), T (r, ψ)) ≤

T (r, f) +O(1), r ∈ I (resp. (r ∈ J)).

Proof. Let V1 = D(f) and let V2 = D(
1
f

). Suppose first f ∈ M(K). By The-

orem B.18.4 there exists φ, ψ ∈ A(K) such that D(f) = D(φ), D(
1
f

) = D(ψ).

Consequently, Z(r, f) = Z(r, φ), N(r, f) = Z(r, ψ) and the claim is immediate.
Now, suppose f ∈ M(d(0, R−)). By Theorem B.18.14 there exists φ ∈ A(K)
such that D(f) ≤ D(φ) and such that |D(φ)|(r) ≤ |V1|(r) + 1, r ∈ J , hence
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Z(r, φ) ≤ Z(r, f) + 1, r ∈ J . Let ψ =
φ

f
. Then ψ lies in A(d(0, R−)) because

D(f) ≤ D(φ). And D(ψ) = D(
1
f

) + D(φ) − D(f). Consequently, |D(ψ)|(r) ≤

|D(
1
f

)|(r)+1. But T (r, φ) = Z(r, φ)+O(1) = log(|D(φ)|(r))+o(1) and T (r, ψ) =

Z(r, ψ) + O(1) = log(|D(ψ)|(r)) + O(1). Therefore max(T (r, φ), T (r, ψ)) ≤
max(Z(r, f), N(r, f)) +O(1), r ∈ I (resp. (r ∈ J)).

Theorem C.4.10: Let f ∈M(d(0, R−)). Then f belongs to Mb(d(0, R−)) if
and only if T (r, f) is bounded in [0, R[.

Proof. Suppose first f ∈ A(d(0, R−)). Without loss of generality, we can ob-
viously suppose that f(0) 6= 0. By Theorem C.4..2, we have log |f |(r) =
log(|f(0)|) + Z(r, f). And |f |(r) = sup{|f(x)| | x ∈ d(0, r−)}, so the claim
is clear. Now, consider the general case. Suppose T (r, f) is not bounded, so

either Z(r, f) or N(r, f) is not bounded. Let f =
φ

ψ
with φ, ψ ∈ A(d(0, R−)).

If Z(r, f) is not bounded, then φ /∈ Ab(d(0, R−)). If N(r, f) is not bounded,

then ψ /∈ Ab(d(0, R−)). Thus, f cannot be put in the form
φ

ψ
with φ, ψ ∈

Ab(d(0, R−)) and therefore f /∈ Ab(d(0, R−)).

Conversely, if f ∈ Ab(d(0, R−)), then it is of the form
φ

ψ
with φ, ψ ∈

Ab(d(0, R−)), hence both Z(r, φ), Z(r, ψ) are bounded. But since Z(r, f) ≤
Z(r, φ) and N(r, f) ≤ Z(r, ψ), T (r, f) is clearly bounded in [0, R[.

Corollary C.4.11: Let f ∈Mu(d(a,R−)), and let h ∈Mb(d(a,R−)), h 6= 0.
Then fh belongs to Mu(d(a,R−)).

By Theorem C.4.8 and Theorem C.4.10 we can also derive Corollary C.4.12

Corollary C.4.12: Let f ∈ M(d(a,R−)) and let P ∈ K[x]. Then P (f)
belongs to Mb(d(a,R−)) if and only if so does f .

Lemma C.4.13 is classical and easily checked:
Lemma C.4.13: Let α1, ..., αq ∈ K be pairwise distinct, let S = {α1, ..., αq}
and let P (x) =

∏q
j=1(x− αj). Let f ∈M(K) (resp. f ∈M(d(0, R−))). Then

n∑
j=1

Z(r, f − αj) = Z(r, P (f)),
n∑
j=1

Z(r, f − αj) = Z(r, P (f)) ∀r ∈ I

(resp. ∀r ∈ J). Moreover, assuming that K is of characateristic 0, we have
n∑
j=1

(
Z(r, f − αj)− Z(r, f − αj)

)
= Z(r, f ′)− ZS0 (r, f ′) ∀r ∈ I (resp. ∀r ∈ J).
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Theorem C.4.14: We assume that K is of characateristic 0. Let f ∈ M(K)
(resp. f ∈M(d(0, R−))). Then Z(r, f ′)−N(r, f ′) ≤ Z(r, f)−N(r, f)− log r+
O(1), r ∈ I (resp. r ∈ J). Moreover, N(r, f (k)) = N(r, f) + kN(r, f) +
O(1), r ∈ I and Z(r, f (k)) ≤ Z(r, f) + kN(r, f) − k log r + O(1), r ∈ I (resp.
r ∈ J).

Proof. Without loss of generality, we can assume that f, f ′, ..., f (k) have no zero
and no pole at 0.

The first statement is immediate and just comes from this basic property:
if α is a pole of f of order q, then it is a pole of f (k) of order q + k. Next,
by Theorem C.4.2, we have Z(r, f) − N(r, f) = Ψ(f, log r) − log(|f(0)|) and
Z(r, f ′)−N(r, f ′) = Ψ(f ′, log r)− log(|f ′(0)|). But Ψ(f ′, log r) ≤ Ψ(f, log r)−
log r, hence we obtain Z(r, f ′) ≤ N(r, f ′) − N(r, f) + Z(r, f) − log r + O(1).
Actually, N(r, f ′) − N(r, f) = N(r, f), hence N(r, f (k)) = N(r, f) + kN(r, f).
Next, Z(r, f ′) ≤ Z(r, f) + N(r, f) − log r + O(1). Now, suppose the second
statement has been proved for k ≤ t. Thus we have Z(r, f (t+1)) ≤ Z(r, f (t)) +
N(r, f (t)) − log r + O(1). But as we just noticed, N(r, f (t)) = N(r, f), hence
Z(r, f (t+1)) ≤ Z(r, f) + tN(r, f (t)) +N(r, f (t))− (t+ 1) log r +O(1).

Corollary C.4.15: We assume that K is of characateristic 0. Let f ∈M(K)
(resp. f ∈M(d(0, R−))). Then T (r, f (k)) ≤ (k+1)T (r, f)+O(1) (r ∈ I) (resp.
r ∈ J).

Theorem C.4.16: We assume that K is of characateristic 0. Let f ∈ M(K)
(resp. f ∈ M(d(0, R−))). Then, T (r, f)− Z(r, f) ≤ T (r, f ′)− Z(r, f ′) +O(1).
Further, given α ∈ M(d(0, R−)), we have T (r, αf) − Z(r, αf) ≤ T (r, f) −
Z(r, f) + T (r, α).

Proof. By Theorem C.4.14, the first statement is immediate. Let us check the
last one. On one hand, T (r, f) − Z(r, f) = max(Z(r, f), N(r, f)) − Z(r, f) =
max(0, N(r, f)− Z(r, f)) r < R. On the other hand,

T (r, f ′)−Z(r, f ′) = max(Z(r, f ′), N(r, f ′))−Z(r, f ′) = max(0, N(r, f ′)−Z(r, f ′))

= max(0, N(r, f) +N(r, f)− Z(r, f ′)) r < R.

But by Theorem C.4.14, −Z(r, f ′) ≥ −Z(r, f)− Z(r, f) + log(r) +O(1) r < R
hence T (r, f ′)−Z(r, f ′) ≥ max(0, N(r, f)−Z(r, f) + log(r)) +O(1) ≥ T (r, f)−
Z(r, f) +O(1), r < R.

Now, let α ∈ M(d(0, R−)). Suppose N(r, αf) ≥ Z(r, αf), r < R. Then
T (r, αf) − Z(r, αf) = N(r, αf) − Z(r, αf) r < R. We can write α in the form
β(x)
λ(x)

with β, λ ∈ H(d(0, r)), β, λ having no common zero. Next, we can write

λ in the form λ1λ2 were each zero of λ1 is not a zero of f and each zero of
λ2 is a zero of f . Then we can check that N(r, αf) = N(r, f) + Z(r, λ1) and
Z(r, αf ≥ Z(r, f) − Z(r, λ2). Consequently, N(r, αf) − Z(r, αf) ≤ N(r, f) +
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Z(r, λ1)−(Z(r, f)−Z(r, λ2)) = N(r, f)−Z(r, f)+Z(r, λ1)+Z(r, λ2) = N(r, f)−
Z(r, f) + Z(r, λ) ≤ N(r, f)− Z(r, f) + T (r, λ) r < R.

Suppose now that N(r, αf) ≤ Z(r, αf). We can do a symmetric reasoning
with the zeros of β.

Lemma C.4.17 is an immediate consequence of Corollary B.13.27 and The-
orem C.2.10:

Lemma C.4.17: Let K be of characateristic 0. Let f ∈M(K) (resp.

f ∈ M(d(0, R−))) and let G =
f ′

f
. Then, G satisfies Z(r,G) ≤ N(r,G) −

log r +O(1) r ∈ I (resp. (r ∈ J).

Proof. Without loss of generality we can assume that 0 is neither a pole of f
nor a zero for ff ′. By Theorem C.2.10 G satisfies Ψ(G, log r) ≤ − log r. On
the other hand, by Theorem C.4.2 we have Ψ(G, log r) = log |G(0)|+Z(r,G)−
N(r,G). Consequently, we obtain log |G(0)|+ Z(r,G)−N(r,G) ≤ log r, which
proves the claim.

We can now prove the Second Main Theorem under different forms. The
following Lemma C.4.18 is essential and directly leads to the theorems.

Lemma C.4.18: Let f ∈ M(K) (resp. f ∈ Mu(d(0, R−))). Suppose that
there exists ξ ∈ K (resp. ξ ∈ Mb(d(0, R−))) and a sequence of intervals In =
[un, vn] such that un < vn < un+1, limn→+∞ un = +∞ (resp. limn→+∞ un =
R) and

lim
n→+∞

(
inf
r∈In

T (r, f)− Z(r, f − ξ)
)

= +∞

(resp. lim
n→+∞

(
inf
r∈In

T (r, f)− Z(r, f − ξ)
)

= +∞).

Let τ ∈ K (resp. let τ ∈ Mb(d(0, R−))), τ 6= ξ. Then Z(r, f − τ) =
T (r, f) +O(1) ∀r ∈ In when n is big enough.

Proof. We know that the Nevanlinna functions of a meromorphic function f are
the same in K and in an algebraically closed complete extension of K whose
absolute value extends that of K. Consequently, without loss of generality, we
can suppose that K is spherically complete because we know that such a field
does admit a spherically complete algebraically closed extension whose absolute
value expands that of K. If f belongs to M(K), we can obviously set it in the
form

g

h
where g, h belong to A(K) and have no common zero. Next, since K is

supposed to be spherically complete, if f belongs to M(d(0, R−)) we can also
set it in the form

g

h
where g, h belong to A(d(0, R−)) and have no common

zero. Consequently, we have T (r, f) = max(Z(r, g), Z(r, h)).
When ξ is a constant we can obviously suppose that ξ = 0. Suppose now

ξ ∈Mu(d(0, R−)). Then f − ξ also belongs toMu(d(0, R−)) and τ − ξ belongs
to Mb(d(0, R−)). Consequently, in both cases, we can assume ξ = 0 to prove
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the claim. Next, up to a change of origin, we can also assume that none of the
functions we consider have a pole or a zero at the origin.

Now, we have lim
n→+∞

(
inf
r∈In

T (r, f)− Z(r, f)
)

= +∞ i.e.

(1) lim
n→+∞

(
inf
r∈In

(Z(r, h)− Z(r, g))
)

= +∞.

Particularly, we notice that T (r, f) = Z(r, h) +O(1) whenever r ∈ In when n is
big enough.

Consider now Z(r, f − τ) = Z(r, g − τh). But by (1) we can see that |g|(r) <
|τ |h|(r) ∀r ∈ In when n is big enough, hence Z(r, g − τh) = Z(r, τh) ∀r ∈ In
when n is big enough, hence Z(r, τh) = Z(r, h) ∀r ∈ In when n is big enough.
Therefore Z(r, f − τ) = Z(r, h) +O(1) = T (r, f) +O(1), ∀r ∈ In when n is big
enough. So the claim is proven when τ is a constant.

Suppose now that f ∈ M(d(0, R−)) and τ ∈ Mb(d(0, R−)). By Theorem

C.1.10, we can write τ in the form
φ

ψ
where φ, ψ ∈ Ab((d(0, R−)) have no

common zero. Consider
Z(r, f − τh) = Z(r,

ψg − φh
ψh

). Since g and h have no common zero and since

both φ, ψ are bounded, we have Z(r,
ψg − φh
ψh

) = Z(r, ψg − φh) +O(1). By (1),

in In we have |ψg|(r) < |φh|(r) when n is big enough and since | . |(r) is an
absolute value, |ψg − φh|(r) = |φh|(r) in In when n is big enough. Therefore,
we have Z(r, ψg − φh) = Z(r, φh) = Z(r, h) +O(1) in In when n is big enough.
Consequently, Z(r, f−τ) = Z(r, h)+O(1) = T (r, h)+O(1) = T (r, f)+O(1) ∀r ∈
In when n is big enough. That finishes proving Lemma C.4.18.

The following Theorems C.4.19 and C.4.21 may be found in a very different
form in [85]

Theorem C.4.19: Let f ∈M(K) and let a1, ..., aq ∈ K be distinct. Then

(q − 1)T (r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

Z(r, f − aj)
)

+O(1).

Corollary C.4.20: Let f ∈M(K) and let a1, ..., aq ∈ K be distinct. Then
(q − 1)T (r, f) ≤

∑q
j=1 Z(r, f − aj) +O(1).

Theorem C.4.21: Let f ∈M(d(0, R−)) and let τ1, ..., τq ∈Mb(d(0, R−)) be
distinct. Then

(q − 1)T (r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

Z(r, f − τj)
)

+O(1).

Corollary C.4.22: Let f ∈ M(d(0, R−)) and let τ1, ..., τq ∈ Mb(d(0, R−))
be distinct. Then (q − 1)T (r, f) ≤

∑q
j=1 Z(r, f − τj) +O(1).



272 Meromorphic functions and Nevanlinna Theory

Proof. of Theorems C.4.19 and C.4.21 Suppose Theorems C.4.19 (resp. The-
orem C.4.21) is wrong. In order to make a unique proof for the two theo-
rems, in Theorem C.4.19 we set τj = aj . Thus, there exists f ∈ M(K) (resp.
f ∈ M(d(0, R−))) and τ1, ..., τq ∈ K (resp. τ1, ..., τq ∈ Mb(d(0, R−))) such that

(q − 1)T (r, f) − max1≤k≤q

(∑q
j=1,j 6=k Z(r, f − τj)

)
admits no superior bound

in ]0,+∞[. So, there exists a sequence of intervals Js = [ws, ys] such that
ws < ys < ws+1, lims→+∞ ws = +∞ (resp. lims→+∞ ws = R) and two distinct
indices m ≤ q and t ≤ q such that

lim
s→+∞

inf
r∈Js

(
T (r, f)− Z(r, f − τm)

)
= +∞

and
lim

s→+∞
inf
r∈Js

(
T (r, f)− Z(r, f − τt)

)
= +∞

But by Lemma C.4.18, this is impossible. This ends the proof of Theorems
C.4.19 and C.4.21.

Remark: Theorem C.4.19 does not hold in complex analysis. Indeed, let f be

a meromorphic function in C omitting two values a and b, such as f(x) =
ex

ex − 1
.

Then Z(r, f − a) + Z(r, f − b) = 0.

Theorem C.4.23 Let α1, ..., αq ∈ K, with q ≥ 2, let S = {α1, ..., αq} and let
f ∈M(K) (resp. f ∈M(d(0, R−))). Then

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − αj) + Z(r, f ′) − ZS0 (r, f ′) + O(1) ∀r ∈ I (resp.

∀r ∈ J).
Moreover, if f belongs to f ∈ A(K) (resp. A(d(0, R−))), then

qT (r, f) ≤
q∑
j=1

Z(r, f −αj)+Z(r, f ′)−ZS0 (r, f ′)+O(1) ∀r ∈ I (resp. ∀r ∈ J).

Theorem C.4.24 (Second Main Theorem): Let α1, ..., αq ∈ K, with q ≥ 2,
let S = {α1, ..., αq} and let f ∈M(K) (resp. f ∈Mu(d(0, R−))). Then

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − αj) + N(r, f) − ZS0 (r, f ′) − log r + O(1) ∀r ∈ I

(resp. ∀r ∈ J).

Proof. of Theorems C.4.23 and C.4.24 By Theorem C.4.23 (resp C.4.24) there
exits a constant B > 0 and for each r > 0 (resp. for each r ∈]0, R[), there exists
k(r) ∈ N, k(r) ≤ q, such that (q − 1)T (r, f) ≤

∑q
j=1,j 6=k(r) Z(r, f − aj) +B i.e.

(q − 1)T (r, f) ≤
∑q
j=1 Z(r, f − aj)− Z(r, ak(r) +B. Now,

∑q
j=1 Z(r, f − aj) =∑q

j=1 Z(r, f − aj) + Z(r, f ′) − ZS0 (r, f ′) − log r Consequently, (q − 1)T (r, f) ≤∑q
j=1 Z(r, f−aj)+Z(r, f ′)−ZS0 (r, f ′)−Z(r, f−ak(r))+B and this proves the first
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claim of Theorem C.4.23. Particularly, if f ∈ A(K) (resp. if f ∈ A(d(0, R−)))
then we have Z(r, f − aj) = T (r, f − aj) = T (r, f) + O(1) ∀j = 1, ..., q, hence
Z(r, f − ak(r)) = T (r, f) + O(1) and therefore qT (r, f) ≤

∑q
j=1 Z(r, f − aj) +

Z(r, f ′)− ZS0 (r, f ′) +O(1), which ends the proof of Theorem C.4.23.
Henceforth, by Theorem C.4.14, there exists a constant cj > 0 such that

Z(r, f ′) ≤ Z(r, f −aj) = N(r, f −aj)− log r+ cj . Let c = max(c1, ..., cq). Then
Z(r, f ′)−ZS0 (r, f ′)−Z(r, f−ak(r) ≤ N(r, f−ak(r))+c−log r = N(r, f)+c−log r.
Consequently,

q∑
j=1

Z(r, f − aj) =
q∑
j=1

Z(r, f − aj) +N(r, f)− log r +O(1).

That finishes the prooof of Theorem C.4.24.

Remark: In Theorem C.4.21, in the hypothesis f ∈ M(d(0, R−)), the term
− log r has no veritable meaning since r is bounded.

Corollary C.4.25: Let α1, ..., αq ∈ K, with q ≥ 2, let S = {α1, ..., αq} and let
f ∈M(K) (resp. f ∈M(d(0, R−))). Then
q∑
j=1

(
Z(r, f−αj)−Z(r, f−αj)

)
≤ T (r, f)+N(r, f)−ZS0 (r, f ′)−log r+O(1) ∀r ∈

I (resp. ∀r ∈ J).
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C.5. Nevanlinna Theory out of a hole

Throughout the chapter the field K is supposed to have characteristic 0. Here

we mean to construct a Nevanlinna theory for meromorphic functions in the
complement of an open disk thanks to the use of specific properties of the
Analytic Elements on infraconnected subsets of K already examined in Chapter
C.3.

Notation: Throughout the chapter and in the next, we will conserve the nota-
tions introduced in Chapter C.3. Particularly, we denote by S the disk d(0, R−)
and put D = K \ S. Recall that we denote by H0(D) the K-vector space of
analytic elements f in D such that lim

|x|→∞
f(x) = 0. The definitions of A(D),

Au(D), M(D), Mu(D) are those given in Chapter C.3.
Given f ∈ M(D), for r > R, here we will denote by ZR(r, f) the counting

function of zeros of f between R and r, i.e. if α1, ..., αm are the distinct zeros
of f in ∆(0, R, r), with respective multiplicity uj , 1 ≤ j ≤ m, then ZR(r, f) =
m∑
j=1

uj(log(r)− log(|αj |)). Similarly, we denote by NR(r, f) the counting func-

tion of poles of f between R and r, i.e. if β1, ..., βn are the distinct poles of
f in ∆(0, R, r), with respective multiplicity vj , 1 ≤ j ≤ m, then NR(r, f) =
n∑
j=1

vj(log(r)− log(|βj |)). Finally we put TR(r, f) = max
(
ZR(r, f), NR(r, f)

)
.

Next, we denote by ZR(r, f) the counting function of zeros without counting
multiplicity: if α1, ..., αm are the distinct zeros of f in ∆(0, R, r), then we put

ZR(r, f) =
m∑
j=1

log(r)− log(|αj |).

Similarly, we denote by NR(r, f) the counting function of poles without
counting multiplicity: if β1, ..., βn are the distinct poles of f in ∆(0, R, r), then
we put

NR(r, f) =
n∑
j=1

log(r)− log(|βj |).

Finally, putting W = {a1, ..., aq}, we denote by ZWR (r, f ′) the counting func-
tion of zeros of f ′ on points x where f(x) /∈W .

Throughout the paper, we denote by | . |∞ the Archimedean absolute value of
R. Given two functions defined in an interval I = [b,+∞[, we will write φ(r) =
ψ(r)+O(log(r)) (resp. φ(r) ≤ ψ(r)+O(log(r))) if there exists a constant B > 0
such that |φ(r)−ψ(r)|∞ ≤ B log(r), r ∈ I (resp. φ(r)−ψ(r) ≤ B log(r), r ∈ I).

We will write φ(r) = o(ψ(r)), r ∈ I if lim
r→+∞

φ(r)
ψ(r)

= 0.

Theorem C.5.1: Let f ∈M(D). Then log(|f |(r))− log(|f |(R)) = ZR(r, f)−
NR(r, f) +m(f, S)(log r − logR) (r ∈ I).
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Proof. By Theorem C.3.6 we have f = fSf0. Since fS has no zero and
no pole in D, by Theorem C.3.3 it satisfies |fS |(r)) = rm(f,S) ∀r ∈ I, hence
log(|fS |(r))− log(|fS |(R)) = m(f, S)(log r − logR) (r ∈ I). Next, since f0 has
no zero and no pole in S, we have log(|f0|(r)) − log(|f0|(R)) = ZR(r, f0) −
NR(r, f0) (r ∈ I) therefore the statement is clear.

Corollary C.5.2: Let f ∈ M(D). Then TR(r, f) is identically zero if and
only if f is a Motzkin factor.

Corollary C.5.3: Let f ∈ A(D) and let φ ∈ H0(D). Then ZR(r, f + φ) =
ZR(r, f) +O(log(r)) (r ∈ I).

Proof. Indeed, since φ is bounded and tends to zero at infinite, we have
log |f |(r) = log |f + φ|(r) when r is big enough.

Corollary C.5.4: Let f, g ∈ A(D) satisfy log(|f |(r)) ≤ log(|g|(r)) ∀r ≥
R (r ∈ I). Then ZR(r, f) ≤ ZR(r, g)+(m(g, S)−m(f, S))(log(r)−log(R)), (r ∈
I).

Theorem C.5.5: Let f ∈ A(D). Then ZR(r, f ′) ≤ ZR(r, f) +O(log(r)) (r ∈
I).

Proof. Indeed, by Theorem B.9.2 we have |f ′|(r) ≤ |f |(r)
r

. Therefore, the
conclusion comes from Theorem C.5.1.

We can now characterize the set M∗(D):

Theorem C.5.6: Let f ∈ M(D). The three following statements are equiva-
lent:

i) lim
r→+∞

TR(r, f)
log(r)

= +∞ (r ∈ I),

ii)
TR(r, f)
log(r)

is unbounded,

iii) f belongs to M∗(D).

Proof. Consider an increasing sequence (un)n∈N in R+ such that lim
n→+∞

un = +∞
and let (kn)n∈N be a sequence of N∗. Clearly, we have

lim
r→+∞

∑
un≤r kn(log(r)− log(un))

log(r)
= +∞.

Consequently, if a function f ∈M∗(D) has infinitely many zeros (resp. infinitely

many poles in D) then lim
n→+∞

ZR(r, f)
log(r)

= +∞ (resp. lim
n→+∞

NR(r, f)
log(r)

= +∞)
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hence in both cases, lim
n→+∞

TR(r, f)
log(r)

= +∞. Conversely, if f has finitely many

zeros and finitely many poles in D, then we check that

lim
n→+∞

TR(r, f)
log(r)

< +∞. Thus the equivalence of the three statements is clear.

Operations on M(D) work almost like for meromorphic functions in the
whole field.

Theorem C.5.7: Let f, g ∈M(D). Then for every b ∈ K, we have TR(r, f+
b) = TR(r, f)+O(log(r)), (r ∈ I) TR(r, f.g) ≤ TR(r, f)+TR(r, g)+O(log(r)) (r ∈
I), TR(r,

1
f

) = TR(r, f)), TR(r, f+g) ≤ TR(r, f)+TR(r, g)+O(log(r)) (r ∈ I)

and TR(r, fn) = nTR(r, f).
Let h be a Moebius function. Then TR(r, h ◦ f) = TR(r, f) +O(log(r)) (r ∈ I).

Moreover, if both f and g belong to A(D), then

TR(r, f + g) ≤ max(TR(r, f), TR(r, g)) +O(log(r)) (r ∈ I)

and TR(r, fg) = TR(r, f) + TR(r, g), (r ∈ I). Particularly, if f ∈ A∗(D), then
TR(r, f + b) = TR(r, f) +O(1) (r ∈ I). Given a polynomial P (X) ∈ K[X], then
TR(r, P ◦ f) = qTR(r, f) +O(log(r)).

Proof. Suppose first f, g ∈ A(D). It is immediate to check that
TR(r, fg) = ZR(fg) = ZR(f) +ZR(r, g) = TR(r, f) + TR(r, g), that TR(r, fn) =

nTR(r, f) and that TR(r,
1
f

) = TR(r, f).

Then TR(r, f + g) = ZR(r, f + g) = log(|f + g|(r)) −m(f + g, S)(log(r) −
log(R)), (r ∈ I). But log(|f + g|(r)) ≤ max

(
log(|f |(r)), log(|g|(r))

)
, hence

ZR(r, f+g) ≤ max
(
ZR(r, f)+m(f, S)(log(r)−log(R), ZR(r, g)+m(g, S)(log(r)−log(R),

)
and hence TR(r, f + g) ≤ max

(
TR(r, f), TR(r, g)

)
+O(log(r)).

Particularly, given b ∈ K, we have TR(r, f + b) ≤ TR(r, f) + O(log(r) ≤
TR(r, f) +O(log(r)), hence TR(r, f + b) = TR(r, f) +O(log(r).

Now, given a polynomial of degree q, we have ZR(r, P ◦ f) = qZR(r, f) +
O(log(r)) and
NR(r, P ◦ f) = qNR(r, f), hence TR(r, P ◦ f) = qTR(r, f).

Now, suppose f ∈ A∗(D). Then f(x) is a Laurent series
+∞∑
−∞

anx
n convergent

in all D such that limr→+∞ |f |(r) = +∞. Let b ∈ K and take V be such that
|f |(r) > |b| ∀r ≥ V . Then for every r > V , |f |(r) is of the form |ak|rk with
k > 0, |an|rn < |ak|rk ∀n > k and the number of zeros of f in ∆(0, R, r) is
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k − m(f, S). Next, f − b is of the form
+∞∑
−∞

cnx
n with cn = an ∀n 6= 0 and

c0 = a0− b. Consequently, f − b has the same number of zeros in ∆(0, R, r) and
in each circle C(0, r) for r > V . Therefore TR(r, f) = TR(r, f − b) when r is big
enough.

Next, consider the general case: f, g ∈M(D). First it is immediate to check

that TR(r, fg) ≤ TR(r, f) + TR(r, g). Similarly, for TR(r,
1
f

). By definition, we

have ZR(r,
1
f

) = NR(r, f) and NR(r,
1
f

) = ZR(r, f), hence TR(r,
1
f

) = TR(r, f).

Now consider TR(r, f + g) in the general case: f, g ∈ M(D). By Theorem
C.3.6, we can write

f + g = fS
(f0

1

f0
2

)
+ gS

(
g0

1 , g
0
2

)
hence

TR(r, f + g) = TR

(
r,
fSf0

1 g
0
2 + gSg0

1f
0
2

f2g2

)
with f0

1 , f
0
2 , g

0
1 , g

0
2 ∈ A(K), having no zero in T and fS , gS Motzkin factors

associated to S. Then ZR(r, fSf0
1 g

0
2) = ZR(r, f0

1 ) + ZR(r, g0
2), ZR(r, gSg0

1f
0
2 ) =

ZR(r, g0
1) + ZR(r, f0

2 ), hence , by what we just saw, ZR(r, fSf0
1 g

0
2 + gSg0

1f
0
2 ) ≤

max
(
TR(r, f), TR(r, g)

)
+ O(log(r)). And obviously, ZR(r, f2g2) ≤ TR(r, f) +

TR(r, g). So we obtain in the general case TR(r, f + g) ≤ TR(f) + TR(r, g) +
O(log(r)).

Finally, consider a Moebius function h. Then h ◦ f(x) is of the form C +
e

αf(x) + β
and thereby, TR(r, h ◦ f) = TR(r, f) +O(log(r)).

Corollary C.5.8: Let f, g ∈M0(D). Then TR(r,
f

g
) ≥ TR(r, f)−TR(r, g) (r ∈

I) and

TR(r,
f

g
) ≥ TR(r, g)− TR(r, f) (r ∈ I).

By Theorems C.5.6 and C.5.7, we have this immediate corollary:

Corollary C.5.9: M0(D) is a subfield of M(D).

Theorem C.5.10: Every f ∈M∗(D) is transcendental over M0(D).

Proof. Consider a polynomial P (Y ) =
n∑
j=0

ajY
j ∈ M0(D)[Y ] with an = 1.

Let f ∈ M∗(D) and suppose that P (f) = 0. Then fn = −
n−1∑
j=0

ajf
j . Set
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Ξ =
n−1∑
j=0

ajf
j and f = f0 g

h
with g, h ∈ A(D) having no zero in S. Then

Ξ =

∑n−1
j=0 ajg

jhn−1−j

hn−1
.

Since
n−1∑
j=0

ajg
jhn−1−j belongs to A(D), by Theorem C.5.7 we have

TR(r,
n−1∑
j=0

ajg
jhn−1−j) ≤ (n− 1)TR(r, f) +O(log(r)), (r ∈ I)

and of course TR(r, hn−1) ≤ (n− 1)TR(r, f), (r ∈ I). Consequently

TR(r,Ξ) ≤ (n− 1)TR(r, f) +O(log(r), (r ∈ I).

But on the other hand, by Theorem C.5.7, TR(r, fn) = nTR(r, f). There-
fore we should have nTR(r, f) ≤ (n − 1)TR(r, f) + O(log(r), (r ∈ I), which
is impossible by Theorem C.5.6 because f belongs to M∗(D). Consequently,
the equality P (f) = 0 is impossible, which proves that f is transcendental over
M0(D).

Theorem C.5.11: Let f ∈M(D). Then NR(r, f (k)) = NR(r, f)+kNR(r, f), (r ∈
I) and ZR(r, f (k)) ≤ ZR(r, f) + kNR(r, f) +O(log(r)), (r ∈ I).

Proof. The inequality NR(r, f (k)) = NR(r, f) + kNR(r, f) + O(1), r ∈ I is
obvious. Next consider f in the form

g

h
with g, h ∈ A(K). Recall that we can

write h in the form hh̃ with h and h̃ in A(K), each zero of h being of order one
and all zeros of h being a zero of h. So, h′ is of the form h̃ĥ where ĥ belong to

A(K) and none of the zeros of ĥ is a zero of h. Then f ′ is of the form
g′h− gĥ
hh

.

So, ZR(r, f ′) ≤ ZR(r, g′h− gĥ) and hence, by Theorem C.5.7,

(4) ZR(r, f ′) ≤ max(ZR(r, g′h), ZR(r, gĥ).

On one hand, by Theorem C.5.5, ZR(r, g′) ≤ ZR(r, g) + O(log r) and by
Corollary C.5.4, we have ZR(r, g′) ≤ ZR(r, f)+O(log(r). Obviously, ZR(r, h) ≤
ZR(r, h) = NR(r, `) = NR(r, f) hence ZR(r, (r, g′h) ≤ ZR(r, f) +NR(r, f).

Now, let us estimate ZR(r, ĥ). Since log(|h′|(r)) ≤ log(|h|(r)) − log r, we
have
ZR(r, h′) ≤ ZR(r, h) + O(log(r)). But since h′ = ĥh̃, we have ZR(r, ĥ) =
ZR(r, h′)−ZR(r, h̃) ≤ ZR(r, h)−ZR(r, h̃) +O(log(r)) = ZR(r, h) +O(log(r)) =
NR(r, f) +O(log(r)). Consequently,

ZR(r, gĥ) ≤ ZR(r, g) +NR(r, f) +O(log(r)) = ZR(r, f) +NR(r, f) +O(log(r)).



Meromorphic functions and Nevanlinna Theory 279

Thus, by (4) we have proven the claim when k = 1 and then it is immediately
derived by induction on k.

The following Lemma C.5.12 will be necessary in the proof of Theorem
C.5.13.

Lemma C.5.12: Let f ∈ M(D). Suppose that there exists ξ ∈ K and a
sequence of intervals Jn = [un, vn] such that un < vn < un+1, limn→+∞ un =
+∞ and

lim
n→+∞

[
inf
r∈Jn

TR(r, f)− ZR(r, f − ξ)
log(r)

]
= +∞.

Let τ ∈ K τ 6= ξ. Then ZR(r, f − τ) = TR(r, f) + O(log(r))) ∀r ∈ Jn when
n is big enough.

Proof. Without loss of generality, we can obviously suppose that ξ = 0. By
Theorem C.3.6, f is of the form fSf0 and f0 is of the form

g

h
with g, h ∈ A(D),

having no zero in S. Set w = fS . Thus we have

lim
n→+∞

[
inf
r∈Jn

ZR(r, h)− ZR(r, g)
log(r)

]
= +∞.

Consequently, by Theorem C.5.1,

(7) lim
n→+∞

[
inf
r∈Jn

log(|h|(r)− log(|g|(r)
log(r)

]
= +∞.

Consider now f − τ . We have f − τ =
wg − τh

h
, hence

log(|f |(r)) = log
(
|wg − τh|(r)− log(|h|(r)).

But by (7), we have log(|τh|(r)) > log(|wg|(r)) because log(|w|(r) = O(log(r)),
therefore log

(
|wg − τh|(r)

)
= log(|τh|(r)) ∀r ∈ Jn when n is big enough and

hence

(8) lim
n→+∞

[
sup
r∈Jn

log(|τh− wg|(r)− log(|h|(r)
log(r)

]
= 0.

Consequently, by (8) and by Theorem C.5.1,

lim
n→+∞

[
sup
r∈Jn

ZR(r, τh− wg)− ZR(r, h)
log(r)

]
= 0

i.e.

lim
n→+∞

[
sup
r∈Jn

ZR(r, f − τ)− TR(r, f)
log(r)

]
= 0

which proves the claim.
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The Nevanlinna second Main Theorem is based on the following theorem:

Theorem C.5.13: Let f ∈M(D) and let a1, ..., aq ∈ K be distinct. Then

(q − 1)TR(r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

ZR(r, f − aj)
)

+O(log(r)) (r ∈ I).

Proof. Suppose Theorem C.5.13 is wrong. Thus, there exists f ∈M(D) and

a1, ..., aq ∈ K such that (q − 1)TR(r, f)− max
1≤k≤q

( q∑
j=1,j 6=k

ZR(r, f − aj)
)

admits

no superior bound in ]0,+∞[. So, there exists a sequence of intervals Js =
[ws, ys] such that ws < ys < ws+1, lims→+∞ ws = +∞ and two distinct indices
m ≤ q and t ≤ q such that

lim
s→+∞

[
inf
r∈Js

(
TR(r, f)− ZR(r, f − am)

)
log(r)

]
= +∞

and

lim
s→+∞

[
inf
r∈Js

(
TR(r, f)− ZR(r, f − at)

)
log(r)

]
= +∞

But by Lemma C.5.12, that is impossible.

We can now state and prove the Second Main Theorem for M(D).

Theorem C.5.14: Let f ∈ M(D), let α1, ..., αq ∈ K, with q ≥ 2 and let
W = {α1, ..., αq}. Then

(q−1)TR(r, f) ≤
q∑
j=1

ZR(r, f−αj)+ZR(r, f ′)−ZWR (r, f ′)+O(log(r)) (r ∈ I).

Moreover, if f belongs to A(D) then

qTR(r, f) ≤
q∑
j=1

ZR(r, f − αj) + ZR(r, f ′)− ZWR (r, f ′) +O(log(r)) (r ∈ I).

Theorem C.5.15 (Second Main Theorem): Let f ∈M(D), let α1, ..., αq ∈
K, with q ≥ 2 and let W = {α1, ..., αq}. Then

(q−1)TR(r, f) ≤
q∑
j=1

ZR(r, f−αj)+NR(r, f)−ZWR (r, f ′)+O(log(r)) (r ∈ I).

Proof. ( Proof of Theorems C.5.14 and C.5.15) By Theorem C.5.13 there
exists a constant B > 0 and for each r > R there exists k(r) ∈ N, k(r) ≤ q,
such that

(q − 1)TR(r, f) ≤
q∑

j=1,j 6=k(r)

ZR(r, f − aj) +B log(r)
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i.e. (q − 1)TR(r, f) ≤
∑q
j=1 ZR(r, f − aj)− ZR(r, ak(r) +O(log(r)). Now,

q∑
j=1

ZR(r, f − aj) =
q∑
j=1

ZR(r, f − aj) + ZR(r, f ′)− ZWR (r, f ′) +B log(r).

Consequently,
(9)

(q−1)TR(r, f) ≤
q∑
j=1

ZR(r, f−aj)+ZR(r, f ′)−ZWR (r, f ′)−ZR(r, f−ak(r))+O(log(r))

and this proves the first claim of Theorem C.5.14.
Particularly, if f ∈ A(D) then we have ZR(r, f − aj) = TR(r, f − aj) =

TR(r, f) +O(log(r)) ∀j = 1, ..., q, hence ZR(r, f − ak(r)) = TR(r, f) +O(log(r))
and therefore

qTR(r, f) ≤
q∑
j=1

ZR(r, f − aj) + ZR(r, f ′)− ZWR (r, f ′) +O(log(r)),

which ends the proof of Theorem C.5.14.

Consider now the situation in Theorem C.5.15. By Theorem C.5.11, for each
j = 1, ..., q, there exists a constant Bj > 0 such that ZR(r, f ′) ≤ ZR(r, f −aj) +
NR(r, f − aj) + Bj log(r)). Consequently, there exists a constant C > 0 such
that ZR(r, f ′) ≤ ZR(r, f − ak(r)) +NR(r, f − ak(r)) + C log(r) ∀r > R.

Therefore, by Relation (9) that remains true in Theorem C.5.15, we can
derive

(q− 1)TR(r, f) ≤
q∑
j=1

ZR(r, f −αj) +NR(r, f)−ZWR (r, f ′) +O(log(r)) ∀r ∈ I.

Corollary C.5.16: Let f ∈M(K) and let a1, ..., aq ∈ K be distinct. Then
(q − 1)TR(r, f) ≤

∑q
j=1 ZR(r, f − aj) +O(log(r)) (r ∈ I).

Corollary C.5.17: Let f ∈ M(D), let α1, ..., αq ∈ K, with q ≥ 2 and let
W = {α1, ..., αq}. Then
q∑
j=1

(
ZR(r, f−αj)−ZR(r, f−αj)

)
≤ TR(r, f)+NR(r, f)−ZWR (r, f ′)+O(log(r)) (r ∈

I).
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C.6. Immediate applications of the Nevanlinna Theory

Throughout the chapter the field K is supposed to have characteristic 0.

Notations: As in Chapter C.6, we denote by D the set K \ d(0, R−) with R
a positive number. The definitions of A(D), Au(D), M(D), Mu(D) are those
given in Chapter C.3.

As immediate applications of the Second Main Theorem, we can notice the
following Theorems C.6.1, C.6.2, C.6.3, C.6.4.
Theorem C.6.1: Let a1, a2 ∈ K (a1 6= a2) and let f, g ∈ A(K) satisfy
f−1({ai}) = g−1({ai}) (i = 1, 2). Then f = g.

Remark: Theorem 6.1 does not hold in complex analysis. Indeed, let f(z) =
ez, g(z) = e−z, let a1 = 1, a2 = −1. Then f−1({ai}) = g−1({ai}) (i = 1, 2),
though f 6= g.

Theorem C.6.2: Let a1, a2, a3 ∈ K (ai 6= aj ∀i 6= j) and let f, g ∈
Au(d(a,R−)) (resp.f, g ∈ Au(D) ) satisfy f−1({ai}) = g−1({ai}) (i = 1, 2, 3).
Then f = g.

Theorem C.6.3: Let a1, a2, a3, a4 ∈ K (ai 6= aj ∀i 6= j) and let f, g ∈
M(K) satisfy f−1({ai}) = g−1({ai}) (i = 1, 2, 3, 4). Then f = g.

Theorem C.6.4: Let a1, a2, a3, a4, a5 ∈ K (ai 6= aj ∀i 6= j) and let
f, g ∈ Mu(d(a,R−))) (resp. f, g ∈ Mu(D) satisfy f−1({ai}) = g−1({ai})
(i = 1, 2, 3, 4, 5). Then f = g.

Remark: Let f(x) =
x

3x− 1
, g(x) =

x2

x2 + 2x− 1
. Let a0 = 0, a1 = 1, a2 =

1
2

. Then we can check that f−1({ai}) = g−1({ai}), i = 1, 2, 3. So, Theorem
C.6.3 is sharp.

Proof. (Theorems C.6.1, C.6.2, C.6.3, C.6.4) Let I =]0,+∞[ in Theorems
C.6.1, C.6.3 and let I =]0, R[ in Theorems C.6.2 and C.6.4. For each j = 1, ..., n,
let Sj be the set of all zeros of f−aj (without taking multiplicities into account).
Since ai 6= aj ∀i 6= j, we have Si∩Sj = ∅ ∀i 6= j. Next, we notice that f(x) = aj
implies f(x)− g(x) = 0. Consequently, we check that
(1)

∑n
j=1 Z(r, f − aj) ≤ Z(r, f − g).

Suppose first that f and g either belong to A(K) or belong to A(d(0, R−)).
By applying Theorem C.4.24 to f we obtain

(n− 1)T (r, f) ≤
n∑
j=1

Z(r, f − aj) +N(r, f)− log(r) +O(1) ≤
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≤ nZ(r, f − g) +N(r, f)− log(r) +O(1) (r ∈ I)

hence by (1),

(n− 1)T (r, f) ≤ T (r, f − g) +N(r, f)− log(r) +O(1) (r ∈ I)

and finally

(n− 1)T (r, f) ≤ T (r, f − g) +N(r, f)− log(r) +O(1) (r ∈ I).

Similarly,

(n− 1)T (r, g) ≤ T (r, f − g) +N(r, g)− log(r) +O(1) (r ∈ I),

therefore we obtain
(2) (n−1) max(T (r, f), T (r, g)) ≤ T (r, f−g))+max(N(r, f), N(r, g))− log(r)+
O(1) (r ∈ I).

Assume we are in the hypothesis of Theorem C.6.1. We have N(r, f) =
N(r, g) = 0, and by Theorem C.4.3, T (r, f − g) ≤ max(T (r, f), T (r, g)) +O(1).
Consequently, by (2),

(n− 1) max(T (r, f), T (r, g)) ≤ max(T (r, f), T (r, g))− log(r) +O(1) (r ∈ I).

Since r is not bounded, we can see that the inequality does not hold with n = 2,
when r goes to +∞.

Now, assume the hypothesis of Theorem C.6.2. Again, we have N(r, f) =
N(r, g) = 0 and by Theorem C.4.3, T (r, f − g) ≤ max(T (r, f), T (r, g)) + O(1),
hence by (2),

(n− 1) max(T (r, f), T (r, g)) ≤ max(T (r, f), T (r, g)) +O(1) (r ∈ I).

Since f, g are unbounded, by Theorem C.4.10, so are T (r, f), T (r, g) in intervals
]r0, R[ hence the inequality does not hold with n = 3.

Suppose now that f and g belong to Au(D). We then obtain

(n−1)TR(r, f) ≤ TR(r, f−g)+O(log(r)) (r > R) ≤ max(TR(r, f), TR(r, g))+O(log(r)

and similarly

(n−1)TR(r, g) ≤ TR(r, f−g)+O(log(r)) (r > R) ≤ max(TR(r, f), TR(r, g))+O(log(r),

therefore

(n− 1) max(RR(r, f), T (r, g)) ≤ max(TR(r, f), TR(r, g)) +O(log(r),

and hence n ≤ 2, which proves the conclusion whenever n ≥ 3.

Assume now the hypothesis of Theorem C.6.3. Since

max(N(r, f), N(r, g)) ≤ max(T (r, f), T (r, g)),
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by (2) and Theorem C.4.3 we have

(n− 1) max(T (r, f), T (r, g)) ≤ 3 max(T (r, f), T (r, g))− log(r) +O(1) (r ∈ I).

Since r is not bounded, the inequality does not hold with n = 4, when r goes
to ∞.

Finally, assume we are in the hypothesis of Theorem C.6.4. Supose first that
f and g belong to Mu(d(0, R−)). By (2) and Theorem C.4.3, we have

(n− 1) max(T (r, f), T (r, g)) ≤ 3 max(T (r, f), T (r, g)) +O(1) (r ∈ I).

Since T (r, f), T (r, g) are not bounded, the inequality does not hold with n = 5.
And now, suppose that that f and g belong to Mu(D). We then obtain

(n−1)TR(r, f) ≤ TR(r, f−g)+O(log(r)) (r > R) ≤ 3(TR(r, f)+TR(r, g))+O(log(r)

and similarly

(n−1)TR(r, g) ≤ TR(r, f−g)+O(log(r)) (r > R) ≤ 3(TR(r, f)+TR(r, g))+O(log(r),

therefore

(n− 1)(TR(r, f) + TR(r, g)) ≤ 3(TR(r, f) + TR(r, g)) +O(log(r),

and hence n ≤ 4, which proves the conclusion whenever n ≥ 5. That finishes
the proof of Theorem C.6.4

Definitions: Let f ∈ M(K). The function f will be called a function of
uniqueness (resp. a function of strong uniqueness) for a family F of functions
defined in a suitable subset of K if given any two functions f, g ∈ F satisfying
h ◦ f = h ◦ g (resp. h ◦ f = b(h ◦ g) with b ∈ K∗), then f and g are identical.

Similarly, we will consider the same question in the purely algebraic context.
Let E be an algebraically closed field, let h ∈ E(x) and let F be a subset of E(x).
Then h will be called a function of uniqueness for F (resp. a function of strong
uniqueness for F) if given any two functions f, g ∈ F satisfying h ◦ f = h ◦ g
(resp. h ◦ f = b(h ◦ g), with b ∈ E∗), f and g are identical.

Particuliarly in each case, if h is a polynomial, it will be called a polynomial
of uniqueness for the family F (resp. a polynomial of strong uniqueness for the
family F .

In Theorem C.6.6 we will need the following basic lemma [59]:

Lemma C.6.5: Let E be an algebraically closed field of characteristic 0 and
let P (x) = (n− 1)2(xn − 1)− n(n− 2)(xn−1 − 1)2 ∈ E[x]. Then P admits 1 as
a zero of order 4 and all other zeros uj (1 ≤ j ≤ 2n− 6) are simple.

Theorem C.6.6: Let

Q(x) = b
(

(n+ 2)(n+ 1)xn+3 − 2(n+ 3)(n+ 1)xn+2 + (n+ 3)(n+ 2)xn+1
)
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with b ∈ K∗. Let R ∈]0,+∞[. Then Q is a polynomial of uniqueness for M(K)
for every n ≥ 2 and is a polynomial of uniqueness for Mu(d(0, R−)) for every
n ≥ 3.

Proof. Suppose f, g ∈ M(K) (resp. f, g ∈ Mu(d(0, R−)), resp. f, g ∈

Mu(D)) and suppose that Q(f) = Q(g). Let h =
f

g
. We can derive

(n+2)(n+1)(hn+3−1)g2−2(n+3)(n+1)(hn+2−1)g+(n+3)(n+2)(hn+1−1) = 0.

If h is a constant, it is 1, a contradiction. So, we suppose h is not constant. If
g lies in M(K), so does h. Now, if g belongs to Mu(d(0, R−)) or to Mu(D) so
does h, respectively. Indeed, suppose that h ∈ Mb(d(0, R−)). Then clearly we
have T (r, (n+ 2)(n+ 1)(hn + 2)g2) ≥ 2T (r, g) +O(1), while T (r,−2(n+ 3)(n+
1)(hn+2 − 1)g + (n + 3)(n + 2)((hn+1 − 1)) ≤ T (r, g) + O(1), a contradiction.
Similarly if h ∈Mb(D), we have the same contradiction.

Let P (x) = (n+2)2(xn+3)−1)−(n+3)(n+1)(xn+2−1)2 ∈ K[x]. By Lemma
C.6.5 P admits 1 as a zero of order 4 and all other zeros uj (1 ≤ j ≤ 2n) are
simple. By change of variable, we can obviously assume that h−uj has no zero
and no pole at 0. Consequently, we check that

(
g −

(n+ 3
n+ 2

)(hn+2 − 1
hn+3 − 1

))2

=
(n+ 3)(h− 1)4

∏2n
j=1(h− uj)

(n+ 2)2(n+ 1)(hn+3 − 1)2
.

Since
(n+ 3)(h− 1)4

∏2n
j=1(h− uj)

(n+ 2)2(n−+1)(hn+3 − 1)2
is equal to a square, clearly each zero of

h−uj , (1 ≤ j ≤ 2n) has order at least 2. Let J =]0,+∞[ (resp. J =]0, R[, resp.
J = [R,+∞[). Consequently

2n∑
j=1

Z(r, h− uj) ≤
1
2

2n∑
j=1

Z(r, h− uj) ≤
1
2

(2n)T (r, h) +O(1) (r ∈ J).

Suppose first that f and g belong to M(K) or to M(d(0, R−)). Then,
applying Theorem C.4.24 to h at the points uj (1 ≤ j ≤ 2n), we obtain

(2n− 1)T (r, h) ≤
2n∑
j=1

Z(r, h− uj) +N(r, h)− log(r) +O(1) ≤

≤ 1
2

2n∑
j=1

Z(r, h−uj)+N(r, h)+O(1) ≤ 1
2

(2n)T (r, h)+N(r, h)−log(r)+O(1) (r ∈ J).

and therefore (2n−1)T (r, h) ≤ nT (r, h)+T (r, h)− log(r)+O(1). If f, g belong
to M(K), we conclude that n ≤ 1. And if f, g belong to Mu(d(0, R−)), we
conclude that n ≤ 2.

Suppose now that f and g belong to M(D). Then we can apply Theorem
C.5.15 and we have (2n − 1)T (r, h) ≤ nT (r, h) + T (r, h) + O(log(r)), therefore
we have again n ≤ 2, which ends the proof.
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Corollary C.6.7: Let P (x) ∈ K[x] have a derivative of the form c(x−a)n(x−
b)2. Then P is a polynomial of uniqueness forM(K) ∀n ≥ 2 and is a polynomial
of uniqueness for M(d(α,R−)) and for M(D) for every n ≥ 3.

Theorem C.6.8: Let Q(x) = xn+1−xn. Let a ∈ K and R ∈]0,+∞[. Then Q
is a polynomial of uniqueness for A(K) and for Au(d(0, R−)) for every n ≥ 2.

Proof. Let f, g ∈ A(K)) (resp. f, g ∈ Au(d(0, R−)), (resp. f, g ∈ Au(D).

Suppose fn(f − 1) = gn(g − 1). Let h =
f

g
and suppose h is not the constant

1. Then we have g =
( hn − 1
hn+1 − 1

)
. Consequently, if h belongs to K (resp. to

Mb(d(0, R−)), resp. to Mb(D)), so does g, a contradiction. Thus h belongs to
M(K) \K (resp. to Mu(d(0, R−)), resp to Mu(D)).

Now, since n ≥ 2, by Corollary C.1.23 h has to take at least one of the
(n + 1)-th roots of 1 other than 1 and such a (n + 1)-th root of 1 cannot be a
n-th root of 1. Consequently, g admits a pole, a contradiction. Therefore, h is
identically equal to 1 and hence f = g.

Now, we must examine the situation in M(D) in order to obtain a result
similat to Theorem C.6.8

Notation: We will denote by Ac(D) the set of functions f ∈ A(D) having
infinitely many zeros in D and by Mc(D) the set of functions f ∈ M(D)
admitting at least either infinitely zeros or infinitely many poles.

Theorem C.6.9: Let Q(x) = xn+1 − xn. Let a ∈ K and R ∈]0,+∞[. Then
Q is a polynomial of uniqueness for Ac(D) for every n ≥ 2.

Proof. Let f, g ∈ Ac(D). Suppose fn(f − 1) = gn(g − 1). Let h =
f

g
and

suppose h is not the constant 1. Then we have g =
( hn − 1
hn+1 − 1

)
. Consequently,

if h does not belong toMc(D), neither does g, a contradiction. Thus h belongs
to Mc(D)).

Now, since n ≥ 2, by Theorem C.3.4, h has to take at least one of the (n+1)-
th roots of 1 other than 1 and such a (n+ 1)-th root of 1 cannot be a n-th root
of 1. Consequently, g admits a pole, a contradiction. Therefore, h is identically
equal to 1 and hence f = g.

We will examine particular cases where curves are defined by their equations
so that, for most of them, the p-adic Nevanlinna Theory lets us find easy proofs.
Most of results come from [32].

Definitions: Let F (x, y) ∈ K[x, y]. A point (a, b) of the algebraic curve of

equation F (x, y) = 0 is called a singular point if
∂F

∂x
=
∂F

∂y
= 0. An algebraic
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curve is said to be degenerate if it admits a singular point. An algebraic curve
of degree 2 (resp. 3) is called a conic (resp. an elliptic curve).

Remark: The p-adic functions sin and cos are bounded inside d(0, (p−
1
p−1 )−)

when the residue characteristic is p (resp. inside d(0, 1−) when the residue
characteristic is 0) and satisfy sin2 x+ cos2 x = 1. Throughout the chapter, we

will denote by D an infinite bounded set included in a disk d(a, r), for some
r < R.

Remark: Let P, Q ∈ K[x]. A point (α, β) ∈ K2 is a singular point of the
curve of equation P (x) = Q(y) if and only if P (α) = Q(β) and P ′(α) = Q′(β) =
0.

Remark: The p-adic functions sin and cos are bounded inside d(0, (p−
1
p−1 )−)

when the residue characteristic is p (resp. inside d(0, 1−) when the residue
characteristic is 0) and satisfy sin2 x+ cos2 x = 1. Throughout the chapter, we

will denote by D an infinite bounded set included in a disk d(a, r), for some
r < R.
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C.7. Branched values

In complex functions theory a notion closely linked to Picard’s exceptional
values was introduced: the notion of ”perfectly branched value” [37]. Here we
shall consider the same notion onM(K), onM(d(a,R−)) and onM(D). Most
of results come from [54], [56] and [28].

Definitions Let f ∈M(K) (resp. let f ∈M(d(a,R−)), resp. let f ∈M(D))
and let b ∈ K. The value b is said to be a perfectly branched value for f if all
zeros of f − b are multiple zeros, except finitely many. And in the present book,
b will be said to be a totally branched value for f if all zeros of f−b are multiple
zeros, without exception. Similarly, ∞ will be called a perfectly branched value
for f if all poles of f are multiple but finitely many and it will be called a totally
branched value for f if all poles of f are multiple, without exception.

In C it is known that a transcendental meromorphic function admits at most
4 perfectly branched values and an entire function admits at most 2 perfectly
branched values. As explained by K. S. Charak in [37], these numbers, respec-
tively 4 and 2, are sharp. The Weierstrass function P has 4 totally branched
values (considering∞ as a value) and of course, sine and cosine functions admit
two totally branched values: 1 and −1.

Here we will do a similar study on p-adic functions and obtain sometimes cer-
tain better results. Particularly, an entire function admits at most one perfectly
branched value.

Lemma C.7.1 is immediate:

Lemma C.7.1: Let f ∈ M(K), (resp. let f ∈ Mu(d(0, R−)), resp. let f ∈
Mc(D)), admitting a perfectly branched value b 6= 0. Then

1
f

admits
1
b

as a

perfectly branched value. If f admits 0 as a perfectly branched value,
1
f

admits

∞ as a perfectly branched value. If f admits ∞ as a perfectly branched value,
1
f

admits 0 as a perfectly branched value.

We have an immediate application of the definition with meromorphic func-
tions whose denominator is a small function with respect to the numerator or
vice versa.

Theorem C.7.2: Let f, g ∈ A(K) \ K[x] (resp. f, g ∈ Au(d(0, R−)), resp.

f, g ∈ Ac(D)) be such that lim sup
r→+∞

T (r, f)
T (r, g)

> 2 (resp. lim sup
r→R−

T (r, f)
T (r, g)

> 2, resp.

lim sup
r→+∞

TR(r, f)
TR(r, g)

> 2). Then both
f

g
and

g

f
have at most two perfectly branched

values.

Proof. Set φ =
f

g
. Without loss of generality, we can suppose that f and g have

no common zero. Indeed, suppose first that f, g ∈ A(K)\K[x] or f, g ∈ Ac(D).
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By Lemma C.1.3 we can write f and g in the form f = f̃ .h and g = g̃.h
where f̃ and g̃ have no common zero and then Z(r, f) = Z(r, f̃) + Z(r, h),

Z(r, g) = Z(r, g̃) + Z(r, h) and so much the more, we have
T (r, f̃)
T (r, g̃)

> 2.

Now, if f, g ∈ Au(d(0, r)−)), we can place ourselves in an algebraically
closed spherically complete extension to obtain the same conclusion because the
Nevanlinna functions are the same in such an extension. Therefore we assume
that f and g have no common zero.

Suppose first that f and g belong to A(K) \K[x] or to Au(d(0, R−)), Since
f, g have no common zero, we have Z(r, φ) = Z(r, f) and N(r, φ) = Z(r, g),
hence T (r, φ) = max(Z(r, f), Z(r, g)) +O(1).

Now, by hypothesis, there exists λ <
1
2

and a sequence (rn)n∈N such that

lim
n→+∞

rn = +∞ (resp. lim
n→+∞

rn = R) and such that

(1) T (rn, g) ≤ λT (rn, f) ∀n ∈ N.

Suppose that φ has 3 perfectly branched values bj , j = 1, 2, 3. Applying
Theorem C.4.24 we have

(2) 2T (r, φ) ≤
3∑
j=1

Z(r, φ− bj) +N(r, φ)− log r +O(1).

But here, for each j = 1, 2, 3, we notice that Z(r, φ − bj) ≤
Z(r, φ− bj)

2
+

qj log(r) with qj ∈ N and Z(r, φ − bj) = Z(r, f − bjg) ≤ max(T (r, f), T (r, g)).
But since T (rn, f) > T (rn, g), we have T (rn, φ − bj) ≤ T (rn, f) + O(1), hence
Z(r, φ− bj) ≤ T (rn,f)

2 + qj log(rn) +O(1). Now, putting q = q1 + q2 + q3, by (2)
we obtain

2T (rn, f) ≤ 3T (rn, f)
2

+ T (rn, g) + 2q log(rn) +O(1)

hence
T (rn, f) ≤ 2T (rn, g) + q log(rn) +O(1),

a contradiction to (1).
Similarly, if f and g belong to Ac(D), we can make the same reasoning by

replacing T by TR, Z by ZR and N by NR.

Theorem C.7.3: Let f, g ∈ A(K)) (resp. let f, g ∈ A(d(0, R−))) be such
that +∞ > ρ(f) > ρ(g). Then

lim inf
r→R−

T (r, g)
T (r, f)

= 0.
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Proof. Suppose first f, g ∈ A(K)). Let γ =
ρ(g)
ρ(f)

and let (rn)n∈N be a se-

quence in ]0,+∞[ such that lim
n→+∞

rn = +∞ and lim
n→+∞

log(log(|f |(rn)))
− log(R)

= ρ(f).

By hypothesis, we have

lim
n→+∞

log(log(|g|(rn)))
log(log(|f |(rn)))

≤ γ

hence

lim
n→+∞

log(T (rn, g))
log(T (rn, f))

≤ γ.

Take β ∈]γ, 1[. Then when n is big enough, we can get

T (rn, g)
T (rn, f)

≤ (T (rn, f))β−1.

But since β < 1 and since, by Lemma G, lim
n→∞

T (rn, f) = +∞, one sees that

lim
n→∞

(T (rn, f))β−1 = 0, which ends the proof when f and g belong to A(K).

Next, when f and g belong to A(d(0, R−)), we can make the same proof
with a sequence (rn) of limit R.

Corollary C.7.4: Let f, g ∈ A(K) (resp. let f, g ∈ Au(d(0, R−))) be such

that ρ(f) 6= ρ(g). Then both
f

g
and

g

f
have at most two perfectly branched

values.

Corollary C.7.5: Let f ∈ Au(d(0, R−)) and let f ∈ Ab(d(0, R−)). Then both
f

g
and

g

f
have at most two perfectly branched values.

The proof of the next theorems will require several basic lemmas.

Lemma C.7.6. Let (αi)1≤i≤t, (βi)1≤i≤t be two finite sequences of K such that

|αi| < R, |βi| < R ∀i = 1, ..., t. Let Θ(x) =
t∏
i=1

( 1− βi
x

1− αi
x

)
. Then the function√

Θ(x) is defined and belongs to A(K \ d(0, 4R)). Moreover, if p 6= 2, it belongs
to A(K \ d(0, R)).

Proof. By Theorem B.20.23 there exists a unique function ` ∈ A(d(1, ( 1
4 )−))

with value in d(1, 1−) such that (`(u))2 = u ∀u ∈ d(1, ( 1
4 )−). Moreover, if p 6= 2,

then ` has continuation to a function ` ∈ A(d(1, 1−)) with value in d(1, 1−) again

and such that (`(u))2 = u ∀u ∈ d(1, 1). Here, we put u =
t∏
i=1

( 1− βi
x

1− αi
x

)
.
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Lemma C.7.7. Let g, h ∈ A(K) with
g

h
transcendental and let

Θ(x) =
t∏
i=1

( 1− βi
x

1− αi
x

)
with |αi| < R and |βi| < R ∀i = 1, ..., t. Then the function

g(x)2 − h(x)2Θ(x) belongs to A(K \ d(0, 4R)) and satisfies

lim
r→+∞

|g2 − h2Θ|(r)
rm

= +∞ ∀m ∈ N.

Proof. We first notice that g2 − h2Θ obviously belongs to A(K \ d(0, R)). Let
us fix m ∈ N. By Lemma C.7.6,

√
Θ is defined in K \ d(0, R) and belongs to

A(K \ d(0, 4R)). Let ` =
√

Θ. Then can write g2 − h2Θ = (g − h`)(g + h`).

Since
g

h
is transcendental, g2 − h2Θ is not identically zero. So, by Theorem

B.13.22 there exists a > 0 and q ∈ Z such that |g − h`|(r) ≥ arq ∀r > R.

Suppose first h is transcendental. Since h is entire and since |`|(r) = 1 ∀r >
R, by Theorem B.13.22, we have

(1) ∀m ∈ N, lim
r→∞

|h`|(r)
rm

= +∞

Consequently |h`|(r) > |g − h`|(r) and hence |h`|(r) = |g + h`|(r). Thus,

|g − h`|(r)|g + h`|(r) ≥ arq|h`|(r).

Then the conclusion comes from (1). Suppose now h is not transcendental,

hence it is a polynomial and then g is transcendental. Consequently, when r is
big enough, we have |g−h`|(r) = |g|(r) = |g+h`|(r) and hence |g2−h2Θ|(r) =
(|g|(r))2, which yields the same conclusion.

Theorem C.7.8: Let f ∈M(K) be transcendental (resp. let f ∈Mu(d(a,R−))).
Then f has at most four perfectly branched values. Moreover, any function
g ∈M(K) has at most three totally branched values.

Remark. Let f ∈ M(K). If a ∈ K is a perfectly branched value for f ,
then for every b ∈ K, a + b is a perfectly branched value for f + b. Moreover,

if a 6= 0, then
1
a

is a perfectly branched value for
1
f

. So, we are going to

construct a function f ∈M(K) admitting three distinct totally branched values.

Let ` =
∞∏
j=1

(1− x

aj
) ∈ A(K) with lim

j→+∞
|aj | = +∞ and aj 6= ak ∀j 6= k. Let

u =
∞∏
k=1

(1− x

a2k
) and let w =

∞∏
k=1

(1− x

a2k−1
). So, both u and w belong to A(K)

and satisfy uw = `. Now, let φ =
u2 + w2

2
and ψ =

w2 − u2

2
. Then φ2−ψ2 = `2.
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Now, let g =
(φ
`

)2

. Note that g admits 0 and 1 as totally branched values.
Consequently, g + 1 admits 1 and 2 as totally branched values and hence the

function f =
1

g + 1
admits 1 and

1
2

as totally branched values. But, on the other

hand, all poles of g are multiple, hence so are those of g + 1. Consequently, f
also admits 0 as a totally branched value. Thus, Theorem C.7.8 is sharp as
far as totally branched values are concerned for meromorphic functions. One
can only ask whether there exist meromorphic functions admitting 4 perfectly
branched values where some of them are not totally branched values.

Theorem C.7.9: Let f ∈ M(K) be transcendental and have finitely many
poles. Then f has at most one perfectly branched value.

Corollary C.7.10: Let f ∈ A(K) be transcendental. Then f has at most one
perfectly branched value.

Remark. However, a polynomial can admit two values looking like ”perfectly
branched values”. Yet, the definition of a perfectly branched value does not
really apply to a polynomial or a rational function.

Example: Let P (x) = x3 − x2 +
4
27

. Then 0 and − 4
27

are two perfectly

branched values that are not totally branched. Indeed, on one hand − 4
27

is

perfectly but not totally branched since P (x) − 4
27

= x2(x − 1). On the other

hand, we can check that P (x) =
(
x− 2

3

)2(
x+

1
3
)
.

Theorem C.7.11: Let f ∈ Mu(d(a,R−)) have finitely many poles. Then f
has at most two perfectly branched values.

Corollary C.7.12: Let f ∈ Au(d(a,R−)). Then f has at most two perfectly
branched values.

Corollary C.7.13: Let ai ∈ K, i = 1, 2, 3 be pairwise distinct. There do not
exist f, g ∈M(K) \K, there do not exist f, g ∈ Au(d(a,R−)) and there do not
exist f, g ∈ Ac(D) such that (g(x))2 = (f(x)− a1)(f(x)− a2)(f(x)− a3).

Proof. Suppose two functions f, g ∈ M(K) \ K satisfy (g(x))2 = (f(x) −
a1)(f(x) − a2)(f(x) − a3). Then each zero of f − ai, i = 1, 2, 3 must be
of order at least 2. And each pole of (f − a1)(f − a2)(f − a3) is a pole of g2,
hence is of even order and hence each pole of f is at least of order 2. f admits 4
totally branched values: a1, a2, a3,∞, what is impossible by Theorem C.7.8.

Remark. We don’t know whether there exists a function f ∈ Au(d(a,R−))
admitting two perfectly branched values. The only case when we can improve
Theorem C.7.11 is the case when K has residue characteristic 0.
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In the proofs of Theorems C.7.8 and C.7.9, without loss of generality, we can
obviously assume that all supposed perfectly branched values of the functions
we consider are finite, what we will do for simplicity.

Proof. (Theorems C.7.8, C.7.9, C.7.11.) If f lies in Mu(d(a,R−)), we assume
that a = 0. Suppose f has q perfectly branched values bj with j = 1, ..., q.

For each j, let sj be the number of simple zeros of f − bj and let s =
q∑
j=1

sj .

Applying Theorem C.4.24, we have

(1) (q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − bj) +N(r, f)− log r +O(1).

But since f − bj has sj simple zeros, we have

Z(r, f−bj) ≤
Z(r, f − bj) + sj log r

2
+O(1) ≤ T (r, f) + sj log r

2
+O(1) ∀j = 1, ..., q

hence

(2) (q − 1)T (r, f) ≤ qT (r, f)
2

+ T (r, f) + (
s

2
− 1) log r +O(1).

By (2) clearly we have q ≤ 4 in all cases, which shows the first statement of
Theorem C.7.8 whenever f ∈M(K) or f ∈Mu(d(0, R−)).

Further, suppose that f lies in M(K) or in K(x) and that b1, ..., bq are
totally branched values. Then s = 0, hence by (2) we have

(3) (
q

2
− 2)T (r, f) ≤ − log r +O(1)

In Theorem C.7.8, since f is transcendental, we have log r = o(T (r, f)) hence
q ≤ 3.

Consider now the hypotheses of Theorems C.7.9 and C.7.11. Let t be the
number of poles of f , taking multiplicity into account. We have N(r, f) ≤
t log r + O(1) hence by (1) we obtain (q − 1)T (r, f) ≤ q

2
T (r, f) + O(log r) and

hence q ≤ 2. Thus, Theorem C.7.11 is proved.

For the proof of Theorem C.7.9, without loss of generality, we may assume
that these perfectly branched values are 0 and b. Suppose first that f has
infinitely many zeros of order ≥ 3. Then Z(r, f) − 2Z(r, f) is a function ψ(r)
such that

(4) lim
r→+∞

ψ(r)
log r

= +∞.

therefore

(5) Z(r, f) ≤ T (r, f)− ψ(r)
2

.
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On the other hand, by (1), with q = 2 we have

T (r, f) ≤ T (r, f)− ψ(r)
2

+O(log r)

and then, by (4), we can see a contradiction proving that f cannot admit 0 and
b as branched values.

Suppose now that all zeros of both f and f − b are of order 2 except finitely
many. So, there exists S > 0 satisfying the following properties:
i) all poles of f lie in d(0, S)
ii) |f |(r) > |b| ∀r > S,
iii) all zeros of f and of f − b in K \ d(0, S) are of order 2 exactly.

We can then write f in the form
Pg2

V
with P, V ∈ K[x], g ∈ A(K) and

deg(P ) = k. Similarly, f − b is in the form
Qh2

V
with Q ∈ K[x], h ∈ A(K),

where all zeros of P,Q, V lie in d(0, S) and all zeros of g, h lie in K \ d(0, S)
and are simple zeros. Set deg(V ) = t We notice that g is transcendental.

By ii) we have |f |(r) = |f−b|(r) ∀r > S. Consequently, by Lemma C.1.20, f
and f −b have the same number of zeros in d(0, S) and hence deg(P ) = deg(Q).

Let P (x) =
k∏
i=1

(x− αi) and Q(x) =
k∏
i=1

(x− βi). Let Θ(x) =
k∏
i=1

( 1− βi
x

1− αi
x

)
and

let Ξ(x) =
V (x)
P (x)

. Of course, lim
r→+∞

|Ξ|(r)
rt+1

= 0.

Now, we have
g(x)2 = h(x)2Θ(x) + bΞ(x).

By Lemma C.7.7, we can derive

lim
r→+∞

(
|g2 − h2Θ|(r)

)
rm

= +∞ ∀m ∈ N

a contradiction to lim
r→+∞

|Ξ|(r)
rt+1

= 0. This completes the proof of Theorem C.7.9.

Remark: Corollary C.7.12 may suggest that Theorem B.19.4 is wrong. In-
deed, by Theorem B.19.4, given sequences (an)n∈N, (bn)n∈N, (cn)n∈N in d(0, R−)
such that

lim
n→+∞

|an| = lim
n→+∞

|bn| = lim
n→+∞

|cn| = R,

together with
∞∏
n=0

R

|an|
= +∞, there exists functions f ∈ A(d(0, R−)) admitting

each an as a zero of order 2 and such that f − 1 admits each bn as a zero of
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order 2 and such that f −2 admits each cn as a zero of order 2. Moreover, since
∞∏
n=0

R

|an|
= +∞, we can check that f ∈ Au(d(0, R−)).

The explanation is that, given such a function f , either f or f − 1 or f − 2
has infinitely many other zeros of order 1 and therefore, at least one of these
three values (0, 1, 2) is not perfectly branched.

Theorem C.7.8 gives an easy proof of the impossibility to parametrize elliptic
and hyperelliptic curvs by meromorphic functions in all K.

Corollary C.7.14: Let ai ∈ K, i = 1, 2, 3 be pairwise distinct. There do not
exist f, g ∈M(K), there do not exist f, g ∈ Ab((d(a,R−)) and there do not exist
f, g ∈ Ac(D) such that (g(x))2 = (f(x)− a1)(f(x)− a2)(f(x)− a3).

Proof. Suppose two functions f, gM(K)\K satisfy (g(x))2 = (f(x)−a1)(f(x)−
a2)(f(x) − a3). Then each zero of fai, (i = 1, 2, 3) must be of order at least
2. And each pole of (f − a1)(f − a2)(f − a3) is a pole of g2, hence is of even
order and hence each pole of f is at least of order 2. Thus, f admits 4 totally
branched values: a1, a2, a3,∞, which is impossible by Theorem C.7.8.

Remark: In general, it is proven that curves of genus n ≥ 1 admit no parametriza-
tion by meromorphic functions f ∈M(K) [39].
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C.8. Exceptional values of functions and derivatives

The chapter is aimed at studying various properties of derivatives of mero-
morphic functions, particularly their sets of zeros. Many important results are
due to Jean-Paul Bezivin.

Troughout the chapter, the field K is supposed to have characteristic zero.

We will first notice a general property concerning quasi-exceptional values
of meromorphic funcions and derivatives.

Notation: Let f ∈ M(K), (resp. f ∈ M(d(0, R−))) and let T be a property
satisfied by f at certain points. Let r ∈]0, R[. Assume that f(0) 6= 0, ∞. We
denote by Z(r, f | T ) the counting function of zeros of f in d(0, r) at the points
where f satisfies T , i.e. if (an) is the finite or infinite sequence of zeros of f
in d(0, R−) with respective multiplicity order sn, where T is satisfied, we put
Z(r, f) =

∑
|an|≤r,T

sn(log r − log |an|).

Given two meromomorphic functions f, g ∈ M(K) or f, g ∈ M(d(a,R−))
(a ∈ K, R > 0), we will denote by W (f, g) the Wronskian of f and g: f ′g−fg′.

Theorem C.8.1: Let f ∈ M(K) \ K(x) (resp. Let f ∈ Mu(d(α,R−))). If f
admits a quasi-exceptional value, then f ′ has no quasi-exceptional value different
from 0.

Proof. Without loss of generality, we may assume α = 0 and that f has no zero
and no pole at 0. Let b ∈ K and suppose that b is a quasi-exceptional value
of f . There exist P ∈ K[x] and l ∈ A(K) \ K[x] (resp. and l ∈ Au(d(0, R−)))

without common zeros, such that f = b+
P

l
.

Let c ∈ K∗. Remark that f ′ − c =
P ′l − Pl′ − cl2

l2
. Let a ∈ K (resp. let

a ∈ d(0, R−)). If a is a pole of f , it is a pole of f ′ − c and we can check that
(1) ωa(P ′l − Pl′ − cl2) = ωa(l′) = ωa(l)− 1
because a is not a zero of P .

Now suppose that a is not a pole of f . Then
(2) ωa(f ′ − c) = ωa(P ′l − Pl′ − cl2)

Consequently, Z(r, f ′ − c) = Z(r, (P ′l − Pl′ − cl2) | l(x) 6= 0). But, by (1)
we have
(3) Z(r, (P ′l − Pl′ − cl2) | l(x) = 0) < Z(r, l).
and therefore by (2) and (3) we obtain
(4) Z(r, f ′−c) = Z(r, (P ′l−Pl′−cl2) | l(x) 6= 0) > Z(r, P ′l−Pl′−cl2)−Z(r, l)

Now, let us examine Z(r, P ′l − Pl′ − cl2). Let r ∈]0,+∞[
(
resp. let r ∈

]0, R[
)
. Since l ∈ A(K) is transcendental (resp. since l ∈ Au(d(0, R−))), we can

check that when r is big enough, we have |Pl′|(r) < |c|
(
|l|(r)

)2 and |Pl|(r) <
|c|
(
|l|(r)

)2, hence clearly |P ′l − Pl′|(r) < |c|
(
|l|(r)

)2 and hence |P ′l − Pl′ −
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cl2|(r) = |c|
(
|l|(r)

)2. Consequently, when r is big enough, by Theorem C.4.2
we have Z(r, P ′l − Pl′ − cl2) = Z(r, l2) + O(1). But Z(r, l2) = 2Z(r, l), hence
Z(r, P ′l− Pl′ − cl2) = 2Z(r, l) +O(1) and therefore by (4) we check that when
r is big enough,
(5) Z(r, f ′ − c) > Z(r, l).

Now, if l ∈ A(K), since l is transcendental, by (5), for every q ∈ N, we have
Z(r, f ′ − c) > Z(r, l) > q log r, when r is big enough, hence f ′ − c has infinitely
many zeros in K. And similarly if l ∈ Au(d(0, R−)), then by (5), Z(r, f ′ − c)
is unbounded when r tends to R, hence f ′ − c has infinitely many zeros in
d(0, R−).

We will now notice a property of differential equations of the form y(n)−ψy =
0 that is almost classical [52].

The problem of a constant Wronskian is involved in several questions.

Theorem C.8.2: Let h, l ∈ A(K) (resp. h, l ∈ A(d(α,R−))) and satisfy

h′l − hl′ = c ∈ K, with h non-affine. If h, l belong to A(K), then c = 0 and
h

l
is a constant. If c 6= 0 and if h, l ∈ A(d(α,R−)), there exists φ ∈ A(d(α,R−))
such that h′′ = φh, l′′ = φl.

Proof. Suppose c 6= 0. If h(a) = 0, then l(a) 6= 0. Next, h and l satisfy

(1)
h′′

h
=
l′′

l
.

Remark first that since h is not affine, h′′ is not identically zero. Next, every
zero of h or l of order ≥ 2 is a trivial zero of h′l − hl′, which contradicts c 6= 0.
So we can assume that all zeros of h and l are of order 1.

Now suppose that a zero a of h is not a zero of h′′. Since a is a zero of h

of order 1,
h′′

h
has a pole of order 1 at a and so does

l′′

l
, hence l(a) = 0, a

contradiction. Consequently, each zero of h is a zero of order 1 of h and is a

zero of h′′ and hence,
h′′

h
is an element φ of M(K) (resp. of M(d(α,R−))))

that has no pole in K (resp. in d(α,R−)). Therefore φ lies in A(K) (resp. in
A(d(α,R−))).

The same holds for l and so, l′′ is of the form ψl with ψ ∈ A(K) (resp. in

A(d(α,R−))). But since
h′′

h
=
l′′

l
, we have φ = ψ.

Now, suppose h, l belong to A(K). Since h′′ is of the form φh with φ ∈
A(K), we have |h′′|(r) = |φ|(r)|h|(r). But by Theorem C.2.10, we know that

|h′′|(r) ≤ 1
r2
|h|(r), a contradiction when r tends to +∞. Consequently, c = 0.

But then h′l− hl′ = 0 implies that the derivative of
h

l
is identically zero, hence

h

l
is constant.
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Corollary C.8.3 : Let h, l ∈ A(K) with coefficients in Q, also be entire
functions in C, with h non-affine. If h′l − hl′ is a constant c, then c = 0.

Theorem C.8.4: Let ψ ∈ M(K) (resp. let ψ ∈ Mu(d(α,R−))) and let (E)
be the differential equations y′′−ψy = 0. Let E be the sub-vector space of A(K)
(resp. of A(d(α,R−))) of the solutions of (E). Then, the dimension of E is 0
or 1.

Proof. Suppose E is not {0}. Let h, l ∈ E be non-identically zero. Then
h′′l − hl′′ = 0 and therefore h′l − hl′ is a constant c. On the other hand, since
h, l are not identically zero, neither are h′′, l′′. Therefore, h, l are not affine
functions.

Suppose ψ belongs to M(K) and that h, l belong to A(K). By Theorem

C.8.2, we have c = 0 and hence
h

l
is a constant, which proves that E is of

dimension 1.
Suppose now that ψ lies inMu(d(α,R−)) and that h, l belong toA(d(α,R−)).

If ψ lies in A(d(α,R−)), then by Theorem C.8.1, E = {0}. Finally, suppose
that ψ lies in Mu(d(α,R−)) \ A(d(α,R−)). If c 6= 0, by Theorem C.8.2, there
exists φ ∈ A(d(α,R−)) such that h′′ = φh, l′′ = φl. Consequently, φ = ψ,

hence ψ ∈ A(K) and therefore c = 0. Hence h′l − hl′ = 0 again and hence
h

l
is

a constant. Thus, we see that E is at most of dimension 1.

Remark: The hypothesis ψ unbounded in d(α,R−) is indispensable to show
that the space E is of dimension 0 or 1, as shows the example given again by
the p-adic hyperbolic functions h(x) = cosh(x) and l(x) = sinh(x). The radius
of convergence of both h, l is p

−1
p−1 when K has residue characteristic p and is 1

when K has residue characteristic 0. Of course, both functions are solutions of
y′′ − y = 0 but they are bounded.

The following Theorem C.8.5 given in [13] is an improvement of Theorem
C.8.2. It follows previous results [14].

Theorem C.8.5: Let f, g ∈ A(K) be such that W (f, g) is a non-identically
zero polynomial. Then both f, g are polynomials.

Proof. First, by Theorem C.8.2 we check that the claim is satisfied when W (f, g)
is a polynomial of degree 0. Now, suppose the claim holds when W (f, g) is a
polynomial of certain degree n. We will show it for n + 1. Let f, g ∈ A(K) be
such that W (f, g) is a non-identically zero polynomial P of degree n+ 1

Thus, by hypothesis, we have f ′g− fg′ = P , hence f”g− fg” = P ′. We can
extract g′ and get g′ = (f ′g−P )

f . Now consider the function Q = f”g′ − f ′g”

and replace g′ by what we just found: we can get Q = f ′( (f”g−fg”)
f )− Pf”

f .
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Now, we can replace f”g − fg” by P ′ and obtain Q = (f ′P ′−Pf”)
f . Thus,

in that expression of Q, we can write |Q|(R) ≤ |f |(R)|P |(R)
R2|f |(R)

, hence |Q|(R) ≤
|P |(R)
R2 ∀R > 0. But by definition, Q belongs to A(K). Consequently, Q is a

polynomial of degree t ≤ n− 1.
Now, suppose Q is not identically zero. Since Q = W (f ′, g′) and since

deg(Q) < n, by the induction hypothesis f ′ and g′ are polynomials and so are
f, g. Finally, suppose Q = 0. Then P ′f ′ − Pf” = 0 and therefore f ′, P are two
solutions of the differential equation of order 1 for meromorphic functions in
K : (E) y′ = ψy with ψ = P ′

P , whereas y belongs to A(K). By Theorem C.8.4,
the space of solutions of (E) is of dimension 0 or 1. Consequently, there exists
λ ∈ K such that f ′ = λP , hence f is a polynomial. The same holds for g.

Here we can find again the following result that is known and may be proved
without ultrametric properties:

Let F be an algebraically closed field and let P, Q ∈ F [x] be such that
PQ′ − P ′Q is a constant c, with deg(P ) ≥ 2. Then c = 0.

Notation: Let f ∈ A(K). We can factorize f in the form ff̃ where the zeros
of f are the distinct zeros of f each with order 1. Moreover, if f(0) 6= 0 we will
take f(0) = 1.

Lemma C.8.6: Let U, V ∈ A(K) have no common zero and let f =
U

V
.

If f ′ has finitely many zeros, there exists a polynomial P ∈ K[x] such that
U ′V − UV ′ = PṼ

Proof. If V is a constant, the statement is obvious. So, we assume that V is
not a constant. Now Ṽ divides V ′ and hence V ′ factorizes in the way V ′ = Ṽ Y
with Y ∈ A(K). Then no zero of Y can be a zero of V . Consequently, we have

f ′(x) =
U ′V − UV ′

V 2
=
U ′V − UY

V
2
Ṽ

.

The two functions U ′V − UY and V
2
Ṽ have no common zero since neither

have U and V . So, the zeros of f ′ are those of U ′V − UY which therefore has
finitely many zeros and consequently is a polynomial.

Theorem C.8.7: Let f ∈M(K) have finitely many multiple poles, such that
for certain b ∈ K, f ′ − b has finitely many zeros. Then f belongs to K(x).

Proof. Suppose first b = 0. Let us write f =
U

V
with U, V ∈ A(K), having no

common zeros. By Lemma C.8.6, there exists a polynomial P ∈ K[x] such that
U ′V −UV ′ = PṼ . Since f has finitely many multiple poles, Ṽ is a polynomial,
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hence so is U ′V −UV ′. But then by Theorem C.8.5, both U, V are polynomials,
which ends the proof when b = 0. Consider now the general case. f ′ − b is the
derivative of f − bx that satisfies the same hypothesis, so the conclusion is
immediate.

Notation: For each n ∈ N∗, we set λn = max{ 1
|k| , 1 ≤ k ≤ n}. Given positive

integers n, q, we denote by Cqn the combination
n!

q!(n− q)!
.

For convenience, in this chapter Log is the Neperian logarithm and we denote
by e the number such that Log(e) = 1 and Exp is the real exponential function.

Remark: For every n ∈ N∗, we have λn ≤ n because k|k| ≥ 1 ∀k ∈ N. The
equality holds for all n of the form ph.

Lemmas C.8.8 and C.8.9 are due to Jean-Paul Bézivin [13]:

Lemma C.8.8: Let U, V ∈ A(d(0, R−)). Then for all r ∈]0, R[ and n ≥ 1
we have

|U (n)V − UV (n)|(r) ≤ |n!|λn
|U ′V − UV ′|(r)

rn−1
.

More generally, given j, l ∈ N, we have

|U (j)V (l) − U (l)V (j)|(r) ≤

|(j!)(l!)|λj+l
|U ′V − UV ′|(r)

rj+l−1

Proof. Set g =
U

V
and f = g′. Applying Theorem C.2.10 to f for k − 1, we

obtain

|g(k)|(r) = |f (k−1)|(r) ≤ |(k − 1)!| |f |(r)
rk−1

=

|(k − 1)!| |U
′V − UV ′|(r)
|V 2|(r)rk−1

.

As in the proof of Theorem C.2.10, we set U = V
(U
V

)
. By Leibniz formula

again, now we can obtain

U (n) =
n∑
q=1

CqnV
(n−q)

(U
V

)(q)

+ V (n)
(U
V

)
hence

(1) U (n) − V (n)
(U
V

)
=

n∑
q=1

CqnV
(n−q)

(U
V

)(q)
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Now we have∣∣∣(U
V

)(q)∣∣∣(r) = |g(q)|(r) ≤ |(q − 1)!| |U
′V − UV ′|(r)
|V 2|(r)rq−1

and

|V (n−q)|(r) ≤ |(n− q)!| |V |(r)
rn−q

.

Consequently, the general term in (1) is upper bounded as

∣∣∣CqnV (n−q)
(U
V

)(q)∣∣∣(r) ≤ |(n!)((n− q)!)((q − 1)!)|
|(q!)((n− q)!)|

|U ′V − UV ′|(r)
|V |(r)rn−1

≤

λn
|n!||U ′V − UV ′|(r)
|V |(r)rn−1

.

Therefore by (1) we obtain∣∣∣U (n) − V (n)
(U
V

)∣∣∣(r) ≤ |n!|λn
|U ′V − UV ′|(r)
|V |(r)rn−1

and finally ∣∣∣U (n)V − V (n)U
∣∣∣(r) ≤ |n!|λn

|U ′V − UV ′|(r)
rn−1

.

We can now generalize the first statement. Set Pj = U (j)V − UV (j). By
induction, we can show the following equality that already holds for l ≤ j:

U (j)V (l) − U (l)V (j) =
l∑

h=0

Chl (−1)hP (l−h)
j+h .

Then, the second statement gets just an application of the first.

Lemma C.8.9: Let U, V ∈ A(K) and let r, R ∈]0,+∞[ satisfy r < R. For
all x, y ∈ K with |x| ≤ R and |y| ≤ r, we have the inequality:

|U(x+ y)V (x)− U(x)V (x+ y)| ≤ R|U ′V − UV ′|(R)
e(LogR− Logr)

Proof. By Taylor’s formula at the point x, we have

U(x+ y)V (x)− U(x)V (x+ y) =
∑
n≥0

U (n)(x)V (x)− U(x)V (n)(x)
n!

yn

Now, by Lemma C.8.8, we have∣∣∣U (n)(x)V (x)− U(x)V (n)(x)
n!

yn
∣∣∣ ≤ λn |U ′V − UV ′|(R)

Rn−1
rn
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= λnR|U ′V − UV ′|(R)(
r

R
)n

Consequently, lim
n→+∞

∣∣∣U (n)(x)V (x)− U(x)V (n(x)
n!

yn
∣∣∣ = 0, therefore we can de-

fine
B = maxn≥1{λn

(
r
R

)n
}R|U ′V−UV ′|(R) and we have |U(x+y)V (x)−U(x)V (x+

y)| ≤ B. Now, as remarked above, we have λn ≤ n. We can check that the

function h defined in ]0,+∞[ as h(t) = t
(
r
R

)t
reaches it maximum at the point

u =
1

e(LogR− Logr)
. Consequently, B ≤ 1

e(LogR− Logr)
and therefore

|U(x+ y)V (x)− U(x)V (x+ y)| ≤ R|U ′V − UV ′|(R)
e(LogR− Logr)

.

Notation: Let f ∈ M(d(0, R−)). For each r ∈]0, R[, we denote by ζ(r, f)
the number of zeros of f in d(0, r), taking multiplicity into account and set
ξ(r, f) = ζ(r, 1

f ). Similarly, we denote by β(r, f) the number of multiple zeros
of f in d(0, r), each counted with its multiplicity and we set γ(r, f) = β(r, 1

f ).

Theorem C.8.10: Let f ∈M(K) be such that for some c, q ∈]0,+∞[, γ(r, f)
satisfies γ(r, f) ≤ crq in [1,+∞[. If f ′ has finitely many zeros, then f ∈ K(x) .

Proof. Suppose f ′ has finitely many zeros and set f =
U

V
. If V is a constant,

the statement is immediate. So, we suppose V is not a constant and hence it
admits at least one zero a. By Lemma C.8.6, there exists a polynomial P ∈ K[x]
such that U ′V −UV ′ = PṼ . Next, we take r,R ∈ [1,+∞[ such that |a| < r < R
and x ∈ d(0, R), y ∈ d(0, r). By Lemma C.8.9 we have

|U(x+ y)V (x)− U(x)V (x+ y)| ≤ R|U ′V − UV ′|(R)
e(LogR− Logr)

.

Notice that U(a) 6= 0 because U and V have no common zero. Now set l =

max(1, |a|) and take r ≥ l. Setting c1 =
1

e|U(a)|
, we have

|V (a+ y)| ≤ c1
R|P |(R)|Ṽ |(R)
LogR− Logr

.

Then taking the supremum of |V (a+ y)| inside the disk d(0, r), we can derive

(1) |V |(r) ≤ c1
R|P |(R)|Ṽ |(R)
LogR− Logr

.
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Let us apply Corollary B.13.30, by taking R = r +
1
rq

, after noticing that the

number of zeros of Ṽ (R) is bounded by β(R, V ). So, we have

(2) |Ṽ |(R) ≤
(

1 +
1

rq+1

)β((r+ 1
rq ),V )

|Ṽ |(r).

Now, due to the hypothesis: β(r, V ) = γ(r, f) ≤ crq in [1,+∞[, we have

(3)
(

1 +
1

rq+1

)β((r+ 1
rq ),V )

≤
(

1 +
1

rq+1

)[c(r+ 1
rq )m]

=

Exp
[
c(r +

1
rq

)qLog(1 +
1

rq+1
)
]
.

The function h(r) = c(r + 1
rm )mLog(1 + 1

rm+1 ) is continuous on ]0,+∞[ and

equivalent to
c

r
when r tends to +∞. Consequently, it is bounded on [l,+∞[.

Therefore, by (2) and (3) there exists a constant M > 0 such that, for all
r ∈ [l,+∞[ by (3) we obtain

(4) |Ṽ |(r +
1
rq

) ≤M |Ṽ |(r).

On the other hand,

Log
(
r +

1
rq

)
− Logr = Log

(
1 +

1
rq+1

)
clearly satisfies an inequality of the form

Log
(

1 +
1

rq+1

)
≥ c2
rq+1

in [l,+∞[ with c2 > 0. Moreover, we can obviously find positive constants c3, c4
such that

(r +
1
rq

)|P |
(
r +

1
rq

)
≤ c3rc4 .

Consequently, by (1) and (4) we can find positive constants c5, c6 such that
|V |(r) ≤ c5r

c6 |Ṽ |(r) ∀r ∈ [l,+∞[. Thus, writing again V = V Ṽ , we have
|V |(r)|Ṽ |(r) ≤ c5rc6 |Ṽ |(r) and hence

|V |(r) ≤ c5rc6 ∀r ∈ [l,+∞[.

Consequently, by Corollary B.13.31, V is a polynomial of degree ≤ c6 and hence
it has finitely many zeros and so does V . But then, by Corollary C.8.7, f must
be a rational function.

Corollary C.8.11: Let f be a meromorphic function on K such that, for some
c, q ∈]0,+∞[, γ(r, f) satisfies γ(r, f) ≤ crq in [1,+∞[. If for some b ∈ K f ′− b
has finitely many zeros, then f is a rational function.
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Proof. Suppose f ′ − b has finitely many zeros. Then f − bx satisfies the same
hypothesis as f , hence it is a rational function and so is f .

Corollary C.8.12: Let f ∈M(K)\K(x) be such that ξ(r, f) ≤ crq in [1,+∞[
for some c, q ∈]0,+∞[. Then for each k ∈ N∗, f (k) has no quasi-exceptional
value.

Proof. Indeed, if k = 1, the statement just comes from Corollary C.8.11. Now
suppose k ≥ 2. Each pole a of order n of f is a pole of order n+ k of f (k) and
f (k) has no other pole. Consequently, we have γ(r, fk−1) = ξ(r, f (k−1)) ≤ kcrq.
So, we can apply Corollary C.8.11 to f (k−1) to show the claim.
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C.9. The p-adic Hayman conjecture

In the fifties, Walter Hayman asked the question whether, given a meromor-
phic function in C, the function g′gn might admit a quasi-exceptional value
b 6= 0 [65]. W. Hayman showed that g′gn has no quasi-exceptional value, when-
ever n ≥ 3. Henceforth, the problem was solved for n = 2 by E. Mues in 1979
[76] and next for n ≥ 1, in 1995 by W. Bergweiler and A. Eremenko [5] and
separately by H. Chen and M. Fang [38]. The same problem is posed on the
field K, both in M(K) and in a field M(d(a,R−)) (a ∈ K, R > 0).

Throughout the chapter, the field K is supposed to have characteristic 0.

The following lemma is immediate.

Lemma C.9.1: Let g ∈ M(K), (resp. let g ∈ M(d(a,R−)), a ∈ K, R > 0),

set f =
1
g

and let n ∈ N∗. Then g′gn admits a quasi-exceptional value b ∈ K∗

if and only if f ′ + bfn+2 has finitely many zeros that are not zeros of f .

Remark: We can also consider the same problem when n = −1 i.e. the
question whether f ′ + bf has infinitely many zeros. We will examine this in
p-adic analysis. When n = 0, in C the well known counter-example furnished
by the function tanx shows that f ′ − f2 may have no zero. On the field K, we
will examine the cases n = −1 and n = 0.

Henceforth we will examine that problem by considering the set of zeros of
f ′+bfm, with b 6= 0. In the field K, two theorems are specific to p-adic analysis.
Both are based on the following lemma.

Lemma C.9.2: Let f ∈M(K), (resp. let f ∈M(d(0, R−)), R > 0), suppose
that f admits infinitely many zeros and suppose that there exists a sequence of
intervals [r′n, r

′′
n] such that lim

n→+∞
r′n = +∞ (resp. lim

n→+∞
r′n = lim

n→+∞
r′′n = R)

and such that |(f ′ + fm)|(r) = |fm|(r) ∀r ∈
⋃
n∈N

[r′n, r
′′
n]. Let m ∈ N∗ be 6= 2.

Then f ′ + fm has infinitely many zeros that are not zeros of f .

Proof. Let J =
⋃
n∈N

[r′n, r
′′
n]. By Corollary B.13.6 we have

ν+(f ′ + fm, log r) = ν+(fm, log r), ν−(f ′ + fm, log r) = ν−(fm, log r) ∀r ∈ J.

Consequently, in each disk d(0, r) with r ∈ J , f and f ′ + fm have the same
difference between the number of zeros and poles. Now, if m ≥ 3 the poles of
f ′+fm and fm are the same taking multiplicity into account. And when m = 1,
each pole of f is a pole of f ′ + f with a strictly greater order. Consequently,
for each r ∈ J , the number of zeros of f ′ + fm in d(0, r) is superior or equal to
this of fm.
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Now, for each n ∈ N, let sn be the number of distinct zeros of f in d(0, r′′n).
Since f has infinitely many zeros, the sequence sn is increasing and tends to
+∞. On the other hand, for each zero α of order u of f , either α is not a zero of
f ′ + fm (when u = 1), or it is a zero of order u− 1. Consequently, the number
of zeros of f ′ + fm in d(0, r′′n) which are not zeros of f is at least sn. Thus we
have proved that f ′ + fm has infinitely many zeros that are not zeros of f .

We will prove together Theorems C.9.3 and C.9.4.

Theorem C.9.3: Let f ∈ M(K) \ K(x) satisfy lim sup
r→∞

|f |(r) > 0 and let b ∈

K∗. Let m ∈ N∗ be ≥ 3. Then f ′ + bfm has infinitely many zeros that are not
zeros of f .

Theorem C.9.4: Let f ∈ Mu(d(a,R−)) satisfy lim sup
r→R

|f |(r) = +∞ and let

b ∈ K∗. Let m ∈ N∗ be ≥ 3. Then f ′ + bfm has infinitely many zeros that are
not zeros of f .

Proof. (Theorems C.9.3 and C.9.4). Without loss of generality, we can assume
b = 1 and when f ∈ M(d(a,R−)), we may assume a = 0. By hypotheses,
there exists a sequence of intervals [r′n, r

′′
n] such that lim

n→+∞
r′n = +∞ (resp.

lim
n→+∞

r′n = lim
n→+∞

r′′n = R) and such that, putting J =
⋃
n∈N

[r′n, r
′′
n], we have

lim sup
r→∞,
r∈J

|f |(r) > 0 (resp. lim
r→R−
r∈J

|f |(r) = +∞).

Suppose first we assume the hypothesis of Theorem C.9.3. Let

M =
lim supr→+∞ |f |(r)

2
. We will prove that there exists t > 0 such that

|f ′ + fm|(r) = |fm|(r) ∀r ∈ J ∩ [t,+∞[. By Theorem C.2.10 we have |f ′|(r) ≤
|f |(r)
r

. Consequently, when r lies in J , there exists s > 0 such that |f |(r) ≥
M ∀r ∈ [s,+∞[∩J .(

|f |(r)
)m ≥ |f |(r)Mm−1 ≥ r|f ′|(r)Mm−1.

Next, when r is big enough, rMm−1 is greater than 1, hence (|f |(r))m > |f ′|(r).
Thus there exists t ≥ s such that (|f |(r))m > |f ′|(r) ∀r ∈ J ∩ [t,+∞[. Let
J ′ = J ∩ [t,+∞[. So we have |f ′ + fm|(r) = |fm|(r) ∀r ∈ J ′.

Suppose now that we assume the hypothesis of Theorem C.9.4. We have

|f ′|(r) ≤ |f |(r)
r
≤ |f |(r)

R
. Set B =

1
R

. Then we have(
|f |(r)

)m ≥ B|f ′|(r)(|f |(r))m−1.

Now, when r is close enough to R, r ∈ J , B|f(x)|m−1 is strictly greater than
1, hence (|f |(r))m > |f ′|(r). Thus there exists t > 0 such that (|f |(r))m >
|f ′|(r) ∀r ∈ [t,+∞[∩J . We can set again J ′ = J ∩ [t, R[ and then we have
|f ′ + fm|(r) = |fm|(r) ∀r ∈ J ′
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We can now conclude in both theorems C.9.3 and C.9.4. For each n ∈ N,
let qn be the number of zeros of f in d(0, r′′n). Suppose the sequence (qn)n∈N

is bounded. Then, f has finitely many zeros, hence it is of the form
P

h
with

P ∈ K[x] and h ∈ A(K) (resp. h ∈ Au(d(0, R−))). Consequently, we have
lim

r→+∞
|f |(r) = 0 (resp. lim

r→R−
|f |(r) = 0), a contradiction to the hypothesis in

both theorems. Therefore, the sequence (qn)n∈N which is increasing by defi-
nition, tends to +∞. Now, in each Theorems C.9.3 and C.9.4 we may apply
Lemma C.9.2 showing that f ′+ fm has infinitely many zeros that are not zeros
of f .

In the case m = 1, we can have a better conclusion in M(K).

Theorem C.9.5: Let f ∈M(K)\K(x). For each b ∈ K∗, f ′+bf has infinitely
many zeros that are not zeros of f .

Proof. Without loss of generality, we can assume again b = 1. By Theorem
C.2.10 we have |f ′|(r) < |f |(r) when r is big enough and hence |f ′ + f |(r) =
|f |(r) in an interval I = [s,+∞[. Suppose first that f has infinitely many zeros.
We can then apply Lemma C.9.2 and get the conclusion.

Suppose now that f has finitely many zeros. Then f has infinitely many
poles cn of respective order tn. Since K has characteristic zero, f ′ admits each
cn as a pole of order tn + 1 and similarly, f ′ + f also admits each cn as a pole
of order tn + 1. Thus, we have N(r, f ′ + f) = N(r, f) + N(r, f). But since
|f ′ + f |(r) = |f |(r) holds in I, we have ν(f ′ + f, log r) = ν(f, log r) ∀r ∈ I and
hence Z(r, f ′ + f) − N(r, f ′ + f) = Z(r, f) − N(r, f), therefore Z(r, f ′ + f) −
(N(r, f)+N(r, f)) = Z(r, f)−N(r, f) and hence Z(r, f ′+f) = Z(r, f)+N(r, f).
Since we have supposed that f has finitely many zeros and since f has infinitely
many poles, f ′ + f has infinitely many zeros and all but finitely many are not
zeros of f .

Concerning functions f ′ + bf2, we can obtain a first conclusion when f is
analytic:

Theorem C.9.6: Let f ∈ A(K) \ K(x) (resp. let a ∈ K, let R ∈]0,+∞[ and
let f ∈ Au(da(, R−))). For each b ∈ K∗, f ′ + bf2 has infinitely many zeros that
are not zeros of f .

Proof. Without loss of generality, we can assume b = 1 and a = 0. Clearly,
when r is big enough, in ]0,+∞[ (resp. in ]0, R[), we have |f ′+ f2|(r) = |f2|(r)
therefore, by Corollary B.13.6, f2 and f ′ + f2 have the same number of zeros
in C(0, r) (taking multiplicity into account). Let α ∈ C(0, r) be a zero of f of
order q. When r is big enough, it is a zero of order 2q for f2 and it is a zero of
order q − 1 for f ′ + f2. Consequently, by Corollary B.13.6, f ′ + f2 has at least
q + 1 zero in C(0, r) that are not zeros of f (taking multiplicity into account).
This is true for every such zeros of f and hence f ′+f2 has infinitely many zeros
that are not zeros of f .
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Corollary C.9.7: Let m ∈ N∗ be ≥ 1, let f ∈ A(K) \K(x). For each b ∈ K∗,
f ′ + bfm has infinitely many zeros that are not zeros of f .

Corollary C.9.8: Let m ∈ N be ≥ 2, let a ∈ K, let R ∈]0,+∞[ and let
f ∈ Au(d(a,R−))). For each b ∈ K∗, f ′ + bfm has infinitely many zeros that
are not zeros of f . Theorems C.9.9 was published in [23] and partially in [78]:

Theorem C.9.9: Let f ∈ M(K) \K(x) (resp. let a ∈ K and R ∈ R∗+ and let
f ∈Mu(d(a,R−))) and let m ∈ N. If m ≥ 5 then for each b ∈ K∗, f ′+ bfm has
infinitely many zeros that are not zeros of f . If m = 4, if f ∈M(K) \K(x) and
if f admits at least s multiple zeros and at least t multiple poles, then f ′ + bf4

admits a number of zeros that are not zeros of f (taken account of multiplicity)

which is strictly superior to
s+ t

2
.

Proof. By Corollary B.13.2 the zeros of f ′ + bfm in K are the same as in a
spherically complete algebraically closed extension K̂ of K. So, for simplicity,
we can suppose that the field K is spherically complete without loss of generality.
We can also suppose that b = 1. Then if f ∈ M(K) \ K(x) we can obviously

we can write f =
h

l
with h, l ∈ A(K), having no common zeros and if f ∈

M(d(a,R−)), since K is spherically complete, we can write f =
h

l
with h, l ∈

A(d(a,R−)), having no common zeros again.

Let g =
1
f

and let n = m − 2. So, by Lemma C.9.1, the problem is re-

duced to show that g′gn − 1 has infinitely many zeros. Then, g′gn − 1 =
(l′h− h′l)ln − hn+2

hn+2
and since h, l have no common bzeros, this is of the form

P

hn+2
where P is a polynomial of degree q. Now, set F = (l′h−h′l)ln. Applying

Corollary 43.13 to F we have
(1) T (r, F ) = Z(r, F ) + O(1) ≤ Z(r, F ) + Z(r, F − P ) + T (r, P ) + O(1). By
(1) we derive
Z(r, l′h−h′l)+nZ(r, l) ≤ Z(r, l′h−h′l)+Z(r, l)+Z(r, F −P )+T (r, P )+O(1).
Actually, Z(r, F−P ) = Z(r, h), hence nZ(r, l) ≤ Z(r, l)+Z(r, h)+T (r, P )+O(1)
and hence (n− 1)Z(r, l) ≤ Z(r, h) + T (P ) +O(1). But since T (r, P ) = q log r+
O(1), we have
(2) (n− 1)Z(r, l) ≤ Z(r, h) + q log r +O(1)

Now, consider the hypothesis f ∈M(K). By Theorem C.9.3, if lim inf
r→+∞

|f |(r) > 0

i.e. if
lim inf
r→+∞

Z(r, f)−N(r, f) > −∞ the claim is proved. Consequently, if the claim

is not true, we can assume lim inf
r→+∞

Z(r, f)−N(r, f) = −∞ i.e.

(3) lim inf
r→+∞

Z(r, l)− Z(r, h) = +∞
Since f is transcendental, by (3) we notice that l is transcendental. Conse-
quently, (2) is impossible whenever n ≥ 3, i.e. m ≥ 5.
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Now, suppose m = 4 .i.e n = 2. More precisely Z(r, l) ≤ Z(r, l) − s log r
2

and Z(r, h) ≤ Z(r, h)− t log r
2

, so by Relation (1) we have

(4) (n− 1)Z(r, l) ≤ Z(r, h) + (q − s+ t

2
) log r +O(1).

Then Relation (3) implies q − s+ t

2
> 0 and hence f ′fn admits a number of

zeros strictly superior to
s+ t

2
.

Now, suppose that f ∈Mu(d(0, R−)). By Theorem C.9.4, if lim
r→R−

|f |(r) = +∞
i.e. if lim inf

r→R−
Z(r, f)−N(r, f) = +∞ the claim is proved. Consequently, if the

claim is not true, we can assume
(5) lim inf

r→R−
Z(r, f)−N(r, f) < +∞.

But by (2), we see that (5) is impossible whenever n ≥ 3 i.e. m ≥ 5.

Corollary C.9.10: Let a ∈ K, R > 0 and let f ∈ Mu((.a,R
−)). For every

n ∈ N, n ≥ 3, for every b ∈ K∗, f ′fn − b has infinitely many zeros.

Corollary C.9.11: Let f ∈M(K)\K(x) have s multiple zeros and t multiple
poles. Let b ∈ K∗. Then if f has infinitely many multiple zeros or poles, then
f ′ + bf4 has infinitely many zeros that are not zeros of f .

We will now thorougly examine the situation when m = 4 i.e. n = 2, as
made in [71]. This requires several basic lemmas.

Lemma C.9.12: Let f ∈M(K) be transcendental and such that f ′ has finitely

many multiple zeros. Then
f ′′f

(f ′)2
has no quasi-exceptional value.

Proof. Let g =
f

f ′
. A pole of g is a zero of f ′, hence by hypothesis, g has

finitely many multiple poles. Consequently, by Theorem C.8.7, g′ has no quasi-

exceptional value. And hence neither has 1−g′. But g′ =
(f ′)2 − f ′′f

(f ′)2
= 1− f ′′f

(f ′)2
.

Therefore
f ′′f

(f ′)2
has no quasi-exceptional value.

Lemma C.9.13: Let f ∈ M(K) be transcendental and have finitely many
multiple zeros. Then f ′′f + 2(f ′)2 has infinitely many zeros that are not zeros
of f .

Proof. Suppose first that f ′ has infinitely many multiple zeros. Since f has
finitely many multiple zeros, the zeros of f ′ are not zeros of f except at most
finitely many. Hence f ′ has infinitely many multiple zeros that are not zeros
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of f . And then, they are zeros of f ′′, hence of f ′′f + 2(f ′)2, which proves the
statement.

So we are now led to assume that f ′ has finitely many multiple zeros. By

Lemma C.9.12,
f ′′f + 2(f ′)2

(f ′)2
has infinitely many zeros. Let c ∈ K be a pole of

order q of f . Without loss of generality, we can suppose c = 0. The beginning

of the Laurent developpement of f at 0 is of the form
a−q
xq

+
ϕ(x)
xq−1

whereas

ϕ ∈M(K) has no pole at 0. Consequently,
f ′′f + 2(f ′)2

(f ′)2
is of the form

(a−q)2(3q2 + q) + xφ(x)
(a−q)2(q2) + xψ(x)

whereas φ, ψ ∈M(K) have no pole at 0. So, the function
f ′′f + 2(f ′)2

(f ′)2
has no

zero at 0. Therefore, each zero of
f ′′f + 2(f ′)2

(f ′)2
is a zero of f ′′f + 2(f ′)2 and

hence f ′′f + 2(f ′)2 has infinitely many zeros.
Now, let us show that the zeros of f ′′f + 2(f ′)2 are not zeros of f , except

maybe finitely many. Let c be a zero of f ′′f + 2(f ′)2 and suppose that c is a
zero of f . Then, it is a zero of f ′ and hence it is a multiple zero of f . But by
hypotheses, f has finitely many multiple zeros, hence the zeros of f ′′f + 2(f ′)2

are not zeros of f , except at most finitely many. That finishes proving the
claim.

Lemma C.9.14: Let f ∈M(K) be transcendental and let b ∈ K∗ be such that
f2f ′ − b has finitely many zeros. Then, N(r, f) ≤ Z(r, f) +O(1).

Proof. Let F = f2f ′. Since F − b is transcendental and has finitely many zeros,

it is of the form
P (x)
h(x)

with h ∈ A(K) \K[x]. Consequently, |F |(r) is a constant

when r is big enough and therefore, by Theorem C.4.2 we have Z(r, F ) =
N(r, F ) + O(1) when r is big enough. Now, Z(r, F ) = 2Z(r, f) + Z(r, f ′)
and, by Theorem C.4.14, Z(r, f ′) ≤ Z(r, f) + N(r, f) − log r + O(1). On the
other hand, by Theorem C.4.14 again, we have N(r, F ) = 3N(r, f) + N(r, f).
Consequently, 3N(r, f) + N(r, f) ≤ 3Z(r, f) + N(r, f) − log r + O(1), which
proves the claim.

Theorem C.9.15 was published in [55].

Theorem C.9.15: Let f ∈M(K) \K(x). Then for each b ∈ K∗, f ′f2− b has
infinitely many zeros.
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Proof. Let b ∈ K∗ and suppose that the claim is wrong, i.e. f2f ′−b has s zeros,
taking multiplicity into account. By Theorem C.9.9, we may assume that f has
finitely many multiple zeros and finitely multiple poles. Set F = f2f ′. Then
F ′ = f(f ′′f+2(f ′)2). By Lemma C.9.13, f ′′f+2(f ′)2 has infinitely many zeros
that are not zeros of f . Consequently, F ′ admits for zeros: the zeros of f and
the zeros of f ′′f + 2(f ′)2. And by Lemma C.9.13, there exists a sequence of
zeros of f ′′f + 2(f ′)2 that are not zeros of f .

Let S = {0, b} and let ZS0 (r, F ′) be the counting function of zeros of F ′

when F (x) is different from 0 and b. Since F − b has finitely many zeros, the
zeros c of F ′ which are not zeros of f cannot satisfy F (c) = b except at most
finitely many. Consequently, there are infinitely many zeros of F ′ counted by
the counting function ZS0 (r, F ′) and hence for every fixed integer t ∈ N, we have

(1) ZS0 (r, F ′) ≥ t log r +O(1).

Let us apply Theorem C.4.24 to F . We have

(2) T (r, F ) ≤ Z(r, F ) + Z(r, F − b) +N(r, F )− ZS0 (r, F ′)− log(r) +O(1).

Now, we have

(3) Z(r, F ) ≤ Z(r, f) + Z(r, f ′)

(4) N(r, F ) = N(r, f)

and since the number of zeros of F − b is s, taking multiplicity into account,

(5) Z(r, F − b) ≤ s log r +O(1).

Consequently, by (2), (3), (4), (5) we obtain

(6) T (r, F ) ≤ Z(r, f) + Z(r, f ′) +N(r, f)− ZS0 (r, F ′) + (q − 1) log r +O(1).

On the other hand, by construction, T (r, F ) ≥ Z(r, F ) = 2Z(r, f) + Z(r, f ′)
hence by (6) we obtain (7):

(7) Z(r, f) ≤ N(r, f)− ZS0 (r, F ′) + (s− 1) log r +O(1).

Now, by Lemma C.9.14, we have N(r, f) ≤ Z(r, f) + O(1) hence by (7) we
obtain 0 ≤ (s− 1) log r−ZS0 (r, F ′) +O(1) and hence by (1), fixing t > s− 1 we
can derive 0 ≤ (s − 1) log r − t log r + O(1), a contradiction. That finishes the
proof of Theorem C.9.15.

By Lemma C.9.1, Theorems C.9.9 and C.9.15, we can now state the general
result on the p-adic Hayman conjecture:
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Corollary C.9.16: Let f ∈ M(K) be transcendental and let b ∈ K∗. Then
for every n ≥ 2, f ′fn − b has infinitely many zeros. For every m ≥ 4, f ′ + bf4

has infinitely many zeros that are not zeros of f .

Concerning the case m = 3 i.e. n = 1 which remains unsolved, thanks to
Theorem C.8.10, Corollary C.9.16 has an immediate application to the conjec-
ture with additional hypotheses.

Corollary C.9.17: Let f ∈ M(K). Suppose that there exists c, q ∈]0,+∞[,
such that ξ(r, f) ≤ crq ∀r ∈ [1,+∞[. If f ′fn − b has finitely many zeros for
some b ∈ K∗, with n ∈ N, then f ∈ K(x).

Proof. Suppose f is transcendental. By hypothesis, fn+1 satisfies ζ(r, 1
fn+1 ) =

ξ(r, fn+1) ≤ c(n + 1)rq ∀r ∈ [1,+∞[ hence by Corollary C.9.16 and Theorem
C.8.10, f ′fn has no quasi-exceptional value different from 0.

Corollary C.9.17 may be writen in another way:

Corollary C.9.18: Let f ∈ M(K) \ K(x). Suppose that there exists c, q ∈
]0,+∞[, such that ζ(r, f) ≤ crq ∀r ∈ [1,+∞[. Then for all m ∈ N, m ≥ 3 and
for all b ∈ K, f ′ − bfm admits infinitely many zeros that are not zeros of f .

Proof. We set g =
1
f

. Then by Theorem C.9.17 g′gm−2 has no quasi-exceptional

value. Consequently, given b ∈ K∗, g′gm−2 + b has infinitely many zeros and
hence f ′− bfm has infinitely many zeros that are not zeros of f . Next, if b = 0,
by Theorem C.8.10, f ′ has infinitely many zeros.

Consider now the case m = 3 i.e. n = 1.

Theorem C.9.19: Let f ∈ M(K). Suppose that there exists c, q ∈]0,+∞[,

such that β(r, f) ≤ crq ∀r ∈ [1,+∞[. Then, for all b ∈ K,
f ′

f2
− b has infinitely

many zeros.

Proof. Set g =
1
f

again. Since the poles of g are the zeros of f , we have

γ(r, g) ≤ crq. Consequently, by Corollary C.8.11, g′ has no quasi-exceptional
value.

Remark: Using Theorem C.9.19 to study the zeros of f ′ − bf2 that are not
zeros of f is not so immediate, as we will see below because of residues of f
at poles of order 1. Of course, if 1

f is an affine function, f ′ + f2 has no zeros,
except if it is identically zero. And if it is not identically zero, the residue at
the pole is not 1 in the general case.
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Lemma C.9.20: Let f =
h

l
∈ M(K) with h, l ∈ A(K) having no common

zero, let b ∈ K∗ and let a ∈ K be a zero of h′l − hl′ + bh2 that is not a zero of

f ′ + bf2. Then a is a pole of order 1 of f and res(f, a) =
1
b

.

Proof. Clearly, if l(a) 6= 0, a is a zero of f ′+bf2. Hence, a zero a of h′l−hl′+bh2

that is not a zero of f ′ + bf2 is a pole of f . Now, when l(a) = 0, we have
h(a) 6= 0 hence l′(a) = bh(a) 6= 0 and therefore a is a pole of order 1 of f such

that
h(a)
l′(a)

=
1
b

. But since a is a pole of order 1, we have res(f, a) =
h(a)
l′(a)

, which

ends the proof.

Theorem C.9.21 is not a result specific to p-adic analysis but it will be useful
in Theorem C.9.23.

Theorem C.9.21: Let f ∈ M(K), (resp. let a ∈ K, let f ∈ M(d(a,R−))),
let b ∈ K∗ and let α ∈ K (resp. let α ∈ d(a,R−)) be a point that is not a zero

of f and such that the residue of f at α is different from
1
b

. Then α is a zero

of f ′ + bf2 if and only if it is a zero of
f ′

f2
+ b. Moreover, if it is a zero of both

functions, it has the same multiplicity with both.

Proof. Suppose first α is a zero of f ′ + bf2. If α is not a pole of f , of course

it is a zero of
f ′

f2
+ b with same multiplicity. Suppose now that α is a pole of

f : since it is not a pole of f ′ + bf2 it must be a pole of order 1 of f . Without
loss of generality, we may assume that α = 0 (resp. a = α = 0). Consider
the Laurent series of f at 0: f(x) =

a−1

x
+ a0 + a1x+ x2φ(x) with φ ∈ M(K)

(resp. φ ∈M(d(0, R−)) and φ(0) 6=∞. Then f ′ + bf2 is of the form

f ′(x) + bf(x)2 =
a−1(−1 + ba−1)

x2
+

2ba0a1

x
+ a1 + b(a2

0 + 2a1a−1) + xη(x)

with η ∈M(K) (resp. η ∈M(d(0, R−)) and η(0) 6=∞ and hence, we have
a−1(−1 + ba−1) = 0, a0a−1 = 0, a2

0 + 2a1a−1 = 0. Since by hypothesis
res(f, α) 6= − 1

b we have (1 + ba−1) 6= 0, hence a−1 = 0, a contradiction. Conse-

quently, every zero of f ′ + bf2 that is not a zero of f is a zero of
f ′

f2
+ b with

same multiplicity.

Conversely, suppose now that α is a zero of
f ′

f2
+ b. If α is not a pole of f , it

is a zero of f ′ + bf2, with the same multiplicity, because by hypothesis it is not

a zero of f . Now suppose that α is a zero of
f ′

f2
+ b and is a pole of f . Clearly,

it is a pole of order 1 and again, we may assume that α = 0.
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Consider again the Laurent series of f at 0: f(x) =
a−1

x
+ a0 + a1x+ x2φ(x)

with φ ∈M(K) and φ(0) 6=∞. Then

f ′

f2
=

−a−1
x2 + a1 + xψ(x)

(a−1)2

x2 + 2a0a1
x + a2

0 + 2a1a−1 + xη(x)

where both ψ, η ∈ M(K) have no pole at 0. Clearly,
f ′

f2
is analytic at 0 and

its value is
−1
a−1

. But since 0 is a zero of
f ′

f2
+ b, we have a−1 =

1
b

, what is

excluded by hypothesis. Thus we have proved that every zero of
f ′

f2
+b is a zero

of f ′+ bf2 (that is not a zero of f) with the same multiplicity and this ends the
proof of Theorem C.9.21.

Theorem C.9.22: Let b ∈ K∗ and let f ∈M(K) have finitely many zeros and

finitely many residues at its simple poles equal to
1
b

and be such that f ′ + bf2

has finitely many zeros. Then f belongs to K(x).

Proof. Let f =
P

l
with P ∈ K[x], l ∈ A(K) having no common zero with P .

Then

f ′ + bf2 =
P ′l − l′P + bP 2

l2
. By hypothesis, this function has finitely many

zeros. Moreover, if a is a zero of P ′l − l′P + bP 2 but is not a zero of f ′ + bf2,

then by Lemma C.9.20 it is a pole of order 1 of f such that res(f, a) =
1
b

.

Consequently, P ′l − l′P + bP 2 has finitely many zeros and hence, we can write
P ′l − l′P + bP 2

l2
=
Q

l2
with Q ∈ K[x], hence P ′l − l′P = −bP 2 + Q. But then,

by Theorem C.8.5, l is a polynomial, which ends the proof.

Remark: If f(x) =
1
x

, the function f ′ + bf2 has no zero whenever b 6= 1.

Theorem C.9.23: Let f ∈ M(K) be transcendental and have finitely many

zeros of order ≥ 2 and let b ∈ K. Then
f ′

f2
+ b has infinitely many zeros.

Moreover, if b 6= 0, every zero α of
f ′

f2
+ b that is not a zero of f ′ + bf2 is a

pole of f of order 1 such that the residue of f at α is equal to
1
b

.

Proof. Let g =
f ′

f2
+ b. Since all zeros of f are of order 1 except maybe finitely

many, g has finitely many poles of order ≥ 3, hence a primitive G of g has finitely
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many poles of order ≥ 2. Consequently, by Theorem C.8.7, g has infinitely many
zeros.

Now, suppose b 6= 0. Let α be a zero of g. If α is not a pole of f , it is a zero
of f ′ + bf2 and we can see that it is not a zero of f .

Finally, suppose that α is a pole of f . Then it must be a pole of order 1 and
then, by Lemma C.9.20, the residue of f at α is 1

b .

Corollary C.9.24: Let f ∈ M(K) \ K(x) have finitely many zeros of order
≥ 2 and finitely many poles of order 1 and let b ∈ K∗. Then f ′ + bf2 has
infinitely many zeros that are not zeros of f .

Remark: On the field K, we find the same we don’t know whether a mero-
morphic function f similar to the function tan is such that f ′+bf2 have finitely
many zeros.
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C.10. Small functions

Small functions with respect to a meromorphic functions are well known in
the general theory of complex functions. Particularly, one knows the Nevanlinna
theorem on 3 small functions. Here we will construct a similar theory.

Definitions and notation: Throughout the chapter we set a ∈ K and R ∈
]0,+∞[ and we still denote by D the set K \ d(0, R−). For each f ∈ M(K)
(resp. f ∈ M(d(a,R−)), resp. f ∈ M(D)) we denote by Mf (K), (resp.
Mf (d(a,R−)), resp. Mf (D)) the set of functions h ∈ M(K), (resp. h ∈
M(d(a,R−)), resp. M(D)) such that T (r, h) = o(T (r, f)) when r tends to
+∞ (resp. when r tends to R, resp. when r tends to +∞). Similarly, if
f ∈ A(K) (resp. f ∈ A(d(a,R−)), f ∈ A(D)) we shall denote by Af (K) (resp.
Af (d(a,R−)), resp. Af (D)) the set Mf (K) ∩ A(K), (resp. Mf (d(a,R−)) ∩
A(d(a,R−)), resp. Mf (D) ∩ A(D)).

The elements of Mf (K) (resp. Mf (d(a,R−)), resp. Mf (D)) are called
small meromorphic functions with respect to f , small functions in brief. Sim-
ilarly, if f ∈ A(K) (resp. f ∈ A(d(a,R−)), resp. f ∈ A(D)) the elements of
Af (K) (resp. Af (d(a,R−)), resp. Af (D)) are called small analytic functions
with respect to f small functions in brief.

Theorems C.10.1 and Theorem C.10.2 are immediate consequences of The-
orem C.4.3:

Theorem C.10.1: Let a ∈ K and r > 0. Af (K) is a K-subalgebra of A(K),
Af (d(a,R−)) is a K-subalgebra of A(d(a,R−)), Af (D) is a K-subalgebra of
A(D), Mf (K) is a subfield field of M(K), Mf (d(a,R−)) is a subfield of field
of M(a,R−)) and Mf (D) is a subfield field of M(D). Moreover, Ab(d(a,R−)
is a sub-algebra of Af (d(a,R−) and Mb(d(a,R−) is a subfield of Mf (d(a,R−).

Theorem C.10.2 : Let f ∈ M(K), (resp.f ∈ M(d(0, R−)), resp. f ∈
M(K)) and let g ∈ Mf (K), (resp.g ∈ Mf (d(0, R−)), resp. g ∈ Mf (D)).

Then T (r, fg) = T (r, f) + o(T (r, f)) and T (r,
f

g
) = T (r, f) + o(T (r, f)), (resp.

T (r, fg) = T (r, f)+o(T (r, f)) and T (r,
f

g
) = T (r, f)+o(T (r, f)), resp. TR(r, fg) =

TR(r, f) + o(TR(r, f)) and TR(r,
f

g
) = TR(r, f) + o(TR(r, f))).

Here we can mention some precisions to Theorem C.10.1 that will be useful
later:

Theorem C.10.3: Let f ∈ A(K) (resp. let f ∈ Au(d(a, r−)), resp. let f ∈
A(D)). Let g, h ∈ Af (K) (resp. let g, h ∈ Af (d(a, r−), resp. let g, h ∈
Af (D) ) with g and h not identically zero. If gh belongs to Af (K) (resp. to
Af (d(a, r−)), resp. to Af (D) ), then so do g and h.
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Proof. Concerning the claim on f ∈ Au(d(a, r−)), we can obviously assume a =
0. By Theorems C.4.3 nad C.5.7, we have T (r, g.h) = T (r, g) + T (r, h) + O(1).
Consequently, T (r, g.h) = o(T (r, f)) if and only if T (r, g) = o(T (r, f)) and
T (r, h) = o(T (r, f)).

Theorem C.10.4: Let f, g ∈ A(K) (resp. let f, g ∈ Au(d(0, r−)), resp. let

f, g ∈ A(D)) and let q ∈ N∗. If
f

g
is not a q-th root of 1, then fq − gq does not

belong to Af (K) (resp. to Af (d(0, r−)), resp. to Af (D)).

Proof. Concerning the claim on f ∈ Au(d(a, r−)), we can obviously assume

a = 0. Let h =
f

g
. Since h is not a q-th root of 1, neither f − g nor the function

F (x) =
q−1∑
j=0

f jgq−1−j is identically zero. Suppose that fq − gq ∈ Af (K) (resp.

fq − gq ∈ Af (d(0, r−), resp. Af (D). So, by Theorem C.10.3, both f − g and F
belong to Af (K) (resp. to Af (d(0, r−), resp to Af (D). Let w = f − g, hence

g = f + w. Then F (x) =
q−1∑
j=0

f j(f + w)q−1−j . Thus, we can check that F (x) is

of the form fq−1 +P (f(x)) with P (Y ) a polynomial in Y of degree at most q−2,
with coefficients inAf (K) (resp. inAf (d(0, r−), resp. inAf (D)). Consequently,
by Theorems C.4.3 and C.5.7, T (r, F (x)) is of the form (q−1)T (r, f)+o(T (r, f))
because T (r, P (f(x))) ≤ (q − 2)T (r, f) + o(T (r, f)), which proves that F does
not belong to Af (K) (resp. to Af (d(0, r−), resp. to Af (D)).

In the proof of Theorem C.10.5 and in the sequel, we will have to use the
following notation.

Notation: Let h ∈ M(K) \ K (resp. h ∈ E(x) \ E) and let Ξ(h) be the set
of zeros c of h′ such that h(c) 6= h(d) for every zero d of h′ other than c. If
Ξ(h) is finite, we denote by Υ(h) its cardinal and if Ξ(h) is not finite, we put
Υ(h) = +∞. Let f ∈ M(K) (resp. let f ∈ E(x), resp. let f ∈ M(d(0, R−)),

let f ∈M(D). We will denote by
Z(r, f | ′′f(x) satisfying Property P′′)
(resp. Z(r, f | ′′f(x) satisfying Property P′′),
resp ZR(r, f | ′′f(x) satisfying Property P′′))
the counting function of zeros of f when Property P is satisfied.

Similarly, we will denote by Z(r, f | ′′f(x) satisfying Property P′′)
(resp. Z(r, f | ′′f(x) satisfying Property P′′),
resp. ZR(r, f | ′′f(x) satisfying Property P′′))
the counting function of zeros of f without counting multiplicity, when Property
P is satisfied.

We will denote by N(r, f | ′′f(x) satisfying Property P′′),
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(resp N(r, f | ′′f(x) satisfying Property P′′),
, resp. NR(r, f | ′′f(x) satisfying Property P′′) the counting function of poles
of f when Property P is satisfied.

And we will denote by N(r, f | ′′f(x) satisfying Property P′′)
(resp. N(r, f | ′′f(x) satisfying Property P′′),
NR(r, f | ′′f(x) satisfying Property P′′))
the counting function of poles of f without counting multiplicity when Property
P is satisfied.

Theorem C.10.5 is a wide generalization of Theorem C.4.8. It consists of
the following claim: given a meromorphic function f and a rational function
G of degree n whose coefficients are small functions with respect to f , then
T (r,G(f)) is equivalent to nT (r, f). The big difficulty consists of showing that
T (r,G(f)) is not smaller than nT (r, f). The proof, based on an elementary
property of Bezout’s Theorem, was given in C by F. Gackstatter and I. Laine
[60] and was made in a field such as K by C.C. Yang and Peichu Hu [66].

Theorem C.10.5: Let f ∈ M(K) (resp. f ∈ M(d(0, R−)), let f ∈ M(D)).
Let G(Y ) ∈Mf (K)(Y ), (resp. G ∈Mf (d(0, R−))(Y ), resp. G(Y ) ∈Mf (D)(Y ))
and let n = deg(G). Then T (r,G(f)) = nT (r, f)+o(T (r, f)), (resp. T (r,G(f)) =
nT (r, f) + o(T (r, f)), resp. TR(r,G(f)) = nTR(r, f) + o(TR(r, f)).

Proof. LetG =
P

Q
with P, Q relatively prime in the ringMf (K) (resp. Mf (d(a,R−)),

Mf (D)). Suppose first G(Y ) ∈ Mf (K)[Y ], (resp. G ∈ Mf (d(0, R−))[Y ],
resp. G(Y ) ∈ Mf (D)[Y ])), hence G = P . Let P (X) =

∑n
j=0 bjX

j with
cj ∈ Mf (K) (resp. cj ∈ Mf (d(0, R)), cj ∈ Mf (D)). By Theorems C.4.8
and C.5.7 we have T (r, P (f)) = T (r, b−1

n P (f)) + o(T (r, f)) (resp. T (r, P (f)) =
T (r, b−1

n P (f)) + o(T (r, f)), resp. TR(r, P (f)) = TR(r, b−1
n P (f)) + o(TR(r, f))).

Consequently, without loss of generality, we may also assume that P is monic.
Let K̂ be an algebraically closed spherically complete extension of K. Given

a ∈ K, we denote by d̂(a,R−) the disk {x ∈ K̂ | |x− a| < R}.

Suppose first f ∈ M(K) or f ∈ M(D. We can write f =
h

l
with h, l ∈

A(K) having no common zero. Now suppose that f ∈ M(d(0, R−)). Since
f has continuation to a function f̂ meromorphic in the disk d̂(0, R−) of the
field K̂, by Lemma C.4.1 we know that the Nevanlinna functions T (r, f̂) in
K̂ is exactly this of f in K. Consequently, without loss of generality we may
assume that K is spherically complete. Thus, we can write f in the form f =
h

l
with h, l ∈ A(d(0, R−)) having no common zero. Then we P (f) is in the

form

∑n
j=0 bjh

j ln−j

Bln
with B, bj ∈ Af (K) (resp. B, bj ∈ Af (d(0, R−)), resp.

B, bj ∈ Af (D)). Clearly we have Z(r,

∑n
j=0 bjh

j ln−j

ln
) ≤ Z(r,

n∑
j=0

bjh
j ln−j) and

by Theorem C.4.8 (resp. by Theorem C.4.8, resp. by Theorem C.5.7)
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Z(r,
n∑
j=0

bjh
j ln−j) ≤ max

0≤j≤n
Z(r, bjhj ln−j) ≤ nT (r, f) + o(T (r, f).

(resp.

Z(r,
n∑
j=0

bjh
j ln−j) ≤ max

0≤j≤n
Z(r, bjhj ln−j) ≤ nT (r, f) + o(T (r, f),

resp.

ZR(r,
n∑
j=0

bjh
j ln−j) ≤ max

0≤j≤n
ZR(r, bjhj ln−j) ≤ nTR(r, f) + o(TR(r, f)).

On the other hand N(r, P (f)) ≤ nN(r, f) + o(T (r, f)) (resp. N(r, P (f)) ≤
nN(r, f) + o(T (r, f)), resp. NR(r, P (f)) ≤ nNR(r, f) + o(TR(r, f))) hence
T (r, P (f)) ≤ nT (r, f)+o(T (r, f)) (resp.T (r, P (f)) ≤ nT (r, f)+o(T (r, f)), resp.
TR(r, P (f)) ≤ nTR(r, f) + o(TR(r, f))).

So, now it remains us to prove the reverse inequality. Indeed, suppose that
inequality does not hold. For simplicity we will first suppose that f lies either
in M(K) or in M(d(0, R−)).

Then there exists ρ ∈]0, 1[ and a sequence of intervals ]r′m, r
′′
m[ such that

limm→+∞ r′m = +∞ (resp. limm→+∞ r′m = R, resp. limm→+∞ r′m = +∞) and
that
T (r, P (f)) ≤ ρnT (r, f) ∀r ∈

⋃∞
m=1]r′m, r

′′
m[, Particularly, we have

N(r, P (f)) ≤ ρnT (r, f) ∀r ∈
⋃∞
m=1]r′m, r

′′
m[.

Let us write again P (f) in the form
∑n
j=0 cjf

j . We shall prove the following

(1) N(r, P (f) ≥ nN(r, f)− n
n∑
j=0

N(r, cj) = nN(r, f) + o(T (r, f)).

Indeed, let α be a pole of f and suppose it is not a pole of order ≥ −nωα(f)
of P (f). We can check that there must exist j ∈ {0, ..., n − 1} such that
−ωα(cj) ≥ −ωα(f). Consequently at α we have −ωα(P (f)) ≥ −nωα(f) −
maxj=0,...,n−1(−nωα(cj)) hence

N
(
r, f | ωα(P (f)) < nωα(f)

)
≤ n

n−1∑
j=0

N(r, cj),

hence (1) follows clearly.
Consequently, there exists q ∈ N such that nN(r, f) ≤ ρnT (r, f) ∀r ∈⋃∞

m=q]r
′
m, r

′′
m[ and therefore there exists s ∈ N and λ ∈]0, 1[ such that

(2) N(r,Bln) < nλT (r, f) ∀r ∈
∞⋃
m=s

]r′m, r
′′
m[,
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In particular, there exists t ∈ N such that

T (r, bjhj ln−j) < λT (r, bnhn) ∀j = 0, ..., n− 1,∀r ∈
∞⋃
m=t

]r′m, r
′′
m[,

Now, since T (r, bnhn) > T (r, bjhj ln−j) ∀j = 0, ..., n− 1,∀r ∈
⋃∞
m=t]r

′
m, r

′′
m[, we

notice that |
∑n
j=0 bjh

j ln−j |(r) = |bn|(r) ∀r ∈
⋃∞
m=t]r

′
m, r

′′
m[, hence

T (r,
n∑
j=0

bjh
j ln−j) = T (r, bnhn) ∀r ∈

∞⋃
m=t

]r′m, r
′′
m[.

Consequently, there exists σ ∈]ρ, 1[ and u ∈ N (u ≥ t) such that

(3) T (r,
n∑
j=0

bjh
j ln−j) > σnT (r, h) ∀r ∈

∞⋃
m=u

]r′m, r
′′
m[.

Now, by (2) we have T (r, h) = T (r, f) ∀r ∈
⋃∞
m=u]r′m, r

′′
m[ and

T (r, P (f)) = T (r,
n∑
j=0

bjh
j ln−j) ∀r ∈

∞⋃
m=u

]r′m, r
′′
m[,

hence finally, by (3) we obtain T (r, P (f)) > σnT (r, f) ∀r ∈
⋃∞
m=u]r′m, r

′′
m[, a

contradiction which proves the claim when G is a polynomial.
Similarly, replacing N by NR, T by TR, we can make the same reasoning

when f belongs to M(D).
We now consider the general case G(Y ) ∈Mf (K)(Y ), (resp.

G ∈ Mf (d(0, R−))(Y )). Without loss of generality, we may assume deg(G) =
deg(P ).

Since P and Q are relatively prime, by Bezout’s Theorem in a ring of polyno-
mials on a field, we can findA, B ∈Mf (K)[Y ], (resp. A, B ∈Mf (d(0, R−))[Y ])
such that AQ + PB = 1. Since deg(Q) ≤ deg(P ) of course deg(B) ≤ deg(A),

hence deg(
A

B
) = deg(A). Now,

T (r,
B(f)
A(f)

+
Q(f)
P (f)

) = T (r,
1

A(f)P (f)
) = T (r,A(f)P (f)) +O(1).

Consequently, by the Theorem already proven when G is a polynomial, we have

T (r,
B(f)
A(f)

+
Q(f)
P (f)

) = (deg(A) + deg(P ))T (r, f) + o(T (r, f))

and since deg(P ) = deg(G), actually we have

(4) T (r,
B(f)
A(f)

+
Q(f)
P (f)

) = (deg(A) + deg(G))T (r, f) + o(T (r, f)).
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Now, T (r,
B(f)
A(f)

+
Q(f)
P (f)

) ≤ T (r,
B(f)
A(f)

) + T (r,
Q(f)
P (f)

) + o(T (r, f) and by the first

inequality already proven above, we obtain

T (r,
B(f)
A(f)

+
Q(f)
P (f)

) ≤ deg(
B

A
)T (r, f) + T (r,

Q(f)
P (f)

) + o(T (r, f).

But since deg(B) ≤ deg(A), actually we have

T (r,
B(f)
A(f)

+
Q(f)
P (f)

) ≤ deg(A)T (r, f) + T (r,
Q(f)
P (f)

) + o(T (r, f)) i.e.

(5) T (r,
B(f)
A(f)

+
Q(f)
P (f)

) ≤ deg(A)T (r, f) + T (r,G(f)) + o(T (r, f)).

Now by (4) and (5) we can see that deg(G)T (r, f) ≤ T (r,G(f)) + o(T (r, f)).
Similarly, when f belongs toM(D) and G belongs toMf (D)(Y ), we can make
the same reasoning, as above. This completes the proof.

Theorem C.10.6: Let a ∈ K and r > 0. Let f ∈ M(K) \ K(x) (resp.
f ∈Mu(d(a,R−)), resp. f ∈Mc(D) ). Then, f is transcendental overMf (K)
(resp. over Mf (d(a,R−)), resp. over Mf (D)).

Proof. Suppose there exists a polynomial P (Y ) =
∑n
j=0 ajY

j ∈Mf (K)[Y ] 6= 0
such that P (f) = 0. If f belongs to Mu(d(a,R−)) we may obviously suppose
that a = 0. By Theorem C.10.5 we have T (r, anfn) = nT (r, f) + o(T (r, f))
whenever f belongs to M(K) \ K(x) or to Mf (d(0, R−)) and TR(r, anfn) =
nTR(r, f)+o(TR(r, f)) whenever f belongs toMc(K, whereas T (r,

∑n−1
j=0 ajf

j) =
(n− 1)T (r, f) + o(T (r, f)), a contradiction.

Corollary C.10.7: let a ∈ K and r > 0. Let f ∈ M(K) \ K(x) (resp. f ∈
Mu(d(a,R−)), resp. f ∈Mc(D). Then, f is transcendental over K(x).

A function h ∈Mb(d(a,R−)) is obviously small with respect to any function
f ∈Mu(d(a,R−)). So, we have the following corollary:

Corollary C.10.8: Let a ∈ K and r > 0 and let f ∈Mu(d(a,R−)). Then, f
is transcendental over Mb(d(a,R−)).

By Corollary C.1.23 we know that a meromorphic function f ∈ M(K) or
f ∈ M(d(0, R−)) admits at most one quasi-exceptional value. Here we will
generalize that statement.

Theorem C.10.9 : let a ∈ K and r > 0. Let f ∈ M(K) \ K(x), (resp.
f ∈ Mu(d(a,R−)), resp. f ∈ Mc(D)). There exists at most one function
g ∈Mf (K), (resp.
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g ∈Mf (d(a,R−)), resp. g ∈Mf (D)) such that f − g have finitely many zeros.
Moreover, if f belongs to A(K) \K[x] (resp. to Au(d(a,R−)), resp. to Ac(K))
then there exists no function g ∈Mf (K)\K(x), (resp. g ∈Mf (d(a,R−))) such
that f − g have finitely many zeros.

Proof. Concerning claims on Mu(d(a,R−)) we can obviously assume a = 0.
Suppose that there exist two distinct functions g1, g2 ∈Mf (K), (resp. g1, g2 ∈
Mf (d(0, R−))) such that f−gk has finitely many zeros. So, there exist P1, P2 ∈
K[x] and h1, h2 ∈ A(K) (resp. h1, h2 ∈ A(d(0, R−))) such that f − gk =
Pk
hk
, k = 1, 2 and hence we notice that

(1) T (r, f) = T (r,
Pk
hk

) + o(T (r, f)) = T (r, hk) + o(T (r, f)) k = 1, 2.

Consequently, putting g = g2 − g1, we have

P1

h1
=
P2

h2
+ g

and by Theorem C.10.1, g belongs to Mf (K) (resp. to Mf (d(0, R−))). There-
fore P1h2 − P2h1 = gh1h2 and hence

(2) T (r, P1h2 − P2h1) = T (r, gh1h2).

Now, by Theorem C.4.3 we have

T (r, P1h2−P2h1) ≤ max(T (r, P1h2), T (r, P2h1)) ≤ max(T (r, h1), T (r, h2))+o(T (r, f))

and hence by (1), we obtain

(3) T (r, P1h2 − P2h1) ≤ T (r, f) + o(T (r, f)).

On the other hand, by Theorem C.10.2, we have

T (r, gh1h2) = T (r, h1h2) + o(T (r, h1h2)) = 2T (r, f) + o(T (r, f)),

a contradiction to (3).
Now, if f belongs toMc(D) we can make the same reasoning with TR instead

of T .

Suppose now that f belongs to A(K) \K[x] and that there exists a function

w ∈ Mf (K) such that f − w has finitely many zeros. Set w =
l

t
where l and

t belong to Af (K) and have no common zeros. Thus, f − w =
tf − l
t

and
each zero of tf − l cannot be a zero of t hence is zero of f − w. Consequently,
since f − w has finitely many zeros, tf − l has finitely many zeros and hence
is a polynomial. But since l belongs to Af (K), when r is big enough we have
|f |(r) > |l|(r) and hence |tf |(r) > |l|(r), therefore |tf−l|(r) = |tf |(r). And since



Meromorphic functions and Nevanlinna Theory 323

f is transcendental, by Corollary B.13.23 for every fixed q ∈ N, |f |(r) > rq when
r is big enough. Similarly, |tf − l|(r) > rq when r is big enough. Consequently,
by Corollary B.13.23 tf − l is not a polynomial, which proves that w does not
exist.

Suppose now that f belongs to Au(d(0, R−)) and that there exists a function
w ∈ Mf (d(0, R−)) such that f − w has finitely many zeros. Without loss
of generality, we can assume that the field K is spherically complete because
both f and w have continuation to an algebraically closed spherically complete
extension of K where their zeros are the same as in K. Consequently, we can

write w =
l

t
where l and t have no common zeros. Now, the zeros of f − w are

those of tf − l, hence tf − l has finitely many zeros and hence, is bounded in
d(0, R−). But since w belongs to Mf (d(0, R−)), so does l and hence |tf |(r) >
|l|(r) when r tends to R. Consequently, |tf − l|(r) = |tf |(r) is not bounded in
d(0, R−), a contradiction proving again that w does not exist.

Suppose finally that f belongs to Ac(K). We can make the same raesoning
as in A(K) by replacing T by TR.

Theorem C.10.10 is known as Second Main Theorem on Three Small Func-
tions in p-adic analysis [66]. It holds as well as in complex analysis, where it
was showed first. Notice that this theorem was generalized to any finite set of
small functions by K. Yamanoi in complex analysis, through methods that have
no equivalent on a p-adic field [92]. However, Corollary C.4.22 provides us with
a kind of Second Main Theorem on q bounded functions, inside a disk.

Theorem C.10.10: Let f ∈ M(K) (resp. f ∈ Mu(d(0, R−)), resp. f ∈
Mc(D)) and let w1, w2, w3 ∈ Mf (K) (resp. w1, w2, w3 ∈ Mf (d(0, R−)), resp.
w1, w2, w3 ∈ Mf (D)) be pairwaise distinct. Then T (r, f) ≤

∑3
j=1 Z(r, f −

wj)+o(T (r, f)), resp T (r, f) ≤
∑3
j=1 Z(r, f−wj)+o(T (r, f)), resp. TR(r, f) ≤∑3

j=1 ZR(r, f − wj) + o(T (r, f)).

Proof. We will make the proof when f belongs to M(K) or to Mu(d(0, R−)).

Let φ(x) =
(f(x)− w1(x))(w2(x)− w3(x))
(f(x)− w3(x))(w2(x)− w1(x))

. By Theorem C.4.24 we have

(1) T (r, φ) ≤ Z(r, φ) + Z(r, φ− 1) +N(r, φ) +O(1).
On the other hand, we have T (r, f) ≤ T (r, f − wj) + T (r, wj) (j = 1, 2, 3),

hence T (r, f) ≤ T (r,
w3 − w1

f − w3
) + o(T (r, f)), thereby

T (r, f) ≤ T (r,
w3 − w1

f − w3
+ 1) + o(T (r, f)) = T (r,

f − w1

f − w3
) + o(T (r, f)).

Now, T (r,
w2 − w1

w2 − w3
) = o(T (r, f). Consequently, by writing

f − w1

f − w3
= φ

(w2 − w1

w2 − w3

)
we have T (r,

f − w1

f − w3
) ≤ T (r, φ) + T (r,

w2 − w1

w2 − w3
) ≤ T (r, φ) + o(T (r, f)) and fi-

nally T (r, f) ≤ T (r, φ) + o(T (r, f)). Thus, by (1) we obtain
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(2) T (r, f) ≤ Z(r, φ) + Z(r, φ− 1) +N(r, φ) + o(T (r, f)).

Now, we can check that

Z(r, φ) + Z(r, φ− 1) +N(r, φ) ≤
3∑
j=1

Z(r, f − wj) +
∑

1≤j<k≤3

Z(r, wk − wj) ≤

≤
3∑
j=1

Z(r, f − wj) + o(T (r, f)) which, by (2), completes the proof when f be-

longs to M(K) or to Mu(d(0, R−)). When f belongs to M(D we can make a
similar proof just by replacing T by TR and Z by ZR.

Theorem C.10.11: Let f ∈ M(K) (resp. f ∈ Mu(d(0, R−)), resp. f ∈
Mc(D) and let w1, w2 ∈Mf (K) (resp. w1, w2 ∈Mf (d(0, R−)), resp. w1, w2 ∈
Mf (D)) be distinct. Then T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + N(r, f) +
o(T (r, f)), resp. T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + N(r, f) + o(T (r, f)),
resp. TR(r, f) ≤ ZR(r, f − w1) + ZR(r, f − w2) +NR(r, f) + o(TR(r, f))).

Proof. Suppose first f ∈M(K) or f ∈Mu(d(0, R−)). Let g =
1
f
, hj =

1
wj
, j = 1, 2, h3 =

0. Clearly,

T (r, g) = T (r, f) +O(1), T (r, h) = T (r, wj), j = 1, 2,

so we can apply Theorem C.10.10 to g, h1, h2, h3. Thus we have: T (r, g) ≤
Z(r, g − h1) + Z(r, g − h2) + Z(r, g) + o(T (r, g)).

But we notice that Z(r, g − hj) = Z(r, f − wj) for j = 1, 2 and Z(r, g) =
N(r, f). Moreover, we know that o(T (r, g)) = o(T (r, f)). Consequently, the
claim is proved when w1w2 is not identically zero.

Now, suppose that w1 = 0. Let λ ∈ K∗, let l = f + λ and τj = uj + λ, (j =
1, 2, 3). Thus, we have T (r, l) = T (r, f)+O(1), T (r, τj) = T (r, wj)+O(1), (j =
1, 2), N(r, l) = N(r, f). By the claim already proven whenever w1w2 6= 0 we
may write T (r, l) ≤ Z(r, l − τ1) + Z(r, l − τ2) +N(r, l) + o(T (r, l))) hence
T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) +N(r, l) + o(T (r, f))).

Suppose now f ∈ M(D). By replacing T by TR, Z by ZR, N by NR, we
can check that the same reasoning applies.

Next, by setting g = f − w1 and w = w1 + w2, we can write Corollary
C.10.12:

Corollary C.10.12: Let g ∈ M(K) (resp. g ∈ Mu(d(0, R−)), resp. g ∈
Mc(D)) and let w ∈ Mg(K) (resp. w ∈ Mg(d(0, R−)), resp. w ∈ Mg(D)).
Then T (r, g) ≤ Z(r, g) + Z(r, g − w) + N(r, g) + o(T (r, g)), resp. T (r, g) ≤
Z(r, g)+Z(r, g−w)+N(r, g)+o(T (r, g)), resp. TR(r, g) ≤ ZR(r, g)+ZR(r, g−
w) +N(Rr, g) + o(TR(r, g))).
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Corollary C.10.13: Let f ∈ A(K) (resp. f ∈ Au(d(0, R−)), resp. f ∈
Ac(D)) and let w1, w2 ∈ Af (K) (resp. w1, w2 ∈ Af (d(0, R−)), resp. w1, w2 ∈
Af (D)) be distinct. Then T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + o(T (r, f)),
resp. T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + o(T (r, f))), resp. TR(r, f) ≤
ZR(r, f − w1) + ZR(r, f − w2) + o(TR(r, f))).

And similarly to Corollary C.10.12, we get Corollary C.10.14:

Corollary C.10.14: Let f ∈ A(K) (resp.
f ∈ Au(d(0, R−)), resp. f ∈ Ac(D) ) and let w ∈ Af (K) (resp. w ∈
Af (d(0, R−)), resp. w ∈ Af (D)). Then T (r, f) ≤ Z(r, f) + Z(r, f − w) +
o(T (r, f)), (resp. T (r, f) ≤ Z(r, f) + Z(r, f − w) + o(T (r, f)), resp. TR(r, f) ≤
ZR(r, f) + ZR(r, f − w) + o(TR(r, f))).

Here is now an application of that theory:

Theorem C.10.15: Let h, w ∈ Ab(d(a,R−)) and let m, n ∈ N∗ be such that
min(m,n) ≥ 2, max(m,n) ≥ 3. Then the functional equation

(E) (g(x))n = h(x)(f(x))m + w(x)

has no solution in Au(d(a,R−)).

Proof. Without loss of generality, we can obviously assume a = 0. Let F (x) =
g(x)n. Thanks to Corollary C.10.14 we can write

T (r, F ) ≤ Z(r, F ) + Z(r, F − w) + o(T (r, F )).

Now, it appears that Z(r, F ) ≤ 1
nZ(r, F ). Moreover, since h is bounded, Z(r, h)

is bounded, hence Z(r, hfm) ≤ Z(r, f) + Z(r, h) = Z(r, f) +O(1), hence

(1) Z(r, hfm) ≤ 1
m
Z(r, hfm) +O(1) =

1
m
Z(r, F ) +O(1).

On the other hand, Z(r, F ) = Z(r, F−w)+O(1) = T (r, F )+O(1). Consequently,
by (1), we can derive

T (r, F ) ≤ (
1
m

+
1
n

)T (r, F ) + o(T (r, F )).

Therefore we have
1
m

+
1
n
≥ 1, a contradiction to the hypothesis which implies

1
m

+
1
n
≤ 5

6
.

Theorem C.10.16: Let f ∈M(K)be transcendental (resp. f ∈Mu(d(0, R−)),
resp. f ∈Mc(D)) and let wj ∈Mf (K) (j = 1, ..., q)
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(resp. wj ∈ Mf (d(a,R−)), resp. wj ∈ Mf (D) ) be q distinct small functions
other than the constant ∞. Then

qT (r, f) ≤ 3
q∑
j=1

Z(r, f − wj) + o(T (r, f)),

(resp.

qT (r, f) ≤ 3
q∑
j=1

Z(r, f − wj) + o(T (r, f)),

resp.

qTR(r, f) ≤ 3
q∑
j=1

ZR(r, f − wj) + o(TR(r, f))).

Moreover, if f has finitely many poles in K (resp. in d(0, R−), resp. in D),
then

qT (r, f) ≤ 2
q∑
j=1

Z(r, f − wj) + o(T (r, f)),

(resp.

qT (r, f) ≤ 2
q∑
j=1

Z(r, f − wj) + o(T (r, f)),

resp.

qTR(r, f) ≤ 2
q∑
j=1

ZR(r, f − wj) + o(TR(r, f))).

Proof. Suppose first that f and wj , (j = 1, ..., q) belong to M(K) or to
M(d(0, R−)). By Theorem C.10.10, for every triplet (i, j, k) such that 1 ≤ i ≤
j ≤ k ≤ q, we can write

T (r, f) ≤ Z(r, f − wi) + Z(r, f − wj) + Z(r, f − wk) + o(T (r, f)).

The number of such inequalities is C3
q . Summing up, we obtain

(1)
C3
qT (r, f) ≤

∑
(i,j,k), 1≤i≤j≤k≤q

Z(r, f−wi)+Z(r, f−wj)+Z(r, f−wk)+o(T (r, f)).

In this sum, for each index i, the number of terms Z(r, f − wi) is clearly
C2
q−1. Consequently, by (1) we obtain

C3
qT (r, f) ≤ C2

q−1

q∑
i=1

Z(r, f − wi) + o(T (r, f))
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and hence
q

3
T (r, f) ≤

q∑
i=1

Z(r, f − wi) + o(T (r, f)).

Suppose now that f has finitely many poles. By Theorem C.10.11, for every
pair (i, j) such that 1 ≤ i ≤ j ≤ q, we have

T (r, f) ≤ Z(r, f − wi) + Z(r, f − wj) + o(T (r, f)).

The number of such inequalities is then C2
q . Summing up we now obtain

(2) C2
qT (r, f) ≤

∑
(i,j, 1≤i≤j≤q

Z(r, f − wi) + Z(r, f − wj) + o(T (r, f)).

In this sum, for each index i, the number of terms Z(r, f − wi) is clearly
C1
q−1 = q − 1. Consequently, by (1) we obtain

C2
qT (r, f) ≤ (q − 1)

q∑
i=1

Z(r, f − wi) + o(T (r, f))

and hence
q

2
T (r, f) ≤

q∑
i=1

Z(r, f − wi) + o(T (r, f)).

Now, if f and wj , (j = 1, ..., q) belong to M(D), we can make the same
reasoning with TR instead of T and ZR instead of Z.

Definition: Let f, g ∈ M(K) (resp. f, g ∈ Mu(d(a,R−)), resp. f, g ∈
Mc(D)). Then f and g will be to share a small function w ∈ M(K) (resp.
w ∈M(d(a,R−)), resp. w ∈M(D)) I. M. if f(x) = w(x) implies g(x) = w(x)
and if g(x) = w(x) implies f(x) = w(x).

Theorem C.10.17: Let f, g ∈M(K)be transcendental (resp. f, g ∈Mu(d(a,R−)),
resp. f, g ∈ Mc(D)) be distinct and share q distinct small functions I.M.
wj ∈Mf (K) ∩Mg(K) (j = 1, ..., q)
(resp. wj ∈Mf (d(a,R−)) ∩Mg(d(a,R−)) (j = 1, ..., q),
(resp. wj ∈Mf (D) ∩Mg(D) (j = 1, ..., q)), other than the constant ∞. Then

q∑
j=1

Z(r, f − wj) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g)).

Proof. Suppose that f and g belong toM(K), are distinct and share q distinct
small functions I.M. wj ∈Mf (K) ∩Mg(K) (j = 1, ..., q).
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Lat b be a zero of f − wi for a certain index i. Then it is also a zero of

g − wi. Suppose that b is counted several times in the sum
q∑
j=1

Z(r, f − wj),

which means that it is a zero of another function f − wh for a certain index
h 6= i. Then we have wi(b) = wh(b) and hence b is a zero of the function wi−wh
which belongs to Mf (K). Now, put Z̃(r, f − w1) = Z(r, f − w1) and for each
j > 1, let Z̃(r, f − wj) be the counting function of zeros of f − wj in the disk
d(0, r−) ignoring multiplicity and avoiding the zeros already counted as zeros

of f − wh for some h < j. Consider now the sum
q∑
j=1

Z̃(r, f − wj). Since the

functions wi − wj belong to Mf (K), clearly, we have

q∑
j=1

Z(r, f − wj) =
q∑
j=1

Z̃(r, fwj) = o(T (r, f))

.
It is clear, from the assumption, that f(x)−wj(x) = 0 implies g(x)−wj(x) =

0 and hence f(x)− g(x) = 0. Since f − g is not the identically zero function, it
follows that

q∑
j=1

Z(r, f − wj) ≤ Z(r, f − g).

Consequently,

q∑
j=1

Z(r, f − wj) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g)).

Now, if f and g belong toM(d(0, R−)) or toM(D), the proof is exactly the
same.

Theorem C.10.18: Let f, g ∈M(K) be transcendental (resp. f, g ∈Mu(d(a,R−)),
resp. f, g ∈ Mc(D ) be distinct and share 7 distinct small functions (other
than the constant ∞) I.M. wj ∈ Mf (K) ∩Mg(K) (j = 1, ..., 7) (resp. wj ∈
Mf (d(a,R−)) ∩Mg(d(a,R−)), resp. wj ∈ Mf (D) ∩Mg(D) (j = 1, ..., 7), ).
Then f = g.

Moreover, if f and g have finitely many poles and share 3 distinct small
functions (other than the constant ∞) I.M. then f = g.

Proof. We put M(r) = max(T (r, f), T (r, g)). Suppose that f and g are dis-
tinct and share q small function I.M. wj , (1 ≤ j ≤ q). By Theorem C.10.16, we
have

qT (r, f) ≤ 3
q∑
j=1

Z(r, f − wj) + o(T (r, f)).
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But thanks to Theorem C.10.17, we can derive

qT (r, f) ≤ 3T (r, f − g) + o(T (r, f))

and similarly
qT (r, g) ≤ 3T (r, f − g) + o(T (r, g))

hence

(1) qM(r) ≤ 3T (r, f − g) + o(M(r)).

By Theorem C.4.8, we can derive that

qM(r) ≤ 3(T (r, f) + T (r, g)) + o(M(r)))

and hence qM(r) ≤ 6M(r)+o(M(r)). That applies to the situation when f and
g belong to M(K) as well as when when f and g belong to Mu(d(0, R−)) and
when f and g belong toM(D), after replacing T by TR and Z by ZR. We have
a similar proff whenever f , g and the wj belong to M(d(0, R−)), or to M(D)
after replacing T by TR and Z by ZR. Consequently, it is impossible if q ≥ 7
and hence the first statement of Theorem C.10.18 is proved.

Suppose now that f and g have finitely many poles. By Theorems C.4.8,
Relation (2) gives us

qM(r) ≤ 2M(r) + o(M(r))

which is obviously absurd whenever q ≥ 3 and proves that f = g when f and g
belong toM(K) as well as when f and g belong toMu(d(0, R−)) or toMc(D),
after replacing T by TR and Z by ZR.

Corollary C.10.19: Let f, g ∈ A(K) be transcendental (resp. f, g ∈ Au(d(a,R−)),
resp. f, g ∈ Ac(D ) be distinct and share 3 distinct small functions (other
than the constant ∞) I.M. wj ∈ Af (K) ∩ Ag(K) (j = 1, 2, 3) (resp. wj ∈
Af (d(a,R−)) ∩ Ag(d(a,R−)), (j = 1, 2, 3), resp. wj ∈ Af (D) ∩ Ag(D) (j =
1, 2, 3)). Then f = g.
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[43] Escassut, A. Algèbres d’éléments analytiques au sens de Krasner,
C.R.A.S., Paris T. 270, pp. 758-761 (1970).
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De�nitions

Chapter A.1.
closure, adherence,
interior, opening,
value group, valuation group,
absolute value,
valuation ring, valuation ideal,
residue class, residue class field, residue characteristic,
dense valuation, discrete valuation, trivial valuation,
dense absolute value, discrete absolute value, trivial absolute value,
hole of a set,
infraconnected set, infraconnected component,
affinoid set
empty annulus of a set.

Chapter A.2.
filter thinner than another one
sequence thinner than a filter,
filter secant with a set, with another filter,
increasing distances sequence, decreasing distances sequence,
monotonous distances sequence,
equal distances sequence,
increasing filter of center a and diameter r,
decreasing filter of center a and diameter r,
decreasing filter with no center of diameter r, of canonical basis (Dn),
monotonous filter,
spherically complete field,
pierced monotonous filter,
circular filter of center a and diameter r,
peripheral of a bounded set
circular filter with no center, of diameter diameter r, of canonical basis (Dn),
large circular filter, punctual circular filter,
F-affinoid.

Chapter A.3.
Gauss norm.

Chapter A.4.
quasi-monic polynomial.

Chapter A.5.
p-adic absolute value.

Chapter A.6.
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Eisenstein polynomial,
uniformizer of an extension of Qp,
ramification index of an extension of Qp.

Chapter A.7.
principal ultrafilter,
incomplete ultrafilter,
immediate extension of an ultrametric field.

Chapter A.8.
transcendence order ≤ τ over Qp.
denominator of an algebraic number,
transcendence type ≤ τ in Cp,
infinite transcendence type.

Chapter B.2.
analytic element on D,
invertible element of a space H(D),
pole of order q of an element f ∈ H(D),
polynomial of poles of an element of H(D) in D \D,
residue of an element f ∈ H(D) at a pole a.

Chapter B.3.
bianalytic element from A onto B.

Chapter B.4.
punctual semi-norm

Chapter B.5.
radius of convergence,
entire function,
power series, Laurent series,
zero of multiplicity order q.

Chapter B.6.
f -hole, Mittag-Leffler term of f associated to a hole Tn,
principal term of f ,
Mittag-Leffler series of f on the infraconnected set D,
specific circular filter,
residue of an analytic element on a hole.

Chapter B.7.
polynomial of zeros of an analytic element on a subset A,
semi-invertible analytic element,
quasi-invertible analytic elements,
quasi-minorated analytic element.
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Chapter B.8.
analytic element vanishing along a filter F ,
analytic element properly vanishing along a filter F .

Chapter B.9.
piercing of a subset,
well pierced subset.

Chapter B.11.
analytic element strictly vanishing along a monotonous filter F ,
analytic element collapsing along a monotonous filter F .

Chapter B.12.
analytic set.

Chapter B.18.
divisor on K, divisor on a disk d(a, r−),
bounded divisor in a disk,
divisor of a function,
Euclidean division by a polynomial.

Chapter B.20.
index of an analytic element,
pure factor associated to a hole,
Motzkin factor in a hole,
Motzkin index,
f -supersequence,
Motzkin factorization,
principal factor.

Chapter B.21.
order of growth of an entire function,
cotype of growth of an entire function,

Chapter B.22.
type of growth of an entire function,
a function satisfies Hypothesis L.

Chapter B.24.
order of growth of a function in an open disk,
cotype of growth of a function in an open disk,
type of growth of a function in an open disk

Chapter C.1.
meromorphic function in K, in a disk d(a,R−),
pole of order s of a meromorphic function,



Definitions 341

divisor of a meromorphic function in K, in a disk d(a,R−),
divisor of the poles of f ,
exceptional value,
pseudo-exceptional value,
quasi-exceptional value.

Chapter C.2.
residue of a meromorphic function at a point a,
analytic element meromorphic in a hole,
singular part of f at b,
polynomial of the poles in a hole.

Chapter C.3.
meromorphic unction out of a hole
exceptional value, for a meromorrphic function out of a hole
pseudo-exceptional value,
quasi-exceptional value.

Chapter C.4.
counting function of zeros, counting multiplicity,
counting function of zeros, ignoring multiplicity,
counting function of poles, counting multiplicity,
counting function of polcs, ignoring multiplicity,
characteristic function Nevanlinna function of a meromorphic function.

Chapter C.5.
counting function of zeros, counting multiplicity in M(D),
counting function of zeros, ignoring multiplicit n M(D),
counting function of poles, counting multiplicity n M(D),
counting function of polcs, ignoring multiplicity, n M(D),
characteristic function Nevanlinna function of a meromorphic function n

M(D).

Chapter C.6.
function of uniqueness,
function of strong uniqueness,

Chapter C.7.
perfectly branched value,
totally branched value.

Chapter C.10.
small meromorphic function,
small analytic function,
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Notations

Chapter A.1.
N, Z, Q,RC
S,

◦
S

|x|, (x ∈ E)
|t|∞, (t ∈ R)
log, θ, v, Ψ
|E|
UE , ME , L
d(a, r)
d(a, r−)
C(a, r)
∆(a, r′, r′′)
Γ(a, r′, r′′)
δ(a,D)
δ(D,E)
diam(D)
codiam(D)
L̂
d̂(a, r)
d̂(a, r−))
Ĉ(a, r))
D̂
D̃
J (Λ)
E(Λ)
χ(D)

Chapter A.2.
CD(F)
BD(F)
diam(F)
Ĝ

Chapter A.3.
‖ . ‖
Φ(D), Φ0(D)
v(h, µ)
Ψ(h, µ)
ha(u)
Ψa(h, µ)
‖ . ‖0
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|f |(r), f ∈ K(x)
ϕF , ϕa,r
ϕa
ν+(f, µ), ν−(f, µ), ν(f, µ).
drf

dµ
,
dlf

dµ

Chapter A.4.
(g, h)

Chapter A.5.
irr(a, L)
N
|n|p
Ψp

Zp, Qp, Ωp, Cp, Fp

Chapter A.6.
us, rs,
As, Bs,
Fs, Gs,
Ws, W ,
H.

Chapter A.7.
K̂
d̂(a, r), d̂(a, r−)
Ĉ(a, r)

Chapter A.8.
S(τ)
Card(S)
|a| = maxj=1,...,n(|aj |∞)
s(a) = max(log(|a|,den(a))
Ω
T (α)

Chapter B.1.
UD
R(D), Rb(D), R0(D)
‖ . ‖D
Mult(A)
Mult(A, ‖ . ‖), Multm(A, ‖ . ‖), Mult1(A, ‖ . ‖)

Chapter B.2.
H(D), Hb(D), H0(D)
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Alg
res(f, a)

Chapter B.3.
Ξ(D′, D)

Chapter B.4.
Mult(H(D),UD)
D
ϕF , D

ϕa,r, ϕa, D
ϕ
D
,
D
ϕ
D
,
D
ϕ∞

J (F), J0(F), J (a),

Chapter B.5.
A(K), A(d(a, r−)), Ab(d(a, r−)), Au(d(a, r−)), A(K \ d(a, r)),
Ab(K \ d(a, r)), Au(K \ d(a, r)) A(Γ(a, r′, r′′)), Ab(Γ(a, r′, r′′))
|f |(r)
ν+(f, µ), ν−(f, µ), ν(f, µ)

Chapter B.6.
f0, fT
Ĥ(D̂)
res(f, T )
E◦∗

Chapter B.7.
ωα(f)

Chapter B.8.
Alg
f∗, f
f
J (a)
Condition A, Condition B

Chapter B.10.
λ(a)
Ψ(x), Ψ(f, µ), Ψa(f, µ)

Chapter B.13.
f<n>

Chapter B.15.
Qn(D), Q(D) Chapter B.16.

rq
Log, exp,
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Chapter B.18.
D(f)
T , |T |(r)

Chapter B.19.
ζ(q, s, r), τ(q, s, n)
TR

Chapter B.20.
m(h, T )
fT
q
√

1 + u

Chapter B.21.
ρ(f) for an entire function,
ζ(r, f), ξ(r, f)
ψ(f) for an entire function,

Chapter B.22.
σ(f), σ̃(f) for an entire function.

Chapter B.24.
ρ(f) for an analytic function inside a disk,
ζ(r, f), ξ(r, f)
ψ(f) for an analytic function inside a disk,
ζ(r, f) and θ(f) for an analytic function inside a disk,
M(K)
M(d(a, r−)), Mb(d(a, r−)), Mu(d(a, r−))
D(f)
ωα(f) (f meromorphic function)

Chapter C.2.
res(f, α) (f meromorphic function)

Chapter C.3.
Mc(D)

Chapter C.4.
Z(r, f), Z(r, f),
N(r, f), N(r, f)
T (r, f)

Chapter C.5.
ZR(r, f), ZR(r, f),
NR(r, f), NR(r, f)
TR(r, f)
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Chapter C.6.
g.c.d.(m,n)

Chapter C.10.
Mf (K), Mf (d(0, R−))),
Af (K), Af (d(0, R−)),
Ξ(h) , Υ(h),
Z(r, f | ′′f(x) satisfying Property P′′),
Z(r, f | ′′f(x) satisfying Property P′′),
N(r, f | ′′f(x) satisfying Property P′′),
N(r, f | ′′f(x) satisfying Property P′′).


