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Introduction

The theory of analytic and meromorphic functions is well known on the
field C. Consider now an algebraically closed ultrametric field that is complete
with respect to its ultrametric absolute value, such as the field C,, which is the
completion of the algebraic closure of Q, whose absolute value is the p-adic
absolute value. It is possible to make a theory of analytic and meromorphic
functions and this was done in the 20-th century, with new results recently
obtained. However, understanding the behaviour of an analytic function in a
domain of such a field K requires to know all particular properties of K which
are very different from those of the field C. Particularly C, is not spherically
complete, which means that certain decreasing sequences of disks may have an
empty intersection, though the field is complete...All constructions of fields are
made in the first Part A in order to work in a field the properties of which
are clearly known. Thus, the book is aimed at being autocontained in order to
provide readers all basic properties without looking at several other books.

Analytic elements where defined by Marc Krasner in order to make analytic
functions. Due to the absence of connected sets in an ultrametric field, we
defined infraconnected sets which make the biggest class of sets where analytic
elements have a coherent behaviour. Here we do not recall the theory of analytic
functions on quasi-connaected subsets, made by Marc Krasner, nor the more
general theory of analytic functions on infraconnected subsets made by Philippe
Robba but we will restrict ourself to the properties of analytic and meromorphic
functions on classical sets such as the whole field K, or a disk, or an annulus and
the complement of a disk and we will study many properties of these functions,
such as the growth order for analytic functions and overall the Nevanlinna theory
for meromorphic functions, in the whole field K made by Abdelbaki Boutabaa
and this inside a disk and finally in the complement of an open disk. We can then
obtain many applications on value sharing, parametrization and small functions.

All properties of analytic functions or meromorphic functions are based on
the properties of analytic elements inside disks and annuli, with sometimes the
use of the famous Mittag-Leffler Theorem for analytic elements on an infracon-
nected set, due to Marc Krasner and also the factorization of analytic elements
on an infraconnected set due to Elhanan Motzkin.

Problems linked to exponentials are well known in complex analysis. Similar
problems may be considered in an ultrametric field: Hermite-Lindeman’s The-
orem and transcendence of one among a few eponentials, for instance. Most of
proofs require specific ultrametric methodes. Here we give an original proof of
Hermite-Lindeman’s Theorem in an ultrametric field which applies not only to
C, but also the Levi-Civita field.

Given an open disk of center 0 and diameter R and a sequence (an, Gn)nen
with HETOO lan| = R, |an| < |ant1| and ¢, € N, the problem to construct an

anaytic function admitting each a,, as a zero of order ¢, was solved by Michel
Lazard in a spherically complete field. The construction is a very big work
which is recalled here.
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The order of growth for entire functions is recalled with all relations to the
type and the cotype of growth. Next, a study is made on the order of growth
and the type and the cotype of growth for an analytic function inside an open
disk.

The p-adic Nevanlinna theory is constructed, in the whole field and inside
an open disk, but also in the complement of a hole, with the help of Motzkin’s
factors.

Branched values are studied in connection with the order of growth for the
numerator and the denominator.

The zeros of meromorphic functions and their derivatives are thoroughly
examined and are used to study the Hayman conjecture, in the p-adic context.
The case of f/ f? was only solved in 2013 in a p-adic field and requires here many
intermediate results, some of them due to Jean-Paul Bézsivin.

Concerning small functions in complex analysis, a famous theorem due to
K. Yamanoi is well known and unfortunately we don’t have an equivalent in
p-adic analysis. However, we present here a kind of theorem providing us with
an inequality that is not as good as Yamanoi’s inequality in complex analysis
but lets us obtain some new results in problems on sharing small functions.
For instance, two meromorphic functions sharing 7 small functions (ignoring
multiplicity) are equal; that applies to analytic functions: analytic functions
sharing 3 small functions (ignoring multiplicity) are equal.

As previously remarked, the situation in fields with residue characteristic
zero particularly involves Levi-Civita fields and which get an increasing impor-
tance. When results require a specific statement, that is mentioned, particularly
in Chapters B.16 and B.17.
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A. Ultrametric fields

A.1. Basic definitions and properties of ultrametric fields

In this first chapter we will recall basic definitions and properties on ultra-
metric fields: ultrametric absolute values, valuation rings and residue fields. We
must define holes of a subset and infraconnected subsets that are essential for
the behaviour of analytic functions (certain authors improperly call such sets
”connected sets” which makes no sens in topology since there are no connected
sets except singletons in an ultrametric field). A major interest of the class of
infraconnected sets is that it is the biggest class of sets in an ultrametric com-
plete algebraically closed field where the famous Krasner Mittag-Leffler theorem
applies.

Definitions and notations: Throughout the book, we denote by N the set
of integers > 0, by Z the ring of relative integers, by Q the field of rational
numbers, by R the field of real numbers and by C the field of complex numbers.

Given a topological space T and a subset S of T', we denote by S its closure

(also called adherence) and by S its interior (also called opening).

Let E be a field provided with an absolute value | . | and let log be a real
logarithm function of basis 8 > 1. We call valuation associated to that absolute
value the mapping v from E to R defined as v(z) = —log|z| and here, we set
U(x) =log|z| and |E| = {|z| | = € E}. If a set F' contains the zero of a ring,
we denote by F* the set F'\ {0}. An absolute value is said to be trivial if
|z =1Vz e EN\ {0}

Throughout the book, we will denote by IL a field complete with respect
to a non-trivial ultrametric absolute value and by K an algebraically closed
field complete with respect to a non-trivial ultrametric absolute value. We will
denote by | . |« the archimedean absolute value defined on R.

Lemma A.1.1: Let E be a field provided with an ultrametric absolute value
| . |. The completion of E with respect to that absolute value is provided with an
ultrametric absolute value which continues that of E. The set {|x| | x € E*} is
a subgroup of the multiplicative group R7 .

Definition: Given a field E provided with an ultrametric absolute value | . |,
the multiplicative group {|z| | z € E*} is called the value group of E and the
additive group {v(z) | z € E} is called valuation group of E.

Similarly, the set {¥(z) | x € E*} is a subgroup of R called valuation group
of E.

The field E is said to have discrete valuation or to have discrete absolute value
if its valuation group is a discrete subgroup of R and hence is isomorphic to Z.
Else, the valuation group is dense in R and E is said to have dense valuation or
to have a dense absolute value.
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Lemma A.1.2 is classical and proven in the same way no matter what the
absolute value of E.

Lemma A.1.2: Let E be a field provided with two absolute values whose as-
sociated valuations are v and w, respectively. They are equivalent if and only if
there exists r > 0 such that w(z) = rv(x) whenever x € E.

Proof. If such a r exists, the two absolute values are seen to be equivalent.

Reciprocally, we assume them to be equivalent and take a € E such that v(a) >

0. It is seen that w(a) > 0. On the other hand, for all z € E and for all

m,n € N, we have v(x—) > 0 if and only if w(z—) > 0. Therefore, we see that
a™ a”

v(z)  n . ) w(zx)
——= > — is equivalent to

v(a) = m w(a)
M = w(z) whenever z € E and therefore w(z) = w(a). O

v(a w(a) v(x) v(a)

> —. Then, since Q is dense in R, we have
m

Notations: The set of the x € E such that |z| < 1 will be denoted by Ug and
the set of the x € E such that |z| < 1 will be denoted by Mg.

Then Lemma A.1.3 is immediate:

Lemma A.1.3: Ug is a local subring of E whose mazimal ideal is Mg.

Definitions and notations: Henceforth Uy is called the valuation ring of E.

The maximal ideal Mg of Ug is called the valuation ideal and the field £ = %
E

is called the residue class field of E. For any a € E, the residue class of a will

be denoted by @.

The characteristic of £ is named the residue characteristic of E and will be

denoted by p.

Lemma A.1.4: Let F be a subfield of E, let £ (resp. F) be the residue class
field of B (resp. of F'). Then F is a subfield of £. If E is algebraically closed
and if its valuation is not trivial, it is dense.

Proof. The first statement is immediate. Next, given « € E such that 0 < |a| <

1 and 8 € E such that $? = a® we have v(f3) = gv(oz) whenever s € N* and
s

q € 7. O

Lemma A.1.5: Let V be a IL-vector space of finite dimension provided with
two norms. Then the two norms are equivalent.

Proof. Let || . || and || . || be the two norms on V. We proceed by induction on
the dimension of V' and assume the equivalence true for subspaces of dimension
n < q. Let V have dimension g. Let ey, ...e; be a base of V. Let us suppose that
the two norms are not equivalent on V. Then there exists a sequence (up)nen
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q
of the form u, = Zaj_,nej, with [Ju,| > 1, such that lim |lu,|" = 0. Let
— n—o00
j=
S be the subspace of V' generated by {e1,...,eq—1}. For every n € N, we put

q—1
Un = E Ajn€j-
j=1

First, we suppose that
(1) lim |agn| =0.
n—oo
Since lim |u,||" =0, we have lim ||v,||" = 0. By hypothesis, the restrictions
n—00 n—oo
of the two norms to S are equivalent, hence we have lim |jv,|| = 0. But since
n—oo

|lun|l > 1 for all n € N, this contradicts (1).

Now, since (1) is not true, there exists a subsequence of the sequence (|ag n|)nen
that admits a strictly positive lower bound and therefore, without loss of gen-
erality, we can clearly assume that there exists r > 0 such that |a,, | > r for all

U
n € N. Let (x,)nen be the sequence defined as x,, = ——. It is seen that

agn
(2)  lim ||z,] =0.
n—oo

The two norms || . || and || . ||" are equivalent on S and they both are equivalent
qg—1

1 o — ) . .

to the product norm | . || defined as ||Z1 bje;|| | Jnax |bj|. Since IL is
§=

complete, S is complete with respect to || . ||, hence S is closed in V with

respect to the two norms || . || and || . ||’. Hence by (2) e, belongs to S, which

is absurd and finishes the proof. O

Theorem A.1.6: Let F be an algebraic extension of 1L, provided with two
absolute values extending the one IL. These absolute values are equal.

Proof. Let v, w be the valuations associated to these absolute values. Let a € F'.
By Lemma A.1.5, the two absolute values are equivalent on IL[a]. Hence by
lemma A.1.2, there exists r > 0 such that w(z) = rv(z) whenever z € IL[al.
But since v(z) = w(z) whenever = € IL and since there exists u € IL such that
v(u) # 0, we have r = 1. O

Lemma A.1.7:  Let A be a IL-algebra. Let ¢ be a semi-norm of I-algebra
satisfying ¢p(z™) = (¢(x))™ Vo € A. Then ¢ is ultrametric.

Proof. Let a,b € A satisfy ¢(a) > p(b). We just have to show that ¢(a + b) <
n

@(a). Obviously we have ¢((a +b)") = QS(Z Cka*b""). For each k = 0,..n
k=

we have G(CHak ™) = [CHo(akb") < () 6(8)"* < o(a)" hence ¢((a +

b)™) < (n+1)¢(a)™ and therefore ¢p(a+b) < /n+ 1 ¢(a) for all n € N*. Finally

we obtain ¢(a + b) < ¢(a). O
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The most classical example of an ultrametric complete algebraically closed
field is the field C, that will be described later.

Notations: Consider the field E provided with an ultrametric absolute value.
Let a € E and let r € Ry. We denote by d(a,r) the disk {z € E| |z —a|] <7},
by d(a,r™) the disk {z € E| |[rt—a| < r} and we call circle of center a, of radius
r the set C(a,r) = d(a,r) \ d(a,r™).

Given 71 and 72 such that 0 < r; < ro we denote by I'(a, r1,72) the annulus
{r € E| r1 < |z —a] < re} and by A(a,r1,r2) the annulus {x € E| r; <
|z —al < 7o}

We know that if b € d(a,r) then d(b,r) = d(a,r) . In the same way if
b € d(a,r™) then d(b,r~) = d(a,r~). Moreover given two disks 7' and T” such
that TNT" # () then either T C T" or T" C T.

We denote by ¢ the distance defined on E by d(a,b) = |a —b|. Given a € E
and a subset D of E, we set 6(a, D) = inf{|x —a| | z € D} and given two subsets
D, Fof E, weset §(D,F)=inf{lx —y| |z € D, y € F}.

We set diam(D) = sup{|z —y| | |x € D,y € D} and diam(D) is named the
diameter of D.

Similarly, we set codiam(D) = sup{|z — y| |z € D,y ¢ D} and codiam(D)
is named the codiameter of D.

Of course the following three statements are seen to be equivalent :

i) d(a,r) = d(a,r™)

ii) C(a,r) =10

iii)ré¢| E|

Further, the disks d(b,7~) included in C(a,r) (resp. in d(a,r)) are the disks
d(b,r™) such that b € C(a,r) (resp. in d(a,r)). They are called the classes of
C(a,r) (resp. of d(a,r)).

Henceforth D will denote a subset of the field IL .
The closure of D (also called adherence of D) is denoted by D and the

interior of D (also called opening of D) is denoted by D .

Given a point a € L we put 6(a, D) = inf{|x — a| |x € D}. Then é(a, D) is
named the distance of a to D.

Given two subsets D, D’ of L we put §(D,D’) = inf{|z—y| |z € D, uw € D'}.
Then §(D, D’) is called the distance between D and D’.

We will denote by IL an extension of Il provided with an absolute value that
extends that of IL. Given a € IL, r > 0, d(a,r) (resp. d(a,r~)) will denote the
disk {z € IL| |z —a| <7} (resp. {z € L] |z —a| <r}).

Let D be a subset of IL, of diameter R € R (resp. +00), whose holes form
a family (d(ai,r;))ieN. Let a € D. We will denote by D the set d(a, R) \
(Udta, 7)) D\ D)) esp. L\ (| dlas, ).

iel

iel
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Lemma A.1.8: Letd(a,r), d(b,s) be disks such that d(a,r)Nd(b, s) # O with
r <s. Then d(a,r) C d(b,s).

Let us also notice the following basic lemma:

Lemma A.1.9: Suppose that the residue class field € of the field E is finite,
of cardinal q. Then for every disk d(a,r) with a € E and r € |E|, admits only q
classes.

Lemma A.1.10: 15\5 admits a unique partition of the form (T;);er, whereas
each T; is a disk of the form d(a;,r; ) with r; = §(a;, D).

Proof. For every a € D\D, let r(a) = 6(a, D). Let o and 8 be two points in D\ D
such that | 6—a/| < (). It is easily seen that for every « € D, we have |[z—f| =
|z—a |, and then the family of the disks T'(at) = d(c, 7(2) ™) (o € D\ D) makes
a partition of D \ D because given o and g € D\ D , either |a — 8] < r(a)
and then T'(«) = T(0), or |« — 8] > r(«) and then |a — 8| > r(5) hence
T(a)NT(B) =0. O

Definition and notation: Such disks d(a,,r; ) are called the holes of D. If
D is bounded of diameter R we denote by D the disk d(a, R) for any a € D. If
D is not bounded we put D = IL.

Example 1 : The holes of a disk d(a,r™), with » € | IL |, are the classes of
C(a,r).

Example 2 : The only one hole of IL'\ d(0,17) is d(0,17).

Example 3 : The holes of IL \ d(0, 1) are the disks d(a,17) with a € d(0, 1).

Definitions: D is said to be infraconnected [44], [50], [58] if for every a € D,
the mapping I, from D to R, defined by I,(z) = |x — a| has an image whose
closure in R is an interval. In other words, D is not infraconnected if and only
if there exist @ and b € D and an annulus I'(a,r1,72) with 0 < 71 < 19 < |a —b|
such that T'(a,r1,72) N D = 0.

Lemma A.1.11 is obvious:

Lemma A.1.11:  If D is infraconnected of diameter R € R (resp. +00) then
I,(D) = [0, R] (resp. 14(D) = [0, +o00[ ).

The following Lemma A.1.12 gives a point of view from a hole of D.

Lemma A.1.12:  Let D be infraconnected and let o belong to a hole T of
diameter p. The closure of the set {|x — a| |x € D} is an interval whose lower
bound is p.
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Proof. We just have to show that for every r and ' such that p < r <7’ <
diam(D), there exists 3 € D such that r < |f—a| < r’. By definition of the holes
there exists b € D such that |«—b| < r and then, since D is infraconnected, there
exists 3 € D such that r < |b— 3] < r’. But it is seen that | —a| =|b—8|. O

Given two infraconnected sets A and B we may prove AU B to be infracon-
nected in the following two hypothesis (Th. A.1.13 and A.1.15).

Theorem A.1.13: Let A and B be two infraconnected sets such that ANB #
(). Then AU B is infraconnected.

Proof. If A and B are not bounded, the statement is obvious because for every
a € A, I,(A) = Ry and for every a € B we have I,(B) = Ry . Now we
may assume A to be bounded, of diameter R, while B has diameter R’ > R
(resp. is not bounded). Then A U B has diameter R’ (resp. is not bounded).
Let c€ AN B, let a € AU B and let us show that I,(AU B) = [0, R'] (resp.
0, +o0).

For convenience we first assume B to be bounded. Since ¢ € ANDB we see that
|x—a| < max(Jx—c|,|c—al|) < R’ whenever x € AUB hence I,(AU B) C [0, R’].
Hence we just have to show that I,(AU B) D [0, R']. Obviously I,(AUB) =
I,(A)UI,(B) = [0,R] U I,(B). Hence we have to show that I,(B) D [R, R'].
But when x € B with | —a| > R, we see that |z — a] = |z — ¢| (because
|c — a| < R) hence I,(B)N|R,R'| = I.(B)N|R, R'] and finally I,(B) D [R, R/
because I.(B) D [R, R'].

When B is not bounded, in the same way it is seen that I,(A U B) = [0, +o0].
This finishes showing that A U B is infraconnected. O

Corollary A.1.14: The relation R defined by xRy if there exists an infra-
connected subset of D that contains x and y, is an equivalence relation.

Proof. R is obviously reflexive and symmetric. It is transitive by Theorem
A.1.13. O

Definition: The equivalence classes with respect to this relation are called the
infraconnected componants.

Examples : 1) d(0,17)Ud(1,17) is infraconnected. Its holes are the disks
d(a,17) with |a| = |a — 1] = 1.

2) Let r €]0,1[ and let D = d(0,17)Ud(1,r) . Then D is not infraconnected,
its infraconnected components are d(0,17) and d(1,7). The holes of D are
the disks d(a,17) with |a| = |a — 1| = 1 and the disks d(«, |o — 1|7) with
r<la—1]<1.

Theorem A.1.15: Let A and B be infraconnected sets such that A = B.
Then AU B is infraconnected.
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Proof. Obviously AU B = A. If A is bounded let A = d(a, R) and otherwise let
A = L. First let us assume A to be bounded. For a € A, the set {|z—a| | z € A}
is dense in [0, R] hence so is the set {|x —a | | * € AU B}. In the same way B
plays the same role hence this still holds for ¢ € B. Finally if A is not bounded
we just replace [0, R] by [0, +oo[. That finishes proving Theorem A.1.15. O

Definition: An infraconnected subset D of L is said to be affinoid if it is of

q

the form d(a, R) \ U d(b,r, ) with R and rj, € |IL| Vk. A subset D of L is said
k=1

to be affinoid if it is a finite union of infraconnected affinoid subsets.

Proposition A.1.16:  Let D1, D5 be two infraconnected affinoid subsets of
IL such that D1 N Dy # 0 and set D = Dy U Dy and E = Dy N Dy._Then both
D and E are infraconnected affinoid. Moreover, D is either D1 or Dy and each
hole of D is either a hole of D1 or a hole of Ds.

Proof. By Theorem A.1.13 D is infraconnected. Consider now Dy, of the form
d(a,r)\ (U2 d(a;,r;)) and Dy is of the form d(b, s) \ (Uf=,d(b;,s; )). Suppose
for instance r < s and let ¢ € D1 N Dy. Then we can check that

B = d(e,n)\ (UL (ai,r7) U (Uyd(bis 7)) )

which is an infraconnected affinoid again. Since D1N Dy # @, we have 51 ﬁﬁ; =+
(), hence D is either Dy or Ds, hence diam(D) € |IL|. Next, since the holes of
both sets are in finite number, each hole of D is either a hole of D; or a hole
of D5, so each hole of D has a diameter in |IL| and of course they are in finite
number. O

Definition: We will call empty annulus of D an annulus I'(a,r1,7r2) such that
i) rn = sup{|lr—a|l |zeD,|r—al<ry}
ii) ro = inf{|r—a|] |x€D,|z—a|>mr}
The set d(a,r1) N D will be denoted by Zp(T'(a,r1,72)) while the set (IL \
d(a,ry)) N D will be denoted by Ep(I'(a,r1,72)). When there is no risk of
confusion about the set D we will just write Z(I'(a, r1,72)), (resp. £(I'(a,r1,72))
), instead of Zp(T'(a,r1,72)), (resp. Ep(T(a,r1,72)) ).

Remark 1: By definition, D is not infraconnected if and only if it admits an
empty annulus.
Remark 2: By definition {Z(I'(a,r1,72)), (T (a,r1,72))} is a partition of D.

Examples: Let r €]0,1[, let D = d(0,7) Ud(1,17) and let D’ = d(0,7~) U
d(1,r). Then I'(0,r,1) is an empty annulus of D and also of D’. In the same
way I'(1,7,1) is also an empty annulus of D’.
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Notations: Let X' (D) be the set of the empty annuli of D. Given A; and
Ay € X(D), it is easily seen that Z(A1) C Z(Az) is equivalent to £(A1) D E(A2).
We will denote by < the relation defined on X'(D) by A1 < Ag if Z(A1) C Z(A9)
and we set A < Ay if A; < Ay and Ay 7é As.

The following Lemmas A.1.17 and A.1.18 are easily seen.

Lemma A.1.17:  The relation < is a relation of order on X(D). Let A1 and
Ao be two empty annuli of D. The following assertions are equivalent :

i) Ay and As are not comparable with respect to the order <

i) Z(A1) C €(A2)

i)  Z(A2) C E(A)

iV) I(Al) ﬂI(AQ) = @

Lemma A.1.18: Let A € X(D) and let x € Z(A) (resp. © € E(A)). The
infraconnected component of  is included in Z(A) (resp. in E(A)). If N € X(D)
is such that A < A then TZ(A') N E(A) # 0.

The following Lemma A.1.19 is a direct consequence of Lemmas A.1.17 and
A.1.18.

Lemma A.1.19: Let © be an empty annulus of D. The family of the empty
annuli A > S is totally ordered.

Proof. Let A; and Ay € X (D) satisty Ay > ©,Ay > 0. Then Z(A;) NZ(A2) D
Z(©) # 0 hence Z(A1) is not included in £(A3) hence A; and As are comparable.
O

Lemma A.1.20: Let © be a minimal element of X (D) for the order <. Then
Z(©) is an infraconnected component of D.

Proof. Suppose that Z(0) is not infraconnected. By definition Z(©) is of the
form d(a, R) N D hence there exists an empty annulus A = I'(a, 71, 72) of Z(O)
with @ € d(a, R),r1 <72 < R and some § € Z(0) such that ro < |a — ] < R.
Since A C d(a, R) we see that AN D = ) hence A is an empty annulus of D and
therefore A < ©. This ends the proof of Lemma A.1.20. O

Theorem A.1.21: D has finitely many infraconnected components if and
only if it has finitely many empty annuli. Moreover if so does D then one of
the infraconnected components is Ay = ﬂ E(O) while the others are of the
ocx (D)
form A; = T(A;) m( N 5(@)), with A; € X(D).
O<A,;
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Proof. We will first assume X' (D) to be finite and we will prove that the infra-
connected components are in the form A;, above, so that there will be finitely
many ones.
Let Aq,...,A,, be these empty annuli of D and for every ¢ = 0,....,n , let
A; be the subsets of D defined from Aq,...,A,, as above. For every x € D, for
every i = 1,...,n , either z € Z(A;) or x € E(A;) hence it is easily seen that x
n

belongs to one of the A;, hence D = UAi' We check that A;NA; = () whenever
i=0

i # j. First we assume ¢ = 0,5 > 0. Hence Ay C £(A;) while A; C Z(A;) hence

ApN A; = 0. Now we suppose i > 0,5 > 0. If A; < A; then a; C £(A;) while

A; C Z(A;) and then A, N Aj = (. Hence we may assume that A; and Ay are

not comparable and then by Lemma A.1.17 we have Z(A;) NZ(A;) = () hence

A; NAj = 0. Consequently, the family (A;)o<i<, makes a partition of D.

Now we will show that each A; is infraconnected. Suppose that a certain Ay
is not infraconnected for some h > 0 (resp. h = 0). Then it admits an empty
annulus A = T'(a,r1,72). First we notice that if h = 0 then A, > A because
both a,b are centers of A. Now, if h = 0 (resp. h > 0), let © € X(D) (resp.
let © € X(D) be such that © < Ay). Since both a,b belong to £(©), it is seen
that all A is included in £(0©) and therefore is included in Aj. This contradicts
the hypothesis and finishes proving that Ay is infraconnected.

Next we check that each A; is maximal in the set of the infraconnected
subsets of D. Indeed let B be a subset of D that strictly contains a certain Ay,
and let @ € B\ Ay. If h = 0, there exists © € X(D) such that a € Z(©), but
Ap C £(0) and therefore © is included in an empty annulus of B. If h > 0,
either a belongs to £(Ap) whereas Ay, C Z(A) and then Ay is included in an
empty annulus of B, or there exists © € X (D) satisfying © < Ay, and a € Z(0),
but then A, C Z(O) and therefore © is included in an empty annulus of B.
Thus in each case B is not infraconnected and this finishes showing that each
A; is maximal in the set of the infraconnected subsets of D. As a consequence,
the infraconnected components of D are the A;.

Now conversely, we assume D to have infinitely many empty annuli. First let
us suppose that D has a sequence of empty annuli (A, )nen such that A, < A4
(resp. A, > Apy1) for all n € N. By Lemma A.1.15 | for every n € N there
exists x, € E(An) N Z(Apy1) (vesp. z, € Z(A,) N E(An41)) and then the
infraconnected component X,, of x, satisfies X,, C E(An) N Z(An41) (resp.
X, C Z(A,) NE(Apt1)) hence X, N X, = 0 for all n # m , hence D has
infinitely many infraconnected components.

Finally we may assume that every totally ordered set of empty annuli is
finite. Hence there exists a sequence of empty annuli A, that are minimal
elements for the order < on X(D) and then Z(A,) N Z(A,,) = 0 whenever
n # m. By Lemma A.1.19 , Z(A,) is an infraconnected component D,, of D
such that D, N D,, = @ whenever n # m. This finishes proving that D has
infinitely many infraconnected components and this ends the proof. O
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A.2. Monotonous and circular filters

Monotonous and circular filters are essential on an ultrametric field, mainly
because for any rational function, its absolute value admits a limit along each
circular filter [50], [58], [61] and circular filters are the least thin filters having
this property. Most of properties of analytic functions of all kinds derive from
that property of circular filters. Certain authors call ”generic disk” a notion
which is not clearly defined but actually represents a circular filter... We will
see that, given a bounded sequence, there exists a subsequence thinner than a
circular filter.

For certain problems, we can reduce ourselves to consider monotonous filters
instead of circular filters. Monotonous filters are linked to sequences (a,) such
that |an4+1—ap| is strictly monotonous. Moreover, decreasing filters let us define
spherically complete fields.

Definitions:  Let J be set. A filter F on J is said to be thinner than a filter
G if every element of G belongs to F. In such a case, G is said to be less thin
than F. Two filters F, G are said to be secant if for all A € F, B € G we have
ANB#0.

A filter F is said to be secant to a subset B C Jif {FNB | F € F}is a
filter.

A sequence (uy)nen in J is said to be thinner than a filter G if so is the filter
defined by the sets A, = {u,|n > ¢} (¢ € N). In such a case, G is said to be less
thin than the sequence (uy)nen.

A sequence (up)nen in IL will be said to be an increasing distances sequence
(resp. a decreasing distances sequence) if the sequence |u,1 — uy| is strictly
increasing (resp. decreasing) and has a limit ¢ € R .

The sequence (uy,)nen Will be said to be a monotonous distances sequence if
it is either an increasing distances sequence or a decreasing distances sequence.

A sequence (uy,)nen in IL will be said to be an equal distances sequence if
[tn, — U | = |m — ug| whenever n,m,q € N such that n # m # q.

Theorem A.2.1: Let E be a field provided with an ultrametric absolute value.
Let (un)nen be a bounded sequence in E. Fither we may extract a Cauchy
subsequence or we may extract a monotonous distances subsequence or we may
extract an equal distances subsequence from the sequence (uy)nen. Further, if
the absolute value of E is discrete, there is no monotonous distances sequence
in E. And if the residue class field of E is finite, there is no equal distances
sequence in E.

Proof. Suppose Theorem A.2.1 to be false. For every ¢ € N the set of the circles
C(ugq, ) that contain some u, is then finite.

Suppose that we have already defined integers ny for ¢ <t satisfying
(1) Jun, = Ung_y| < |tn, , = Un, | for2<q<t
and such that  d(upn,,|tn, — Un,_,|” ) contains infinitely many terms of the
sequence (u,). For every ¢ = 2,...,t, let ry = |u,, — Ny, _,|. Obviously, at least
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one of the circles C(up,,r), with r < r; contains infinitely many terms of the
sequence (uy)nen. Let C(up,,r:4+1) be such a circle. It is seen that at least
one class A of this circle contains infinitely many terms of the sequence because
otherwise we would have a sequence of classes (A;) each one containing at
least one term w,(;) and then they should satisfy [u,(jy —ur¢y| = r¢11 Whenever
1 # j. Hence the sequence (uy, )nen should admit an equal distances subsequence.
Then we may pick up one term u,,, , in A and we have constructed the finite
subsequence up to the rank ¢ + 1, satisfying the properties mentionned above.
In the same way we may initiate the induction by defining no from arbitrary
ng, ni. The sequence (uy,)ten is then defined for every ¢ € N and satisfies (1)
for t > 1. Let ¢ = tlirgo\unt — Up,,|. If £ = 0 the subsequence (u,)icn is a

Cauchy subsequence. If ¢ > 0 this is a decreasing distances subsequence. Thus
we have proven that we can extract a sequence which is either a convergent
sequence, or a monotonous distances sequence, or an equal distances sequence.

Now, suppose that the absolute value is discrete and suppose that we have
exctracted a monotonous distances sequences (b, )men form the sequence (uy,).
Then the strictly monotonous sequence |b,+1 — by,| must tend to 0, a con-
tradiction. Finally, suppose that the residue class field £ of E is finite and
suppose that we have extracted an equal distances sequences (b, )men. So,
|bo — b | = |bo — by | = by, — by | Ym # n, m # 0,n # 0. Let ¢ be the cardinal of
E. Then, by Lemma A.1.9 the set of terms b, is at most ¢, a contradiction. [

Henceforth, throughout the chapter, the field IL is supposed to have a dense
valuation and D is an infraconnected subset of IL

Definitions and notation : Leta € D and R € R* be such that I'(a,r, R) N
D # () whenever r €]0, R[ (vesp. I'(a,R,r) N D # () whenever r > R). We
call an increasing (resp. a decreasing) filter of center a and diameter R, on
D the filter F on D that admits for basis the family of sets I'(a,r, R) N D
(resp. I'(a, R,r) N D). For every sequence (r,)nen such that r, < r,11 (resp.
Tn > Tp+1 ) and lim r, = R, it is seen that the sequence I'(a,r,, R) N D

n—oo

(resp. I'(a, R,r,) N D) is a basis of F and such a basis will be called a canonical
basis . We call a decreasing filter with no center of canonical basis (Dy)nen and

diameter R > 0, on D afilter F on D that admits for basis a sequence (D,,),, € N
in the form D,, = d(ay,r,) N D with D, 41 C D,, , rp+1 < rp, lim 7, = R, and

ﬂ d(an,r,) = 0.
neN

Given an increasing (resp. a decreasing) filter F on D of center a and
diameter r we will denote by Bp(F) the set {x € D| |z —a| > r} (resp. the
set {x € D| |x —a| < r} and by Cp(F) the set {x € D| |x —a| < r} (resp.
the set {z € D| |z — a] > r}. When there is no risk of confusion we will only
write B(F) instead of Bp(F) and C(F) instead of Cp(F). Next, Cp(F) will be
named the body of F and Bp(F) will be named the beach of F.
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We call a monotonous filter on D a filter which is either an increasing filter
or a decreasing filter (with or without a center). Given a monotonous filter F
we will denote by diam(F) its diameter.

The field IL is said to be spherically complete if every decreasing filter on
IL has a center in IL. The field C, for example is not spherically complete (see
Chapter A.5). However, every algebraically closed complete ultrametric field
admits a spherically complete algebraically closed extension and this will be
recalled in Chapter A.7.

Lemma A.2.2:  Let (ay)n € N be an increasing distances (resp. a decreasing
distances) sequence in D. There exists a unique increasing (resp. decreasing)
filter F on D such that the sequence (an)n € N is thinner than F.

Proof. Let r, = |ant+1 — an| and let R = lim 7.

n—oo

We first suppose (a,)nen to be an increasing distances sequence. The in-
creasing filter F of center agp, of diameter R is obviously less thin than the
sequence (G, )nen. We will show that F is unique. Let G be an increasing filter
of center a, of diameter R’, less thin than the sequence (a,)nen. For every
r < R/, there exists ¢ € N such that a, € I'(a,r, R") whenever n > ¢q. If
a € d(ag, R™) this clearly requires that R = R’ and then G = F. Let us suppose
that a ¢ d(ap, R~). Then we have |a — a,| = |a, — anm| = C whenever n # m so
R’ > R and then I'(a,r, R') does not contain the a,, whenever r > R. Finally
G=F.

We now suppose the sequence (a,, )nen to be a decreasing distances sequence
with a point a such that |a — a,| = |ant+1 — an| whenever n € N. Then the
decreasing filter of center a, of diameter R is a decreasing filter less thin than
the sequence (an)nen. We will show it to be the only decreasing filter less
thin than the sequence (an)nen. Indeed given a decreasing filter G less thin
than the sequence (a,)nen, it must have a center because if it had no center,
the sequence d(an+1,|an+1 — anl) would be one of its canonical basis, but by
definition it has an intersection that contains a. Then, symmetrical to the case
when F is increasing, it is easily seen that F is unique.

Now we suppose that the sequence (a,)nen is a decreasing distances sequence
and that there does not exist a € L such that |a — a,| = |ant1 — an| whenever
n € N. We put |a,t+1 — an| = r,. Hence the sequence of disks d(a,y1,75)
has empty intersection and then the filter F, a basis of which is the sequence
(Dn)nen with D, = d(any1,7) N D, is a decreasing filter with no center, of
diameter R. There is no decreasing filter with center a € IL, less thin than the
sequence (a,) because we should have |a — a,,| = r, whenever n € N. Hence it
just remains to show that F is the only decreasing filter with no center less thin
than the sequence (a,). Let us suppose that there exists another decreasing
filter G of diameter R’ with no center, of canonical basis (DJ,)men less thin
than the sequence (a,). If R’ > R, since every D!, contains points a,, it is seen
that all the a,, lie in D Nd(ag, R) C D), whenever m € N and this contradicts
that G has no center. Hence we have R’ < R. But symmetrically we have
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R < R'. Hence R = R'. We will show that G = F. For every m € N, let p,,, be
the diameter of D), and let a, € D), be such that r, < p,,,. Clearly a,, € D),
whenever n > ¢ hence D,, C D!, whenever n > ¢. In the same way, let n € N
and t € N be such that p,, < r, whenever m > t. Then D], contains some as
which belongs to d(ay1,7,) D = D, hence D), C D,, whenever m > t. That
finishes showing that G = F and that ends the proof of Lemma A.2.2. O

Lemma A.2.3: Let F be an increasing filter (resp. a decreasing filter) on
IL, of center a € D and diameter R < diam(D) (resp. R < diam(D) ) such that
a does not belong to a hole of diameter p > R (resp. p > R). Then F is secant
with D and induces on D an increasing filter (resp. a decreasing filter) of center
a and diameter R, on D.

Proof. We just have to check that T'(a,r, R) N D # () whenever r €]0, R[ (resp.
['(a,R,r) N D # () whenever r > R) and this is obvious when a € D because D
is infraconnected and R < diam(D) (resp. R < diam(D)). Now let us assume
a to belong to a hole T of diameter p < R (resp. p < R). Since |IL| is dense in
[0, 400, for every r < R (resp. r > R), D has points « such that r < [a—a| < R

(resp. R < |a — a| <) and this ends the proof. O

Definition: Let F be an increasing (resp. a decreasing) filter of center a and
diameter R on D. F is said to be pierced if for every r €]0, R[, (resp. r > R),
I'(a,r, R) (resp. I'(a, R, 7)) contains some hole T, of D.

A decreasing filter with no center F of canonical basis (D, )men on D is
said to be pierced if for every m € N, 5m \ 5m+1 contains some hole T;,, of D.

Remarks: The definition of a pierced filter with no center also applies to a
deacreasing filter with a center and then is equivalent to that given just above
for such a filter.

If F is an increasing (resp. a decreasing) filter of center a, of diameter R, F
is pierced if and only if there exists a sequence of holes (T, )nen of D such that
§(a,Ty) < 8(a, Tyt1), (vesp. 6(a,Ty) > 6(a, Thi1)), nlingo(;(a,Tn) =R.

Given a Cauchy filter F on D, of limit ¢ in L, we will call a canonical

basis of F a sequence D, in the form d(a,r;,) N D with 0 < r,, < r;,41 and

lim r,, = 0. The filter F is said to be pierced if for every m € N, D,, contains
some hole of D.

Let a € D. Let (T'm,i) 1<i<s(m) be a sequence of holes of D which satisfies
meN
5(a7Tm,i) =dn (1 <1< hm)y dpy < dm—i—l (reSp~ dp > dm+1)7 lim d,, =
S > 0.

The sequence (T ;) 1<i<s(m) is called an increasing (resp. a decreasing)
meN
distances holes sequence that runs the increasing (resp. decreasing) filter of

center a, of diameter R.
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Now let (T5n,i) 1<i<s(m) be a sequence of holes of D that satisfies

meN
am, Tm,i) = dm (1 < i < s(m)), dw > dmy1, lim d,, = R > 0, where

the filter F of basis D,, = d(am,d) N D is a decreasing filter with no center.

The sequence (Trn,i) 1<i<s(m) is called a decreasing distances holes sequence that
meN

runs F.

Summarizing these definitions, an increasing (resp. decreasing) distances
holes sequence that runs an increasing (resp. decreasing) filter F will be just
named an increasing (resp. decreasing) distances holes sequence and the filter
F will be named the increasing (resp. decreasing) filter associated to the se-

quence (T i) 1<i<s(m)- The diameter of F will be called the diameter of the
meN
sequence (Tp,.;) 1<i<s(m)- If F has a center a, a will be named the center of the

meN
sequence (Tp i) 1<i<s(m)- If F has no center, the sequence (75,,;) will be called
meN
a decreasing distances holes sequence with no center.
Finally, an increasing (resp. decreasing) distances holes sequence will be
called a monotonous distances holes sequence and the sequence (d,,, )men is called
the monotony of the monotonous distances holes sequence.

Let (Ton,i) 1<i<s(m) be a monotonous distances holes sequences and for every

meN
(m, i) 1<i<s(m) et pm,i = diam(T, ;). The number  inf  p,, ; will be called
SIeN 1<i<s(m)
meN
piercing of the sequence (Trn i) 1<i<s(m) -
meN
If a monotonous holes sequence has a piercing p > 0, it will be said to be

well pierced. If a monotonous filter F is run by a well pierced monotonous holes
sequence, J will be said to be well pierced.

In each case the sequence of circles C(a,d,,) when F has center a (resp.
C(am+1,dm) when F has no center) will be said to run the filter F and to carry

the monotonous distances holes sequence (T5,,i) 1<i<s(m) -
meN

A monotonous distances holes sequences (T,,i) 1<i<sm) Will be said to be
meN
simple if s(m) =1 for all m € N.

Next, a sequence of holes (T, )men of D will be called a Cauchy sequence of
holes of limit a € IL if lim §(a,T,,) = 0. Such a sequence will be said to run

the Cauchy filter of basis {d(a,r) N D|r > 0}.

Notation: In all the propositions, Theorem, Corollaries A.2.4, A.2.5, A.2.6,
1
A2.7, A28, A.2.9, A.2.10, v is the Moebius function b+ T a with a,b € IL.

Proposition A.2.4: Let « € D,r > 0 be such that |a — | < t. Then
Y(C(a,r)) = C(b, 7).

‘r

Proof. We may assume b = 0 and then the proof is immediate. O
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Corollary A.2.5: Let o € IL,ry, 79 €]0,+00[ with |a —a] <71 <7re. Then

(e, r1,72)) = r(b,ri l).

9
2 T1

Corollary A.2.6: Let F be the increasing (resp. decreasing) filter of center
a and diameter R > |a — «f, on IL\ {a}. Then v(F) is the decreasing (resp.

increasing) filter of center b and diameter —.

R

Lemma A.2.7: Let o € IL be such that |« — a| # r. Then

1(Clasm) = € (1), ——3).

[ af?
Proof. When z belongs to C(«,r) we have

a—x r

(@) = () = |(3: —a)(a — oz)’ la — al?

hence v(C(a, 1)) C C’(W(a), a%odz)' Now let &(u) =~y 1 (u) =a+ % We

see that C((’y(a), )C C(a,r). Since v and ¢ are injective we see that

la —af?

must be a surjection onto C('y(oz)7 ﬁ) O
a—a

Corollary A.2.8: Let o € IL and r,r’" €]0,+o0[ be such that 0 < r < r’ <

/

la — a. Then we have W(F(OZ,T, 7"’)>: F(v(a), la _ra|2’ a _7’ a|2)’

1(d(e,) = d(3(0), o ), ) = d(3(@). (1 om) )

Corollary A.2.9: Let F be the increasing (resp. decreasing ) filter of center
a and diameter R on IL\ {a} with |a—«| > R.Then y(F) is an increasing (resp.

ﬁ on IL\ {b}.

a decraesing ) filter of center y(a), of diameter

Corollary A.2.10: Let F be a decreasing filter with no center, of basis (Dp,)nen
on IL\ {a} such that a ¢ Dy. Then v(F) is a decreasing filter with no center,

of canonical basis ('y(Dn)>n€N on IL\ {b}.

Theorem A.2.11: We suppose a € D. Let D' = v(D). Let F be a filter on
D which is either a monotonous filter or a Cauchy filter. Then F is pierced if
and only if v(F) is a pierced filter on D'.
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Proof. For example we suppose first F to be a monotonous filter. By definition,
F is the intersection with D of a monotonous filter G of IL \ {a}. Hence F is
pierced if and only if G is secant with (IL'\ {a}) \ D. Since 7 is bicontinuous in
IL\ {a} we see that v(G) is secant with (IL \ {b}) \ D’ if and only if G is secant
with (IL\ {a})\ D because (D) \ {a} = D'\ {b}. Hence the conclusion is clear.
In the same way if F is a Cauchy filter of limit « € IL, we consider the filter
G’ of the neighborhoods of y(«) in L \ {b} and we see that G is secant with
(L\ {a})\ D if and only if G’ is secant with (IL \ {b}) \ D’. O

We are now going to define circular filters, which roughly characterize the
absolute values on IL(z) when IL is algebraically closed.

Definition: Let a € IL and let R €]0, +oo[. We call circular filter of center
a and diameter R on L the filter F which admits as a generating system the
family of sets I'(«,r’,7"") N D with « € d(a,R),” < R < r”, ie. F is the

q

filter which admits for basis the family of sets of the form (ﬂF(ai, ri,ry)) with
i=1

a; €d(a,R),r, <R<r! (1<i<gq, qeN).

For reasons that will appear when characterizing the absolute values of L(x)
when IL is algebraically closed, a decreasing filter with no center on IL, of canon-
ical basis (Dy)nen will also be called circular filter on I with no center, of
canonical basis (Dy,)pen.

Finally the filter of the neighborhoods of a point a € I will be called circular
filter of the neighborhoods of a on IL. It will also be named circular filter of
center a and diameter 0. A circular filter on L will be said to be large if it has
a diameter different from 0.

A circular filter on IL secant with D will be called circular filter on D. Given

a circular filter F on IL, its diameter will be denoted by diam(F) and we will
call F-affinoid any infraconnected affinoid subset of L lying in F.

Lemma A.2.12 lets us describe circular filters on an infraconnected subset of
IL.

Lemma A.2.12: Leta € 5, let p be the distance from a to D and let R be

such that p < R < diam(D). Forj =1,...,q let o € d(a, R) and let r};, v € Ry
q

be such that v < R <r}/. Then ﬂ(F(aj,rg-,r;’) ND)#0.
=0

Proof. If p < R we put 1’ = max 7} and we see that T'(a,7’, R)N D is not empty

1<j<q
(because D is infraconnected) and is included in every set I'(a;,7%,7) N D. If

R < diam(D) we put 7’ = 121121 r;»’ and in the same way, I'(a, R, ") N D is not
<j<q

empty and is included in every set I'(avj, 7, 77) N D.
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Now if p = R = diam(D), let b € D and let 7/ = max r}. Then I'(b,7’, R)N

1< j< ¢
D is not empty and is included in every set I'(a;, 7%, 77) N D. O

Corollary A.2.13: Leta € 5, let p be the distance from a to D and let R be
such that p < R < diam(D). The circular filter on IL of center a and diameter
R is secant with D.

The following Proposition A.2.14 is immediate according to definitions:

Proposition A.2.14: Let F be an increasing filter (resp. a decreasing
filter) of center a and diameter R, on D. Then the circular filter of center a
and diameter R on L is secant with D and is the only circular filter on D less
thin than F.

Conversely, let F be a circular filter of center a and diameter R, on D secant
with d(a, R™) (resp. 1L\ d(a, R)). Then the increasing filter (resp. decreasing
filter) of center a and diameter R on IL is secant with D and thinner than F.

Lemma A.2.15:  Let F be a circular filter. Then F admits a basis consisting
of the family of all F-affinoids. If F does not admit a countable basis, it has a
center and its diameter belongs to |IL|. If F has no center and is secant with an
infraconnected affinoid subset B of I then B lies in F. If F has center a and
diameter r, then an infraconnected affinoid set B lies in F if and only if satisfy
ENn(IL\d(a,r)) #0, BNd(b,m~)#0 Vb e d(a,r).

Proof. By definition, a circular filter with no center has a countable basis and of
course so does a Cauchy circular filter. In both cases, it admits a basis consisting
of a family of disks which are F-affinoid sets.

Now, consider a circular filter of center a and diameter r > 0. Then, F
admits for basis the family of sets of the form d(a,r + £)\ (UL, d(a;, (r — £)7)
where the a; are centers of F satisfying |a; — a;| = r. In particular, if r ¢ |L|
we have ¢ = 1 and we obtain a basis of the form I'(a,r — %,7’ + 7%) which is
countable.

Now, suppose that F is secant with an infraconnected affinoid subset B of
IL. Suppose first that F has no center. Let (A,),en be a canonical basis of
F. Since each A, admits common points with B, each is included in B and
therefore it is included in B if and only if it contains no hole of B. But since F
has no center, (),—, A, = 0, hence there exists ¢ € N such that A, C B Vn > ¢
and therefore B € F.

Now suppose that F has center a and diameter r. If B € F, it obviously
satisfies BN (IL \ d(a,r)) # 0, BNd(b,r~) # 0 Vb € d(a,r). Since B has
finitely many holes, on one hand there exists s > r such that I'(a,r,s) C E
and on the other hand, all classes of d(a,r) are included in B, except finitely
many: d(b;,r"), 1 < j <mn. And for each j = 1,...,n, there exists r; < r such
that I'(bj,r;,7) C B. Finally, B contains the set d(a,s) \ U;—, d(b;,r;) which
obviously lies in F. O
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Corollary A.2.16: Let F be a circular filter of diameter r. For every
s €]0,r[, the family of F-affinoid of codiameter p > s is a basis of F. If two
disks d(a,r) and d(b, s) have no common points and if F is secant with d(a,r),
it is not secant with d(b, s).

Proposition A.2.17:  Leta € D, let S be the closure of {|z — a| |z € D} in
R. For every r € S the circular filter F of center a and diameter r is secant
with D.

Proof. Let a € D. We first suppose that C(a,7) N D = ). Then either there
exists a sequence (Z, )nen in D such that r < |z,4+1—a| < |z, —al, lim |z,—a|] =
n—oo
r, or there exists a sequence (z,)nen in D such that |z, — a| < |41 —a| <
r, lim |z, — a| = r. In both cases the circular filter F of center ¢ and diameter
n—oo

r is clearly secant with D.

Now we may suppose that C'(a,r)ND # 0. Let b € C(a,r)ND. We see that
b is also a center of F. Since D is infraconnected and since |a—b| = r < diam(D)
there does exist a sequence (x,)nen in D such that nler;O |z, —b| = r. Hence F

(that has center b and diameter ), is secant with D. O

Proposition A.2.18:  Let (an)nen be a sequence in D that is either a monotonous
distances sequence or a constant distances sequence. Then there exists a unique
circular filter on D less thin than the sequence (ay,).

Proof. First we suppose that the sequence (a,)nen is an increasing (resp. a de-
creasing) distances sequence. By Lemma A.2.2 there exists a unique increasing
(resp. decreasing) filter F on D less thin than the sequence (an)nen. If F has
center a and diameter R, by Proposition A.2.14, F is less thin than the circular
filter of center a, of diameter R on D. If F is decreasing with no center, F is a
circular filter.

Now we suppose that (a,)nen is a constant distances sequence. We put
R = |ap — ap| for n # m and a = ag. The circular filter F of center a of
diameter R on IL is clearly secant with D because each set A,, = T'(ay,r’, ")
with 7" < R < r” belongs to a generating system of F and contains a,, for every
m > n hence its intersection with D is a circular filter C on D less thin than
the sequence (a,)nen. That ends the proof. O

Corollary A.2.19: Let F and G be two circular filters that are secant. Then
they are equal.

Proof. We can find a monotonous sequence thinner than F. Then the sequence
is thinner than G and hence G = F. O
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Notation: Let I’ be an extension of L provided with an absolute value that
extends the one of IL. Let D be a set in IL, let F be a monotonous filter on
D and let D' be a set in I” that contains D. Let (a,)nen be a monotonous
distances sequence that runs F. In 13, there is a unique monotonous filter less
thin than the sequence (a,)nen. This filter will be denoted by F.

In the same way, let G be a circular filter of center ¢ and diameter r» on D.
We will denote by G the filter of center @ and diameter r on D’. Finally let G
be a circular filter with no center. Then it is a decreasing filter, hence we have
already previously defined G.

Corollary A.2.20:  Let (an)nen be a bounded sequence in 1. Then there
exists a subsequence (ap,)ten and a unique circular filter F on IL less thin than
the subsequence (an,)ten-

Proof. Since the sequence (a,,)nen is bounded, by Theorem A.2.1 we can extract
either a monotonous distances subsequence or a constant distances subsequence,
or a converging subsequence. In all cases, once such a subsequence is choosen,
there exists a unique circular filter F on IL less thin than the subsequence. [

Theorem A.2.21:  Let (an)nen, (bn)nen be two sequences such that |a, —
by <t < r Vn € N. Suppose that the sequence (an)nen is thinner than a
circular filter F of diameter r. Then the sequence (by)nen also is thinner than

F.

Proof. By Corollary A.2.16, F admits a basis consisting of F-affinoids S of
codiameter p > t. Consider such a F-affinoid S. Then if a,, belongs to S, so
does b,,. Now, when n is big enough, all a,, belong to S and hence so do all b,,.
And since F admits a basis of F-affinoids with a codiameter s > ¢, we see that
the sequence (by,)nen is thinner than F. O
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A.3. Ultrametric absolute values for rational functions

Notation: As mentioned in Chapter A.1, log denotes a real logarithm func-
tion of basis 6 > 1 (eventually we can take for 6 an integer p that is the residue
characteristic of K). When a function f from an interval I to R admits a right
side (resp. a left side) derivative at a point a € I, we will denote it by f"(a)

d, d
(resp. f''(a)). If the variable is p, we will also denote it by d—f (resp. dl—f)
i
Moreover, thoughout the chapter, we will denote by IL be a field provided

with an ultrametric absolute value | . |.

The set of circular filters on K secant with a subset D of K will be denoted
by ®(D) and the subset of large circular filters on K secant with D will be de-
noted by ®°(D). We will show the absolute values on the field K(x) of rational

functions to be characterized by the circular filters on K. Actually, the most
important property of such absolute values comes from the fact that the loga-
rithm of an absolute value is a piecewise affine fonction of the logarithm of the
absolute value of the variable. And next, a valuation function is then defined
for any h € K(z) in the following way: let r €]0, +o00[ be such that p = —logr
and let F be the circular filter of center 0 and diameter r. Following classical
notations [2], [50] and [72], one sets

o(h, ) = —log(lim [h(x)]).

This function v(h, u), called the valuation function of h, is convenient mainly
because it is piecewise affine. However, in order to avoid many changes of sign,
here we will consider ¥(h,logr) = log(limg |h(x)|) and we will show that when
& Y(hp) , d¥(hp) o &R p)  di(hp)
du du du du
between the number of zeros and the number of poles of h (taking multiplicity
into account) on the circle C'(0, r) such that logr = p. This translates properties
of |h(z)| into terms of piecewise affine functions.

However, this kind of definition presents the inconvenient of changing the
sens of monotony for both |z| and |h(x)|. Moreover, its sign is opposite to this of
the counting function of zeros for entire functions in the Nevanlinna theory. This
is why, here we will adopt another set of notation and put ¥(z) = log |z| Vx €
K. First, we have to state several basic properties that work not only in an
algebraically closed field such as K but more generally in a field E that is just
provided with an ultrametric absolute value.

is equal to the difference

Let IL[z1, ..., x4] be an algebra of polynomials in ¢ indeterminates, with co-

efficients in IL. For each P(x1,...,24) = E iy ... igT1 o0 We set
Jit..+ig<t
— —.J1 J
P(zy,...,xq) == E iy i Y e AN

j1+~-~+jq§t
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On IL[zy,...,x4], we put ||P||:=  sup |ai,..i,]o-
Jit.+ie<t
However, when there is no risk of confusion, we will just write || . || instead
of |- lo-
Lemma A.3.1: | .|| is a multiplicative norm of IL-algebra.
Proof. Let B = IL[z1, ..., z4]. Clearly, | . || is an ultrametric norm of IL-vector

space on B. We check that |PQ] = ||P||||Q] whenever P,@Q € B. Both ||P||,
Q| belong to |IL|. Hence, without loss of generality, we may clearly assume
|P|| = ||Q| = 1. Thus we have P = Q = 1. Let £ be the residue field of
IL. Since L[z1,...,z4] is a ring without divisors of zeros, we have PQ # 0 and

therefore ||PQ|| = 1. This ends the proof. O
Definition and notation: = The norm H .|| on IL[xl,...,xq]o is called the
Gauss norm. Given a polynomial P(x Z ajx] € IL[z], for any r > 0 we set

— | pd
IPI(r) = na (Jaj ).

By ultrametricity, Lemma A.3.2 is then immediate:

Lemma A.3.2: Let P(z) € IL[z]. For all x € IL, one has |P(z)| < |P|(|z|)-

Lemma A.3.3:  Suppose IL is algebraically closed. Let P(x Zajxj

L[z] \ {0} and let r € Ry. Then |P(x)| admits a limit equal to |P| ) when
|x| approaches r but remains different from r. Let x € d(0,r). Then |P(z)| <
|P|(r). If P has no zero in the class of x in d(0,r) then |P(x)| = |P|(r). If P
has at least one zero in that class, then |P(x)| < |P|(r).

Proof. Let v’ < r and r” > r be such that P has no zero in I'(0, v/, r)UT'(0, r, 7'").

We may obviously assume P to be monic. Let P(z) = H(m — o) be the

i=1

factorization of P in an algebraic closure of IL, with

|| < 7' fori < h

|o;| > 7" for i > £

|aj| =7 for i = h, ..., L.
Now let z € T'(0,7/, 7). Clearly |x — ;| = |z| whenever ¢ < h while |z — ozz| = |ay|

n
whenever i > h hence |P(z)| = |z|" H |o;| hence hm | P(x rh H lai]-
i=h+1 ‘ i=h-+1
Symmetrically we show that lim |P rt 11_[|ozl| =rh H |o;|. But
|z|—r ¥ i=h+1

the terms |a;z7| are all different for every |z| except for finitely many values so
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that there exist p' € [/, 7[ and p” €]r,r"'] such that the |a;z’| are all different
when z € T(0,p/,7) JT(0,r,p"). Then we have |P(z)| = Jmax laj||x]’ and
<j<n

hence lim |P(z)| = max |a;|r’.
‘x|—>7‘ 0<j<n

|| #r
Now let z € d(0,r) and let us assume P to have no zero in the class A
of z in d(0,r). This means that |z — a;| = r whenever ¢ = 0,...,£ — 1 and

n
|x — ;| = |o;| whenever ¢ > ¢. Thus |P(z)| = re_ln\aﬂ. If P has at least one
i=0
zero a4 in the class of x we see that |v — apy1] < 7 while | — ;| < r for every
n

i=h+2,..,0—1, hence |P(z)| < r4*1H|ai| and finally |P(z)| < |P|(r). O
i=¢

Theorem A.3.4: Let P € IL[X] and let U be the unit disk {x € | |z] <1}
of K.Then ||P|| = sup, ey (|P(x))-

Proof. On one hand,|P(x)| < ||P|| V& € U. On the other hand, by Theorem
A3.3, . lim |P(z)| = || P|| Consequently, the equality holds. O
o1

Corollary A.3.5: Let P € IL[X] and let t € IL be such that |t| < 1. Let
Q(X)=P(X +1t). Then ||P|| = Q|- If ||P|| <1, then P is 1-Lipschitzian.

Theorem A.3.6: For every r > 0 the mapping from IL[x] to Ry defined by
P — |P|(r) is an absolute value on IL[z] such that |P(a)| < |P|(Ja]) Ya € IL.

Proof. Due to the definition of |P|(r), it is easily checked that |P|(r) = 0 if and
only if P =0 and that

[P+ Q|(r) < max(|P|(r),[Q|(r))-

m
We can also check that |P(a)| < |P|(|a]) Va € IL. Now, set P(z) = Zajacj,
j=1
n ) m—+n )
Qx) = ijxj and let P(z)Q(z) = Z c;xz’. Let s (resp. t) be the biggest of
j=1 j=1

the integers such that |P|(r) = |as|r® (resp. |Q|(r) = |b|rt). Then |P|(r)|Q|(r) =
lasbe|r**t. On one hand, we can check that, obviously, |c;|r < |asb|r*tt Vj =
0,...,m + n, hence |PQ|(r) < |P|(r)|Q|(r). On the other hand, since |a;|r! <
las|r® Vj > s and |bj|rd < |b|rt Vj > t, we have |coqs|r* T = |asby|r*T*, which
proves that |PQ|(r) > |P|(r)|Q|(r) and hence ends the proof. O

Now, Lemma A.3.7 shows that we can change the origin, inside the disk
d(0,r)
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Lemma A.3.7: Suppose F is algebraically closed. Let v € Ry and let a € IL
be such that |a| < r. Then |P(zx)| has a limit when |x — a| approaches r but
remains different from r. Further, that limit does not depend on a € d(0,r) and
it belongs to |K| if and only if so does r.

Proof. We set © = a +w and P,(u) = P(a + u). For every P € IL[z] we have
|li‘m |Py(u)| = |P,|(r). In particular |P,|(r) = lim+|Pa(u)|. But for every
ul—r [u]—r
|u|#r Ju|<r

p>r,C(0,p) =C(a,p), hence | lim |P(z)]= lim |[Pla4u)|= lm |P,(u)|.

z|—rt |u|—r+t |u|—rt
That ends the proof of Lemma A.3.7.

Theorem A.3.8: Suppose IL is algebraically closed. Let P(x Za]xJ

E[z] be a monic polynomial such that a; € d(0,1) whenever j = 0,. q Then
the g zeros of P belong to d(0,1).

Proof. Let 1 be the absolute value defined on E[z] by ¢(P) = » lin‘l |¢1‘P(u)‘
q
and let P(z) = H (¢ — ¢j). By Lemma A.3.3, for each j = 1,...,¢, it is seen

that ¥(x — ¢;) > 1 while ¢(P) = 1. Hence ¢(x —¢;) =1 for every j =1,...,q
and therefore by Lemma A.3.3 again, we have ¢; < 1 whenever j =1,...,q. O

Notation: These ultrametric absolute values defined on IL[z] are immediately
_ 1Pl
QI(r)

P
extended to rational functions by ’é ‘ (r)

Then Lemma A.3.9 is immediate:

Lemma A.3.9: Suppose IL is algebraically closed. Let h € I.(z) and let r €

Ry. For every a € d(0,7) we have | hITl |h(z)| = |h|(r). Let x € C(0,r).
lz—alz£0

If h has no zero and no pole in the class of x in C(0,7) then |h(z)| = |h|(r).

Further, |h|(r) belongs to |K| if and only if so does r.

Circular filters characterize the multiplicative norms defined on K(z) [50],
[52], [61], [62].

Theorem A.3.10 (B.Guennebaud): For every circular filter F on K, for
every rational function P(x) € Kz, |P(x)| has a limit ¢ . (P) along the filter F.
The mapping F — @, from ®(K) into the set of the multiplicative semi-norms
on K[z] is a bijection. Moreover, for every large circular filter on K, ¢, has
continuation to K(z) and the mapping F — ¢, from ®°(K) into the set of the
multiplicative norms on K(x) is a bijection.

If F has center 0 and diameter r, then ¢, (h) = |h|(r).
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Proof. We first suppose that F has center a € K and diameter r > 0. With
no loss of generality we may obviously assume a = 0 by means of the change
of variable © = a + u. Then by Lemma A.3.3, |h(z)| = |h|(r) holds in every
class of C'(0,r) but finitely many ones A4, ..., A,. For every j =1, ..., ¢, we take

a; € Aj and set o9 = 0. Let € be > 0. By Lemma A.3.3 there exist p’ €]0, 7|
q

and p” > r such that | |h(z)| — |h|(r) | < € for every z € ﬂf(aj7p’,p”), S0
j=0
limlA(x)| = [1[(r).

Now we suppose that F has no center in K. It admits a canonical basis
(Drn)nen and then given h € K(z), there exists ¢ € N such that h has neither
any zero nor any pole inside D,. Hence |h(z)| is equal to a constant [ in D, and
therefore we have li}n |h(z)| = 1. By the same kind of reasonning as in Lemma

A.3.6 it is easily seen that ¢, is an absolute value on K(z).

Now, we will check that the mapping F — ¢, is injective. Indeed let F, F2
be two different circular filters and let 1 (resp. 79 > r1) be the diameter
of F1 (resp. F2). We first suppose that we may find disks A; = d(a, p1) and
Ao = d(asg, p2) such that A; NAs = () and such that Fi, (resp. F2) is secant with
Ay, (resp. Ag). Then it is seen that |a; — az| > p1 > r1 hence vz (z —a1) <7
while ¢z, (x — a1) = |a1 — az| > r1 and therefore pr, # ¢r,.

We now suppose that we cannot find disks A;, Ay defined as above. Since
r1 < 7y, any disk A which belongs to F; is included in any disk that belongs
to F> and therefore any point of A; is a center of 5. Thus F> admits a center
a € A and then, F; is secant with d(a,rs). Hence we have ry < 79 because
otherwise F; would be equal to F». In particular F; is secant with one class
d(a,ry ) of d(a,r2). Then we have pr, (z —a) < ry while ¢z, (z —a) = rq. This
finishes showing that the mapping F — ¢, is injective.

Now we will show that this mapping defined on ®°(K) is also surjective onto
the set of multiplicative norms i.e. the absolute values on K|[z] continuing these
of K. Indeed let ¥ be such an absolute value on K[z| and let r = inﬂf( vz —N).

€

We first suppose that there exists a € K such that ¢(z — a) = r. Since ¢ is
an absolute value, we check that r > 0 because if r = 0, we have ¢)(h) = h(a)
for every h € K[z] and then 1 is not an absolute value. Hence we can assume
r > 0. Let F be the circular filter of center a, of diameter r. By Lemma A.1.7,
we know that ¢ is ultrametric and then for every b € K, we have ¢(x — b) <
max (¢(xz —a),|a—bl) = max(Ja—b|,r). But by definition we have ¢)(x —b) > r,
hence (1) r < ¢(z — b) < max(r, |a — b]).
If |a — b] > r, then both ¢ (x — b), pr(x — b) are equal to |a — bl|. If |a — b| < r,
then b is another center of F and we have pr(x —a) = pr(x —b) = r. But by
(1) we see that 1(x — b) = r. So we have shown that ¢x(z — b) = ¢(x — b) for
all b € K and since K is algebraically closed, this finishes proving that v = ¢ £.

We now suppose that there does not exist a € K such that r = ¢(z — a).
There exists o, € K such that r < ¢(z —a,) <7+ % Let p, = ¢(x — ay,). For

b e K\ d(an, pn) clearly we have
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(2) 1/)(55— b) = |b_an‘ > Pn
because ¥(x — o) < |, — b|. Further, if F,, is the circular filter of center a,
and diameter p,, we have

(3) Y(z —b) = [b—an| = ¢F,(x —b).
However there exists a,4+1 € K such that r < ¥(z — apy1) < min(p,,r +

n 1). Hence by (2) we see that a,41 € d(an, prn). That way, we may define
n

1
a decreasing sequence of disks D,, = d(w,, pn) such that r < p, < r+ — and

n
Y(x — an) = pn. Let D), = D, N D. Then the decreasing filter F of basis
(D! ) nen satisfies li}n Y(x — o) = 7. It is easily seen that F has no center

because if « is a center of F then 1(x — o) < max (|t — aw|, |, — «f) hence
Y(x —a) = r. We will show that ¢ = ¢,.. Let b € K and let ¢ € N be such that
b ¢ D,. Then by (3), for n > ¢ we have ¥(z —b) = ¢, (x —b). On the other
hand it is easily seen that ¢z, (x — b) = ¢, (x —b). Thus Y(z —b) = ¢, (z —b)
whenever b € K and then ¢ = ¢,,.

Finally, let ¢ be a multiplicative semi-norm that is not a norm: there exists
a polynomial P such that ¢(P) = 0 and hence, there exists a € K such that
(x —a) =0. Let b € K. Then ¢(z —b) = ¢((x —a) + (a — b)) < max(z —
a),¥(a —b)). But since ¢(t) = [t| Vt € K, we have ¢(z — b) = |a — b|, hence,
putting h(xz) = x — b, we have ¥(h) = |h(a)|, which shows that the equality
¥(h) = |h(a)| holds for every polynomial of degree 1 and therefore it holds in
all K[z]. This ends the proof of Theorem A.3.10. O

Theorem A.3.11: Let H be a filter on K and let F, G € ®(K) be less thin
than H. Then F =G.

Proof. Since H is thiner than F and G we have limy |P(z)] = @x(P) =
wg(P) VP € K[z], hence o = ¢g. But by theorem A.3.10 the mapping that
associates to each circular filter F the multlplicative semi-norm @z is injective
and hence F = G. O

Notation: = When F is the circular filter of center a, of diameter r, we will also
denote by ¢, the absolute value ¢,.. Hence by definition we have ¢, (k) =
| lirfl |h(z)]. In particular we notice that ¢g.(h) = |h|(r).

rT—a|—7r

|z—al#a

Finally, we will denote by ¢, the multiplicative semi-norm defined on rational
functions with no pole at a as ¢, (h) = |h(a)].

Now, let us go back to the field L. For y € R we set U(h, u) = log(|h|(6*))
for simplicity, we set W(h) = W(h,0). Thus, comparatively to the valuation
function v(h, ) defined and used in previous works [2], [58], we have U(h, u) =
—v(h, —u). The advantage of the fonction ¥ is to respect the sens of variation

of |h|(r).
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The translation of Lemmas A.3.1, A.3.2, A.3.3, A.3.6, A.3.7, A.3.8, A.3.9
into terms of valuation allows us to obtain the following Lemmas A.3.12 and
A.3.13.

Lemma A.3.12: Let P(z) = Za]—x-j € Klz] \ {0}. For every u € R, we have
=0

(P ) = max W(a,) + b Moreover, W(P(a)) < ¥(P,¥(a)) Va € L.

Suppose P € K[z]|. The equality ¥(P(x)) = U(P,¥(z)) holds if and only if
P has no zero a such that ¥(z — o) < ¥(z).

Lemma A.3.13: Let h € K(z) \ {0}. We have ¥(h(z)) = ¥(h,¥(x)) for
every x € K such that h has no zero « satisfying ¥(z — o) < ¥(x) and no pole
B satisfying ¥(x — B) < ¥(x).

Lemma A.3.14: Let hy,hy € K(x) \ {0}. Then we have
\Il(hl + h27 :U/) < max(\:[j(hla :u’)v \Ij(hQa /u’))

When U(hy,p) > U(he, ), then we have ¥(hy + ho, 1) = U(hy, ). Moreover,
\I/(hl.hQ,M) = \I/(hl,u) + \I’(hg,,u).

Notation: In order to perform easily any change of origin, for every a € K
and h € K(z) \ {0} we put U,(h,pn) = ¥(hg, p) with he(u) = h(a + w). Thus
if F denotes the circular filter of center a and diameter §~# then U, (h,u) =
log(¢- (h))-

We now consider again a polynomial P(z) = Zajxj # 0. We denote by
j=0

v (P, u) (resp. v~ (P,p)) the biggest (resp. the smallest) index j such that

V(aj) +jp = (P, p).

Lemma A.3.15 is a consequence of Lemma A.3.9:

Lemma A.3.15: Let h € K(z)\ {0} and let a,b € K. For every p > ¥(a—1b),
we have W, (h, n) = Uy(h,p) .

Theorem A.3.16: Let P(x) = Z a;z’ € Klz]. For every p € R,vH (P, u) —
j=0

v=(P,p) is equal to the number of zeros admitted by P in the circle C(0,6")
in K. The function vt (P,.) (resp. v~ (P,.)) is increasing and continuous on
the right (resp. on the left). Moreover, given Q € Klz], then v, v~ satisfy
vH(PQ, p) = v (P, p) +vH(Q,p), v~ (PQ,pu) = v~ (P, p) + v~ (Q, p). Further,
if vH(P,p) = v (P, ), then both are constant in a neighborhood of .

The function U(P,.) is continuous, piecewise affine, increasing, convezr and
has a right side derivative (resp. a left side derivative) equal to v (P, p) (resp.

v (P, p))-
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Proof. Tt is easily seen that the equality

(1) v (P, p) = v (P, )

holds for every p but finitely many values, at most n. It is also clear that the
functions v+ (P,.) and v~ (P,.) are increasing. By continuity we see that the
function v (P, i) is continuous on the right at each point while v~ (P, u) is
continuous on the left at each point. Finally if (1) holds in an interval |/, u|,
then the functions v (P,.) and v~ (P,.) are constant and equal. Consider an
interval |/, [ such that v+ (P,p) = v=(P,p) for all p €]/, 1’| and let j =
v (P, ) whenever p €]y, ”’[. Then U (P, ) = U(a;) + ju so that the function
U(P,.) is in the form A + iy in this interval.

Now let u be such that v*(P,pu) < v~ (P,u). We see that U(P,.) is still
continuous at p and has a left side derivative equal to v~ (P, ) and a right
side derivative equal to v+ (P, ). Finally the function ¥(P,.) is continuous,
piecewise affine, convex and largely increasing.

If P and Q € K(x) \ {0} then v*(PQ,u) is the right side derivative of
the function ¥(PQ,.). But ¥(PQ,.) = ¥(P,.) + ¥(Q,.), hence its right side
derivative at p is just v (P, u)4+v(Q, ). In the same way we have v~ (PQ, p) =
v (P, u) + v~ (Q, 1) by considering left side derivatives.

Then, to prove that v (P,u) — v~ (P,u) is the number of zeros of P in
C(0,6#), it is sufficient to show this when P is a binomial  — a. But then, this
is obvious because v (P, u) = v (P,u) = 0 whenever u < ¥(a),v(P,pu) =
v~ (P, ) = 1 whenever pu > ¥(«), while v+ (P, ¥(«a)) = 1,07 (P, ¥(a)) = 0. So
all the statements of Theorem A.3.16 have been proven. O

Applying Lemma A.3.12 and Theorem A.3.16 to the numerator and the
denominator of a rational function, we obtain Corollary A.3.17.

Corollary A.3.17: Let P(z) = Z a;z? € Klz]. For every u € R,v*(P,log(r))
3=0
is equal to the number of zeros admitted by P in d(0,r).

Corollary A.3.18: Let h € K(z) \ {0}. The function in u U(h,u) is contin-
wous and piecewise affine.

If 1 is such that d(0,0") contains s zeros and t poles of h, (taking multiplicity
into account), but neither any zero nor any pole in C(0,6*), then W(h,.) has a
derivative equal to s —t at p.

If w is such that C(0,0") contains s zeros and t poles of h, (taking multiplic-
ity into account), then we have l—(h,,u) _ Y (h,u) = s —t. Further, if the

du du
function U(f, u) is not derivable at u, then p lies in ¥(K).

Corollary A.3.19:  Let h € K(x) \ {0} have no pole (resp. no zero) in an
annulus T'(0,7/,r"). Then W(h, 1) is convex (resp. concave) in [logr’,logr"].

Corollary A.3.20:  Let h € K(z) \ {0} have s zeros and t poles in d(0,r")
and have neither any zero nor any pole in an annulus T'(0,7',r"). Then in
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0,7, r"), WU(h,log|x|) is of the form A+ (s —t)log|z|. Moreover, vt (h,u) —
v (h,u) = s—t Vu €]logr’, logr”[ and vt (h,p) (resp. v~ (h,p)) is continuous
on the right (resp. on the left). Finally, given g € K(z), we have vt (gh,p) =
vi(g, m) + v (h, ), v (ghs p) = v (g, 1) + v~ (h, o).

Theorem A.3.21: Let G € ®(K). Let f € K(x) and take e > 0. There exists
a G-affinoid E such that | |f(x)] — ¢g(f)]eo <€, Yz € E.

Proof. Let r = diam(G) and let I > r. If G has no center, there exists a disk
d(a,l) € G, with r € |K|, containing neither zeros nor poles of f, therefore by
Lemma A.3.9 |f(x)| is a constant equal to ¢x(f) in d(a,r), so our claim is
obvious. Now, suppose that G = F, ,. Let Aq,..., A, be the classes of d(a,r)
containing at least one zero or one pole of f. By Lemma A.3.9 | f(z)] is a constant
equal to pg(f) in d(a,r)\ (U?Zl Aj). Consider a class A; = d(a;,r~) and let
s; (resp. t;) be the number of zeros (resp. poles) of f inside A; and let sy (resp.
to) be the number of zeros (resp. poles) of f in all d(a,r). Let p €]0,r[NK]|
2
be such that ’(C)Sj_tj —1pg(f) <eVj=0,..,q. Letl= " and let E =
p p

d(a,l)\ Uj‘:l d(a;,p~). By Corollary A.3.19 we can check that the inequality
| 1f(@)] — ¢g(f)|eo < € holds in all E. Since p < r, E is an infraconnected

affinoid set which belongs to G. Moreover, by definition, [ > r. O

Theorem A.3.22:  Let F be a filter on K such that for every h € K(z), |h(x)|
admits a limit along F. Then there exists a circular filter H less thin than F.

Proof. For every h € K(x), set ¢(h) = li]I__Il |h(z)|. Then ¢ belongs to Mult(| K (z))

and hence by Theorem A.3.10, there exists a unique circular filter H such that
¢ = py. Suppose that F is not thinner than H. There exists a subset B of K
such that F is secant with B but H is not. Since H admits a basis consisting of
affinoid subsets, there exists a H- afﬁnoid D such that DN B = (. Since D is

affinoid, it is of the form d(a, R) \ ( U d(ag,r ) and H also admits a H- affi-

q
noid E of the form d(a, S) \ (U (@i, s; )withS<Randri<siVi:1,‘..7q

k=1
[T (z—a;)™

Let b € T'(a, S, R) and let h(z) = @ Then with integers m;, and

n big enough, we can get
inf{|h(z)| | x € E} > sup{|h(z)| | z € B}

a contradiction to the hypothesis: |h(z)| admits a limit along F. O
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A.4. Hensel Lemma

The Hensel Lemma is a classical tool for studying the factorization of analytic
functions on a circle [2], [50], [58] and is indispensable in Chapter A.5. Tt
is a strong result that roughly says : ”In a complete field IL, if P splits in
the form yn with (v,n) = 1, then P also splits in IL[z] in the form gh with
G =", h = h,deg(g) = deg(y)”. The proof is not very easy and requires a
serious preparation. Here we will roughly follow the same process as in [2], [50],
[58] and more precisely in [58], with a few corrections.

Notation: Given a field F and g,h € IL[z], here (g,h) will denote the
T

3
monic greatest common divisor of g and h. Given Q(z) = ijxj € Uzl
7=0

q
as in Chapter A.3 we denote by @ the polynomial Z @; 7 € L[z]. In this
j=0

q
chapter P(x) = Z ajz’ € L[z] will denote a polynomial of degree g.
3=0

Lemma A.4.1. is immediate :

Ur [7]
My, [z]

Lemma A.4.1:  The quotient ring is isomorphic to Llx].

Lemma A.4.2:  For all a € I we have U(P(a)) < ¥(P,0) + max(0, ¢¥(«)).

Proof. By Lemma A.3.12 we have ¥(P(«)) < max (¥(aj)+j¥(«)) < max V¥(a;)+
0<j<q 0<j<q

Orgja%(qjkll(a). But (ax U(a;) = ¥(P,0) and Or%a%(q]\lf(a) =max(0,¢¥()). O

q

Definition : A polynomial Zajxj € L[x] will be said to be quasi-monic
§=0

if |ag| = 1.

Lemma A.4.3: Let F,D € Uyz] with D quasi-monic. Let Q,R € Uy,[z]
satisfy F = DQ + R and deg(R) < deg(D). Then we have ¥(Q,0) < ¥(F,0)
and U(R,0) < U(F,0).

Proof. We can clearly assume F' # 0. Then, by multiplying F' by a suitable
constant A, we can also assume W(F,0) = 0. Since D is quasi-monic, the
Euclidean division of F by D is clearly possible in Uy, [z] and therefore @Q is the
quotient, R is the rest of this division, due to the fact that deg(R) < deg(D).
So we have ¥(Q,0) <0, ¥(R,0) <0 because both @, R belong to Ur[z]. O
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Corollary A.4.4: Let F,D € K(z] with D having all its zeros in d(0,1).
Let Q,R € Uk[z] satisfy F = DQ + R and deg(R) < deg(D). Then we have
U(Q,0) < ¥(F,0) — ¥(D,0) and U(R,0) < U(F,0). Moreover, if F has all its
zeros in d(0,1), then ¥(Q,0) = ¥(F,0) — ¥(D,0).

Proof. The first statement is just an application of Lemma A.4.3. Next, if F
has all its zeros in d(0, 1), we can assume that both F, D are monic and satisfy
|F|| = ||D]| = 1. Consequently, @ also must be monic and hence ||Q| = 1,
which ends the proof. O

Lemma A.4.5: Let g,h € U[z] be quasi-monic, such that (g,h) =1 and
deg(P) < deg(g) + deg(h). There exist V,W € IL[z] satisfying ¥ (Vg + Wh —
P,0) < W(P,0),(V,0) < W(P,0), W(W,0) < W(P,0), deg(V) < deg(h), deg(IV) <
deg(g)-

Proof. Since (g, h) = 1, by Bezout’s Theorem there exists v and 7 € £[x] such
that vg + 7h = 1, deg(v) < deg(h), deg(t) < deg(g). Let S,T € UlL[z]
satisfy S = v, T = 7,deg (S) = deg (v),deg (T) = deg (7). Thus we have
Sg+Th—1=0 ie.

(1) ¥(Sg+Th—-1) <0.

We now consider the Euclidean division of SP by h and T'P by g, respec-
tively. We obtain SP = Sph+Vand TP = Tog+W. By Lemma A.4.2, it is seen
that max(¥(V,0), ¥(Sy,0)) < ¥(SP,0) < ¥(P,0). Moreover, by hypothesis we
have
(1) deg(V) < deg(h) and
(2) deg(W) < deg(g)

Let M = Sg+ Th — 1. Then we have MP = (So + To)gh + Vg + Wh — P.
Since deg(P) < deg(g) + deg(h), by (1) and (2) we see that deg(Vg + Wh —
P) < deg(g) + deg(h) and therefore Vg + Wh — P is just the remainder of
the Euclidean division of BP by gh. But then, by Lemma A.4.3, we have
U(Vg+ Wh— P0) < U(MP,0) = ¥(M,0) + ¥(P,0), and therefore by (1)
and by definition of M it is seen that U(M,0) < 0. This finishes proving that
U(Vg+Wh— P,0) < U(P,0) and this ends the proof of Lemma A.4.5. O

Notation: Let g,h € Ur[z], be monic and satisfy (g,h) = 1. We will denote
by B(f,g) the set of constants ¢ € R, such that, for every polynomial @ € IL[x]
satisfying deg(Q) < deg(g) + deg(h), there exist V, W € IL[z] satisfying
U(Vg+Wh—-0Q,0) <¥(Q,0)+¢, ¥(V,0) <T(Q,0),

U(W,0) < ¥(Q,0), deg(V) < deg(h), deg(W) < deg(g).

Lemma A.4.6: Let g,h € Ur x|, be quasi-monic and satisfy (g,h) = 1 and
let d = deg(g)+deg(h). Then B(f,g) is a not empty interval whose lower bound
is 0. Moreover, given A € B(f,g) and monic polynomials s, t € Uy, [z] such that
U(g—s,0) <A, U(h—t,0) <A\, then B(s,t) = B(g,h).
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Proof. Let d = deg(g) + deg(h). We can apply Lemma A.4.5 to each polyno-
mial @, = x™ for every n = 0,...,d — 1. Thus, we have polynomials V,,, W,,
satisfying W(V,,g + Wph — 2",0) <0, ¥(V,,,0) <0, ¥(W,,0) <0, deg(V,,) <
deg(h), deg(W,,) < deg(g). We put

d—1
An = U(Vog + Woh — 2,0), (0 < n < d-1). Nowlet Q = Y ana", let
n=0

d—1 d-1
V= Z anVyp, W, = ngoaan and let A\(g,h) = 0;{123(71 An. Clearly we have

n=0
U(Vg+Wh—-@Q,0) < max (¥(ap)+ M) < max P(a,)+ max N, =

~ 0<n<d—1 ~ 0<n<d—1 0<n<d—1
(Q,0) + Mg, ).
But trivially

< < <
P(V,0) < max W(an), T(W,0) < ¥(Q,0), deg(V) < | max (deg(Va))

< deg(h), deg(W) < gﬁléé‘_l(deg(wn)) < deg(h).
So, A(g, h) lies in B(f,g) and hence it is obviously seen that B(f,g) is a not
empty interval and that its lower bound is 0.

Now, let ¢ € B(f,g) and let s, ¢t € Ur[z] be monic and satisfy U(g —s,0) <
¢, U(h—t,0) <c. Since U(V,0) < ¥(Q,0), T(W,0) < ¥(Q,0), it is easily seen
that U(V(g—s)+W(h—1),0) < c+¥(Q,0) and therefore ¥'(Vs+Wi—Q,0) <
¢+ ¥(Q,0). This shows that A(s,t) < ¢ and therefore B(f,g) C B(s,t). But
similarly we have B(s,t) C B(g, h) and this ends the proof of Lemma A.4.6. [

Lemma A.4.7: Let Q € L[z] and let g, h € Uy [z] be quasi-monic and satisfy
(g,h) = 1. Let ¢ € B(g,h). There exist monic polynomials V, W € L[z]
satisfying

deg(W) < deg(g), deg(V) < max(deg(h),deg(Q) — deg(g)),

U(V,0) < ¥(Q,0), ¥(W,0) < ¥(Q,0).

Proof. We consider the Euclidean division of @ by gh : Q = £gh + Q1. Hence
deg(Q1) < deg(g) + deg(h). By Lemma A.4.3 we have
(1) ¥(Q1,0) < ¥(Q,0),
(2) V(£,0) <¥(Q,0).
By lemma A.4.6. there exist Vi, W, € IL[z] satisfying
(3) Y(Vig+Wih—Q1,0) <¥(Q1,0)+c
(4) \IJ(V].)O) S \I](Q170)7
(5) W(Wi,0) <¥(Q1,0),
(6) deg(V1) < deg(h),
(7)  deg(W1) < deg(g),
Now we put V. =V; +/¢h, W = W;. So we have Vg+Wh—Q =V, +{gh+
Wih—£gh—@Q1 and therefore by (3) we obtain ¥ (Vg+Wh—Q,0) < ¥(Q1,0)+c.
Hence by (1) we obtain
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8) v(Vg+Wh—-Q) > v(Q)+c.

Now, by (1) , (5) it is seen that

(9) ¥(W,0) <¥(Q,0).

We will check

(10) ¥(V,0) <¥(Q,0).

Indeed we have ¥(h,0) = 0, hence by (2) we see

(11) ¥ (¢h,0) < ¥(Q,0).

But by (4) we have ¥(V1,0) < ¥(Q,0) and therefore by (11) we obtain (10).
Finally, by definition we have deg(¢) = deg(Q) — deg(gh) and therefore

(12)  deg(V) < max(deg(V7),deg(¢h)) < max(deg(h),deg(Q) — deg(g)).
Thanks to (7), (8) , (9) , (10), (12), Lemma A.4.7 is now proven. O

Theorem A.4.8 (Iiensel Lemma): L is suppposed to be complete. Let P €
Uw[z] be such that P splits in Lz] in the form ~yn with vy, n relatively prime.
There exists g, h € Uy, [z] such that P = gh,g = v, h = n,deg(g) = deg(7).

Proof. We can obviously take quasi-monic polynomials gg, hg € Up[z] such that
G0 =7, ho =1n. We put £ = U(P — goho,0) and take ¢ € B(go, ho) satisfying
¢ < & We will construct sequences (gn)nen, (hn)nen in IL[z] satisfying for all
n > 0O:
in) U(P — gnhn,0) < (n+1)C,
”n) \I}(gn — Yn—1, 0) < nCv \Ij(hn - hnfh 0) < nCv
iiin) deg(h,) < deg(P)—deg(go), deg(gn) = deg(go),
i) Gn =7, hn =1,
vn) € € B(gn,hn).

First we put P; = P — gohg. We notice that deg(P;) = deg(P). We now ap-
ply Lemma A.4.7, to the case when (Q, g, h) = (P1, go, ho) : there exist V1, W; €
L[z] satisfying (1) deg(W1) < deg(go), (2) deg(Vh) < deg(P) — deg(go),

(3) ¥(,0) < ¢ (4) ¥W,0) < (5) ¥(Vigo + Wiho — P1,0) <

¢ + ¥(P1,0) Next we put g1 = go + Wi, hy = hg + V3. We check that
i1),1%i1),1%i1),4v1) are satisfied. Moreover, by (3) and (4) and by Lemma A.4.6,
¢ lies in B(g1, h1), hence vy is satisfied.
Now we suppose we have already constructed the pairs (g, hun) satisfying
T )y Uim ), 1804 ), 10, ), U, ) for every m = 0, ..., n. Then we put P11 = P—gph,.
We can apply Lemma A.4.7 to the case when (Q, g, h) is equal to (P41, gn, hn)-
So, we can obtain V41, Wy41 € L] satisfying (6) V(W,119n + Vag1hn —
Pﬂ+170) < C + \II(PR+170) (7) deg(W’ﬂJrl) < deg(Qn)v (8) deg(Vn+1) <
max(deg(hy), deg(Pnt1)—deg(gn)) (9) ¥ (Vit1,0) < ¥ (Poy1,0), ¥(Wyq1,0) <
U(P,+1,0). By (6) and by v, ) we obtain (10) ¥ (W,119n+Vai1hn—Pny1,0) <

(n+2)¢. Now we put gn41 = gn + Wit1, Ang1 = hy + Wyp1. We check that

P — gn+1hwz+1 = (Pn+1 - han—i-l - gnVn—i-l) - Vn+1Wn+1 =
— I'n41— hWn+1 —gn+1 Vn+1 + (hn+1 - hn)Wn+1 + (gn+1 _gn)Vn—i-l +Vn+1Wn+1~
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By ii,,) true for m < n, we notice that
(1) W(go = gus1,0) < (n+1)C, Blhn — hny1,0) < (0 +1)C,
and then, by (9) and (10), we obtain é),+1 V(P — gnt1hns1,0) < (n+ 2)C.

Relation 4,11) is true by definition and #4i,11), iv,41) are easily checked.
By (11) and by Lemma A.4.6 Relation v,1) is also clear.

Therefore the sequences (gn)nen, (hn)nen satisfying iy ), iiy,), @iy ), Uy), Un)
are now constructed. Since IL is complete, the vector space IL,[z] of polynomial
of degree m < ¢ is obviously complete with respect to the Gauss norm | - ||
which is characterized by log||Q| = ¥(Q, 0).

Then by Relations ii,) the sequences (gn)nen, (hn)nen converge in ILg[x].
We put g = nlirr;o 9n, h = lim h,. By iii,) we have deg(g) = deg(go) = deg(y).

By iv,) we have § = v, h = 1 and finally by 4,) we have W(P — gh,0) = 400
hence P = gh. That ends the proof of Theorem A.4.8. O
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A.5. Extensions of ultrametric fields: the field C,

All considerations on analytic and meromorphic functions require to consider
a complete ultrametric algebraically closed field K. Here we will construct
the field C, and study finite extensions of @,. And we show that C, is not
spherically complete.

Notation: Asin the previous chapters, IL denotes a complete ultrametric field
whose absolute value is not trivial and whose residue class field is £. We will
denote by F' an algebraically closed ultrametric field whose absolute value is not
trivial.

Let E be a field, let IB be a finite algebraic extension of E and let ¢ = [IB : E].
We will denote by A the algebraic norm of IB over E. Given a € IB, we will
denote by irr(a,E) the minimal polynomial of a over E.

Lemma A.5.1 is classical in algebra [70]:

Lemma A.5.1: Let ¢ = [B : E], and let N be the norm of B over E. Let
a € B, let P, = irr(a,E) and let d = deg(P,). Then N satisfies N(a) =

((=1)4P,(0))* and N(ab) = N'(a)N(b), ¥b € B.

Theorem A.5.2: Let E be an algebraic extension of IL, let a € E and let
P =irr(a,IL). Then a is integral over Uy, if and only if [P(0)| < 1. Moreover,
if |P(0)| <1, then |P|| =1. Finally, if |P(0)| =1, then irr(g, L) = P.

Proof. First we assume a to be integral over Uyp,. Then there exists a monic
polynomial @ € Uy, [z] such that Q(a) = 0. Therefore, P divides @ in IL[z]. Let
Q(z) = P(x)T(z). Since both P, @ are monic, so is T. Therefore, ¥(P(,0) >
0, ¥(T(,0) > 0. But since ¥(Q,0) = 0 and since ¥(Q,0) = ¥(P,0) + ¥(70),
P, T must satisfy U(P,0) = ¥U(T,0) = 0 and therefore |P(0)| < 1.

Now we assume |P(0)| < 1. Suppose ¥(P,0) > 0. There exists b € My, such
that U(bP,0) = 0 and then |bP(0)| < 1, hence 0 is a zero of bP. Further, we
notice
(1) deg(bP) < deg(P).

Let bP = x%¢ with ¢(0) # 0. Then x¢ and ¢ are relatively prime in £[z].
Therefore, by Theorem A.4.8 there exist g, h € Uy[z] such that g = 2%, h =
¢, deg(g) = d and P = gh. But since P is irreducible in IL[z] and since
d > 0, h must be a constant and therefore deg(P) = d a contradiction to (1).
Consequently, ¥(P,0) = 0. Now, suppose |P(0)] = 1. Since P is irreducible in
IL[X], by Theorem A.4.8 so is P in L[X], hence irr(a, £) = P. O

Corollary A.5.3:  Let E be an algebraic extension of I equipped with the
unique extension of the absolute value of IL. Let a € E be such that |a] = 1, of
degree | over IL. Then the residue class @ of a in the residue class field of E is
algebraic, of degree | over L .
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Proof. Let P(x) = Z;-n:o ajz? = irr(a,IL). Since |a| = 1 we have |ag| = 1, hence
by Theorem A.5.2 we have |P|| = 1 and @ satisfies irr(a, £) = P, which ends
the proof. O

Theorem A.5.4: Let E be an algebraic extension of IL. There exists a unique
absolute value ¢ on E that extends the one of IL. Further, this absolute value is
ultrametric and defined as follows: given a € E, Q = irr(a,IL) and t = deg(Q),

then ¢(a) = /|Q(0)].

Proof. We first notice that ¢(a) = |a| whenver a € IL. We will show that ¢ is
an ultrametric absolute value on E. Clearly we have p(a) # 0 whenver a € E.
By Lemma A.5.1 it is easily seen that we have ¢(ab) = ¢(a)p(b) whenver
a, b € E and therefore p(a)~! = p(a~1). So it remains to show the ultrametric
inequality. For this, we will show ¢(1+2) < 1 for every z € Ug. For convenience,
we put again P, = irr(z, E) whenver z € E. Let z € Ug. So we have |P,(0)] <1
and then by Theorem A.5.2; z is integral over Uy, hence so is 1 + z. Hence by
Theorem A.5.2 we have |P14,(0)] < 1 and therefore p(1 + z) < 1. Now, the
ultrametric inequality will be easily derived. Let a,b € E satisfy 0 < |a| < [b].
We have p(a+b) = ¢(b(14 %)) = @(b)p(1+%). But o(1+ %) < 1, hence finally
p(a+b) < @(b). Thus we have now proven ¢ to be an ultrametric absolute
value that extends that of IL.. Then by Theorem A.1.6, this absolute value on
E is unique, which ends the proof. O

Corollary A.5.5: Let € be an algebraic closure of IL. There exists a unique
absolute value ¢ on Q) that extends the one of IL. Further, this absolute value is
ultrametric and defined as follows: given a € Q, Q = irr(a,IL) and t = deg(Q),

then ¢(a) = {/|Q(0)].

Corollary A.5.6: Let P(x) € IL[z] be irreducible over 1L, let 2 be an algebraic
closure of IL provided with the absolute value extending that of IL and let by, ..., b,
be the zeros of P in Q. Then |b;| = |b;| Vi,j <gq.

Corollary A.5.7: Let Q be an algebraic closure of IL provided with the unique
absolute value | . | that extends the one of IL. Then Uq is equal to the integral
closure of Uy,. Moreover |Q| = {%/r | r € |IL|, n € N*}.

Corollary A.5.8: Suppose that the value goup of IL is Z. Let E be a finite
algebraic extension of IL of degree t provided with the unique absolute value | . |

that extends the one of IL. There exists a rational v of the form n such that the

value group of E is rZ.

Lemma A.5.9: Let B be an algebraic extension of E provided with an absolute
value extending that of E. Then the residue class field of B is algebraic over the
residue class field of E.
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Proof. Let t € Up and let E be the completion of E with respect to the absolute
value of E. Since t is algebraic over E, so much the more it is algebraic over
[E. Then by Corollary A.5.5, the residue class t of t is agebraic over the residue
class field of E. But E obviously has the same residue class field as E. O

Corollary A.5.10: Let IB be an algebraic extension of IL provided with the
unique absolute value that extends the one of IL. Then the residue class field of
B is an algebraic extension of the residue class field of IL.. Moreover, if B is
finite over IL then residue class field of B is finite over the residue class field of
IL.

Proof. Suppose first that B is of the form IL[u]. Without loss of generality, we
may assume that |u| = 1. Then the residue class field of IB is L[u]. Next, we
can generalize by induction. O

Theorem A.5.11: Let Q be an algebraic closure of 1L provided with the
unique absolute value extending the one of IL. Then the residue class field of €1
is an algebraic closure of L.

Proof. Let T be the residue class field of Q. Let u € Uq and let P = irr(u, IL).
By Corollary A.5.7, P belongs to Uy, [z] and obviously satisfies P(%) = 0, hence
u is algebraic over £. So 7 is an algebraic extension of £. Now let ¢ € L[z],
and let Q € U [x] be a polynomial such that @ = q. Then @ factorizes in Q[x]

in the form H(w —aj) with |a;| < 1Vj =1,...,s, hence @; belongs to 7 and

j=1
S

q(z) =a; = H(Jj —@;). So, T contains the algebraic closure of £. And since
j=1
it is an algebraic extension of £, then it is the algebraic closure of L. O

Corollary A.5.12: The residue class field K of K is algebraically closed .

¢ t
Lemma A.5.13: Let P(x) = Zajxj, Qz) = ijxj be monic, belong to
J=0 3=0
Blz] and satisfy || P||||Q| = 1. For each zero « of P, Q admits at least one zero
B such that | — Bt < Jmax laj — bjl.
<J

Proof. Let s = Jnax, la; — b;| and let a be a zero of P. By Lemma A.3.6 we
)

have |(P — Q)(x)| < s whenver z € d(0,1), hence in particular |Q(«a)| < s.
Let f31,...0; be the zeros of @ (taking multiplicities into account). So we have
t

H |8; — a| < s and then that at least one of the 3, satisfies |3, — a| < st. O
j=1
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Theorem A.5.14: Let B be an algebraically closed extension of IL provided
with the unique absolute value that extends the one of IL. The completion of 1B
also is algebraically closed.

Proof. Let BB be the completion of IB and let P(z Z a; e IB ] be monic.

Let © be an algebraic closure of I~B, provided with the unique absolute value

extending that of B and let ay,...,a; be the zeros of P in ). Up to a change

of variable, we may assume that |o;| < 1Vj = 1,...,t. Let ¢ €]0,1] and let
t

= ijxj € BJz] be such that Orga§t|aj —b;] < €', For each j = 1,...,t,
: <j<

j=
by Lemma A.5.13 @ admits a zero 3 such that |a; — B|* < e. Since Q € B[z],
obviously 3 belongs to IB and therefore we see that a;; belongs to IB. That ends
the proof. O

The following theorem is due to Marc Krasner [69], [74].

Theorem A.5.15 (M. Krasner): Let IL have characteristic zero. Let Q) be
an algebraic closure of I provided with the unique absolute value extending the
one of IL. Let a € Q, let as,...a, be the conjugates of a in Q0 and let b € )
satisfy |b—a| < |b— a;| for every j =2,..n. Then we have LL[a] C IL[b].

Proof. Let a; = a and let P(xz) = irr(a,IL). In Q[z], the polynomial P splits

in the form H(x —aj). Let Q(z) = irr(a,IL[b]). Then @ divides P. Let
Jj=1

t
t = deg(Q) and suppose the a; ranged in such a way that Q(z) = H T —aj).
j=

Let R(y) = Q(b+y). Then R(y) is seen to be irreducible in IL[b][y] like Q(z) in
L[b][x]. Moreover the zeros of R are just the a; — b, with 1 < j <¢. Thus we
have R = irr(a — b ,IL[b]). But since IL is complete, by Corollary A.5.5 we have
la; — b = ¥/|R(0)| for every j = 1,...,t. In particular, for j = 2,...t, we have
la; —b] = |a— b and this COIltI“adlCtb the hypothesis. Finally, we have ¢t = 1 and
therefore a lies in IL[D]. O

Corollary A.5.16:  Let IL have characteristic zero. Let € be an algebraic
closure of IL provided with the unique absolute value extending the one of IL. Let
a € Q, letay, ...an be the conjugates of a in Q and let b € Q satisfy |b—a| < |b—aj]|
for every j =2,..n and [IL[] : IL] < n. Then we have IL[a] = IL[D].

We can now recall the construction of p-adic fields.

Notation and definition: Let p be a prime number. On Z, the p-adic
absolute value is defined as follows: given n € Z*, it factorizes in a unique way
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in the form p®q, with ¢ € Z*, prime to p. So, here we take § = p and set
Inl, =p~°.

Lemma A.5.17 is immediate.

Lemma A.5.17: | .|, is an ultrametric absolute value on Z that has contin-
uation to Q and defines an ultrametric absolute value on Q and N is dense in

1
Z. Then |n| > - Vn € N*,
a
Ug = {p”(g> |neN, a€Z,beZ* ged(a,p) = ged(b,p) =1}

Mg = {p"(%) |neN*, acZbeZ*, ged(a,p) = ged(b,p) = 1}

and the residue characteristic of Q is p. The residue class field of Q is the field
of p elements F,,. The valuation group of Q is isomorphic to the additive group
Z.

Remarks and notations: Now Q admits a completion with respect to the
p-adic absolute value and its completion is denoted by Q. The closure of Z in
Qy is denoted by Z,.

On Q,, we extend the valuation and the absolute value | . |, defined on Q
and we set again U, (z) = —vp(z).

An algebraic closure €, of Q, is equipped with the unique extension of the
p-adic absolute value defined on @, and we will again denote it by | . |,. The
valuation group of Q, is obviously equal to the one of Q. Next, the valuation
group of Q, is easily seen to be isomorphic to ( Q,+). In Chapter A.8, we will
see that €1, is not complete.

By Theorem A.5.14 Q, has a completion denoted by C, that is algebraically
closed. The valuation group of C, is then isomorphic to ( Q, +) like the one of
Q,. Moreover by Theorem A.5.11, the residue class field of (2, is an algebraic
closure of IF,, and the one of C, is seen to be the same. The absolute value | . |,
defined on (2, has a natural extension to C, and the associated valuation will
be denoted by v, again. and we set again ¥, (z) = —v,(z) Vo € C,. However,
when there is no risk of confusion, we will just write ¥ instead of W,,.

Theorem A.5.18: Let a be integral over Z and let as, ..., aq be the conjugates
of a over Q. Then |a| <1 and a;| <1Vj=2,...,q.

Proof: Since a is integral over Z, it is integral over Z,. Let P(X) = irr(a, Q)
and let B(X) = irr(a,Q,). Let ai,...,a; be the conjugates of a over Q, (with

a; = a). Then P(0) = [[{_;a;. Then B divides P in Q,[X]. Moreover,
IP| = 1 and [|B]] = 1. Next, B(0) = []’_, a;. By Corollary A.5.6 we have
la1] =, ..., |an|, while |B(0)| < 1, hence |a;| <1, ie. |a] < 1. Next, what is true

for a; also holds for evry aj,...,j = 2,...q, hence |a;|/leql.

In the future, we will use the following lemma:
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Lemma A.5.19: Let a € C,, be algebraic over Q,, such that log,(la|) is of
A
the form e with A € Z and t in N*. Take m, n € N and b € C,, such that

log,,(|b]) is of the form % with w € N and w € N prime, prime with v and such

that w > max(m,n,t).
Let f, g € Qpla] be such that |fb™|, = |gb™|,. Then m = n.

Proof. We notice that for every x € Q,[a], ¥, (|z|) is of the form % with £ € Z.

h k
Consequently, U, (|f]) is of the form n and log,(|g]) is of the form " with A

k
and k € Z. Consequently, ¥,(|fo™|) = % + % and ¥, (|gb"]) = n + T;}—u and

therefore, due to the equality |fb™|, = |gb"|,, we have (h — k)w = ut(n — m).
But since w > t, it is prime with wut, hence it must divide n — m, which is
impossible because max(m,n) < w, except if m = n. O

Lemma A.5.20:  Let | . | be an ultrametric absolute value on Q. If this
absolute value is trivial, the residue characteristic is zero. If the absolute value
is not trivial, there exists a prime number g such that | . | is equivalent to | . |4.

Proof. If this absolute value is trivial, it is clear that the residue characteristic
is zero. So we suppose that the absolute value is not trivial. For every n € N*
we have |n| < 1. Since | . | is not trivial, there certainly exists s € N* such that
|s| < 1. Let ¢ be the smallest s € N* such that |s| < 1. It is easily checked that
g is prime. Since My is a principal ideal of Z, we have Mg = ¢Z.

1
Let t = |ff It is easily checked that given m € Z*, of the form ¢®n, with
q

n € Z*, prime to ¢, we have |m| = t7°. Let w be the valuation associated to
this absolute value. Then w is clearly proportional to v, and by Lemma A.1.2
is equivalent to v,. This ends the proof. O

Lemma A.5.21 is easily seen.

Lemma A.5.21: N is dense in Zy, the invertible elements in Z,, are the ones
whose absolute value is 1, Zy, is compact, equal to Ug,, pZ, is equal to Mg, .
Qp s locally compact. The residue class field of Q, is equal to the field of p

1
elements IF,,. Finally U, is the union of p disks d(u, —).
p

Proof. All statements are immediate except the compacity of Z,. Consider a
sequence (ay,) in Z,. Since it is bounded, by Lemma A.2.1 we can extract
either a monotonous distances sequence or an equal distances sequences, or a
converging sequence. But since each circle d(a,r) with r € |Q,| only has p
classes, there are no equal distances sequence in QQ,. And since the absolute
value is discrete there is no monotonous distances sequence in Q,. Hence we
can extract a converging sequence from the sequence (ay,). O
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Corollary A.5.22:  For each m € N, U, is the union of p™ distinct disks

1
d(u, —m) Let E be a finite algebraic extension of Q,. There exists a constant
p

1
B > 0 such that for all m € N the number of distinct d(u, p—m) is inferior or

equal to Bp™.

By definition and construction of C,, we have this corollary:

Corollary A.5.23:  The field of algebraic numbers is dense in C,. Hence,
C, contains a dense countable subset.

In Theorem A.5.24 we will follow the method of [85].
Theorem A.5.24: C, is not spherically complete.

Proof. Let (r,,)nen be a real sequence such that 0 < r < rp41 <71, <1Vn eN.
Let S be the set of sequences of the set {0,1}. Suppose that for each n =0, ...,q
we have defined 2" disks d(an k,7n),k = 0,1, such that for each n = 1,...,¢
and for each k = 0,1 the disks d(ay,,0,7) and d(a,1,7y,) are included in some
d(an—1,%,mn—1) (with & = 0 or k = 1) and have an empty intersection. It is
then immediate to define in each disk d(aqire) two disks d(agt1,0,7¢+1) and
d(ag41,1,7q+1) having an empty intersection. So, the family is defined for every
n € N.

Now, let (un) € S and let (V,,) be a decreasing sequence of disks defined
as follows: suppose defined (V;,) for n < ¢. If uge1 = 0 we set Vypq =
d(ag+1,0,7q+1) and if ugr1 = 1 we set Vo1 = d(ag+1,1,7g+1). That mapping
which associates to each sequence (u,,) the decreasing sequence of disks (V},) is
clearly injective. Now, consider two distinct such sequences (u,,) and (ul,). Let
q be the smallest integer such that u, # u;. The distance from V; to V, is at
least r4. Consequently, for every n > ¢, the distance between V,, and V) is at
least 7y > r

Suppose now that C, is spherically complete. For each sequence (u,) the
intersection of the decreasing sequence of disks (V) contains a point a((uy))
and hence, by the last conclusion, if (u,) and (u/,) are two different sequences,
we have |a((un)) — a((ul,))| > r. But we know that the set of sequences (uy,)
is not countable and hence the set of the a((u,)), ((u,) € S) is not countable.
Consequently C, contains an uncountable subset ¥ such that |z —y| > r Vo #
y, ¢, y € X. This contradicts the fact that C, contains a dense countable
subset. O
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A.6. Normal extensions of Q, inside C,

Notation: Recall that IL is a complete field with respect to an ultrametric

absolute value. For every s € N*, we put us = and ry = p~¥. We

Pt p—1)
will study the p°-th roots of 1 and we will show that they lie in circles of center
1 and radius r5. We will examine normal extensions of Q, and totally ramified
extensions and show the role of Eisenstein polynomials.

1
Remark: In [50], due to a misprint, us is defined as ﬁ instead of
p*(p —
1

ps—l(p _ 1) !

We will need certain technical lemmas.

Lemma A.6.1: Let s € N*. For every n € N* such that n < p®, we have
G5

n)lp pslnl,
Proof. We notice that for any n € N* such that n < p®, n is a multiple of p” for

some h < s, if and only if so is p® —n. Now, let B be the bijection from {1,...,n—
1} onto {(p®* —n+1),..,p° — 1}, defined as B(j) = p® — j. Thus, for every j =

p* L = 210
1,..n—1, we have |j|, = |B(j)|p. Now, obviously, ‘( ) ‘ =|= ’H —’ .
njlp nip iy 70
B(i
But as we just saw, each factor (]) is equal to 1 and therefore the conclusion
P
is clear. O

Notation: Let s € N. We will denote by W the group of the p*-th roots
of 1in C, i.e. the ¢ € C, such that ¢?" =1 and we will denote by B, the set

W\ We_1 and we set W = U W.
seN
p—1
L s—1
F, will denote the polynomial Z 2P and we put Gy(z) = F5(1 + ).
§=0

q
Definition : A monic polynomial P(x) = Zajwj € IL[z] will be called an
7=0

Fisenstein polynomial if it satisfies a; € My, whenever j = 0,...,¢ — 1 and
Qo ¢ (M]L)Q.

Theorem A.6.2 (Eisenstein):  Let IL have a discrete valuation. Let P(x) =

q
Zajxj € IL[z] be an Eisenstein polynomial. Then P is irreducible in I[z].
=0
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Proof. We suppose P not irreducible. Then P splits in IL[z] in the form
S(x)T(x) with S(z) = Zajxj, T(x)= Zﬂjxj and a;, = f, = 1. Since S, T
=0

Jj= Jj=0
are monic we have ||S|| > 1, |T|| > 1 and since ||S||||T|| = [|ST|| = | P|| = 1, we
have ||S|| = ||T|| = 1. Hence, both S, T belong to Uy [z]. First we notice that if
ap belongs to My, then 8y does not, because ay ¢ (M]L)Q. Hence we may assume
ap € My, and By ¢ My,. Further we have a; € My, for every j =0,...,m — L.

Indeed let £ be the smallest of the integers h such that |ap| = 1. Then we
¢ ¢

have |a;| = |Boae + Zﬂjag_j\ = 1 because |SBpay| = 1 and Zﬂjag_j € My.,.
j=1 j=1
Consequently, £ = q, therefore P is irreducible. O

Lemmas below will be useful in the sequel.

Lemma A.6.3:  Let G be a subgroup of the multiplicative group (K*,-) in-
cluded in C(0,1) and let w € G. The bijection v from G onto G defined as
~v(x) = ux is isometric.

Lemma A.6.4: Let (j,n) € N x N* be such that j < n. Then we have

(jil):nz—f(?)'

h=j

Lemma A.6.5: For every s € N, Gy is an FEisenstein polynomial.

Proof. First we suppose s = 1. We have

a- S (1)) - SE ()

h=0 ;=0

p—1
Hence by Lemma A.6.4, we have G (z) = Z (j i 1> 2’. Moreover, by Lemma
j=0
1
A.6.1, we have ‘< P > ‘ = — for every j =0,...,p— 2 and therefore G; is an
Jt1) p

Eisenstein polynomial. ‘
Now we consider the general case s € N*. First we put Ty(z) = (1 + z)P".
By Lemma A.6.1, it is seen that T} () is of the form 14 2P 4+~;(x) with v;(x) €
prZy[x] and deg(y1) = p — 1. Then by an immediate induction, we see that
Ty() is of the form 1+ 2P + y4(x) with vs(z) € prZ,[z] and deg(ys) = p* — 1.
As a consequence it is easily seen that G is an Eisenstein polynomial if and
p—1
only if so is the polynomial gs(x) = Z(l—l—x”s)j. But we have g,(z) = G (2?").
§=0
Since G is an Eisenstein polynomial, so is gs. This ends the proof. O
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Theorem A.6.6:  For each s € N*, B, consists of p°* — p*~! roots of 1 of
order p® that lie in C(1,75). For every t € By, irr(t,Qp) is equal to Fy and
BsNd(t,r;) is equal to tW_;.

Proof. Let t € B, and let F(x) = irr(t,Q,). Then F divides 2" — 1 and has a
degree d > p*~!. Since 2?" — 1 = (2?" ' — 1)F,, F divides F,. But by Lemma
A.6.5 and Theorem 6.1, G is irreducible over Q,, hence so is F, and therefore

F = F;. Then by Corollary A.5.5 we have ¥,,(t—1) = \m = —u,. Hence
By is included in C(1,r,) and obviously consists of p* — p*~! different points in
this circle. Let ¢ be the mapping defined in Wy_1 as ¢(§) = t£. Since ¢ is of order
p® and any element of Wy_1 is of order < p®, one sees that ¢ is an injection from
W,_1 into Bs and then, by Lemma A.6.3, we have ¢(Ws_1) C Bs Nd(t,rs7).
Conversely, given u € B Nd(t,r,7), then t~!u lies in W,_; which shows that
¢ is a bijection from W;_; onto Bs Nd(t,rs™). O

Corollary A.6.7:  For every &, ¢ € Wi of £ # ¢, we have ¥,(£ —() = *ﬁ'
Theorem A.6.8: Letn € N* and let ( be a n-th root of 1 of order n. Then
¢ belongs to d(1,17) if and only if n is of the form p* (s € N).

Proof. By Theorem A.6.6 we know that if n is of the form p® then ( belongs

to d(1,17). Now we suppose ¢ € d(1,17) and put n = g p® with ¢ prime to

p. Let &€ = ¢(P"). Tt is seen that & also belongs to d(1,17), because |¢ — 1|, =
p°—1

|¢ — 1|p’ Z Cj’ . Let P(x) = 29— 1. If £ # 1, then P(x) admits 1 as a zero of
=0 7

order t > 2. But ?/(T) =G #0, hence £ = 1. Therefore we have ¢ = 1 and this
ends the proof. O

Definitions: Let E be a finite extension of Q,. Recall that the residue class
field of Q,, is Fj,. Let £ be the residue class field of E. Since E is finite over Q,,
it is locally compact, hence sup{|z| |z € E |z] < 1} < 1. So, we can choose an
element s € E such that |s| < 1 and such that |s| = sup{|z| |z € E |z| < 1}.
Such an element s is called a uniformizer of E. Since s is algebraic over Qp, |p|
is of the form |s|® with e € N*. The number e is called ramification indez of E.

Next, by Corollary A.5.3 we know that if a € E is algebraic over @, of degree
q and such that |a| = 1, then its residue class @ is algebraic over F,, of degree
< q. Consequently, if E is finite over ), then £ is finite over F,. The number
[€ : F,] is called residual degree of E and will be denoted by f.

The extension E is said to be ramified if e > 1 and unramified if e =1

Lemma A.6.9 is just a remark:
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Lemma A.6.9: Let T be an unramified extension of Q, and let E be an ex-
tension of Q, such that E CT. Then E is unramified.

Theorem A.6.10: Let n € N* be prime to p and let u, w be two distinct roots
of 1 in Q, of order n. Then in Q, we have |u — w| = 1.

Proof. Let h = Y Then h" = 1. Suppose |h — 1| < 1. By Theorem A.6.8, n is

w
of the form p®, a contradiction. O
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A.7. Spherically complete extensions

Several problems on p-adic analytic functions require one to consider an
ultrametric algebraically closed extension of K which is spherically complete, in
order to give every circular filter a center. Others require to have a complete
algebraically closed extension which admits a non countable residue class field.
Proving the existence of a spherically complete algebraically closed extension of
the ground field K isn’t easy, most of the ways involving basic considerations in
logic. Here we will follow the method proposed by Bertin Diarra in [58], that is
only based on the notion of ultraproducts [41], [42].

Notation and definitions: Here we denote by (E;);c; an infinite family
of field extensions of IL, provided each with an utrametric absolute value | . |;
extending that of IL. Next, i will denote an ultrafilter on I. We remember that
U is said to be principal if there exists « € I such that U/ is the set of the subsets
of I that contain a. Then U is said to be incomplete if there exists a decreasing
sequence (X, )nen of elements of U, such that ﬂ X,, = 0. Since I is infinite,
neN
there obviously exist incomplete ultrafilters on I. In particular, any incomplete
ultrafilter is not principal. R will denote the subring of HEZ that consists of
iel
the set (a;)ier € HEl such that sup |a;|; < +00. Of course R is a IL-algebra.
el iel

We will denote by ¢ the mapping from R into Ry defined as ¢((a;)icr) =

li&n |a;];- Then ¢ is seen to be a multiplicative semi-norm of the IL-algebra R.

R
We put J = Ker(yp)and S = 7 and we denote by 1 the canonical surjection
from R onto S. Then S is obviously provided with an absolute value | . | defined
as
[Y(a)] = p(a), (a € R).

On the other hand R is seen to be provided with a norm of IL-algebra || . ||
defined as ||(a;)ier|| = sup |a;|. Next we denote by ||| . ||| the semi-norm quotient
iel

of the norm of L-algebra by the ideal 7, defined on R as |||a]|| = tlélg lla —¢].

Theorem A.7.1 (B.Diarra): S is a field extension of IL and its absolute
value | . | extends the one of I.. Moreover, if U is non-principal and if each
E; has a dense valuation group, then S has a valuation group equal to (R,+).
Further, if each E; is algebraically closed, then so is S.

Proof. Let a € S\ {0} and let a = (a;)ier € R be such that ¢(a) = a. By
definition we have libr{n la;|; # 0. Hence there exists J € U such that for every

i € J we have @ <la;|; < 3%(&), hence a; # 0, and therefore
2 2
(1) = < la; | < —— whenever i € J.

3p(a) ¢(a)
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Now let b = (b;)ies € HEZ be defined as b; = a;l whenever i € J and b; = 1
i€l

whenever ¢ € T\ J. By (1) it is seen that b does belong to R. But now, ab—1 is

an element (¢;);e; of R that satisfies ¢; = 0 whenever i € J, hence lizﬁn lei] = 0.

Therefore ab — 1 belongs to J and finally, in S we have ¢(a)y(b) = 1. This
shows S to be a field.

Next we suppose that for each ¢ € I the valuation group of E; is dense.
Let r €]0,+o00[. We can obviously find a family (g;);c; in |0, 400 such that
liLI{nsi = 0. For every i € I, let a; € E; satisfy r —&; < |a;] < r and let
a = (a;)ier- Of course, a belongs to R and satisfies liz/rln|ai|i = r, hence r

belongs to |S|. This shows that the valuation group of S is equal to R.
Finally we suppose that each field E; is algebraically closed. Let

P(z) = Z Az € S[z]

with Ay = 1, and ¢ > 0. We will show that P admits at least one zero in
S. For every n = 0,1,...,q — 1, let (ain)icr € R satisfy ¢((ain)icr) = M

and let a;, = 1 whenever ¢ € I. So, we have ¥((a;n)icr) = An, whenever
q

n=20,...,q. Forevery i € I, we put T;(z) = Z a; n". Since E; is algebraically

n=0
closed, and since a; 4 = 1 for every ¢ € I, at least one of the zeros o; of 7T; in

E; satisfies |o;]|? < |a;o|- But by hypothesis (a;0)ier belongs to R, hence so
does (a;)ier. Hence we can put a = t((a;);cr) and then we have P(a) = 0.
This finishes showing that S is algebraically closed and this ends the proof of
Theorem A.7.1. O

Lemma A.7.2 (B.Diarra): Let a = (a;)ic; € R. Then we have |||al|| =
pla).

Proof. Let J € U and let e = (e;);c;r € R be defined as e; = 0 whenever ¢ € J
and e; = 1 whenever ¢ ¢ J. For convenience we put b = ae. Clearly b belongs

to J, hence, we have [||a||| = tin§\\a—t|| < |la = b||. But now, we check that
€
lla — b|| = sup|a;|;. Further, this is true for every J € U. Hence we obtain
i€J

< inf (s 1) =1 | = . he other h for all
|Ha\|\_}I€1u(31€1§|al\l) 1Z/I{n|al|l ¢(a). On the other hand, for all t € J, we

have p(a — t) = p(a) < |la — t||, hence ¢(a) < |||a|||. This ends the proof of
Lemma A.7.2. O

Theorem A.7.3 (B.Diarra): IfU is incomplete, then S is spherically com-
plete.
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Proof. Let (au,)nen be a decreasing distances sequence in S and for every n € N,
let a, € R be such that ¥(a,) = a,. By induction we can easily construct
another sequence (b, )nen in R satisfying

(Vn) ¢(b,) = a, for every n € N.

Wh)  |lbn — bp—1]| < r—2 whenever n > 1.
Indeed, let ¢ € N* suppose that we have defined by, ..., b, satistying (V,) for
every n =0, ..., q. Of course we have
(1) o(bg — ag+1) = plag — agr1) =rq <rg—1.
By Lemma A.7.2 we have ¢(by — ag+1) = |||bg — ag+1]||, hence by (1 ) there
exists ¢ € J such that ||by — ag+1 — ¢|| < rq—1. So, we put bgy1 = agq1 + ¢
and then (Vg41), (Wy41) are satisfied. In order to begin the induction, we put
bo = ag, b1 = a7 and then, we can define the sequence (b, )nen for every n € N,
satisfying (V,,) and W,,).
Now for each n € N we put b, = (b;,,)ics. Since U is incomplete, we can take
a decreasing sequence (X, )nen of elements of U such that ﬂ X, = 0. We put

neN

Ip =T\ Xy and for each n € N*, I, 11 = X, \ X 41. Thus the family (I,)nen
makes a partition of I. Further, for each ¢ € N, (I,,),>, makes a partition of
X, Hence we can define a surjective mapping ¢ from I onto N as ¢g(i) = n
whenever i € I,,. Now for every i € I, we put h; = b; 4¢;y. By (W), we have
|6 ]| < ro whenever n € N, hence |h;|; < rg for each ¢ € I and therefore (h;);er
belongs to R. We put h = (h;);cr and w = ¢(h). We will show

(2) |w— anp| <rp—1 whenever n € N*.

Let n € N* be fixed. It is seen that for every m > n, we have ||b, — b,,|| <
rn—1, hence for every ¢ € I we have |b;, — b;m|i < rn—1. Moreover, since
(Im)m>n makes a partition of X, 11, for every i € X, there exists m > n
such that i € I,,, and then we have |b; ,, — hils = [bin — b; g(iy|i = |bin — bimli <
rn—1 whenever ¢ € X, 1. But X,,;1 belongs to & and therefore in S we have
|b, — h| = liz/r{n |bi n, — hili < 7p—1. This is true for every n € N* and finally this

shows (2). Hence w belongs to ﬂ ds(cn41,7,) and this finishes proving that

neN
S is spherically complete. O

Theorem A.7.4: K admits a spherically complete algebraically closed ex-
tension whose residue class field is not countable and whose valuation group is
equal to R.

Proof. First we will construct a complete algebraically closed extension of K
whose residue class field is not countable. Let T be a transcendental extension of
the form K((z;);er) provided with the absolute value | . | defined on K[(z;),cr]
by
’ Z ajl,‘_,’jqx;i...x;q ‘: max_|aj, .. ;.|
2l Ge<N

J1reedg <N Troda=

It is seen that |z; — x| = 1 whenever j, h € R such that j # h and therefore the
residue class field of T is not countable. Let 7" be the completion of T and let
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E be an algebraic closure of T”, provided with the unique absolute value that
extends the one of T”. Let E/ be the completion of E. By Theorem A.5.14, E is
algebraically closed. Obviously, its residue class field contains the one of T and
therefore is not countable.

Now, we can construct & by taking I = N and E; = E’ for every i €
N. Since E’ is algebraically closed, by Theorem A.7.1 so is S. Moreover, the
valuation group of E’ obviously is dense and therefore, by Theorem A.7.1, S
has a valuation group equal to R. Finally, by Theorem A.7.3 § is spherically
complete. That ends the proof of Theorem A.7.4. O

Thanks to Theorem A.7.3, we can generalize Corollary A.4.4:

Theorem A.7.5: Let P,F € Klz| with F having all its zeros in d(0,7).
Let Q,R € K[z] satisfy P = FQ + R and deg(R) < deg(F). Then we have
U(Q,logr) < ¥(P,logr) — Y (F, logr) and V(R,logr) < U(P,logr). Moreover,
if P has all its zeros in d(0,r), then U(Q,logr) = ¥(P,logr) — ¥(F,logr)

Proof. Without loss of generality, we can assume that the valuation group of
K is R. Consequently, up to a change of variable, we can suppose that r = 1.
We can also assume that F' is monic. Now, since F has all zeros in d(0,r),
this means that U(F,0) = 0 and hence Theorem A.7.5 is reduced to Corollary
A44. O

Notation: Henceforth, K will denote an algebraically closed spherically com-
plete extension of K. R

For every disk d(a,r~) (resp. d(a,r)) in K, we will denote by d(a,r ™) (resp.
E(a, 7)) the disk of same center and diameter in K. Similarly, we will denote by
C(a,r) the circle {z € K | |z — a| = r}.

Remark: There exists another way to construct a spherically complete ex-
tension, due to Irving Kaplansky [67].

Definition: Let [E be an extension of IL provided with an ultrametric absolute
value that extends that of IL. The extension E is said to be immediate if its
residue class field is identical to that of IL and its value group also is identical
to that of IL.

The following theorem is due to I. Kaplansky [67]:

Theorem A.7.6: 1L admits an immediate extension that is mazximal with
respect to the inclusion.

An immediate extension of IL is spherically complete if and only if it is
mazimal with respect to the inclusion.

A mazimal immediate extension of IL is unique up to an IL-isomorphism.
The proof of this theorem represents a very big work. In what follows, we will

not need Theorem A.7.6.
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A.8. Transcendence order and transcendence type

In C, we can define a notion of transcendence order stating that if a is tran-
scendental over Q, and has a transcendence order < ¢ and if b is trenscendental
over Q, but algebraic over Q,[a], then b also has a transcendence order < ¢. We
will show the existence of numbers of order less than 1 + € for every € > 0.

Definition: Let 7 €]0,+o0o[. Let F' be a transcendental extension of Q, pro-
vided with an absolute value | . | extending that of @,. An element a € F
will be said to have transcendence order < 7 or order < T in brief, if there
exists a constant C, €]0,+oo[ such that every polynomial P € Qp[z] satisfies
log,,(|P(a)]) > log(||P||) — Ca(deg(P))". Moreover, a will be said to have weak
transcendence order < T+ or weak order < 71 in brief if @ has transcendence
order < 7 + € for every € > 0.

Notation: We will denote by S(7) the set of numbers z € C, having tran-
scendence order < 7 and by S(7) the set of numbers z € C, having weak
transcendence order < 7.

Finally we will say that a number z € C,, is of infinite order if it does not
belong to S(7) for all 7 € RY.

Remark: By definition, an element a € C, having transcendence order < 7
or weak transcendence order < 71 is transcendental over Q,,.

Theorem A.8.1: Let 7 €]0,+o0[. If S(7) # 0 then T > 1.

Proof. Let a € Cp,, a # 0, be trenscendental over Q, and have transcendence
order < 7. We can find b € Q,, (b # 0) such that |a — b|, < 1. Consider the
minimal polynomial () of b over Q,. Let bs, ..., b, be the conjugates of b over Q,,
and set by = b. We notice that by Corollary A.5.6 all conjugates b; of b over Q,
satisfy [b;], =[]

Suppose first that |a|, < 1. Since |bj|, = |b|, = |a|, < 1, all coefficients
of @ belong to Z,. Obviously @ is monic, hence ||Q| = 1. By hypothesis,
there exists C, €]0, +oo[ such that W,(P(a)) > log,(||P||) — Ca(deg(P))” VP €
Q,la]. Consequently, —n0,(Q(a)) = ~¥,((Q(a))") < C,(ndeg(Q))7 Vn € N
Since Q(b) = 0 and since, by Corollary A.3.5, @ is 1-Lipschitzian in U, we
have —¥,(Q(a)) > 0 and therefore, if 7 < 1, the inequality —n¥,(Q(a)) <
Cyu(ndeg(Q))™ VYn € N* is impossible when n tends to +oo.

q
Suppose now |al, > 1. Set Q(X) = chXk. Since the b; satisty |b;|, =

k=0
laly, (1 < j < q), we have |cx|, < (|al,)?™ and particularly |co|, = H§:1 1bjl, =
(lalp)?. Consequently, ||Q| = (|al,)? and therefore, considering the sequence

(Q™)nen, for every n € N* we have,

(1) —nT,(Q(a)) < —ng¥,(a) + Cy(ng)T.
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q k
On the other hand, Q(a) = Q(a) — Q(b) = (a —b) chZa 971 and
7=0

hence |Q(a)l, < |a —bl,(|al,) . Conbequently, we obtam

—n¥,(a—b) —n(¢g—1)¥,(a) < ¥,(Q(a) and hence, by (1):

—n¥,(a—b) —n(q— 1)\I/p(a) < —ng¥,(a) + Cq(ng)”. Finally,

n(\I/p(a) —U,(a—0)) < Cq(ng)”. Since |al, > 1 and |a —b|, < 1, this inequality
is impossible again when n tends to 4+oco, which ends the proof. O

Theorem A.8.2: There exists b € C, transcendental over Q, of order < 1+,
for every e > 0.

Proof. Consider first a strictly decreasing sequence (€, )ne such that lim, . 4 €, =
0 and lim,_, €, log(n) = +oc.

We can always divide any polynomial P € Q,[z] by some A € Q, such that
|Alp, = ||P|| and hence we go back to the hypothesis |P|| = 1. So, if we can
find some b € C, and, for every w > 0, a constant C(w) > 0 and show that for
every P € Q[X] such that || P|| = 1, we have —log(|P(b)|,) < C(w)(deg(P))**++,
Theorem A.8.2 will be proven.

By induction we can define a strictly increasing sequence (7, )nen of Q and
a sequence (a,)nen of Cp with r, = —, irreducible and (v,)nen a strictly
v

n
increasing sequence of prime numbers satisfying further the following properties:
i) lim r, =400,

n—+00
ii) for every n € N, n» <r, <(n+1)
i) v, > [[}Z "y
iv) (an)" —p“"
By construction, the sequence (|a,|p)nen is strictly decreasing and tends to
o0

0 and all terms belong to U. Set b = Z an. Now, let us fix ¢ > 0. We will
n=1
show that b is transcendental over @, and has a transcendence order <1 +e.

Since the sequence (e,) tends to 0, we can find an integer t(¢) such that
€m < € Ym > t(e). Thus, as a first step, let us take ¢ > t(¢) and let us find a
constant C'(g) > 0, not depending on b, such that for every P € Q[X] satisfying
|P|| = 1 and deg(P) = g, we have —log,(|P(b)|,) < C(e)g"*e.

n
For each n € N*, set b, = Z @, Since the sequence (|am|p)men is strictly
m=1
decreasing, we have |b— b,|, = |an+1|, and since P is obviously 1-Lipschitzian
in the disk U, we have |P(b) — P(b,)|p < |an+1|p hence

(1) log, (|P(b) = P(bn)lp) <log,(lantilp) = —rns1-

Now, since the sequence ¢, log,(n) tends to +o00, we can choose n(q) such
that (n(g) + 1)¢»@+1 > (g + 1)'*°. Then by (1) we have
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(2) log,, (| P(0)=P(bn(q))|p) <logy(lan(g)+1lp) = =(Tnig+1) < =(n(g)+1)"0+ <
—(g+ 1)

We will show the following inequality (3) (3) —log,(|P(by(q))lp) < (¢ +1)'F=.

n(q)
Thus, suppose (3) is wrong. Set h, = Z A Then by, g) = bg—1+hy. Now,
m=q

developping P at the point b,_1, we have

9 p(m)
(4) Tog, (| P(bug)ly) = log,, (| > L USY)

m=0

)" ) < g+ 1)

. P(m)(bq—l)

Consider now the sum (hq)™. Since the sequence |ayy, |, is strictly

m)!
decreasing, we have \Z;Tp = |aglp, hence log,(|hyl,) = —ry. We notice that
-1
Qpla, ..., aq,] is an algebraic extension of Q, of degree at most ‘11_[ v;. Con-
sequently, by Corollary A.5.8, the extension Qplai, ..., a4, ] has aj\:/zilue group
-1
of the form ;Z with ¢t < ql_[ v;. On the other hand, due to the hypothesis
j=1

U
Tq = — it appears that v, is a prime integer, prime to u, and bigger than
v
q ot
q and than H v;. Consequently we can apply Lemma A.5.19 with h, in the

j=1
role of ¢ and b,_; in the role of a. Therefore for each m = 0,...,¢ — 1, all the
PO (by 1) . o
7'(%) are pairwise distinct. Consequently we have
m: p
q
P (bg-1) 7 \m P (bg—1) 7 \m
©) | 3 =], = e |00

Next, since —W,(h,) = rq < (¢+ 1)¥, for each integer m =1, ..., ¢, we have
U, (hy)™) = —mry > —m(q+ 1) > —q(g+ 1)¥, hence

(6) Up((hg)™) > —q(g+ 1) > —(¢+ 1) Vm < q.

. P (b, )
Consequentlly, by (4), (5) and (6), the polynomial Q(X) = Z —

(x)"
m=0

has all coefficients in d(0, 17) and hence we have ||Q| < 1. But since |by—1]|, < 1,
by Lemma A.3.5, we have ||P|| = ||Q|| < 1, a contradiction to the hypothesis
| P|| = 1. Therefore, Relation (3) is proven for every polynomial P € Q,[X] of
degree ¢ > t(w), such that ||P|| = 1. Consequently, by (3) we obviously have a
constant C' > 0, not depending on b, such that —¥,(P(b)) < C(deg(P))' ™ for
every P € Q,[X] such that deg(P) > t(w) and ||P]| = 1.

m!
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Particularly b is transcendental over @, because if it were algebraic, the
degrees of polynomial P € Q,[X] such that P(b) = 0 wouldn’t be bounded.
Finally, by Lemma A.8.2 there exists a constant m > 0 such that |Q(b)|, > m
for every polynomial @ € Q,[X] of degree ¢ < t(w) and ||@Q|| = 1. Therefore b
is clearly of order <14 w. O

Corollary A.8.3: , is not complete.
The transcendence type is defined in C, in the same way as in C [91].

Definitions and notation: Given a complex number z, we denote by |z|s
its modulus. Throughout this chapter, a number a € C, will just be said to be
algebraic (resp. transcendental) if it is algebraic (resp. transcendental) over Q.
When a is algebraic or transcendental over Q, we will precise this. Throughout
the chpter, we will denote by €2 the field of algebraic numbers and by A the ring
of algebraic integers.

Let a € Q2. We call denominator of a any strictly positive integer n such
that na and we denote by den(a) the smallest denominator of a. Let ag, ..., a,
be the conjugates of a over Q in C and put a; = a. For convenience, we will
use the logarithm of base p denoted by log,. We set |a| = maxj—1 __n(|a;j]o)

and s(a) = rnax(logp(m7 log(den(a))).

The following relations are classical and immediate:

Lemma A.8.4: Leta,b€ Q andletm € N. Then den(ab) < den(a)den(d), den(a+
b) < den(a)den(b), den(ma) < mden(a),den(a™) < (den(a))™ and
|ab| < [al.[o, [@+0b| <la|l+[b, [mal<mlal, |a™|= ([a])™

Let P(X1,..., Xn) = > @iy, i, (X1)".(X)™ € C[Xy, ..., Xp,]. We put
B1yeeyin
H(P) = max |ai,,. i, | and t(P) = max(logp(H(P),deg(P) +1).
V1yeeesln

A number a € C, will be said to have transcendence type less than o if
there exists a constant C, > 0 such that, for every Q € Z[X], we have either
Qa) =0 or —¥,(Q(a)) < Co(t(Q))™. We denote by 7 (a) the set of numbers
a € C, having a transcendance type less than or equal to .

If a number a € C, does not belong to 7 («) for all @ > 0, we will say that
a is of infinite type.

By Lemma A.5.17, Lemmas A.8.5, A.8.6 and A.8.7 are immediate:
Lemma A.8.5: Let P € Z[X]. Then —¥,(P,0) <log,(H(P)).
Lemma A.8.6: Let P € Z[X] be of degree k and let a € Q. Then

[P(a)] < H(P)(k + 1)(max(Ja], 1))".
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Lemma A.8.7: Let a1, as €]0,+00[ satisfy a1 < ag. Then T (a1) C T (ag).

There exists a link between transcendence order over Q, and transcendence
type over Q [57].

Theorem A.8.8: Let o€ [1,4+00[. Then S(a) C T (a).

Proof. Let a € S(a). By hypothesis there exists C' > 0 such that
~0,(Q(a) < ~W,(Q,0) + C((deg(@Q)) VQ € Q[X].

Hence, by Lemma 9.1, we have —W¥,(Q(a)) < log,(H(Q)) + C(deg(Q))a V@ €
Q[X]. Then, taking C' > 1, we can derive

~0,(Q(a)) < C(log, (H(Q)) + (deg(@))”) < 20(4(Q))* ¥Q € QLX].

which proves that a € T (). O

By Theorem A.8.2, we can now state the following corollary [45]:

Corollary A.8.9: There exists b € Cp,, transcendental over Q,, such that
be T(1+¢) for every e > 0.

Proof. Indeed, in Theorem A.8.2, we saw that there exists b € C,, that belongs
to S(1+¢) for all € > 0. O

By Lemma A.5.17, we can immediately derive the following inequality:

Theorem A.8.10: Let a € Q* be integral of degree q, over Z. Then l|al|, >
1

(lal)™
Proof. Let Q(X) = irr(a,Q) and let aq,...,ay be the conjugates of a over Z,

with a; = a. Then Hg:l a; belongs to Z*, hence by Lemma A.5.18 we have
|(lj| <1 V] = 27...,(1

(1) |Haj‘p—|n

1 @jloo
Consequently,

1

1|a1|

(2) lal, = |Ha3|p— H
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Now, | [T—; ajle0 = TTI=; laj]e < (Ja])?. Thus, by (2), we obtain

lalp, > —

(lal)*

O

Corollary A.8.11: Leta € Q* be of degree q over Q and let t = den(a). Then
1

al, > ——.

| ‘P = tq(|a|)q

Corollary A.8.12: Leta € Q* be of degree q over Q and let t = den(a). Then
log(lalp) = —2q(s(a)).
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B. Analytic elements and analytic functions

B.1. Algebras R(D)

The idea of considering rational functions with no pole inside a domain
D, in order to define analytic functions in D, is due to Marc Krasner [68].
The behaviour of rational functions in K is determined by circular filters which
characterize all multiplicative norms on rational functions. We will make a
general study of the set of multiplicative semi-norms of a normed algebra which
is locally compact with respect to the topology of pointwise convergence. Results
are first due to B. Guennebaud and G. Garandel [61], [62]. Henceforth, the idea
of considering the topologic space of multiplicative semi-norms continuous with
respect to the topology of a normed algebra, was used for many works on Banach
algebra [50], [58], [61].

Notation: In this chapter, we denote by D an infinite subset of K and then
KP is provided with the topology Up of uniform convergence on D.

We denote by R(D) the K-algebra of rational functions h(z) € K(x) with
no pole in D. Since D is infinite, R(D) is clearly a K-subalgebra of K” and is
provided with the topology induced by Up, that makes it a topological subgroup
of KP. Algebraically, R(D) is a K-subalgebra of K(z) and more precisely, is
of the form S(D)~'K[z] with S(D) the multiplicative set of polynomials whose
zeros do not belong to D.

We denote by Ry(D) the K-subalgebra of R(D) consisting of the f € R(D)
which are bounded in D. Finally, if D is not bounded, we denote by Ry(D) the
K-subagebra of R(D) that consists of the f € R(D) such that lim f(z)=0.

|z|——+o00, z€D
For every f € KP we set ||f||p = sup|f(z)| € [0, +o0].
xeD

Recall that an algebra-semi-norm v of a K-algebra A is said to be semi-
multiplicative or power multiplicative if it satisfies ¥ (z™) = (¢¥(z))™ Vo € A and
is said to be multiplicative if ¥ (zy) = Y(x)(y) Vz, y € A.

Lemma B.1.1 is then immediate.

Lemma B.1.1: R(D) is a principal ideal ring. FEvery ideal is of the form
P(x)R(D) with P a polynomial whose zeros belong to D.

The following Lemma B.1.2 is an immediate application of general properties
of the supremum, once the set [0, +o0] is provided with the classical extensions
of the addition and the multiplication :

a+ (+00) = +4o0 for every a € [0, +00]
a.(+0) = +oo for every a €]0, o0

Lemma B.1.2:  For every g,h € R(D) we have
i) ||hllp =0 if and only if h =0
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ii) || AR||p = |A| [|h||p for every X € K*

iii) |2+ gllp < max(||hl[p, llgllp)

iv) If (Ifllp,llgllp) is different from (0,400) and from (4+o00,0), then
1hgllp < lIAllp-[l9llp-

v) |h"*]|p = (||h]|p)™ whenever n € N.

Theorem B.1.3:  Ry(D) = R(D) if and only if D is closed and bounded.
Moreover, if D is closed and bounded, then || . |p is a semi-multiplicative ul-
trametric norm of K-algebra.

Proof. We first suppose D to be bounded. By Lemma B.1.2 we just have to
show that ||h||p < +oo for every h € R(D) in order to show that || . ||p is a
norm of K-algebra such that ||h™||p = ||h|%. Since D is bounded, obviously
every polynomial P satisfies ||P||p < 400, hence by Lemma B.1.2 iv) we just

have to check that H%

’ < 400. To show this, it is sufficient to prove that
D

H HD < 400 for every a € K\ D. Since D is closed, the distance r from a
T —a
1

1
o=+
z—allp ~ r
Now if D is not bounded, obviously ||z||p = +oo. If D is not closed there

exists at least one point a € K\ D with a sequence (a,)nen in D which converges

to D is not zero, hence H
1
to a, hence HiH = +o00. That ends the proof of Theorem B.1.3. O
x—allp

Theorem B.1.4 (G.Garandel, B. Guennebaud) [60], [61]: Let F be a
large circular filter on K of diameter s > 0. The following three assertions are
equivalent

i) o, (h) <||hllp whenever h € R(D)

ii) v, is a continuous ultrametric multiplicative norm on R(D) with respect to
the topology of uniform convergence.

iii) F is secant with D.

Proof. First i) and ii) are obviously equivalent. Next, iii) clearly implies i)
because if F is secant with D then hjr__n|h(x)| = }1%|h(m)| < ||Ihllp-

Hence we just have to show that i) implies iii). For this, we assume iii) to be
false and will prove that i) is false. We first assume F to have center a. There
exist annuli I'(a;, 7, 7)) (1 < i < ¢) with |a; — a;| = s whenever ¢ # j and

1771

q
rl < s < r}, such that the set B = ﬂF(ai,rg,rg') belongs to F and satisfies
i=1
BND ={. We put 7’ = maxr; and r"” = min r}. Let p’ €]r’, 5], let p” €]s, "]

1<i<q 1<i<q
and for every i = 1,...,q set b; € I'(a;, p, s) and set b € I'(a, s, p").
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q
We put h(z) = (H(m—az))(ﬁ) with |[A| = b. We first notice that

X Jf—bi
i=1
T — a; . A
¢, (h) =1 because ¢, ( 2 )= 1 whenever ¢ = 1,...,q and gof(ib) =1
t ’ 7,/ p// * T ,r/
Next, it is easily seen that [|h]p < max (;’ﬁ) Indeed |h(z)| = \b—l| <
/!
when |z —a;| <7’ and |h(z)| = |7b\ < p—// when |z —a| > r”. Hence we have
x — T

Ih]|p < 1 while ¢ (h) =1 and that contradicts the assertion i).

We now suppose that F has no center. Let d(a,r) belong to F such that
d(a,r)N D = 0 and let p €]s,r[. There still exists a disk d(a, p) € F such that
d(a, p) C d(a,r). Let us take b € I'(e, p,7) and A € K such that || = |b]. We

A
just put h(xz) = p— and we have ¢ (h) = 1 because |h(z)| = 1 whenever
b—
x € d(a,p), while |h(z)] < lb=qf < 1 whenever |z — a| > r, hence finally
|Ih]|p < 1. That ends the proof of Theorem B.1.4. O

In order to describe properties of the multiplicative semi-norms on R(D)
and next on analytic elements, we must recall a classical result on continuous
multiplicative semi-norms on a normed K-algebra A.

Notation: We denote by Mult(A) the set of K-algebra multiplicative semi-
norms of a K-algebra A. Given ¢ € Mult(A), we denote by Ker(y) the set of
x € A such that ¢¥(z) = 0 and Ker(v) is called the kernel of 1.

Suppose now A is a normed K-alebra whose norm is denoted by || . ||. We
denote by Mult(A, || . ||) the set of K-algebra multiplicative semi-norms of A
that are continuous functions on A with respect to the norm || . || of A. Similarly,
we denote by Mult,,(4,] . ||) the set of K-algebra multiplicative semi-norms
of A whose kernel is a maximal ideal that are continuous functions on A and
by Mult;(A,| . ||) the set of K-algebra multiplicative semi-norms of A whose
kernel is a maximal ideal of codimension 1, that are continuous functions on A.

Lemma B.1.5:  Let A be a K-algebra provided with a K-algebra norm || . || and
let ¢ € Mult(A). Then ¢ belongs to Mult(A, | . ||) if and only if p(z) < || = ||
whenever x € A. Moreover, if A has a unity u and if @ is not identically 0, then
p(Au) = |\ whenever A € K. Further if ¢ belongs to Mult(A), Ker(yp) is a
prime ideal and if Mult(A,| . ||), then Ker(p) is a closed prime ideal.

Proof. Suppose that for some x € A we have ¢(x) > || « ||. Since the valuation
group of K is dense, it contains a subgroup of the form a

Z, with a > 0. Let g € N be such that g(log(yp(z)) — log(]|z||)) > a. Then there
clearly exists A € K satisfying || z ||7 < |A| < ¢(x)?. So much the more, we have
|| z7 || < |A] < @(x?). Let ¢ = 29. Then

lim (%)n =0 but lim (p((%)n> = 400, and then ¢ is not continuous.

n—oo n—oo
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Now let w be a unity in A. Either ¢(u) = 0 and then ¢(z) = 0 whenever
x € A, or p(u) =1 and then we have p(Au) = |A|¢(u) = |A| whenever A € L.
The last statement is immediate. This ends the proof of Lemma B.1.5. O

The following Theorem B.1.6 is well known and may be found in [61] and in
Theorems 6.9 and 6.19 of [51].

Theorem B.1.6:  Let A be a K-algebra provided with a K-algebra norm || . ||.
For every x € A the sequence (|| 2" ||%)neN has a limit denoted by || x ||s: ,
satisfying ||xl|si < ||z]] Yo € A and ||z||si = sup{op(x) | ¢ € Mult(A,]|. .||).
Moreover, |[f"||si = (|[flls:)" Vf € A,Vn € N.

Theorem B.1.7: Let A be a K-algebra provided with a K-algebra norm || . ||.
Then Mult(A,|| . ||) is compact with respect to the topology of pointwise conver-
gence.

Proof. Let B be the unit ball of A. By Lemma B.1.5 each ¢ € Mult(4, ] . ||)
has a restriction @ to B which satisfies ¢(B) C [0,1]. Hence Mult(B, || . ||) is a
closed subset of [0, 1] provided with the topology of pointwise convergence on
B. But by Tykhonov’s Theorem, [0,1] is compact for this topology and then

so is Mult(B, | . ||). Moreover the mapping ¢ — @ from Mult(A,| . ||) into
Mult(B, || . ||) is a bijection. Indeed it is clearly injective and it is surjective
because given ¢ € Mult(B,|| . ||), we may extend v to A by putting ¢(z) =

|)\|1/;(§) with A € K, [\| > ||z|. Finally this bijection is bicontinuous with

respect to the pointwise convergence on both Mult(A,| . ||) and Mult(B,] . ||)
and this ends the proof of Theorem B.1.7. O

Theorem B.1.8 was given in several works [42], [53] . This proof mainly is
given in [53] .

Theorem B.1.8: Let B be a field extension of K provided with a non zero
semi-norm of K-algebra || . ||. Then || . || is a norm of K-algebra, and there
exists an absolute value ¢ on F extending that of K, such that p(z) < ||z
whenever x € A.

Proof. Let SM(A,|| . ||) denote the set of continuous semi-norms ¢ of A satis-
fying ¢(f™) = (¢(f))" Vf € A, VYn € N. It is seen that || . || is a norm because
Ker|l .| = {0}. In the same way, so is the spectral semi-norm || . ||s; associated
to] . |. Now SM(A,|| . ||s:) is easily checked to be inductive with respect to the
order >, i.e. given a totally ordered subset W of SM(A,| . ||si), the mapping
1 defined in A by ¢(z) = inf{f(x)|6 € W} belongs to SM (A, || . ||s;). Then by
Zorn’s Lemma, SM (A, || . ||s;) admits a minimal element . As we just saw, ¢ is
a norm of K-algebra and we have ¢(x) < ||z||s; whenever z € A. We will prove
that @(ab) = ¢(a)p(b) whenever a, b € A. Let a € A\ {0}. For every = € A,
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we put u,(z) = L’O(El )@ . The sequence (u,(z))nen is seen to be decreasing. We
pla)”
put o(z) = lim pla"z) whenever x € A.

n—-+oo a)™
First we will check flga‘z o is a norm of K-algebra. Obviously, it is seen that for
every n € N, wu, is a norm of K-vector space, hence so is 0. Next, we have
$la"z)p(a"y), _ d(a"x)d(a"y) _ ¢(a*"zy)
¢(a™)d(a") p(a®) T Pa®)
x, y € A, hence o(z)o(y) > o(xy). So, o is a norm of K-algebra. Now, we
check that o is semi-multiplicative, because:

i (S = () =

Un (@)un(y) = > o(zy), whenever

i (20—

Then, since o satisfies (1) o(z) < ¢(x) < ||z||s; whenever z € A, it clearly
belongs to SM (A, || . ||s;) . But since ¢ is minimal in SM (A, || . ||s:), actually
© is equal to 0. Now, as the sequence (u,)nen is decreasing, we have o(z) <
p(ax)

p(a)
ends the proof of Theorem B.1.8. O

< ¢(z), and finally by (1), ¢(azx) = p(a)p(x) whenever a,x € A. This

Theorem B.1.9 is immediate.

Theorem B.1.9: Let A be a Banach K-algebra. For every mazimal ideal
M of A, there exists ¢ € Mult(A,| . ||) such that Ker(p) = M. If M s of
codimension 1, the maping T from A onto K admitting M for kernel satisfies

[T(HI < IfI VS e A

A
Proof. Let M be a maximal ideal of A and let IB be the field M Since A

is complete, M is closed, therefore IB is provided with the quotient norm. By
Theorem B.1.9, B admits an absolute value | . | which extends that of K. Let
¢ be the canonical surjection from A to IB. On A we put ¢(z) = |(x)|. Then
© is an element of Mult(A,| . ||) such that Ker(¢) = M.

Suppose now M is of codimension 1 and suppose |7(f)| > ||f||. Then the

00 n
series Z ((J;)) converges and shows that f — 7(f) is invertible in A, a
T
n=0

contradiction since 7(f — 7(f)) = 0. O

Corollary B.1.10: Let A be a Banach K-algebra . Fvery K-algebra homo-
morphism from A to K is continuous .

The characterization of the continuous multiplicative norms of (R(D), || . ||p)
by means of the large circular filters secant with D suggests us extending this
characterization to the multiplicative semi-norms of R(D).
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Theorem B.1.11 [62], [61]: Let D be a closed bounded subset of K. The
mapping Z from ®(D) into Mult(R(D)) defined as Z(F) = ¢, is a bijection
from ®(D) onto Mult(R(D),Up). Moreover, ¢, is an absolute value if and
only if F does not converge in D. Further Mult(R(D, || . ||p)) is provided with
the topology of pointwise convergence for which it is compact.

Proof. On the one hand, by Theorem A.3.10 and Theorem B.1.4, it is clearly
seen that the mapping defined on ®°(D) by F — ¢, is a bijection from this
set onto the set of continuous multiplicative norms on R(D).

On the other hand, every a € D defines a multiplicative semi-norm v by
(h) = |h(a)|, the kernel of which is the maximal ideal (x — a)R(D). Thus
we have a mapping from the set of convergent circular filters on D into the set
of multiplicative semi-norms which are not norms: this mapping is obviously
injective.

Finally let ¢ be a multiplicative semi-norm whose kernel is not zero. Then
Ker(t) is a prime ideal hence a maximal ideal of R(D) and therefore it is of
the form (z — a)R(D) with a € D. Then ¢(x — a) = 0, hence ¥(z —b) = |a — b|
whenever b € K and therefore 1 is of the form ¢, with F, the filter of the neigh-
bourhoods of @ in D. Thus E is a bijection from ®(D) onto Mult(R(D),Up)
and @z is a norm if and only if F is not convergent. Finally, by Theorem
B.1.7 Mult(R(D,| . ||p)) is compact with respect to the topology of pointwise
convergence. That ends the proof of Theorem B.1.11. O

Corollary B.1.12 [62], [61]: Mult(K[X]) is provided with the topology of
pointwise convergence for which it is locally compact.
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B.2. Analytic elements

Due to the fact that any disk d(a,r) is exactly the same as d(b,r) for every

oo
b € d(a,r), it is easily seen that a power series Z an(x — a)™ which admits the
n=0
disk d(a, ) for disk of convergence, may not be extended outside its convergence
disk as it is done in complex analysis, by means of a change of origin.

However by Runge’s Theorem we remember that a holomorphic function in a
compact subset D of C is equal to the limit of a sequence of rational functions
with respect to the uniform convergence on D. This is why Marc Krasner
introduced analytic elements on a subset D of K directly by considering limits
of sequences of rational functions with respect to the uniform convergence on
D [68].

Actually Marc Krasner constructed a theory of analytic functions f defined
on a quasi-connected set D equal to the union of a chained family of quasi-
connected sets (D;);er such that the restriction of f to each D; is an analytic
element on D;. (This construction was widen to the analytic infraconnected
sets by Philippe Robba [83], [74]).

Another theory was defined by John Tate, consisting (in one variable) of
using infraconnected affinoid sets. Here we will only describe some basic prop-
erties of analytic elements on infraconnected sets in order to apply them to
power series and various Laurent series that are used for studying meromorphic
functions. A comparison between Krasner’s theory and Tate’s theory was made
in [44] and Krasner-Tate’s algebras were examined again in [50]. Here we aim
at studying meromorphic functions in the field K and applications to problems
of value distribution. This is why we will not repeat the study of Krasner-Tate
algebras.

We will examine algebras of analytic elements, particularly Banach algebras
of bounded analytic elements. We will see the characterization of sets D such
that the space of analytic elements on D is a K-algebra. We will examine some
basic properties of analytic elements such as poles when the set D is not closed
and we will see that analytic elements on a closed bounded set D are uniformly
continuous. If D has finitely many infraconnected components, for each one, its
characteristic function is an analytic element on D.

Notations and definitions: Let D be an infinite subset of K. We will denote
by H(D) the completion of R(D) for the topology Up of uniform convergence
on D. The elements of H(D) are called the analytic elements on D [68].

The set H(D) is then provided with the topology of uniform convergence on
D for which it is complete and every f € H(D) defines a function on D which
is the uniform limit (on D) of a sequence (hp)nen in R(D). Thus, given two
infinite sets D, D’ such that D C D', the restriction to D of elements of H(D')
enables us to consider that H(D') is included in H (D).

Next, H(D) is a K-vectorial space and a complete topological group with
respect to the topology Up. The question whether the product of two analytic
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elements on D is an analytic element on D will be studied later. However it is
easily seen that given f € H(D), the function f™ also belongs to H(D).

Lemma B.2.1:  For every f,g € H(D) we have
i) |fllp=0 if and only if f =0,
i) [IMfllp =M |fllp whenever A € K*,

iii) [|f + gl p < max([[f][p, ll9]lp),
iv) If (IIfllp,llgllp) is different from (0,4+00) and from (4+o00,0) then the

function fg satisfies | fgllp <|fllp ll9lp
v) 1f™lp = I fIh whenever n € N*.

Notation: We will denote by Hy(D) the set of elements f € H(D) bounded
on D. Then Hy(D) is clearly a K-vectorial subspace of H(D) and is closed in
H(D). Moreover || . ||p is a norm on Hy(D) that makes it a Banach K-algebra.
If D is unbounded, we will denote by Ho(D) the set of the f € H(D) such that

lim f(z) =0.
|| —+o0

reD

Theorem B.2.2 is an immediate consequence of Theorem B.1.3.

Theorem B.2.2:  Hy(D) is a Banach K-subalgebra of KP. The following
three conditions are equivalent

i) H,(D) = H(D),

ii) H(D) is topological K-vector space,

iii) (H(D),|| - llp) is @ Banach K-algebra,

iv) D is closed and bounded.
If these conditions are satisfied, then || . ||p is a semi-multiplicative norm.

Definition: Let f € H(D) have no zero in D. The element f will be said to
be invertible in H(D) if the function 1 (also denoted by f~1) belongs to H (D).
This definition holds even if H(D) is not a ring.

The following Lemma is classical.
Lemma B.2.3:  Let f € H(D) be such that alglfj|f(x)| > 0. Then f~ belongs

to H(D). Moreover, if D is closed and bounded, f~—' belongs to H(D) if and
only if inf |f(z)| > 0.
z€D
Let g € H(D) satisfy |g(x)] = 1 for all x € D and ||f — 1||p > |lg — 1||p-
Then we have ||fg—1|p =|f —1lp
Proof. We suppose in£|f(x)\ = A > 0. Let (hyn)nen be a sequence in R(D) such
TE
that lim ||h, — f||p = 0. For n big enough we have |h, ()| > A whenever z € D

, hence the sequence —
b,

1 hn f - hn
hence ’h7 f(;;j)|< ” 2 2

1 ’:’f(;v)
L(x)l f(x) ho ()

converges to —.

f
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1 1
Conversely if D is closed and bounded and if 7 € H(D), 7 has to be bounded

1

by some M € Ry hence |f(z)| > whenever z € D.

|=1forallz € Dand ||f—1|p > |lg—1|b-
For every « € D, we have |f(z) — 1||g(z)| > |g(z) — 1] and therefore
|f(x)g(x) — 1] = |f(z) — 1||g(x)] = |f(x) — 1]. This finishes proving Lemma
B.2.3. O

Theorem B.2.4:  Let f € H(D) and let h € Ry(D). Then fh belongs to
H(D).

Proof. Let € be > 0 and let g € R(D) satisfy ||f — g||, < & . Then we have
Ihf — hygll, < ellh||, and this clearly shows that fh € H(D). O

When D is not closed or is not bounded, we will show how to split an element

fe H(D).

Theorem B.2.5:  The vector space H(D) is equal to the direct sum
Ro(K\ (D\ D)) @ H(D). Moreover if D is not bounded, then H(D) is equal to
the direct sum K[z] ® Ho(D).

Proof. Let (fn)nen be a sequence in R(D) such that lim ||f, — f]lp = 0. In

particular there exists NV € N such that f, — fy is bounded when n > N .
We put g, := fn — fn. The sequence g, converges in H(D) to f — fn. Let
g := f — fn. On the other hand, since each f, — fy belongs to R(D) and is
bounded in D, f,, — fn belongs to R(D). Obviously || fn — fnllp = || fn — fnll5s
hence finally g belongs to Hy(D). Now we may obviously split fy in the form
E(Z‘) + hl(x) + hQ(Z‘) with E(.%‘) S K[l’],hl S Ro(ﬁ),hg S RQ(K \ (E \ D))
We put f* = hy and f = E + hy + g. We have clearly split f in the form
f*+ f with f* € Ro(K\ (D \ D)), f € H(D). Hence we have proven that
H(D) = Ro(K\ (D\ D)) + H(D).

This sum is easily seen to be direct. Indeed, suppose that we have
h € Ry(K\ (D \ D)) and g € H(D) such that h + g = 0, with h # 0. Then

q
h has a pole @ € D\ D and it may be written in the form ZL + ha
P (z — )t

with \; # 0 (1 <i < q) and hy € Ro(K\ (D \ (DU {a}))). But g is obviously
bounded around «, hence h has to be bounded when x approaches «, hence
finally o does not exist. This shows that the sum is direct.

Now, we suppose D is unbounded. First we will prove that every element
f € Hy(D) admits a limit when |z| tends to +o00. Let e € RY and let h € R(D)
satisfy ||f — h|[p < €. Since f is bounded in D, so is h. But then h is of the

P
form 0 with deg(P) = deg(Q) and therefore h has a limit A\ when |z| tends to
+o00. Let € > 0 be such that |h(z) — A| < € whenever z € D\ d(0,r). Clearly we
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have | f(z) — A| < € whenever z € D\ d(0,r). This proves that f does converge
along the filter 7 which admits as a basis the family of sets D\ d(0,r) (r > 0).

Let f € H(D) be unbounded. Let (z,),en be a sequence such that
lim |f(zn)| = +o00. Suppose the sequence (x,,)nen does not tend to +o00. Then

there exists a bounded subsequence (2, )qen such that lim |f(z,, )| = +oo, but
qHOO

this is impossible due to Theorem B.2.2, because such a sequence lies in a closed

bounded set D’ included in D. Now there exists h € R(D) such that f — h is
bounded and therefore, we have lim |h(z,)| = +o0o. Let h(z) = P(z) + u(z)
n—oo

with P € K[z] and u € Ro(D). Since f — h is bounded, clearly f — P belongs

to Hy(D), hence we have proven that H(D) = Klz] + Hy(D). Moreover, since

u has a limit when [z| tends to +o0 in D, we have Hy(D) = Ho(D) + K and

therefore H(D) = Klz] + Ho(D). Finally, by considering elements when |z|
tends to +00, this sum is easily seen to be direct and this ends the proof. [

Definition: Let o € ?\ D and f € H(D), and let f = f~ + f, with f* €
Ro(K\ (D\ D)) and f € H(D). Let « € D\ D be a pole of f* and let
q

f*(z) = jz::l ﬁ + u(x), with u € Ro(K\ (D \ (D U {a}))). The pole «
of order g of f* will be called a pole of order q of f and Ay will be called the
residue of f at o and will be denoted by res(f, «).

Let a;,1 < i < n be the poles of f and for each i let ¢; be the order of

a;. The polynomial H(:c —a;)% will be named the polynomial of poles of f in
i=1

D\ D.

Corollary B.2.6:  Leta € D\D and f € H(D) be such that |f(z)| is bounded
in d(o,7) N D with r > 0. Then f € HDU{a}).

Proof. Indeed, as f is obviously bounded in D Nd(a,7), so is f* and therefore
f* has no pole at a. O

Corollary B.2.7:  H(D) = Hy(D)+R(K\(D\D)), Hy(D) = Hy(D) C H(D)
and Hy(D) = Hy(D). If D is bounded, then Hy(D) = H(D). If D is not
bounded, for every unbounded f € H(D) there exists a unique ¢ € N* such that

x~1f(x) has a finite non-zero limit when |x| tends to +oco, x € D. Let d(a,r™)

be a hole of D. If f belongs to H(D) and if x~9f(x) has a finite non-zero limit,

(xffxi)q belongs to Hy(D).

then

Corollary B.2.8: If D =K then H(D) = R(D).
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Corollary B.2.9 comes from the definition of the poles and from Theorem
B.2.5.

Corollary B.2.9:  Let f € H(D) and let « € D\ D. Then « is a pole of
order n > 0 for f if and only if (x — )" f(x) has a finite non-zero limit at «. If
there exists no r € RY such that |f(x)| is bounded in d(o,r) \ {a} then « is a
pole of order n > 1 for f and (x — a)" f(x) has a finite non-zero limit at «.

Theorem B.2.10: Let f € H(D) and let « € D\ D. Either f belongs to
H(DU{a}) or « is a pole for f.

Proof. Tf f does not belong to H(D U{a}), by Corollary B.2.6, f is unbounded
in any disk d(c«, r) whenever r > 0. Hence by means of the notation of Theorem
B.2.5, a is clearly a pole of f* and therefore is a pole of f. O

‘We must notice Theorem B.2.11:

Theorem B.2.11:  Let D be closed and bounded and let f € H(D). Then f
s uniformly continuous in D.

Proof. The claim is immediate when f is a polynomial. Suppose now that
P
flz) = ngg € R(D). Since D is closed and bounded, there exists m > 0 such
T
P(x)

that |Q(x)] > m Vax € D. Consequently, o) also is uniformly continuous.
x

Then, when f € H(D), since f is a uniform limit of rational functions, f is also

uniformly continuous. O

Notation: ~We will denote by Alg the family of sets E such that H(E) is a
K-subalgebra of KZ.

Theorem B.2.12:  Let f € H(D). There exists W € Ry(D), whose zeros
lie in D\ D and h € H(D) such that f = % Further, if D is bounded or if
D € Alg then there exists g € H(D) such that f = % with Q the polynomial of
poles of f in D\ D.

Proof. We may summarize Theorem B.2.5 in this way: f is of the form f(z) +
f(z) with f € R(K\ (D \ D)) and f € Hy(D). Indeed if D is bounded we
just take f = f and if D is not bounded, f is the one defined in Theorem

~ P n
B.2.5. Thus f(z) can be written in the form Qg; with Q(x) = H(a: —a;)%
i=1

i.e. the polynomial of the poles of f in D\ D, and P(z) € K[z]. Let ¢ = Z%'
i=1
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Theorem B.2.12 is obviously trivial if D has no hole, hence we may assume D

M. We know that
(z —a)
W € Ry(D) hence W f € Hy(D). On the other hand, we see that W f € R(D)

— h
hence W f € H(D). We just put h = W f and have the factorization f = W

If D is bounded we see that both (), h are bounded in D hence Qf belongs

to have at least one hole T' = d(a,r™). Let W(x) =

to Hy(D) and then @ f belongs to H(D). In the same way if H(D) is supposed
to be a ring, then @ f belongs to H(D) and then Q f = P+Q f belongs to H(D).
This ends the proof. O

Corollary B.2.13:  Let S(D) be the set of polynomials whose zeros belong to
D\ D. If D € Alg, then H(D) = S(D)"*H(D).

Theorem B.2.14: Let D be closed. Let g € H(D) and let P € K[z] be such
that Pg belongs to H(D). For every Q € K[z] such that deg(Q) < deg(P), Qg
also belongs to H(D).

Proof. Theorem B.2.14 is clearly trivial when D belongs to Alg. Now, suppose
that D does not belong to Alg, hence D is unbounded. If D has no hole,
then D = K, hence by Corollary B.2.8 H(D) is equal to K[z]. Thus, we may
assume that D admits at least one hole and then, without loss of generality,
we can assume that this hole is d(0,77). Let ¢ = deg(P). Let P, = P and

P(x) — P(0)

let P,y = . Then P,_; is a polynomial of degree ¢ — 1. We see

x
1
that (P(z) — P(a))g(z) belongs to H(D). But HfH is bounded and then by
Tllp

Lemma B.2.4, P,_1(z)g(z) belongs to H(D). Hence by induction, it is seen
that for each j =1, ..., ¢ there exists a polynomial P; of degree j such that P;g
belongs to H(D) and this clearly completes the proof. O

Now when D is not infraconnected we have to notice an easy result on
characteristic functions that shows how rich the algebra H(D) is.

Proposition B.2.15:  Let D have an empty annulus A. Let wy,ws be the
functions defined on D by wi(x) = Liws(z) = 0 if x € Z(A) and wy(z) =
0,we(z) =1if x € E(A). Then wy and we belong to H(D).

Proof. Let A =T(a,r1,r2), with a € D. With no loss of generality we may obvi-
ously assume a = 0. Let &« € A be such that 71 < |a| < 79 and for each n € N*| let

_¥ _ E n_ 7171 n . . f n Q n
Up = T (E)" Then Hl (a) 1HI(A) < (|a )" while |1 (a) | > (|o<|)
e
for every x € £(A) hence finally ||u, — w1/, < max((%)n7 (g)n) Thus we
2

see that w; = lim u,, € H(D) and we =1 —w; € H(D). O
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Theorem B.2.16: Let E have finitely many infraconnected components E, .., Eq.
For each i =1, ...,q, the characteristic function of E; belongs to H(E).

Proof. Let A be one of the infraconnected components of E. By Proposition
A.1.21, there exist empty annuli (A;)o<;<n such that A is either of the form
n

a) Ig(Ao) ﬂ ﬂ Eu(A or of the form ) ﬂ Eu(A))
j=1
But by PI‘OpOSlthH B 2.15, the characteristic function u; of Eg(A;) belongs to
Hy(E), (1 <j <n) and so does the characteristic function o of Tg(Ao). Since

all the u; belong to Hy(E), we see that the products u = H uj and w = H uj
7=0 j=1

belong to H(E) . Then when A is of the form «) (resp. 3)), its characteristic

function is equal to u (resp. w ) and therefore belongs to H(E). O
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B.3. Composition of analytic elements

Given A and B C K, f € H(A) such that f(A) C B and g € H(B), a basic
question is whether g o f € H(A). There is an immediate application to the
study of homomorphisms from an algebra H(D) to another H(D').

Lemma B.3.1:  Let A and B be subsets of K and let f € H(A) be such that
f(A) C B. For every A € K\ B, f — X is invertible in H(A). Moreover, if for
every h € R(B), ho f belongs to H(A), then for every g € H(B), go f belongs
to H(A) and for every X € B\ B, f — X is invertible in H(A).

Proof. Let r = §(\,B). If A ¢ B we have r > 0 and then |f(z) — A\| > r
whenever x € A. Hence by Lemma B.2.3, f — XA is invertible in H(A).

Now we assume that for every h € R(B), ho f belongs to H(A). Let
g € H(B), let e be > 0 and let h € R(B) satisfy ||g — h||p < e. It is seen that
lgo f —ho f|la <e Since ho f belongs to H(A), then so does go f.

= 1

Finally, let A € B\ B and let h(u) = — Since h o f belongs to H(A),
u—

f — A is invertible in H(A). O

Theorem B.3.2:  Let A, B be subsets of K and let f € H(A) satisfy f(A) C
B.

i) If f € R(A), then go f € H(A) whenever g € H(B).

i) If A € Alg, then go f € H(A) for all g € H(B) if and only if f — X is
invertible in H(A) for all A € B\ B.

Proof. By Lemma B.3.1 we just have to show that for every g € R(B), go f
belongs to H(A) in each one of these two hypotheses:

H,) f € R(A). B

H,) f — X is invertible in H(A) for all A € B\ B.

So we take g(u) = SEZ; € R(B) and will show that go f € H(A) in each
hypothesis. Let A1, ..., Aq be the poles of g in K\ B.

H,) For every j =1,...,q, f— A; is invertible in R(A) because f — A; has
no zero in A. Hence Q o f is invertible in R(A) and then go f belongs to R(A).

H,) For each j = 1, ..., q, either \; belongs to B\ B, or it belongs to K\ B. In
both cases, by Lemma B.3.1 each f — A; is invertible in H(A). Since A belongs
to Alg, Qo f is clearly invertible in H(A) and P o f belongs to H(A). Hence so
does go f. O

Corollary B.3.3: Let A € Alg and let B be a closed subset of K. Let
f e H(A) satisfy f(A) C B and let g € H(B). Then go f belongs to H(A).

Example : Letr, s € Ry, let f € H(d(0,7)) be such that f(d(0,r)) C d(0,s)
and let g € H(d(0,s)). Then go f belongs to H(d(0,r)).
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Lemma B.3.4: Let h € R(D) and let D' = h(D). Let f € H(D'"). If f is
invertible in H(D') then foh is invertible in H(D). If h is a Moebius function,
f s invertible in H(D') if and only if f o h is invertible in H(D).

1
Proof. First we suppose f invertible in H(D’). Let g = 7 Then by Theorem

B.3.2 go h belongs to H(D) and is clearly equal to . Now we assume that

1

oh
h is a Moebius function and we put £ = h=1. If f o h is invertible in H(D),
(f o h) of is invertible in H(D') and this ends the proof of Lemma B.3.4. O

We are now going to study the K-algebra homomorphisms from H (D) into
H(D'). First we will consider homomorphisms from R(D) into R(D').

Proposition B.3.5: Let D, D' be subsets of K and let v € R(D’) satisfy
v(D') C D. Let ¢ be the mapping from R(D) into R(D') defined as ¢~(f) =
fovy (f € R(D)). Then ¢, is a homomorphism from R(D) into R(D’) and this
homomorphism is injective if and only if v is not a constant. Every K-algebra
homomorphism is of this form and the mapping v — ¢~ is a bijection from
the set of the v € R(D’) such that v(D') C D onto the set of the K-algebra
homomorphisms from R(D) into R(D").

Proof. Let v € R(D’) satisfy v(D’) C D. Then it is seen that ¢, takes values
in R(D’), is a K-algebra homomorphism and is obviously injective if and only
if 7 is not a constant.

Conversely, let ¢ be a K-algebra homomorphism from R(D) into R(D’) and
let v = ¢ (Ip/) with Ips the identical mapping in D’. Then we have ¢)(P) = Poy
for every polynomial P. On the other hand, if & ¢ D then (z — «) is invertible

1
in R(D) and 1/’(*) = (¢p(x — a))™' = (y — a)~L. Therefore 1(h) = ho~
T —
whenever h € R(D). The mapping v — ¢, is obviously injective and hence is a
bijection. O

Proposition B.3.6: Let D, D' be sets in K and let v € H(D') satisfy

Y(D") C D and fory e H(D') for all f € H(D). Let ¢, be the mapping from
H(D) into H(D') defined as ¢~(f) = fo~. Then ¢ is a linear mapping from
H(D) into H(D') continuous with respect to the topology of uniform convergence
on D for H(D) and on D’ for H(D'). Moreover, given f, g € H(D) such that
fg € H(D) we have ¢(fg) = ¢~ (f)d4(g). The restriction of ¢ to Hy(D) is a
Banach K-algebra homomorphism from Hy(D) into Hy(D’).

If v is a bijection from D' onto D and if v~ € H(D) then ¢ is a K-
vector space isomorphism from H(D) onto H(D') bicontinuous with respect to
the topology of uniform convergence on D for H(D) and on H(D') for H(D'),
satisfying (¢7)_1 = ¢,-1 and the restriction of ¢, to Hy(D) is a Banach K-
algebra isomorphism from Hy(D) onto Hy(D'). Further, if v(D') = D, then the
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equality ||~ (f)llpor = |fllp is true for every f € H(D) and the restriction of

¢ to Hy(D) is an isometric Banach K-algebra isomorphism from Hy(D) onto
Hy(D').

Proof. 1t is easily seen that ¢, is linear and satisfies ¢~ (fg) = ¢ (f)®~(g) when
fg € H(D). Next, ¢, is clearly continuous because

65Nl =l el = sup, [f(v(@))] < Slelglf(U)l = [If[l5- In particular, we
notice that if v(D') = D, we have [[¢(f)[l,, = [lf o7, = sup, [f(y(@))] =
sup | f(w)] = [ fl,-

ueD

If f € Hy(D) obviously f o~y € Hy(D'). Now let v be a bijection from
D" onto D such that v~ € H(D). It is seen that (¢,-1) 0 ¢, = Ig(p) while
~1

¢y 0(¢y-1) = Ig(pr), hence ¢, is an isomorphism such that ¢,-1 = (qﬁW) . O

We will study the K-algebra homomorphisms from H (D) into H (D).

Notation:  Given subsets D and D’ of K, we will denote by Z(D’, D) the set
of the v € H(D') such that y(D') C D and such that for every \ € D\D, ~v—\
is snvertible in H(D').

Given two K-algebras A and B we will denote by Hom(A, B) the set of
K-algebra homomorphisms from A into B.

Remark : In particular Z(D’, D) contains the set of the h € R(D’) such that
h(D'") C D.

Theorem B.3.7: Let D,D’ € Alg and let v € Z(D’,D). The mapping ¢
defined in H(D) by ¢5(f) = f o~ has values in H(D') and is a K-algebra
homomorphism from H(D) into H(D'"). Conversely, every K-algebra homo-
morphism  from H(D) into H(D') is continuous and of this form. Further,
the mapping v — ¢~ from =(D’, D) onto Hom(H (D), H(D')) is a bijection.

Let D" € Alg and let 7 € Z(D",D"). Then yot1 € E(D",D) and ¢yor =
$vy 0 Or.

Further, a homomorphism ¢~ from H(D) into H(D') is an isomorphism if
and only if v is a bijection from D' onto D such that v~' € H(D) and then,

-1
when it is satisfied, we have (qbV) = ¢, 1.

Proof. By Corollary B.3.3, f o~ belongs to H(D') whenever f € H(D) and
then by Proposition B.3.6 ¢, is a K-algebra homomorphism from H(D) into
H(D'). Let ¢ € Hom(H(D),H(D’)) and first let us show that ¢ satisfies

V()N o0 < NI fll, whenever f € H(D). Indeed suppose that for some f € H(D)
we have [[U(f)|l,, > Ifll, - Let ¢ = ¥(f). There exists a € D’ such that

e fy :
lg(a)] > || fll,,- Let A = g(cr). The series X T;}(/\> does converge in H(D) to

(A—f)~L. Thus A\— f is invertible in H (D) and then A—g = P(A—f) is invertible
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in H(D’). But by hypothesis « is a zero for A— g, hence A — g is not invertible in
H(D') and this shows that [|1)(f)|,, < |/fll,. Now let v =+ (Ip) € H(D') and

let us show that v € E(D’, D). Let o € K\ D. Since ¢ € Hom(H (D), H(D')),v

1 1 1
must satisfy w( ) = = hence v — a has to be invertible
T—a

P(E)—a y-a

in H(D') for every a € K\ D. But this just means that v € Z(D’, D).

In the same way, we see that for every h € R(D), we have ¥(h) = h(¢(z)) =
h o . Finally since ¢ is continuous, the equality ¥ (f) = f o~ holds in all
H(D). Obviously, given v,7 € =Z(D’, D), if ¢, = ¢, then ¢,(Ip) = ¢-(Ip)
hence v = 7. The mapping v — ¢, is then a bijection from =(D’, D) onto
Hom(H (D), H(D")).

Now let D" € Alg and 7 € Z(D”, D’). It is seen that v o7 € E(D”, D) and
bryor(Ip) = v o7 = ¢7(7) = ¢-(¢(ID)) = ¢+ 0 d4(ID), hence ¢ or = ¢7 0 b5

By Proposition B.3.6, if 7 is a bijection from D’ onto D and such that v=* €
H(D) then ¢, is an isomorphism of K-vector space, hence it is an isomorphism of

K-algebra and then, by Proposition B.3.6, we have (d),y)fl = ¢-1. Conversely,
if ¢~ is an isomorphism, then (¢7)_1 is in the form ¢,, with 7 € Z(D, D’) and
¢TO¢’)’(ID) :’}/OT(ID):ID and QS.YOQZ)T(ID/):TO’}/(ID/):ID/. Hence'y
is a bijection from D’ onto D such that v~ = 7 € H(D). That finishes showing
Theorem B.3.7. O

Definition: Let A, B be subsets of K. If there exists a bijection f € H(A)
from A onto B such that f~! belongs to H(B), then f will be named a bianalytic
element from A onto B.

The following Propositions B.3.8 and B.3.9 will be often useful to transform
unbounded domains into bounded domains.

Proposition B.3.8:  Let D € Alg and let h € R(D) be a Moebius function.
Let D' = h(D). Then D’ belongs to Alg and H(D') is isomorphic to H(D) with
respect to the mapping v defined in H(D') as (f) = foh.

Proof. By Theorem B.3.2, for every f € H(D'), f o h belongs to H(D) and
by Proposition B.3.6 this mapping is a K-vector space isomorphism which sat-
isfies ¥ (fg) = ¥(f)¥(g) whenever f,g € H(D’). Hence the space H(D') =
Y~ Y(H (D)) is a K-algebra isomorphic to H(D). In particular D’ belongs to Alg
and v is a K-algebra isomorphism. O

Proposition B.3.9:  Let D be a set with a hole T = d(a,r™), let y(z) =
and let D' = v(D). Then D’ € Alg and H(D') is isomorphic to Hy(D).

Proof. Without loss of generality we may clearly assume D to be closed because

by Corollary B.2.7, Hy(D) is equal to Hy(D). For every f € H(D) let ¥(f) =
foxy € H(D'). Then ¢(Hy(D)) is a K-algebra included in H(D’). If D is
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bounded, D’ is bounded and closed like D, hence by Proposition B.3.8, ¢ is an
isomorphism from H (D) onto H(D’) . Now we suppose D unbounded. Then D’
is bounded and (H,(D)) is obviously included in Hy(D’) which, by Corollary
B.2.7, is just equal to H(D’). On the other hand ~y clearly maps R,(D) onto
R(D’) hence (Hy(D)) = H(D'). O

1
Theorem B.3.10:  Let T = d(a,r™) be a hole of D and let y(x) = ——. Let
T —a
D’ = ~(D). The mapping ¢ from Hy(D') into Hy(D) defined as (f) = foy
1 a K-algebra isomorphism.

Proof. D’ is bounded, hence by Corollary B.2.7, Hy(D’) is equal to the Banach
K-algebra H(D’). Now by Theorem B.3.2, we see that v € Z(D, D’) and vy~ ! €
E(D’, D). Hence v is clearly a K-Banach space isomorphism from H,(D') onto
Hy(D). Now, 1 satisfies ¥(fg) = ¥(f) ¥(g9) whenever f,g € H(D) such that
fg € H(D'). But both Hy(D), Hy(D’) are Banach K-algebras, hence 9 is a
Banach K-algebra isomorphism. O

Theorem B.3.11: Let a be a point in D which is not isolated. Let vy(z) =
and let D" = ~(D\ {a}). Then given f € H(D"), fo~ belongs to H(D)

T—a
if and only if f(x) has a limit when |x| tends to 4+oc.

Proof. If f o~ belongs to H(D) then we just have
| ‘lim f(z) = lim fo~y(x) = fo~(a).
z|—~4o00 T—a

Conversely, if f has a limit [ when |z| tends to 400, then f o~ is bounded
in certain disks d(a,r) \ {a}. Therefore by Corollary B.2.6, f o~ belongs to
H(D). O

Corollary B.3.12: Let D € Alg, let a be a point in D which is not isolated,
1
such that (D \ {a}) belongs to Alg. Let y(z) = and let D' = (D \ {a}).
T—a

Then H(D) is isomorphic to the subalgebra of H(D') which consists of the f
such that | f(z)| is bounded when |x| approaches +oo.
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B.4. Multiplicative spectrum of H(D)

In Chapter B.1 we studied and characterized the multiplicative semi-norms
on a K-algebra R(D) of rational functions. We will apply these properties to
the completion H(D) of R(D) by considering multiplicative semi-norms that
are continuous with respect to the topology of H(D). On H(D) as on R(D),
the role of circular filters is obviously crucial: each continuous multiplicative
semi-norm of H(D) is defined by a circhular filter secant with D exactly as it
was explained for rational functions. However circular filters that are not secant
with D play no role with regards to H(D).

Notation: Throughout the chapter, D is an infraconnected subset of K. We
will denote by Mult(H(D),Up) the set of continuous multiplicative semi-norms
¥ of the K-vector space H (D) that satisty ¢¥(fg) = ¥(f)¥(g) whenever f,g €
H(D) such that fg € H(D).

Remark: This notation does not require H(D) to be a K- algebra, though it
coincides with the notation already introduced for any topological algebra when
H(D) is a normed K-algebra. Multiplicative semi-norms appeared to be the
main tool for studying analytic elements [43], [49], [68]. They also are at the
basis of Berkovich theory [6].

Theorem B.4.1: (G. Garandel) [61], [50], [58] For every F € ®(D), the
multiplicative semi-norm ¢, defined on R(D) extends by continuity to H(D) to
a continuous semi-norm of K-vector space , ¢, of H(D) that satisfies , o, (f.g) =
b0 (f) pvr(g) whenever f,g € H(D) such that fg € H(D). Moreover, the
mapping: F — L@, from ®(D) into Mult(H(D),Up), is a bijection.

Proof. We may obviously extend ¢, by continuity to , ¢, satisfying ,¢.(f9)
= ,0-(f) pe,(g) whenever f,g € H(D) such that fg € H(D). We now check
that the mapping F — ¢, from ®(D) into Mult(H(D),Up) is a bijection.
It is obviously injective because if ¢, = ¢, then ¢, = ¢, , hence by
Theorem B.1.10 F; = F». Now let v € Mult(H(D),Up). The restriction of ¢
to R(D) is an element 1y of Mult(R(D),Up), hence by Theorem B.1.10, vy is
of the form ¢, and then, by continuity, we have ¥ = ¢ . O

From Theorem B.1.4, the following theorem is immediate concerning a space
H(D).

Corollary B.4.2:  Let F be a large circular filter on K of diameter s > 0.
The following three assertions are equivalent

i) o, (h) <||hl|p whenever h € H(D)

ii) v, is a continuous ultrametric multiplicative norm on H(D) with respect to
the topology of uniform convergence.

iii) F is secant with D.

By Theorem B.1.10, we have Corollary B.4.3:
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Corollary B.4.3:  Let D be a closed bounded subset of K. Then
Mult(H(D),|| . ||p) s compact with respect to the topology of pointwise conver-
gence.

Remark : If F is a large circular filter, we know that ¢ is a norm on R(D).
But we don’t know whether ¢, is a norm on H (D). This not trivial question
is linked to the problem of T-filters which is a so big question that it would
require another book [49].

Definitions and notations: For convenience, for every a € D, we put
va(f) = |f(a)] whenever f € H(D) and so we define the semi-norms ¢, €
Mult(H(D),Up).

An element ¢ € Mult(H(D),Up) will be said to be punctual if it is of the form
o With a € D, i.e. if its circular filter is punctual.

Let F be a monotonous filter on D. By Proposition A.2.14, there exists a
unique circular filter G on D less thin than F. Then we put , ¢, (f) = ,¢,(f)
for all f € H(D).

For simplicity, when G has center 0 and diameter r, we set | f|(r) = , ¢, (f)-
So, when f belongs to R(D) this is the definition already given in Chapter A.3.

Now let D be infraconnected. Let a € D and let r satisfy 6(a, D) < r <
diam(D). The circular filter F of center a and diameter r is then secant with
D. We put ,@a, = ,¢,. Let A be a bounded subset of D and let A = d(a, ).
If §(a, D) < r < diam(D) we put ,¢, = ,¥qr- In particular this notation
applies to holes of an infraconnected set D.

Let F be a circular filter or a monotonous filter on D. We will denote by
J(F) the set of the f € H(D) such that li]rrn f(z) =0. Hence J(F) is equal
to Ker(,p,) and therefore, if D € Alg, Ker(,p,) is a closed prime ideal of
H(D).

If F is a monotonous filter on D, we will denote by Jo(F) the set of the
f € H(D) such that f(x) = 0 whenever z € B(F).

Finally, given a € D we will denote by J(a) the set of the f € H(D) such
that f(a) = 0. Then, if D € Alg, Jo(F) and J(a) are closed prime ideals of
H(D).

Among many ultrametric properties, we notice the following.

Lemma B.4.4:  Let F be a circular filter or a monotonous filter on D and let

f € H(D). There exists A € F such that | f(x)| is bounded in A. Moreover, for

every sequence (an )nen thinner than F, we have lir% Ya, =r. Gvena, b€ D
ne

and r €]0,diam(D)[ such that |a — b] < r, we have ,Yar = ,Cbr-

Proof. Indeed, there does exist A € F such that |f(z)] < ,¢.(f) + 1 for all
x € A. The last statements come from properties seen on R(D). O

Lemma B.4.5: Let f € H(D) be invertible in H(D). Then for every i) €
Mult(H(D),Up) we have (f) # 0.
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Proof. Indeed we have w(f)w(l) =1. O

f

Lemma B.4.6 :  Let ¢, € Mult(H(D),Up), let f € H(D) and g € H(D)
be such that ||f = gllp < pox(f). Then Lo, (f) = »ps(9)-

Proof. Indeed we know that , ¢, (f—g) < ||f—gll,, hence , o, (f—g) < ,¢-(f)
and therefore ¢ (9) = ,¢-(f). =

Lemma B.4.7: Let D be unbounded and let f € Hy(D). Then |f(x)| has
a limit ;¢ (f) when |x| tends to +o0o while x lies in D and ¢, belongs to
Mult(Hy(D), || - |Ip)-

Proof. By Corollary B.2.7, f(z) admits a limit A when |z| tends to +oo0, (z €

D). Hence " lim b |f(z)] = |A|. Thus the mapping ¢, defined as @oo (f) =
r|—-+o0, zE€

lim |f(x)l, belo;lgs to Mult(Ry(D),| . ||p) and obviously has continuation by

|| =00

continuity to an element ¢, € Mult(Hy(D),| . ||p) which satisfies ¢, (f) =
lim D|f(a:)\ O
€

|z|—+o0, =

Notation: When there is no risk of confusion about the set D, we will just

write ¢, , (resp. g, r€SpP. @, resp. ¢, ), instead of ¢, (resp. ,@a.r, resp.
»Pps resp. ¢, ). Next, when D is unbounded, ¢, will also be denoted by

pPoc-

Theorem B.4.8: Let ¢ € Mult(Hy(D),| . [[p) \ Mult(H(D),Up). If D is
bounded, 1 is of the form ¢, with a € D \ D. If D is not bounded, 1) is either
of the form ¢,, with a € D\ D or of the form ,p_ .

Proof. First we suppose D bounded. By Corollary 11.7 we have Hy(D) = H(D).
Hence 1 is equal to some _¢ ., with F a circular filter on D. If F is large, it is
a large circular filter secant with D and then ¢ belongs to Mult(H(D),Up). If
F is not large, it is the filter of neighbourhoods of a point @ € D . But if a € D,
obviously ¢, belongs to Mult(H(D),Up). Hence a € D\ D.

Now we suppose D unbounded. If D has no hole we just have H,(D) =
Ry(D) = K, hence Mult(Hy(D),|| . ||p) = Mult(H(D),Up). Thus we may
assume D to have a hole T' = d(a,r~). Without loss of generality we may

1
assume ¢ = 0. Let v(z) = — and let D’ = 4(D). Then D’ is bounded and,
T

by Proposition B.3.9, we know that the algebra Hy(D) is isomorphic to H(D’).
By Proposition B.3.8, the mapping f — f o~ defines a K-vector space isomor-
phism from H(D) onto H(D') and a K-algebra isomorphism from Hj(D) onto
Hy(D') = H(D'’). Hence we may define ¢/ € Mult(H(D’)) by ¢'(f o) = ¥(f)
whenever f € Hy(D). If ¢’ belonged to Mult(H(D'),Up’), then we would have
W(f) = ' (f o) whenever f € H(D) and therefore p € Mult(H(D),Up).
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Hence ¢’ does not belong to Mult(H(D'),Ups) and then 1 is of the form ¢
with b € D'\ D. If b # 0 then ¢ = P1. If b= 0, then ¢ = ¢, and this ends
the proof. O

Theorem B.4.9: Let (ap)nen be a bounded sequence in D such that no
subsequence converges to any point of D\D. There ezists a subsequence (o, )seN
such that the sequence (¢a,, )sen converges in Mult(H(D),Up).

Proof. By Theorem A.2.1 we may extract either a convergent subsequence, or a

monotonous distances subsequence, or an equal distances subsequence from the

sequence (, )nen. Let (an, )sen be such a subsequence. If this subsequence con-

verges to a point a € K, then by hypothesis « lies in D, hence ligl Pan,, = Pa-
S—T00

If this subsequence is a monotonous distances subsequence, or an equal dis-

tances subsequence, then by Proposition A.2.18, on D there exists a large cir-
cular filter F less thin than the sequence (o) and then we see that for every

f € H(D) we have lm_|f(an,)| = o, (f), hence lm g, () = ¢, (f).

Thus, in every case we have proven that the subsequence ¢, converges in
Mult(H(D),Up). O
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B.5. Power and Laurent series

A power series on a p-adic field admits a disk of convergence whose radius
is defined in the same way as on C. The difference of behaviour between power
series in C and in a field such as K concerns what happens when |z| is equal
to the radius of convergence. We show that the norm of uniform convergence
in a disk d(a, s) C d(0, R™) is multiplicative and satisfies || Zzz an®™ || g(0,5) =
SUP, e |an|s™. As a consequence, the product of two power series converging
in d(0, R™) is bounded if and only if both are bounded. We show that the
algebra of power series with a radius of convergence equal to R is equal to the
intersection of algebras of analytic elements H(d(0,s)) when s < R. We show
that all analytic elements in d(0, R~) are power series converging in d(0, R™).
The converse is false. However, we will see that the analytic elements in d(0, R)
are exactly the power series converging in this disk.

[ee]
Definitions: Let f(x) = Z anx" be a power series with coefficients in K.
n=0
As usual, when limsup V/|a,| # 0, we call radius of convergence of f the

n—oo
number

(with » = 0 when limsup {/|a,| = +00).

'r' = —-———m———
lim sup {/|an| n—o0

n—o0

When limsup {/|a,| = 0, we define the radius of convergence of f as +oo

n—oo
oo
Examples: Let f(z) = Z nx™. The radius of convergence of this series is 1.
n=1

This function obviously defines the rational function 5 ind(1,17) .

x
(1—-x)
Remark: If a sequence of positive numbers (uy, ),en is such that the sequence

Un+1
(o
On the field K, as in Archimedean analysis, it is a way to compute easily many
radii of convergence.

) N converges to a limit [ > 0, then so does the sequence (/tu,)nen-
ne

Lemma B.5.1 is immediate.

(o)
Lemma B.5.1: Let f = Zanm" be a power series with coefficients in
n=0

K. The series converges if and only if lim |a,z"| =0. Let r be its radius of
n—oo

convergence. If |x| < r, then the series converges. If |x| > r, then the series
diverges.

Notations and definitions:  Power series whose radius of convergence is 0o
are called entire functions on K and the set of entire functions will be denoted

by A(K).
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For every a € K, r € RY, similarly we will denote by A(d(a,r7)) the set
of power series in z — a whose radius of convergence is superior or equal to r
and by Ap(d(a,r7)) the set of functions f € A(d(a,r~)) that are bounded in
d(a,r™). The set A(d(a,r™)) \ Ap(d(a,r~)) will be denoted by A, (d(a,r7)).

Similarly, we will denote by A(K\d(a, r)) the set of Laurent series converging
whenever |z —a| > r, by A,(K\ d(a,r)) the set of bounded Laurent series
converging whenever |z — a| > r and by A, (K \ d(a,r)) the set of unbounded
Laurent series converging whenever |z — a| > r.

Finally, given 7/, r” such that 0 < v’ < ", we will denote by A(T'(a,r’,r"))
the set of Laurent series converging whenever ' < |z —a| < r”. And we
will denote by Ay(T'(a,r’,7"")) the set of functions f € A(T'(a,r’,r")) that are
bounded in T'(a, /', r").

From Lemma B.5.1 we can derive Corollary B.5.2:

400
Corollary B.5.2:  Let Zanaz" be a Laurent series with coefficients in K,

— 00
1
let v = ——————— with " = 0 whenever limsup {/|a,| = +oo and let
lim sup \”/ an\ n— o0
n—oo
r = with v = 0 whenever limsup V/|a,| = +oo. If

Climsup,__oo {/]an] n——o0

r’ < |xz| <r”, the series converges. If |x| > 1" or if |z| < r' the series diverges.

Corollary B.5.3:  Let r',r"” € Ry satisfy 0 < r’ < r”. Then A(T(0,r",r"))
“+oo
1
is the set of Laurent series Zanx" such that ' < <7,
limsup,,_, . V/|an]

— 00

Corollary B.5.4:  Let v/, " € Ry be such that v <" and let

+oo
f(z) = Zanx" € A(T(a,r’,r")). For each r €]r’,r"], one has

lim |ap|r™ = lm |a,|r™ =0.
n—-+oo n——oo
Lemma B.5.5 will be useful in certain further problems:

Lemma B.5.5: Let ¢ € N* and let IL be a complete algebraically closed ex-
tension of K. Let f € A(d(a, R™)) and suppose that there exists a power series
g with coefficients in I, with radius of convergence > R such that (g(x))? =
f(z)Vz € d(a, R™). Then g has all coefficients in K and belongs to A(d(a, R7)).

Proof. Without loss of generality we can obviously suppose a = 0. Let f(z) =

+o0 too
anx" (with b, € K) and let g(z) = Zanac". Then (ag)? = by, hence
n=0

n=0
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ag € K because K is algebraically closed. Now suppose we have proven that
a, € KVn <t—1. We can see that b, is of the form a;(ag)?~* + h where h is a
polynomial in ag, a1, ...,a:—1. Therefore a; also belongs to K. Consequently, g

has all coefficients in K, which ends the proof. O
+oo
Notation: Letr € RY and let Z anz™ € H(C(0,r)). By hypothesis, we have

lim |a,|r™ = lim |a,|r™ = 0. Generalizing notation already introduced for
n—-+oo n——oo

rational functions, we denote by v+ (f,logr) the highest of the integers m € Z
such that |a,,|r™ = sup, ¢y |a,|r™ and by v~ (f,logr) the lowest of the inte-
gers m € Z such that |a,,|r™ = sup,cz |a,|r". Next, when v (f,logr) =
v~ (f,logr), we just set v(f,logr).

Recall that we have, given a circular filter F of center 0 and diameter r,
for every element of H(d(0,7)) and particularlly for every analytic function

f € A(K), we put |f|(r) = lim[f(z)].

Theorem B.5.6:  Let r € RY, let F be the circular filter of center 0 and
diameter r on K and let E = d(0,r). Then H(E) is the set of power series

o0

F@) = Y ana™ such that lim |a,|r" = 0 and we have ||f|, = |f|(r) =
n=0

rleealiﬂa’nh’n = E@F(f) = ||f||C(077‘)'

For everyao € E, H(E) is also equal to the set of series f(x) = Z b (z—a)™
n=0

such that lim |b,|r™ = 0.
n—oo
Let B=K\d(0,r~). Then H(B) is the set of Laurent series f(x) = a—z
x
n=0
such that lim |a,|r™" = 0 and we have ||f], = max|a,|r™™ = L¢.(f) =
n—00 neN

1fllcor-
For every a € d(0,7~), H(B) is also equal to the set of series f(x) =
o0 bn
Z ———— such that lim |b,|r™" =0.
(z —a)” n—00

Let v' > r and let D = A(0,7,7")). Then H(D) is the set of Laurent series

n=0

flz) = Zanx" such that lim |a,|r™ = 0 and 11111 lan|(r)" = 0 and we
have
Ifll, = max(mi%( |an|r",m>aé< la,|(r")™). Moreover, for every o € d(0,7~), H(D)

o0
is also equal to the set of power series f(x) = an(x — )" such that
—00

lim |b,|r™ =0 and lirf |bn| (7)™ = 0.

n——oo
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Proof. Let S(r) be the set of power series f(z) = Z apx” such that lim |a,|r" =

n=0
0. Such a power series obviously is a uniform limit of polynomials because

|f(z) = —gs @n®"| < SUpP, >, |an|r™ and hence it belongs to H(E). Moreover,
E is closed and bounded, hence by Theorem B.2.2 H(E) is a K-Banach algebra
with respect to the norm of uniform convergence on F. By Lemma A.3.7, on
K[z] the norm || . ||z is ¢+ and by Theorem B.4.1 that equality has continuation
to H(E).

q
Now, for a polynomial P(z) = Zanx", by Lemma A.3.7 we have |P|g
n=0

= sup |an|r™ hence this equality also has continuation to f. Consequently,
0<n<q

Iflle = h}_n|f(a:)\ = pr(f). Particularly, S(r) is a subset of H(E).

In order to show that S(r) = H(E), we will first show that S(r) is closed
in H(E). Since F is secant with C(0,7) we have || ||, ,, = z¢-(f). But we

know that ¢, (P,) < Jnax la;|r®. Since ¢, extends continuously to ¢, €
Mult(H(E), || . ||, ), for n big enough, we have ., (f) =, @(Pa) = la;r?

with j < n and |a,|r™ < |aj|r? whenever m < j, hence finally ¢, (f) =

lajr? = ma§<|an|7‘". Consequently, we have |fll.,., = [fllz < laj|r! =
ne !

151<aX|an|r” and therefore [|f| ..., = fllg = maxo<y |an|r". This finishes
n ’ -

showing that S(r) is a closed subset of H(E).
Now we will show that R(E) is included in S(r). For this, we just have to

show that, given any 8 € K\ E, (ﬁ)q = (—;i(;)ny belongs to
n=0
T

F. When developping (Z(B)n)q, we see that for every fixed ¢ € N, the

coefficient A, of 7 is a sum of terms of the form

n=0

%, with s € N, hence finally

q
|4, < and therefore |A,]r? < <|%|> . Since |G| > r, this shows that

1
. 6]
a
(7ﬁ> € S(r). So, we have proven the inclusion R(E) C S(r) C H(E).
z—
Since S(r) is closed, we have S(r) = H(E).
Now let o € E. Since d(a, ) = d(0,r), after the change of variable x = a+u,

the same reasoning shows that a series f(z) = Z an " € H(FE) is also of the
n=0
form an(a)(x —a)" with lim |b,(a)|r™ = 0. Conversely, H(FE) is clearly
n=0

oo
equal to the set of series an(x + «)” such that lim |b,|r"™ = 0 because
n—oo

n=0
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oo
any series g of the form an u”, with lim |b,|r" = 0, can be written as
n—oo
n=0

o0
Z an(u+ )"
n=0
The statements about H(B) are an obvious consequence of those about
1 1
H(E) after the change of variable y = — and more generally, y = . So
x T—

are the statements about H (D). O

We can easily check the following corollaries :

Corollary B.5.7:  Let f € A(K). The following three statements are equiva-

lent:
i) lim M:+oqu€N,
r—-+oo rd
it) there exists no ¢ € N such that lir+n M =0,
r——+00 T

i11) f is not a polynomial.

Corollary B.5.8:  Let f, g € AK). Then f.g is a polynomial if and only if
both f, g are polynomials.

Corollary B.5.9:  Let r € RY and let D = d(0,r). Then H(D) is the set of

oo
power series f(x) = Z anz™ such that lim |a,|r"™ =0 and we have

M| 0o — 00
n=0

||fHD = I}ng%(mn“n = D@f(f)'

Moreover, the norms || . [|c(o,r, | - [(r) and || . [lq0,r) are equal and are multi-
plicative.

Corollary B.5.10:  Let r € R% and let D = d(0,7) (resp. D = d(0,77)).
Then the norm || . ||p on H(D) is multiplicative.

Corollary B.5.11: Let o € D and r € R be such that d(a,r) C D. Let

o0

f e H(D). Ind(a,r), f(x) is equal to a power series of the form Z an(x—a)"”

such that lim |a,|r™ = 0. If f(a) = 0 and if f(x) is not ident;cally zero in

d(a,r), then there exists a unique integer ¢ € N* such that a,, = 0 for every
n < q and ag # 0 and « is an isolated zero of f in d(c,T).

Proposition B.5.12:  Let r € R and let f(z) = Zanxn, The following
n=0

statements are equivalent:



82 Analytic elements and analytic functions

a) feA(d0,r7))
b) fe[)HO,s)

s<r
¢) The series [ is convergent in all of d(0,r7).

Proof. b) and c) are clearly equivalent to the condition lim |a,|s"™ = 0 whenever
n—oo

s < r and, in the same way as in archimedean analysis, it is shortly checked

1
that this is also equivalent to limsup /|a,| < —. O
n—oo r
Remark: If f is convergent for some a € C(0,r), then lim |a,|r" = 0,
n—oo

hence f belongs to H(d(0,r)).

0
Corollary B.5.13:  Let r € RY and let f(z) = Zanx”. The following

statement are equivalent:
a) fe AK\d(0,r))
b)  fe ) Hy(K\d(O,s))

s>r
c) The series f is convergent in all of K\ d(0,r)

+oo
Corollary B.5.14:  Let ry, 2 € R} with ry <7y and let f(x) = Zanx",
—o0

The following statement are equivalent:

a) feAT,r,r2))
b) f S ﬂ H(A(O,Sl,SQ))

r1<s1<s2<r2
¢) The series [ is convergent in all of T'(0,71,72)

Corollary B.5.15:  Let f € A(d(0,77)) be not identically zero. For every

a € d(0,77), f(z) is equal to a power series an(a)(x —a)". If f is not
n=0

identically zero and if o is a zero of f in d(0,r7), « is an isolated zero and f

factorizes in A(d(0,77)) in the form (z — a)%g(zx), with g € A(d(0,r7)), q €

N* g(a) # 0.

Definition: Let f € H(D) and let « GB, let » > 0 be such that d(a,r) C D
and suppose f(z) = an(l’ — )" whenever z € d(a,r), with by(a) # 0 and

n=q
q > 0. Then « is called a zero of multiplicity order q, or more simply, a zero of
order ¢. In the same way, ¢ will be named the multiplicity order of .
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Remark: In particular, these definitions apply to functions f € A(d(a,r7)),
at any point a € d(a,r™).

Corollary B.5.16: Let a € K, R € R’ and let f € A(d(a,R™)) (resp.
f e AK)). Let aq,...,aq be zeros of f of respective order s; and let P(x) =
q

H(l’ —aj)®. Then f factorizes in the form P(z)u(z) with v € A(d(a, R™))

j=1

(resp. u € A(K).

Corollary B.5.17:  Let a € K, R, R' € R} with R < R’ and let A =
d(a,R™), (resp. A =K\ d(a,R), resp. A =T(a,R,R"))) and let C(b,r) be a
circle included in A. Then npp, applies to A(A).

Corollary B.5.18:  Let f(x Zanm € A(K). If f is not a constant,

then lirf [f](r) = +o0.

Notation: Let R € RY and let f € A(d(a, R™)). Given r €]0, R[, by Proposi-
tion B.5.12 f belongs to H(d(a,r)), hence for every circular filter F secant with
d(a,r), o7 (f) is defined. Particularly, if @ = 0, |f|(r) is defined.

Theorem B.5.19:  Let R € RY and let f € A(d(a,R™)). Then f is invertible
in A(d(a, R™)) if and only if f has no zero in d(a, R™).

Proof. Suppose that f has no zero in d(a, R™). For each r €]0, R], f belongs

to H(d(a,r)) and hence by Lemma B.2.3, it is invertible in H(d(a,r)). Conse-
1

quently, the function defined in d(a,r) as g(z) = o) belongs to H(d(a,r)).
x

This is true for all r €]0, B[ and shows that f~! belongs to A(d(a, R7)). The
converse is obvious. O

Theorem B.5.20:  Let R € R% . The K-subalgebra Ay(d(0, R™)) of A(d(0,R™))
is a Banach K-algebra with respect to the norm || . ||aqo,r-). Further, this norm
is multiplicative and satisfies || f|lq0,r-) = liIIIl% |f|(r) = sup |a,|R™.

(e neN

Let f(x Zanm‘" € A(d(0,R™)). Then f is bounded in d(0,R™) if
n=0
and only if so is the sequence (|an|R™)nen. Moreover, if f is bounded, then

Hf”d(O,R*) = sup |an|Rn'
neN

Proof. Let f(x Zanx € Ap(d(0,R7)). By Theorem B.5.21 we have

I fllaco,r—) = supneN \an\R" The norm || . ||g(0,z-) is a norm of K-algebra hence
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Ilf g||d(07R_) < ||f||d(07R_) ||g||d(0)R_). On the other hand, by Theorem B.5.6,
the norm || . [|g(,s) is multiplicative on H(d(0,s)) for every s < R, hence

1/ 9llaco.r-) = Ifgllaco,s) = Ilfllaco5) [19llaco,s) whenever s < R, and therefore
| - lla(o,r—) is multiplicative on Ay(d(0, R™)). Now let (fm)men be a Cauchy

sequence in A, (d(0, R7)). We put f,(z) = Z an ma". By hypothesis, for every

€ > 0 we have an integer N (€) such that |an m — anq|R" < € for every n € N,
whenever m,q > N(e). Thus it is easily seen that each sequence (@n m)men
converges in K to a limit a,, that satisfies |a, — apn m|R™ < € whenever m > N (e)

and then the series f(z) = Zanx” satisfies [|f — fmllaco,r-) < €. Obviously
=0

f belongs to H(d(0, s)) for all s < R and then the sequence (f,,) is proven to
converge in Ap(d(0, R7)).
For every s €]0, R[, we have

1£1(s) = I fllaco,s) = sup |an|s™ < sup |an|R" = || f[|a0,r-)
neN neN

and hence we can check that the real increasing bounded function h defined
in 10, R[ as h(s) = sup,,cy |an|s™ is obviously continuous at R. Consequently,
I fllao,r—) = lirrll%|f|(r) = sup |ap|R". Therefore, obviously, f is bounded in

d(0, R™) if and only if so is the sequence (|a,|R")nen- O

Corollary B.5.21:  Let R € R and let f, g € A(d(a, R™)). Then fg belongs
to Ap(d(a, R™)) if and only if so do both f, g and Ap(d(a, R™)) is K-subalgebra
of A(d(a,R™)).

Theorem B.5.22:  Suppose that K has characteristic different from 2. Let
f, g€ AK)\K (resp. f, g € A,(d(0,77))) be distinct. Then f* — g belongs
to A(K)\ K (resp. f? —g* € Au(d(0,77))).

Proof. Indeed, f? — g> = (f — g)(f + g). Suppose that |f + g|(r) is bounded
when r tends to +o0o (resp. to R). Since the characteristic of K is different
from 2, |f — ¢|(r) is obviously unbounded when r tends to +o0o (resp. to R).
Consequently, since the norm | . |(r) is multiplicative, |f? — ¢g?|(r) cannot be
bounded when r tends to +oo (resp. to R). Therefore f2 — g2 belongs to
A(K) \ K (resp. to A,(d(0,77))). Similarly, if |f — g|(r) is bounded when r
tends to +oo (resp. to R) we have the symmetric proof. O

Theorem B.5.23:  For everyr € R, H(d(0,r7)) is included in Ay(d(0,77)).

Proof. Since Ay(d(0,77)) is complete with respect to the norm || . [[4¢0,r~), We
just have to show that R(d(0,77)) C Ay(d(0,77)), hence finally we just have to

show that given a € K\ d(0,r7) , € Ap(d(0,77)). But we have

r—«
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1 1 1 — n
= - =—— Z(E) for all z € d(0,r~) because ’E‘ < 1, hence
-« a(l - %) a =\ «@
1
. € Ap(d(0,77)) and that finishes proving Theorem B.5.23. O

Remarks: We will see later that H(d(0, 7)) is much smaller than 4, (d(0,77)).
In particular, we will see that /1 + x belongs to A(d(0,17), but does not be-
long to H(d(0,17)).
+oo
Let Zanm” be a power series whose radius of convergence is r. Suppose

0
first that r € |K|. If there is at least one point a € C(0,7) such that the series
converges at «, then this implies that lirJIrl |an|r™ =0 and hence the series
n—-+0oo

converges in all C(0,r) and defines an element of H(d(0,7)). If r does not
belong to |K|, the power series converging in d(0,r) are just the power series
converging in d(0, 7). This is why we don’t have to consider analytic functions
inside a disk d(a,r).

Theorem B.5.24:  Let f(z) = Zanﬂc” € A(d(0,R™)) and suppose that
n=0
an € Qp Yn € N. Then for every x € d(0, R™), if = is algebraic over Q,, so is

f(z).
Proof. Suppose z is algebraic, of degree ¢ over Q, and let E = Q,[z]. For every

m € N, Z anz™ belongs to E. But since E is a finite extension of Q,, it is
n=0

complete hence f(x) also belongs to E. O
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B.6. Krasner- Mittag-Leffler Theorem

The wonderful Mittag-Lefller Theorem for analytic elements is due to Marc
Krasner who showed it on quasi-connected sets [68]. The same proof holds on
infraconnected sets as it was shown by Philippe Robba [83]. The theorem shows
that a Banach space Hy(D) is a direct topological sum of elementary subspaces
and is indispensable to have a clear image of the space H(D). Further, it appears
necessary when studying meromorphic functions as we will see later.

Throughout this chapter, D is supposed to be infraconnected.We remember

that if D is unbounded, Hy(D) denotes the set of the f € H(D) such that
lim f(z)=0.
|#|—+o0
xzeD
Theorem B.6.1: (M.Krasner) [68], [83] Let D be closed and bounded
(resp. unbounded) and let f € Hy(D). There exists a unique sequence of
holes (T )nen+ of D and a unique sequence (fn)nen in H(D) such that fo €
H(D) (resp. fo € K), fn € H(K\T,) (n > 0), lim f, = 0 satisfying
further

(1) f=) fuand |fll, =sup ||fall,-
n=0 nel
For every hole T,, = d(ay,r; ) , we have
@) Nfallo = lfallar, = 5%anra(fa) < pPanr, (f) < 1fl5-
If D is bounded and if D = d(a,r) we have

3)  Mfoll, = llfolls = ppar(fo) < pear(f) < Ifll5-
If D is not bounded then |fo| = ‘}‘iinw (@) < | fllo-

Let D' = D\ (U Tn>. Then f belongs to H(D') (resp. Hy(D")) and its
n=1

decomposition in H(D') is given again by (1) and f satisfies ||f]|,, = [/ f|l -

Proof. Since f € Hy(D), by Corollary B.2.7 we know that f € H(D). Hence
without loss of generality we may assume that D is closed. Obviously we may
also assume 0 € D.

First we suppose f € R(D). Then f has decomposition in the form E(z) +
¢

s

E (7J)q with F(z) € K[z] and a; € K\ D. Now for each j, either «;
T — ;)

j=1 J

belongs to a hole T or ¢; belongs to K\D. Let T4, . .. T be the holes that contain

t s
s
some «;. Then jg 1 m is of the form nEZI fn + ho with f; € Ho(K\ T;)

and hg € Hy(D). Finally we put fo = E(x) + ho and we have the announced
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decomposition: f = Z fi with f; € Ho(K\ T;) and fo € Hy(D). In the case

=0
when D is unbounded fo is just a constant.

For each i = 1,...,s, f — f; clearly belongs to Hy(D UT;) and obviously f

belongs to H, (D\ (U T))

First we will show that for any n € N*, we have ||fu|, = | fullx ., - Let Fn
be the circular filter on K of center ay, and diameter r,. By Theorem B.5.6 we
have

4 - - 1k ().

@ Waller, =, Jm - f:(a)]

But by Proposition A.2.17, F,,, is secant with D hence
5 li (@) = lim |f,

(5) R [fu(@)] = Jim [ fn(2)]

and obviously

©)  Jim @] < 1alls < [l
Finally by (4), (5), (6) we obtain

(7) ||fn||K\Tn = ”anD = p¥Pr, (fn) _

In the same way, when D is bounded, say D = d(0,r), we consider the
circular filter Fq of center 0 and diameter r, in order to prove that
(8) ||f0||D :||f0H5 :D(p:Fo(f)'

Now let us show that || f||, > || fnll, for any n € N*. Since f € R(D), there
exists an annulus I'(a,, 7,7, ) such that f has neither any zero nor any pole
inside T'(ap, 7, r1,). We put I =]log(ry,),log(r!,)[. By hypothesis f,, has no pole
in K\ d(0,7,). Hence, since E lim f,(z) = 0, by Corollary 3.17. we see that

|—o0
d\IJa"

(fnspt) < 0 whenever u € I. Let g, = f — fn € R(DUT,). Since g, has

d’r‘\Ija
no pole inside T7,, by Corollary A.3.17 we see that yi ——=(gn, ) > 0 whenever
i

p < log(ry,).

Therefore the equation U, (fn, 1) = Pq, (gn, ) has at most one solution in
I and then U, (f,p) is equal to max(V,, (fn, ), Ya, (gn, 1)) whenever pu € I,
hence ¥, (f, 1) > Uq, (fn, 1) whenever p € I. It follows that the multiplicative
semi-norm ¢, defined on R(D) satisfies log(¢, (fn)) = Wa,(fn,log(rs)) <
Vo, (f,log(ry)) = log(e, )(f) hence
9 ¢x, (fa) <ex (f)

But ¢, (fn) = [lfnll, and @, (f) < ||fll,, hence by (9) we have |, =
| f=ll - Finally by (7), we see that (2) is clearly proven.

When D is bounded we put D = d(0,7) and we prove (3) in the same way
as above when proving (2) by considering an annulus I'(0, r, ") such that f has
neither any zero nor any pole inside I'(0, 7, 7’). Then the element gy = f — fop is

P ~
of the form 0 with P, Q € K|z], all the zeros of @ in D and deg(P) < deg(Q)

~ dVv dv
because gg € Ro(K\ D). Hence we have —(go, ;) < 0 while d—(fo,,u) >0
w

dp
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whenever p €]logr,logr’[, so we have ¢, (fo)
we obtain (3).

When D is not bounded the inequality |fo| < || f]l, is obvious because

lim f(z) — fo = 0. This finishes proving the Mittag-Leffler Theorem when

le|—oo
T €
f € R(D).
Now let f € H(D) and let (hm)men be a sequence in R(D) that converges
to f in H(D). The set of holes of D that contain at least one pole of some h,
is clearly countable. Hence there exists a sequence of holes (T},),en+ such that,

< ¥z, (f) and hence by (8)

denoting by D’ the set D \ ( U Tn>, then h,, belongs to H(D') whenever
neN*

m € N. For each m € N, h,, splits in H(D') in the form h,, = Z Pom,n With
n=0

hmo € H(D),hympn € Ho(K\ T,). In particular, for each fixed n € N, we
have [|hmn — hgnllp, < [|hm — hgll,- Thus we see that the sequence (B, pn)men

converges in H(K \ T;,) for n > 0 (resp. in H(D) for n = 0) to a limit f,

(oo}

and then we have f = Z fn in H(D’"). Obviously ||f||, = sup || fnll 5, whereas
neN

n=0
Ifullo = lIfnll,, whenever n € N and so, | f||, = || f|l,, . This ends the proof of
Theorem B.6.1. O

Corollary B.6.2:  Let (T;);cr be the family of holes of D. Let J be a subset

of I and let S = I\ J. Let E = DUY(|JT3) and let F = DU(|JT;). Then
i€J i€S

we have H(D) = Hy(E) ® H(F) and for each g € Hy(E), h € H(F), we have

lg + hllp = max(|lgl 2, [|p]|F)-

The Mittag-Leffler Theorem suggests some new definitions.

oo
Definitions and notations: Let f € Hy(D). We consider the series Z fn

n=0
obtained in Theorem B.6.1, whose sum is equal to f in H(D), with fy €
H(D), f, € HK\ T,) \ {0} and with the T} holes of D. Each T, will be
called a f-hole and f,, will be called the Mittag-Leffler term of f associated to
T,, whereas fo will be called the principal term of f. For each f-hole T of D,

the Mittag-Leffler term of f associated to T will be denoted by fr whereas the
principal term of f will be denoted by fo. The series > fn will be called the

n=0
Mittag-Leffler series of f on the infraconnected set D. More generally, let E

be an infraconnected set and let f € H(FE). According to Theorem B.2.5, f
is of the form g + h with g € R(K\ (£ \ E)) and h € Hy(E) whereas such a
decomposition is unique, up to an additive constant. For every hole T of E, we
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will denote by f:T the Mittag-Leffler term of h associated to T and f:T will still
be named the Mittag-Leffler term of f associated to T.

Corollary B.6.3:  Let f € Hy(D), let (T,,)nen+ be the sequence of the f-
holes, with Ty, = d(an,p;,), let fo = fo and f, = fr, for every n € N*. Let
D = d(a,s), (resp. D =K). There exists ¢ € N such that || f|, = | follo- If
q > 1 then ||fll, = p%ayr,(f) = pPay.re(fq)- If ¢ = 0 and if D is bounded
(resp. is not bounded) then || f||, = p%a,s(f) = p¥a,s(fo) (resp. [Ifll, = [fol )-
Further, given a hole T of D, if f belongs to Hy(D) and if g belongs to Hy(K\T)

and satisfies f —g € H(DUT), then f:T s equal to g.

Definition: Let D be bounded, of center o and diameter r. A circular filter
F on D will be called the specific filter of a hole T = d(a,r ™) if it is the circular
filter on D of diameter 7. If D is bounded and D = d(a, R), the circular filter
of center a and diameter R will be called the specific filter of D. In general, a
specific filter of a hole of D or of D will be called a specific filter of D.

Corollary B.6.4:  Let f € Hy(D). There exists a large circular filter F with
center a € D secant with D such that Lo, (f) = ||fll,- If D is bounded, there
exists a specific filter F of D such that ¢, (f) = |flp-

Corollary B.6.5: Let f € H(d(0,17)) and let (d(am,17))men~ be the family
of the f-holes. Then fis of the form

anm
Zanox T2
;C—Oz

m,neN*

with hm a, =0, hm |@pn,m| = 0 whenever m € N* and lim (sup \anvm|) =0
m—00 " N

On the other hand fsatzsﬁes Ilfllao,1-) = sup |an ml-

m, ne
Conversely, every function of the form (1), 'wzth the ay, satisfying
|am| = |a; — am| = 1 whenever m # j, belongs to H(d(0,17)). The norm
|- llao,1-) is multiplicative and equal to g 1-y@o,1-

Corollary B.6.6:  Let ri,7o € Ry satisfy 0 < 11 < r9. Then H(A(0,11,72))

“+o0
is equal to the set of the Laurent series Z anz™ with lim |a,|ry = lm |a,|ry =
n——oo n—oo
— 00

—+o0
0 and we have H E apz"
= A(0,r1,72)

= max(sup lan|rT, sup \an\rg).
n>0 n<0

Proof. On Theorem B.5.6 we saw that H(A(0,r1,72)) is equal to the set of

+oo
the Laurent series E anz™ with lim |a,|r] = lim |a,|ry = 0. Then the
n——oo n—oo
— 00

conclusions on the norm come from Theorem B.6.1. O
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Theorem B.6.7: Let r € Ry. Then H(C(0,r)) is equal to the set of the

+oo
Laurent series Z apx™ with  lim  |a,|r" = 0 and we have || ) anx" |0, =
~ |00 —00 :
sup |a,|r"™. Next, the norm || . ||c(o,r) is multiplicative and equal to ¢y Po,r-

neL

Proof. We put A = C(0,r). We may apply Theorem B.5.6 by taking r; =re =r

and we obtain all the conclusions but the fact that || . ||, is multiplicative. Let
P

us show this. Let h € R(A). Hence h is of the form 0 with P,Q € K|x]

and Q(z) has no zero in A. Let © be a class of A. By Lemma A.3.9 we have
|Q(z)] = ¢o,-(Q) whenever z € © and |P(x)| < o, (P) whenever z € ©.

P P
Hence we see that Ha < @0,r<é) and therefore ||h||, = ¢o.r(h) whenever

A

h € R(A). Consequently, we have || f||, = ,vo.-(f) whenever f € H(A). O

Proposition B.6.8: Let ri,7m2 € RY, with r < ra.
i) AI(0,r1,72)) = A(d(0,73)) B Ao(K\ d(0,71)) and
Ap(T'(0,71,72)) = Ap(d(0,75)) ® Aop(K\ d(0,71))

+oo
ii)  Let f(z) = Zanx” € A(T'(0,7r1,7r2)). Then f € Ap(I(0,7r1,72)) if and

only if max(sup\an|r§‘,sup|an|r?) < +o0. Moreover, if f € Ap(T(0,71,72))
n>0 n<0
then
1160y = max(supanfr, sup fan )
n>0 n<0
iii)  Ap(T'(0,71,72)) is a Banach K-algebra that contains H(T'(0,r1,r2)).
Proof. i)is obvious. We will show 4i). Let f € Ay(I'(0,71,72)) and let f = fi+f2
with fo € Ap(d(0,75)) and f1 € Ag(K\d(0,71)). We put A =T(0,71,72). It is
obviously seen that || f||, < rr1ax(||f1||A7 ||f2||A) < max(sup |an|ry, sup |an|r?).
n>0 n<0

Now for every s, sy such that vy < s1 < s3 < ro we know that f belongs to
H(A(0, s1, s2)) because so do both fi, fo. Then by Theorem B.6.1 we have

P smen = 1052l L v o))

Finally || f2]la(0,55) = sup|an|s3 while |[fil[x\ 40,57 = sup|an|sy. Thus we see
neN 1 n<0

that
> — < no o n iQ lQ _
7T 9 - 9 bl
1 fllv,r ) = I1f1lA0,51,59) max(bup |an|s5, sup \an\sl). This is true for ev
n>0 n<0

ery si, sz €]ry, 2] hence finally || f]|, = max(sup |an |75, sup |an|r?). All state-
n>0 n<0

ments in 7) are then proven.
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We will now prove 44). By ii) Ap(A) is just the Banach K-algebra

Ap(d(0,75)) ® Ao p(K\ d(0,71))

provided with the norm || f1 4+ fa||a = max(||f2||d(0w;), Hle]K\d(O,rl))- We saw
that R(d(0,75)) C Ap(d(0,73)) hence R(d(0,75)) C Ap(A).

In the same way we have R(K\ d(0,71)) C Ap(K\ d(0,71)) and then
Ap(K\d(0,71)) is obviously included in A, (A). Since R(A) = R(d(0,75))+R(K\
d(0,71)), R(A) is included in A, (A) which is complete for the norm || . ||, hence
H(A) C Ap(A). This finishes proving Proposition B.6.8. O

Notation: Given a subset A of K, we will denote by f](]l\) the set of the
analytic elements in A, taking K as a ground field.

Now we will apply the Mittag-Leffler Theorem to the analytic extension of
analytic elements.
Theorem B.6.9:  For all f € H(D), f has continuation to a unique element
f € H(D). Further, if f € Hy(D) the Mittag-Leffler series of f in D is the
same as this of f in D.

Proof. By Theorem B.2.5 we may easily assume that f belongs to Hb(D) The
Mittag-Leffler series of f on D obviously converges on D to an element of (D )
This is unique because so is the Mittag-Leffler series of fon D. O

Theorem B.6.10: Let E be an infraconnected set such that D N E s infra-
connected and such that every hole of DN E is either a hole of D or a hole of E.
Let F € H(D), G € H(E), satisfying F(v) = G(x) whenever x € DN E. Then
there exists h € H(DUE) such that h(z) = F(x) whenever x € D, h(x) = G(v)
whenever x € E, such that for every h-hole V of D U E, hy is either of the

form F:S, when V is a F-hole S of D, or of the form G when V is a G-hole T
of E.

Proof. By Theorem B.2.5 it is eaily seen that we may assume F' € Hy(D), G €
H,(FE) without loss of generality. Let A= DUE, B= DnNE. Let h be the
restriction of F' and G to B. Let (V,,)nen+ be the sequence of h-holes that are
holes of D and let (W,,)nen+ be the sequence of h-holes that are holes of E, but

not of D. For each ¢ € N*, as h(x) is equal to F'(x) in B, hy, is an element of

Hy(D) of the form Z Fga with Si some F-holes of D included in W,. We put

m=1

fa,m = Fga for every (¢, m) € (N*2). In the same way, for each ¢ € N*, h:Vq isan
oo

element of Hy(F) of the form Z Gre with T, the G-holes of E included in V.

m=1
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We put gq,m = Gra for every (¢,m) € (N*?). Without loss of generality we may

obviously assume D C E, we put ho(z) = Go(x). We notice that A is clearly
included in the set A’ = E \ (( U 54) U( U T%)) Then, it is

(g;m)E(N*?) (g:m)€(N*?)
easily seen that the series ho(z) + Z fam + Z gq,m converges in
(m,q)eN*2 (m,q)EN*2

H(A') because by Corollary B.6.2 we have || fg.m|lar = | Fsa ||p and || gg,m|lar =

m

|Grs || 2, whereas

lim ||[Fsellg= lim ||Gpe|g=0. Further, by construction, h(x) is
gt+m—+oo m qg+m—+oo m

equal to F'(z) and G(z) in B and is such that for every h-hole V' of DU E, Iy

is either of the form Fg, when V is a F-hole S of D, or of the form G when V
is a G-hole T of E. This clearly ends the proof of Theorem B.6.10. O

Corollary B.6.11:  Let E be an infraconnected set suchthat D C E and such
that each hole of D contains a unique hole of E. Let f € H(E) and let f = fo+

:gfn be the Mittag-Leffler series of f on the infraconnected E. For every
n € N*, let V,, be the hole of D containing T,,. Then the Mittag-Leffler series of

f on the infraconnected D is of the form fo+ Z:g fv, with fy, = fr, ¥n € N*.

In the particular case of affinoid subsets, we can be more accurate for The-
orem B.6.10:

Theorem: B.6.12 Let D1, D> be infraconnected affinoid subsets of K such
that D1 N Dy # 0 and let f; € H(D;), j =1,2 be such that fi(z) = fa(z) Vo €
DyNDsy. Then the function f defined in D1UDsq as f(z) = f;(x) Yz € D;, j=
1,2, belongs to H(D;1 U Ds).

Proof. Let D = D1 U Dy. Without loss of generality, we can assume that El
contains Dy and hence D = D;. We can also assume that 0 € D N Dsy. Set
A = Dy \ Dy. Then A is included in a finite union of holes of D;. Consider
such a hole T' = d(a,r~) of Dy (with r € |K]|) such that T'N Dy # @. Since
Dy N Dy # 0, both Dy, Dy have points on C(a,r). Moreover, since both are
affinoid, D; contains all classes of C(a,r) except maybe finitely many because
T is a hole of D;. On the other hand, Dy also contains all classes of C(a,r)
except maybe finitely many because it has points on C(a,r) and inside d(a, 7).
Consequently, f1(z) and fa(z) coincide in all classes of C(a,r) except maybe in
finitely many: A, ..., Aq.

Let g be the Mittag-Leffler term of f; relative to T'. Let S, 1 < k <t be the
holes of Dy included in T and for each k =1, ..., ¢, let hy be the Mittag-Leffler
term of f5 relative to the hole Si. Consider now the restrictions f1 of f; and fs
of fo on the set D' = Dy N Ds. o o
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The two functions are equal in D’ and of course have the same Mittag-
Leffler term relative to the hole d(a,r~). Concerning hg, this term is 22:1 hy.
Consequently, g = ZZ=1 hi. Since g and the hy are Laurent series converging
in K\ d(a,r7), g and 22:1 hy coincide in all this set. Consequently, in the
Mittag-Leffler series of f1, we can replace g by 22:1 hi. Thus f; becomes an
element of Dy U ((d(a,r~) N D3). We can do the same with each hole of D,
containing points of Dy and hence, after finitely many similar change, we obtain
an element f of H(D) such that f(z) = f;(z) Ve € D;, j =1, 2. O

Notation: Let E be a K-Banach space. We will denote by E° the K-Banach
space of continuous linear forms of F provided with its usual norm. The dual
of a Banach space H(D) was thoroughly studied by Yvette Amice [3].

oo

Theorem B.6.13: (Y. Amice) Let r € Ri. Given h(t Z—n
Ap(K\ d(0,7)) there exists a unique ¢, € H(d(0,7))® satisfying ¢n(x?) ;b , (g€
N). Moreover, on the space Ay(K\ d(0,7)) provided with the norm || . ||x\a(o,r)
the mapping h — ¢p s an isometric isomorphism from Ay(K\ d(0,7)) onto
H(d(0,7))*

. — by,
Proof. Let F = K\ d(0,7). First let h(t) = Z € Ay(F) and let f(z) =
- ‘b ‘n =0
Z apx” € H(d(0,7)). Since the sequence —— 1 bounded and hm lan|r™ =0,
n=0
it is seen that lim a,b,, = 0 and then the series Z anby, is convergent. Hence

n=0

we may put ¢n(f) = Z anby,. Thus, we define a linear form ¢, of H(d(0,r))

that satisfies
000 < suplanbul < (sup o) (sup 220) = 1 ol
neN neN

Therefore, with respect to the norm || . || of H((d(0,7))®, we have ||¢n] < |||,
Now we check that the equality is satisfied. Indeed let ¢ € N. We have

(@@ _ 1on@O] _ [bal o 1o

29| go,ry 79 re =54 11 fllaco.ry

b |

for all ¢ > 0. Hence we have ||h||F = sup < |l¢rll- So we obtain the an-

nounced equality. Thus we have deﬁned an isometric homomorphism from
Ap(F) into H(d(0,r))°.
Now we check that this mapping is surjective. Indeed, let ¢ € H(d(0,7))®

and for each n € N, let b,, = ¥(z™). Obviously we have |[¢| > nl for every
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n € N, hence the sequence (|b,|r~")nen is bounded and therefore defines a

— bn,
function f(t) = Z n € Ay(F). Thus ¢ is equal to ¢, and therefore the

=0
mapping h — ¢y, 1s surjective. This ends the proof of Theorem 8.6.13. O

Remark: There obviously exists an isometric homomorphism from H (d(0, 1))
into

H(d(0,1))® defined as follows: Let f = Zn 0 anx™ € H(d(0,17)) and let f(x) =
f(1) € A,(K\ d(0,1)). Then we have an element f* € H(d(0,1))* equal to ¢;.
The question whether this homomorphism is surjective depends on the ground
field K. If K is spherically complete, this homomorphism is not surjective. If K
is not spherically complete, this homomorphism is surjective [89].

Corollary B.6.14:  Let r € Ry. For each h(t Z bpt™ € Ap(d(0,77)),

there exists a unique ¢p € H(K\ d(0,77))® satisfying (;Sh(x 7) = by (¢ € N).
Moreover, the space Ay(d(0,77)) being provided with the norm || . ||d(0,r7), the
mapping h — ¢, is an isometric isomorphism from Ay(d(0,77)) onto H(K\
d(0,r7))°.

Corollary B.6.15:  Let r € Ry. For each h(t Zb t" € Ap(d(0,77))

such that h(0) = 0 there exists a unique ¢p € HO(K \ d(O,r’))$ satisfying
on(z79) = by (¢ € N*). Moreover, this mapping h — ¢y, from the subspace of
the h € Ap(d(0,77)) such that h(0) =0 into Hy(K\ d(0,77))®, is an isometric
isomorphism.

Now applying Theorem B.6.13 to H(ﬁ) and Corollary B.6.15 to the spaces
Hy(K\ T;) for each hole T; of an infraconnected set D, we obtain Corollary
B.6.16.

Corollary B.6.16: (Y. Amice) Let D be closed bounded infraconnected.
Let (T})icq be the family of its holes and for every i € J, let a; € T;. Let
M € RY. Let hy € Ay(K'\ D) and let (h;)icy be a family such that for each
i € J, h; belongs to Ay(T;) and satisfies

(1) hi(a;) =0

and

(2) |hillr, < M for alli e J.

There exists a unique v € H(D)® satisfying

U(F) = no(f) for cvery | € H(D)

W(f) = on, (f) for every f € Hy(K\ T;), whenever i € J.
Further, for every element ¢ of H(D)® there exists a unique hg € Ay(K\d(0,7))
and a unique family (h;)ics satisfying (1) and (2) for some M € R% such that
¥ is defined as above.
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Now we will use the continuous linear forms to define the residue of an
element on a hole.

Theorem B.6.17:  Let f € Hy(K\ d(a,r7)), and for each o € d(a,r™), let

flx) = Z (xbn—(z))"' Then b1 (a) does not depend on « in d(a,r7).
n=0

b
Proof. Let E = K\ d(a,r~)). We know that LACH] < ||fllz and therefore,
T
fixing « in d(a,r ™), the linear form 1, on Hy(E) defined as ¢ (f) = b1(«)
is obviously continuous. We will show that ¢, (f) = ¥4(f). First, for every

1 —a>j)‘1.

q € N, we put f,(z) = @y We have fo(z) = (xja)q (ZC:—Q
=0

(z
Therefore, for every ¢ > 2 we have 1,(f,) = 0 and that ¥,(f1) = 1. Hence

Yo (fq) = Ya(fy) for every ¢ € N. This shows that ¢, (f) = ¥.(f) for every
f € Hy(E). O

Definition and notation: Let f € Hy(D), let T be a hole of D and let a € T

o0 bn
Let fr(z) = Z (x<0;))”' By Theorem B.6.17, b1 (a) actually does not depend

n=1
on ain T. We set res(f,T) = b1(a) and this number res(f,T) will be called the
residue of f on the hole T.

By Theorem B.6.1, Theorem B.6.18 is obvious:

Theorem B.6.18: Let f € H(D) and let T be a hole of D of diameter r.
Then

lves(f,T)| < rllFrlee <7l f]o-

We can now characterize K-algebra homomorphisms among the continuous
linear forms.

Theorem B.6.19: Let D be a closed bounded infraconnected, let a € 5,
let (T;)icy be the family of holes of D and for every i € J, let a; € T;. Let
M € RY. Let hyg € Ay(K\ D) and let (h;)icy be a family such that for each
i € J, h; belongs to Ap(T;) and satisfies Conditions (1) and (2):

(1) hi(a;) =0

and

(2) |hillr, < M for alli € J.

Let ¢ € H(D)* satisfy

V() = o (f) for every f € H(D)
(f) = ¢n, (f) for every f € Ho(K\ T;), whenever i € J.
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Then v is a homomorphism of K-algebra from H(D) onto K if and only if there

erists « € D %’uch that
—a
3) ho(t) =
(3) holt) = —,
and for every i € J,
t— a;

4) hi(t)= p—t

Moreover, every K-algebra homomorphism from H(D) to K is continuous
and is of this form.

Proof. First we suppose that ¢ is a K-algebra homomorphism from H(D)

oo

by,
onto K and we put ¢(z) = a. As hg is of the form ho(t) = ;m,
here for every n € N we have b, = ¥((z — a)") = (a — a)” and therefore

o0 _ n t—
ho(t) = Z(j_s) = Z. Next, we fix ¢ € J. Then h, is of the form h;(t) =

n=0

1 1

o0
Z bin(t — a;)". Hence for every n € N*, we have b; , = 9 ( —) = (
n=1 (z — a;) Q — a;

oo
t—CLi

t—a; \n
d therefore h;(t) = ) = .
and therefore h;(t) ;(afai) p—
Conversely, we suppose (3) and (4) are satisfied. Then it is easily checked

that ho(t) = Z(?:Z)n and therefore for every n € N, we have ¢((x —a)") =
n=0

(o — a)™. Hence for every f € H(D), we have ¢¥(f) = f(«a).

1
In the same way, we check that, fixing ¢ € J, we have 1/)( ( ) ) = (
T —a;)"

o — a;
hence ¥(f) = f(a) for every f € Ho(K\ T;). This clearly finishes proving that
U(f) = f(a) for every f € H(D).

Now, let ¢ be a K-algebra homomorphism from H(D) to K. By Corollary
B.1.10, 4 is continuous, hence belongs to H(D)*. Consequently it is of the form
defined by the theorem. O

y

)"
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B.7. Factorization of analytic elements

In C, it is well known that when a (not identically zero) holomorphic func-
tion admits a zero at a point «, this zero has a finite order of multiplicity.
Actually this is a generalization of a property of rational functions. In the non-
Archimedean context, we find again that property among analytic elements and
it is essential [43]. In this chapter, D is just a subset of K.

Lemma B.7.1:  Let a €D. Let g € N* and let (gn) be a sequence of H(D)
such that the sequence (x—a)%g,, converges in H(D). Then the sequence (gn)nen
also converges in H(D).

Proof. Without loss of generality, we can assume o = 0. Set f,, = z%¢,, n € N.

Since 0 lies in D, there exists a disk d(0,r) C D. Let E = D\ d(0,r). Clearly,
we have || fs — and(O,r) = quHd(O,r) llgs — gnlld(O,r) =1gs — gnlld(U,r) and hence

llgs — gnlle < w. Consequently, ||gs — gnllp < ”fsr_iqf"u and therefore
the sequence (g,) is a Cauchy sequence, which ends the proof. O

Theorem B.7.2:  Let a belong to DN D and let f € H(D) be such that
f(a) =0. Then f has factorization in H(D) in the form (x—a)g with g € H(D).
If there is no neighborhood V' of « such that f(x) = 0 whenever x € V, then
there exists a unique integer ¢ € N and h € H(D) such that f(z) = (z—a)? h(z)
and h(a) # 0 and then « is a zero of order q of f.

Proof. First we will prove the main factorization in the form (x — a)g. We may
obviously assume o = 0. By hypothesis, there exists a disk d(0, s) included in
D. And then, by Theorem B.2.5, there exists a disk d(0,r) included in d(0, s)
such that f has no pole in d(0,r). Consequently, f belongs to H(D U d(0,r)).
So we can assume that 0 is interior to D and that d(0,7) C D without loss
of generality. By Corollary B.5.11, the restriction of f to d(0,7) is equal to a

power series Z anz™ for all x € d(0,r).
n=1

Now let t,, be a sequence in R(D) such that lim ¢, = f. Clearly |¢,(0)] <
[tn = fIl, because f(0) = 0, so we have [[tn =1, (0) = full, < [[tn = f[l,,- We put
hp =ty —t,(0) (n € N). The sequence (h,,) of R(D) approaches f in H(D)
and satisfies h,(0) = 0 whenever n € N, hence h,, has factorization in R(D)
in the form zg,. By Lemma B.7.1 the sequence (g, )nen converges in H(D).
Let g be its limit. We will show that lim ||zg, — zg||, = 0. Let € > 0 and let

a—oco

N € N be such that ||h, — f||, < & whenever n > N. We fix ¢ > N. Then
|hn — hgll, < €, hence |2g,(z) — xg4(x)| < € whenever x € D. So, when n
tends to +oo, we see that |zg(x) — zge(x)| < € whenever = in D. Thus we have
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lzg — zgqll, < €, and therefore lim |zg, — 2g||, = 0. But by hypothesis we
g—00
have lim ||f — zg4||, = 0 and then f = zg.
g—o0

Now we suppose that f is not identically zero in d(0,r). Then at least
one of the coefficients a,, of its power series is not zero. By Corollary B.5.11,
f admits 0 as a zero of order ¢ and then ¢ is the smallest 1nteger such that

aq # 0. In d(0,r) we have f(z Z anz™ = xg(x) hence g(x Zana:
whenever x € d(0,7). Suppose that f has been proven to be factorlzed in the

form z°gs with s < ¢ and g5 € H(D). Clearly gs(z Zanx ~% whenever

x € d(0,7) hence gs(0) = 0 and therefore g has factorlzatlon in the form
Tgst1 With gs+1 € H(D). Thus by induction we obtain f = z%g,(x) with

gqlx Z anz™? and then g4(0) = a4 # 0. That finishes proving Theorem

n=q

B.7.2. O

Notation: Let a GB and let f € H(D) be such that f(a) =0, f(z) #0in a
disk d(a,r). The order of the zero a of f will be denoted by w,(f).

Corollary B.7.3:  Let D be open, let f € H(D) and let « be a zero of f in D.
FEither there exists a disk d(c,r) such that f(x) # 0 whenever x € d(a,r)\ {a},
or there exists a disk d(c,r) such that f(x) =0 whenever x € d(a,T).

[e]

Corollary B.7.4:  Let f € H(D) have a zero of order q at a point o € D.
Then for every s = 1,...,q, f factorizes in the form (x — a)®gs, with gs € H(D)
having a zero of order ¢ — s at «.

Corollary B.7.5: Let « € D and let f € H(D). Let Zan(x—a)" be its

power series in a disk d(a,r) C D. Let P(x Zan (x — )" and let g(z) =
f(x) — P(x). Then g factorizes in the form (z — a)qh( ), with h € H(D).

Definitions: Let A C D be an open subset of K, let f € H(D) have finitely
many zeros ai, ...,a, in A of multiplicity order of ¢, ..., g, respectively. The
n

polynomial H(x —a;)% will be named the polynomial of zeros of f in A.
i=1
We are now able to give the following Corollary.

Corollary B.7.6: Let A be a subset of D open in K, let f € H(D) have
finitely many zeros in A and let P be the polynomial of its zeros in A. Then f
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has a factorization in the form f = Pg, with g € H(D) and g(z) # 0 whenver
x € A

Definitions:  An element f € H(D) will be said to be semi-invertible (resp.
quasi-invertible ) if it factorizes in the form P(x) g(z), with g invertible in H (D)

and with P a polynomial whose zeros belong to D (resp. to DN D ).
An element f € H(D) will be said to be quasi-minorated if for every bounded
sequence (@ )nen of D such that lim f(a,) =0 we can extract a subsequence

that converges in K.

Remarks: 1) If a semi-invertible element of H(D) has no zero in D, it
is invertible in H(D). 2) Let D belong to Alg. If fi, fo are semi-invertible

(resp. quasi-invertible) elements of H(D), then f;f2 is also semi-invertible,
(resp. quasi-invertible). However when D does not belong to Alg, counter-
examples show that the product of two semi-invertible (resp. quasi-invertible)
elements is not always semi-invertible (resp. quasi-invertible). Such counter-
examples will be given in a further remark.

Lemma B.7.7: Let D € Alg, let f € H(D) be quasi-invertible (resp. quasi-
minorated) and h € R(D) be a Moebius function. Let D' = h(D) and let
g = foh™'. Then g is a quasi-invertible (resp. quasi-minorated) element of
H(D') .

Proof. Suppose first f to be quasi-invertible in H(D). Let u = h(x). So, f is
of the form P(z)¢(x) with P a polynomial whose zeros are interior to D and
¢ is an invertible element of H(D). Then ¢ o h~! is invertible in H(D') and

Poh~?! belongs to R(D') and is of the form WQ_(Ub))S where b is the unisue pole
of h=1. Consequently g is of the form Q(u) o) . Thus o) is invertible
(u—1b)* (u—1b)°

in H(D') and hence ¢ is quasi-invertible.
Now suppose f quasi-minorated. Let (ay)neny be a sequence in D’ such
that lim g(a,) = 0 and let b, = h™%(ay,), (n € N) . Then lim f(b,) = 0
n—oo n—oo
. Since f is quasi-minorated, one can extract a subsequence (bg(m))men that
either converges or satisfies lim [by(,,)| = oo. But then, the sequence (aq(m))
m—00

either converges or satisfies lim |ay(,,)| = co. Hence f is quasi-minorated. [
m— 00

Theorem B.7.8:  Let D be bounded, open, closed and let f € H(D). If f is
quasi-minorated then it is quasi-invertible .

Proof. We suppose f is not quasi-invertible and we will prove that f is not
quasi-minorated either.
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First we suppose f to have finitely many zeros. Since D is open, by Corollary
B.7.6, f has factorization in the form P(z) g(x), with P a polynomial whose
zeros are interior to D and g an element of H(D) which has no zero in D, but
is not invertible in H(D) since f is not quasi-invertible. Hence there exists
a bounded sequence (o, )nen in D such that nILH;o g(an) = 0. If f were quasi-

minorated we could extract a convergent subsequence from the sequence (o, )nen
whose limit would belong to D and would be a zero of g. Hence f is not quasi-
minorated when it has finitely many zeros in D.

Now we suppose that f has a sequence of (distinct) zeros (ay,) in D and that
f is quasi-minorated. Hence we may extract a convergent subsequence of limit
a. Obviously « is another zero of f, hence by Corollary B.7.3 f(x) is equal to
zero inside a disk d(a,r) and then f is not quasi-minorated, a contradiction.
That ends the proof of Theorem B.7.8. O

Theorem B.7.9: Let D be closed and bounded. Let f € H(D) be quasi-
minorated and have no zero in D. Then f is invertible in H(D).

Proof. Assume that inlfj|f(x)| = 0 and let (an)nen be a sequence in D such
zE

that lim f(a,) = 0. Since D is bounded and since f is quasi-minorated, we
n—oo

can extract a subsequence (a,,) which converges in K to a point a € D. Since D
is closed, a belongs to D and satisfies f(a) = 0, which contradicts the hypothesis.
Thus there exists A > 0 such that |f(x)| > A whenver z € D and then by Lemma
B.2.3, f is invertible in H(D). O
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B.8. Algebras H(D)

We have seen that H(D) is a Banach K-algebra if and only if D is closed and
bounded. But studying analytic elements, analytic functions require to know
algebras of analytic elements which are not necessarily bounded. Thus we have
to examine the class Alg of subsets D of K such that H(D) is a K-algebra with
respect to usual laws [43].

Notation: Throughout the chapter, D denotes a subset of K. Let f € H(D).
According to Theorem B.2.5, f is of the form f* + f, with f* € Ro(K\ (D\ D))
and f € H(D). We will keep that notation throughout the chapter.

Proposition B.8.1:  Let a belong to D and let f € H(D \ {a}). For every

geN, (xfa)q belongs to H(D\ {a}).

Proof. Since a belongs to D, there exists a disk d(a, s) included in D. On the
other hand, there exists r €]0, s[ such that f* has no pole in d(«, r)\{a}. Hence
by Theorem B.2.10 f is of the form ﬁ with g € H(DUd(«,r)) and t € N.
Then @ —fa)q = @ _‘(L o Thus without loss of generality we may assume
that « belongs to D and that f belongs to H(D U d(a,1)).

By Corollary B.5.11, in d(a, ), f(z) is equal to a power series Z an(z—a)™.

n=0

q
Let P(z) = Z an(z — a)". By Theorem B.7.2, f(z) — P(x) factorizes in the
n=0

form (z — )% with h € H(D). Hence we see that /(@) = P() + h.
(r—a) (r—a)t
Since ﬁ € R(D) it is clear that (x—foz)q belongs to H(D). O

Corollary B.8.2: Let f € H(D) and let P be a polynomial whose zeros are
interior to D. Let ay,...,a, be the zeros of P. Then % belongs to H(D \
{a1,...,an}).

o

Proposition B.8.3:  If D is bounded and satisfies D\D C (D) then D € Alg.

Proof. Let f,g € H(D) and let us show that fg € H(D). By Theorem B.2.5,
we have f = f*+f, g = g* +7 with f*,g* € Ry(K\ (D\ D)) and f,g € H(D).
Since D is bounded, by Corollary B.2.7, we have H(D) = Hy(D) and then fg
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obviously belongs to H (D) while f*g* € Ro(K\ (D \ D)). Finally by Corollary
B.8.2, both f*g and ¢g* f belong to H(D) and therefore so does fg. O

Definition: Let F be a filter in D. An element f € H(D) will be said to be
vanishing along F if li]I:n f(z) = 0. Further f will be said to be properly vanishing

along F if 11}11f(x) =0 and if ||f]|, # 0 whenever A € F.

Lemma B.8.4 is a polyvalent result which helps us characterize the sets
D € Alg but also find conditions for H(D) not to be a noetherian algebra.

Proposition B.8.4:  Let F be a pierced filter on D, let (T}, )nen be a sequence
of holes of D that runs F and let E = K\ (U T,). Let g1,...,94 € Hp(E)

n=0
be vanishing along F, with g1 properly vanishing. For every x € E let S(x) =

sup |gi(x)|, let J be the ideal generated by gi,...,g4 in Hy(E) and let J be
1<i<q

its closure in Hy(D).
There exists a sequence (zp)nen n D, thinner than F, such that g1(z,) # 0

and an element G € J such that lim |G((Z"))|
n—oo Zn

= 4-00.

Proof. Without loss of generality we may assume F to be a decreasing filter or
a Cauchy filter. Indeed if F is an increasing filter of center o and diameter R,

1
consider a hole of D T'(b, p) included in d(a, R™), take v(x) = o

D’ = 4(D). Then by Theorem A.2.11 D’ admits a decreasing pierced filter F”,
image of F by ~. Next, D’ is clearly bounded. By Theorem B.3.7, the mapping
¢ from D onto D’ defined by ¢(f) = fovy~! is an isomorphism from H(D’) onto
Hy(D). Hence J is isomorphic to the ideal generated by {g;j o v71[1 < j < ¢}
in H(D’). Hence we will assume F to be a decreasing pierced filter or a Cauchy
pierced filter.

Without loss of generality we may now clearly assume D = E. Since the g;
are bounded, we may obviously assume ||g;||, < 1 whenever j =1,...,q. Let
R = diam(F) and let (z,)men be a sequence in D thinner than F, such that
91(xm) # 0 whenever m € N, with |42 — Tmt1]| < |[Tm+1 — Tml|. Since F
is pierced, there exists a subsequence (r,,)qen of the sequence (z,,) together
with a sequence of holes (T};)qen of D such that

Ty Cd(@myyydmg) \ ATy Ay )-
Hence without loss of generality we may assume that we have a sequence of
holes (Trn)men of D such that Ty, C d(Zmt1,dm) \ d(Xmt2, dmt1)-

We put D,,, = d(xm+1,dm) N D and A, = Dapy1 \ Daynys. For each n, let

un € A, be such that |g1(u,)| > |lg1]la, (L) For each j = 1,...,¢, let

) n+1
Mj = ||lgjlla, and let M, = &H;%MTJL. Since g1(zm) # 0 we have M,, > 0
j

5 and set

_g_l for all 7, we have M,, <1 whenever n € N.

whenever n € N and since ||g;|,,
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We will construct a sequence (Uy,) in Hy(D) satisfying

1
(1) |Un(2)] < F whenever x € D\ A,,.
n—+
@) V(=) > 9T, > V.

For every n € N, set T, = d(Bn,p,,); Un = Tont2, Gn = Bnt1, bp =
Bnt2, €n = Ponts and set €, € d(0, %) Let us fix n € N. It is seen that
|ty — an| > |ty — by, hence there exists ¢, € N such that

Uy, — Qp, |In
3 leal] == [" gum) > VAL

and of course there exists ¢/, such that

@) (d2n+1)q" (d2n+3)q% <1

d2n+2 d2n+2 ,
T—ap\9 [T — Cp\In
Weputhn(:v):en(x_b:) (x—bZ) .
Then by (4) we see that:
when |z — ¢,| > dapi1 we have |h, (2)] = |6, < 1,
when |z — ¢,| < dapt3 we have |z — a,| = |an, — ¢n| = dopt1 and |x — by| =

doni1 ) n (d2n+3 ) |
< —.
dopto dopto n
But now we notice that = belongs to D\ A4, if and only if it satisfies : either
|z — cn| > dont1 or |z — ¢p| < dapys, hence we have proven that |h,(z)| < %
whenever x € D \ A,,. This shows h,, satisfies (1).
When x € A, i.e. when dopy3 < |& — cn| < dopy1, we see that ||gihnll, >

|91 (1) P ()| hence by (3) we have ||gihnll,, > v/M,. Hence there trivially
1
exists A, € d(0,1) such that (": WAL > Pagilinl, > V.

Now we put U,, = A\, h,, and we see that U, satisfies (1) and (2). In particular

1
we have ||g1U, ||, < max(x/Mn(n;: ), Ufﬂ'li) hence lim ||g1U,|l, = 0. Let

|br, — ¢n| = dant2 hence |h, (2)] < |en|(

o t
T= Z 91U,,. By definition T belongs to F because for every t € N, g Z U,

n=0

n=0
belongs to F.
By (2) there exists a sequence (z,)nen in D satisfying z, € A, and

6) V< lor(e)U )] < Mo (")

hence we have
VM, 1
6)  |Un(zn)| > 2 —=
‘gl (Zn)‘ Mn
When j # n, z, belongs to D \ A; hence by (1) and (6) we have
1 1
U =
|91 (21) Uy (2r)| whenever n € N. But then, by (5) we see that
T (20)
S(zn)

because |g1(z,)| < M,,.

< |Un(2,)| whenever j # n. Hence we see that |T(z,,)| =
LGl _ [T L
S(zn) M, VM,
= +o00 and this finishes the proof of Lemma B.8.4.

O

Consequently, lim
n—oo
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Corollary B.8.5:  Let a € D\ D and let F be the pierced filter of the neigh-
borhoods of a. There exists a sequence (zp)nen in D of limit a and an element

G(zn
G € Hy(D) vanishing along F such that lim sup 1G] = +00.

n— o0 |Zn — CL|

A
Lemma B.8.6:  Let D have a hole T = d(a,r™). Let v(z) = b+ —— with
r—a

A € K and let D' = (D). For every a € D, belongs to (E) if and only if
() belongs to <ﬁ) Moreover if D is not bounded then K\ D is bounded if
and only if b belongs to (ﬁ) .

Proof. 7 is obviously a bicontinuous bijection from K\ {a} onto K\ {b}. Let
a € (E) There exists a disk d(a,7) included in D. Since a ¢ d(a,r) ,7 is

bounded in d(cq, r). Since v is bicontinuous, v(d(«, r)) is open in K\ {a}, hence

(o]

it is clearly open in K. So ~y(a) belongs to 'y(D). But (D) C (D) hence

v(a) € (ﬁ) Let £ =~~1. Then &(u) = a + and then what is true for

is also true for £. Hence conversely, if y(a) € (ﬁ) we see that a = £(y(a)) € D’

because D = £(D’). o o
We now suppose D unbounded. If K\ D is bounded then D contains a set

A
E of the form {|z| |z —a| > s} with s > |a —b| whose image E’ is d(a, |—|)\{a},
s
. \ o
hence D’ contains d(a, |—) and so does D'.
s

Finally we suppose that K\ D is not bounded. Then v((K\ {a}) \ D) is
an open set E in K whose closure contains b. Since b € D'\ D', it is easily
seen that there is a sequence of holes of D', (T}, )nen, that approaches b, (each
one is obviously included in E) hence b ¢ (ﬁ) This ends the proof of Lemma
B.8.6. O

o

Corollary B.8.7:  Let D have a hole T = d(a,r~), satisfy D\ D C (E)

and be such that K\ D is bounded. Let y = and let D' = (D). Then
r—a

DD c (D).
Lemma B.8.8:  The following two conditions are equivalent:

A) D\ D is bounded
A’)  either D is bounded or K\ D is bounded.
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Proof. If D is bounded, A) and A’) are clearly satisfied hence we have nothing
to show. Now we suppose D to be unbounded. Hence D =K and then D \D =
K\ D, so D\ D is bounded if and only if K\ D is bounded. Finally A) and A’)
are equivalent. O

Theorem B.8.9: D belongs to Alg if and only if it satisfies the following two
conditions.
A) D\ D is bounded

o

B) D\DcC (ﬁ).

Proof. Suppose first that D satisfies A and B. By Lemma B.8.8 it satisfies A’
and B. Suppose first that D is bounded. Since D satisfies B, by Proposition
B.8.3, D € Alg. Suppose now that K\ D is bounded. We may obviously assume
D to have a hole T = d(a,r ™) because if D has no hole then by Corollary B.2.8,

1
we have H(D) = R(D). Let v = and let D' = (D). The set D’ is
r—a

then bounded and by Corollary B.8.7, D’ satisfies D’ \ D' C (ﬁ) and hence

D’ € Alg, therefore by Proposition B.8.3, D belongs to Alg.
We now suppose that B) is not satisfied and will prove that D ¢ Alg.

o

Indeed let a € (D \ D)\ (E) By definitions D has a Cauchy pierced fil-
ter F that converges in K to a. Let T' = d(a,r~) be a hole of D and let
f= Y79 Then f € Ry(D). By Lemma B.8.4 there exists S € Hy(D) such
that g(;)a: 0 together with a sequence (z,)nen in D such that nhlr;o Zn = Q,
‘S(Zn)

Let us assume D € Alg. Then ?Eg € H(D) because z_ Z € R(D). Since
‘?Eg is not bounded in any neighbourhood of «, by Theorem B.2.10 and
Corollary B.2.9 there exists an integer n > 1 such that (z — a)"—— has a

S(x)

while lim =+400

n—oo

non-zero limit ¢ at a. But when z € DNd(c, |a|), we have ‘(x - a)”(

f(x)

‘(x — )" Yz —a)S(z)| = |a| |z — " |S(x)| hence £ = 0, a contradiction.

Consequently D ¢ Alg. B
Suppose now that D satisfies B) but does not satisfy A). Both D and K\ D

are unbounded. Since K\ D is unbounded, D has a hole T' = d(a, ™) and then

1
by Lemma B.8.6, the inversion v(z) = —— maps D onto a bounded set D’
T -«

such that o € (D’ \ D’) C (ﬁ) Hence D’ does not belong to Alg and then
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neither does D. This ends the proof of Theorem B.8.9. O

Corollary B.8.10:  If D is bounded and if D is open, then D belongs to Alg.

Notation:  Throughout the book, Conditions A) and B) will be those given
in Theorem B.8.9.

Theorem B.8.11:  Let D belong to Alg and have a hole T = d(a,r~). Let
1
h(z) = and let D' = h(D). Then D’ is bounded and belongs to Alg.
T—a

Proof. Since D € Alg, by Theorem B.8.10, D satisfies Conditions A) and B)
and hence we can we can check that D', being obviously bounded, satisfies A)
and B) too. If D is bounded, this is immediate. If D is not bounded, then 0

is the unique point that might not belong to D \ D' C (E/) But if 0 is the

limit of a sequence of holes of D', then D \ D is not bounded, which contradicts
Condition A). O]

Lemma B.8.12:  Let D be open. Then D satisfies Condition B if and only
if D is open.

Proof. Since D is open, D is open if and only if for every o € D\ D, « is interior
to D. This is just equivalent to Condition B). O

Notation: Let D € Alg and let a € D. We will denote by J(a) the ideal of
the f € H(D) such that f(a) = 0.

Theorem B.8.13:  Let D € Alg and let a € D. If a belongs to D, then
Z(a) = (x —a)H(D). Else, J(a) is not of finite type.

Proof. Suppose first a € D. By Theorem B.7.2 it is clearly seen that J(a) =

(x —a)H(D). Now let a ¢ D. Then the filter of the neighbourhoods of a is a
Cauchy pierced filter. We will denote it by F. Suppose that J(a) is of finite
type and let {g1,...,g4} be a system of generators. For each j =1,...,q let Q;
be the polynomial of poles of g; in D\ D. Now, let d(b,r~) be a hole of D. By
Corollary B.2.7, for each j = 1, ..., g there exists a rational function of the form
@b ﬁ belongs to Hy(D).

Of course, at least one of the g; is properly vanishing along F, otherwise all
the elements of J(a) would be equal to 0 inside a neighbourhood of a and then

J(a) couldn’t contain 2 — a. Consequently, we can assume that g; is properly

such that the function h; =
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vanishing and so is hy. For every x € D, we put S(z) = max |l (z)]. We notice
<i<q

that J(a) is obviously closed in H(D), hence by Lemma B.8.4, there exists
f € J(a) together with a sequence (2, )nen in D, of limit a, such that S(z,) # 0

whenever n € N and that lim |/ (zn)l

= +400. This obviously contradicts the

q

fact that f should be of the form ijgj with the f; in H(D). Thus we
j=1

have shown that [J(a) is not of finite type and this ends the proof of Theorem

B.8.13. O

Corollary B.8.14:  Let D € Alg. If D\ D # 0 then H(D) is not noetherian.
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B.9. Derivative of analytic elements

Given an infraconnected set, the main question we consider here is whether
an element f of H(D) has a derivative that belongs to H(D) and when it does,
whether its Mittag-Leffler series is obtained by deriving that of f [58]. Another
question is whether an analytic element on D whose derivative is identically
zero is a constant. Both questions are answered on an infraconnected clopen
set. Throughout this chapter D is a subset of K and is supposed to be open and

infraconnected and we fix R > 0.

+oo
Theorem B.9.1:  Let f(x) = Zanx” € H(d(0,R)). Then f has a deriva-
n=0
tive f'(a) at each point o € d(0, R) and f'(0) = ai.Moreover, the function f’
+oo
also belongs to H(d(0, R)), is equal to Z napx™ " and satisfies
n=0
[F1(r) < @ vr €]0, R).
Further, f is indefinitely derivable in d(0, R) and
O(z) = Z n(n—1)..(n — k + apz" ",
n=~k

Proof. Without loss of generality, we can suppose that R < 1. Obviously,
lim 7‘73@) — 4

z—0

T
a € d(0,R)\ {0} and consider

= a1, hence f'(0) exists and is equal to a;. More generally, take

f(:l?) - f(Oé) Zzozl a”ﬂ(mn — an) = a n—1 n—2 n—1
= = 2" azrh T+ e,

T—a T—«
Then |(z" 7' + az" 2 + ...+ a"7') = na" | < |z — o (max(|al, |x\))n_1. Par-
ticularly, when z is close enough to «, since a # 0, we have |z| = ||, hence

lan||(z" 1 + az" % 4+ .+ ") —na" 7| < an|la|" e — al.
That proves that (an(:v”’1 +az" 2+ .+ a”*1)> — na,a™"! converges to 0
uniformly with respect to n and uniformly with respect to x inside a disk of
oo
center . Consequently, f'(a) = Z nap(z — a)” Yo € d(0, R). Then

n=1

n— n— 1
[f'|(r) = sup(|nan|[r"~1) < sup(lan|r" =) = =[f](r).
neN neN r

The last statement concerning f*) is then immediate. O
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More generally, we can derive the following:

Theorem B.9.2: Let f € H(A(0,R,R')). Then f*) also belongs to
H(A(0, R, R")) for every k € N* and satisfies |f'|(r) < [#tr) Vr €]R, R'[. More-

over, if the residue characteristic does not divide v (f, logr) or v=(f,logr),

then | |(r) = 10
T
“+oo
Proof. f(z) is equal to a Laurent series Z anz” with lim la,|R™ =0 and
lim |a,|R™ = 0, hence 0bv10usly hm lna,|R" ' =0 and hm |na,|R™ ' =
n——oo +oo

0. Consequently, f'(z) belongs to H(A(O R, R')). Then

[£'I(r) = sup(|nan|r"~") < sup(|an|r" ™) = %Ifl(?’)-

nez neEZ

Suppose now that the residue characteristic p does not divide v+ (f,logr)
or v~ (f,logr). If vT(f,logr) = v~ (f,logr) is an integer ¢, it is obvious that

|f|(r) = |ag|r? and |qaq| = |ag|, hence |f'|(r) = |f|( )7 provided ¢ # 0. Next,

the property has continuation by continuity to the pOlIltb w such that vt (f, u) #
v (f, ). O

Corollary B.9.3:  Let R, R’ €]0,+oc0o[ (R < R') and let f € A(d(0,R™))
(resp. f € AT((0,R,R"). Then |f'|(r) < |f|( ) Vr €]0, R[ (resp. ¥r €]R, R'[).

Corollary B.9.4:  Suppose K has characteristic zero and f belongs to H(d(0, R)).

() (0
! ( ) for every n € N and if o is a zero of multiplicity order q
of f, then we have f9(a) =0 for every j < q and f9(a) # 0.

Then a, =

h
Corollary B.9.5:  Let h € K(z). Then for allr > 0, we have |W'|(r) < | |(T)
-
Theorem B.9.6:  Let f(x Zanm" d(0,r7)). The power series

Znanxnfl also belongs to A(d(0,77)) and is equal to the derivative of f in

d(0,77). The radius of convergence of f’ is superior or equal to the one of f.
Further, if K has characteristic 0, the radius of convergence of f' is the same
as that of f.
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Proof. By Theorem B.9.1, the first statement is clear. Now we suppose that K
has characteristic zero. If K has residue characteristic zero, then |n| = 1 for all
n € N* and therefore the last statement is clear. Now, we assume that K has

1

residue characteristic p # 0. By Lemma A.5.17, we have — < |n| < 1 for every
n

n € N* and therefore lim Y/|n| = 1. Consequently,

limsup V/|a,| = hm sup " \1/ |na,| and finally f’ has the same radius of conver-

n—-—+o00

gence as f. O

Corollary B.9.7:  Suppose K has characteristic 0. Let f(x Zana: €

_ . > an  piq _
A(d(0,77)). The power series 2 it also belongs to A(d(0,r7)) and has
the same radius of convergence as that of f and is a primitive of f in d(a,r™).

Remark:  Unlike in Archimedean analysis, when the characteristic p of K
is not zero, there do exist power series f whose derivatives have a radius of

convergence bigger than that of f. For example, let f(x Z 2P": the radius

n=0
of convergence of f is 1 while this of f’ is +oo.

Theorem B.9.8: Let a € K and let R € Ry. Let (fim)men+ be a se-
quence of H(d(a, R)) converging uniformly to a function f. Then the sequence
(f}n)men= converges uniformly to f' in H(d(a, R)) and we have || f},— f'|laca,r) <

Hfm_fRHd(a,R) vm c N

Proof. For each m € N, set f,,(x Z an,ma’™ and let f(z Z bpx™. Then
n=0

n=
for each m € N, we have hr}rl |an,m|R" =0, hm |bn| R™ —0 Now, the
n—-—+0oo
Banach norm of f,, — f tends to zero when m goes to 00, hence

lim (sup(|an7m — bn|R”)> = 0. Consequently, considering the respective deriva-
m—+00 \ neN

tives, we have
lim (Sup(|nan,m - nbn|Rn)) =0
m—+00 \ peN
< W = fllaga,r)
and therefore, by Theorem B.9.1, we have | f;, — f'lla,r) < T
We are done. =

Corollary B.9.9: Leta € K and let R € Ry. Let (fi)men+ be a sequence
of HXK\ d(a, R™)) converging uniformly to a function f. Then the sequence
Il Ymen= converges uniformly to f' in H(K\ d(a, R™)) and we have
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£ = Fllkvaca, ) < Bl fm — fllx\d(a,r-) Ym € N.

Theorem B.9.10: Suppose K has characteristic 0. Let a € K and let
R € Ry. Let (fm)men be a sequence of A(d(a, R™)) such that the sequence
(fr.)men= converges uniformly to a function h in H(d(a,r)) ¥r €]0, R[ and such
that the sequence fp,(a) converges in K. Then the sequence ( fm)men+ converges
to a function f € A(d(a, R™)) such that f' = h and the convergence is uniform
in d(a,r) for every r €]0, R].

Proof. Without loss of generality, we can assume a = 0. Let us fix r €]0, R|
and let us show that the sequence (f,;)men+ converges uniformly to a function

+oo
f € H(d(a,r)) such that f' = h. For every m € N, let f/ = Z bp,maz™ and let
=0
+oo !
h(z) = Z bpa™. Take s €]r, R[. By hypothesis, we have
n=0

(1) lm sup |bym — by|s™ = 0.
m— 00 neN
1 pn+1
But since |n| > —, we have lim ——— =0 Vp < 1, therefore, by (1) we have
n n—+o00 |n + 1|

bn m bn
lim (Sup ’7 ‘r"“) = 0. Consequently, the sequence (fr,,— fm(0))men

m——+o00 neN n+ 1
+oo b
iformly to the functi = 2™t Set i 0) = bo.
converges uniformly to the function g(x) nz:% e et lim fm(0) = by
Then the sequence (f,,)men converges to g(z) + bg uniformly in d(0, r) for every
r < R. O

Corollary B.9.11: Suppose K has characteristic 0. Let o € K and let
R eR; and let a € K\ d(a, R). Let (fm)men- be a sequence of A(K\ d(c, R))
be such that the sequence (f! )men+ converges uniformly to a function h in
H(K\ d(a,r7)) ¥r > R and that the sequence (fm(a))men converges in K.
Then the sequence (f,)men+ converges to a function f € A(K\ d(a, R)) such
that f' = h and the convergence is uniform in K\ d(a,r~) for every r > R.

Theorem B.9.12:  Let r > 0. If K has characteristic 0, then an element
f € H(d(0,r)) has a derivative identically equal to 0 if and only if it is equal to
a constant.

If K has a characteristic p # 0, then an element f € H(d(0,7)) has a
derivative identically equal to 0 if and only if there exists g € H(d(0,r)) such

that f(z) = (g(x))".

Proof. By Theorem B.5.6, each element of H(d(0,r) is a convergent power series
hence the statement about the case when K has characteristic zero is obvious.
Now, suppose that K has a characteristic p # 0. If there exists g € H(d(0,7))
such that f(z) = (g(z))?, obviously we have f’(x) identically equal to 0.
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Now, we suppose f'(z) identically equal to 0. Hence f(x) is of the form

o0

ijxjp, with lim |b;|r?? = 0. For each j € N, we can take ¢; € K such

Jj=0

that (¢;)P = b;. Then, it is seen that lim |c;|r’ = 0. Now, we can put g(z) =
j—oo

Z cnz™ and therefore g belongs to H(d(0,7)). Since K has characteristic p, we

n=0

have (g(z))? = f(z). This ends the proof. O

Corollary B.9.13:  Let r > 0. If K has characteristic 0, then an element
fe HK\dO,r7)) (resp. f € Hy(K\d(0,77))) has a derivative identically
equal to 0 if and only if it is equal to a constant (resp. to 0).

If K has a characteristic p # 0, then an element f € H(K\ d(0,77)) (resp.
f € Hy(K\ d(0,77))) has a derivative identically equal to 0 if and only if there
exists g € H(K\d(0,77)) (resp. g € Ho(K\d(0,r7))) such that f(x) = (g(x))P.

Corollary B.9.14:  Letr > 0. If K has characteristic 0, then a power series
f(z) € A(d(0,r7)) has a derivative identically equal to 0 if and only if it is
equal to a constant.

If K has a characteristic p # 0, then a power series f(x) € A(d(0,77)) has
a derivative identically equal to 0 if and only if there exists g € A(d(0,77)) such

that f(z) = (9(x))".

Theorem B.9.15 improves Theorems B.9.1 and B.9.2 concerning derivatives
of order k > 1.

Theorem B.9.15:  Let a € K, let R,R',R" € RY with R" < R" and let
f e H(d(0,r)) (resp. let f € HK\ d(0,R™)), resp. let f € H(I'(0,R',R"))).
Then, for every k € N*, for every r < R (resp. » > R, resp. r €|R', R"[), we
have

79 < ey 10

rk

Proof. Let f(z) = >0 janz™ € H(d(0,R™)). By Theorem B.5.6 we have
|
r"~1. But (n)

((n=k)!)

is an integer multiple of k! because the combination (Z) belongs to N. Conse-

. ()
71r) = supenlanlr™ and 1791(r) = sup |

quently,
(n|) | . (k) ., | n—k
31 < |k!| and therefore we obtain |f'"|(r) < sup |k!||a,|r" ™. The
— k) n>k

‘ ((n >
proof is similar when f belongs to H(K\ d(0,r)) or to H(T'(0,r',r")). O
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Corollary B.9.16:  Let a € K, let r € R and let f € H(d(a,r)). Then

Hf”d a,r
1 ey < IRIZ=52

Theorem B.9.17:  Let f € Hy(D), let p = §(D,(K\ D)). If p > 0 then f’
1
belongs to Hy(D) and satisfies ||f'||, < ;HfHD

Proof. Let (Ty,)nes be the sequence of the f-holes and let D’ = D \ ( U Tn).

nes
By Theorem B.6.1 we know that f € H,(D’) and that

W 11, = /]

By Theorem B.9.1, f has a derivative f/ in D’ and we will first check that the
1

function f’ satisfies || f'|| ., < = ||f||. Let a € D’. The disk d(a, p™) is obviously
p

included in D because if a point b € d(a, p~) belonged to K\ D', since D is closed
there would be a disk d(b,r~) C K\ D’ with < p. Thus, when z € d(a,p™),
oo

f () is of the form Z an(x—a)™ and hence the conclusion comes from Theorem

n=0

B.9.1. O

Corollary B.9.18:  Let f € H(D) be such that the set of diameters of the
f-holes has a strictly positive lower bound. Then f' € H(D).

Proof. By Theorem B.2.5 we know that f is in the form g + h with h € R(D)

and g € Hy(D). Obviously h" belongs to R(D) and by Theorem B.9.17, we have
g € Hy(D). O

Theorem B.9.19:  Let D € Alg be closed and open. Let f € Hy(D), let
(Vi )nen+ be the set of f-holes, and let an be its Mittag-Leffler series on

n=0
D defined as fo = fo and for every n € N*, f, = fy.. The following three
conditions are equivalent

a) f’ belongs to H(D)

b) the series Z 1 converges in H(D)

n=0

c) the series Z f1, converges to f' in Hy(D).

n=0
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Proof. We will first prove the equivalence between b) and c). For each g € N,

q 00
the sum Z 1}, clearly belongs to Hy(D). Thus we assume that this series Z 1
n=0 n=0

converges to an element h € H(D) and we will prove that h = f’ € Hy(D). Let
a € D. There exists a disk d(«,r) C D. We will show that h(a) = f'(«). For

every ¢ € H(D), 7:/; will denote the restriction of ¥ to d(«, r). Since the sequence

n
(Z fj) converges to f, by Theorem B.9.17 the sequence of the derivatives
§=0

—_~—

(Z fJ’) does converge to f’, hence it is clearly seen that f'(a) = h(«) and
3=0

therefore f' = h. We will check that f’ is bounded in D. The sequence ||f/ ||,
has limit 0, hence is obviously bounded and therefore its sum f’ is bounded in
D. Thus b) and c¢) are equivalent.

Since ¢) trivially implies a), we just have to prove that a) implies b). Thus
we suppose a) to be true and will prove b).

First, we suppose D bounded. For each hole T of D that is either a f-hole

or a f’-hole, we denote by fr (resp. gr) the Mittag-Leffler term of f (resp. f’).

Let S be the set of holes T such that (fr)’ # gr and let 7 be the set of f-holes

such that (fr)’ = gr. If we can show that & = @, then b) is clearly proven.

Hence we suppose S # (. All the g7 are equal to zero except maybe a
countable family of them. The series Z Jr andz gT obviously converge in

TeT TeS
H(D), and then we have f' = Z (fr) + Zg:T Since b) implies c), the
TeT TeS - L
series Z (fr)" is clearly equal to the derivative of Z fr. Let h = Z fr=
TeT TeT TeS
f= Z fr. Then b/ = f' — Z(fT)’ = Zg:;p Let D be the family of
TeT TeT TeS

diameters of the holes T" that belong to S and let A be its lower bound. Suppose

A > 0. By Theorem B.9.17, the series Z (fr)' converges to h’, hence Z (fr)
TesS TeS

is the Mittag-Leffler series of A’ on D, hence (fr) = g7 for all T € S and that

contradicts the definition of S. Hence A = 0.

Now, we will prove that there exists a hole V' = d(a,r”) € S with an
annulus I'(a, r, s) such that the set U of the diameters p of the f-holes included
in I'(a,r, s) has a strictly positive lower bound. Indeed, suppose such a hole V
does not exist. Then we can easily construct a sequence of f-holes (7},),en+ of

1
the form T, = d(an,r,, ) with (1) r, < - and

2
2 n _nS*-
(2) lan+1 —anl < =

For example, asssume the sequence has just been constructed up to the rank g,
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2
satisfying (1) and (2) for n < ¢. Since V' does not exist, then in I'(aq, rq, —) we
q

2
can find a f-hole Ty11 = d(ag+1,7,,1) With 741 < 1 and then the sequence
q

is clearly constructed by induction by taking first any f-hole Ty = d(ay,r] ).
The sequence (T},),en+ clearly converges to a point w € D and that contradicts
the hypothesis ” D is closed and open”. Hence we have now proven the existence
of the f-hole V with an annulus I'(a,r, s) and a number £ > 0 such that every
f-hole T C T'(a,r,s,) satisfies
(3) diam (T") > &.
Let £ be this family of f-holes included in T'(a,r,s). Let [ = Z fr. By
L TeL
Theorem B.9.17 the series Z(fT)’ converges to I’ in H(D). Now let ¢ =
TeLl

h—1— fy. Clearly ¥ belongs to H(D) and no hole T (of D) included in d(a, s)
is a t-hole. Hence 1 extends to an element of H(D U d(a,s)). In d(a, s), ¥ (x)
is equal to a power series ¢(x) € H(d(a,s)), hence ¢’ € H(d(a,s)). Thus in
D nd(a,s), ¥'(x) is equal to the series ¢’'(x) and then for every hole T of D
included in d(a, s) the Mittag-Leffler term of v associated to T (with respect to
D) is zero.

On the other hand, we have ' =1/ ="' = (fy) =Y g — > _(fr)' = (fv)

TeS TeL

and then the Mittag-Leffler term of v’ associated to V' (with respect to D) is

gv — (fv)" # 0. Hence we have a contradiction with ¢ € H(d(a,s)). This
finishes proving that b) is true when D is bounded.

Now, we suppose D unbounded. Since D € Alg, there exists a disk d(0, S)
such that all holes of D are included in this disk. Then for every element
h € H(D), its Mittag-Leffler series in H(D) is the same as in H(D’). This is
true for both f, f’ and therefore b), which is true in H(D’), is obviously true
in H(D). That ends the proof of Theorem B.9.19. O

When K has characteristic zero, in most of the cases, we are now able to an-
swer the question ”does f' = 0 implies f = ¢t”. When D is not infraconnected,
it admits an empty annulus A = T'(a,r’,r”) and hence by Proposition B.2.15
we know that there exists w € H(D) such that w(z) = 1 whenever x € Z(A)
while w(z) = 0 whenever z € £(A). Thus the condition ” D is infraconnected”
is certainly necessary to be able to answer ”yes” the question above.

The two Theorems that follow show this condition to be sufficient too, pro-
vided D satisfies a little extra condition like to be closed or to belong to Alg.

By Theorems B.6.1, B.9.19, B.9.8, B.9.9, we can derive the following:

Corollary B.9.20: Let D be an open closed bounded infraconnected subset of
K and let (frn)nen be a sequence of H(D) converging uniformly to a function f.
Then the sequence (f])nen converges uniformly to f.
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Remark: Let D be an open closed infraconnected bounded subset of K, let
a € D and let (f,)nen be a sequence of H(D) such that the sequence f,(«) con-
verges in K and that the sequence (f},)nen converges in H(D) to a function h €
H(D). Comparatively to the Archimedean context, we could expect that the
sequence (fy)nen converges in H(D) to a function f such that f' = h. Actually,

n 2k

P
that’s wrong. For example, define the sequence (f,)nen as fn(z) = Z ’ -
p
k=0

n
Then f/(z) =1+ z:pkﬂcp%f1 and hence, the sequence (f})nen converges in
k=1

+oo

H(d(0,1)) to the function 1 + Zpkxp%fl, whereas f,,(0) = 1 ¥n € N. How-
o k=1
ever, the function Z — is unbounded in d(0,1) and hence does not belong

k=0
to H(d(0,1)). That remark does not contradict Theorem B.9.10 which only
concerned analytic functions in an "open” disk d(0,r7).

Theorem B.9.21: K is supposed to have characteristic zero. Let E be an
open subset of K such that E also is open. Then E is infraconnected if and only
if for every f € H(E) such that f'(x) = 0 whenever x € E, we have f = ct.

Proof. If E is not infraconnected, it admits at least an empty annulus A and
then by Proposition B.2.15, the characteristic function u of Z(A) belongs to
H(E). Hence there do exist non constant elements f € H(F) whose derivative
is identically 0. Now let E be infraconnected and let f € H(FE) satisfy f/(z) =0
whenever x € E. We just have to prove that f is a constant.

Suppose first that E is bounded. By Theorem B.2.5, f is in the form f* + f
with f* € Ro(K\ (E\ E)) and f € H(E), so f*/(ﬂf)+?l(I) = 0 whenever z € F
and therefore f*' = —f . Hence f € Ro(K\ (E\ E)) N H(E). Thus f*is a
rational function that has no pole in K and then it is a polynomial. Now, as an
element of Ry(K\ (E \ E)) it tends to 0 when |z| goes to 400, hence f* = 0
and therefore f*' is identically 0. Since f* belongs to Ro(K \ (E \ E)) clearly,

f* =0, and therefore f belongs to H(E).

Let a € F and let Z h, be the Mittag-LefHler series of f in E, with hg = fo
nes L

and for each n € S, set h,, = fr,, for any f-hole T,,. Since E is open, we
can apply Theorem B.9.19 to E and then we have (h,)’ = 0 for every n € N.
Since E is bounded of diameter r, then by Theorem B.7.8 we know that hq is a
constant. In the same way, by Corollary B.9.13, for each ¢ € N, we know that
hq = 0. Hence f is a constant.

Finally let E be unbounded. Then for all » > 0 the set E, = ENd(0,r) is
such that E, is open hence f is constant in E, and therefore in all of E. O

Remark: In particular, Theorem B.9.21 applies to open closed sets.
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Corollary B.9.22: K is supposed to have characteristic zero. Let E be open
and belong to Alg. Then E is infraconnected if and only if for every f € H(E)
such that f'(x) = 0 whenever x € E, f is a constant in E.

Proof. Indeed, since E belongs to Alg, it satisfies Condition B) in Theorem

o

B.8.9: D\ D C (D) But then, as it is also open, we check that E is open. [

We will now study thoroughly the question whether all analytic elements in
a set D have derivative in H (D).

Definition: We call piercing of D the number 6(D,K\ D) > 0 and D will be
said to be well pierced if §(D, K\ D) > 0.

Theorem B.9.23:  Let D be open. Then D is well pierced if and only if for
every f € H(D), [’ also belongs to H(D).

Proof. If D is well pierced, by Corollary B.9.18 we know that for every f €
H(D), f’ belongs to H(D). Now let us suppose D has piercing zero and let
(Th)nen be a sequence of holes T,, = d(an,p;,,) such that lim p, = 0. Let

An T P :
An be a sequence in K such that lim u = 0 while lim ‘—2| = +4oo. Itis
n—oo pn n—oo pTL

oo
A
seen that the series E " converges in H(D) to an element f, while the
T — ay
n=1

(o ] o0
A A
series E (72 does not. On the other hand, E n obviously is
x
n=1 =1

n
—ay) T —an
the Mittag-Leffler series of f. If f’ belongs to H(D), by Theorem B.9.19 its
o0
Mittag-Leffler series must be Z )\7” Since this series does not converge
n=1 (CE - O[n)2
this is just impossible. O

Before closing this chapter we will notice the following result that may be
sometimes helpful in differential equations.

Theorem B.9.24:  Let D be open. We suppose that both f and f' belong to
H(D). For every € > 0 there exists h € R(D) such that ||f — h||, < € together
with ||f' = 1|, <e.

Proof. First we suppose that f belongs to Hy(D). We have to introduce a
notation. Let g € Hy(D). If D is bounded, D is a disk d(a,r) and g is of the
[o'e) q

form Z Am/(z —a)™. Then for every ¢ € N we put (g), = Z Am(x —a)™. If
=0 m=0

o
D is unbounded, then g is a constant A, and we put (g), = g whenever ¢ € N.
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Let T = d(b,r~) be a hole of D and let i(x Z . For each ¢ € N*,

q

we put (1), = Z (xﬁ_ti’”'z)m Now let Z fn be the Mittag-Leffler series of f,
m=1 n=0

with fo = E and for each n € N*| f, = ffn, for any f-hole T;,. By Theorem
B.9.19, the Mittag-Leffler series of f’ is Z /), and therefore there exists an

n=0
integer N(¢€) such that

W I fa—fly < €
n=0

and

N (e)
@) > f=Fls < e

n=0
Obviously we have an integer Q(e) such that || f,, — (fn)g(e) ||, < € whenever n =

N(e)
0,...,N(e) and then by (1) and (2) it is easily seen that [| Y (fn)q(e) — fll, < €
n=0
and
N(e)
I Z Yo — f'll, < e By putting h = Z(fn) Q(e) We obtain the h € R(D)
n=0
We Want

Now we can consider the general case. By Corollary B.2.7, f is of the form
[+, with [ € Hy(D) and ¢ € R(D). Hence f' =1’ +1'. Since f’ belongs to
H(D), so does 9'. Hence by Theorem B.9.21, ' belongs to Hy(D). We have
just proven that there exists ¢t € Hy(D) such that l—=tll, <eand |lI' =¥, <e.
Hence we just have to consider h =t 4+ ¢ and this ends the proof. O

Theorem B.9.25:  Let D be open. Suppose 0 € D. Let f € H(D) and let
& 1500, D), diamn(D)]. Then |'|(r) < L.

Proof. Suppose first that |f|(r) # 0. Let ¢ > 0 and let n > 0 be such that
|f|:_ il |f| +e. Now, by Theorem B.9.24 we can find h € R(D) such that

I|(r) < |f’|+n and |h|(r) < |f|+n. By Corollary B.9.3 we have [#/|(r) < 7
hence

710y < W)+ < 0D O 0

Now suppose |f|(r) = 0. then by Theorem B.9.24 we can find h € R(D) such
that max(|h'|(r), |h|(r)) < € hence we have again |f'| < M
,

all ¢ > 0 and hence the claim is proven. O

. This is true for
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In the case when K has a characteristic p # 0, we have Theorem B.9.26.

Theorem B.9.26:  Let K have characteristic p # 0, let D be closed and let
f € Hy(D). Then f'(x) is identically O if and only if there exists g € Hy(D)
such that f = gP.

Proof. Indeed, if there exists g € Hy(D) such that f = ¢P, of course we have
f" = 0. Now, suppose that f’(z) is identically 0. Let a € D and let Z h., be

. nes
the Mittag-LefHler series of f in D, with hg = fo and for eachn € S, h, = fr,,
for any f-hole T,,. By Theorem B.9.19 we have (h,,)’ = 0 for every n € N.

If D is unbounded, hg is a constant and then we can find gy € K such that
(g0)P = ho. If D is bounded of diameter r, then by Corollary 18.13 we can
find go € H(d(a,r)) such that (go)? = hg. In the same way, for each ¢ € N, by
Corollary B.9.13 we can find g, € Hyo(K\T) such that (g,)? = h, and then, it is
seen that nILH;O llgnll, = 0 because for each n € N*, we have (||gn||,)? = ||hnllp-

o0
So, the series (Z gn) converges in Hy(D) to an element g which clearly satisfies

n=0
gP = f. This ends the proof of Theorem B.9.26. O
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B.10. Properties of the function ¥ for analytic elements

Throughout this chapter D is infraconnected.

The function ¥(f, u) was defined for rational functions in Chapter A.3. Here
we will generalize that function to anlaytic elements. Its interest is to transform
the multiplicative property of the norm | . | into an additive property. Overall,
¥ is piecewise affine. Long ago, such a function was first defined in classical
works such as the valuation function of an analyitc element [2], [58], [72] de-
noted by v(f, ). However the function v(f, ) has the inconvenient of being
contravariant: p = —log(|z|) and v(f, —log(|z|)) = —log(]f|(r)). Here we will
change both senses of variation: ¥(f,u) = —v(f, —u).

Among applications, we can show that a set F is infraconnected if and only if
for all f € H(E), f(E) is infraconnected and that an analytic element converges
along a monotonous filter F if and only if f’ is vanishing along F.

Notations: For every a € D, we put A(a) = log(8(a, D)) if 6(a, D) > 0 and
Aa) = —o0 if §(a, D) = 0. We denote by S the diameter of D, with S = +oo0 if
D is not bounded.

Let a € D and let F be a circular filter of center ¢ and diameter r €
[06(a,D),S] N R. By Proposition A.2.17, F is secant with D and then defines
an element ¢, of Mult(H(D),Up).

For every f € H(D) such that ,¢.(f) # 0 weput ¥,(f,logr) = log<D<pf(f)).
Next, for an f € H(D) such that ¢, (f) =0 we put ¥,(f,logr) = —cc.

When a = 0 for simplicity we just put U(f, u) = ¥o(f, ). Then by defini-
tion, we have W(f,logr) = log(|f|(r)).

In the same way, consider an annulus I'(0,,¢) and f € A(T'(0,r,t)). Then
for any s €]r,t[, f belongs to H(C(0, s), so we can put consider ¥(f,log(s)) =
log(|f](s)). If we consider f € A(a,r”), so much the more, we can consider
U, (f,0) for each ¢ < log(r)[.

—+o0
Remark: Let f(z) = Zanm” € H(C(0,r)) for some r > 0. By Theorem

B.6.7 we have \I/(.ﬂ IOgT) = IOg(C(O,r)@O,T(f)) = long”C(O,r) = Sugq](a’n) +
ne

nlogr.

Proposition B.10.1:  Let a € D, let p € [A(a),log(S)] NR and let f,g €
H(D). Then Wo(f + g,p) < max(Wa(f,p),Yalg,p)) and when Wo(f,p) >
Uolg,p), then Wo(f + g,p) = Walf,p). Moreover, Wo(fg, ) = Volf,p) +
Valg, p)-

Let r, t €]0, 4oo[ be such that r < t. Let f € H(D) be such that U, (f, 1)
is bounded in [log(r),log(t)]. Then U, (f, i) is continuous and piecewise affine in
[log(r),log(t)]. Further, there exists h € R(D) such that ¥, (f, 1) = Vo (h, p) Yu €

[log(r),log(t)].
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Inside D NT'(a,r,t), the relation Y(f(x)) = Yo(f,¥(z — a)) holds in all
classes of all circles C(a,s), except maybe in finitely many classes of finitely
many circles C(a, s).

Moreover, if T'(a,r,t) C D, the function U, (f, 1) is convez in [logr,logt].

Proof. Without loss of generality, we can assume a = 0. The first statements
concerning operations and inequalities come directly from those of multiplicative
semi-norms py. Now, suppose that U(f, 1) is bounded in [log(r),log(t)], hence
there exists € > 0 such that U(f, u) > loge Vu € [logr,logt].

L et h € R(D) satisty ||f — h||p < e. Particularly, for every circular filter
F secant with D, we have por(f —h) < € and particularly pyq ,(f —h) <
eVp € [r,t] ie. U(f —h,p) <log(e) < U(f,u) Vu € [logr,logt]. Consequently,
U(f,u) = U(h,p) Yu € [logr,logt]. Now, by Corollary A.3.18, the function
U (h, ) is continuous, piecewise in [logr,logt] and so is ¥(f, u). Moreover, if
I'(a,r,t) C D, the function W (h, i) is convex in [logr,logt], hence so is U(f, u).

By Lemma A.3.13 the relation ¥(h(z)) = ¥, (h, ¥(x—a)) holds in all classes
of all circles C(a, s), except maybe in finitely many classes of finitely many circles
C(a, s). Therefore the same relation holds for f. O

Proposition B.10.2: Let a € D and let f € H(D) satisfy f(a) # 0. There
exists jio € R such that V,(f, pn) = ¥(f(a)) whenever p < po. Let r € R, let
A =C(0,r) and let f and g € H(A) satisfy ||f — gll, < [|flls- Then we have

vt (f,logr) =vt(g,logr), v~ (f,logr) = v~ (g,logr).

Proof. Indeed let us take r > 0 such that |f(z) — f(a)] < |f(a)| whenever
x € d(a,7) N D hence |f(z)| = |f(a)| whenever z € d(a,r) N D and therefore
U.(f, ) = ¥(f(a)) whenever p < log(r).

+oo

+oo
Let f(x) = Zanx" and let g(z) = Z bpz". From the hypothesis we see
that || f]|, = llgll,- By Corollary B.5.9 we have
(1) sup [an|r"™ = [|f[l, = sup [bn|r"
nez nez
and ||f — g, = sup |an — by|r".
neL

Let s = v~ (f,logr) and let t = v1(f,logr). We see that

las —bs|r® < |If —glly < [[fllx = las|r* hence

(2) [bs] = las.

In the same way we have

(3) lar| = |be.

Now for every n < s and for every n > t we have |a,|r" < |as|r® = ||fll.
hence |by|r™ < | fll,- Finally by (1), (2), (3) we see that v~ (g,logr) =
s, v1(g,logr) =t. O

By Propositions B.10.1, B.10.2 and A.3.19 we can derive Corollary B.10.3
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Corollary B.10.3: Let f(z) € H(T'(0,71,72)) (resp. f(x) € H(A(0,71,72)))
+o0

(with 0 < r1 < 719) and let Zanx" be its Laurent series. The function

w— U(f, ) is bounded in ] log 7’; log ra] (resp. in [log(r1),log(r2)]) and equal to

sup(¥(an)+nu). Next, we have U(f(x)) < U(f,¥(z)) whenever x € I'(0,ry,72)
neEZ
(resp. whenever x € A(0,71,7r2)) and the equality holds in all of T'(0,71,72)

(resp. un all of A(0,71,72)) except in finitely many classes of finitely many
circles C(0,71) (r1 < r <rg) (resp. r1 <r << rg). The right side derivative
(resp. the left side derivative) of the function W(f,.) at p is equal to v (f, u)
(resp. to v=(f,u)). Moreover, if the function in u W(f,u) is not derivable at
w, then u lies in U(K).

Further, the function U(f,.) is convex in |logri,log ro| (resp. in [logry,logrs]).
Neat, given another g € H(I'(0,71,7r2)), (resp. g € H(A(0,71,72))) the func-
tions vt and v~ satisfy vt (fg, p) = v (f, W) +vr(g, 1), v~ (fg, 1) = v~ (f 1)+
v=(g, ). Further, the function v¥(f,.) is continuous on the right and the func-
tion v=(f,.) is continuous on the left at each point p. They are continuous at
wif and only if they are equal.

Proposition B.10.4: Leta € D and let f € H(D). If f(a) # 0, there exists
s > 0 such that O(f,pu) = U(f(a)) Vu < s. Let b € D be such that |a —b| =r
and d(b,r™) C D, Then we have Yy (f, 1) = VUo(f, p) Vu < ¥(b—a).

Proof. Since f(a) # 0, the first statement is immediate since | f(z)| is a constant
inside a disk of center a. Next, by Lemma A.3.14 the relation U, (f,u) =
Uy (f, ) when ¥(a — b) < p is true for every f € R(D), hence by (2), is
obviously generalized to every f € H(D). O

—+oo
Proposition B.10.5:  Let p € R and let f(z) = Zanx” € H(C(0,0")).

Then W(f, p) is equal to sup ¥(a,) + nu and we have U(f(x)) < U(f,un) for all
ne”Z

x € C(0,0"). Moreover, the equality holds in every class except in finitely many
classes where f admits zeros. Further, if v (f,pu) = v=(f,p), then ¥(f(z)) =
U(f, ) whenever x € C(0,0*).

If h e H(C(0,0")) satisfies U(f —h, p) < V(f,p), then v*(f,p) =v*(h,p)
and v~ (f,p) = v~ (h, p).

Proof. Let A = C(0,60"), let s =v~(f, ) and let t = v+ (f, ). By the Remark
above U(f, ) is obviously equal to sup(¥(ay,) + nu). Let z € C(0,0"). The
neZ

inequality W(f(x)) < W(f.p) is true because U(f, ) = log|[f]l, > ¥(f(x)).
Finally by Proposition B.10.1 the equality holds in all the classes except in
finitely many. If v+ (f,u) = v~ (f, n) then ¥(asz®) = V(as) + sp > V(a,z™)
whenever n # s hence U(f(z)) = ¥(f, u).
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+o0o
Now, let h € H(A) satisfy U(f — h,u) < U(f,p) and let h(x) = ana:".

We have ¥(a, —b,) +nu < U(as)+ su whenever n € Z hence ¥ (bs) = ¥(ay),
U(by) = U(ar), V(by)+ np < ¥(as) + sp whenever n < s and n > ¢ and

U(by) + np < U(as) + sp whenever n € [s, t], hence finally vt (h, u) = v (f, )
and v~ (h,pu) = v (f, p). O

+oo
Corollary B.10.6: Let f(z) = Zanx” € AT(0,ry,72)) (with 0 < 1 <
—00

ra). The function p — U(f, u) defined in |logry,logra[ is equal to sup(¥(ay)+
nez
nu). Next, we have ¥(f(z)) < U(f,¥(z)) whenever x € T'(0,r1,72) and the

equality holds in all of T'(0,7r1,72) except in finitely many classes of each circle
C(0,7) (r1 <7 <rg). The right side derivative (resp. the left side derivative)
of the function W(f,.) at pu is equal to vT(f,u) ( resp. to v=(f,p)). Moreover,
if the function in p U(f, 1) is not derivable at u, then p lies in ¥(K).

Further, the function ¥ (f,.) is convez in ]| logry,logra[. Next, given another
g € A(L(0,71,72)) the functions v and v~ satisfy

vi(fg.m) = vt (fm) +v (g m), v (fg.m) =v (f,n) +v (g,p).

Moreover, the function vt (f,.) is continuous on the right and the function
v=(f,.) is continuous on the left at each point p. They are continuous at p
if and only if they are equal.

Proof. All statements hold in all annuli I'(0, 7/, 7"") with r1 < v < " < 1y
because the restriction of f to I'(0,+’,r") belongs to H(T'(0,7',7")). O

Proposition B.10.7:  Let € R and let f,g € H(C(0,6*)). Then
vi(fg,m) =vi(f,m) + v (g, ) and v=(fg,p) = v (f;p) + v (g, p)-

Proof. By Proposition B.10.2 the relations are obvious when f and g € R(C(0,6"))
because there is an annulus I'(0, r1,72) D C(0, 6*) such that f, g € R(T'(0,r1,72)).
Now by Proposition B.10.6, we may extend them to H(C(0, 6#)) by taking h and
¢ e R(C(0,6")) such that ¥(f — h,u) < ¥(f,p) and ¥(g — L, pu) < ¥(g,p). O

Proposition B.10.8:  Letry, ro € R and let f, g € A(T'(0,7r1,72)) having no
zero in T'(0,71,7r2) and satisfying v(f,u) # v(g, 1), Yu €]logry,logra[. Then
both v (f + g,p) and v=(f + g, u) are equal either to v(f,u) or to v(g, u).

Proof. Let p; = log(r;), j =1,2. Since both f, g have no zero in I'(0, 71, r2),
v(f,p) is a constant integer s and v(g,u) is a constant integer ¢ # s. Con-
sequently, U(f, ) is of the form a + sp, U(g, p) is of the form b + tu, there-
fore the two functions in p can coincide at most at one point in [pq, 2. So,
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by Proposition B.10.1, we have ¥(f + g,p) = max(U(f,u), ¥(g,pn)) for all
u € [log(r1),log(r2)] except maybe at all point. But then, by continuity, the
equality holds in all [log(r),log(rz)].

Let us fix po €]p1, p2]. Suppose U(f + g,u) = U(f, ) in a neighborood
Ji1, o[ of po. Then of course, v(f + g, po) = v(f, po). Suppose now that U(f +
g9, 1) = ¥(f, ) in a left neighborhood Ju1, po] of po and W(f +g, 1) = (g, p) in
a right neighborhood [p, p2[ of po, which implies W (f, u) > (g, ) Vo €], po|
and U(f, pu) < W(g,p) Vi €|pto, p2- Then we have v(f + g, p) = v(f,1u)Vp €
w1, po[ and v(f + g, 1) = v(g, )V €Juo, po[. Consequently, since vt is con-
tinuous on the left and v~ is continuous on the right, we can check that both
v (f + g, p0) and v (f + g, o) are equal either to v(fug) or to v(g, o). O

Theorem B.10.9:  Let f € A(K\ d(0,R)). There exists ¢ € N such that

lim |f]|(r)r? = 4+o0.

r——400

Proof. Let s €]R,+oo[ be such that v (f,logs) = v (f,logs) and let 7 =
vt(f,logs). Thus ¥(f,u) has a derivative at logs equal to 7. Consequently,
since by Proposition B.10.1 U(f, i) is convex, we have ¥(f, u) — U(f,logs) >
7(p — log s). Therefore

Jm [(f, ) + (1= 7)u] = +o0

ie. lim |f|(r)r*~™) = 4o0. Finally we can take ¢ = max(0,1 — 7). O

r— 400
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B.11. Vanishing along a monotonous filter

Throughout this chapter, the set D is supposed to be infraconnected.

By Chapter A.7 we know that there exists a spherically complete alge-
braically closed extension K of K whose residue class field is not countable
and whose valuation group is equal to R. Given a subset D of K, we will denote
by D the subset

DuU{Jd(a,d(a, (K\ D))}.

a€D

The question whether an analytic element can tend to zero along a monotonous
filter is known to be one of the main problems which happen with p-adic analytic
functions [49], [50], [58]. Here we will not describe T-filters [49]. However, we
will describe sufficient conditions to prevent analytic elements to vanish along a
monotonous filter, which is sufficient to study analytic and meromorphic func-
tions inside disks or annuli.

We will apply results to characteristic functions and to the image of an
infraconnected set.

Definitions: Let f € H(D) and let F be a monotonous filter on D. When
F is decreasing (resp. increasing) of center a and diameter S, f will be said to
be strictly vanishing along F if 1ijI__n f(z) = 0 and if there exists S’ > S (resp.

S’ < S) such that for every r €]5,5’] (resp. r € [S’, S[) we have 4 (f) # 0.

When F is decreasing with no center in K, it admits a canonical basis
(D )nen with D,, = d(an,,)ND and then f will be said to be strictly vanishing
along F if li}n f(x) = 0 and if there exists S’ > S such that ,¢q, ., »(f) #0

whenever r € [ry, 8], whenever n € N. Actually F admits a center o in K and
then the definition given for decreasing filters with a center in K also applies
and is obviously equivalent.

Lemma B.11.1 just translates these definitions by using the function W.

Lemma B.11.1:  Let f € H(D) and let F be a decreasing (resp. an in-
creasing) filter of center a and diameter S on D. Then f is strictly van-
ishing along F if and only if there exists S > S (resp. S’ €]0,5[) such
that U,(f,logS) = —o0,U,(f,u) > —oo whenever p €]log S, log S’ (resp.
[log S’ log S]).

Let G be a decreasing filter with no center, of diameter S and canonical
basis (Dp)nen, with D, = d(an, ) N D. Then f is strictly vanishing along
G if and only if there exists S’ > S such that nhj& U, (f,logr,) = —o0 and

W, (f,logr) > —oco for r, <r <S5’ VneN.

Lemma B.11.2:  Let f € H(D) and let F be a monotonous filter such that
f is strictly vanishing along F. Then f is properly vanishing along F.
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Proof. Let S = diam(F). Let (D,) be a canonical basis of F and suppose
that f is not properly vanishing along F. Since f is vanishing along F, there
exists ¢ € N such that f(z) = 0 whenever x € D,. But then, we can check
that f does not satisfy the definition of an analytic element strictly vanishing
along F, because for every multiplicative semi-norm ¢, whose circular filter
is secant to Dy, we have ¢, ,(f) = 0. In particular, this applies to ,¢q,r, for
rg <r <S8, (resp. S < r <r,) when F is increasing, (resp. decreasing) of
center a, and D, = DNT(a,ry,S), (resp. Dy = DNI(a,S,r,)) and this applies
to Ya,.1,r,» when F has no center, whereas Dy = D Nd(ag41,7q)- O

Proposition B.11.3:  Leta € D andb € D and let f € H(D) satisfy f(b) #0
and ,pa,r(f) =0 for some r €]0,]a —b|]. If ,0qa—b|(f) =0, then f is strictly
vanishing along an increasing filter of center b and diameter S < |a — b|. If
pPaja—b|(f) # O then f is strictly vanishing along a decreasing filter of center
a and diameter S € [r,|a — b [.

Proof. First suppose ,,¢q,ja—|(f) = 0, hence we have
\I/b(fa log |CL - b|) = \Ila(fa log |Cl - b|) = —00.

Since f(b) # 0, by Proposition B.10.4 we know that lim W(f, ) = ¥(f(b))
fr——00

hence there exists a unique v < log|a — b| such that ¥y(f,v) = —oo and
Uy (f, u) > —oo whenever p €]y,log|a — b|[. Therefore f is strictly vanishing
along the increasing filter of center b and diameter S = 7.

Now suppose ,,@q ja—p|(f) 7# 0. Since ,@q,(f) = 0 we have W, (f,logr) =
—oo and ¥, (f,log|a—b|) > —oc hence there exists a unique 7 € [logr,log |a—b||
such that ¥, (f,v) = —oco and ¥, (f, 1) > —oo whenever p €]y,log |a—bl], so f is
strictly vanishing along the decreasing filter of center a and diameter S = 67. U

Proposition B.11.4: Leta € D and b € D and let f € H(D) satisfy
f(b) #0 and ,pqr(f) =0 for somer € Ry. Then f is strictly vanishing along
a monotonous filter with a center.

Proof. If r < |a—b| the statement comes directly from Proposition B.11.3. If r >
|a—bl, then we have Uy (f,logr) = U, (f,logr) = —oco whereas lim W(f, p) =
p——00

U(f(b)), hence there exists a unique v < logr such that ¥y(f,v) = —co and
Uy (f, u) > —oo whenever o < . Thus f is strictly vanishing along the increasing
filter of center b and diameter S = §7. O

Proposition B.11.5:  Let F be a monotonous filter on D and let f € H(D)
be strictly vanishing along F. Then F is pierced.
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Proof. Suppose that F is increasing (resp. decreasing) of center a and diameter
S and is not pierced. There exists an annulus I'(a,S,S’) (resp. T'(a,S’,5))
included in D such that ¥,(f,logS) = —oco and U,(f,u) > —oo whenever
u € [log S, log S| (resp. p €]log S,log S’]). Hence by Corollary B.10.3 we know
that U, (f, ) is bounded in ]log S’,log S| (resp. |log S,log S'[), a contradiction
to the hypothesis. R

When F has no center, we consider a center a of 7 in K and we consider f
as an element of H (D). Then the disks d(ay,r,) contain no hole of D when n
is big enough. Therefore, the restriction of f to d(an,ry) is a power series and
therefore we have the same conclusion. O

Corollary B.11.6:  Let a,b € D and let f € H(D) satisfy f(b) # 0 and
pPar(f) =0 for some r € Ry. Then f is strictly vanishing along a pierced
monotonous filter with a center.

Proposition B.11.7:  Let a € D. Let r,r’ €]log(é(a, D)),log(diam(D))[,
withr <r'. Let f € H(D) be such that the function V,(f, 1) is neither bounded
nor identically equal to —oo in [logr,logr’]. Then there exists a monotonous

filter F of center a and diameter s € [r,r'] such that f is strictly vanishing along
F.

Proof. For convenience we assume a = 0. By compacity of [logr,logr’] there

exists p € [logr,logr’] such that ¥(f,u) = —oo. Since the function U(f, u)
is not identically —oo in [logr,logr’], by continuity, either there exists &,( €
[logr,logr'] with £ < ¢ such that ¥(f,&) = —oo, ¥(f,u) > —oo whenever

u €]¢,¢] and then f is strictly vanishing along a decreasing filter of center 0 and
diameter 0¢, or there exist &, ¢ € [logr, logr’] with ¢ < ¢, such that ¥(f,¢) =
—o0, U(f,u) > —oo whenever u € [£,([ and then f is strictly vanishing along
an increasing filter of center 0 and diameter #¢. This ends the proof. O

Proposition B.11.8:  Let f € H(D) be vanishing along an increasing (resp.a
decreasing) filter F of diameter s. Let a be a center of F in K and let E =
DU (K\ d(a,s7)) (resp. E = DUd(a,s)). Then f has continuation to an
element F of H(E) such that F(z) = 0 whenever z € K \ c?(a,s*), (resp.

~

x € d(a,s)).

Proof. We suppose F increasing. By Theorem B.6.9 f has an extension fto
D. For every r > 0, the set of classes of C(a,r) which contain f—holes is
countable. Since the residue class field of K is not countable, in C (a,r) there
exist classes A = d(b, ) which contain no f-holes. Thereby f has continuation
to an infraconnected set D’ which contains D and satisfies D’ = }K, such that
every hole is of the form (i(a,p_), with d(a, p~) a hole of D. In this set, we
have

(1) D/‘)Oa,s(f) = D‘py:(f) =0.



128 Analytic elements and analytic functions

First, we suppose that F is increasing. Let V = d(a,s™) and let D” = D'\ V.
Clearly V is a hole of D”. Then, as an element of H(D"), by Theorem B.6.1,
(1) implies

=

(2) (f)y =0. R
Now, by Theorem B.6.1, f has a decomposition of the form g + h with g €
Ho(D'U (K \ d(a,s7))) and h € H(D' Ud(a,s™)). By (2), it is seen that
o Pa,s(h) =0, hence h = 0 because h belongs to fI(c?(a, s)). As a consequence,
f belongs to Ho(D' U (K \ d(a,s7))) and therefore in K, f belongs to H(DU
(K \ d(a,s™))). Moreover, by (2) we have f(z) = 0 whenever z € D", hence
f(a:) = 0 whenever z € K\ d(a,s™).

If F is decreasing, we can easily perform a symmetric proof. O

Theorem B.11.9:  Let f € H(D) be vanishing along an increasing (resp. a
decreasing ) filter F of center a and diameter s. Let E = DU (K \ d(a,s™))
(resp. E = DUd(a,s)). Then f has continuation to an element of H(E) such
that f(x) = 0 whenever x € K\ d(a,s™), (resp. whenever x € d(a, s)).

Proof. By Proposition B.11.8, f has continuation to an element f € ﬁ(ﬁ U
(K\ d(a,s™))), (resp. to H(D Ud(a,s))). Therefore in K, f belongs to H(D U
(K\ d(a,s™))). Moreover, we have f(m) = 0 whenever z € K \ (Y(a, S7), (resp.
x € (f(a7 s)), hence f(x) = 0 whenever x € K\d(a, s™), (resp. f(x) = 0 whenever
x € d(a, s)). O

Definition: Let F be a monotonous filiter on D and let f € H(D). Then, f
is said to be collapsing along F if there exists b € K such that f — b is vanishing
along F

Theorem B.11.10:  Let D be open and closed and let F be a monotonous
filter on D. Let f € H(D) be such that ' € H(D). Then f is collapsing along
F if and only if f' is vanishing along F.

Proof. Without loss of generality, we can suppose that D is bounded because
F is obviously secant with a bounded subset of K.

Suppose first that F is decreasing, of center a and diameter R. Without loss
of generality we can obviously assume a = 0. Suppose f is collapsing along F, of

-/
w = 0, by Theortem B.9.25 we have hHll% If'|(r) =0,

hence f’ is vanishing along F.

Conversely, suppose that f’ is vanishing along F. Let (T;);c; be the family
of holes of D included in K\ d(0, R) and let (T});cs be the family of holes of D
included in d(0, R). Then the pair (I, J) makes a partition of the set of holes
of D. Let D; = DUd(0, R) and let Dy = DU (K\ d(0, R)). By Corollary B.6.2,
we have H(D) = H(Dy) ® H(D3). For every g € H(D) we set g = g1 + g2
with gx € H(Dy), k=1, 2. Then ||g||p = max(||g1||p,, ||92]|p,)- By Theorem

limit ¢. Since lim

T—
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B.9.19, we can check that the decomposition of f/ in the form f' = (f')1 4+ (f’)2
is such that (f')r = (fx)’, ¥ = 1, 2. When we take numbers S’ > R and
5" < R, we have th_{%+ 1"l praco,sy = 0 = S,,ﬁf]l%f 1l \d(o,57), hence
S,,ILH}% | f1ll p\d(o,s7) and

il onaos) = 0= _Jim [ 3llp\an.s. Consequently, passing to the
limit, we get o r(f1) = wo,r(f5) = 0. Therefore, by Corollary B.11.6, f3,
which belongs to H(K\ d(0, R)) and satisfies o r(f3) = 0, is identically zero in
K\ d(0, R). Consequently, f'(z) = fi(z) Yz € DN (K\ d(0,R)). On the other
hand, since f{ belongs to H(d(0, R)) and satisfies o r(f]) = 0, is identically
zero in d(0, R) and hence f;(z) is a constant C in d(0, R). Therefore p(f1—C) =
0 hence f; — C is vanishing along F. But since fa(z) = 0 Vo € D\ d(0, R),
actually, f — C' is vanishing along F. This finishes showing that f is collapsing
along F when F is a decreasing filter with a center.

Now suppose that F has no center. We can place ourselves in an algebraically
closed spherically complete extension of K and prove the same property for the
expansion of f, hence it holds for f. Finally, if F is increasing, we can make an
inversion and prove the same. O

li ! n=0=
AL 11l praco,s)

Thanks to monotonous filters we are now able to complete the study of the
characteristic functions.

Theorem B.11.11:  Let E be a subset of K whose interior is not empty.
Then E is not infraconnected if and only if there exists a proper subset B of B
whose characteristic function belongs to H(E).

Proof. If E is not infraconnected, it admits an empty annulus I'(a,r’,r") and
then by Proposition B.2.15 the characteristic functions of Zg(I'(a,r’,r")) and
Ee(T(a,r’,7")) belong to H(E).

Now we suppose E to be infraconnected and assume that there is a subset
B of E, B # F and B # (), whose characteristic function u belongs to H(F).
Since u, by definition, belongs to Hy(E), it belongs to Hy(E). And of course,
FE has an interior that is not empty. Hence, without loss of genearality, we can
assume that E is closed. Let A = E'\ B. Suppose A and B are different from ().
Since u is locally constant in all E, at least one of the two subsets A and B has
an interior that is not empty. Without loss of generality we can assume that
the interior of A is not empty and hence there exists a € A and r > 0 such that
d(a,r) C A and u(x) = 0 whenever = € d(a,r) and then we have ¢, (u) = 0.
By Proposition B.11.3 there exists a monotonous filter F with center a« € F
such that u is strictly vanishing along F, hence by Lemma B.11.2 f is properly
vanishing along F. But this contradicts the hypothesis ” f(z) = 0 or 1 for all
x € E”. This finishes proving Theorem B.11.11. O

Corollary B.11.12:  Let E € Alg. The algebra H(E) has non-trivial idem-
potents if and only if E is not infraconnected.
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Theorem B.11.13:  Let f € H(D). Then f(D) is infraconnected.

Proof. Let D' = f(D) and let us suppose that D’ admits an empty annulus
T(a,r’',7"). Let D" = D’. Tt is seen that I'(a,r’,r"") also is an empty annulus
of D”.

Let A” = Ip»(T(a,r’,r"”)) and let B” = Ep»(T'(a,r’,r"”)). Let u be the
characteristic function of A”. By Proposition B.2.15 we know that u belongs to
H(D"). Since D" is closed and contains f(D), by Corollary B.3.3, uo f belongs
to H(D). Let A= f~1(A”) and B = f~1(B"). Obviously we have AN B = ()
and AUB = D. Now, uo f(z) =1Vx € A, uo f(z) =0Vzx € B. But since D is
infraconnected, by Theorem B.11.11, H(D) contains no characteristic function
of any proper subset. This ends the proof of Theorem B.11.13. O
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B.12. Quasi-minorated elements

Throughout this chapter, the set D is supposed to be infraconnected.
The main results given here were published in [43], [49], [58]. According to
the definition of quasi-minorated elements, Theorem B.12.1 is easy:

Theorem B.12.1:  Let f € H(D). Then, f is not quasi-minorated if and
only if there exists a large circular filter F secant with D, such that poz(f) = 0.

Proof. By Lemmas B.8.12 and B.7.7, without loss of generality we can assume
that D is bounded.

Suppose first that there exists a large circular filter F secant with D, such
that per(f) = 0. Let (a,) be a monotonous distances sequence thinner than
F such that nEToo f(an) =0. Then f is not quasi-minorated.

Conversely, suppose that f is not quasi-minorated. Then there exists a
bounded sequence (a,,) of D such that 111;1_1 f(a,) = 0 and such that one can’t
n—-+oo

extract a sequence converging in K. By Theorem A.2.1 we can extract from the
sequence (a,) either a monotonous distences sequence or a constant distances
sequence. In both cases, there exists a circular filter F less thin than this
subsequence and hence we have li]1:_n f(z)=0. O

Theorem B.12.2:  Let f be a non-identically zero element of H(D). Then
f is not quasi-minorated if and only if there exists a pierced monotonous filter
F on D such that f is strictly vanishing along F.

Proof. By Theorem B.12.1, if f is vanishing along a monotonous filter, it is
not quasi-minorated. Now suppose that f is not quasi-minorated. Since f is
not identically zero, we can find a bounded sequence (a;,)nen in D such that
nl;rr;o f(ay) = 0 such that no subsequence converges in K.

Suppose first we can extract form the sequence (a,,)nen a constant distances
sequence (ag(my)m € N, let ¢ = agq), let 7 = [ag) — aq2)| and let ¢ = oy .
Since 11111 f(agm)) =0, we have @.,(f) = 0. Since f is not identically zero

m—-1+0Q

in D, there exists b € D such that f(b) # 0. If b € d(0,r) then by Proposition
B.11.3, f is strictly vanishing along an increasing filter of center ¢, of diameter
p €]0,r]. If b ¢ d(c,r), by Proposition B.11.3, if ¢, ,—c|(f) # 0, then f is
strictly vanishing along a decreasing filter of center ¢, of diameter p € d(c, |b—c|).
Finally, if ¢ p—¢/(f) = 0, then f is strictly vanishing along an increasing filter
of center b, of diameter p € d(0, |b — ¢|) and by Proposition B.11.5, that filter is
pierced.

Suppose now we can’t extract from the sequence (a,)nen @ constant dis-
tances sequence. Then we can extract form the sequence (a,)nen @ monotonous
distances sequence (aq(m))men. There exists a unique monotonous filter F less
thin than the subsequence (ag(m))men. Suppose first that F has a center ¢ and
let » = diam(F). Then we have ¢.,(f) = 0 and hence the same reasonning
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shows that f is strictly vanishing along a monotonous filter which by Proposi-
tion B.11.5 is pierced. Finally, suppose F is decreasing, with no center. We can
find a center in a spherically closed extension and make the same reasonning
again. O

Corollary B.12.3:  If D has no monotonous pierced filter, every element of
H (D) different from zero is quasi-minorated and takes every value finitely many
times.

Definition: A subset D of K is said to be analytic if for every disk d(a,r)
included in D and for every f € H(D), the property f(z) = 0 Vo € d(a,r)
implies that f is identically zero in D.

Corollary B.12.4: If D has no monotonous pierced filter, D is analytic.
Particularly, if D has finitely many holes, D is analytic. Particularly, if D is
infraconnected affinoid, it is analytic.

Theorem B.12.5:  Let f1, f2 be quasi-minorated elements of H(D). If fi1fa
belongs to H(D), then it is also quasi-minorated.

Proof. Indeed suppose that fifo is not quasi-minorated. By Theorem B.12.2
there exists a pierced monotonous filter F on D such that ,pz(f1f2) = 0.
Hence, either ,¢or(f1) = 0 or ,pr(f2) = 0. But by Theorem B.12.1 both
options are impossible because both fi, fo are quasi-minorated. Hence so is

fifa. O

Theorem B.12.6:  Let f € H(D). If f is semi-invertible then it is quasi-
menorated.

Proof. Let f be semi-invertible, of the form P(x)g(z) with g invertible in H(D)
and P a polynomial whose zeros a1, ..., aq belong to D. We then suppose f not
quasi-minorated. By Theorem B.12.5, g is not quasi-minorated either. Hence
there exists a pierced monotonous filter F on D such that ,¢,(g) = 0. But by
Lemma B.2.3 that contradicts the hypothesis ”¢ invertible in H(D)”. Hence f
is quasi-minorated. O

Theorem B.12.7:  Suppose that D is open. Then an element of H(D) is
quasi-minorated if and only if it is quasi-invertible.

Proof. If f is quasi-invertible, it is semi-invertible and then by Theorem B.12.6
it is quasi-minorated. Now, assume f to be quasi-minorated. We will prove
it to be quasi-invertible. As in Theorem B.12.1, by Lemmas B.8.12 and B.7.7,
without loss of generality we can assume that D is bounded. Let S(D) be the
set of polynomials whose zeros belong to D\ D. If D € Alg then H(D) =
S(D)~'H(D). By Corollary B.2.13, there exists Q € S(D) and h € H(D) such
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h
that f = —. If h is not quasi-minorated, there exists a monotonous filter F

on D such that ,¢r(h) = 0 and then we have ,¢z(f) = 0: this contradicts
the hypothesis ” f quasi-minorated” and therefore h is quasi-minorated. Then
by Theorem B.7.8, h is quasi-invertible, in the form Pg with P a polynomial
whose zeros are interior to D and g an element invertible in H (D). Since D is

bounded and open, by Corollary B.8.10 D belongs to Alg, hence % is invertible

in H(D). Let P = PP, with P, (resp. P») the polynomial of the zeros of
= — P,
Pin DN D (resp. in D\ D). Then %g is invertible in H(D) and then f is

quasi-invertible. O

Theorem B.12.8:  If D belongs to Alg and has no pierced filter, every ele-
ment of H(D) different from zero is quasi-invertible

Proof. As in Theorem B.12.1, by Lemmas B.8.12 and B.7.7, without loss of
generality we can assume that D is bounded. Now, since D has no pierced
filter, by Corollary B.12.3 every element of H(D) is quasi-minorated. But since
D has no pierced filter, D is open, hence by Theorem B.12.7 every element of
H(D) is quasi-invertible. O

Corollary B.12.9: Let D be closed and let T be the set of holes of D. If
{T|T € T} is finite, then every element of H(D) different from zero is quasi-
invertible.

Corollary B.12.10: If D 1is closed and has finitely many holes then every
element of H(D) different from zero is quasi-invertible.

Corollary B.12.11:  If D is a disk d(a,r) or d(a,r™), or if D is an annulus
T(a,r1,7r2) (with 0 < ry < r3) or A(a,r1,73) (with 0 < 11 < ro ) or a circle
C(a,r), then every element of H(D) different from zero is quasi-invertible.

Proof. (Corollaries B.12.9, B.12.10, B.12.11) Indeed D has no pierced filter
hence the elements different from zero are quasi-minorated and are quasi-invertible
because D is open. O

We will see that when D belongs to Alg, a quasi-minorated element that has
no zero in D, actually is invertible in H (D).

Lemma B.12.12:  Let f € H(D) be quasi-minorated in H(D). Then f is

quasi-minorated in H(D).
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Proof. Indeed let (an)nen be a bounded sequence in D such that lim f(a,) = 0.

There obviously exists a sequence (by)neny in D such that lim a, — b, = 0

n—oo
and lim f(b,) = 0. So, the sequence (b,) is bounded as the sequence (ay).
n—oo
Since f is quasi-minorated in H (D), then we can extract a Cauchy sequence
(bg(m))men from the sequence (by)nen and then the sequence (ag(m))men is a
Cauchy subsequence of the sequence (ap)nen. Thus we have proven that f is

quasi-minorated in H(D). O

Theorem B.12.13:  Let D € Alg. Let f € H(D) be quasi-minorated and
have no zero in D. Then f is invertible in H(D).

Proof. If D is closed, the statement is given by Theorem B.7.9. Consider now
the general case. As in Theorem B.12.1, by Lemmas B.8.12 and B.7.7, without
loss of generality we can assume that D is bounded. Let @ be the polynomial
of the poles of f in D\ D and let h(z) = Q(z)f(x). By Theorem B.12.5 h

is quasi-minorated in H (D). But by Theorem B.12.11 h belongs to H(D) and
therefore by Lemma B.12.12, it is quasi-minorated in H (D). We will prove that
h has finitely many zeros in D. Indeed we assume that i admits infinitely many
zeros in D. So we can find a sequence (a,)ney in D\ D such that h(a,) = 0
whenever n # m, n,m € N. Since h is quasi-minorated in H(D) and since D
is bounded, we can extract a cauchy subsequence from the sequence (an)nen-
This Cauchy subsequence obviously converges to a point @ € D and therefore

we have h(a) = 0. But, as h has no zero in D, a belongs to D \ D. And now,

since D belongs to Alg, then a belongs to D. But by Corollary B.7.3, a zero of
h which is interior to D is isolated in D and this contradicts the definition of a.
Thus we have proven that h has finitely many zeros (b;)1<j<q in D, all of them

in the set D \ D which is included in D. Then each zero b; has a multiplicity

q
order nj, (1 <j<gq). Let P(z) = H(ac —b;)"™ be the polynomial of the zeros
j=1

o h —
of h in D. By Corollary B.7.6 the function g(z) = P((x)) belongs to H(D) and
T
obviously has no zero in D. As we have already seen when D is closed, ¢ is

invertible in H (D). Now, since both P, @ have all their zeros in D \ D, they

P P
are invertible in R(D) and so is —. But then f = —g and hence f is invertible

Q Q
in H(D). O

Theorem B.12.14:  Let D be closed, bounded, having finitely many holes and

let f € H(D). Then f(D) is an infraconnected closed and bounded subset of K.

Proof. Since D has finitely many holes, by Corollary B.12.10, f is quasi-minorated.
By Theorem B.11.13 f(D) is infraconnected. Since f is bounded on a closed
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bounded subset, f(D) is bounded. Let b belong to the closure of f(D) and let
(an)nen be a sequence of D such that HI_P f(a,) = b. Since the sequence (a,,)

is bounded, there exists a subsequence thinner than a circular filter F secant
with D. If F is large, then we have ppx(f) = 0 and hence, by Proposition
B.12.1 f is not quasi-minorated, a contradiction. Consequently, F converges to
a point a. Since D is closed, a belongs to D. Consequently, f(a) = b and hence
b belongs to f(D). Therefore f(D) is closed. O

The following Theorem B.12.15 shows an example of very simple increasing
T-filter, without describing the general theory of T-filters [49], [50].

Theorem B.12.15:  Let (r,,)nen be a sequence in |K| such that 0 < 7, < rp41
and lim 7, = R, let (gn)nen be a sequence of N prime to the characteristic

n—-+oo

of K, such that ¢, < qny1 and lim (r—")q" = 0. Letl €]0, R[] and for each

n—-+4oo 7"n+1

n € N, let b, € C(0,(r,)%™), let an1,...,0n,q, be the gn-th roots of b, and
n dk
1

let B = d(0,R™)\ ( U (e d(an. z—))). Set fu(z) = [T T] (730)

neN k=1j=1 1- (m)
Then each f, belongs to R(E) and the sequence (fn)nen converges in H(E) to
an element strictly vanishing along the pierced increasing filter of center 0 and
diameter R.

Proof. Let us first show that the sequence ( f,,)nen converges in H(E). We notice
that each pole aj ; of f, lies in a hole of diameter [ and is unique in that hole
and in the class. Moreover, since each ¢, is prime to the residue characteristic
of K, each pole ay ; of f, is unique in the class d(ay ;j, 7, ). Consequently, we

have | f,,(z)] < 21 fnl () Va € E and hence

l

(1) |fn(2)] < w Vx € E.

Let us now show that the sequence (f,)nen converges in H(E). We first notice
dk

that each factor Q = H (%
=1 (K)

|Qk|(r) =1 Vr <r,and |Qk|(r) < r Vr €]rg, R[. Consequently, we have

@ il < TTTT ()" < (2=2)" " v =,
k=0j=1 "

On the other hand, when r < r,,, we have

) satisfies |Qk|(r) < 1 Vr < R because

(< (=)

1 r :‘1—
1= Qual() =1~ — —
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hence

(3)  farr = Fal(r) = 1fal ()L = Quia|r) < 1l ()

T'n

dn+1
) Vr <r,.
Tn+1

— 400

By (2) and (3), we can see that lim (sup | fos1(r) — fn ('r)|> = 0 and hence by
n r<R
(1) we have liIf | fn+1 — frlle = 0, hence the sequence f,, converges to an ele-
n—-—1+0oo
ment f € H(E). Moreover, by (1) and (2) we can see that " }%im Ef(x) =0,
r|—R™, z€
so f is vanishing along the increasing pierced filter F of center 0 and diameter
R. Further, we may notice that |Q,|(r) = 1 Vr < r,, hence, when r < r,, we
have |f|(r) = |fs|(r) Vs > n. Consequently, |f|(r) # 0 ¥r < R and hence f is
strictly vanishing along F. O
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B.13. Zeros of power series

Most of classical results on zeros of polynomials will now be extended to
power series. In particular, power series converging inside a disk satisfy a
Schwarz Lemma that is even simpler than in C.

Throughout this chapter, r is a strictly positive real number and ', r” are
strictly positive real numbers satisfying r’ < r”.

Theorem B.13.1: Let f € H(C(0,r)). The number of zeros of f in C(0,r)
is equal to vT (f,logr) —v™(f,logr), (taking multiplicity into account).

Proof. This equality was given for a polynomial in Theorem A.3.16. First
we prove it when f is an element of H(C(0,7)) invertible in H(C(0,r)). By

1 1
Proposition B.10.7 we have 1/*(? Jogr) = —vt(f,logr) and y’(? Jogr) =

—v~(f,logr). Since any h € H(C(0,r)) satisfies v (h,logr) > v~ (h,logr) we
see that v+ (f,logr) = v~ (f,logr).

We now consider the general case. By Corollary B.12.11, f has a factor-
ization of the form Pg with P a polynomial whose zeros belong to C(0,r) and
g invertible in H(C(0,r)). Then v*(f,logr) — v=(f,logr) = v (P,logr) —
v~ (P,logr) = deg(P) and this just ends the proof of Theorem B.13.1. O

Corollary B.13.2: Let a € K and r > 0. Let f(z) € H(C(a,r7)). Let
K be a complete algebraically closed extension of K and let Cla,r) = {x €
K | |#—a| =r}. Then the zeros of f in C(a,r) are exactly those of f in C(a,r)
(taking multiplicity into account). Similarly, the zeros of f in c/l\(a,r) ={z €
K| |z—a| <r} (resp. ind(a,r~) = {z € K| |z —a| <r}) are ezactly those of
find(a,r) (resp. in d(a,r7)) (taking multiplicity into account).

Corollary B.13.3: Let f € H(C(0,7)) have t zeros in C(0,7).

Let q=v*(f,logr) — v~ (f,logr). Thenr = \q/T,
Qg+t

+oo
Theorem B.13.4: Let A = C(0,r) and let f(x Zanz be a convergent
Laurent series in A, having no zero in A. Let p = logr. Then v*(f,u) =
v=(f,n) =q€Z and |f(x)| = |agz?| whenever x € A. Moreover, if ¢ # 0, then

f(A) = C(0, |ag|r?).

Proof. By Proposition B.10.7 we see that v (f, ) = v (f, ). Thus we have
U(f,p) = U(aqg) + gu whenever p € I. Consequently, f(C(0,7)) C C(0, |aq|r?).
Now, suppose ¢ # 0 and let s = |ag|re. Let be C(0,s) and let g = f —b. So, by

definition, g(z Z anz™ +(ao— —1—2 anz™ and by hypothesis |ag| < |aq|r?,

— o0
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hence |ag—b| = |ag|r9. Consequently, v~ (g, 1) < vt (g, 1), therefore by Theorem
B.13.1, g admits at least one zero in C'(0,7) and hence b lies in f(C(0,7)). This
proves that f(C(0,7)) = C(0,|ag4|r9). O

+oo
Corollary B.13.5: Let f(x) = Zanx” be a convergent Laurent series in

A =T(a,R,R") (resp. in A = A(a,R',R")), having no zero in I'(a, R', R").
Then we have vT(f,u) = v~ (f,pu) = q € Z whenever p €)logr’ logr”|[ (resp.
w € logr’ logr”] ) and |f(z)| = |agx?| whenever x € A. Moreover, if ¢ > 0,
putting s = |aglr’'?, s = |aglr"? we have f(A) = T'(0,5,s") (resp.f(A) =
A(0,5',8")) and if ¢ < 0, putting 8" = |ag|r"?, " = |ag|r'? we have f(A)
0,s,s") (resp.f(A) = A(0,8,5")).

Corollary B.13.6: Let A =T(0,7',7") and let f(z), g(x) be convergent Lau-
rent series in A, having no zero in A such that |f|(r) = |g|(r) Vr €]r’,7"[. Then
v(f,logr) =v(g,logr) Vr €]’ v"'].

Proof. By hypothesis, we have U(f,u) = ¥(g,u) VYu €]logr’,logr”[. But

_ dv(f) _ d¥(g) _
v(f,logr) = i (logr) and v(g,logr) = 0 (logr), hence v(f,logr) =
v(g,logr). O

Theorem B.13.7: Let f € H(d(0,7)). The number of zeros of f in d(0,r) is
equal to v (f,logr), (taking multiplicity into account).

Proof. This equality was given for a polynomial in Corollary A.3.17 First we
prove it when f is an invertible element of H(d(0,r)). By Theorem B.13.1 we
have v (f,u) = v=(f,u) = 0 Vu < log(r). Consequently, v*(f,logr) = 0.
Consider now the general case. Since by Theorem B.12.11, f is quasi-invertible,
it has a factorization of the form P(z)h(z) with P a polynomial whose zeros lie
in d(0,r) and h is an invertible element of H(d(0,r)). Then by Corollary A.3.17
v (P,log(r)) is the number of zeros of P (hence of f) and by Proposition B.10.7
we have v+ (f,log(r)) = v+ (P,log(r))+v+(h,log(r)) = v (P, 1) which ends the
proof. O

Corollary B.13.8: Let A =T(0,7',7") and let f(z), g(x) be convergent Lau-
rent series in A, such that | f|(r) = |g|(r) Yr €]r’,r"[. Then for each r €]r',r"],
f and g have the same number of zeros in C(0,r) (taking multiplicity into ac-
count).

Theorem B.13.9:  Let f(z) = Zan(x —a)" € H(d(a,r)) and let s =
n=0

sup |a,|r™. Then f(d(a,r)) = d(ao,s):and V. (f — ap,logr) =logs.

n>1



Analytic elements and analytic functions 139

Proof. Without loss of generality we can suppose that a = 0. Let b € d(ao, s)
and consider f(z) —b = ag — b+ 3.7 a,a™. By hypothesis, |ag — b < s
hence v*(f — b,log(r) = v*(f — ao,log(r)) > 1 and hence f — b has at least
one zero in d(0,r). Consequently, d(0,s) C f(d(0,r)). Conversely, when x €
d(0,r), we have |f(x) — ag| < s hence d(0,s) = f(d(0,r)). As a consequence,
V. (f — ap,logr) =logs. O

Corollary B.13.10:  Let f(x) = Zan(x —a)" € Ap(d(a,r7)) (not identi-
n=0

cally zero) and let s = sup |a,|r™. Then f(d(a,r™)) = d(ag,s™).
n>1

Proof. On the one hand f(d(a,r7)) is obviously included in d(ag,s™). On the
other hand, given b € d(ag, s~) and p €]0, r[ such that sup |a,|p" > |b — ao|, by
n>1

Theorem B.13.9, b belongs to f(d(a, p)) because f € H(d(a,p)). O

Corollary B.13.11:  Let f(x) = Z an(z—a)"® € H(d(a,r™)) (not identically
n=0

zero) and let s = sup |a,|r™. Then f(d(a,r™)) = d(ag,s™).
n>1

Lemma B.13.12: Let f € H(d(0,7)) satisfy vT(f,logr) > 1, let b €
f(d(0,7)) and let g(x) = f(x) —b. Then we have vt (g,logr) = v (f,logr).

o0
Proof. Let f(z) = Zanx" and let ¢ = vt (f,logr). By hypothesis we have
n=0
lat|rt > |an|r™ whenever n < t and |a|r® > |a,|r™ whenever n > t. Now let
o0

glx) = Z b,x™. Hence by = ag — b, b,, = a,, whenever n > 1. By hypothesis we
n=0

have |bg| < sup |a,|r"™ hence |bg| < |b|rt and finally vt (g,logr) = t. O
n>1

Lemma B.13.13:  Let f € H(d(a,r)) have t zeros in d(a,r) with t > 1
(taking multiplicity into account) and let b € f(d(a,r)). Then f —b also admits
t zeros in d(a,r) (taking multiplicity into account).

Proof. We assume a = 0. By Lemma B.13.12 we know that vt (f,logr) =
t. Hence we have vt (f,logr) = ¢ and ¥(f,logr) = ¥(a;) + tlogr. Next,
U(f(x)) < U(f,logr) for all x € d(0,r) hence ¥(b) < ¥(f,logr) and therefore
U(b) < W(a;) +tlogr. Hence v (f — b,logr) = t. That ends the proof. O
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Theorem B.13.14: If an entire function f € A(K) is bounded or has no zero,
1t 15 a constant.

Proof. Let f(z) = Zajxj. By Theorem B.13.12, the number of zeros of f

Jj=0
in any disk d(0,7) is equal to the biggest of the integers I such that lag|rt =
sup |a;j|r? and this is also equal to ~ lim  |f(x)|. Hence, if f is bounded, or
jEN |z|—r,|z|#r
has no zero in K, obviously we have a,, = 0 Vn > 0. O

Theorem B.13.15: Let f(z) € A(K)\K. Then f admits at least one zero in
K. Moreover, if f is not a polynomial, then f has infinitely many zeros in K
and the zeros make a sequence (au,)nen Such that lirf || = 400.

n—-+oo

Proof. Suppose first that f has finitely many zeros in K. Then by Theorem
B.5.16 there exists a polynomial P such that f factorizes in the form Pg with
g € A(K) and g(x) # 0Vz € K. Hence by Theorem B.13.14, g is a constant,
hence f is a polynomial. Next, by Theorem B.13.7, f has finitely many zeros
in each disk, hence the sequence («,)nen tends to +oo. O

Theorem B.13.16:  Let A be a disk of the form d(a,r) (resp. d(a,v~) ) and
let f € H(A) have no zero in A. Then |f(x)| is equal to a constant in A and f
is invertible in H(A).

Proof. By Corollary B.12.11 and Theorems B.12.13 f is invertible in H(A).
We may obviously assume a = 0. By Theorem B.13.12, we have v*(f,u) =
v~ (f,pu) = 0 whenver p < logr (resp. u < logr) hence by Proposition B.10.7
U(f,u) has a derivative equal to 0 and therefore is equal to a constant in | —
00,logr[. Then by Corollary B.10.6 we have ¥(f(z)) = U(f,¥(z)), hence
U(f(x)) is equal to a constant in A. O

Theorem B.13.17:  Let A be a set in one of the following forms:

i) A =4d(0,r)

ii) A=d(0,r7)

iii) A = C(0,7).
Let f € H(A) (f not identically 0) and let h € H(A) satisfy || f — hll, < |Ifll,-
Then f and h have the same number of zeros in A (taking multiplicity into
account).

Proof. Regardless of the case i), ii), iii) we know that || f|la = ,¢0.(f) and
then we have log||f|l, = ¥(f,logr). Since ||f — k||, < ||f|l, then ¥((f —
h,logr) < ¥(f,logr). Hence by Proposition B.10.5 we know that v*(f,logr) =
vt(h,logs) and v~ (f,logr) = v~ (h,logr). Consequently, f has as many zeros
as h in A, by Theorem B.13.7 if A = d(0,r) and by Theorem B.13.1 if A =
C(0,7).
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We now suppose A = d(0,77). By Corollary B.12.11 both f,h are quasi-
invertible in H(A). Let p €]0,r] be such that d(0, p) contains all zeros of h in
A. According to the statements i) and ii) already proven, we see that f has as
many zeros as h in d(0, p) (taking multiplicity into account) and has no zero in
C(0, s) whenver s €]p, r[. This ends the proof. O

Theorem B.13.18: If f € H(C(a,r)), it satisfies |f(z)| < p@ar(f) Vz €
C(a,r) and the equality |f(z)| = pwar(f) holds in all classes except finitely
many that are the classes where f has at least one zero.

Proof. Let f € H(C(a,r)) anet A = C(a,r). We can find h € R(A) such that
Ilf — hllx < ||flla, hence by Theorem B.13.17 f has the same number of zeros
as h in each class of A (taking multiplicity into account). So, in each class of
E = d(b,r~) where f has no zero, |f(z)| is equal to pws . (f). But by Lemma
B.4.4 we have ppy - (f) = p@a,r(f), which ends the proof. O

Corollary B.13.19: Let f(xz) € A(d(0,r7)) have infinitely many zeros in
d(0,r7). Then the set of zeros of f in d(0,r7) is a sequence (n)nen, such that
lim |ap| =7.

n—-+o0o

Proof. Indeed, by Proposition B.5.12, for each p €]0, 7], f belongs to H(d(0, p))

and hence has finitely many zeros in d(0, p). O
Theorem B.13.20: Let f(x Za,ﬁ € A(d(0,r7)). Then f has finitely
n=0

many zeros in d(0,77) if and only if there exists ¢ € N such that |ag|r? > sup | |r™.

Moreover, if t is the smallest of the integers q such that |ag4|r? > sup|an|7‘
neN

then f has exactly t zeros in d(0,r~). Further, the three following statements
are equivalent:

i) f has no zero in d(0,r7),

it) f is invertible in A(d(0,77)),

i11) | f(z)| is a non-zero constant.

Proof. First we suppose that there exists ¢ € N such that |aq|r? > sup |a,|r".
neN
Let t € N be the smallest of the integers ¢ such that |aq|r? > sup |a,|r". There
neN

exists a unique s €0, r[ such that |a;|s® > |a,|s" for every n < t. Then for all
p €]s,r[, in H(d(0,p)) we have vT(f,logp) = v~ (f,logp) = t, hence f admits
exactly t zeros in d(0, p), whenever p €]s,r].

Conversely, suppose that f admits exactly ¢ zeros in d(0,7~). There then
there exists s €]0, r[ such that f admits exactly ¢ zeros in d(0, s) and of course in
each disk d(0, p) for every p €]s,r[. Hence we have v (f,logp) = v~ (f,logp) =
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t for every p €]s,r[. Therefore, we have |a;|p’ > |a,|p" for every n # t and for
every p €]s,r[. Finally we see that |a;|rt > sup |a,|r".

Further, the equivalence between i) and ii) is shown at Theorem B.5.19. The
equivalence of i) with iii) comes from the fact that f has no zero if and only if
lag| > |an|s™ Vn € N, Vs €]0,r]. 0

+oo
Theorem B.13.21: Let f(z) = Zanx" € A(K\ d(0, R)) be not identically

—o0
zero, let R > R and let ¢ = v (f,log(R")). The family of zeros of f in K\
d(0, R'™) either is finite or is a sequence (ap)nen such that liIJIrl || = +o0.

-1

Proof. By definition, f is of the form g+h with g(z) = Z anz™ € A(K\ d(0, R))

+oo
and h(z) = Z anz” € A(K). Particularly, by Theorem B.5.6 for every R', R" €

0
|R, +o0[ (with R < R") both g, h belong to H(A(0, R’, R")). Then, so does f.
Therefore, by Corollary B.13.3, f has finitely many zeros in A(0, R’, R”) which
are on the circles C'(0,7) such that v+ (f,logr) > v~ (f,logr). Thus, the family
of zeros of f in K\ d(0, R'~) either is finite or is a sequence (a,)nen such that
lim |a,| = +oo. O

n—-+oo
Theorem B.13.22:  Let R, S €]0,4+o00[, R < S, and let

—+oo

fl@) = ana" € AK\ d(0, R))

have infinitely many zeros in K\ d(0,5)). Then for every fixzed t € N, we have
[ f10r)
lim

7—~+00 ’/“t

= +00.

Proof. By Theorem B.13.21, the sequence of zeros (o, )nen is such that liT |an | = +o0.
n—-—+0oo

Set 1y, = |an|. The sequence v+ (f,log(ry,) is strictly increasing and hence there
exists ¢ € N such that v (f,log(ry) > t, therefore v (f, ) > 1 Vu > log(ry).

Set g(z) = fizf) Then clearly |g|(r) = |fr(t7") and hence v (g, ) > 1 Vu >
log(rq). Thus, the function (in p) ¥(f, 1) is a convex function, piecewise affine,

whose deivative when it is derivable, is grater than 1 whenever p > log(rg).

1£1(r)

Consequently hIJP |gl(r) = +00 and therefore lim = +4o00. O
T—1T00

r—-+4oo

Corollary B.13.23:  Let f(x) € AK)\Klz]. Then for every fized t € N, we

have lim M =400
T

r——400
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Theorem B.13.24: Let r € Ry, let ri,79 €]0, R[) satisfy r1 < ro and let
f € A(d0,R™)). If f admits exactly q zeros in d(0,71) (taking multiplicity into
account) and has no zeros in I'(0,71,72), then f satisfies

U(f,logry) —¥(f,logr) = q(logry —logry).

Proof. By Theorem B.13.13, we have v*(f,logr) = q and by Theorem B.13.4
we have U(f, u) —¥(f,logr1) = q(pr —logry) for every p € [logry,logra[, hence
by continuity we have U(f,logrs) — ¥(f,logr1) = g(logrs —logry). O

Theorem B.13.25:  Let f(x) € A(d(a,r7)). If f is not bounded, then f has
infinitely many zeros in d(a,r™).

Proof. Without loss of generality, we can suppose a = 0. Suppose f has t zeros
in d(0,77). Let d(0,s) be a disk containing all zeros of f, with s < r. Then
by Theorem B.13.22, for all p € [s,r], we have U(f,log(p)) < ¥(f,log(s)) +

t{log(p) — log(s)) < W(f,log(s)) + t(log(r) — log(s)). So, ¥(f, u) is bounded,
hence by Theorem B.5.20 f is bounded in d(0,7~), a contradiction. O

Theorem B.13.26: Let f € A(d(0, R™)) and let r1,74 €]0, R[ satisfy r1 < ra.
If f admits exactly q zeros in d(0,r1) (taking multiplicity into account) and t
different zeros o, of respective multiplicity order m; (1 <j <t) inT'(0,71,72),
then f satisfies

t
U(f,logrs) — ¥(f,logr) = ij(log(rg) — ¥(a;)) + g(logry — logry).
j=1

Proof. Let C(0,pr) 1 < h < s be the circles containing at least one zero of f.
For each h = 1,...,5, let ay(n), ., Qn(nt1)—1 be the zeros of f in C(0,pp). Let
First by Theorem B.13.24 we notice that

(1) W(f,log(p1)) — ¥(f,log(r1)) = q(log(p1) —log(r1))
and similarly

(2) ¥(f,log(r2)) — ¥(f,log(ps)) = (¢ + U>(10(g(rz)) — log(ps))-
n(h+1)—1

Next, foreach h=1,...,s — 1, set I, = q + Z m;. Then, f has no zero in
j=1
T(0, pp, pr+1) and has I, zeros in d(0, pp,), hence by Theorem B.13.24 we have

(3) W(f,log(pn+1)) — ¥(f,log(pn)) = ln(log(prt1) —log(pn))
Then by (1), (2), (3) we can check the conclusion. O

Corollary B.13.27: Let f(z) € A(d(0,R™)) be such that f(0) # 0, let r €
10, R[ and let aj, 1 < j < q be the zeros of f in d(0,r), of respective multiplicity
m;. Then
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U(f,logr) = +ij logr — ¥(ay)).
Corollary B.13.28:  Let f(x Zanx € A(d(0,r7)) have a set of zeros
n=0

in d(0,77) that consists of a sequence (o, )nen, such that o, # 0 Vn € N and
where each o, is of order u,. Then f is unbounded if and only if the sequence

(an)nen satisfies H |O‘n| u” _o.

Corollary B.13.29:  Let f(x Zanx € A(d(0,r7)) have a set of zeros
n=0
in d(0,77) that consists of a sequence (Qn)neN such that a, # 0 Vn € N and

where each oy, is of order u,. Then || fllp = |f(0 |H u"

Corollary B.13.30: (Schwarz Lemma) Let D = d(a,s), let f € H(D)

have at least (resp. at most) q zeros in d(a,r) with ¢ > 0 and 0 < r < s. Then
Pa,s(f) S Pa,s(f) il

Tt > (2)9) (resp. ot < ()7

®a,r(f) r ®a,r(f) r

Corollary B.13.31: Let f € A(K). The following two statements are equiv-
alent:
f is a polynomial of degree q,

If\()

we have

there exists ¢ € N such that has a finite limit when r tends to +oo.

Corollary B.13.32:  Let r, s, R €]0,+00] satisfy 0 < r < s < R and let
f € H(0,R)). Then

(1. log(s)) ~ (f.1og(r)) < ((f.1os(R) ~ (£.10x(5) ([E A AT,

Proof. Let g be the total number of zeros of f in d(0, s), each counted with its
multiplicity. Then by Theorem B.13.30, we have U(f,log(s)) — ¥(f,log(r)) <
q(log(s) —log(r)). On the other hand, ¥(f,log(R)) — ¥(f,log(s)) > q(log(R) —
log(s)). Consequently,

V(f,log(R)) — W(f,log(s))
log(R) — log(s)

and hence the proof is over. O
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Theorem B.13.33: Let f(z) = Z anz™ € A(K) (resp.

n=0

flx) = Zanx” € A(d(0,r7))). All zeros of f are of order one and the set
n=0
of zeros of f is a sequence (aup)nen such that |ay,| < |apy1]| if and only if the

sequence 1s strictly increasing. Moreover, if these properties are satisfied,
Ap+1
then the sequence of zeros of f in K (resp. in d(0,77)) is a sequence (qn)nen+

An

such that lim |an| = 400 (resp. lim |a,| =7) and |a,| = .
n—-+o0o n—-+oo an—i—l

Proof. Suppose first that f € A(d(0,r7)). First we suppose that the set of
zeros of f in d(0,r7) is an increasing distances sequence (o, )nen<. Then by
Corollary B.13.19, we know that liar_l |an| = 7. By Corollary B.13.3, for each

q € N*, we have vt (f,U(ay)) — v (f,¥(ay)) = 1 and |ag| = |%|. Then by
1

. . . . Qn
an immediate induction we deduce that |a,| =

’ for every n € N* and
Qn41

therefore the sequence ‘ is strictly increasing.

Ap+41

Conversely, we suppose that is a strictly increasing sequence. Hence
an+l

Ap+1

we have

an‘

‘ for every n € N. For each m € N*, we put s,, =
an+1 Ap+42
U(ap,)—Y(an-1) and r,, = 65, Clearly, we have v (f, s,,) —v~ (f, $m) = 1 for
every m € N* and v (f, n) = v~ (f, p), for every p € (] — oo, logr[\{sm| m €
N*}) Hence by Theorem B.13.1, f admits exactly one zero in each circle
C(0,7y,) and no other zero in d(0,77).

Suppose now that f € A(K). The same proof applies with lirf |y | = +o0.

O

Corollary B.13.34:  Let f(x) = Zanm" and suppose that the sequence

n=0

(| 2] |> . is strictly increasing, of limit +oco (resp. of limit R). Then f
Ap+1|/ ne

belongs to A(K) (resp. A(d(0,R™))). Moreover, putting r, = | 2] K neN, f
an+1
admits a unique zero on each circle C(0,r,) and has no other zero in K (resp.

in d(0,R)).

Proof. Indeed, thanks to the remark at the beginning of Chapter B.5, the radius
of convergence of f is +o0o (resp. R). Then conclusion comes from Theorem
B.13.33. o
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Remark: We can easily construct a sequence (r,,)nen satisfying the hypoth-
esis of Corollary B.13.34 and thereby the function h.

It is often uneasy to determine whether a function defined in an infracon-
nected set is an analytic element. The following example may be useful.

Theorem B.13.35:  Let R > 0 and let (ap)nen be a sequence of d(a, R™)
lan]
R
Let f € A(d(a,R™)) admit each a,, as a zero of order 1 and no other zero in

d(a,ry). Let E=d(a,R7)\ ( U C(a,rn)), Then the function % defined in E

“+o0
such that |a,| < lans1, lim |a,| = R, H =0 and set rp, = |ayp|, n € N..
n—-4o0o o

neN
belongs to H(E).

Proof. Without loss of generality we can obviously suppose a = 0 and f(0) = 1.
By Corollary B.13.28 f belongs to A, (d(0, R™)). For each n € N, set r,, = |ay|.
Let r €]0,R[. If r # r, Vn € N, then |f(z)| = |f|(r) Vz € C(0,7). Now let
x € C(0,r,). If |x — an| = 7y, we have |f(z)| = r,. And if = belongs to E so

that |z — an| < ry, then |f(z)| > |f|(7“n)r—n Consequently,
s

1) [f(@)] = |fI(j«]) Vo € E.

+oo k
Let f(x) = Z cpz™ and for each k € N, let Py(x) = Z cpx™. Of course,

the sequence (ﬁk)okeN converges to f uniformly in every Sis(ll d(0,r) with r €
|Cr—1]
lew|
Consequently, for n > k, P, also admits a unique zero a,,  in C(0,7,) and has
no other sero in E. Therefore, we have |P,|(r) = |f|(r) Vr < r,. We will show

10, R[. Moreover, by Theorem B.13.34, each zero ay of f satisfies |ag| =

1
that the sequence (—)nen converges to — in H(E). Indeed, let us fix ¢ > 0

Py f

1

and let us choose ¢ € N such that |f|(r,) > —. Consider now integers n > ¢
€

such that |f(z) — P,(x)| < € Yx € d(0,74). Then obviously,

1 1
— — 5| <eVx e ENd0,ry).
On the other hand, given x € E \ d(0,7,), we have |P,|(r) > |P,|(rq) >
1 1 1 1 1
—, hence | =—— — ——| < e. Therefore Hi — —H < e. This finishes
€ Pn(xl) f(z) Po(z)  fle)lle
proving that —— belongs to H(FE). O

f(x)

Notation: Let f € A(K) and let n € N*. We will denote by f<"~ the function
fofofo..of, ntimes.
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Theorem B.13.36:  Suppose the residue characteristic p is different from 0.
There exists functions A(K) and points a € K such that lilf |f<"(a)] = +o0.

+oo
Proof. Let t(n) = n? n € N Let f(z) = Zpgt(”)xm”'l. For each n € N, put

=0
pt(nfl) "
Tn = "y Then, we can check that f admits exactly two zeros (taking multi-
p oo
plicity into account) in the circle C'(0,r,) and has no zeros outside U C(0,1y),
n=1
except {0}.

Consider now a number s €|r,,r,41[ of the form ¢,/p, with ¢ € Q. In-

side the disk d(0,s), f admits 2n + 1 zeros (taking multiplicity into account).
72t(n)|q|2n+1p72n p72t(n)72n|q|2n+1

VP VP

Thus we can see that |f[(s) is of the form ¢'\/p with ¢’ € Q. Moreover, since ¢

/
belongs to Q, f has no zero in C(0, s) hence |f(z)| = |f|(s) = \qfl Vo e C(0,s).
[fI(s) _ [p*"]s*

2t(n)|32n+1 _D

Consquently, |f|(s) = [p

p

Now consider = p A g2,

s s
On the other hand, by (1) r, = p*™~*"=1_ Since r, < s, we can derive

p—2t(n) —2t(n)p2n(t(n)—t(n—1).

S2n >p
Now —2t(n)+2n(t(n)—t(n—1) = 2(—t(n)+n(t(n)—t(n—1))) = 2(—n*+n(2n—

‘f|($) > p4n272n

1)) = 4n? — 2n. Consequently, when s > r,, we have . Now,

s
let us take so > 19 and for each n € N, n > 2, let us define by induction s, 41 =

s . .
|£1(sn). So, we have 2ntl > 18 hence lim s, = +oo. But by construction,
s

n n—-+4oo
for all z € C(0, s,), we have | f(z)| = | f|(sn). Consequently, taking a € C(0, s2),
we have |f<¥>(a)| = s; and hence liIJIrl <" (a)|] = +o0. O
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B.14. Image of a disk

In this chapter D is just an open subset of K.

Theorem B.14.1:  Let f(z) = Zan(x —a)" € H(d(a,r)). Then the fol-
=0

lowing statements a), b), ¢), d), e) are equivalent:
a) |ag| > |an|r™ for alln > 1,
b) 1 — 7(@)laer < f(0)],
c¢) f has no zero in d(a,r),
d) |f(x)|is constant and different from 0 in d(a,r),
e) f is invertible in H(d(a,r)).

Proof. First a), b) are equivalent by Theorem B.5.6. Second, a), c), d) are
equivalent by Theorems B.13.7 and B.13.16. Third, by Lemma 11.3, d) implies
e) and finally e) obviously implies c). O

Corollory B.14.2:  Let f(z) = Zan(aj—a)” € A(d(a,r™)) (resp. let
n=0

flx) = Zan(x —a)" € H((d(a,r7))). Then Statements a), b), ¢), d),e) are
n=0

equivalent:
a) |ag| > |an|r™ for alln > 1,
b) If — fla)| < I£(@)] Vo € d(a,r),
c) f has no zero in d(a,r™),
d) |f(x)|is constant and different from 0 in d(a,r),
e) f is invertible in A(d(a,r™)) (resp. f is invertible in H(d(a,r™))).

Proof. Concerning A(d(a,r7)), we just have to apply Theorem B.14.1 to f in
H(d(a, p)) for every p €]0,r[. Concerning H(d(a,r™)), we can use Lemma B.2.3
to check that an element of H(d(0,r~)) having no zero is invertible. O

Theorem B.14.3: Let a, b € K and r,s € R, and let f € A(d(a,r7)),
g € A(d(b,s7)) be such that f(d(a,r~)) C d(b,s~). Then go f belongs to
A(d(a,r7)).

Proof. Without loss of generality we can clearly assume a = b = 0. First,
suppose that f has no zero in d(0,77). Then |f(z)| is equal to a constant ¢
in d(0,77), with ¢ < s. Hence, of course, f(d(0,77)) is included in d(0,c).
Now, let p €]0,7[. The restriction of f to d(0, p) belongs to H(d(0, p~)) and the
restriction of g to d(0, ¢) belongs to H(d(0,c)). Hence the restriction of go f to
d(0, p) belongs to H(d(0, p)). Consequently, by Corollary B.3.3 go f belongs to
H(d(0,p)). This is true for every p €]0,r[ and therefore this shows that g o f
belongs to A(d(0,r7)).
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Now, we suppose that f admits at least one zero in d(0,r~). Hence there
exists 7’ €]0,7] such that f has at least one zero in d(0,r’). Therefore by
Corollary B.13.30, || f|la(o,p) is strictly increasing in p in the interval [r,7[. Now,
let p €]0,7[ and let 0 = || f|lac0,p)- The restriction of f to d(0,p) belongs to

H(d(0,p)) and further, f(d(0,p)) is included in d(0,0). Since g belongs to
H(d(0,0)), g o f belongs to H(d(0,p)). As previously, this is true for every
p €]0, 7"[7 hence g o f belongs to A(d(0,77)). O

Theorem B.14.4: (Dieudonné-Dwork) Let f € A(d(0,R™)) satisfy
f(0) = 1 and have no zero in d(0,R™). There exists a sequence (uy)ren+ in

d(0, R) such that f(z) = H(l — upx™) whenever x € d(0, R™).
k=1

Proof. Since f(0) = 1, we can write f(z) in the form 1+ Z bpx™. Since f has

no zero in d(0, R™), by Corollary B.14.2 we have |b,|R" < 1 for every n € N*,
Now, suppose that we have already found wy, ..., ux such that f(x) factorizes in
the form

k
(Ri) H (1- u]xj) 1 4 gkttt Zﬁ” k+133 with |G k41| < % for every n €
j=1
N.
Actually, we have (1 + ﬁo’kJ’,]mk-‘rl)(l + Z(_ﬂo’k+1$k+l)n) = 1 and therefore

n=1
[eS)

we can factorize (1 + gkt Z ﬂn7k+1x”) in the form
n=0

(1+ Bopsra™ ) (1+ Z(—ﬁo,k+1$k+l)n) (1+aht! Z B kr12™)
n=1

n=0

Now, consider the function gi41 defined as

oo oo
Gr+1( Z —Bo 12 TH™) (1 4 2F Z B kr12")
n=1 n=0

k+1

In gp41, it is seen that the term in x is equal to 0, so gr4+1 is of the form

1
(1 + zFt2 Zﬁn,kwx"), with |8 k42| < i for every n € N.
n=0
Now we just put ugy1 = Ook+1 and then we have proven (Ry41). Since (Ry) is
trivially satisfied, by induction we can construct a sequence (uy)ren+ in d(0, R™)
and a sequence (gi)gen+ in A(d(0, R7)), such that for each k € N, gy, is of the
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form 14 zFt! Z Bn.k+12" and satisfies f(x
n=0

(1 —ujz?)gy(x). For each

IIEa-

k
ke N* let fr(zx) = H(l — uja’).
j=1
It is seen that for each r €]0, R[, we have |lgx—1||4(0,) < r*. Asa consequence,
for every r €]0, R], the sequence (f)ken- converges to f in H(d(0,r)) and

therefore we have f(z) = H(l —uga®) for all z € d(0,R™). That ends the

k=1
proof. O

Proposition B.14.5:  Let D be a set of the form | Jd(as,7™) with |a; —
iel
a;| = r whenever i # j. Let £ be fized in I, let f € H(D) be such that

= Z an(x — o))" € H(D) whenever x € d(og, ™) and let s = sup |an|r™.
n=0 n>1

For every i € I, let B; = f(a;). Then we have f(d(ay,r7)) = d(B;,s~) for
every i € I and |B; — B;] < s whenever i,j € I. Moreover, if I is not finite, the
equality |B; — Be| = s holds for every i € I but finitely many.

Proof. We set a = ay and g = f — B¢. By Theorem B.13.9, for every p €]0,7]
we have U, (g,log p) = sup ¥(a,) + nlog p hence by continuity:
n>1

U,.(g,logr) =sup ¥(a,) +nlogr =logs.
n>1

Now let j € I, j # ¢ and set b = ;. Since |b — a| = r, by Proposition B.10.4
we have U,(g,logr) = Uu(g,logr) hence ¥(g(x)) < ¥,(g,logr) = log s for all
x € d(b,r™). Thus we see that |f(z) — ¢ < s for all z € d(b,r~). Hence, by
Corollary B.13.11 f(d(b,r™)) is a disk d(3;,t~) with ¢ < s. Since ay and «; play
the same role, in the same way we show that s < ¢t and therefore s = ¢. Thus
we have proven that f(d(ci,r™)) = d(8;,s™) for every i € I and |3; — B;| < s
whenever ¢,j € I.

Now we suppose that I is infinite. By Proposition B.10.1, the equality
U(g(x)) = Uu(g,logr) = logs holds in all the classes of C(a,r) but finitely
many ones, hence we have |3; — B¢| = s for every j € I but finitely many and
this ends the proof of Proposition B.14.5. O

Theorem B.14.6:  Let D be an open analytic subset of K, let f € H(D) and
let D' = f(D). Then D' is open and satisfies codiam(D’) > codiam(D) ing | (z)]

Proof. Let b € f(D) and let a € D be such that f(a) = b. Since D is open,

there exists a disk d(a,r) included in D. Let f(x Z an(x —a)" Yz € d(a, ).
7=0
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Since D is an analytic set, f is not identically zero in any disk included in D,
hence by Theorem B.13.9 || f —b||4(a,r) is @ number s = sup,,~; |a,[r™. Then, by
Theorem B.13.9, f(d(a,r)) is the disk d(b, s), hence d(b,s) C D, which proves
that f(D) is open. Particularly, |f'(a)| = |a1| hence ||f — bl|a@a,ry > 7|f'(a)l,
therefore (D', (K\ D)) > §(D, (K\ D)) zuellg |f(x)]. O

Theorem B.14.7:  Let f € H(d(0,r)), let t = v (f,logr) and assume t > 1.
Suppose that f" is not identically zero and let o, ...,aq be the zeros of f' in
d(0,7). For every b € f(d(0,7))\ f({cua,...,aq}), f — b admits exactly t zeros of
order 1 in d(0,r).

Proof. Let b € f(d(0,7))\ f({ou,...cq}). By Theorem B.13.7 f — b admits ¢
zeros in d(0,r) (taking multiplicity into account). But for each zero « of f — b,
(as a # a; whenever j = 1,...,q) we have f’(«) # 0 hence the ¢ zeros of f —b
are of order one. O

Definition: Let f € H(D). Then f will be said to be strictly injective in D
if f is injective and if f’(x) # 0 whenever x € D.

In the same way, given a € K and r > 0, an analytic function f(z) €
A(d(a,r™)) will be said to be strictly injective in d(a,r ™) if f is injective and if
f'(z) # 0 whenever = € D.

Theorem B.14.8: Let K have characteristic zero and let f € H(D) be
injective in D. Then f is strictly injective.

Proof. Suppose that f is not strictly injective and let o € D be a zero of f.

Let d(a,r) be a disk included in D. Without loss of generality we may assume

a = 0. Hence in d(0,7), f(z) is equal to a series of the form ag + Z anx™ with
n=q

g > 2 and ag # 0. Therefore we have vt (f,logr) > ¢ > 2. Let t = v+ (f,logr).

Since K has characteristic zero, f’ is not identically zero and therefore admits

finitely many zeros a; = 0, ag, ..., a5 in d(0, 7). Let b € f(d(0,7))\ f({aq,...as}).

By Theorem B.14.7 f — b admits ¢ simple zeros in d(0,r) and this contradicts

the hypothesis ” f injective in d(0,r)”. O

Theorem B.14.9: Leta € K, r € Ry, let f(z) = Z an(z—a)" € H(d(a,r))
n=0
and let s = sup |a,|r™ be > 0. Then the following statements are equivalent:
n>1

a) |ai| > |an|r™ =t whenever n > 1

B) 1f (@) = fFy)l = lx — yllar| whenever z,y € d(a,r)

v) [ is strictly injective in d(a,r).
Moreover when conditions «),3),7) are satisfied, then we have s = |a1|r and
|f'(z)| = |a1| whenever x € d(a,r).



152 Analytic elements and analytic functions

Proof. Without loss of generality we may obviously assume a = 0.
First, we suppose «) is satisfied and consider

00 n—1
f(@) = fly) = (z—y) <a1 +) an (Z wjy””))-
n=2 j=0
For every n > 2 it is seen that |2#7y"~1=7| < r"~1. Hence we have
') n—1
n=2 7=0
same time we notice that «) implies |f'(x)| = |a1| whenever = € d(a,r) while,
by Theorem B.13.9, we have s = |a1|r. So «) implies ().

Second, we suppose [3) is satisfied. Since s > 0 by Corollary B.13.10 f is
not a constant hence a; # 0. Then by ) we have f(x) # f(y) whenever z # y.
Moreover, |f'(z)| = |a1| # 0, hence ) is satisfied.

Third, we suppose ) is satisfied. Let b € f(d(a,r)), let ¢ = f — b and let
t =vT(g,logr). If t > 2 either g admits several different zeros or g admits a
zero « of order ¢. In both cases we see that g is not strictly injective, hence

neither is f. Finally we have ¢ = 1 and hence «) is satisfied. This ends the
proof of Theorem B.14.9. O

laq| > and thereby |f(z) — f(y)| = |a1| |z —y|. At the

Theorem B.14.9 is easily applied to analytic functions inside a disk.
Corollary B.14.10:  Let f(x) = Zan(x —a)" € Ay(d(a,r7)) and suppose
n=0

that the number s = sup |a,|r"™ is stm'&fly positive. Then conditions &), 5),7),0)
n>1

are equivalent.

a) lai] > |an|r®~t whenever n > 1

B) 1f(x) = f(y)l = & =yl |ar] whenever z,y € d(a,r™)

) [ is strictly injective in d(a,r™).

0) s=laylr.
Moreover, when conditions «),[3),7),08) are satisfied, we have |f'(z)| = |a1]
whenever x € d(a, 7).

Proof. For every p €]0,r[ we apply Theorem B.14.9 to f € H(d(a, p)). O

Lemma B.14.11:  Let f € A(d(a,77)) be injective and such that f' is not
identically zero. Then f is strictly injective.

Proof. We may obviously assume that f/(«) # 0 and a = 0. Hence, f is of the

form Z apx" with a; # 0. If f/ has a zero 3, there exists an integer ¢ > 1 such
n=0

that
(1) lgag] 18]97" = |as].
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Let g(z) = f(z) — f(0). Then g is also injective and has a simple zero at 0.
But by (1) we have |ag| |3|? > |a1| | 3| hence we have vT (g, ) > ¢ when p is
close enough to log(r). Then, by Theorem B.13.7 we know that g has at least g
zeros in d(0,77) and then admits another zero v # 0, which contradicts the fact
that it is injective. Consequently, f’ has no zero in d(«,r™) i.e., f is strictly
injective. O

We are now able to study the inverse functions of an analytic element inside
a disk d(a, ).
Theorem B.14.12:  Let a € K, r € Ry, let f(x) € H(d(a,r)) be strictly
injective in d(a,r), let s = |f'(a)|r and letb = f(a). The homomorphism © from
H(d(b, s)) into H(d(a,r)) defined as O(h) = ho f is an isometric isomorphism
from H(d(b,s)) onto H(d(a,r)).

Proof. Without loss of generality we may obviously suppose a =b = f(a) =0
and f'(0) = 1. We put E = d(0,r). Hence by Theorem B.14.9 in d(0,r)

f(z) is equal to a series of the form z + Zajm‘] with sup la;|r’ < r. Next,
j=2 Jj=2

by Theorem B.13.9 r is equal to s. It is obviously seen that ||O(h)||r = ||h||E

for every h € H(E). So, we only have to prove that O is surjective. Let

A= 1nf ||@( ) — z||g and suppose A > 0.

f S(IP(f) —
Set A = inf peria) (I1P() — 2)I) and suppose that A > 0. By definition,

,
A < 1 because || f —z| < r. Let P € K[z] be such that ||P(f)—z|| < rA%. Then

we can write = P(f) + h(z) with h € H(d(0,r)) and h(z chx with

len] <rA3 VneNand lim ¢, =0.

n—-+o0o
Let ¢ € N be such that |c, < 722 Vn > ¢, let w( chx We first

notice that for all n € N, we have
(1) 1(P(f) + h(@))" = (P(f) +w(@)"|| < [Ih - w] < rA
Now, for each n € N, set (P(f) + h(z))" = (P(f) + w(z))" + wn(z). Then by
(1), we have
(2) [lwn]] < 7A%2 Vn € N.

On the other hand, ||[(P(f) 4+ w(z))" — (P(f))"] < |w| < 7A% Vn € N.
Consequently, we can write (3) ||(P(f)+w(z))™ = (P(f))™ 4+ £, (x) with ||£,] <
rA3 Vn e N.

Now, we have
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therefore by (2) and (3) we can write

()
7=P(f) = 3 ealPU)"+D_ en (@) +wn(@)+ D (P +0(@) " +wn(@))

n=0 n=q+1
with [|e, (P(f) +w(@))™ + wn(2))|| < 7A? Vn > g and |4, + wy,| < rAE Vn =

a
0,...,q, hence || Z Cn (én(x) + wn(x)) I < rA3. Consequently,
n=0

o= Pt = 3 Py

the polynomial @ satisfies ||z — Q(f)| < rA3, a contradiction to the hypothesis
A > 0. Consequently, A = 0 and therefore z does belong to the closure of
O(H(FE)). But since © is isometric, ©(H (F)) is obviously closed in H(FE) and
therefore x belongs to O(H(F)). As a consequence ©(H(E)) = H(E). O

< A3, Set Q(z) = P(x) — Z cn(P(x))". Then
n=0

Corollary B.14.13: Let f € H(d(a,r)) be strictly injective and let d(b,s) =
—1
f(d(a,r)). Then f belongs to H(d(b,s)).
Corollary B.14.14: Let K have characteristic 0, let f € H(a,r)) be injective
-1
and let d(b,s) = f(d(a,r)). Then f belongs to H(d(b,s)).
Corollary B.14.15:  Let f € A(d(0,77)) be strictly injective in d(0,7~) and
—1
let s=r|f'(0)]. Then f belongs to A(d(0,s7)).

-1
Proof. Indeed, by Corollary B.14.13 f belongs to H(d(0,u)) for every u €
[0, s]. O

Corollary B.14.16:  Let K have characteristic 0, let f € A(d(0,r7)) be
-1
ingective in d(0,77) and let s = r|f'(0)|. Then f belongs to A(d(0,s™)).

Definition:  An injective analytic function f € Ay(d(a,r7)) will be said to
be bianalytic if f~! belongs to A(f(d(a,r7))).

We will use the following lemma in topology:

Lemma B.14.17:  Let E be a topological space and let F' and G be subsets
dense in E. If F is open then FFNG is dense in E.

Proof. Indeed let a € E, let V be an open neighbourhood of a and let w € VN F.
Since F' is open, VN F is a neighbourhood of u. Hence as G is dense in E, there
exists z € (V N F) N G. Therefore, V N (FNG) # 0. O



Analytic elements and analytic functions 155

Lemma B.14.18:  Let D be open. Let a be a point of D\ D and let f €
H(D U{a}) be strictly injective in D. There exists an open set E satisfying:
E is open,
Du{a}CcECD
f belongs to H(E) and is strictly injective in E.

Proof. By Theorem B.2.5 we know that f is of the form g + h with g € H(D)
and h € R(K\ (D \ (D U {a}))). Since D is open, there exists ¢ > 0 such
that d(a,0) € D. Now, as h € R(D U {a}) there exists 7 > 0 such that
h € R(DUd(a,7)). Let p = min(c,7) and let E = D Ud(a, p). It is seen that
E = DUd(a, p) and therefore E is open. Next, both g, h belong to H(E), hence
so does f.

We suppose that f is not injective in E. Let b and ¢ € E be such that
f(b) = f(c) and let w = f(b). Let r € R be such that d(b,r) Ud(c,7) C E
whereas d(b, ) Nd(c,7) = 0. Then f(d(b,r)) is a disk d(w, s) whereas f(d(c,))
is a disk d(w,t). We may obviously assume s < ¢. Let ¥ = d(b,r) N D and
let A = d(c,7) N D. Obviously, ¥ is dense in d(b,r) whereas A is dense in
d(e,r) hence f(X) is dense in d(w, s) whereas f(A) is dense in d(w,t). Hence
f(A)Nd(w, s) is dense in d(w, s). Since ¥ and A are open sets in K, by Corollary
B.13.10, both f(X) and f(A) are open sets in K because f is not a constant
in d(b,r) or in d(c,r). Hence both f(A) Nd(w,s), f(X£) are dense open subsets
of d(w,s). Therefore, by Lemma B.14.17 we see that f(X) N f(A) is dense in
d(w, s) and certainly is not empty. Let y € f(X)N f(A) and o € &, f € A
satisty f(a) = f(B8) = y. By definition of ¥ and A we see that o and 8 € D
whereas a # 3. This contradicts the hypothesis ” f is injective in D” and finally
shows f to be injective in E.

Now since f is strictly injective in d(a,r~) N D we have f’(z) # 0 whenever
x € d(a,r~) N D, hence by Lemma B.14.11 f is strictly injective in d(a,r™).
Finally, we have f’(x) # 0 whenever x € E and this ends the proof of Lemma
B.14.18. O

We remember that Condition B) was defined in Chapter B.8.

Theorem B.14.19:  Let D be open, let D' satisfy D C D' C D and let
f € H(D') be strictly injective in D. There exists an open set D" satisfying
D’ ¢ D" C D such that f belongs to H(D") and is strictly injective in D" .

Proof. By Lemma B.14.18, for every a € D’ there exists an open set D, such
that D, is open, satisfying Condition B), such that DU{a} C D, C D and such
that f belongs to H(D,) and is strictly injective in D,. Let D" = U D,.
acD’
Then D” is open and such that D’ ¢ D" C D. By Theorem B.2.5 f has a
unique decomposition in the form g+h with g € H(D) and h € R(K\ (D\ D’)).
Since f € H(D,) obviously h € H(D,). Hence h has no pole in D, whenever
a € D', therefore h € R(D"). Hence f belongs to H(D"). Moreover, by Lemma
B.14.18 we have f’(x) # 0 whenever & € D,, hence whenever z € D”.
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Now we just have to check that f is injective in D”. Let a,b € D’ satisfy
f(a) = f(b). Since D,, satisfies Condition B), we may apply Lemma B.14.18 to
D, and b and then we have an open set E such that D, U{b} C E C D, = D
and such that f belongs to H(F) and is strictly injective in E. Hence the
hypothesis f(a) = f(b) is impossible and therefore f is injective in D’. But the
hypothesis made on D’ actually is satisfied on D”. Hence f is injective in D"
and this finishes proving Theorem B.14.19. O

Proposition B.14.20:  Let (d(a,7; ))icr be a partition of D. Let h € H(D)
be injective in D and let f € H(D) satisfy

i) |f'(a;) — W ()| < |W ()| whenever i € T

ii) 1f = Pllaa, oy < | (e;)|r; wheneveri € T
Then f is strictly injective. Furthermore, for all i € I we have f(d(a;,7;)) =
h(d(ag,7;)).

Proof. By i) I’ is not identically zero in d(cy,r; ) hence by Lemma B.14.11 h
is strictly injective in d(ay,r; ). For every ¢ € I we put s; = |h'(ay)|r;. By
Corollary B.13.10 we have h(d(a;,7;)) = d(h(o;),s; ) hence by ii) it is seen
that f(d(as, 7)) C d(h(ey),s; ). Let f(d(ag,r;)) = d(f(a;),t;). Therefore,
we have
(1) t; <sy
while obviously
(2) ti = | (ci)|r.

But by i) we have |f'(«;)| = |h'(e;)], hence by (1) and (2) we can derive
t; = s; hence t; = |f'(a;)|r; and therefore by Theorem B.14.9 f is strictly
injective in d(a;,7; ). Suppose that f is not injective in all of D. Then there
exists @ and b € D such that f(a) = f(b). Since f is injective in each disk
d(avi, ;) we see that there exist j and m € I with j # m such that a € d(ay,7;)
and b € d(ay,,r,,). Since we have just proven that f(d(as,7;)) = h(d(ou,r;))
for all i € I we see that there exist a’ € d(aj,r;) and V' € d(am,7,,) such
that h(a’) = f(a),h(b') = f(b). This clearly contradicts the hypothesis ”h is
injective in D” . Consequently, f is injective in all of D. Therefore by Lemma
B.14.11 f is strictly injective. O

Theorem B.14.21 shows the set of the strictly injective elements to be open
in H(D).

Proposition B.14.21:  Let D be such that 6(D,K\ D) = p > 0. Let A €
10,4+00[. Let h € H(D) be injective and satisfy |h'(x)| > A whenever x € D.
For every f € H(D) such that || f — hllp < Ap, f is strictly injective in D and
satisfies f(d(c, p™)) = h(d(a, p7)) for all a € D.

Proof. Let h € H(D) satisty ||f —h||, < Ap. Since the distance from D to K\ D
is p > 0, there exists a partition of D in the form (d(a;,p™))icr and then we
have
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1f = Bllaganp ) < Ao < [W(as)lp. Moreover, given any g € H(d(a,p)), by

hence

1
Theorem B.9.1 we have [|¢'[|g(a,p-) < ;Hng(a,p_)

/(i) = W' (ai)] < *Hf hllagas,p-y < A < 7' (ai)-

So Conditions i) and ii) of Proposition B.14.20 are clearly satisfied. O

Remark: As we know, when D has holes, p is just the lower bound of the
diameters of the holes.

Theorem B.14.22:  Let d(ay,7; )icr be a partition ofD let h € H(D) and
let w €]0,1[. Let ¢ € H(D) satisfy [|4l|, <1 and [|ho||y, .-y < uri|[h/ ||d(a“n_—)
for all i€ 1. Then for every t € max(u, ||¢||p), 1] there emsts a family (B;)icr
with §; € d(cv,r; ) such that

i) |R(B:) @' (B:)] < t|W(B;)] wheneveri e I

ii) ||h¢||d(ai’ri_) < t|W(Bi)|ri  wheneveri € I.
Let h be strictly injective and let f = h(1+ ¢). Then f is strictly injective and
satisfies f(d(a;,r;)) = h(d(a,, 7)) for allie I.

Proof. Let us fix ¢ € I and put o = o, = r;. For every g € H(d(a,r7)) we

have [|g|la(a,r—) = | li‘m _|g(z)| hence there clearly exists 3 € d(a,r~) such
that u
(1) W (8)| > n |2’ [|4(a,r—), hence the hypothesis implies
u
(2) 1hellags,r—) <t [ (B)Ir

1
Moreover we know that [|¢'[|g(a,r—) < = [|@llg(a,r—) hence we have
T

1 1
|h(6)¢/(5)‘ < |h(ﬁ)|;”¢”d(a,r—) < ;Hh”d(a,r_)Hd)”d(a,r_)'

1
As the norm || . [|g(,r—) is multiplicative, we have |h(5)¢'(B)| < =||hd||a(a,r-)
7

hence by the above hypothesis |h(3)¢'(3)| < ul|h'||g(a,r—) and finally by (1) we
obtain

(3)  [W(B)¢'(B)] < W' ()]

Hence, we just have to put 8; = 8 and do this for every ¢ € I in order to obtain i)
and ii) from (2) and (3). Since ||¢||,, < 1 we may take ¢t > ||@|| ,. We see that f/—
h' = k' ¢p+he’ hence by Condition i) we obtain |f/(8;)—h'(8:)| < t|h'(5;)|. Then,
ast < 1,andash/(x) # 0 whenever x € D, we see that | f'(8;)—h' ()| < |h(5:)]
whenever ¢ € I. This is just Condition i) in Proposition B.14.20. Moreover,
Condition ii) implies Condition ii) in Proposition B.14.20 Hence by Proposition
B.14.20, f is strictly injective and satisfies f(d(a,r; ) = h(d(ay,7;)) for all
rel. O
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Theorem B.14.23: Let D be analytic and let F' be the set of the injective
elements of H(D). The closure of F in H(D) is equal to F UK.

Proof. Let F be the closure of F and let f € F\ K. Suppose that f is not
injective and let a,b € D be such that f(a) = f(b). Without loss of generality
we may obviously assume f(a) = 0. Now let r €]0, |a — b|[ be such that d(a,r)U
d(b,r) is included in D. Suppose that f is not identically zero in D. Since D is an
analytic set, the restriction of f to d(a,r), (resp. d(b,r)), is not identically zero.
Let h € F satisfy ||f — h||p < min(||f|laa.r), [|flaw,r)- By Theorem B.13.16 h
admits a zero in d(a,r) and another in d(b, ). But since r < |a — b|, these two
zeros are different and therefore this contradicts the hypothesis ”h € F”. That
ends the proof. O
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B.15. Quasi-invertible analytic elements

Throughout this chapter D is supposed to be infraconnected.
Some of the results given here were obtained in [43]. We will show that when
an ideal of an algebra H(D) contains a quasi-invertible element, this ideal is
principal and generated by a polynomial.

Lemma B.15.1:  Let T be a hole of D and let f € H(DUT) be invertible in
H(D). If f has no zero in T then f is invertible in H(DUT).

Proof. Let (fn)nen be a sequence in R(DUT) which converges to f in H(DUT).
Let T = d(a,r~). Since f has no zero in T, by Theorem B.13.15 we have
|f(z)] = |f(a)] for all x € T and therefore, |f(z)] = ,@ar(f) for all x € T.
Now since D is infraconnected, by Corollary B.4.2 we have ,¢q..(9) < |9/,
whenever g € H(D) hence for n big enough:

1 L (@) = F@)] _ lfo = fllp

f@)  fal2) F@P 7 Gear(f))?

1 1
whenever z € T. Hence we see that the sequence — converges to — in H(D U

n f
7). O

Theorem B.15.2: Let D € Alg. If an ideal contains a quasi-invertible

element, then it is generated by a polynomial whose zeros belong to D N D.

Proof. Let J be an ideal of H(D) that contains a quasi-invertible element f
that is of the form Pg with g invertible in H (D) and P(z) € K[z], all the zeros

of P lying inside D N D. Then P belongs to J. Consequently, the set Jy of
polynomials that belong to J is not empty and hence is an ideal of K[x], hence
Jo is of the form Q(z)K[z] with @ € K[z]. On the other hand, by hypothesis f
factorizes in H (D) in the form Pg with g invertible in H(D) and P(z) € K]z],

all the zeros of P lying inside D N D. Since fg~! belongs to J, obviously P

belongs to Jy. Hence @ divides P and then all zeros of @ lie in DN D. We will
show that J = QH(D).

First we suppose that D is bounded. Let aj,...,a4 be the zeros of () and
suppose that there exists some h € J\QH (D). Since D is bounded, by Theorem

/ 7
B.2.12, h is of the form g with £ € H(D) and S a polynomial whose zeros belong
to D\ D. Hence ¢ belongs to J. Now we can find r > 0 such that d(o;,r) C D,

q
whenever ¢ = 1,...,q. Let A = U d(a;,r) and let D’ = D U A. Since the zeros

i=1
of @ lie in A, there exists A > 0 such that |Q(z)| > A whenever z € D\ A.
Now since D is closed and bounded, there exists b € K such that ||bl||, < A.
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We put ¢ = Q + bl. Clearly outside A, we have |¢p(x)| > A. Next, by Theorem
B.13.18, in each disk d(«;,r), ¢ has finitely many zeros, hence in D', ¢ has
finitely many zeros, all of them in A. Therefore, by Theorem B.7.2, it factorizes
in the form V()W (z) with W € H(D'),W(z) # 0 whenever x € D' and V a
polynomial whose zeros belong to A. By Theorem B.13.16, |W (z)| has a strictly
positive lower bound in A and another non-zero lower bound in D'\ A because
|V (z)] is obviously bounded in D’. Finally W has a non-zero lower bound in
D', therefore it is invertible in H(D’). Hence V belongs to J. But then Q
divides V' in K[z]. But since @ + b/ is equal to VW, then @ divides @ + b¢ and
hence it divides ¢ and h too. This contradicts the hypothesis h € J \ QH(D)
and finishes proving that ) generates J when D is bounded.

Now we suppose D unbounded. We may obviously assume D to have at
least one hole d(a,r~) and without loss of generality, we may assume a = 0.

1
Let v(z) = — and let D” = v(D). Then D” is a bounded set that belongs to
x
Alg, such that 0 ¢ D’. We also have v = v~ and ~(D") = D. Let ¢ be the
mapping from H (D) onto H(D") defined as ¥(f) = fo~. Then ¢ is a K-algebra
isomorphism from H (D) onto H(D"). Moreover, ¥ (J) is an ideal J" of H(D").

Let u = L and T(u) = Q(z). Then we can check that J” = TH(D"), which
ends the proof. O

Notations:  For any integer n € N we will denote by 9,,(D) the set of the
quasi-invertible elements f € H(D) that have exactly n zeros, taking multiplic-
o0

ity into account and by Q(D) the set U Q,.(D)
n=0

Theorem B.15.3 shows that if two analytic elements f, g are close enough,
then the zeros of f and ¢ also are respectively close, once correctly ordered. It
is known as the convergence of zeros theorem.

Theorem B.15.3:  Let D be closed and bounded. Let n € N, let f € Q,(D)
and let aq, ..., o, be the zeros of f (taking multiplicity into account). For every
€ > 0 there exists n > 0 such that for every h € H(D) satisfying || f—hll, <n, h
belongs to Qn(D) and the zeros (i, ..., of h, once correctly ordered, satisfy
loy — Bil <e (1 <i<nm).

Proof. Let f = Pg € Q, (D) with g invertible in H(D) and P a n-degree monic
polynomial whose zeros are interior to D. Let 71,...,v, be the different zeros

of P, each v; of order s; (with obviously Zsj =mn). Let £ = H;ifz |75 — e, let
J
1
= q
€]0,¢[, let Aj(e) = d(vj,¢€) and let A(e U (74,€)- Tt is easily seen that

j=1
|P(z)| has a non-zero lower bound in D\ A(e ) Since D is closed and bounded,
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|g(x)| has a non-zero lower bound in D. Hence |f(z)| has a lower bound A > 0
in D\ A(e). Let n = min(\, 1r<111£1 1 f1la,(e)) and let h € H(D) satisfy
<i<q :

(1) If = hllp <.
Obviously we have |f(z)| = |h(xz)] > X whenever x € D \ A(e¢). But then
by (1) and by Theorem B.13.17, we see that h has exactly s; zeros like f in
Ai(e), (1 < i < g) taking multiplicity into account. Thus we have alrealy
proven the statement when all zeros of f have order 1.

Now extending this to the general case is just a question of writing. We may
assume the «; to be ordered in such a way that
A = ... = O(sl =1, a51+1 = ...= a81+82 = Y2,
Mgy t.sq1+1 = -+ = Qsy 4. +s, = Vq-

Thus, for every j = 1,...,¢ in Aj(e) , we can check that 7; is equal to
Qs 4...4s;_1+k Whenver k = 1,...5;. Since f admits s; zeros in A;(e), as does h,
we may denote them by ﬂsﬁn_sjfﬁl, e 531+___+Sj (some of them being eventu-
ally equal). So we obtain |a; — 3;| < € whenever i = 1,...,n. O

Corollary B.15.4:  Let D be closed and bounded. For everyn € N, Q, (D)
is open in H(D) and so is Q(D).

Lemma B.15.5: Let a € D satisfy a ¢ D. There exists a quasi-minorated
element f € Hy(D) which is not semi-invertible, satisfying lim f(xz) =0 and
x€D
limsup|@| = +00.
x

z—0
zeD

Proof. Without loss of generality we may obviously assume a = 0. Then the
Cauchy filter F of base {d(0,7) N D | » > 0} is pierced. Let (Tp,)men be a

sequence of holes of D that runs F and let D' = K\ ( U T.,). By Corol-

0
lary B.8.5, there exists f € Hy(D') such that lim f(z) = 0 and such that

T

lim sup|— = +oo. We check that D’ has no monotonous pierced filter be-

x—0
xreD

cause its only holes are the T;,,. Hence by Corollary B.12.3, f is quasi-minorated.
If 0 belongs to D it is seen that f(0) = 0 while lim sup|M| = +00 hence f
z—0 T
xz€D
can’t factorize in the form xg(z) with ¢ € H(D) and therefore f is not semi-
invertible.

Now, suppose 0 ¢ D and that f semi-invertible. Then it factorizes in the

form P(x)g(x) with P the polynomial of the zeros of f in D and g an invertible
element in H(D). Since 0 ¢ D, we have P(0) # 0, hence lim g(x) = 0. But

€D

1
since lin}) lg(z)| = +o0, by Corollary B.2.9, — admits a pole at 0. Let n be

9()
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n

its order. Then by Corollary B.2.9, L has a finite limit different from zero at

g(x)
o f(x) . . ) 9(x)
0. But since — s unbounded in any set d(0,7) N (D’ \ {0}), so is . and
therefore we have hm 1nf ‘ ‘— 0. Hence g can’t be invertible. This finally

shows that f is not semi- 1nvert1ble and finishes the proof of Lemma B.15.5. [

Lemma B.15.6: Let D be such that ﬁ\ﬁ s not bounded. Then there exists
a quasi-minorated element f € Hy(D) satisfying

(1) lim f(x)=0

gy

and

(2) limsup|zf(z)| = +o0.
e

Moreover, xf does not belong to H(D).

Proof. Since D has holes, we may obviously assume that 0 belongs to a hole.

1 2
Let y(z) = — and let D’ = 4(D). Then D’ is bounded and 0 belongs to D'\ D’.
x

By Lemma B.15.5, there exists a quasi-minorated element h € Hy(D') satisfying
(3) lm fx)=0

zeD

and

(4) hmsup| |7
veb

Then we set f = hov. By (3), f satisfies (1), by (4), f satisfies (2). Now, by
Lemma B.7.7, f is quasi-minorated. Finally we check that xf does not belong
to H(D). Indeed suppose zf € H(D). By Theorem B.2.5, zf is of the form
g(x) + P(x), with g € Hy(D) and P € K[z]. Let ¢ = deg(P). Since zf is not
bounded, we have ¢ > 0. Then x'1~9f has a limit different from 0 when |z| tends
to 400 and this contradicts (1). This ends the proof of Lemma B.15.6. O

Theorem B.15.7: If D does not belong to Alg, there exist invertible elements
fyg € H(D) such that fg belongs to H(D) but is not semi-invertible.

Proof. First we suppose that there exists a € (D \ D)\ D. Without loss of
generality, we assume a = 0. By Lemma B.15.5, there exists f € Hy(D) such

that hn%) f(z) = 0 while @ is not bounded in any set D Nd(0,r) (r > 0).

€D
Since f € Hyp(D), we can find A € K such that |A| > || f||,. Let g = A+ f. Then

g is invertible in H(D). Let T = d(b, p~) be a hole of D and let F = ﬁ.
Then both ﬁ , g~ ! belong to Hy(D), hence so does F. But by definition,
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F' is the product of two invertible elements of H(D). We also notice that F'

fz)(z —b)

has no zero in D. Next, we notice that is not bounded in any set

s, 02 =1)

cannot

x
Dnd(0,r) (r>0),although lir% f(z)(x —b) =0.
rzeD

does not

—b
admit a pole at 0 and therefore, by Corollary B.2.9, M
x

Alx —b
belong to H(D). But then, since Ale=b)
x
F~1 does not belong to H(D). Since F has no zero in D, it is not semi-invertible
although both ib , g~ ! are invertible in H(D).
T

does belong to H(D), we see that

Now we suppose that D \ D is not bounded. Since D has holes, we may
1

obviously assume that 0 belongs to a hole. Let v(x) = — and let D’ = (D).
x

Then D’ is bounded, and 0 belongs to € D’\ D’. Hence, as we just saw, there
exist invertible elements h, g € Hy(D’) such that hg belongs to Hy(D') and
has no zero in D’ but is not invertible in H(D’). Then we put 7 = ho~, ¥ =
go~y, ¢ = (hg) ovy. By Theorem B.3.7, both 7, 1 are invertible in H(D), ¢
belongs to H(D) and has no zero in D. Since hg is not invertible in H(D’),
by Theorem B.3.7 again, ¢ is not invertible in H(D). Since it has no zero
in D, it is not semi-invertible in H(D) and that finishes the proof of Theorem
B.15.7. O

Theorem B.15.8:  The following three statements are equivalent:

i) D belongs to Alg and D is open,

ii) D\ D is bounded and D is open,

ili) The set of the quasi-minorated elements of H(D) is equal to the set of
the quasi-invertible elements.

Proof. By Theorem B.8.9 we know that i) implies ii). Conversely, suppose ii) is
satisfied. Particularly D is open. Suppose i) is not satisfied. Then D does not
belong to Alg. Since D\ D is bounded, there must exist @ € D\ D that does not

belong to D and therefore this contradicts ii). Hence i) and ii) are equivalent.
Now, since ii) implies i), we can apply Theorem B.12.7, hence ii) implies iii).
Finally it just remains to show that if D \ D is not bounded or if D is not open
then there exist quasi-minorated elements that are not quasi-invertible.

On one hand, if D is not open, by Lemma B.15.5 such an element does exist.
On the other hand, if D\ D is not bounded then D does not belong to Alg and
therefore, by Theorem B.15.7, there exist invertible elements f, ¢ in H(D) such
that fg is not semi-invertible, hence is not quasi-invertible. But, by Theorem
B.12.6, both f, g are quasi-minorated and then by Theorem B.12.5, fg also is
quasi-minorated. That ends the proof of Theorem B.15.8. O
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Theorem B.15.9:  Let D be closed, let T be a hole of D and let f € H(DUT),
have no zero inT. There exists a bounded closed infraconnected set E, such that
TCECDUT,T#FE and such that the restriction of f to E is invertible in

Proof. Let T = d(a,r~) and let A =p @4 (f). By Theorem B.13.16 we know
that |f(z)] = A for all € T. Moreover, since the restriction of f to T is not

A
identically zero, we have A > 0. Let £ = —.

First, we suppose C(a,7) N D # 0. Let b€ DN C(a,r). Then we have
lf(x)] =p Yb,r(f) =D @ar(f) = A. Hence, there exists s €0, r|

|lz—bl—r, |[z—b|<r,
€D

such that |f(x)| > ¢ for every z € d(b,r~)ND. Then, the set E = TU(d(b,r~)N
D) is clearly infraconnected, closed and bounded and we have | f(xz)| > ¢ for all
x € E. Hence the restriction of f to E is invertible in H(E).

Now, we suppose C(a,7) N D = (. There exists s > r such that |f(z)| > ¢
for every x € I'(a,r,s) N D. So, we consider the set £ = T U (F(a,r,s) N D).
It is infraconnected, closed and bounded and we have |f(z)| > ¢ for all x € E.
Hence the restriction of f to E is invertible in H(FE).

In both cases, we can see that T is strictly included in E. That ends the
proof of Theorem B.15.9. O

We can now briefly examine the ideals of an algebra H (D) when all elements
are quasi-invertible.

Theorem B.15.10: Let D € A. If an ideal contains a quasi-invertible

element, then it is generated by a polynomial whose zeros belong to D N D.

Proof. Let H be an ideal of H (D) that contains a quasi-invertible element f, and
let Hp be the set of polynomials that belong to H. By hypothesis f factorizes
in H(D) in the form Pg with g invertible in H(D) and P(z) € K][z], all the

zeros of P lying inside D N D. Since fg~! belongs to H, obviously P belongs

to Ho. Hence T divides P , and then all the zeros of T lie in D N D. We will
show that H = TH(D).

First we suppose that D is bounded. It is clearly seen that Hg is an ideal of
K|[z], hence there exists T'(z) € K[z] such that Ho = T'(x)K|x].

Let a1, ...,a4 be the zeros of T. Now we suppose that there exists some
h € H\TH(D). Since D is bounded, by Theorem B.2.12, h is of the form

14 — _
S with ¢ € H(D) and S a polynomial whose zeros belong to D \ D. Hence
¢ belongs to H. Now we can find 7 > 0 such that d(a;,r) C D, whenever

q
i=1,...,q. Let A = U d(a;,r) and let D' = D UA. Since the zeros of T

i=1
lie in A there exists A > 0 such that [T'(z)| > A whenever z € D\ A. Now
since D is closed and bounded, there exists b € K such that ||bf]|, < A. We
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put ¢ = T + bl. Clearly outside A , we have |¢(x)| > A. Besides by Corollary
B.13.18, in each disk d(a;,r), ¢ has finitely many zeros, hence in D', ¢ has
finitely many zeros, all of them in A. Hence it factorizes in the form Q(x)W (x)
with W € H(D'), W(z) # 0 whenever x € D’ and @ a polynomial whose zeros
belong to A. By Theorem B.13.16 , |W(z)| has a strictly positive lower bound
in A and another non zero lower bound in D’ \ A because |Q(x)| is obviously
bounded in D’. Finally W has a non zero lower bound in D’, therefore it is
invertible in H(D’). Hence Q belongs to H. But then T divides @ in K[z]. Since
T+ bl is equal to WQ, then T divides T+ ¢, and ¢, and h too. This contradicts
the hypothesis h € H \ TH(D), and finishes proving that T generates H when
D is bounded.

Now we suppose D unbounded. We may obviously assume D to have at
least one hole d(a,r ™), and without loss of generality, we may assume a = 0.

1
Let v(z) = =, and let D’ = v(D). Then D’ is a bounded set that belongs
x

to A, such that 0 ¢ D’. We also have v = v~1, and y(D’) = D. Let 1 be

the mapping from H(D) into H(D') defined as ¢(f) = fo~. Then ¢ is a

K-algebra isomorphism from H(D) onto H(D’). Besides, ¥(H) is an ideal H’
q

1
of H(D'). Let P(x) = H(x —a;), for every j = 1,...,q, let a = —, and let
i=1 ‘
q
B(u
B(u) = H(u—ag). Clearly, ¢(P) = 'qu)

. As0 ¢ D', uis invertible in H(D'),
j=1
and B belongs to H'. Hence [J’ is generated by a polynomial whose zeros lie
t

inside D' N D'. Now, let W(u) = H(u — ¢j). Since the ¢; lie in D', they are
=1
J 1 )
different from 0. For every j =1, ...,t, let ¢; = —, and let S(z) = H(m—ej). It
Cj X
Jj=1
is seen that for each j = 1,...,t, e; does belong to DN D. Now, let h € H. Then
1(h) belongs to H' and is of the form W (u)G(u), with G € H(D’). Putting

F F

F = v~ YG), in H(D) we have h = (—1)!S(z) Em) . As (f) is an
ot iy € x

invertible element of H (D), this finishes showing that S generates H. O

Corollary B.15.11:  Suppose D € Alg and all elements are quasi-invertible,
except 0. Then H(D) is a principal ring and each ideal is generated by a poly-
nomial whose zeros lie in the opening of D and every maximal ideal of H(D) is
of the form (x — a)H(D) with a € D.

By Corollaries B.12.9, B.12.10 and B.15.11 we can derive again Corollaries
B.15.12 and B.15.13:

Corollary B.15.12:  Suppose D € Alg be closed and let T be the set of holes
of D. If {T\T € T} is finite, H(D) is principal, each ideal is generated by a
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polynomial whose zeros lie in D and every mazimal ideal of H(D) is of the form
(x —a)H(D), with a € D.

Corollary B.15.13:  If D is a disk d(a,r) or d(a,r™), or if D is an annulus
I(a,r1,7r2) (with 0 < ry < 13) or A(a,r1,72) (with 0 < r1 < ro ) or a circle
C(a,r), then H(D) is principal, each ideal is generated by a polynomial whose
zeros lie in D and every mazimal ideal of H(D) is of the form (x —b)H (D) with
beD.
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B.16. Logarithm and exponential in a p-adic field

In this chapter the field K is supposed to have characteristic zero.

We will define the p-adic logarithm and the p-adic exponential and will
shortly study them, in connection with the study of the roots of 1 made in the
previous Chapter B.15. Both functions are also defined in [2]. Here, as in [58],
we compute the radius of convergence of the p-adic exponential by using results
on injectivity seen in Chapter B.14.

Lemma B.16.1: K is supposed to have residue characteristic p # 0. Let
r €]0,1[ and for each n € N, let hy,(z) = (1 +x)P". The sequence h, converges
to 1 with respect to the uniform convergence on d(0,7).

1
Proof. Without loss of generality, we may assume |[p| = —. Let E = d(0,r)
p

and for each n € N, let u,, = p™ and let g, be the integral part of ? Now we
put t, = p and we denote by h the identical function on E. Then h, — 1 =

Unp —n
g\ |(j )‘ <p
Z < .”) h’. By Lemma 6.1 we have —~—%———— hence
=\ l41
(1) ‘(1;")‘ <jp ™ <t,p " <p ? whenever j =1,...,t,.

Next, we have

tn Un
hp —1= Z (%") bl + Z (an> hi. By (1) it is seen that

=1 jetatl
tn
2 H Yn) il <p %
@[5 (5)el, =
Jj=1
while .
oIS (e, < i
J=tn+1 F
Now by (2) and (3) we see that lim |h, —1||, = 0. O

Notation: As previously defined, for each ¢ € N* we denote by R, the positive

number such that log,(R,) = We denote by f(x) the series

o0

Syt

n=1

Theorem B.16.2: [ has a radius of convergence equal to 1. If the residue
characteristic of K is p # 0, then f is unbounded in d(0,17). If the residue
characteristic is zero, then |f(z)| is bounded by 1 in d(0,17). The function



168 Analytic elements and analytic functions

1

defined in d(1,17) as Log(xz) = f(x—1) has a derivative equal to — and satisfies
x

Log(ab) = Log(a) + Log(b) whenever a, b€ d(1,17).

1
Proof. Tt is clearly seen that the radius of f is 1, because |n| > —. As in the
n

Archimedean case the property Log(ab) = Log(a)+ Log(b) comes from the fact
that both Log and the function h, defined as h,(x) = Log(ax) have the same
derivative. The other statements are immediate. O

In Chapter A.6. when K has residue characteristic p # 0, we have introduced
the group W of the p*-th roots of 1, i.e. the set of the u € K satisfying u?” = 1
for some s € N.

Theorem B.16.3: K is supposed to have residue characteristic p # 0 (resp.
0). All zeros of Log are of order 1. The set of zeros of the function Log is
equal to W, (resp. 1 is the only zero of Log). The restriction of Log to the
disk d(1,(Ry)™) (resp. d(1,17)) is injective and is a bijection from d(1,(R1)™)
onto d(0,(Ry)™) ( resp. from d(1,17) onto d(0,17)).

Proof. 1t is obvious that the zeros of Log are of order 1 because the derivative
of Log has no zero. First, we suppose K to have residue characteristic p # 0.
Each root of 1in d(1,17) is a zero of Log. Moreover by Theorem A.6.8 we know
that the only roots of 1 in d(1,17) are the p"™-th roots. Now we can check that
Log admits no zero other than the roots of 1. Indeed, suppose that a is a zero
of Log but is not a root of 1, and for each n € N, let b, = a?". Since b,, belongs
to d(1,17), by Lemma B.16.1 we have lim b, = 1. But obviously Log(b,) =0

n—0oo
for every n € N, hence this contradicts the fact that 1 is an isolated zero of Log.

Thus, Log has no zero in the disk d(1,(R;)™), except 1 and therefore by

n
Theorem B.13.7 the series f(z) = Z(—l)"‘lgL satisfies v+ (f,log,r) =1 for
n
n=1
every r €]0, Ry[, hence r > ﬁ for all r €]0, Ry, for every n € N*. Therefore,
n
by Corollary B.14.10 it is injective in d(0, R ). Then by Corollary B.13.10 we
see that Log(d(1, Ry)) = d(0, R).
Now we suppose that K has residue characteristic zero. Then, the function
oo

flx) = Z(—l)”*l% satisfies v (f,log, ) = 1 for every r €]0,1[, hence 7 >
n=1

T for all r €]0, 1], for every n € N*. Therefore, f has no zero different from 1

n

in d(0,17) and, by Corollary B.14.10, is injective in d(0,17). Then by Corollary
B.13.10 we see that Log(d(1,17)) = d(0,17). This ends the proof. O

Corollary B.16.4: K is supposed to have residue characteristic 0. There is
no root of 1 in d(1,17), except 1.
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Proof. Indeed any root of 1 should be a zero of Log in d(1,17). O

Notation: If K has residue characteristic p # 0, we denote by exp the inverse
(or reciprocal) function of the restriction of Log to d(1, Ry) which obviously
is a function defined in d(0, Ry ), with values in d(1,R;). If K has residue

characteristic 0 we denote by exp the inverse function of Log which is obviously
defined in d(0,17) and takes values in d(1,17).

Theorem B.16.5: K is supposed to have residue characteristic p # 0 (resp.
p = 0). The function exp belongs to Ay(d(0,Ry)), (resp. Ap(d(0,17))), is
a bijection from d(0, Ry ) onto d(1,Ry) (resp. from d(0,17) onto d(1,17)),
and satisfies exp(z) = exp’(x) = Z x—' whenever € d(0,Ry ), (resp. x €
n!
n=0
d(0,17)). Moreover, the disk of convergence of its series is equal to d(0, Ry )
(resp. d(0,17)). Further, if p # 0, then exp does not belong to H(d(0, Ry)).

Proof. By Corollary B.14.15 we know that the function exp belongs to Ay(d(0, Ry ))
(resp. Ap(d(0,17))) and is obviously a bijection from d(0, Ry ) onto d(1, Ry )
(resp. from d(0,17) onto d(1,17)). As it is the reciprocal of Log, it must sat-
isfy exp(x) = exp’(x) for all x € d(0, Ry ), (resp. = € d(0,17)) and therefore

exp(z) = Z % whenever x € d(0, Ry ), (resp. z € d(0,17)). Thus the radius
n=0

of convergence r is at least Ry (resp. 1). If the residue characteristic is 0, it

is obviously seen that the series cannot converge for |z| = 1, hence the disk of

convergence is d(0,17).

Now we suppose that the residue characteristic is p # 0. Suppose that the
power series of exp converges in d(0, Ry). Then exp has continuation to an
element of H(d(0,R1)). On the other hand, since v(f,log,r) = 1 for all r €
10, B[, we have v~ (f,log, R1) = 1 and then by Theorem B.13.9 Log(d(1, Ry))
is equal to d(0, R1). Hence we can consider exp(Log(z)) in all the disk d(0, R1).
By Corollary B.3.3 this is an element of H(d(1, R1)). But this element is equal
to the identity in all of d(1, Ry ) and therefore in all of d(1, Ry). Of course this
contradicts the fact that Log is not injective in the circle C'(1, Ry). This finishes
proving that the disk of convergence of exp is just d(0, Ry ).

Let us show that exp does not belong to H(d(0, Ry )). Indeed, suppose exp
belongs to H(d(0, R )). Consider the Mittag-Leffler decomposition of exp on

the infraconnected set d(0, Ry). It is of the form Z gn With go € H(d(0, Ry)
n=0
and g, € Ho(K\ d(an, R;,)) with a,, € C(0,Ry). Set T,, = d(an,R] ), n € N*
and S =~ T).
Let K be the residue class field of K. By Theorem A.7.4 we can consider
a complete algebraically closed extension K of K whose residue class field K
is not countable. Thus we can find a class G of C(0, R;) that has an empty
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intersection with S and then, by Theorem B.6.1, exp has continuation to an
element of H(d(0,R])UG. Let ¢ € G. Since |c| = Ry, by Theorem B.16.3, the

(==)"

n

(oo}
function h(z) = Log(l+z) —c = —(c+ Z ) satisfies v~ (h,log,(R1) =

n=1
0, v*(h,log,(R1) > 1 hence h admits a zero a € C(0,Ry). Then a does not
belong to K because if a € K then Log(l + a) € K, a contradiction. Now, let ¢
be a p-th root of 1 different from 1, let t = ((1+a). Since |(—1| = Ry, ¢ is of the
form 14 b with b € C(0, Ry). We then have Log(1 + a) = Log(1 +b). Set E =
d(a,Ry), F =d(b,Ry), D' = d(0, Ry JUEUF and D" = d(0, Ry JUG. Since the
image of d(0, Ry ) by Log(1+z) is d(0, Ry ) and since the derivative of Log(1+x)
has no zero, by Corollary B.13.10 we can check that for each u € C(0, Ry ), the
image of d(u, Ry ) by Log(1+x) is d(Log(14u), Ry ). Consequently, both images
of E and F' by Log(1 + x) are equal to G. Now, Log(1 + z) belongs to fI(D'),
the image of D’ by the function f(x) = Log(1 + x) is D" and exp belongs to
fI(D”). Consequently, by Corollary B.3.3, exp o Log(1 + ) belongs to f[(D’)
and we have exp o Log(l + ) = 1+ x Va € d(0,R]). Finally, since D’ has
no pierced filter, by Proposition B.11.5 it is an analytic set. Consequently the
equality ezpo Log(1+x) = 1+ Vz € d(0, Ry ) holds in all D', a contradiction
since Log(1+ x) is not injective in D’. That finishes showing that exp does not
belong to H(d(0, Ry)). O

Remark: The exponential function admits an extension to a continuous group
isomorphism defined in C,, onto a subgroup E of d(1,17) [89].

Notation: Henceforth, we put e* = exp(x).

Theorem B.16.6: Suppose that p # 0. Let x € d(0,R;). Then €* is
algebraic over Q, if and only if so is x. Let w € d(0,17). Then log(1l + u) is
algebraic over Q, if and only if so is u.

Proof. By Theorem B.5.24, if x is algebraic over Q,, so is e®. Similarly, if u is
algebraic over Q,, so is log(1 + u). Consequently, suppose that e is algebraic
over Q. Then e” is of the form 1+ ¢ with |¢| < 1, hence log(1 + ¢) is algebraic
over Q. But then, log(1+1t) = log(e”) = x, hence z is algebraic over Q,. Now,
more generally, suppose log(1+u) is algebraic over Q,, with |u| < 1. Take ¢ € N
such that [p?log(1 + u)| < R;. We have p?log(1 4+ u) = log((1 4 u)P"). Since
[p?log(1+u)| < Ry, we have |log((1+u)?")| < Ry, hence exp(log((1+u)P")) =
(1 +u)P". Consequently, (14 u)?” is algebraic over Q, and hence so is u. ~ [J

We can show a similar result when p = 0:

Theorem B.16.7:  Suppose thatp = 0. Let x € d(0,17). Then e* is algebraic
over Q, if and only if so is x. Let w € d(0,17). Then log(1l + u) is algebraic
over Q, if and only if so is u.
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B.17. Problems on p-adic exponentials

Most of results presented in this chapter come from [91] ]. The author
is grateful to Michel Waldschmidt for his advices. On the other hand, most of
results first proven in the field K, also hold (with slide changes) in an ultrametric
field K of residue characteristic 0, as for example the Levi-Civita field [88].

We will use the following classical notation:

Notation: Throughout Chapter B.17, we will denote by K an algebraically
closed complete ultrametric field of residue characteristic 0.

Given three functions ¢, 1, ¢ defined in an interval J =la, +oo[ (resp. J =
Ja, R[), with values in [0, +oo[, we shall write ¢(r) < 1(r) + O(¢(r)) if there
exists a constant b € R such that ¢(r) < 1(r) + b¢(r). We shall write ¢(r) =
P(r) + O(¢(r)) if [1(r) — &(r)| is bounded by a function of the form b((r).

Hermite-Lindemann’s theorem is well known in complex analysis. The same
holds in p-adic analysis. We will need Siegel’s Lemma in all the following theo-
rems of this chapter. We will choose a particular form of this lemma [91]:

Lemma B.17.1 (Siegel): Let E be a finite extension of Q of degree q and
let \i; 1 < i <m, 1 < 35 < n beelements of E integral over Z. Let

M =max(|Ai;| 1 <i<m, | 1<j<n)andlet (S) be the linear system

{Z Xijx; =0, 1 <i<m}. There exists solutions (21, ...,xn) of (S) such that
j=1
r; €LNj=1,...,n and

gm_ log(2)

1 loo) < log(M
o8 ([ ) < log(M) A

Vi=1,..,n.

The p-adic version of Hermite-Lindemann’s theorem was proved by K. Mahler
[73]. Here we give another proof, using specific ultrametric tools.

Notation: We denote by Dy the disk d(0,17) and if the residue characteristic
of Kis p >0 we put Ry = p% and denote by D the disk d(0, R ).

Given a positive real number a, we denote by [a] the biggest enteger n such
that n < a.

Remark: In particular Levi-Civita’s fields have residue characteristic 0 [3].

Theorem B.17.2: Suppose that K has residue characteristic p > 0. Let o €
D1 be algebraic. Then e® is transcendental.
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Proof.  We suppose that a and e® are algebraic. Let h = |a|. Let E be the
field Q[a, e®], let ¢ = [E : Q] and let w be a common denominator of a and e®.
We will construct a sequence of polynomials (Py(X,Y))yen in two variables

such that degy(Pn) = [m], degy (Pn) = [(log N)3] and such that the

function Fy(x) = Pn(z,e”) satisfiy further, for every s = 0,..., N — 1 and for
every j =0, ..., [log(N)]

S

dzs

According to computations in the proof of Hermite Lindeman’s Theorem in the
complex context, (Theorem 3.1.1 in [4]) we have

(1)

FN(ja) =0.

w1 (N) uz (N) ui (N)
aM FN P)/N (N' I! u1 —o
o= 2 2 e 32 (Cron—an) (@)

ju1(N)—U.(a)ul(N)—U.(ea)juz(N).

We put uy (N) = degy(Pn), u2(N) = degy (Pn). We will solve the system

dS
wuﬂNHu?(N)ﬁFN(ja) =0, 0<s<N-1,;5=0,..,[log(N)
XL

where the undeterminates are the coefficients by .,y of Py. We then write the
system under the form

w1 (N) uz(N) min(s,l)

l! o o
; mzobzmzv Z ( o) )((l—a))m i
(2) (wa)l_g(wea)jm.wul(N)_(l—0)+u2(N)—jm —0.

That represents a system of N[log(V)] equations of at least N([log(N)])? un-
determinates, with coefficients in F, integral over Z.

According to computations of Hermite-Lindemann’s Theorem in the com-
plex context (Theorem 3.1.1 in [4]), it appears that in the system (2), each factor

| |

o) (a : 1) 4T () 0 (e )N
admits a bounding of the form SN (log(log(N)) when N goes to +00. On one
hand w¥ (M)+u2(N) §5 4 common denominator and we have

log(w“l(NH“?(N)) < log(w) (k)g]z/;V) + (10g(N)3)

and hence we have a constant 7' > 0 such that

M

3 1 u1 (N)+uz(N)
) ox(u )< oot
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Next we notice that

(@) tog (it ) < V) log(un ()

< N
~ log(N)
and similarly,

I

(5) log (m) < wup(N)log(ui (N)) < N.
and
(6) log(m™ )7°) < 25 oglog(N)).

Now, we check that

log (jul(N)_"~(Ial)“l(N)_”(IE\)j“Q(N)) < N+ log([al)+log(N) (log(N))* log([e=])

N
log(N)
and hence there exists a constant L > 0 such that

(7) log ()= () M)~ ([ M) ) < L.

Therefore by (2), (3), (4), (5), (6), (7) we have a constant C' > 0 such that
each coefficient a of the system satisfies

(8) s(a) < CN(log(log(N)).

By Siegel’s Lemma B.17.1 and by (8) there exist integers by, n, 0 < [ <
u1(N), 0 <m < ug(N) in Z such that
9)

gN log(N)
log(N))? — gN log(N)

max log(|b1,m,N|so) < N (CN log(log(N))

I<u1(N), m<uz(N)

and such that the function

w1 (N) uz(N)

(10) Fy@@)= Y Y bimnale™

=0 m=0
satisfies

S
dx?
Now, by (9), we can check that there exists a constant G > 0 such that

Fy(ja)=0,0<s<N-1, j=0,1,..., [log(N)].

GN log(log(N))
11 ma log(|b1,m,N|oo) £ ———n—
(1) < (Vg vy (OB UL o) log(N)
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The function Fy we have defined in (10) belongs to A(D;) and is not identi-
(0) is not null. Let M be

cally zero, hence at least one of the number e
x

dS

the biggest of the integers such that ﬁFN(ja) =0Vs=0,....M -1, j =
x

0,1,2,..., [log(N)]. Thus we have M > N and there exists jo € {0, 1, ..., [log(N)]}

aM dM
such that 7a ——7 Fn(Joar) # 0. We put yn = In ——7 Fn (Jov).

Let us now give an upper bound of s(yy). On one hand wur (N Fu2(N) g o
common denominator and by (2) we have a constant 7' > 0 such that

™
ur(N)+ua(N)y o~ 77

log(w ) < Tog M

On the other hand, by (1) we have
u1(N) uz(N) u1(N)
dMFN(’yN . ul N)' l! _
Z TNVIN) b u1(N)—o
datt ; mZ::o b Z ( ur(N) — o>!>(<u1(N>—a>!)m

ju1(N)—U.(a)u1(N)—U.(ell)ju2(N).

Now, by (2), (3), (6), (7), (8), (10) and taking into account that the number
of terms is bounded by N (log N)?, we can check that there exists a cosntant B
such that

(12) s(yn) < BN.

Let us now give an upper bound of |yy|. For convenience, we first suppose
M

d
that jo = 0, hence o Fn(0) # 0. Set h = |a|. Then by Theorem B.9.1 we

Fy|(h
have |yn| < | g}é ) Moreover, we notice that F admits at least M[log(M)]
zeros in d(0, h) and therefore by Corollary B.13.30 we have
h \ Mlog(M)]
|En|(h) < (R—) because |Fn|(r) < 1Vr < R;. Consequently, |yn| <
1
hM(log(Mfl)
(R:L)Tgl\/[ and hence

log(|yn|) < M(log(M) — 1)(log(h)) — M log(M)(log(R1))).

Let A =log(h) — log(Ry). Then A < 0. And we have log(|yn|) < AM log(M) —
M log(h), therefore there exists a constant A > 0 such that

(13) log(|yw) < —AM log(M).

Let us now stop assuming that jo = 0. Putting z = z — ja and g(z) =
f(z), since all points ja belong to d(0,h), it is immediate to go back to the
case jo = 0, which confirms (13) in the general case. But now, by Lemma
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A 8.10, relations (12) and (13) make a contradiction to the relation —2¢s(yy) <
log(|vn|) satisfied by algebraic numbers and shows that vy is transcendental.
But then, so is e®.

O

In K we have a similar version:

Theorem B.17.3: Let a € K be algebraic, such that || < 1. Then e* is
transcendental over Q.

Proof. Eerything works in K as in a field of residue characteristic p # 0 up to
Relation (8) in the proof of Theorem B.17.2. Here we can replace R; by 1 and
therefore the conclusion is the same as in Theorem B.17.2. O

The six exponential problem is well known on C and was solved by Serge
Lang [71] and K. Ramachandra. The problem is the following: let a1, a2, as,
(resp. by, by € C) be Q-linearly independant. Then at least one of the six
numbers e*% is transcendental. Next, consider the same problem with only
four exponentials: let ay, ago, (resp. by, ba € C) be Q-linearly independant.
The question is whether one of the numbers e is transcendental: this is the
four exponentials conjecture on C due to Serge Lang.

The problem, however has a solution somewhat similar to that of the six
exponentials problem, in the particular case when one of the ratios Z—; and g—;
is algebraic.

The same problems make sense on a p-adic field such as C, (provided the
numbers a;b; lie in the disk of convergence of the exponential). Here we give the
solution of the six p-adic exponentials problem on the field C, and this of the
four p-adic exponentials problem when one of the ratios Z—; or Z—; is algebraic.
This was described by Jean-Pierre Serre [90)].

Theorem B.17.4: Let a1, ag, as, (resp. b1, by € C,) be Q-linearly indepen-
dant and such that max;—1 23 j=1,2 |aibj\ < R. Then at least one of the numbers
e s transcendental.

Proof. Assume that all numbers e?:% are algebraic, put E = Q[(e%%);—1 23 j—1,2]

and ¢ = [E : Q]. Without loss of generality, we can assume that a; =
1
1, |az|, laz| <1 and that max(|b1], [b2]) < —.
p
Let t € N* be such that te®?% is integral over Z for every i = 1, 2, 3 and
every j = 1, 2 and let B = log (tmax{[e®®|, i =1, 2, 3, j =1, 2}). Let

¢ € N be such that ¢ > QﬁB(q +1).
Consider now the linear system of £2N? equations with coefficients in E:

(SN) Z Cm’n’S’Ne(m(h+na2+sa3)(ib1+jb2) =0,1<i< €N7
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1 < j < ¢N. We notice that the coefficients e(ma1tnaztsas)(ibi+iba) of (Sy)
satisfy

IOg (|e(ma1+na2+sa3)(ib1+jb2)|) S 6B€N2
1<m<N,1<n<N, 1<s<N,1<i</(N,

1 < j < ¢N. Now, by Siegel’s Lemma B.17.1 there exists a family of solutions
(c N)1<m<N,1<n<N,1<s<N, in Z such that

log 2 (gt N?)¢N?
1 1 m,n,s o0 S B .
1) 08 lcmmn ron (LN
Let fn(z) = Z Cmm’s,Ne(maﬁ”aﬁsai“)z. Then by definition of

1<m<N, 1<n<N,
(Sn) we have fy(iby + jbe) =0Vi=1,..,¢N, j=1,..,¢N, hence fy admits

1
at least > N? zeros in the disk d(0, ). Let u be a point of the form ib; + jbs
with ¢, j € N, such that fx(ib; + jba) # 0 and such that ¢ + j is minimum
and let h be this minimum: say h = ig + jo. Thus we can check that when 4

and j are two positive integers such that ¢ + j < h, then fn(ib; + jba) = 0.
Consequently by construction, we have h > 2¢/N and the number of zeos of fx
in d(0, %) is at least

h—1)2
s T (T) We notice that ||| < 1 because |e*| =1 Vx €

d(0,R;) and ¢y € Z Ym,n € N. Consequently, by Corollary B.13.30 we have
10g(|fN|(%)) < —(h —1)N? and therefore

(h—1)?

2) log | (w)] <~

Consider now some ¢, ,, s ye(ma+nez+sas)(ib1+5b2) at the point u. By (1), we
6B(ql>N?)(N?
N3 _ gi2N?
6BNh. Consequently, by (1) we can derive

have log(|cm,n,s,N|oo < + and log|e(ma1+na2+sa3)(iob1+job2)| <

log 2 6Bql3N*
2 N3 — qf2N?’

log |Cm,n,s,Ne(ma1+na2+sa3)(i0b1+job2)| S 6BNh +

therefore

og 2 6Bql3 N4
2 N3 — ql2N?

— 1
(3) log(|fn(u)] < 6BNh + + 3log N.

Here we notice that the denominator of Fiy(u) is bounded by #*N* because
3N us clearly multiple of the denominator of each term e(@1+na2+sa3)(ib1+jb2)
whenever i + j < h. Therefore by Corollary A.8.12, we can derive

log 2 6B N4
2 N3 — ql2N?

log(|Fn(u)|) = —3Nh(g+1)log(t)— q(6 BNh+ +3log(N))
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Consequently, by (2) and (3) we obtain

(h—1)?
2

log 2 6B N*
+

< )
(3) <(¢+1)(9BNh+ 5 N gZN? + 3log(N))

therefore (h_21)2 < (q¢+1)(9BNh+ O(N)) and hence
(h—1)?

h—2<
- h

< 18B(q+ 1)N + 0(1)

and hence h — 1 < 18B(q + 1)N + O(1). Now, since @ > (N2, we have
V2UN < 18B(q+ 1)N 4 O(1), hence £ < 9v/2B(q + 1) when N is big enough, a
contradiction to the hypothesis on £. O

And similarly:

Theorem B.17.5: Let a1, as, as, (resp. by, by € K) be Q-linearly indepen-
dant and such that max;—1 23 j=1,2|a;b;| < 1. Then at least one of the numbers
€% is transcendental over Q.

As explained above, when reducing to 4 exponentials e, i =1, 2, j =
1, 2, the transcendence of one of the four numbers is just a conjecture in the
general case. Here we give a proof in the particular case when one of the ratios

U or & i algebraic.
a bg

Theorem B.17.6: Let a1, ag, (resp. b1, by € C,) be Q-linearly independant

and such that max;—1 2 j—12|a;b;| < R and such that Z—; s algebraic. Then at

least one of the numbers e®% is transcendental.

b

Proof. Assume that all numbers e%% are algebraic. Without loss of generality,
ai

we can assume that |b;] < 1%’ i=1,2 Puta= o Let ¢t € N* be such that
all the te%% and ta are > integral over Z for every ¢ = 1, 2 and every j = 1, 2
and let B = log (t max(|a|, max{|e®®| , i =1, 2, j =1, 2}). Without loss of
generality, we can asume that a; = 1, hence a = as. Since a is algebraic, we can
put E = Qla, (e%%);—1 2, j—1,2] and ¢ = [F : Q]. We can find integers s, [ € N
satisffying

as_)

1 1)BI(12
(1) 8> g+ DBI02+ 5=

Consider now the linear system of sN? equations with coefficients in E:

(Sn) Y cnnn(m e na)tetina@hitit) — o 1 < <N,
1<m<IN,1<n<IN
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1 < j < N. We notice that the coefficients (m + na)Fe(m+na)@1+ib2) of (Sy)
satisfy

(2) log (\(m T+ na)ke(mna)(ibi+32) |) < 2BIN? + klog(2N + B)

1<m<IN,1<n<IN,1<i<N,1<j<N, 1<k<s.

By Siegel’s Lemma B.17.1 and by (2) there exists a family of solutions
(Cm,n,N)lgmglN,lgnglN in Z such that

qsN?
(I2N2 — gsN?)

log 2
%8Z | (BIN? + s(log 2N + B))

log ‘Cm,n,N|oo <

therefore

gsBIN*
[2N?2 — gsN2? + O(log(N))"

(3) IOg |cm,n,N‘oo S

Now, let & be the smallest integer such that (fn)") (iby + jbs) # 0 for some
pair (ig, jo) such that ig < N, jo < N. By definition, s < h. Consequently, the
number of zeros of fy in d(0, p%) is at least (h — 1)N2, taking multiplicity into
account. Set u = igby + jobz. Consider now some ¢, ,, xel™ 701 +552) at the
point u. First, we have

log |e(m+na)(iobi+iob2)| < 4 BIN?.

Consequently, by (3), when N is big enough we can derive

4
Log ey el e G rgatay] < — LB

> m + 4BZN2 + O(lOg(N))

hence and therefore

TOVEN BIN*
log | f( (u)] < —L200
Og‘fN (U)|_ l2N2_q8N2

+4BIN? + O(log(N)).
On the other hand, we can check that

log(den((m 4 na)emtn@tobitiob=)y < 9BIN? 4 hB + O(log(N))

hence log(den(fj(\?) (u))) < 2BIN?+sB+0(log(N)). Consequently, by Corollary
A.8.11, we can derive

(4)
(h) QSBZN4 2 2
log(| £y (uw)]) > —(q+1)(m+43m +8BIN? 4+ 2hB + O(log(N))).
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As in Theorem B.17.4, we have || fny|| < 1, hence by Theorem B.9.1, we can
derive ||f](\?)|| < pih Next, ¢mn,n € Z Ym,n € N consequently, by Corol-
lary B.13.30 we have log(|fN|(1%)) < —(h — 1)N? and by Theorem B.9.1,

log(|f1(\?)\(i)) < —(h — 1)N? + h. Therefore by (2) and (4), we obtain

p2
BIN*
5) (h—1)N2—h < (g4 1)(a———— + 12BIN? + 2hB) + O(log(N)).
() (h=DN? ~ b < (g4 Do + 12BIN? + 205) + Oflog(N)
Now, by (1) we have s > (¢ + 1)BI(12 + P qs) and since h > s, we can see
that (5) is impossible when N is big enough, which ends the proof. O

Similarly:

Theorem B.17.7: Let a1, as, (resp. b1, be € K) be Q-linearly independant
and such that max;—1 2 j=1,2|a;bj| < 1 and such that Z—; is algebraic. Then at

least one of the numbers e®% is transcendental over Q.
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B.18. Divisors of analytic functions

In this paragraph we shall define divisors in K or in a disk d(a, R~). We then
shall define the divisor of an analytic function and of an ideal. Given a divisor
T on K, there is no problem to construct an entire function whose divisor is
T. But given a divisor T on a disk d(a,r™), it is not always possible to find
an analytic function (in that disk) whose divisor is 7. This is Lazard’s problem
that we will examine in the next chapter.

Definition: We call a divisor in K (resp. a divisor in a disk d(a, R7)) a
mapping T from K (resp. from d(a, R™)) to N whose support is countable and
has a finite intersection with each disk d(a,r), Vr > 0 (resp. Vr €]0, R[). Thus,
a divisor on K (resp. of d(a, R™)) is characterized by a sequence (an,Gn)neN
with a,, € K, limy,_, |an| = 00, (resp. a, € d(a, R7), lim,_, |a, — a| = R),
|an| < |ans1] and ¢, € N* Vn € N. So, we will frequently denote a divisor by
the sequence (an, gn)nen Which characterizes it.

The set of divisors on K (resp. on d(a,R™)) is provided with a natural
additive law that makes it a semi-group. It is also provided with a natural
order relation: given two divisors T' and T”, we can set T < T” when T'(a) <
T (o) Yo € d(a, R™). Moreover, if T, T’ are two divisors such that T'(«) >

T
T’ () Yo € d(0, R™), we can define the divisor T

Given f € A(K) (resp. f € A(d(a,R7))), we can define the divisor of f,
denoted by D(f) on K (resp. of d(a, R™)) as D(f)(a) = 0 whenever f(a) # 0
and D(f)(a) = s when f has a zero of order s at a.

Similarly, given an ideal I of A(K) (resp. of A(d(a, R™))) we will denote by
D(I) the lower bound of the the D(f) f € I and D(I) will be called the divisor
of I.

Finally, given a divisor T = (ay, qn)nen, we shall denote by T the divisor
(an, Dnen. Let T = (an, Gn)nen be a divisor on K (resp. of d(a, R™)). For every

r > 0 (resp. r €]0, R]) we set |T|(r) = H 4 )qj. The divisor T' on d(a, R™)
laj|<r

is said to be bounded if lir%|T|(r) < oo and then we put ||T|| = lirrjl%|T\(7').

laj

The K-algebra A(K) is provided with the following topology of K-algebra:
given f € A(K), the neighborhoods of f are the sets W(f,r,e) = {h € {AK)| |f—
h|(r) < €}, with > 0, ¢ > 0. Similarly, given a € K and R > 0, the
K-algebra A(d(a, R™)) is provided with the following topology of K-algebra:
given f € A(d(a, R™)), the neighborhoods of f are the sets W(f,r,e) = {h €
{A(d(a,R7)) | |f —h|(r) <€}, withO0O<r <R, €>0.

Remark: Let f € A(d(a, R7)) and let (an,gn)neny = D(f). Then w,, (f) =
gn Vn € N and w,(f) =0 Va € d(a, R7) \ {a, | n € N}.

Theorem B.18.1 is immediate:
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Let f, g € A(K) (resp. f, g €

Theorem B.18.1 Leta € K, R > 0.
> D(g). Then there exists h € A(K) (resp.

calA((a, R™))) be such that D(f)
h € A(d(a, R™))) such that f = gh.

Proof. Let T =D(g) = (an, Gn)nen- Let us fix r > 0 (resp. r €]0, R[), let s € N
be such that |a,| <7 Vn < s and |a,| > Vn > s. Let P.(z) = H(l -
Qn

n=0

We can factorise f in the form P, f and similarly, we can factorize g in the form

P, g, hence g = g Since ¢ has no zero in d(0,r) it is invertible in H(d(0,r)),
hence ! belongs to H(d(0,r)). This is true for all » > 0 (resp. for all » €]0, R|)
g

and hence f belongs to A(K) (resp. to A(d(a, R7))). O
g

Corollary B.18.2 Leta € K, R > 0. Let I be an ideal of A(K) (resp. an
ideal of A(d(a, R™))) and suppose that there exists g € I such that D(g) = D(I).
Then I = gA(K) (resp. I = gA(d(a,R7))).

As an immediate application of the definitions, by Theorem B.13.26 we have
Lemma B.18.3:

Lemma B.18.3: Let R € R and let f, g € A(d(0,R™) be such that D(f)
D(g). Then, given r,s €]0, R] such that r < s we have ¥(f,log s)—¥(f,logr)

U(g,logs) — ¥(g,logr).

<
<

In the whole field K, given a divisor T, it is always possible to find an entire
function admitting 7" for divisor.

Theorem B.18.4: Let T = (au, qn)nen be divisor of K The infinite product

H(l - i)q” is uniformly convergent in all bounded subsets of K and defines

n
n=1

an entire function f € A(K) such that D(f) = T. Moreover, given g € A(K)
such that D(g) =T, then g is of the form \f.

Proof. We assume that |o,| < |any1] Vn € N. Let us fix R > 0 and set
Jm(x) =TI (1 — 2)%. Consider N € N such that |ay| > R and m > N.

On the one hand, |f,n[(R) = |fn|(R). Set M = |fx|(R). On the other hand we
check that

x T

| frn1(@) = ()| = | TT (1= =)™ [|(1 = ——)™+ = 1)| <
n=1 Qn Am+1
dm+1
dm+1 T
< M’ Z (—1)* < - > (Wﬂ)k‘ < M|am+1| Vo € d(0, R).
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Conscqently, |fir = Ful(R) < M2
m—+1
(fm)men is uniformly converging in d(0, RB to an element of H(d(0, R)), hence
to a power series. This is true for all R > 0, hence the limit f defined in K
belongs to A(K). Now, for each m € N, let r,, = |a;n|. By construction, the
zeros of f,, in d(0,r,,) are the a,, with 1 < n < m, each with multiplicity g,.
And next, we notice that [(1— ;%)% | = 1Vn > m, Vz € d(0,r,). Consequently,
the zeros of f in d(0,r,,) are exactly those of f,,. Now, consider g € A(K) such
that D(g) = T. The function h € A(K) such that f = gh has no zero in K and
hence is a constant. O

which shows that the sequence

Corollary B.18.5: For every divisor T on K, there exists f € A(K) such that
D(f)=T. Moreover, if f(0) =1, f satisfies |f|(r) = |T|(r) Vr > 0.

Corollary B.18.6: Let T be a divisor on K, let g € A(K) be such that D(g) =
T and let f € A(K) be such that D(f) > T. Then there exists h € A(K) such
that f = gh.

D D
Proof. Indeed, let E = % and let h € A(K) be such that D(h) = %
Then D(f) = D(gh) hence by Theorem B.18.4 gih is a constant and we can
choose h such that the constant is 1. O

Theorem B.18.7: Let f € A(K) have a divisor of the form (an,sg,) with
s € N*. Then, there exists g € A(K) such that f = g°.

Proof. By Corollary B.18.5 there exists h € A(K) such that D(h) = (an, qn)-

Then, —— has no zero and no pole and therefore it is a constant A. Let [ € K
be such that [* = X\ and let g = [h. Then ¢° = f. O

So, by Theorem B.18.4, given a divisor T" on K, we can find an entire function
whose divisor is just 7'. It is natural to consider the same problem inside a disk
d(a,r™). Indeed, in C, it is known that the similar problem always admits a
solution: in the whole field C as well as well as inside an open disk. Actually,
in the general context of a complete ultrametric algebraically closed field K, the
problem has no solution when K is not spherically complete.

This problem was first considered by M. Lazard [72] and we will detail the
solutions he gave. First, we will construct a function f whose divisor is bigger
than the given divisor but narrows it [58].

We shall deal with the problem by showing that given a sequence (an)nen
such that |a, —a|] < R for all n € N and lim |a, —a| = R, a sequence of

integers (¢n)neny and a number € > 0, there exists an analytic function f €
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A(d(0, R7)) that admits each a, as a zero of order ¢, > ¢, and such that
|71(r) < (1+¢€) |T|(r). First we need Lemma B.18.8

Lemma B.18.8 Let T = (an,gn)nen be a divisor on d(a, R™) and let [ €

A(d(a, R™)) satisfy £(0) = 1, D(f) > T and |f|(r) = [T|(r) ¥r €]0, R[. Then
D(f)=T.

Proof. Since f(0) = 1, we may write f in the form H(l - ﬁ')sj with ¢; <

a
=0 !

s; V5 € N. By hypothesis, we have ¢; < s; Vj € N. Suppose that s, > g

for some index k and let 7, = |an|, n € N. Since |f|(rx) = |T|(rx), when
r T

r €l e, we have [£1(r) = [f[(re) ()™, T1(r) = |£](re) ()™ and since

[f1(r) = [T|(r) ¥r €]0, R], clearly s = g O

Notation: For each divisor E of K, we denote by 7 (E) the set of f € A(K)
such that E < D(f). Similarly, for each divisor E of d(a, R™), we denote by
Tr(E) the set of f € A(d(a, R™)) such that E < D(f).

Theorem B.18.9:  For every divisor E of K, T(E) is a closed ideal of A(K).
Moreover, T is a bijection from the set of divisors of K onto the set of closed
ideals of A(K). Further, given a closed ideal I of A(K), then I =T (D(I)).

Similarly, we have Theorem B.18.10:

Theorem B.18.10: Let a € K and take R > 0. For every divisor E of
d(a,R™), Tr(E) is a closed ideal of A(d(a,R™)). Moreover T is a bijection
from the set of divisors of d(a, R™) onto the set of closed ideals of A(d(a,R™)).
Further, given a closed ideal I of A(d(a,R™))), then I = Tr(D(I)).

Proof. (Theorems B.18.9 and B.18.10) Let E be a divisor of K (resp. of d(a, R™)).
First, let us check that 7 (F) (resp. Tr(E)) is a closed ideal of A(K) (resp. of
A(d(a,R7))). Let E = (an, gn)nen and let (fim)men be a sequence of elements
of T(E) (resp. of Tr(E)) converging to a limit f in A(K) (resp. in A(d(a, R7))).
For every n € N, each f,, admits a, as a zero of order at least g,, hence by
Lemma B.7.1, so does f. Consequently, f belongs to 7 (E) (resp. f belongs to
Tr(E)).

Now, let us show that 7 (resp. 7g) is injective Let E, F be two distinct
divisors of K (resp. of d(a, R™)). Without loss of generality, we can suppose
that E admits a pair (b, s) with s > 0 and that F' either does not admit any pair
(b,m) or admits a pair (b,m) with m < s. Let f € T(F) (resp. let f € Tr(F)
and suppose that wy(f) > s. Then by Lemma B.7.1 f factorizes in the form
(x — b)*"™g with g € A(K) (resp. g € A(d(a, R™))) and of course g belongs to
T(F) (resp. to Tr(F)). But by construction, g does not belong to 7 (E) (resp.
to Tr(E)) because wy(g) < s. Therefore T (E) # T(F) (vesp. Tr(E) # Tr(F)).
So, T (resp. Tg) is injective.
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Now, let us show that 7 (resp. 7g) is injectif. Let E, F be two distinct
divisors of K (resp. of d(a, R™)). By Theorem B.18.4 there exists f € A(K)
(resp. f € A(d(a,R7))) such that D(f) = F, hence D(f) # E. Therefore,
D(f) ¢ T(FE) and hence T(E) # T(F). So, T is injective (resp. Tr(E) #
Tr(F). So, Tg is injective).

Let us show that it is also surjective. Let I be a closed ideal of A(K) (resp.
of A(d(a,R7))) and let E = D(I). Then E is of the form (a,,¢n)nen with
lan| < |ant1] and REIEOO |an| = +o0 (resp. ngrfoo lan| = R), hence there is a

unique s € N such that a,, € d(0,r) Vn < s and a,, ¢ d(0,7) ¥n > s.
Let J = T(E) (resp. J = Tg(FE)). Then of course, I C J. Let us show
that J C I. Let f € J and take r > 0. Denoting by P, the polynomial

H(X —a;)? by Theorem B.15.2, INH (d(0,7)) = P,(x)H(d(0,r)). But now all

=0

functions g € JN H(d(0,7)) also are of the form P,.(x)h(x) with h € H(d(0,r)).
m

Consequently, in H(d(0,r)) we can write f in the form f = Zgjhj with g; € I
j=1
and h; € H(d(0,r)). Let € > 0 be fixed.
For each j = 1,...,m, narrowing each h; by a polynomial ¢; in H(d(0,r)),

m

we can find ¢; € K[z] such that |g;(h; — ¢;)|(r) < e. Now, let ¢, = Zgjéj.
j=1

Then ¢, belongs to I and satisfies |¢, — f|(r) < e. This is true for each r > 0
and for every ¢ > 0. Consequently, since I is closed, f belongs to I. This

finishes proving that 7 (rep. 7g) is surjective. Further, we have proven that
I =T(D()) (resp. I = Tr(D(I))). O

Corollary B.18.11: FEvery closed ideal of A(K) is principal.

Proof. Indeed, consider a closed ideal I and let E = D(I). By Theorem B.18.9
I is of the form 7 (F) with £ = D(I). By Theorem B.18.4 there exists g € A(K)
such that D(g) = E and of course, g belongs to I. Hence g A(K) C I. Now, let
f € I. Then D(f) > E, hence by Theorem B.18.1, f factorizes in the form gh
with h € A(K), hence T = g A(K). O

Theorem B.18.12 Let r € |K*|, let f € H(C(0,r)) and let P € K[z] have
all its zeros in d(0,7). There exists g € H(C(0,7)) and L € K|z] unique such
that f = Pg+ L, deg(L) < deg(P), ¥(R,logr) < U(f,logr), ¥(g,logr) <
U(f,logr) — U (P,logr). Moreover, if f belongs to H(d(0,r)), then so does g.

Proof. Since r € |K|, without loss of generality we may assume that r = 1.
Similarly, we may also assume that U(P,0) = ¥(f,0) =0, so P is quasi-monic.
Thus, the problem now consists of finding g € H(C(0,1)) and L € K]z], each
unique, satisfying the statements.
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Let f(z) = Zamxm and for each n € N, let f,(x) = Z ama™. For

each n € N, set u, = sup |a;|. Then lim a, = lim a, =0. Next, we
7] 00 >70 n—-+oo n——oo

notice that x™ P is quasi-monic like P. By applying Lemma A.4.3 to =" f,,, we
have a Euclidean division of z™f,, by 2™ P in the form z"f, = 2" Pg, + S,
with S, € K[z], deg(Sn) < n + deg(P), ¥(S,,0) <0, ¥(g,,0) < 0. Now, by
construction S, = 2"(f,, — Pgn), hence S, is of the form 2™ L,,, with L,, € K|z],
deg(L,) < deg(P) and ¥(L,,0) = ¥(S,,0) <0. So, f, = Pgpn + L.

ConsequentIY7 fn+1 - fn = P<gn+1 - gn) + Ln+1 — L. By applying again
Lemma A.4.3 to 2" 1 (f, 41— fn) we can check that (g, 11—gn,0) < log(u,) and
U(Lpt1— L, 0) < log(uy), hence both sequences (g, )nen, (Ln)nen converge in
H(C(0,1)) and more precisely, the sequence (L;,) converges to a polynomial L
of degree < deg(P). Moreover, setting g = nlirrgo Jn, clearly we have f = Pg+ L

and ¥(g,0) <0, ¥(L,0) <0, which shows the existence of g and L in the first
claim.

Now let us check that they are unique satisfying these relations. Suppose
we have h € H(C(0,1)) and S € K[z] satisfying the same properties, with
particularly f = Ph + S, deg(S) < deg(P). Then P(g — h) = S — L. Since
deg(S — L) < deg(P), S — L is an element of H(C(0,1)) having strictly less
zeros than P in C(0,1), a contradiction, except if g = h, hence L = S.

Now, assume that f lies in H(d(0,1)). Then by Corollary B.12.9, f — L is a
quasi-invertible element of H(d(0, 1)), hence is of the form Q¢ with ¢ invertible
in H(d(0,1)) and @ € Klx], having all its zeros in d(0,1). Hence, Pg = Q¢.
This holds in H(C(0,1)). But since P has all its zeros in C(0, 1), P must divide
Q: say @ = PV, with V € K[z]| having all its zeros in d(0,1). So, Pg = V¢,
hence g = V¢ and by hypothesis both V, ¢ lie in H(d(0,1)), hence so does g,
which completes the proof. O

Definition: Given r € |K*|, the division of an element f of H(C(0,r)) by a
polynomial P having all its zeros in d(0,r), as defined in Theorem B.18.12, will
be called Euclidean division of f by P in H(C(0,r)) or r-Euclidean division of

f by P.

o0
Lemma B.18.13: Let (un)nen be a sequence in Ry such that Z Uy < +00.

n=0

o0
Let A = Zun and let B > A. There exists an increasing sequence (Gn)nen

n=0

such that lim ¢, = +oo and such that Z Qrttn, < B.

n—oo
n=0

Proof. Let E = B — A. For every n € N we denote by s, the smallest integer

o0
such that Z u; < 47" E. Then for every j € N such that s, < j < sp,41 we

J=sn
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Snt1—1 Sn41—1

set ¢; = 2". We have Z gju; < 27"E, hence Z qjungJrEZQ k
J=sn j=0 k=1

and finally quuj < B. O
j=0

Theorem B.18.14: Let T = (an,qn)nen be a divisor on the disk d(a, R™)
with a, # 0 Vn € N and let € > 0. There exists f € A(d(a, R™)) such that
D(f) =T, f(a) =1 and |f|(r) < [T|(r)(1 +€) Vr €]0, R[.

Proof. Without loss of generality, we can assume a = 0. The set {|a;| [j € N}
is obviously equal to the image of a strictly increasing sequence of limit R that we
will denote by (7, )men. For each m € N, the set S, of the a; lying in C(0,r,,)
k’”l
x
.Weset B=1 dP, = 1——)%,
ay,, +- We se +ean H ( . )

J

is of the form {apn,,,an,, ., -
J=hm
We can construct a polynomial whose divisor is (ay, ¢n)n<¢. For every m € N
we set [y, = logry,, and A = log(B).
Now, by Lemma B.18.13 there exists an increasing sequence (t,)nen in N
such that lim ¢,, = +o0o and such that

n—o0

D ti(igen — 1) < A
=0

For every s € N we put 7( Zt i1 — i), and g5 = H P,,. We notice
7=0 m=0

that U(gq, 1) = ¥(gs, pt) whenever p < p, and ¢ < s. So, we can define the func-
tion £ from | — oo, log S| into R as £(u) = lim ¥(g,, p). Then £ is an increasing
function in p that satisfies

k(m)
) )= a5l — W(az)) whenever 1 € [fim, fms1]-

j=0

We will construct a sequence (fs)sen in K[z] satisfying the following relations
as), (Bs), (7s), (0s) for every s € N and (e;), (p5) for every s € N*.

o f0)=1,

s) P; divides f, for every j <,

8) (fsaﬂs-‘rl) <£(Ms+1)+7’( )

s)  U(fs, ) < L(p)+ A whenever p < log S,

€s)  W(fs = fom1,p) < U(p) +ts(p — ps) + A whenever p1 < pus,

ws)  U(fs — fs—1, 1) < l(ps) +ts(p — ps) + 7(s) whenever p €]us, log S].

R RERN TN

(
(
(
(
(
(
(

We will proceed by induction and will prove that when (o), (8s), (7Vs), (0s)
are satisfied for s € N, then we can derive (s+1), (Bs+1)s (Vs+1)s (0s4+1)5 (€s+1)s (©st1)-
By taking fo = Py, we check that (ag), (5o), (70), (dp) are obviously satisfied.
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We now suppose already constructed f, satisfying (cu,), (Bm), (Ym), (0 ) for
every m = 0,...,s and (€y), (pm) for every m = 1,...;s. We will define fs;1
satisfying
(s41), (Bs+1)s (Vs+1), (0s4+1), (€s11),s (@s+1)- It is seen that each polynomial P
has all its zeros in C'(0,r).

Let Rs41 be the rest of the Euclidean division of fs by Psy1 in H(C(0,7541)).
Let Q.1 = ats+1g,. We have
(3) W(Qst1, ) = ptsi1 + ¥(gs, 1) whenever p € R.
We notice that Qs+1 admits no zero in C(0,7541) and then is invertible in
H(C(0,754+1)). As a consequence, according to Theorem B.18.12, we can perform

R .
) L by Pyyy in H(C(0,re11)). Let Viyy be
s+1

R
the rest of this division. Thus, StL s of the form Tsi1Psy1 + Vsyq with

Qs+1

Ts11 € H(C(0,7541)) and
(4) VU(Qs+1Vir1, pst1) < W(Rsp1, phsy1)
we have Rs+1 = QS+1(TS+1P3+1 + ‘/;+1). Now we put fs+1 = fs — QS+1V;+1.
Of course, fsy1 satisfies (asy1). We will check that fqy1 satisfies (8s41). By
definition, each P; divides g, for every j = 0, ..., s and hence it divides Q441.
Next, by (08s), P; also divides f;. Consequently, P; divides fs41 for every
j=0,...;s.. Moreover, P,;; divides both fs — Rs+1 and Qs417s+1Ps+1. Hence
it also divides fsy1 and thereby (8s11) is satisfied.

Now we will prove (ps41). By (4) Rs41 satisfies U(Rg11, tts+1) < U(fs, st1)-
Hence by Relation (v,) we have
(5)  W(Rstr, prsg1) < Lpst1) +7(5) = U(gss1, pst1) + 7(5)-

Since deg(Rs41) < deg(Psy1) < deg(gs+1) and since all zeros of gsyq lie
in d(0,7541), gs+1 has more zeros than Rsy; in d(0,75+1) and therefore, by
Theorem B.13.26 we have

the rs41-FEuclidean division of

U(Rop1, 1) = U(Rorr, rst1) < V(gst1, 1) — Y(gst1, fhst1)

whenever p €]usy1,logS] and therefore by (5) we obtain
(6) W(Rst1,p) < V(gss1,p) + 7(s) whenever  €]ps11,log S].

Since L= s+1Ps+1 + Vi1, by Theorem B.18.12 we have U(Qs11Vit1, pts41)) <

U(Rsy1, sy1) and hence by (5), Y(Qsy1Vir1, pst1) < Lpsy1) + 7(s). But
L(tis+1) = U(gst1, pst1), hence by (6) we obtain

(7) \I’(QS+1VS+1,M5+1) < \I}(gerlv/ierl) + T(S)'

We notice that deg(Qs+1Vst1) < deg(gs+1) + ts+1 and that all zeros of gs41 lie
in d(0,754+1). Hence by Theorem B.13.26 and by (3) and (7) we have

(8) W(Qs41Vit1, 1) < WU(gss1, p) s (—psy1)+7(s) for every pu €]psi1,log S].

Actually, by definition of fsy1, we have U(Qs41Vsy1, 1) = ¥(fsy1 — fs, 1) and
U (gst1, 1) < €(p) for every pu €]psi1,logS], hence by (7) we have proved ¢s1.
We will deduce (€541)-
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In particular when p = psy2, we obtain

U(Qs41Ves1s psta) < Lpsta) + tos1(psgz — psr1) + 7(s).
But we notice that tsy1(pst2 — prs+1) + 7(s) = 7(s + 1), hence
(9)  W(Qstr1Viy1, psy2) < lpsyo) +7(s+1).
And, by (8) and (1) we obtain (10) P(fsy1 — fs,pt) < €(p) + A whenever

W E]pst1,log S
Now we take p < pg41. It is seen that

U(Qsv1, 1) = V(Qsyrs ptst1) = () — L(pst1) + tsrr (b — frss1)-

Therefore we have

U(Qst1Vir1, 1) S U(Qusi1 Vi, prsy1) + (1) — €(ptsy1) +tsra (i — psg1)-

But by (8) we have ¥(Qst1 Vi1, phs+1) < €(ps11) + A, hence we obtain
U(Qst1 Va1, ) < L(p) + N+ tsr1(p — prsy1) whenever p < pgi1, and this is
(€s+1). In particular we have U(fs11 — fs, 1) < €(p) + A whenever p < pgqq and
therefore by (d5) we obtain (Js41).

Now we will show (ys41). Obviously we have

(10) \Il(f()a Ms+2> < E(Ms_t,_g).
Next, by Relations (¢,,)1<m<st1 for every m € N* we have

U(fm — fn1s tst2) < L(ptm) + [tm(pss2 — pm) + 7(m)].

But as the sequence (t,,)men is increasing, it is seen that

s+1

T(m) + tm (s 42 — Hm) < th(ﬂjﬂ —p;) =7(s+1).
j=0

Obviously €(ps12) > £(f4m), hence we obtain W(fn, — frn—1, ts+2) < €(ist2) +
7(s+1) whenever m = 1, ..., s+1. Finally by (10), fs1 satisfies U(fs11, psy2) <
l(ps12) +7(s+ 1) and this is (ysy1)-

We notice that (e;) and (¢5) are not used to prove

(as+l)7 (ﬁs+1)7 (78+1)’ ((55+1), (68+1)’ (‘szrl)'
Consequently, (1) and (1) are clearly proven by (ag), (8o), (7o), (do) and

therefore we are now done with the recurrence. Therefore, we can now construct
the sequence (fs)sen satisfying (as), (8s), (7s), (ds), (€s), (ps). By Relations
(es) the sequence is easily seen to converge in each algebra H(d(0,u)) whenever
u €]0, S[. Indeed, given u €]0, S[ and N € N such that uy < logu, by (e541) we
have

log([lfs+1 = fsllao,u) = U(fs41 = fs;logu) < L(logu) — ts(logu — pisq1) + A
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hence log(|| fs+1 — fslla,u)) < £(logu) — ts(logu — pn) + A, whenever s > N.

As lim t, = 4o0, it is seen that lim || fs11 — fslla,u) = 0.
s——+00 § 00 ’

Let f be the function defined in d(0, R™) as the limit of the sequence (fs)sen
in each disk d(0,u). Obviously, as an element of H(d(0,u)) for every u €]0, S|, f
belongs to A(d(0, R™)). By Relations (as), f satisfies f(0) = 1.

We will check |f|(r) < B|T|(r). Let u €]0, R[ be such that uy < logu <
pin+1- We have log || fla0,u) = ¥(f,logu).

When s is big enough, ¥(fs,logu) is clearly equal to ¥(f,logu), hence f
satisfies log || fll4(0,u) = ¥(fs,logu) < £(logu) + X. Hence by (2) we obtain
|f|(r) < B|T|(r). Now we just have to check that every a; is a zero of f of order

z
zj > gqj. Let m be such that h,, > j. For every s > m, (1 — ;)qi divides f, in

J
H(d(0,u)) (for every u €]0, S]), hence by Lemma B.7.1 (1 — %)qi divides f in

J
H(d(0,u)) and this finishes the proof of Theorem B.18.14. O

We can obtain a small improvement of Theorem B.18.14:

Theorem B.18.15: Let T = (an,qn)nen be a divisor on the disk d(a, R™)
with a, #0Vn €N, let € > 0 and p €]0, R[. There exists g € A(d(a, R™)) such
that D(g) > T, g(a) = 1 and |g|(r) < |T|(r)(1 4+ €) ¥r €]0, R[ and D(g)(a) =
T (o) Ya € d(a, p).

Proof. By Theorem B.18.14, we have a function f € A(d(a, R™)) such that
D(f)>T, f(a) =1and |f|(r) <|T|(r)(1+€) ¥Vr €]0, R[. Now, we can construct
a polynomial P(x) such that P(0) = 1 and admitting in d(a, R™) a divisor D(P)

satisfying D(P)(a) = Dé“]?of;é) Vo € d(a, p) and D(P)(a) = 0 Vo € d(a, R7) \
d(a,p). Then the function g = % satisfies D(g)(a) = T(a) Yo € d(a,p),
T < D(g) < D(f) and hence [g|(r) < |f|(r) < |T|(r)(1 + €) Vr €]0, R[. O

Remark: Here we may notice that H(d(0, R~)) is much smaller than

Ap(d(0, R7)). Indeed, by Theorem B.18.15, there exist functions f € Ay(d(0, R™))
having infinitely many zeros in d(0, R~). But by Theorem B.12.8 any element
of H(d(0,R™)) is quasi-invertible and hence has finitely many zeros.
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B.19. Michel Lazard’s problem

This chapter is aimed at studying the following problem mentioned in Chap-
ter B.18 and first considered by M. Lazard in a tremendous work [72]. Let T be
a divisor on a disk d(a, R™). Does exist a function f € A(d(a, R™)) such that
D(f) =T? The answer depends on whether or not K is spherically complete.

Theorems B.19.1 and B.19.4 were first proven in [72]. Proofs are long and
much technical. Here we shall try to give an easier presentation of the proofs
which is due to Labib Haddad. More precisely, when K is spherically complete,
Theorem B.19.4 shows the following result, as it was done in [72]: let T =
(@n,qn) be a divisor on d(a, R™), with |a,| < |anq1| and |aym)| < [Gum)+1]-

u(m+1)
For each m € N, let P, (z) = H (x —a;) and let (@) € K[z] be such
j=u(m)+1
that |Qm|(pm) < |T|(pm). Then there exists a function f € A(d(a, R™)) such
that P, divides f — @Q,,. Hence, in particular, given a divisor T on d(a, R™),
there exists a functions f analytic in d(a, R™), whose divisor is T'.

Theorem B.19.1: Let K be not spherically complete and let (Dy,)nen be a de-
~ 1

creasing sequence of disks d(u,, pn) such that ﬂ D,=10. LetR= T Gam(D,)
My — oo d1aI{ Ly

n=0
There exists sequences (cp)nen 0f d(0, R™) such that lim |c,| = R and such that
n—oo
no function f € A(d(0,R™)) admits for divisor the divisor T = (¢pn, 1)nen.

Proof. Without loss of generality, we may obviously assume that R > 1, hence
% < 1 < R. Consequently, we may assume that Dy C d(0,R~). For each
n € N, we set p, = diam(D,,), hence p, > p,t1. For every n € N we can take
apn € D\ Dpy1. Let B, = apy1 — o, n € N, hence

(1) pnt1 <1Bnl < pn.

Consider the divisor T' = (%, 1)nen and suppose that there exists f € A(d(0, R™))
whose divisor is exactly T? Without loss of generality we O(;an assume that
flx) = H (1 — Bpz). Then f(x) is a series of the form 1 + Z apx". We will

neN n=1
show that oy —ay; € D, Vn > 1.

n—1
Let us fix n € N. We can check that a,, — a3 = Z B;, hence
j=1

n—1
anp— (a1 —ay) =a1+ Z B;. Since o, € Dy, then oy —aq lies in D, if and only
j=1

n—1

j=1
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For all n € N, we set t, = |(3,)71|. By (1) the sequence (t,) is strictly
increasing and satisfies:

(2) lan| = ﬁtj Vn > 1.
j=1
Particularly, a,, # 0 Yn > 1. For each s > 1, we put fs; = ianac”. Then
deg(fs) = s. By (2) we see that the s zeros of fs are distinc?:aond are of the
form 77, 1 <j <s, with [y{| =¢;. Thus, fs is of the form ﬁ(l — Bs,jx), with
j=1

s
1Bs,51 = 18] = tj_l. By identification of coefficients we obtain a; = — Zﬁs,j.
j=1
Consequently, when n < s, we have

(3) Zﬂj —Bsj=a1+ Zﬁj'
=1 =1

= =

Let us fix n € N*. By Theorem B.15.3 we can see that for each j = 1,...,n,

we have lim f,; = 3;. Consequently, when s is big enough, we can see that
§— 00

n—1 s n—1
|Z B; — Zﬁs)j < pp. Therefore by (3), we have a1 + Z Bl < pn.
j=1 j=1 j=1

Consequently, oy —ay lies in D,,. This is true for every n € N, a contradiction
oo

to the hypothesis n D, =0. O

n=0

In order to prove Theorem B.19.4, we must introduce a set of notations that
will hold throughout the chapter.

Notation: We consider a divisor T'on d(0, R™) of the form (a;.m,, ¢i,m)i<u,, meN,
where the points a; , lie in the circle C(0, py,) with 0 < pp, < pmy1 ¥m € N and

Ym qi,m
lirﬂ pm = R. We denote by (P,;,)men the polynomial P,, = H (1 -z )
m——+oo . Aim
=1 ’

whose zeros by definition, belong to the circle C(0, p,,,) and for each m € N, we
set d,, = deg(Py,).

We denote by (Qm)men a sequence of K[z] satisfying
Q| (pm) < |T|(pm), deg(Qm) < dm ¥Ym € N. We notice that |T|(r) =

dwl
H (L> whenever r € [ps_1,ps]. Given ¢ € N, s € N, r €]0, R], we
Pm
m>1
set

C(g,s,7) = ITI(r)
Clars) = T
C(a.s,m) = ITI(r)(

)Zmin (1, (f)), ie.
) () vrelo.pl,
)q Vr € [ps, R

o3 =l

=l
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Particularly, we notice that ((¢,s,r) < |T|(r) ¥r < R. Now, given n € N, we
st 7(g,0m) = int (L8217

r<R rn

Recall that the Euclidean division in H(C(0,r)) is deﬁned in Chapter B.18.
We will denote by (g, s) the subset of the h € A(d ,R7)) satisfying
a) h(0) =1

B) |hl(r) < [T|(r) ¥r < R,
v) Py, divides h — Q, in A(d(0, R™)) Vm = 0,.
0) the rest X, of the Euclidean division of h by m in H(C(0, pp,)) satisfies

X = Qul(pm) < (gm0, pm) = T (o) (%) Vm > 0.

Remark: By definition, ¢ and n being fixed, the sequence in s: (7(g, $,n))sen
is decreasing.

In the proof of Theorem B.19.4, we will use Lemmas B.19.2 and B.19.3.
Lemma B.19.2 is immediate:

Lemma B.19.2 X(q+1,s) C 3(q, s) and X(q, 8) is a closed subset of A(d(0,R™)).

Lemma B.19.3 Letqe N, s e N*| f € X(q,s —1). There exists g € X(q, s)
such that |g — f|(r) < {(q,s,7) Vr < R.

s—1
Proof. Let h = H Py, and u = 9" h. Then P, and z have no zero in C(0, p;)

=0

hence they are 1nvert1ble in H(C(0, ps)) and hence so is u. For each m € N,
we denote by Ry, the rest of the Euclidean division of f by P, in H(C(0, p))-
Since f € X(q,s — 1), by v) above, P, divides f — @,, for every m < s — 1,
hence R, = @, YMm =0, ...,s — 1.

Consider now the Euclidean division of (Qs — Rs)u™! by Ps in H(C(0, ps)):
(Qs — R)u™! = EP, + S, with deg(S) < d,, E € H(C(0, ps)) and
1S(pa)l < (@5 — Ro)u"|(p), hence

(1) [Sul(ps) < [(Qs — Rs)l(ps)-

We then take g = f + Su, hence g = f + Shax?t!. We shall show that g
belongs to X(q, s) and that |g — f|(r) < {(q,s,7) Vr < R. We notice that g
belongs to A(d(0, R™)) and that g(0) = f(0) = 1.

Next, by hypothesis, P; divides f — R, and by construction divides Su +
Rs—Qs. But g— Qs =f+Su—Qs=f—Rs +Su+ Rs — Qs € A(d(()?Ri))a
hence P, divides g — Qs in A(d(0, R7)).

Now, by hypothesis, f lies in ¥(q,s — 1) hence particularly |f|(r) < |T|(r)
and we have

Pm \4
(2) 1Qm = Ronl(pm) < 1T1(pm) (22) " v > 1.
Thus, by (1) and (2) we have

3) lg - fl(ps) < \T|<ps>(§;) .
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But since |S] is an increasing function in 7, we have |S|(r) < |S|(ps) whenever
r < ps. On the other hand, |h|(r) = |T|(r) Vr < ps. And, as we saw,

9= F1(p2) = ISl (ps) = 18ha™ 1] (ps) = [S1(ps) TV (p) ()7 < T1(p) (52)"

1
Consequently, |S|(r) < |S](ps) < Rip. Vr < ps and hence

(@) o f1(r) = [Shat*|tr) = S| < 710 (5 ) () vr <

Now, when r > p,, we have

1) = T 1Pwlr) = 100 T 1Balr) 2 W12 ) = i (2)

m>1 m>s

Next, Sz9*! is of the form AT (z — x;) and is a polynomial of degree
m < q + dg, hence

|xq+15| H (L)Hds
|[zat1S|(p |z — x]| ps Ps .

Thus,

l9=11(r) = [ShaT|(r) = [S277|(r) ] (r) < |smq+1\<ps>(é)q+ds (%) i)

= 171(r)(7) 1527 (pa) = [716) () () 15102)

<TI0 o) g = 1710} ()"

And finally, with (4) we obtain |g — f|(r) < (g, s,r) Vr €]0, R|. O

Theorem B.19.4:  Suppose K is spherically complete. Assume that |Qum|(pm) <
IT|(pm) YVm € N. Let R €]0,+00[. There exists f € A(d(0,R™)) satisfying

) 7(0) =

i) 111(r) < 1TI() ¥r < R,

iii) P, divides f — Qp, in A(d(0,R7)).

Proof. We mean to construct a sequence of functions (fy)sen which belong to
A(d(0, R™)), converging in A(d(0, R7)) to a function f satisfying the claim.

We first fix ¢ € N and take f, € £(¢,0). Let f,(z Zanx We will

n=0
construct a sequence (gq,s)sen satisfying g s € X(g¢, s) and |gq,s — 9q,s— 1|( ) <

¢(g,s,r), with gq0 = fq. Suppose already constructed the g, ; for j =0, . f
By Lemma B.19.3 there exists h € (g, s) such that |h — g4,s—1](r) < ( )T)-
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So, we can set g4 s = h and the sequence is then defined by induction for all
s e N.

oo
Now, for each s € N we set g4 s(x) = Z by,snx". Since by construction the
n=0
sequence gq,s satisfies

(1) |gq,s - gq,s—1|(r) < C(q’ S,T)V?“ <R,

then for each fixed n € N, the sequence (bg s )sen satisfies [bg s n — bgs—1,n] <
7(q,8,n). Thus, for each fixed n € N, we consider the sequence of disks
(Ds n)sen defined as Dy s », = d(bg s n, T(q, s,n)). Since the sequence (7(g, s,1))sen
is decreasing and since |bgsn — bgs—1,n] < T(g,8,n), the sequence of disks

(Dg,s,n)sen is decreasing with respect to the inclusion. Consequently, since
o0

K is spherically complete, for each n € N, there exists aqy1,n, € m Dy n. Par-
s=0

ticularly, since 7(q, s,n) = 0 Vn < ¢, we notice that by s 0 = bq,s—1,0 = 1 because

9g.s—1 € (g, s — 1). Consequently, ag41,0 = 1.

e}
Now, we will show that f,4+1 belongs to X(g+1,0). Let fo41(x) = Z Agr1.n2".
n=0

Since agy1,0 = 1, fq41 satisfies Relation a). Next, by construction, we have
lag+1.n — bgs—1.n| < 7(g,8,n) < 7(¢,1,n) Vn € N hence obviously |ag+1,n —
agnl < 7(g,1,n) Yn € N. Consequently, |ag+1,n — Gqn|r™ < ((¢,1,7) Vr < R,

hence
(2) | fg+1 — fql(r) (¢.1,7) < |T|(7")(%>q Vr < R. Now since, by hypothesis,

<(
|fel(r) < |T|(r), by (2) we can see that |fe41]|(r) < |T|(r) and therefore fqi1
satisfies Relation ). Since +) is trivial when s = 0, it only remains to show
that f,41 satisfies 9).

For each m € N, let Sy, 4+1 be the rest of the Euclidean division of fy+1 by
P, in H(C(0, py)). For each s > m, since P, divides gq,s — @m, the rest of the
Euclidean division of g4,s — fg+1 by P, in H(C(0, py,)) is equal to Qp, — Si g+1-
Consequently, by (1) we have
(3) 1@m = Sm.g+1l(pm) < 94,5 = fa+1l(pm) < C(a, 8, pm)
and hence

(4) |Qm - Sm,q+1|(p7n) < |T|(pm)(%)q(min (13 %)) Vs > m.
‘ pm)q-&-l'

Now, since lim p, = R, by (4) we have |Qum — Su.qs1](om) < \T|(pm)(f

This finishes showing that ) is satisfied by g4+1,s and therefore g44+1,s belongs
to X(¢ +1,0). This true for all s, hence by Lemma B.19.2 f,1, also belongs to
Y(¢+1,0).

Thus we have constructed a sequence (f;)qen of A(d(0, R™)) satisfying f, €
Y(g,0)Vq € N. By (2) we can see that the sequence (f;)qen converges in all
H(d(0, p)), for every p < R, to a limit f which thereby belongs to H(d(0, p))
for all p < R. Consequently, that function f belongs to A(d(0, R™)). Moreover,
since X(q,0) is closed, f belongs to X(q,0) for every ¢ € N. Consequently, by
Relation ¢) true for every ¢, the rest X,, of the Euclidean division of f; by P, in
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H(C(0, py,)) satisfies | X, — Qum|(pm) < |T|(pm)(pén) for every ¢ € N, hence

X = Qm. So, P, divides f — @,, for every m € N. And by construction f
satisfies @) and (), which completes the proof. O

Corollary B.19.5: Suppose K is spherically complete. Let (an)nen be a
sequence of d(0,R™) such that |a,| < |ant1] Vn € N and lir_irrl lan| = R
n—-+0oo

and let (bp)nen be a sequence of K. There exists f € A(d(a, R™)) such that
F(an) = by ¥n € N.

Proof. Indeed we can define a sequence of integers (s, )nen such that the divisor
T = (an, $n)nen satisfies |T|(|an|) > |bn| Vn € N. O

Theorem B.19.6: Suppose K is spherically complete. Let T be a divisor on
d(a,R™). There exists f € A(d(a, R™)) such that D(f) =T.

Proof. Without loss of generality, we may obviously assume a = 0. Take Q,,, =
0 Vm € N. By Theorem B.19.4, there exists f € A(d(0, R™)) such that

i) 7(0) = 1,

it) 1£1(r) < IT(r) Vr < R,

iii) P, divides f in A(d(0, R™)).

By iii), clearly D(f) > T. Thus we only have to check that D(f) < T.
Indeed, for all s € N we have

S Um

IT](ps) = HH\(l——)q“" (0s) HH(”é)q“".

j=1li=1 j=1li=1

Now, suppose that T' # D(f). Then there exists o € d(0, R™) such that w,(f) >
T(a). Let s be such that ps > |af. Since f(0) = 1, we have

I 2 1 HH\( =)o) >1_Ir_m[ (2=)"" = 1iGen),

a contradiction to iii). O

al m

Similarly to A(K), the algebra A(d(a, R™)) is provided with the natural
topolgy of uniform convergence on each disk d(0,r) whenever 0 < r < R. Such
a topology makes A(d(a, R™)) a topological K-algebra.

In Chapter B.18 we showed that in A(K) every closed ideal is principal.
Here, following the same methods, provided that K is spherically complete, we
can prove similar results with algebras A(d(a, R™)):

Theorem B.19.7: Suppose K is spherically complete. All closed ideals of
A(d(a,R™)) are principal.
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Proof. Let I be a closed ideal of A(d(a, R™)) and let E = D(I). By Theorem
B.18.10 we have I = Tr(F). Now, by Theorem B.19.6 there exists g € A(K)
such that D(g) = E and of course g belongs to 7r(F) hence to I. Consequently,
gA(d(a, R™)) C I. Conversely, by Corollary B.18.2, we have I = g A(d(a, R7)).

O
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B.20. Motzkin factorization and roots of analytic functions

Troughout this chapter, D is a closed infraconnected set and f belongs to
H(D).
The idea of factorizing semi-invertible analytic elements into a product of

singular factors is a remarkable idea due to E. Motzkin [75]. This factorization
has tight links with the Mittag-Leffler series, as it was shown in [58], [68].

Lemma B.20.1:  Let T =d(a,r), witha € K andr > 0, let E =K\ T and

take b € T. Let g € H(E) be invertible in H(E). Then there exist \ € K, ¢ € Z

and h € H(E) invertible in H(E), satisfying |h — 1], < 1, | ‘hm hiz) =1

x|—+o0

and g(z) = AM(xz —b)Th(x). Moreover, A, q, h, are respectively unique, satisfying
/

those relations. Further, both A, q do not depend on b in T and g belongs to
g

Ho(B).

Proof. Without loss of generality we may obviously assume a = 0. As g is
1
invertible, if g belongs to Ho(FE), then — does not. So, we may clearly assume

that g does not belong to Hy(FE). By Theorem B.2.5. g is of the form g+g¢, with
gE€Kz], §#0, and g € Ho(E). Let ¢ = deg(g) and let A be its coefficient of

degree q. Now we put h(z) = )\(g(x)b)q. By definition both A, ¢ do not depend
z—
on bin 7. Hence we may also assume b = 0. Clearly, h satisfies | |lim h(z) =1.
z|—+00

Since H(E) is a K-algebra and since g is invertible, h is invertible in H(E). In
particular we notice that h is bounded and admits no zero in E. Now we check

1
that [|h — 1]|, < 1. Let s = =, let A = d(0,s) and let ¢(u) = h(L) whenever
r
w € d(0,s), u# 0. Then ¢ belongs to H(d(0,s) \ {0}). But since h is bounded
in E, ¢ is bounded in d(0, s) \ {0}. Moreover, the condition lim h(z) =1

|z]|—+o00
shows that linb ¢(z) = 1, hence ¢ belongs to H(d(0, s)).

Thus ¢(u) is of the form Zanu" with ap = 1 and hence, by Theorem

n=0
B.13.7, we have |a,|s™ < 1 Vn > 0. Let e = sup{|an|s™ |n > 0}. Then we

have [|¢ — 1||40,) = [|h — 1|, = €. Now, h, ¢, X are easily seen to be unique.
Indeed let g(z) = az'l(x) with [ invertible in H(E), satisfying ‘ |lim I(x)=1.
x|——+00
_ Ah(x) L .
Then we have 1 = x4 W Consequently, considering the limit when |z
al(x

tends to +00, we have ¢ = t, A = a and therefore A = [. Finally, we check that
/ / h/

g belongs to Ho(E). Indeed CA— + —. Obviously, 4 belongs to

g g x—b h z—b

Hy(E). Since | l‘im |h(z)| = 1, it is seen that h(z) is of the form 1+ g I with
X |— 00 I.TL
n=1
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lim |Z—:| = 0 and therefore A’ is an element of H(FE) such that ‘ llim |/ (x)] = 0.
!/ /

As a consequence — belongs to Hy(E). Hence so does g and this ends the proof

h g
of Lemma B.20.1. O

Definitions: Let F =K\ d(a,r”) with a € Kand r > 0. Let f € H(E) be
invertible in H(E) and let A(z — a)?h(x) be the factorization given in Lemma
B.20.1. The integer g will be named the indezx of f associated to d(a,r~) and
will be denoted by m(f,d(a,r™)). If A = 1, the element f will be called a pure
factor associated to d(a,r~). Let GT be the group of invertible elements of
H(K\T).

The following Corollary is then immediate:

Corollary B.20.2: Let T = d(a,r~). The set of pure factors associated to T
is a sub-multiplicative group of the group GT. Further, every element of GT is
of the form \h with h a pure factor associated to T and A € K*.

Lemma B.20.3: Let T =d(a,r7), let E =K\ T with a € K and let f be a
pure factor associated to T such that | f — 1|, < 1. Then m(f,T) = 0.

Proof. Without loss of generality, we can assume a = 0. Let ¢ = m(f,T).

By Lemma B.20.1, there exists a unique element h invertible in H(E) such

that f = x2%h and ‘ |lim |h(z)| = 1. Therefore, by Theorem B.5.6, h(z) is of
xr|——+o00

+oo
the form 1+ E a—”, hence ||h||g < 1. So, if ¢ > 0, then f is unbounded, a
In

n=1
1
contradiction. Next, by Corollary B.20.2, — is a pure factor satisfying again the

hypothesis of Lemma B.20.2, hence the hypothesis ¢ < 0 gets to a contradiction
again. O

Definition: Let f belong to H(D). Let T be a hole of D and let h be a pure

factor associated to T'. If % belongs to H(D UT) and has no zero inside T, h is
called Motzkin factor of f in the hole T.

Theorem B.20.4: Let T be a hole of D and let f have a Motzkin factor h in
T. Then h is unique. Further, if T is not a f-hole, h is the polynomial of the
zeros of f inside T'. Moreover, if E is another infraconnected set included in D
admitting T as a hole and if g denotes the restriction of f to E, then g admits
a Motzkin factor in the hole T as an element of H(E) and this Motzkin factor
s equal to h.
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NM

Proof. Let f have another Motzkin factor [ in T, let F' = % and let G =
Since G has no zeros inside T', by Theorem B.15.9 there exists a closed bounded
infraconnected set D’ satisfying T C D’ € (DUT), T # D', such that G is
o] l
invertible in H(D’). Hence in H(D') we have c=n and hence 7 belongs

to H(D'). Since T # D’ it is seen that D’ N (K \ T) is an infraconnected
closed bounded set included in D that admits 7" as a hole. Moreover, we have

l
"U(K\T) = K. Therefore by Theorem B.6.10, we see that — belongs to H (K)

h
F
and hence is a polynomial P. Since Ie belongs to H(D') and has no zeros in T,
h
it is seen that m(h,T) = m(l,T), so we have ‘ 1‘1m l((a:)) = 1. Hence P =1 and

this proves that h is unique.
Now we assume that T is not a f-hole, hence f belongs to H(D UT). Let

@ be the polynomial of the zeros of f inside 7. Then by Corollary B.7.6, =
belongs to H(D U T) and has no zeros inside 7. Since its Motzkin factor h

is unique, we have h = ). The last statement about g is obvious because %

clearly belongs to H(E UT) and has no zero inside 7. This ends the proof of
Theorem B.20.4. O

Definitions and notation: We will call the f-supersequence of D the sequence
of the holes (T},)ner such that either T, is a f-hole or f belongs to H(DUT)
and has at least one zero inside T),. If f admits a Motzkin factor h in a hole T,
it will be denoted by f7 and m(h,T) will be called the Motzkin index of f inT.
For every hole which does not belong to the f-supersequence, we put f7 = 1.

Lemma B.20.5 is immediate.
Lemma B.20.5: Let D € Alg, let T be a hole of D and let f, g € H(D)
admitting Motzkin factors in T. Then (fg)T = fTg" and m(fg,T) = m(f,T)+
m(g,T). Moreover, if f is invertible in H(D), then (f~)T = (f7)~! and
m(f_l?T) = _m(f7 T)

Lemma B.20.6: Let f € H(D) and let (T,)nen be the f-supersequence. Sup-
pose that for each n € N, f admits Motzkin factors in T,. Then there exists
N eN such that m(fT n) = 0 whenever n > N. Moreover, if D € Alg, the

pmduct H fT” H fT" does not depend on t whenever t > N.

n=1 n=t+1

Proof. Indeed, there exists N € N such that we have || fT» —1||, < 1 whenever
n > N and therefore, by Lemma B. 20 2, m(f™,T,) = 0. Now in Hy(D), we

have ( H ) = H ) ( H £,

n=N+1 n=N+1 n=t+1
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t e3¢}
But then, if D belongs to Alg, we have (H ) ( H ) =
=1

ALCIL T = AL T ) .

Definitions: Let (T},),cs be the f-supersequence of D with I a subset of N
which is either finite or equal to N.

If I is finite, f will be said to have a finite Motzkin factorization if it factorizes
in H(D) in the form (f° H f™) with f° an element of H(D) whose zeros

nel
belong to D and for each n € N, fT» a Motzkin factor in T},.

If I is infinite and equal to N, f will be said to have an infinite Motzkin factor-
ization if it admits a sequence of Motzkin factors fT» satisfying lim f7» —1 =0
n—oo

t 3}
such that f factorizes in H (D) in the form (fo H fT")( H fT"), with 0 an
n=1 n=t+1
element of H(D) whose zeros belong to D. In both cases, f° will be called the
principal factor of f.

Corollary B.20.7: Let D be bounded and let f have an infinite Motzkin

factorization with a f-supersequence (Ty,)nen. Then we have f = fo(H fT").

n=1

Corollary B.20.8: Let f have an infinite Motzkin factorization with a f-
supersequence (Ty, )nen such that m(fT»,T,) = 0 for all n > 0. Then we have

F=(11 1)

n=1

Remark 1: Let f € H(D) be unbounded and have Motzkin factorization
N

of the form (fo H fT")( H fT"). One cannot claim that the product
n=1 n=N+1

(fo H fT") converges in H(D), even if D is closed and belongs to Alg. In-

n=1
deed, let r €]0,1[, let (an)nen be a sequence in d(0,1) such that |a, — an| =1

whenever n # m and a; = 0. For every n € N*, we put T,, = d(a,,r”) and
o0

E =K\ (U Tn). The holes of E are the T,,. Let (A;)n>2 be a sequence in
n=1 )\
d(0,r7) such that lim A, = 0. For every n > 2, we put g, = 1+ " The
n— o0 T — Qnp
| An]

sequence (gn)n>2 is seen to satisfy |g, — 1|z < < 1 and therefore we
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have lim ||g, — 1|z = 0. Hence the product h = H grn Obviously converges in
n=2

Since E clearly belongs to Alg, we see that z?h belongs to H(E) and is

invertible in H(E). Now, f clearly has Motzkin factorization with f™» = g,

for every n > 2, fI* = 22 and f° = 1. However, we will check that the

sequence (fn)nen+ defined by f, = x2H g; does not converge in H(FE). Indeed
j=2

we have f,y1(z) — H )(gns1(z) —1). For every z € K\

An
d(0,1), we have ‘xQH gi(@)|| = |2%| and |gpy1(2)—1] = | ;1 | hence | fr41(x)—

fn(@)] = |2|| At Thus fn+1 — fn is not bounded in H(F) and therefore the
sequence (fn)nen+ does not converge in H(E). According to Theorem 4 in [72]

the product H fn should converge to 22h in H(E). Here we see that this
n=1

is not true in the general case. Actually the proof given in [72] only shows

the simple convergence of the sequence (f,) and the uniform convergence on

bounded subsets of D.

By Lemma B.20.5, Lemma B.20.9 is immediate.

Lemma B.20.9: Let D € Alg, let f, g € H(D) have Motzkin factorization.
Then so does fg. Moreover, we have (fg)° = f0g°. Further, if f is invertible,
f~Y also has Motzkin factorization and it satisfies (f~1)° = (f9)~1

Corollary B.20.10: (K.Boussaf) Let D e Alg, let f have an infinite

Motzkin factorization of the form f0 H fT H fT Let N € N be such
n=1 n=t+1
that m(f™,T,) =0 for alln > N. Then we have

f — fO(]ian)< loj fT")

Proposition B.20.11 : Let f € H(D) satisfy || f —1||, < 1 and have Motzkin
factorization of the form fO(H an> with (Tn)nEN* the f-supersequence of D.

n=1

Then for each n > 1 we have m(f*,T,) = 0.

Proof. For every n € N*| we put ¢, = m(f**,T,,). By Lemma B.20.6, we may
assume the (7},),en+ ranged in such a way that g, # 0 for n < N while ¢, =0
whenever n > N. When n < N, fT» is of the form (z — ay,)% (1 4+ w,) with
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wn € Ho(K\ Ty), || wn [ly,, <1 and a, € T,. When n > N, fTn is just in the
form (1+w,) with w, € Ho(K\Ty) and [|wp ||, < 1. On the other hand, since
f has no zero in D, obviously f Y has no zero in D and therefore it has no zero in

D. Hence by Theorem B.13.7, fO is of the form A(1 + wo(x)) with wg € H(D),

N
lwoll, < 1. Let h(z) = A H(x — ap)?. We see that f factorizes in the form
n=1

n—oo

h( H(l + wn)). Since ||wy|l, < 1 for every n € N and since lim w, = 0 it
n=0

is seen that h satisfies (1) |[h — 1|, < 1 as does f. Let us suppose g1 # 0.

We may obviously assume «; = 0. Let T3 = d(0,77). Thus, in T}, h admits
0 as a zero of order ¢; if ¢1 > 0 (resp. a pole of order —¢; if g1 < 0) and has
neither any zero nor any pole different from 0. Anyway, when = € T, we have

N
(2) |h(z)| = Bla®| with B = |A| ] lan|*".
n=2

We will show that (2) contradicts (1), except if ¢; = 0.
+oo

Suppose g1 > 0. In Ty, h(x) is a series of the form Z cpx™ and h —1 =

n=qi

+oo
(Z cnx™) — 1, hence 1 < ||h — 1|y, < ||h — 1| p, which contradicts (1).
n=qi

Now suppose ¢; < 0. By definition h is obviously invertible in R(D). Hence
1
we put F' = — and we see that F satisfies ||F' — 1||p < 1 and admits 0 as a

unique zero in T; while it has no pole in 77. Hence the same process lets us
get to the same contradiction and finishes showing that ¢; = 0 and similarly,
Grn = 0 for every n > 1. O

Proposition B.20.12: Let f € H(D) be invertible in H(D) and have Motzkin

HL — 1H < 1 if and only if for
fla) lip

every hole T of the f-supersequence of D we have m(f,T) = 0.

factorization and let a € D. Then f satisfies

Proof. Without loss of generality, we may obviously assume f(a) = 1. By
Proposition B.20.11, we already know that if f satisfies ||f — 1|, < 1, then
for every hole of the f-supersequence, we have m(f,T) = 0. Now we suppose
that for every hole T of the f-supersequence we have m(f,T) = 0 and we will
prove that ||f — 1|, < 1. Indeed, by Lemma 30.1, for each hole of the f-
supersequence, we have ||f7 —1||,, < 1. Moreover, since f is invertible, f© must
also be invertible, hence by Theorem B.14.1 it is of the form (1 + ¢ (x)), with
léll, < 1. Then |If — 1], < 1. O

We will show that all semi-invertible elements have Motzkin factorization,
step after step and first we consider rational functions.
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Proposition B.20.13:  Let f € R(D). Then f admits Motzkin factorization.

Proof. The f-supersequence is obviously finite. Let T1,...,Ts be this

f-supersequence. We can obviously factorize f in a unique way, in the form
S

hs
H (l—]) whereas for each j = 1,...s, both h;, I; are monic polynomials whose

ha
zeros lie in T;. Thus we can check that -2 is the Motzkin factor f77 of f in
J

the hole 7. Therefore, putting o= %, we have the Motzkin factor-
I ()
ization: f = O[] ™. O
j=1

Proposition B.20.14:  Let ¢ € H(D) satisfy ||¢p — 1|, < 1. Then ¢ ad-

the f-supersequence.

mits Moztkin factorization (j)o (H ng") with (T")neN*

n=1
For every ¢ -hole T we have o — 1), = llorll,. Moreover ¢¥ satisfies
16° = 1ll,, = lldo — 1l -
Proof. First we suppose ¢ € R(D). Then by Proposition B.20.13, ¢ admits

Motzkin factorization. Now by Proposition B.20.12, for each n > 0 we have
m(¢,T,) = 0 and therefore, ¢ is of the form 1 + w, with ||w,|, < 1

whenever n > 0 while ¢ = 1 + wy with [jwg||, < 1. Hence we see that
o = (wn ITa +wj))Tn. Clearly, [ (1 +wy) is of the form 1 + ¢, with
#n j#n
JEN JEN

[¢nll, < 1, hence [[(wadn)llp < [lwnll, and we obtain (1) [[(wndn), I <

lwndnlly < llwnlls-

But w, is clearly equal to (¢7»), and then we have (2) |[(wn)p [, = lwnll, >

lwndnllp = [[(wndn)r, o
Moreover, (wn +wn¢n)y, = (Wn)g, + (Wndn)p, hence by (1) and (2) we have
[(wn (14 én))g, [l = llwnll, and finally

3) 1167, 15 = 1w+ 6z, 1o = llwnll, = 67 =1,

In the same way we put H(l +wp) =1+ with

n=1
@ gl <1 )
It is seen that 1 belongs to Ho(K \ (U T,)). Hence Theorem B.6.1, when

n=1

applied to 1, shows that
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(5) Eo =0.
Next, we have ¢ = (1 +wp)(1 + 1) =1+ wg + ¥ + wo» hence
o = 1+ (wo)g+ o+ (worp)o. By defintion wy € H(D) hence wy = (wo)o and then

by (5) we have ¢y = 1+ wo + (wot))o. But by (4) it is seen that |[(wot))oll, <

llwol|,, hence finally we obtain ||¢o — 1]|, = |lwoll, = |¢° — 1]|,. Thus we
have proven the inequalities satisfied by the ¢ and by ¢° when ¢ belongs to
R(D).

Now we consider the general case when ¢ € H(D). Let (fim)men be a se-
quence in R(D) such that lim [|¢ — fiu]|, = 0. Let € €]0,1[ and let N € N

be such that ||f;, — ¢||, < & whenever m > N. Let T be a hole of the ¢-
supersequence. We will show that the sequence ((f,,)7)men converges in H(D)
and that this convergence is uniform with respect to the ¢-supersequence. We fix
m > N. It is seen that || f, —1||, < 1 and then by Lemmas B.20.1 and Proposi-
tion 30.11 we have ||(fn)T —1||, < 1 and in particular || ()T, = 1. Moreover,

we remember that in H(K \ T'), the norm || . ||, is multiplicative and actually

T
equal to .. Now let s > N. We have ||(fn)" — (fo)T|, = ||((‘§m))T —1,-
T T
But by Lemma B.20.5 we have ((];m))T = <];—m) and then by (3), in R(D), we

fm T _ fm s .
have ||| =) —1|| = ||| = . Finally, by Theorem B.6.1, we obtain:
fs D f@ T'""D

6) |1(fm)T = (f)TN, < e. Relation (6) does not depend on the hole T and

it shows that, for each fixed n € N*, the sequence ((fm)T")men is a Cauchy
sequence which converges in H(K \ T;,), to an element whose index is equal
to 0 and this convergence is uniform with respect to n. For each n € N*,

we put ¢, = lim (f,)T". Then it is seen that H ¢n = lim H( fo) T
n=1 n=1

As a consequence, the sequence (f,,)? is also convergent in H(D) and actu-

ally in Hy(D). Let ¢¢ be its limit. Then we have this factorization: ¢ =

H on. We recognize the Motzkin factorization for ¢. Obviously, for each
n=0

fixed n > 0, the equality satisfied by the (f,,)T» holds for ¢ and shows

that [[(¢)7, |, = [(¢)"" —1]||,. In the same way, the equality satisfied by the

(fm)? shows that ||(¢)o — 1|, = ||(¢)° — 1]|,. This ends the proof of Proposition
B.20.14. O

Theorem B.20.15 is given in [48] (see also [46] and [47]).

Theorem B.20.15:  Let a € D. Let ¢ € Hy(D) be such that |¢(a)| # 0. The
following statements i) , ii) , iii) are equivalent

i) ¢ —od(a)ll, <lpa)]. o
ii) For every hole T we have ||¢r||,, < |¢(a)| and ||¢o—o(a)||, < |¢(a)l.
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iii) ¢ 1is invertible, admits a Motzkin factorization and for every hole T,

¢T satisfies ||¢T — 1|, <1 and ¢° satisfies [|¢° — ¢°(a)[|,, < |¢(a).
Further, if statements 1) , ii) , iii) are satisfied then we have
(u) m(¢,T) =0 for every hole T.

(v) lorll, = 6" = 1ll,|é(a )I for every hole T.
(W) 16° = ¢°(@)ll,, = lldo — do(a)ll,-

Proof. Without loss of generality we may obviously assume |¢(a)| =1 and
(1) |¢(a) — 1| < 1. Let (Th)mer be the ¢-supersequence of D. We notice that

when 1) is satisfied, ¢ is obviously invertible.
First we suppose 1) is satisfied and will show that so is ii). By Theorem B.6.1
we have

2) ¢ = d(a))g, o <l = ¢(a)ll,-
But it is seen that (¢ — ¢(a))T,,

(3) ||¢Tm||D < |l¢ — ¢(a)||, <1, whenever m € I.

In the same way (¢ — ¢(a)), = EO — ¢(a) and then by Theorem B.6.1 we have

(@) 16, - @, <1 .

Besides by (3) we see that || Y ér, ||, < 1 hence [l6—a, |, = I ér, |, <1
m=1 o

= ¢r,,. Hence by (2) we have

and therefore |¢p(a) — ED (a)| < 1, hence by (4) we see that
<1

5) l18, = &, @,

Finally by (3) and (5), Statement ii) is clearly proven.
Now we will show that each of the statements ii) and iii) separately implies
i). We suppose ii) satisfied. Hence we have

1> én I, <1.

mel
If D is bounded, by Statement ii) and by (6) we obtain i). Now let D be not

bounded. Then EO is a constant A\. Hence ¢ is in the form A\ + Z ng with

m=1
\|$Tm I, <1 whenever m > 1 hence
” Z aTmHD <1
m=1
Now we have ¢ — ¢(a Z 5 o7 (a) = Z @Tm - 5Tm (a)). By (7) we
m=0 m=1
see that \|Z — 7, (@), < 1 hence finally i) [|¢ — ¢(a)||, < 1.

We now suppose iii) is satisfied. Hence we have (8) ||¢)Tm — 1|, <1 for all
m € I.
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If D is bounded we have [|¢° — ¢°(a)||,, < 1 hence by (8) we directly have i). If
D is not bounded then ¢ is a constant B such that ¢(a) = B H #*™ (a) hence

mel
by (8) and (1) we see that |[B — 1| < 1 hence by (8) we obtain i) again.

Thus, i) is implied as well by ii) as by iii). Obviously by (1), i) implies
ll¢ — 1||, < 1 and therefore we may apply Proposition 30.14. Next, we suppose
that either ii) or iii) is satisfied. Hence so is i) and so are (u) and (v) by
Proposition B.20.14.

Finally, we will show w) and at the same time we will finish proving the
equivalence between ii) and iii). Let ¢ = (¢o(a)) " '¢. We may apply Proposition
30.14 to ¢ and we have

©) o =1l = [4° = 1|,

But we have
(10) v° —EHD > ||y — ¢°@HD = [1¢° — ¢%(a)ll,,

(11) (6o — do(@)lln = I[do — o(@)ll, = [P — 1I,-
Hence by (9), (10), (11) we obtain

(12) [1¢° = ¢°(a)ll, < lldo — do(a)ll,»-
Now let v = ¢°(a) and let x = v 1¢. By (1) and (7) we see that |y — 1| < 1,
hence we may apply Proposition 30.14 to x and we have

(13) [Ix° = U, = lldo — ¢o(a)ll,»
while [[¢y — ¢o(a)ll, = [IXo —Xo(a)ll, < IXo — LI, and [x° = 1]|, =

X" = x°(a)ll, = 1|¢° = ¢°(a)ll,,. Hence by (13) we see that ||¢y — @o(a)ll, <
|#° — #°(a)||, and therefore by (12) we obtain w). This finishes proving the
equivalence between ii) and iii) and ends the proof of Theorem B.20.15. O

Remark 2: If D is not bounded, as ¢ is bounded, both ¢, ﬁ are constant

and therefore, the statements ||¢g— o (a)||, < |¢(a)| and [|¢° —¢°(a)||, < |#(a)|
are automatically satisfied. Statement ii) is then equivalent to:

i) For every hole T we have ||¢:T||D < |p(a)]
and Statement iii) is equivalent to:
iii’) ¢ is invertible and for every hole T , ¢T satisfies ||¢pT — 1], < 1.

Theorem B.20.16: Let D € Alg. Then f has Motzkin factorization if and
only if it is semi-invertible.

Proof. Without loss of generality we may assume the f-supersequence to be
infinite. We denote it by (7}, )nen+. Let f have Motzkin factorization

oo

PATACIT )

n=t+1
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o0
where the product ( H fT") converges in H(D). By definition, f° is semi-
n=t+1

t o
invertible in H (D) hence in H(D). Moreover (H )( H ™) is clearly
n=1 n=t+1
invertible in H (D). So f is semi-invertible.

Now, we suppose f to be semi-invertible and will show it to have Motzkin
factorization. By Lemma B.20.9 we may clearly suppose that f is invertible
without loss of generality.

First, we suppose that there exists M in R satisfying

(1) M <|f(z)|, whenever x € D.
Let h € R(D) satisfy

M
@) 1~ ll, < -
N
and let hY H h™ be the Motzkin factorization of h. For every n = 1,...N, let
n=1
qn = m(h,Ty,), let a, € Ty, let h, = (x — a,) 9 hT and let hy = h°. Let
N N
u(x) = H (r — a,)? and let I(x) = h® H hn. By (1), (2) it is seen that h has
n=1 n=1

no zero in D. Let a € D. Then, by Theorem B.14.1, h0 satisfies ||h® —h0(a)| , <
|h%(a)| and of course for every n > 0, h,, satisfy ||k, —1||,, < 1. Hence , we have

@3) Il =Ua)ll, <lia)]. Let b= |i(a)].
In particular, we have |[(x)| = b whenever x € D. Moreover, we notice that we
have

M
(4) )] = ju(z)].

Let F = 5 Then F does belong to Hy(D). By (3) and (4) we check that
b
|F'(z) — l(z)| < 3 and therefore by (3) again, we have |F(z)| = b and ||F —

|[F'(a)]
2

Motzkin factorization — F° H FT | with m(F,T,) = 0 whenever n > 0. As

n=1

Fa)|,p, < . Now we can apply Theorem B.20.15 to F' and then F has

N 0o
a consequence f also has Motzkin factorization ( fOH fT”)( H fT") with
n=1 n=N+1
fO=F%and foreachn =1,...N , f» = (v — a,)? FT* and finally for each
n>N, fin = FTn,
Now we suppose that inf{|f(z)| |z € D} = 0. Since D is closed and since f

1
is invertible, we see that D is unbounded and that the element G = = is not

f
—q

bounded in D. Hence by Corollary B.2.7 there exists ¢ € N* such that xT
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has a non zero limit when |z| tends to 400, (z € D). Then it is easily seen
that there exists ¢ > 0 such that |G(x)| > ¢ for all x € D. Indeed, on one hand
there exists r such that |G(z)| > 1 for all x € D\ d(0,r) and on the other hand
f is bounded in D N d(0,r), hence we can find ¢ €]0, 1] such that |G(z)| > ¢
whenever © € D \ d(0,r). Thus G admits Motzkin factorization and then by
Lemma B.20.9 so does f. This ends the proof of the Theorem. O

Remark 3: If a closed set B does not belong to Alg, there are counter-
examples of invertible elements F which admit certain Motzkin factor F7 such

F
that 7T does not belong to H(B) (and obviously does not belong to H(BUT)).

Indeed, don’t let B belong to Alg. Since by hypothesis B is closed we know that
B\ B is not bounded. Hence by Lemma B.20.6, there exists a quasi-minorated
element f € Hy(B) satisfying
(1) Jim f(x)=0

xz€B
and such that zf does not belong to H(B). Since f € Hy(B) we can take it
such that ||f||, < 1. Without loss of generality, we may assume that 0 belongs

1
to a hole of B. Let T = d(a,r~) be another hole of B and let F = u

(z —a)

Then it is seen that F belongs to Hy(B) and is invertible in Hy(B) because both

% , 1+ f are invertible in Hy(B). Hence F admits Motzkin factorization.
r—a
1

In particular we see that FT =
T —a

not belong to H(B) because (x — a)F = (1 + f) and by hypothesis, zf does
not belong to H(B).
1
In the same way, let G = T Since F' is invertible in H,(B), so is G. But then
1

r—a

. However we check that (z — a)F does

we see that

G does belong to Hy(B) and has no zero in B, but obviously

its inverse does not belong to H(B). Therefore G is not semi-invertible

in H(B). Thus, there exist invertible elements h, g in H(B) such that hg is
not semi-invertible, although it belongs to H(B). This contradicts Theorem 1

in [72] which states that fiT extends to an element of H(D UT).

Theorem B.20.17: (K. Boussaf) Let D belong to Alg and let T = d(a,r™)
be a hole of D. Then f admits a Motzkin factor in the hole T if and only if

D‘Pa,r(f) #0.

Proof. On the one hand, we suppose that f admits a Motzkin factor in the hole
T. Let f = gf”. Since g belongs to H(D UT) and has no zero in T, of course,
by Theorem B.13.16 we have ¢, (9) # 0. Next, as an invertible element of
H(D), it is seen that ,¢.(fT) # 0. Hence , 4 (f) # 0.
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On the other hand, we suppose ,, 4 (f) # 0. Let F be the circular filter of
center a, of diameter r and let M = [, (f). There do exist a1, ...,aq € d(a,r)
(

)
and s, t satisfying s < r < ¢, such that |f(z)| > M whenever
q q

T € Dﬂ(ﬂ I(aj,s,t)). Let F = Dﬂ(ﬂ I'(aj,s,t)). Then T is clearly a
j=1 j=1

hole of F. Next, the restriction g of f to F is invertible in H(F') and therefore,

by Theorem B.20.16, it admits a Motzkin factor g7 in the hole 7. But then,

LT belongs to H(D) and to H(FUT). Let E = FUT. Clearly, a hole of

g
D N E is either a hole of D included in E, or a hole of E. Hence D and E are

f

infraconnected sets that satisfy the hypothesis of Theorem B.6.10 and then ——
g

belongs to H(DU F) = H(D UT). Finally, as g7 is the Motzkin factor of g in
T, giT has no zero inside T'. This ends the proof. O

Theorem B.20.18: Let D € Alg and let G be the multiplicative group of the
invertible elements in H(D). Let T be the set of the holes of D. Let G° be the

subgroup of the elements invertible in H(ﬁ) Let H=G° H GT. The product

TeT
‘H is a direct product and is dense in G.

Proof. The product is direct because for each element, Motzkin factorization is
unique. Thus H is the set of the invertible elements whose Motzkin factorization
is finite. Since every element of G has Motzkin factorization, it obviously belongs
to the closure of H. O

Thanks to the Motzkin factorization, the question on whether the n-th root
of an analytic element is an analytic element appears to be linked to the number
of zeros of each Motzkin factor. Several of these results were given in [58].

Theorem B.20.19: Let D be a closed bounded infraconnected set and let
f € H(D) be semi-invertible. Let T be a hole of D. We assume f° to have
continuation to an element of H(D UT) for some s € N*. Then the number of
the zeros of f*° inside T is a multiple of s (taking mutiplicities into account).
Moreover, if f does not belong to H(DUT), then the number of the zeros of f*
inside T is different from 0.

Proof. By Theorem B.20.9 we have (f*)T = (f7)*. But as f* belongs to H(DU
T), by Theorem B.20.4 (f*)T is the polynomial of the zeros of f* inside 7.
Let Q = (f*)T. Then we have deg(Q) = m((f*),T) = sm(f,T). So s divides
deg(Q). Now assume deg(Q) = 0. We have @ = 1, m(f,T) = 0 and therefore
(f")* =1and lim f7(z)=1. Thus f7 is just the constant 1 and therefore f

|z|—o0

belongs to H(D UT), which ends the proof of Theorem B.20.19. O
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In particular Theorem B.20.19 applies to open disks.

Theorem B.20.20: Let r € |K| and let f € H(d(0,77)) \ H(d(0,7)) satisfy
f5 € H(d(0,r)). Then f has continuation to an analytic element in a set D of
t

the form d(0,7) \ (U d(ai,r™)) with |a;| = r = |a; — a;| whenever i # j, such
i=1

that for each i = 1,...,t the number of zeros of f* in d(a;,r~) is a multiple of s
different from 0.

Proof. The Mittag- Leffler series of f in d(0,77) is of the form an with
n=0
fo = fo € H(d(0,r)), and for every n > 0, f, = fr,, with T}, = d(a,,r")
and |an, — a;j| = |a,| = r whenever n # j. Since f ¢ H(d(0,r)), at least one of
the f, is different from 0. Let [ be an integer such that f; # 0. Now since f*
belongs to H(d(0,r)), by Theorem B.20.19, f¢ has a number of zeros inside T}
which is different from 0 and a multiple of s. Since any element of H(d(0,r))
has finitely many zeros in d(0,7), we see that there are finitely many integers
l such that f; # 0. Let I be the finite set of the [ € N* such that f; # 0 and

let D =d(0,7)\ (U d(an,r7)). Then by definition f belongs to H(D) and for

lel
every | € I, the number of zeros of ¢ in T,, is different from 0 and a multiple
of s. This ends the proof Theorem B.20.20. O

Corollary B.20.21: Let f be a power series whose radius of convergence is
r though f does not belong to H(d(0,r)). If for some s € N*, f* has a radius
of convergence v’ strictly superior to r and if f° has strictly less than s zeros
inside C(0,7) (taking multiplicities into account), then f does not belong to
H(d(0,77)).

Proof. Since r' > r obviously we have s > 1. We assume that f belongs to
H(d(0,r7)) and therefore r must belong to |K|. Since ' > r, f* belongs to
H(d(0,r)) and then by Theorem B.20.20, its number of zeros inside C(0,r) is
different from 0 and is a multiple of s, which contradicts the hypothesis. Hence
finally f does not belong to H(d(0,r7)). O

We have now got to recall the definition of the function ¢u when u €
d(1,17).

Notation: Henceforth and up to the end of the chapter, we suppose that K
has characteristic zero and residue characteristic p. Let ¢ € N*. Let (14 2)? =

q

1+qr+ ijxj. So, |¢| =1 and |b;| < 1 whenever j = 2,...,q. Recall that ry,
j=2

was defined at Chapter A.6.
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Theorem B.20.22: Let ¢ € N*. If q is prime to p, the mapping gq(x) =
(1+2)? is injective in d(1,17) and maps d(1,17) onto d(1,17). If p # 0 and if
q = p, the mapping g,(x) = (1+2z)P is injective in d(1,77 ) and maps d(1,(r1)7)
onto d(1, (r2)7).

Proof. Suppose first ¢ prime to p. Since |¢| = 1 > |b;| Vj > 2, by Corollary
B.13.10 and Corollary B.14.14 the mapping g, defines a bijection from d(0,17)
onto d(1,17).

Suppose now p # 0 and take ¢ = p. By Theorems B.16.3 and B.16.5, inside
d(0, (r1)~) we can write g,(z) = exp(pLog(l + x)). This way, we notice that
when x € d(0, (r1)™), gp is injective and that we have |Log(1 + z)| = |z| and
lexp(x) — 1| = |z|, hence

|(1+2)? — 1| = |exp(pLog(1 + z)) — 1] =

TR

Consequently, the image of d(0,77) by g, is the disk d(1, (%)*) =d(1, (r2)7).
O

Notation: Suppose ¢ € N* prime to p. the mapping 7, defined in d(1,1~
by n4(u) = w9 is a bijection from d(1,17) onto d(1,17). We denote by ¢
the inverse mapping from d(1,17) onto d(1,17) and we put ¢4(z) = V1 +
whenever z € d(0,17).

~—

SARS

Suppose now p # 0 and take ¢ = p. The mapping 7, defined in d(1, (r1)7)
by np(u) = w? is a bijection from d(1,(r1)”) onto d(1,(r2)”). So, we can
denote by ¢/u that inverse mapping from d(1, (r2)~) onto d(1,(r1)”) and we
put ¢,(x) = ¢¥/1+ = whenever x € d(0, (r2) ).

Theorem B.20.23: Let g € N*. If q is prime to p, ¢4 belongs to Ay(d(0,17))
but does not belong to H(d(0,17)). Neat, suppose now p > 0. Then ¢, belongs
to Ap(d(0,77)) but does not belong to H(d(0,r])).

Proof. Suppose first that ¢ is prime to p. By construction and by Corollary
B.14.15, ¢, belongs to A(d(0,17)). Suppose that ¢, belongs to H(d(0,1)).
Then it must satisfy
(9q(—1))? = 0, hence ¢4(—1) = 0 and therefore ¢4(x)? admits a zero of order
g at —1. But this contradicts the identity (¢4(2))? = 1+ x and therefore
¢q(z) does not belong to H(d(0,1)). Finally, Since (¢;))? has a unique zero in
C(0,1), by Corollary B.20.21 we see that ¢, does not belong to H(d(0,17)).

Suppose now p > 0. By Theorem B.20.22 the function f(z) = (14 z)? is
strictly injective inside d(0,r; ) and maps d(0,r] ) onto itself. So by Corollary
B.14.15, it admits an inverse mapping ¢, defined inside d(0,r; ) that belongs
to Ap(d(0,77)).

Let us show that ¢, does not belong to H(d(0,77)). Indeed, suppose ¢,
belongs to H(d(0,r; )). Consider the Mittag-Leffler decomposition of ¢, on the
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infraconnected set d(0,7; ). It is of the form Zgn with go € H(d(0,r1) and
n=0
gn € Ho(K\ d(an,r;,)) with a, € C(0,71). Now, by Theorem A.7.4, we can
consider a complete algebraically closed extension K of K whose residue class
field is not countable. R
Let x be the residue class field of K. Thus we can find a class G of C(0,71)

that has an empty intersection with U d(a,,r; ) and then ¢, has continuation
n=1
to an element of H(d(0,r; ) UG. Let ¢ € G. Since |c| = rq1, the function h(x) =
(1+2)? — ¢ satisfies v~ (h,log(r1) = 0, v+ (h,log(r1) > 1, hence h admits a zero
a € 6’(0, r1). Then of course a does not belong to K. Now, let ¢ be a p-th root
of 1 different from 1 and let t = {(1 +a). By Corollary 6.7 we have | — 1| = ry,
hence ¢ is of the form 1+ b with b € C(0,71). We then have (1+a)? = (1+ b)P.
Set E = d(a,ry), F=d(bry), D' =d(0,r7)UEUF and D" = d(0,7]) UG.
Since the image of d(0,7]) by the function f is d(0,r] ) we can check that for
each u € CA'(O,Tl), the image of d(u,r;) by f is d(1,r;). Consequently, both
images of £ and F' by f are equal to G. Now, since f belongs to ﬁ(D'), the
image of D’ by f is D" and ¢, belongs to ﬁ(D”). Consequently, by Corollary
B.3.3 ¢, o f belongs to H(D') and we have ¢po flz) =1+ Vo € d(0,r]).
But since D’ has no pierced filter, by Corollary B.12.4 it is an analytic set.
Consequently the equality ¢, o f(z) = 1+ 2 Vo € d(0,77 ) holds in all D', a
contradiction since f is not injective in D’. That finishes showing that ¢, does
not belong to H(d(0,7])). O

Remark 4: Let ¢ be prime to p. Since ¢, belongs to A4,(d(0,17)), obviously
¢q belongs to H(d(0,r)), whenever r €]0,1[. Now, let E be a closed bounded
set in K and let h € H(E) satisty ||h||, < 1. Then by Corollary B.3.3, ¢, 0 h
belongs to H(E). In other words, if g € H(E) and if ||g — 1|/, < 1, then ¢g
also belongs to H(E).

Remark 5: Theorems B.20.19 and B.20.20 couldn’t be significantly improved
as this example shows. Let ¢ be an integer prime to p, let a,b € d(1,17), with
a # b, and let P(x) = (a — 2)771(b — z). It is easily seen that |P(x) — 1] < 1
whenever x € d(0,17) and then we can consider f(z) = {/P(x). We will show
that f € H(d(0,17))\ H(d(0,1)). Indeed we have

b—ux b—a
=(
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This is just a Mittag-Leffler series of the form fo + f1 € H(d(0,17)), with

fo=—z+a+ é(b—a) € H(d(0,1)),

LN (g — p)Ytl
p==X (7)) S e a0,

2 \j+r1) -

Thus we see that f belongs to H(d(0,17)) and more precisely
fe HK\d(1,17)), but f ¢ H(d(0,1)). Actually f? has exactly ¢ zeros in
d(1,17).
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B.21. Order of growth for entire functions

Here we mean to introduce and study the notion of order of growth of an
entire function on K in relation with the distribution of zeros in disks and in
relation with the question whether an entire function can be devided by its
derivative inside the algebra of entire functions. Results were published in [20].

Definition and notation: Let f € A(K). Similarly to the definition known

log(1
on complex entire functions, lim sup M
r—+o0 log(r)
of f or the growth order of f in brief and is denoted by p(f). We say that f

has finite order if p(f) < +o0. In this chapter and in Chapters B.22 and B.23,
for simplicity in certain calculations, we put € = e, i.e. we denote by log the
Neperian logarirhm function. However, we can check that the definitions do not
depend on the basis b > 1 of the logarithm.

is called the order of growth

Theorem B.21.1 is easily proven:

Theorem B.21.1: Let f, g € A(K). Then
i) if c(|f](r)™ > |g|(r) with a and ¢ > 0, when r is big enough, then p(f) >
r(9);
i) p(f +9) <max(p(f), p(9)) and if p(g) < p(f), then p(f +g) = p(f),
i) p(fg) = max(p(f), p(9))-

Proof. Suppose ¢(|f|(r))* > |g|(r) with a and ¢ > 0 when r is big enough. Then

we check that (hm sup 1og(log1(ocg(|({d|)(7“))a))> > limsup k)g(l(l)()gg(w hence p(f) >
r——400 r——+o00

p(9)-
Next, we have |f + g|(r) < max(|f|(r), |g|(r)), hence

log(log(lf +4l(r)) _ (10g(10g(|f|(7”))) log(log(|g|(r))))
log(r) - log(r) ’ log(r)

and hence p(f + g) < max(p(f), p(g))-
Now, suppose p(f) > p(g). Then when r is big enough, we have |f|(r) >

191(r), hence |f + g|(r) = |f](r) and therefore p(f + g) = p(f).

Let us now show that p(fg) = max(p(f),p(g)). Since |h|(r) tends to +o0
with r for every h € A(K) and since, by Corollary B.5.9, | . |(r) is an absolute
value on A(K), we have

max(|1(r).o|(r)) < | 7al(r) = [71(")loltr) < (max(|£1(r). lol(r)))
hence

log(max(|f|(r), lg/(r))) <log(|fgl(r)) < log(max(|f|(r), |g/(r))) + log(2)

and therefore we can easily conclude that p(fg) = max(p(f), p(g)).
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Corollary B.21.2: Let f, g € A(K). Then p(f™) = p(f) Vn € N*.

Notation:: Given a number ¢ > 0, we will denote by A(K, t) the K-algebra of

entire functions of order inferior or equal to ¢t and we put A*(K U A(K, t).
>0

Corollary B.21.3: For any t > 0, A(K,t) is a K-subalgebra of A(K) and so
is A°(K).

Corollary B.21.4: Consider the differential equation

(&) £ + ap—r (@) f V(@) + oo+ ao(@) f(2) = 0

with a; € A*(D), j =0,..,n—1 and p(a;) < plag) Vj = 1,...,n —1. Then
every non-trivial solution f of (£) satisfies p(f) > p(ao)-

Theorem B.21.5: Let f € A(K) and let P € K[z]. Then p(P o f) = p(f)
and p(f o P) = deg(P)p(f).

Proof. Let n = deg(P). For r big enough, we have
log(log(|f|(r))) < log(log(|P o f[(r))) < log((n + 1)log(|f[(r)))
= log(n + 1) + log(log(| f|(r)))-

Consequently,
 (1osos(710)) ) _ . (1og(os(1P o £1(r)
lvlnfio}?( log(r) ) = 1rﬂ+o£< log(r) >
< o [ 1920 1) + log(log(11(7))
r——+00 log(r)

and therefore p(P o f) = p(f).
Next, for r big enough, we have

log(log(|f[(r))) _ log(log(|f o P|(r))) _ (10g(10g(|f0P|(7“))) (log(\Pl(T)))

log(r) 7 log(r) log(|P[(r)) log(r)
Now,
: log(log(|f o P[(r)\ _ . log(log(|£](r))
lim sup = limsup | ——————*
r—-+00 ( log(|P|(r)) > r—-+0o ( log(r) )
because the function h defined in [0, +oo[ as h(r) = | |(r) is obviously an
increasing continuous bijection from [0, [ onto [|P(0)|,+oo[. On the other
P
hand, it is obviously seen that lim sup ( og | - )) = n. Consequently,
r— 00 1Og
. log(log(|f o P|(r)) log(log(|f
| =nli
iriligf ( log(|P|(r)) ) " iriligf ( log(r )

and hence p(f o P) = np(f). O
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Theorem B.21.6: Let f, g € A(K) be transcendental. Then p(f o g) >
max(p(f), p(9)). If p(f) # 0, then p(f © g) = +o0.

Proof. Let f(z) = 3°7°ana™ and g(z) = 3777 bya™. Since g is transcendental,
for every n € N, there exists r,, such that {(r,,, g) > n. Then |g|(r) > |by|r™ Vr >
ry, and hence, by Theorem B.21.5, we have

(1) p(fog) > np(f).

Therefore, p(f o g) > p(f).
Now, let k € N be such that a; # 0 and let s be such that ((so, f) > k.

Then |f|(r) > |ax|r* Vr > so, hence |f o g|(r) > |ax|(|lg|(r))* Vr > so, hence
by Theorems B.21.1 and B.21.5 we have p(f o g) > p(g). Next, Relation (1)
is true for every n € N. Suppose now that p(f) # 0. Then by (1) we have
p(f og) = +oo. O

Notation: Let f € A(d(0,R™)). For each r €0, R[, we denote by ((r, f)
the number of zeros of f in d(0,r), taking multiplicity into account and set

§rf) = . b).
Theorem B.21.7: Let f € A(K) be not identically zero and such that for

C(:tf) is finite. Then p(f) < t.

¢(r, f)

rt

some t > 0, lim sup
r——4o00

Proof. Set lim sup

r—-+4oo

¢(r, f)

=b € [0,+00[. Let us fix ¢ > 0. We can find R > 0

such that < b+ € Vr > R and hence, by Corollary B.13.30, we have

r
[fI(r) _ e Tt :
< (= < (= . Therefore, putting M = |f|(R), we have

log(|f](r)) < log(M) + r'(b + ¢)(log(r) — log(R)).

Now, when u > 2, v > 2, we know that log(u + v) < log(u) + log(v). Applying
that inequality with w = M and v = rt(b + €)(log(r) — log(R)) when r'(b +
€)(log(r) — log(R)) > 2, since log R > 0, that yields,

log(log(|f|(r))) < log(log(M)) + tlog(r) + log(b + €) + log(log(r) — log R))
< log(log(M)) + tlog(r) + log(b + €) + log(log(r)).
Consequently,

log(log(|f|(r))) _ log(log(M)) + tlog(r) + log(b + €) + log(log(r))
log(r) N log(r)

and hence we can check that

e 22002(51(72)

<t.
r—+00 log(r) -
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Theorem B.21.8: Let f € A(K) be not identically zero. If there exists s > 0
such that
¢(fir)

lim sup (7) < 400

r—-+o0 re

then p(f) is the lowest bound of the set of s € [0, +00| such that

lim sup (M) = 0.

r—400 rd

Moreover, if lim sup
r—+00

(C(fﬂ”)

: ) is a number b €]0,4o00[, then p(f) =t.
r

(M) < 400, then p(f) = +oo.

If there exists no s such that lim sup .
r

r—-+00

Proof.  The proof holds in two statements. First we will prove that given

¢(fyr)

f € A(K) nonconstant and such that for some ¢ > 0, limsup =~——= is finite,
r—-+00 r
then p(f) <t.

Set lim sup (C(f;r)) =be€[0,+00[. Let us fix e > 0. We can find R > 1
r—+o00 r
such that |f|(R) > €2 and C(f;r) < b+ € Vr > R and hence, by Corollary
r

|fI(r) _  retrr) _ T \rtote)
am = ® =&

R
log(| f|(r)) < log(|f[(R)) + 7" (b + €) (log(r))-

Now, when u > 2, v > 2, we check that log(u + v) < log(u) + log(v). Applying
that inequality with u = log(|f|(R)) and v = r*(b + €)(log(r)) when r'(b +
€)(log(r)) > 2, that yields

log(log(|f[(r))) < log(log(|f[(R))) + tlog(r) + log(b + €) + log(log(r)).

Consequently,

log(log(|f[(r))) _ log(log(|f|(R))) + tlog(r) + log(b + ¢) + log(log(r))
log(r) - log(r)

B.13.30, we have

. Therefore, since R > 1, we

have

and hence we can check that

fmsup EC0E071)

<t
r—+00 log(r) -

which proves the first claim.

Second, we will prove that given f € A(K) not identically zero and such
¢(for) > 0, then p(f) > t.

that for some ¢t > 0, we have lim sup .

r—-+o00o T
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By hypotheses, there exists a sequence (7, )nen such that lim,,, 4 o 7, = +00

and such that lim C(f,:“n) > 0. Thus there exists b > 0 such that lim C(f’:”)

n—-—+oo Ty n—-—+oo T

We can assume that |f|(rg) > 1, hence by Theorem B.13.27, |f|(r,) > 1 Vn.
Let A €]1,4o00[. By Corollary B.13.30 we have

>b.

| f1(A1) ¢(fyrn) [b(rn)"]
Gy = VT 20

hence
log(| f|(Arp) > log (| f[(rn)) + b(rn) log(X).

Since | f|(r) > 1, we have log(log(|f|(Ary))) > log(blog(A))+tlog(ry,) therefore

log(log(|f|(Arn))  , | log(blog(})

v N
og(ra) = log(ra) " C
and hence lou(l
oy 1020010
r—-400 IOg(T)

which ends the proof of the scond claim.

Definition and notation: Let ¢t € [0,400[ and let f € A(K) of order t. We

set ¥(f) = limsup C(T,tf) and call ¥(f) the cotype of growth of f, or just the
r—+4oo r
cotype of f in brief. O

Lemma B.21.9: Let f, g € A(K). Then max (C(r, 1), ¢(r, g)) < {(r, fg) =
¢(r, f)+<(r,g9)-

Proof. Let ' > r be such that both {(u, f) and ((u, g) are constant in [r,r'].
Then, when p = log(u), by Corollary B.10.3 we have

Clu, f) = C”’f;;“) Clurg) = ‘wfli“) Viu €] log(r), log(r")].

But since ¥(fg,n) = U(f, u) + ¥(g, i), the inequalities

max (C(T, f)’ C(’I“, g)) < C(Tv fg) = C(Tv f) + C(rv g)

are clear. O

Theorem B.21.10:  Let f, g € A*(K). Thenv(fg) <u(f)+v(g). Moreover,
if(p(J;) > p(g), then ¥(f) < ¥(fg). If p(f) = plg), then max (¥ (f),¥(g)) <
¥(fg)-
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Proof. Set s = p(f), t = p(g) and suppose s > t. By Theorem B.21.1,
we have p(f.g) = p(f) = s. By Lemma B.21.9, for each r > 0, we have

)
max (C(r, f),¢(r.9)) < C(r, f.9) = ((r, f) + {(r, ). Consequently,

lim sup <(r f.9) < lim sup < f) +lim sup (r.9) < lim sup < f) +lim sup 7((7";9)
r——+oo TS r—+oo r r——+o00 TS r——+o0 r r——+o00 r
=(f) +¥(9).

Moreover, assuming again s > t, then

r—4o0 T r——+00 T8 r——400 re(f9)

Consequently, if p(f) = p(g), then max ((f),%(g)) < ¥ (fg)- O
+oo

Theorem B.21.11: Let f(z) = Z anz™ € A(K). Then
n=0

) nlog(n)
= lims — ).
o) = lmsup (558000
Proof. We will follow a similar way as this of [86] when p(f) < +oo.
nlog(n)

Let t = p(f) and suppose first that ¢t < 4-00. Let a = limsup,,_,,

—loglan|"
Take s > t. For all n € N, we have |a,|r" < |f|(r) and therefore |a,|r™ < (™)
and hence |a,| < r e ie.

(1) log |an| < r® — nlog(r)

when r is big enough.

Now, choose r = (E)
s

w|=

. So, we have log|a,| < Lo ﬁlog(ﬁ), ie.
s s s
n o n n
—log([an|) > -5 T glog(g)‘
Consequently, when n is big enough we have

nlogn < nlogn
(—loglan|) = §log(§) — %

<s+0(1)

Therefore we have o < s and since this is true for each s > ¢, that shows that
a <t

1
Now, take 8 > « so that nogn

(—log |an])

n 1
is big enough, we have nlog(n) < B(—logla,|) hence n? < ol and hence

< (B for n big enough. Then, when n

7,.774

1
lan| < —. Consequently, |a,|r" < Now, for r big enough, |f|(r) =
nes

S
w3

,',-.77/

n
sup |a, |r"™ < sup —.
neN neN n’
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Putting ¢(n) = % and R = 3, we have

pe(n) Re
< R
0 =550 e

1
[fI(r¥) < sup
neN

R
Now we check that the maximum on [0,+oco] of the function g(x) = — is
x(lj
R r r
reached when z = — and hence is e = e#<. Therefore, we have |f|(7‘%) < ePe.
e

Putting now u = r?, we can derive |f](u) < e#e, hence

log(log(| f[(u))) < Blog(u) —log(ef3).

Consequently,
o 1920005(1£1(1))
r—+00 log (T)

<p.

So we have t < (3 and since this is true for all 8 > «, we have proven that ¢t < «,
which ends the proof when ¢ < +o0.

1
Suppose now that t = 400 and suppose that lim sup _nosnh < 400. Let
n—too (—loglan|)

us take s € N such that

nlogn
2 —_— Vn € N.
( ) (—log|an|) < sVn e
By Theorem B.21.8, we have lim sup w = +o00. So, we can take a se-
r—-+00
quence (7, )men such that
(3) lim fyrm) = +00.

m—+o00 (rm)s

For simplicity, set u,, = ((f,rm), m € N. By (2), for m big enough we have

U 10g(um) < s(—log(|ay,,|) = slog (L)

|, |
hence
1 S
(’LL )um > |aum| ’
m
therefore ()
s SUp, T'm "
|, |*(7m) < (U )
i.e.

11 < (222)"™

Um
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But by Theorem B.13.27, we have HIJP | f](rm) = +00, hence (ry,)° > up

C(fyrm)

when m is big enough and therefore limsup ————— < 1, a contradiction to
m—+00 (Tm)s
(3). Consequently, (2) is impossible and therefore

( nlog(n)

i
imsup ( — Tog |an]

n—-4oo

) = +00 = p(f).

Remark: Of course, polynomials have a growth order equal to 0. On K as on
C we can easily construct transcendental entire functions of order 0 or of order
0.

Example 1:  Suppose that for each r > 0, we have ((r, f) € [rtlogr, vt logr+

1]. Then of course, for every s > t, we have lim sup <, f) = 0 and lim sup C(T,tf)
r—-+00 T r—-+o00 T

¢(r, f)

rt

= 400, so there exists no t > 0 such that have non-zero superior limit

b < 4+o00. Consequently, p(f) = +oc.

Example 2: Let (a,)nen be a sequence in K such that

1
—log |a,| € [n(logn)?, n(logn)? +1]. Then clearly, lim logan| = —o0 hence
n—-+4oo n
o0
the function Z anx™ has radius of convergence equal to +0o0. On the other
n=0
nlogn

hand, lim

————=0h =0.
W T og an] 0 hence p(f) =0

Example 3:  Let (a,)nen be a sequence in K such that

log |an :
—log|an| € [nvIogn,nylogn+1]. Then lim log |an] = —oo again and hence

n—-+oo n

the function Z anz" has radius of convergence equal to +o0o. On the other

n=0
hand,
1
ngrfoo (%) = 400 hence p(f) = +o0.

Theorem B.21.12: Let f € A*(K). Then

p(f) = inf{s €]0,+o0[ | lim log(I£1(r))

r—4o0 rs

=0}
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Proof.  Indeed, let M = inf{s €]0,4o0[ | lim, 40 log(‘TM = 0}. First we

will prove that p(f) < M Let s be such that lim,_, | l%(lrw = 0. Let us

log(|.f1(r))
rrS

< ¢, hence log(|f|(r)) < ers,

log(log(| f1(r))) _ .
log(r) - log(r)

fix € > 0. For r big enough, we have

therefore log(log(| f|(r))) < loge + slog(r), hence

log(1
This is true for every € > 0, therefore lim sup log(log(1/1(r))) <sie p(f)<s
r—-+00 log(r)
and hence, p(f) < M.
On the other hand, we notice that
1
M = sup{s €]0,+o0[ | limsup MSKT)) > 0}.
r—-+o00 r
1
Now, suppose that for some s > 0, we have lim sup W =b>0. Let us
r—~+00
fix € €]0,b[. There exists a sequence (r,)nen such that, when n is big enough,

log(| f|(rn))
slog(ry) + log(b — e)rglog(log(\ﬂ(rn))) < slog(ry) + log(b — €) therefore
log(b—¢)  log(log(|f|(rn) log(b + €)

log(ra) ~ log(ra) ' log(ry)

log(1 n
Consequently, 11111 W = s and therefore p(f) > s, hence p(f) >
n—-—+0o Og n

M. Finally, p(f) = M. O

we have b — e < < b+ ¢, hence
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B.22. Type of growth for entire functions

Definition and notation: In complex analysis, the type of growth is defined

log(M
for an entire function having a finite order of growth ¢ as o(f) = lim sup Ltf(r))
,

r—-+400

with ¢t < +00. Of course the same notion may be defined for f € A(K). Here,
as in Chapters B.21 and B.23, we put 8 = e and we denote by log the Neperian

)

1
logarithm. Then, given f € A*(K) of order ¢, we set o(f) = limsup M.
r—+00 re
~ 1
Moreover, we put o(f) = lim_ii_nf w.
r—4o00 r

Theorem B.22.1: Let f, g € A*(K). Then o(fg) < o(f) +o(g). If p(f) >
p(g), then o(f) < o(fg) and if p(f) = p(g), then max(o(f),0(g)) < o(fg).
Moreover, if p(f) = p(g) and if ¢|f|(r) > |g|(r) with ¢ > 0 when r is big enough,
then o(f) = a(g). If p(f) = plg) and o(f) > o(g) then p(f +g) = p(f) and
o(f+9)=0c(f). If p(f +9) = p(f) = p(g) then o(f + g) < max(a(f),o(g))-

Proof. Let t = p(g) and s = p(f) and suppose s > t. When 7 is big enough, we

have max(log(| f|(r)), log(lg|(r)) < log(|f.gl(r)) = log(|f|(r)) + log(lg|(r)). By
Theorem B.21.1, then p(fg) = s. Therefore

o(Fg) = limsup (log(lf-sgl(r))) < limsup (1og(|fsl(f‘))) 4 Jim sup (log(Igsl(T))>
r—-+400 r r—-+o0 T r—-+o0 T
<y (D), (8D, _ )

Now, suppose s > t. Then by Theorem B.21.1, p(f + g) = p(f) = s.
Consequently,

o 4 0) = timsup (OB A0y max(ios 171G Tog ll0)

r——+00 r r—-+4o0 e

M) lim sup (MD

= max (lim sup ( .
r—+00 r

r—-+4o00

< max <limsup (log |J:|(T)),limsup (M)) =max (o(f),0(g)).

r——400 T r——400 Tt

Now, just suppose s > t. Then

< lim sup
r—+400

o(f) =limsup

r—+00

But by Theorem B.21.1, p(fg) = s, hence o(f) < o(fg).
Now, suppose p(f) = p(g) = s. Then

log(| f](r))

< mep (0L 910)

r—-+o0 T

max (lim sup( ), lim SUP(MD

r—+o0 r r—+o0 r
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because the two both |f|(r) and |g|(r) tend to +oo with . Consequently,
o(fg) = max(o(f),0(g))-
Suppose now c|f|(r) > |g|(r) when

r is big enough, then, assuming again
that s = ¢, it is obvious that o(f) > o(g).

Now, suppose again that p(f) = p(g) and suppose o(f) > o(g). Let s =
p(f), b=0(f). Thenbd > 0. Let (1, )nen be a sequence such that lim,_, 4o 7 =
roo and 1y E0/102)

n—-+4oo Tn
big enough we have | g|(rn) < |f|(ry). Consequently, when n is big enough, we
have |f + g|(rn) = | f|(rn) and hence

- log(If + gl(rn)
(1) N

=b. Since o(g) < o(f), we notice that when n is

=b.

1
Now, by definition of ¢ we have o(f+g¢g) > lim log(|f + g1(n))

T n—-+oo (Tn)p(f+9) . By Theorem

B.21.1, we have p(f + g) < s, hence

o log(lf +gl(rn)) _ . log(If 4 gl(rn))
o(f+g)2 lim (ro)PFre) = A (rn)*

lim log(|f[(rs))
n—-+oo (Tn)s

therefore by (1), o(f + g) > o(f).
Suppose that o(f 4+ g) > o(f). Putting h = f+ g, we have f = h— g
with o(g) < o(h), hence o(h — g) > o(h) i.e. o(f) > o(f + g), a contradiction.

1
Consequently, o(f + g) = o(f). Thus, limsup log(|f + 91(r) =b>0. But
(

r—+o0 re
log |f+g|( )

=o(f)

then, limsup =0 Vm > s. Therefore, by Therorem B.21.12 we

r—+00

have p(f +g) = p(f)-
Finally, suppose now that p(f + g) = p(f) > p(g). Then,

o(7+5) =iy M < s (msup 22 sy SEEE)
< max (limsup (|f|( )) msup M) =max(o(f),o(g)).
r—4-00 7“—>+00 r

The last statement derives from the previous ones and from Theorem B.21.1
iii). O

Corollary B.22.2: Let f, g € A(K) be such that p(f) # p(g). Then o(f +

g) < max(a(f),o(g))-

Proof. Indeed, assuming that p(f) > p(g), we have p(f + ¢g) = p(f) and hence
the conclusion comes from the last statement of Theorem B.22.1. O
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Now we will show that o(f) may be computed by the same formula as on

C.

Theorem B.22.3:  Let f(z) = Z anz™ € A(K) be such that 0 < p(f) < 4o0.
n=0

Then o(f)p(f)e = limsup (n {/|a,|*()).

n—-+o0o

Proof. Let t = p(f). First, let us show that eto(f) > limsupn|a,|~. We will
n—-+4oo
follow a similar way as in [86]. Let w = o(f) and let us take w > o(f). For r

big enough we have log(|f|(r)) < wr® hence for all n € N, we can derive

) et

Tn rn

(1) |an| <

Now, let us take r such that the derivative of the logarithm of the function

wr 1
. _ t
— vanishes: we have wtrt~ — = = 0. So, we can choose 1, = (%) and we
r
can check that .
et ewt\ t
jan] <~ = (S0
n

()"

Consequently, we have n|an|% < ewt, therefore limsup n|a,
n—-+oo

% < etw. This is

true for all w > o(f) and hence limsup na,|* < eto(f).
n—-+4oo

1
Now let us show the reverse inequality. Take ¢ > " lim sup n|an\%. When n
€l n—o+oo

is big enough we have |a,| < (%Ct) " hence |a,|[r" < (%) "™ and consequently

AN A
|fl(r) < sup (2> r". Therefore |f|(r) < sup w. Now, set y = z and
n>1\ 1N >1 Tt t
R = ecr. Then
t)YrY Yy RY
710 < sup Ty (C) g e
y>0 (ty)y y>0 Yy y>0 YY
t 1
Thus, we have | f|(r) < e and hence lim sup M < ¢. Therefore o(f) <
r——+00 r

¢, which ends the proof. O

In the proof of Theorem B.22.5, we will use the following trivial lemmas:

Lemma B.22.4 : Let g, h be the real functions defined in |0, +oo[ as g(x) =

eta: -1 1— e—t:c

and h(z) = ———— with t > 0. Then:
T T
i) inf{|g(x)| |z > 0} =¢.
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ii) sup{|h(z)| |x > 0} =¢.

1
Notation: Given f € A*(K), we put o(f) = lim inf M.

r——4o00 r

Theorem B.22.5: Let f € A*(K) be not identically zero. Then

p(H)o(F) < 0(F) < plf) (e f) = 5(f))-

r 1 r
Moreover, if ¥(f) = TEIEOO % orif o(f) = TEIEOO %, then ¥ (f) =
p(f)o(f)-

Proof.  Without loss of generality we can assume that f(0) # 0. Let ¢t = p(f)
and set £ = log(]f(0]). Let (an)nen be the sequence of zeros of f with |a,| <
|ant1], n € N and for each n € N, let w,, be the multiplicity order of a,,. For ev-

ery r > 0, let k(r) be the integer such that |a,| < r Vn < k(r) and |a,,| > r ¥n >
k(r)

k(r). Then by Theorem B.13.27, we have log(|f|(r)) = £ + Z wp,(log(r) — log(|axl))

hence

o(f) = limsup

r— 00

( £+ 300 wn(log(r) — log(lanI)))_

rt

Given r > 0, set ¢, = |a,| and let us keep the notations above. Then

(1) o(f) =limsupo(f,r), ¢(f)=limsup(f,r).

r—+00 r—~+00

We will first show the inequality p(f)o(f) < ¥(f). By the definition of
o(f,r) we can derive

k(re™?) _
wy, (log(r) — log(re™*
gy S unllostr)~tostre7)
n=0
k(re™) _
wy, (log(re™®) — log(cy)) Wy,
+ ) ta > 7
n=0 rt k(re—*)<n<k(r) '

hence
k(reia) k(re™)

o(for)<a Y. 7+ Z " w, (log(re=*) — log(c,))

t
n=0 "
w
+a E —
rt
k(re=«)<n<k(r)

therefore
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k(re™) k(re™®)

a(f,r) <a Z %+ Z wy, (log(re=®) — log(c,))

rt

n=0 n=0

+o Z %

k(re=)<n<k(r)

hence
k(re™%) k(re™®) _
Wn wp(log(re™) — log(cy))
< _n ta
a(f,r) <a nz::o e Z:O ey
Wn, Wnp,
SCED DI DR
0<n<k(r) 0<n<k(re—«)
hence
k(re™®) _
—to wy, (log(re=®) — log(cy,)) wy,
U(f,?’) S € Z (re—o‘)t + « Z —
n=0 0<n<k(r)

Thus we have
a(f,r) < e o(f,re™®) +ay(f,r).
We check that we can pass to superior limits on both sides, so we obtain o (f) <
1— —ta
e~ (f)+a(f) therefore J(f)g < (f). That holds for every o > 0,
«@

hence by Lemma B.22.4.ii), we can derive

(2) () = p(fo(f)-

We will now show the inequality

O(f) < p(f)(ea(f) = a(f))-

Let us fix a > 0. We can write

k(re™)

wy (log(r) — log(re™®
o(fir)= 3 ol <>Tt (re=®))
n=0
k(re™<) _
w;(log(re=®) —log(cy,)) w;(log(r) —log(c;))
+ , + > .
Jj=0 k(re=o)<j<k(r)
hence
k(re™) k(re™) _
W, w;(log(re™®) —log(cy))
o(fir) za Z F‘i‘ : i
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hence
k(re™®) k(re™<) _
ta wy, ta wy, (log(re™®) —log(cn))
o zee Y eyt X (rea)
n=0 j=0
and hence

o(f,r) > ae™'Y(f,re™) + e o (f,re ™).

Therefore, we can derive

ac™(f) < timsup ((£,r) — o (fre™))

r—+00

and therefore

3) ac " Y(f) < o(f) —eG(f)).

That holds for every a > 0 and hence, when to = 1, by (3) we obtain ¥(f) <
p(f)(ea(f) —a(f)) which is the left hand inequality of the general conclusion.

!
Now, suppose that o(f) = lirf w

. Then by (3) we have
to 1

lirgilig)d)(ﬁ r) < U(f)(ema_ 1) and hence 9(f) < (f(f)(e ) That holds

for every a > 0 and then, by Lemma B.22.4.i) we obtain ¢ (f) < to(f), i.e.
U(f) < p(f)o(f), hence by (2) we have, ¢(f) = p(f)o(f)-

Now, suppose that

k(r)
W(f) = lim Z%: lim o(f,7).
n=0

r——400 r——400

We can obviously find a sequence (r,)nen in ]0,4+o00[ of limit 400 such that
o(f) =limy—too o(f,rne”®). Then, by (1) we have

o(fira) = ae™ " Y(f, 22) + e (f, 22)

hence
limsup o (f, ) > ae~@y(f) + e~ o (f)

n—-+oo

and hence
o(f) > ae™"*Y(f) + e "o (f)

eta

therefore, ¥ (f) < ( a_ 1)0(f). Finally, by Lemma B.22.4.i) we have, ¢)(f) <
p(f)o(f) and hence by (2), ¥ (f) = p(f)o(f). 0
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Remark: The conclusions of Theorem B.22.4 hold for ¥(f) = o(f) = +oc.

We will now present Example 1 where neither ¢(f) nor o(f) are obtained
as limits but only as superior limits: we will show that the equality ¢(f) =

o(f)o(f) holds again.

Example 1: Let r, = 2", n € N and let f € A(K) have exactly 2" ze-
ros in C(0,7,) and satisfy f(0) = 1. Then ((r,,f) = 2""1 —2 ¥n € N.

r—-+4o0

course (f) =2
_ tog(1(r))

Now, let us compute o(f) and consider the function in r: E(r) = ————=.
r

We can see that the function h(r) defined in [r,,r,41[ by h(r) = ¢ f) is
on+l _ 9 ontl _ 9 "

decreasing and satisfies h(r,) = ———— and lim h(r) = ———. Con-

2n T—Tn i1 2n+1
gntl _ 9

sequently, sup (h(r) |rn <7 < rpq1) = T Therefore limsup h(r) = 2
r—+00

and liminf A(r) = 1. Particularly, by Theorem B.21.8, we have p(f) = 1 and of

When r belongs to [ry, rny1], we have

(27! —2)logr — (log 2)(Y_p_ 2%)

E =
(r) -
rop 281+ klog(2)) — 1
and its derivative is E'(r) = 2= 270+ r;)g< ) og(r)). We will need to
compute
(1) D k2 =2(n2"t — (n+1)2" +1).
k=1

Now, the numerator of E'(r) is U(r) = Y_p_, 2*(1 + klog(2)) — log(r)) is de-
creasing in the interval [r,,r,+1] and has a unique zero a, satisfying, by (1),
27 ((log2)(n — 1+ 277) 42— 27"+

on — 2

log(an) =

thereby log(ay,) is of the form nlog(2) + €, with lim €, = 0.

n—-+oo
Since E'(r) is decreasing in [ry,Tn4+1], we can check that E(r) passes by a
maximum at a,, and consequently,

o(f) = limsup Elon)

n—-4o00 (079

Therefore o(f) = 2 = ¢(f).

E
Now, we can check that lim Jinf (r)
r——+00 r

B(rn) _ (2" —2)(logry) — (log2) 35, k2"

Tn T'n

< o(f). Indeed consider
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(2741 — 2)(nlog2) — (log2) Yp_, k2"
2n

hence by (1), we obtain
(27! — 2)(nlog2) — 2(log 2)(n2" ! — (n +1)2" + 1)
27’L
~ 2(log2)(2" —n —1)
= o
therefore lim E(r,) = 2log2 and hence limJinf E(r) < o(f). Thus, in that Ex-
ample 1, we have liminf E(r) < o(f) but however, ¥(f) = p(f)o(f).

E(r,) =

Therefore Theorem B.22.5 and Example 1 suggest the following conjecture:

Conjecture: Let f € A*(K) be such that either o(f) < +o00 or ¢(f) < +o0.
Then ¢(f) = p(f)o(f).

Example 2: infinite type and cotype: Here is an example of f € A(K, 1)
such that o(f) = ¢(f) = +o0.

For each n € N, set ¢(n) = /logn and let u,, be defined by log(u,) =
nlogn
1+ 5y

the whole set [0, R[. We can take a sequence (a,,) of K such that |a,| = u, ¥n €
N, with o — 1. Thon 108laal __oz0)o(i) log a,|

hence lim —00,
therefore f € A(K). Next,

. For simplicity, suppose first that the set of absolute values of |K| is

n o(n)+1 n—too M

nlogn ¢(n) ) nlogn
— h 1 75" _ 1 theref —1
“loglan|  é(n) + 1 ence lim — Tog[an] erefore p(f)
log |an 1 1
Henceforth, log(n|a,|") = logn + Ogﬂf | togn - %) " ¢<2>gi 1

and hence o(f) = +o0.

Let us now compute (f). Now, for cach n € N*, take 7, = "1, We
u’ﬂ
will first check that the sequence (r,)nen+ is strictly increasing when n is big

enough. Indeed, we just have to show that there exists M € N such that

(1) log(un) - log(unJrl) > log(unfl) - log(un) Vn > M.
1
Let g be the function defined in ]0, +oo[ as g(z) = —%. Then we can
L+ Vl1og x

check that g is convex and therefore (1) is proven.

Now, since the sequence (7, )nen+ obviously tends to +o0o, there exists a rank
N > M such that r,41 > r, Yn > M and rpr > Yk < N. Consequently, for
each n > N, we have |a,|r"™ > |ag|r* Vk # n and therefore, f admits n — 1 zeros
inside d(0, (r,,)~) and a unique zero in C(0,r,,), hence f admits exactly n zeros
in d(0,r,). Consequently, we have

(3) C(rn, f) =nV¥n > N.
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Since ((r, f) remains equal to {(r,, f) for all r € [ry,, r,q1], by (2) we can derive
that

(4) lim sup 7{(7“, 1) = lim sup Lrn’ )
r——+o00 r n—+o0 Tn

Now, for n > N, we have

s 1 - 1)1 -1
log (s f) _ log(1)—1og (11 )+log(un) = log(n)—ln ogn (n : ) ogl(n )

Tn T T oD

Set S,, = nlogln — (n—1) logl(n — 1). Then
1+ 36y I+ 55D

(5) 1 (C(T:vf)):logn—sn

Now, we have S,, =

p(n)p(n —1)(nlog(n) — (n — 1)log(n — 1)) + nlog(n)p(n) — (n — 1) log(n — 1)¢(n — 1)
(¢(n) +1)(¢p(n —1) + 1) '

Gop A — PMo(n—1)(nlog(n) — (n—1)log(n — 1))
’ @)+ D6 — 1)+ 1)
nlog(n)é(n) — (n — 1)log(n — 1)é(n 1)

(¢(n) + 1)(d(n —1) +1)
two both A,, B, are positive. By finite increasings theorem applied to the

function g(x) = xlogx, we have
6 o < O —logn)
(¢(n) +1)(¢p(n —1) +1)
On the other hand, by finite increasings theorem applied to the function h(z) =
z(logx)?, we have

and

B, = . Then S,, = A,, + B,, and the

¢(n)(logn + 3)
(¢(n) +1)(p(n—1) +1)
Then by (1)7 (G)a (7) we have log(C(Tnv f)) - An — By
togn(6(n) + 1)(6(n — 1) + 1) — 6(n)on — 1) — 6(n)) — $o(n)
(¢(n) + 1)(dp(n —1)+1)
_log(n)(¢(n) + ¢(n —1) +1—¢(n)) — dein)
(¢(n) +1)(o(n —1) +1)
__logn 30(n)
o) +1  2(¢(n) +1)(p(n—1)+1)
Now, since ¢(n) = /logn, it is obvious that

(7) B, <

>

and therefore by (3), (4) and (5), ¢¥/(f) = +oo.
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B.23. Growth of the derivative of an entire function

Similarly to the situation in complex entire functions, here we will see that
the order and the type of the derivative of an entire function f are respectively
equal to those of f. As in Chapters B.21 and B.22, we put 6§ = e and denote by
log the Neperian logarithm.

Throughout the chapter, K is supposed to have characteristic 0.

Theorem B.23.1: Let f € A(K) be not identically zero. Then p(f) = p(f').

1
Proof. By Theorem B.21.11 p(f’) = lim sup n log(n)

. But since
n—-—+oo <_ log(|(n + 1)an+1|)>

1
— <|n| <1, we have
n

log(Janta]) —log(n +1) <log(|(n + 1)an1]) < log(lan+1])

hence
_log(|an+1|) < _log(|(n + Dap11]) < _log(|an+1|) —log(n + 1)
nlog(n) nlog(n) — ~ nlog(n)
hence 1
lim inf(— 28U 41D
n—+0o0 nlog(n)
! Lan . 1 n -1 1
< timinf(— 28UCF Danil) e Togllannl) — log(n +1))
e nlog(n) n—too nlog(n)
But since
log(n +1) _
n—-oo nlog(n) ’
we have
1 n . 1 n 1 1
1iminf(_w) — lim inf(— 0g(lany1) +log(n + ))
n—teot  nlog(n) n—-+oo nlog(n)
therefore
_1 1 1
hminf(w) — lim inf(— og((n + )|an+1|))_
n—+oo'  nlog(n) n—+00 nlog(n)

But since all quantities are positive, we can derive

lim s nlogn Jim sup( nlogn
imsup —————— = limsup
n——+00 _IOg(lan+1| n—-—+00 —log(|(n+1)an+1|
therefore
I 1)1 1
lim sup nosn = lim sup( (n+1)log(n + 1) )= p(f)

n—too —10g(Jant1]  notoo —log(|(n+1)ans1]”

and hence p(f') = p(f). O
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Corollary B.23.2: Consider the differential equation
(&) f™ + an_1(2)f" V(@) + .. + ag () f(2) = 0
with a; € A*(K), 7 =0,...,n—1 and p(a;) < plap) Vj = 1,...,n—1. Then

every non-trivial solution f of (£) satisfies p(f) > p(ap).

Corollary B.23.3: The derivation on A(K) restricted to the algebra A(K,t)
(resp. to A*(K)) provides that algebra with a derivation.

In complex analysis, it is known that if an entire function f has order ¢t <
+o00, then f and f’ have same type. We will check that it is the same here.
Theorem B.23.4: Let f € A(K) of order t €]0,+00[. Then o(f) =o(f’).

Proof. By Theorem B.22.3 we have,

t

ep()o(f') =limsup (n(jn+ Ulansi]) ")

n—-+o0o

—timsup (04 1) (jn-+ 1loa]) ) (1)

n—-+oo

~ timsup (14 1)(In + 1llana) ) = enlDo(h)

n—-+4oo

But since p(f) = p(f’) and since p(f) # 0, we can see that o(f’) = o(f). O

Theorem B.23.4 shows a way to compare the growth of an entire function f
to this of its derivative. Of course, we know that the inequality |f'|(r) < |f|(r)
holds allways. But we don’t have an inequality in the other side. However,
thanks to Theorem B.23.4, we can get this corollary:

Corollary B.23.5: Let f € A*(K) be not identically zero, of order t < +oco.

Given € > 0, there erists a sequence of intervals [rl,,r!!], with lim r] = +o0,

n—-+4oo
such that

1) = [ £[(r)e= ) v e | ).

neN

By Theorems B.22.5 and B.23.4, we can now derive Corollary B.23.6:
Corollary B.23.6: Let f € A*(K) be not identically zero, of order t < +oc0.

if
vin = tm T aipuiry = im S e ) = ).

r—+00 rt 7—~+00

Remarks: If the conjecture presented in Chapter B.22 is true, then ¢(f) =
(f") Vf e A*(K). Of course, polynomials have a growth order 0. On K as on
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C we can easily construct transcendental entire functions of order 0 or of order
0.

Example 1:  Let (a,)nen be a sequence in K such that
log |an|

—log|ay| € [n(logn)?,n(logn)? + 1]. Then clearly, lim —o00 hence
n—-+o0o n
the function Z anx™ has a radius of convergence equal to +0o. On the other
n=0
hand,
nlogn

_— = 0 h - O.
im0 hence p(f)

Example 2: Let (a,)nen be a sequence in K such that

log |an, :
—loglan| € [nv1ogn,nylogn+1]. Then lim 08 || = —oo again and hence

n—-+oo n

the function Z anz” has radius of convergence equal to +o0o. On the other

n=0
hand,
1
lim (m) = 400 hence p(f) = +o0.
n—+o0 \ —log |a,|

Similary, comparing the number of zeros of f’ to this of f inside a disk is
very uneasy. Now, we can give some precisions thanks to Theorems B.21.8 and
B.23.1.

Theorem B.23.7: Let f, g € A(K) be transcendental and of order t €
[0,+00[. Then for every e > 0,

lim sup

r—-+00 ( C(T, fg

Proof. Suppose first t = 0. The proof then is almost trivial. Indeed, for all
€ >0, we have lim <. f) —0hence lim —— = +00, therefore
r—+o00 re r—-4oo C(n f)
ALY N

lim
r—+oo ((r, f)
Now suppose t > 0. By Theorem B.21.8, there exists A > 0 such that

(1) Clr, f) < Mt vr > 1.
Let us fix s €]0,¢[. By hypothesis, p(¢g) = p(f) and hence by Theorem B.21.8,
we have lim sup L;w = 400 80, there exists an increasing sequence (7, )nen Of

r——+4o00 T

¢(rn,9) > n. Therefore, by (1), we have

(rn)s —

A(Tn)tC(rna g) > C(rn, 9)
(rn)5C(Tns f) (7n)*

R, such that lim 7, = 400 and
n—-+oo

>n
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and hence
. (rn)'*¢(rn, 9)
Al —— ) = .
Jm () = e
Consequently,
: (r)—*¢(r,9)
2 limsup | ———+— ) = +o0.
@ 7‘—>+<>£< ¢(r, f) )
Now, since that holds for all s €]0,¢], the statement comes from (2). O

By Theorem B.23.1 we can derive Corollary B.23.8:

Corollary B.23.8: Let f € A(K) be transcendental and of order t € [0, +o0].
: r¢(r, ')
Then for every € > 0, we have limsup | ———— ) = 400 and
d (y | mew (o)
: re¢(r, f
limsup [ ——+ ) = +o0.
r~>+o£)< C(T, f/) )
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B.24. Growth of an analytic function in an open disk

In Chapters B.21, B.22, B.23 we defined the order of growth and the type
of growth for entire functions in K in a similar way as it is done for complex
entire functions and we also defined a cotype of growth strongly linked to the
order and the type: in most of the cases the cotype is the product of the order
of growth by the type of growth.

Here we consider analytic functions in an ”open” disk d(a, R™) that we will
denote by F throughout the chapter.

o0

Notations and definitions: Let f = Z anz™ € A(E). In order to define a
n=0

growth order similarly as it was done in the algebra of entire functions in K we

can define in A(FE) a growth order in the following way: given r €]0, R], as it
was done in complex analysis, given an unbounded function f € A(E), when r is

close enough to R, we put p(f,r) = log(log(|](r))) and p(f) = limsup p(f,7),

—log(R—1) R
hence p(f) = limsup M. Then p(f) is called the order of growth
f f‘ r—R— - IOg(R - T)
of f.

On the other hand, for every r €]0, R|, if the set of the s > 0 such that
lirg C(f,7)(R—1r)° =0 is empty, we put 6(f) = +oo. Else, we then denote
r—R—

by 6(f) the lowest bound of the s > 0 such that ,,Lir}{lf C(f,r)(R—7)*=0.
Similarly, if the set of the s > 0 such that rEIEf log(| f](r))(R — r)® = 0 is empty,
we put A(f) = 4o00. Else, we denote by A(f) the lowest bound of the s > 0 such
that TEI}I%I_ log(|f](r)(R—7)°=0. And if 0 < p(f) < +o0, we put o(f,r) =
log(|f|(r))(R — 7)?Y), o(f) = limsupo(f,7), ¥(f,r) = ((f,r)(R —r)?) and

»(f) = limsup(f,r). We call (;(?) the type of growth of f and ¥(f) the cotype

r—R—
of growth of f.
Let us recall that, as far as ultrametric entire functions are concerned,
the order of growth is equal to the lowest bound of the s > 0 such that
1
lim M C(fsr)

r—-+o00 r r—+oo 7S
Here we will try to prove similar results. This paper is aimed at showing rela-

tions between these expressions p(f),o(f), ¥ (f).

Notation: We will denote by A*(E) the set of unbounded functions f € A(FE)
such that 0 < p(f) < 4o0.

Theorems B.24.1 and B.24.3 are easy and don’t need any proof:

Theorem B.24.1: Let f, g € A*(E). Then p(f + g) < max(p(f), p(g)) and
p(fg) = max(p(f), p(9))-

= 0 and to the lowest bound of the s > 0 such that lim >+ =



Analytic elements and analytic functions 237

Corollary B.24.2: Let f, g € A*(E). Then p(f*) = p(f) ¥n € N°. If
p(f) > plg). then p(f +g) = p(f).

Theorem B.24.3: Let f € A*(E) and let P € K[z] be non-constant. Then
p(Po f)=p(f)

Theorem B.24.4: Let f, g € A*(E). Then ¥(fg) < ¢¥(f) +¥(g). Moreover,
if p(f) = p(g) then max(¥(f),¥(g9)) < ¥(fg).

Proof.  Set p(f) = s, p(g) = t. Without loss of generality we can assume
s > t. By Theorem 1, we have p(f.g) = p(f) = s. Now, for each > 0, we have

¢(f.g,7) =C¢(f,7) + C(g,r) hence

Y (fg) = limsup(C(f,r)+¢(g, 7)) (R—r)* < limsup ¢(f,r)(R—r)*+limsup {(g,7)(R—7)"

r—R r—R~ r—R—

hence ¥(fg) < ¥(f)+ ¥(g). Now, suppose s = t. Then

¥(fg) = limsup(C(f,7) +4(g, 7)) (R—r)* > limsup max(¢(f,r), ((g,7)) (R —r)°®

r—R— r—R~

= max(¢(f), ¥ (9))- u

Remark 2: Let f € A*(E). If s > 6(f), then by definition, 111}1%1_ C(f,r)(R—7r)*=0.
But if s < §(f) then limsup ¢(f,r)(R — r)® = 400 because if lim sup {(f, r)(R — r)° < 400,
r—R~

r—R—

we can find s €]s, 0(f)[ and then we can check that lirlr%l_ C(f.r)(R—1)* =0,

a contradiction.

| f1(r)

r

Thanks to the classical inequality |f’|(r) <

rem B.24.5 is then immediate:

Theorem B.24.5: Suppose K has characteristic 0. Let f € A*(E). Then
p(f") < p(f)

[58], the following Theo-

Remark 3: In a field of characteristic p # 0, certain analytic functions have
a null derivative. This is why we must suppose that K has characteristic 0 in
all statement involving derivatives.

In complex analysis, many estimates were given concerning the growth or-
der of solutions of linear differential equations. Here, by Corollary B.24.2 and
Theorem B.24.5 we can immediately obtain Corollary B.24.6:

Corollary B.24.6: Suppose K has characteristic 0. Consider the differential
equation
(€) £+ ana (@) f" V(@) + .. + ap(2) f(z) = 0
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with a; € AY(E), 7 =0,...,n—1 and p(a;) < plap) Vj = 1,....,n —1. Then
every non-trivial solution f of (£) satisfies p(f) > p(ap).

Theorem B.24.7: Suppose K has residue characteristic 0. Then for every
[ € A(D) we have p(f') = p(f), 0(f') = 0(f), o(f') = a(f) and ¥(f') = »(f).

Remark 4: Theorem 8 does not hold in residue characteristic p > 0 because
there exist functions f € A*(D) such that p(f) > 0 and that f’ is bounded,
oo xpm

as shows the following example with R = 1: g(x) = Z ——. We can see
pm

m=0
o0

that ¢'(z) = Z 2?" 1 hence ¢’ is bounded and therefore p(g’) = 0. However,
n=0

1
consider the sequence (7,)men defined as r,, = 1 — —. We can check that
p
l9|(r) = p™(rm)P, hence

1
log(|g|(rm)) = m+ p™ log(ry) = m +p™ log (1 — p—).

Vel

When m is big enough, we have log (1 — i) > =2, hence

tog (91(r)) = m =" () =m =2,

Therefore, when m is big enough, we have

log (log(lgl(rm))) _ log(m—2) _ log(m—2) pm™
—log(rm) 2 —log(1 — p%) > % = ?log(m—Q),

Thus, we have p(g) = +oo.

Remark 5: Theorem B.24.7 applies for instance to the complex Levi-Civita
field whose residue characteristic is 0 [12].

Theorem B.24.8: Let f € A*(E). Then A(f) = p(f).

Proof.  First we will prove that p(f) < A(f). Obviously, we can assume
that A(f) < 4oco0. Let s be such that 11111317 log(| f|(r))(R—r)° =0. Let us

fix e > 0. For r close enough to R, we have log(|f|(r))(R — r)® < ¢, hence

log(|f](r)) < ﬁ, therefore

log(log(|f|(r))) < loge — slog(R — r) hence
log(log(| f|(r))) log(e)
(“log(R—7) = (“log(R—m))

and hence
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. log(log(| f[(r)))
limsup ———————-> <5
r—R~ (_ log(R - ’I"))
i.e. p(f) < s. This is true for every s such that 11111;117 log(|fl(r)(R—=7r)°>=0

and hence p(f) < A(f).
On the other hand, we notice that, by definition of A(f), either A(f) = 0
and then A(f) < p(f), or

A(f) = sup{s €]0, +oo[ | limsuplog(|f|(r))(R —r)° > 0}.
r—R—
Thus, suppose that A(f) > 0. Let us take s €]0, A\(f)[. We have a number b > 0
such that
lim sup(log(|f|(r)(R —7)*) > b > 0.
r—R~

Let us fix € €]0, b[. There exists a sequence (1, )nen in |0, R] such that lirf rm =R

and such that, when n is big enough, we have b — e < log(|f|(rn))(R — )%,
hence
—slog(R — ry) + log(b — €) < log(log(|f|(rr))) therefore

log(b—¢) _ log(log(|f|(rn))
(—log(R—ry)) ~ (—log(R—1y,))

for every s < A(f). Thus, p(f) > A(f) and finally, p(f) = A(f). -

> s, therefore p(f) > s. But this holds

Theorem B.24.9: Let f, g € A*(E). Then o(fg) < o(f)+o(g). If p(f) >
p(g), then o(f) < o(fg). If p(f) = p(g), then max(a(f),a(g)) < o(fg).

If p(f) = plg) and o(f) > o(g) then o(f +g) = o(f). If p(f +9) = p(f) =
plg) then o(f + g) < max(a(f),o(9))-

Proof.  Let s = p(f), t = p(g) and suppose s > t. When r is close enough to

R, we have max(log(|f|(r)),1og(|g[(r)) < log(|f.gl(r)) = log(|f[(r)) +log(lgl(r))
and by Theorem 1, we have p(fg) = s. Therefore

o(fg) = limsup (log(|f.g|(r))(R —1)*)

r—R—
< timsup (Log(| () (12 = 1)) + limsup (10g((g|()) (& ') = (/) + (o)
On the other hand,

o(f) = limsuplog(|f[(r))(R —r)* < lim sup(log(| fg|(r)) (R —7)°.
r—R— r—+R~

le; g(fg) = s, hence o(f) < o(fg). Particularly, if p(f) = p(g), then max(o(f),o(g)) <
a(fg).
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Now, suppose again that p(f) = p(g) = s and suppose o(f) > o(g). Let s =
p(f), b=0(f). Thend > 0. Let (r,,)nen be a sequence such that lim,,_, 4 oo 7, =
R and
nETOO(IOg(|f‘(T"))(R — 1)) =b. Since o(g) < o(f), we notice that when n is

big enough we have |g|(r,) < |f|(rn). Consequently, when n is big enough, we
have |f + g|(rn) = |f|(rs) and hence
W tim_(log(| + gl(r))(R ~ ra)") = b

By definition of o we have o(f + g) > lir_~1_1 (log(|f + gl(ra))) (R — )P+,
n—-+oo
By Theorem 1, we have p(f + g) < s, hence

o(f+g) > lim (log(|f+g|(rn)))(R—ra)"/*9 > Tim (log(|f+g|(rn)))(R—rn)*

n—-+oo

= lm_log(|f|(ra))(R —ra)* = o ()

therefore by (1), o(f + g) > o(f).

Finally, suppose now that p(f+g) = p(f) > p(g). Let s = p(f) and t = p(g).
Then,

o(f +g) = limsup(log(|f + g(r)))(R —7)°

r—R—

< wase T sup(log(|f[(r))) (R — r)*,lim sup(log(Ig|(r)) ) (R — 1)

r—R— r—R—

< mass (T sup(log(|£](r))) (R—r)*, limsup(log(|g| () (R-r)" ) = max(o(/), o(9))

r—R— r—R—

which ends the proof. O

Corollary B.24.10: Let f, g € A*(E) be such that p(f) # p(g). Then

o(f +g) < max(a(f),a(g))-

Lemma B.24.11: Let a € [1,400[ and b € [0,+00[. Then log(a + b) <
log(a) +log(b+1).

Proof.  Indeed, since a > 1, we have log(a + b) < log(a(b+ 1)) = log(a) +
log(b+1). O

Theorem B.24.12: Let f € A*(E). Then 6(f)—1 < p(f) < 0(f). Moreover,
0 < 0(f) < oo, then p(f) = 0(7).
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Proof. ~ 'We will denote by | . |oc the Archimedean absolute value of R. Let us
first choose s > 6(f). Then hIII%l_ C(f,7)(R—r)* =0. Now, since 11111%1_ |£](r) = +o0,

we can take ¢ €]0, R[ such that |f|(£) > 1. Then we can take b > 0 such that
C(fyr) <b(R—7r)"°Vrell,R]
Now, taking r € [¢, R[, by Theorem TB.13.26 we have
log(11(r)) < log(|£1(€))) + ¢(f.7) (1og(3))
which leads to
Log(|£1(r)) < log(11(€))) + b(R = )~ (log(7))

hence

Log1og(1|(r))) < log ( 1og(|1(€))) + b — 1)~ (log(7)))
therefore, by Lemma B.24.11, we can derive
(1) Tog(log(|f1(r))) < log(log(|1())) +log (b(R —r)*(log(})) +1).

Now, since s > 0, there obviously exists h € [¢, R[ such that b(R—7)"% > 1Vr €
[h, R™], therefore by Lemma B.24.11 again,

log(log(|1(r)) < log(log(11(¢))) + log (b(R — r)~*(log(5) ) +log(1 + 1)

2)
log(log(|f[(r))) < log(log(|f[(£))) +log(b) — slog(R —r) + log((log(%)) +log(2)

Consequently, by (2), we obtain

log(log(|f|(r))) _ log(log(|f](£))) log(b) . log(log(f)) +log(2)
—log(R—7r) — —log(R—r) —log(R—) —log(R—7r)

We can check that
L loa(log(f](0) +log() _ . log(log(}) + log(2) _

r—R- —log(R — ) [y S — log(R — )
log(1
and hence lim sup M < s. Consequently, choosing € > 0, there ex-
r—R~ - IOg(R - 7‘)
log(log(lf1(r)))

ists u € [¢, 1] such that < s+eVr € [u, R[ and hence p(f) < s+e.

—log(R —)
But since that holds for every s > 6(f) and for every e > 0, we have p(f) < s
and hence p(f) < 0(f).
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Let us now show that p(f) > 6(f) — 1. By Theorem B.13.26, we have
2 2

)
’)"2 T2 r r
log(11(r)) ~log (/1)) = C(f. ) log(r)~log() = ({1 ) (log( ) ~log(r).

Consider now a number s < 6(f) and a sequence (r,)nen of ]0, R[ such that
lim r, = R and such that limsup {(f,r,)(R —r,)° > b > 0. Then by (3) we

n— 400 n—-+oo

have
b(log(R) — log(rn))

()
Consequently,
log(log(| f1(r1))) > log(b)+log(log(R)~log(r,))) s (log(R—rn)+log(R+7n)) +2slog(R)

and therefore

log(|f|(rn)) =

log(log(|f[(rn))) log(b) log(log(R) — log(rn)) log(R 4 ry) + 2log(R)
—log(R —ry) 2z log(R —14,) —log(R —ry) +S(1+ —log(R — 1) )
Clearly,

=0

n—-+4oo

) log(b) . log(R+ry,) +2log(R)
lim (——2% )=
e (log(R - rn)) nioo  log(R— 1)

and by elementary reasonings, we can check that
log(log(R) — log(t))

tl—l}ll%lf log(R —t) =1
therefore
log(log(R) —log(ra)) _ |
n—-+oo log(R — 1)
Consequently,
oy 1200801

n—otoo —log(R—1ryp) —

. log(log(|f|(r)))

P log(R—m) =T h
That holds for every s < 6(f) and shows that if 6(f) < +oo, then p(f) >
0(f)—1. Next, if 0(f) = +o0, then we would have p(f) = 400, which is excluded
by hypothesis since f € A*(E). Consequently, the inequality p(f) > 0(f) — 1 is
established.

Let us now show that p(f) > 6(f) when ¢(f) < 4+o00. Suppose 6(f) > p(f)
and let s €]p(f),0(f)[. Then by Remark 2 we have limsup ¢(f,r)(R —r)° = 400,
r—R~

and therefore

but then limsup {(f,r)(R — r)p(f) = +o00, i.e. ¥(f) = +o0o, a contradiction.

Therefore B(H]% < p(f) and hence whenever ¢(f) < +oo, we have 6(f) =
p(f)- -
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Theorem B.24.12 obviously suggests the following conjecture:

Conjecture: Let f € A*(E). Then p(f) =0(f).

The following Theorem B.24.13 is much different from the relations concern-
ing p, o, ¥ obtained for entire functions.

Theorem B.24.13:  Let f € A*(E) be such that, y(f) < +o0. Theno(f) = 0.

Proof. Without loss of generality we can assume that f(0) # 0. Let us fix e > 0
and let R’ be such that log(R) — log(R') = €. Leq (an)nen be the sequence of
zeros of f, for each n € N, let w,, be the order of a,, and let r, = |a,|. Now,
let u be the biggest integer n such that r,, < R’ and for each r > 0, let m(r) be
the bigest integer n such that r, <r

Let Ay, =Y _owy and let By, =log(| f(0)]) + > _o wn(log(R') — log(ry)).
Let us take r €]R’, R[. Now,we can write

o(r, f) _ But Yy walog(r) — log(ry))
e(r, f) A+, '

But by hypothesis, log(r) — log(r,) < € Vn > u, hence

orf) _ Bt S0y 0

'(/J(’I“, f) A, + Zm(r)

n=u-+1 Wn,

Let us put ¢(r) = X7")  w,,. Thus
o(f;r) _ Bu+ed(r)
(fir) T Auto(r)

But since f belongs to A*(D), it has infinitely many zeros in D, hence ¢(r) is an
increasing unbounded function tending to +o0o when r tends to R. Consequently,
it is obvious that
ol f)
im =
r=RY(r, f)
Therefore, If limsup,_, 5 (7, f) < 400, then o(f) = 0.
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C. Meromorphic functions and Nevanlinna Theory

C.1. Meromorphic functions in K

In this chapter, we will define and examine the basic properties of mero-
morphic functions: relations with poles of analytic elements, absolute values on
fields of meromorphic functions defined by circular filters, value of the derivative
on a circular filter, developement in a Laurent series in an annulus, existence of
primitives [51], [52], [53].

Definitions and notation: We denote by M(K) the field of fractions of
A(K). The elements of M(K) are called meromorphic functions in K.

In the same way, given a € K and r > 0, we denote by M(d(a,r~)) (resp.
My(d(a,r7)), resp. My(d(a,r™))) the field of fractions of A(d(a,r™)) (resp.
the field of fractions of Ap(d(a,r 7)), resp. the set M(d(a,r~))\ Mp(d(a,r7))).

Let b € K (resp. b € d(a, R™)) and let r € R* (resp. r €]0, R[). The absolute
value ¢y, defined on A(K) (resp. on A(d(a, R™))) has an immediate continu-
ation to M(K) (resp. to M(d(a, R™))) that we shall denote again by ¢ . In
the same way, ¢, will be denoted by | . |(r) on M(K) and on M(d(0,R7)).
Similarly, the function ¥( . ) defined on A(K) and on .A(d(0, R~)) has an imme-

diate continuation to M(K) and to M(d(0, R™)) as \IJ(%, ) =W(h,u)—v(, pw,
with h,l € A(K) (resp h,l € A(d(0,R7))).

Let f = % € M(K) (resp. f = % € M(d(a,R™))). For each a € K (resp.
a € d(a,R™)) the number wy(h) — wa(l) does not depend on the functions
h, [ choosed to make f =
Wa(f) = wa(h) —wa(l). If we(f) is an integer ¢ > 0, « is called a zero of f of
order q.

If wa(f) is an integer ¢ < 0, « is called a pole of f of order —q.

If wo(f) > 0, f will be said to be holomorphic at a.

Similarly as for A(K), given f € M(K) (resp. f € M(d(a, R~
define the divisor D(f) on K (resp. of d(a,R7)) as D(f)(a) =
f(a) #£0 and D(f)(«) = s when f has a zero of order s at «.

. Thus, we can generalize the notation by setting

~I=

))), we can
0 whenever

Lemma C.1.1: Letr,R € R} with0 <r < R and let f € M(d(a,R™)). Then
f has finitely many poles a,...,aq in d(a,r”). Let E =d(a,r)\ {a1,...,aq}.
Then f belongs to H(E). If there exists s € N* such that f* is a constant, then
so s f.

h
Proof. Without loss of generality, we can assume a = 0. Let f = — with
h, 1 € A(d(0,R)). Since ! belongs to A(d(0, R)), by Corollary B.13.19 [ has
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finitely many zeros in d(0, ), hence f has finitely many poles a1, ..., aq in d(0, 7).
Suppose first f is of the form % with [ € A(d(0,R™)). By Corollary B.5.16 I
factorizes in the form P(z)u(z) with P € K[z] a polynomial whose zeros in
d(a,r) are a1,...,aq and u € A(d(0,R7)) is invertible in H(d(0,r)). On the
other hand, ﬁ obviously belongs to R(E). And by Proposition B.8.3 E
belongs to Alg. Consequently, [ is invertible in H(E). Consider now the general
case f = % with h, I € A(d(0, R)). Then both h, % belong to H(FE)), hence by

Proposition B.8.3, so does f.
Suppose now that f° is a constant. Since K is algebraically closed and since
M(d(a, R7)) is a field extension of K, f belongs to K. O

Corollary C.1.2: Let f € M(d(a,R7)), let r €]0, R[, let aj,1 < j < q be the
poles of f in d(a,r), let p €]0, min;»; |a; — ][, and for each j = 1,...,q, let
pj €10, p[, let Tj = d(aj,p; ). Let D = d(a,r) \ (U3:1 T;). Then f belongs to
H(D).

Lemma C.1.3:  Let f € M(K). There exists h € A(K) such that D(h) = D(f)
and then the function | = % belongs to A(K). Then D(%) = D(l) and we can

h
write f in the form 7 with h, | € A(K), having no common zero.

Proof. Indeed, by Theorem B.18.4 there exists h € A(K) such that D(h) = D(f)
and hence conclusion follows. O

Remark: Let f € M(d(a,R7)), let r €]0, R[ and let o;, 1 < j < n be the
poles of f in d(a,r), of respective order ¢;. By Lemma C.1.1, f belongs to
H(d(a,r) \ {a1, ..., an}). Now, according to the definition of poles for analytic
elements, (see Chapter B.2) f also admits each «; as a pole of order ¢;, consid-
ered as an element of H(d(a,r)\ {a1,...,an}).

By Theorem B.18.4, we have already seen that if f € M(K) has no zero and
no pole in K, then it is a constant. Here we can generalize that with functions
inside a disk.

Theorem C.1.4 Let f € M(K) (resp. f € M(d(a, R™))) have no pole in K
(resp. in d(a,R™)). Then f belongs to A(K) (resp. to A(d(a,R7))).

Proof. Suppose f € M(K) has no pole in K. By Lemma C.1.3 we can write f
in the form % with D(f) = D(h). Since f has no pole in K, I has no zero and

hence is a constant, which ends the proof when f belongs to M(K).
Suppose now that f belongs to M(d(a, R™)) and has no pole in d(a, R™).
By Proposition B.5.12 it is sufficient to show that for each p €]0, R[, f belongs
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h
to H(d(a,p)). Let f = T with h, I € A(d(a, R7)). By Proposition B.5.12,

both h, I belong to H(a, p)).

By hypothesis, each zero a of [ is a zero of h such that w,(h) > we(1). Let
P be the polynomial admitting for zeros the zeros of [ inside d(a, p) with the
same multiplicity and no other zero. Then P divides h and [ in A(d(a, R7)),
say h = P¢, | = P. So, 1 is a power series that has no zero in d(a, p), hence
by Theorem B.7.9 , it is an invertible element of H(d(a,p)), which ends the
proof. O

Corollary C.1.5 Let f, g € AK) (resp. f, g € A(d(a,R™))) be such that
D(g) < D(f). There exists h € A(K) (resp. h € A(d(a, R™)) such that f = gh.

Proof. Indeed, f belongs to M(K) (resp. to M(d(a, R™))) and has no pole. O
)

Corollary C.1.6: Let f € M(K) (resp. f € M(d(a,R™))) have no zero and
no pole in K (resp. in d(a,R™)). Then it is a constant (resp. an invertible
element of Ap(d(a, R7))).

Corollary C.1.7:  Let f, g € AK) (resp. f, g € A(d(a, R™))) satisfy D(f) =
D(g). Then 5 belongs to K (resp. is invertible in Ay(d(a, R™))).

Corollary C.1.8: Let f € A(K) be such that D(f) = (an, qn)nen with a, #

. . ad T\ In .
0Vn eN, nll)rfoo |an| = +00. Then f(x) is of the form )\};[0 (1 - a) with
rek

By Theorem B.19.6, Lemmas C.1.9 and C.1.10 are immediate:
Lemma C.1.9: Let K be spherically complete, let a € K, r € RY, let B, C be
divisors on d(a, R™). There exists f € M(d(a,R™)) such that D(f) = B and

1
D(-)=C.

( f)
Corollary C.1.10: Let K be spherically complete, let a € K, r € R} and let
f € M(d(a,R™)). There exist g, h € A(d(a, R™)), having no common zero,
_ 9

such that f = o

Lemma C.1.11: Let a € K, r € R and let f € A(d(a,R7)). If K is
spherically complete, there exists h € A(d(a, R™)) such that D(h) = D(f) and

h
then the function | = 7 belongs to A(d(a, R™)). We have D(%) =D(1) and we

h
can write f in the form 7 with h, 1 € A(d(a, R™)), having no common zero.
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Remark: If K is not spherically complete, in the general case, as shows The-
orem B.19.1, we cannot find an analytic function h € A(d(a, R™)) such that
D(h) = D(f). Consequently, in a field such as C,, we can’t write f in the form

h
f= 7 with h, I € A(d(a, R7)), having no common zero (this gap was forgotten

in several works).
However, by Theorem A.7.4 we can take an algebraically closed spherically
complete extension K of K and consider f as an analytic function on the disk

. N h PN
d(a, R7) in the field K: then f may be writen in the form f = = with h, [ €

,A(c?(a, R7)), with %, 1 having no common zero.

Theorem C.1.12:  Letr € RY, let f(x) = M(K), (resp. f € M(d(a,r7))),
let S be the set of zeros and poles of f in K (resp. in d(a,77)), let t be the
g.c.d. of {wa(f) | @ € S} and let n € N*. If there exists g € M(K) (resp.
g € M(d(a,r7))) such that g7 = f, then q divides t. Conversely, if q divides t,
then there exists g € M(K) such that g9 = f, (resp. if p is prime to q and if q
divides t then there exists g € M(d(a, R™)) such that g? = f) .

Proof. If there exists g € M(d(a,r7)), (resp. g € M(K)) such that g? = f,
then of course, ws(g) divides wq(f) for every a € S and hence it divides t.
Now suppose ¢ divides t and set ¢t = lq. For each o € S, w,(f) is of the form
tse = qlsq.

Suppose first f € M(K). By Lemma C.1.3, in M(K) there exists g € M(K)
admitting each zero « of f as a zero of order ls, and each pole a of f as a

pole of order —Is,. Then iq has no zero and no pole in K, hence, by Corollary

g
C.1.6, it is a constant A. Let v be a ¢ — th root of A. Then f = (vg)?.

Now suppose that ¢ is prime to p and suppose f € M(d(a, R™)). Sup-
pose first that K is spherically complete. By Lemma C.1.9 there exists g €
M(d(a, R™)) admitting each zero a of f as a zero of order ls, and each pole
a of f as a pole of order —Is,. Then iq has no zero and no pole in d(a, R™),
hence, it belongs to A(d(a,r)). But since it has no zero, by Corollary B.14.2

h

it satisfies |h(z) — h(a)| < |h(a)| Yz € d(a,r7). Let ¢(z) = hgwi Then we
a
have |¢(z) — 1| < 1 Va € d(a,r~) and then, since ¢ is prime to p, by The-
orem B.20.23 we can apply the function - to ¥(x) in order to get a fonc-
tion ¢/¥(x) € A(d(a,r7)). Now, let v be a g-th root of h(a). We have
f(@) = h(a)v(z)(g(x))? = (v \"/w(x)g(x))q which ends the proof when K is
spherically complete.

Consider now the general case, when K is no longer supposed to be spher-
ically complete. Let K be a spherically complete algebraically closed exten-
sion of K. The function f has continuation to a function f which belongs

~ o~

to A(d(a, R7)) and hence there exists a function g € A(d(a, R™)) such that
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g? = f. Then by Lemma B.5.5, g is a power series that has all coefficients in K
and hence belongs to A(d(a, R™)). O

Corollary C.1.13:  Let f(z) € M(K), let S be the set of zeros and poles of
f inK and let t be the g.c.d. of {wa(f) | « € S}. Then t is the greatest of the
integers n such that there exists g € M(K) satisfying g" = f.

Theorem C.1.14: Let f € M(K) (resp. f € M(d(a,R™)), resp f € M(D))
be constant inside a disk included in K (resp. in d(a, R™), resp. inD). Then f
is constant in K (resp. in d(a, R™), resp. in D).

Proof. For a non-identically zero meromorphic function, the zeros and the poles
of f are isolated. Consequently, if f(z) is equal to a constant inside a disk, it is
constant in the set of definition. O

Definition: Given f € M(K) (resp. f € M(d(a,R™)), resp. f € M(D)) we
will call divisor of the poles of f on K (resp. on d(a, R™)) the divisor of 7 on
K (resp. on d(a, R™), resp. on D).

Lemma C.1.15:  Let f € M(K)\A(K) (resp. f € M(d(0,R~))\A(d(0,R™)))
and suppose 0 is not a pole of f. Let r be the minimal distance of the poles of
f to 0. Then f belongs to A(d(0,77)) and its radius of convergence is r.

Proof. Consider the divisor T of the poles of f on d(0, R™). If f € M(K)\A(K),
there is no problem to write f in the form % with h, I € A(K) where [ has no zero
in d(0,r7). Consequently, by Corollary B.14.2, the restriction of [ to d(0,r7)
is invertible in A(d(0,77)). Therefore % belongs to A(d(0,r~)) and hence it

radius of convergence is > r. Conversely, since f has a pole in C(0, ), it is not
equal to a power series in z in d(0,r) and hence, the radius of convergence is r.

Now suppose f € M(d(0,R7)) \ A(d(0,R™)). By Theorem B.18.15 we can
find a function I € A(d(0, R™)) such that D(I) > T and such that none of the
zeros of [ lie in d(0,77). Next, we set h = fl and see that h has no pole in

h
d(0,R™). So, in both cases, we have made f in the form 7 with h, | € A(K)

where [ has no zero in d(0,77). The proof is then similar to the case f €

A(K). 0

Corollary C.1.16: Let f €¢ M(K)\A(K) (resp. f € M(d(0,R~))\A(d(0,R7))).
If 0 is not a pole, f(x) has a development in a power series whose radius of con-
vergence is the minimal distance of poles of f to 0. If 0 is a pole of order q of
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oo
f, then f(x) has a development in a Laurent series Z apx® with a—q # 0 and
k=—gq
(oo}
the radius of convergence of the series Z apx® is equal to the minimal distance
k=0

of non-zero poles of f to 0.

Theorem C.1.17: Let f € M(d(0,R™)) have no pole in an annulus T'(0,r, s)
+oo

with s < R. Then f(x) is equal to a Laurent series Zanx” converging in all

I'(0,r,s). For each p € [logr,logs|, if f has q zeros and t poles in d(0,6")
taking multiplicity into account, one has v (f,u) = q—t and if f has q' zeros
and t’" poles in d(0, (0#)7), one has v~ (f, ) = ¢ —t'. Then the functions in p:
vt(f,logp), v~ (f,logp) and |f|(p) are increasing. Let k = v+ (f,logr). Tthen

|f1(p) = lax|p® Vp € [r,s].

Proof. Since f belongs to M(d(0,R™)) and since s < R, f has finitely many
zeros and poles in d(0,s), hence we can write it 7 with h, | € A(d(0,R7))
having no common zero in d(0, s). Since f has no pole in I'(0, 7, s),  has no zero
in I'(0,r,s). Let p = 6*. By Corollary B.10.3 we have v (f,pu) = v (h,u) —
vt(l,p) = g —t. Similarly, in d(0, p~) we have v~ (f, ) = v~ (h,u) —v= (I, pu) =
qg—t.
: . h(z) . _
We can write f(z) in the form 0@ with h € A(d(0,s7) and @ € K|z].
x

Then @ has no zero in I'(0,7, s) and hence v (Q, i) is constant in [logr, log s|.
On the other hand v+ (h, i) is increasing, hence so is v+ (f, ). Consequently,
the function |f|(p) is increasing. Therefore |f|(p) > |ax|p* Vp € [r, s]. O

Corollary C.1.18: Let f € M(d(0,R™)) have no pole in I'(0,r,s), with 0 <
r<s<Randletq=v(f,logs), k=v*(f logr). Then

() =i = ()"

Corollary C.1.19: Let f € M(K)\ K(x) have finitely many poles. For every
1£1(r)
T

q

q € N, f satisfies lim
7—00

Proof. Let f = % with @) a monic polynomial and h € A(K). Since f ¢ K(z),

h does not lie in K[x] hence it has infinitely many zeros and therefore infinitely
many terms a, # 0 when n > 0. O
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We will also need the following lemma in the future:

Lemma C.1.20: Let f € M(K) be transcendental and have finitely many
poles and let P be a polynomial. There exists s > 0 such that |f + P|(r) =
|f|(r) Vr > s and then f has the same number of zeros as f + P in d(0,r).

Proof. Let R € R* be such that all poles of f and all zeros of P lie in d(0, R),
let ¢ be the number of poles of f and let ¢ = deg(P). Then f(x) is of the

qg& with g(x) of the form Zanx". Now, when r > R, we have
[[-1) =0
j=1

P
A1) = 20 a1y = 1)
|f|(r) gets bigger than |P|(r) when r is big enough and hence there exists s > R
such that |P|(r) < |f|(r) ¥r > s. But then, by Corollary B.13.23 we have

v(f,logr) = v(f + P,logr) ¥r > s and hence f and f + P have the same
number of zeros in d(0, 7). O

r'. Consequently, by Theorem B.13.22,

Definitions: Let f € M(K) (resp. f € My(d(a,R7))) and let b € K.
Then b will be said to be an exceptional value for f if f — b has no zero in
K (resp. in d(a, R™)) and b will be said to be a pseudo-exceptional value for f if
rlggo |f —b|(r) =0 (resp. lil}%l |f —bl(r) =0). Moreover, if f € M(K) \ K(x)

(vesp. if f € My(d(a,R7))), b will be said to be a quasi-exceptional value for
f if f — b has finitely many zeros in K (resp. in d(a, R7)).

Theorem C.1.21: Let f € M(K)\ K, (resp. f € My(d(a,R7))). If b
s an exceptional value for f then it is a pseudo-exceptional value for f. Let
fe MEK)\K(z), (resp. f € My(d(a,R7))). If b is a quasi-exceptional value
for f then it is a pseudo-exceptional value for f.

Proof. Without loss of generality we may assume that a« = b = 0. Suppose
first that f € M(K) \ K and that 0 is an exceptional value for f. So, %
has no pole in K (resp. in d(0, R™)), hence it is a function h € A(K) \ K (resp.
h € A,(d(0,R™))) so that f = % Then, by Corollary B.5.18 (resp. by Theorem
B.5.20) we have TETOC |h|(r) = 400 (resp. Tlir}r%l_ |h|(r) = 400).

Suppose now that f € M(K) \ K(z) and that 0 is a quasi-exceptional value
for f. Then f is of the form Plz) with P € K[z] and h € A(K) \ K(z).

h(zx)
P
By Corollary B.5.7, we have lim |P|(r)

= TH(r)
1 € M(K) \ K(z).

=0, which proves the claim when
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Next, suppose that f € M, (d(0, R™)) admits 0 as a quasi-exceptional value.
P
Then f is of the form Pl) with P € K[z] and h € A,(d(0,R™)). So P is

h(z)
P
bounded in d(0, R~) hence of course hr—? ||h||((r)) = 0, which ends the proof. [
r—400 r

Theorem C.1.22: Let f € M(K)\K, (resp. f € My(d(a,R™))). Then f
admits at most one pseudo-exceptional value. Moreover, if f € AK)\K, (resp.
f € A(d(a,R™))), then f has no pseudo-exceptional value.

Proof. Suppose that b is a pseudo-exceptional value for f. Without loss of
generality we may assume that a = b = 0. Let ¢t € K*. Since TEI—POO lf1(r)=0
(resp. TEIJI%* |f|(r) = 0), it is obvious that TEIEOO |f—t|(r) = |t|
(resp. TEIII%I_ |f —t|(r) = |t]), so t is not a pseudo-exceptional value for f.

Now, suppose f € A(K) \ K. Since TEIJ,I}OO | f](r) = 400, of course 0 is not

a pseudo-exceptional value of f. Finally, suppose A(d(0, R~))). Then if f €

A, (d(0,R7)), we have 1irr}13|f|(r) = 400 hence 0 is not a pseudo-exceptional
r—

value of f. And if f € Ay(d(0,R™)), we have 1irr11% |f1(r) = [ flaco,r—) which is

not 0 hence 0 is not a pseudo-exceptional value of f either. O

Corollary C.1.23: Let f € M(K)\ K, (resp. f € My(d(a,R™))). Then f
admits at most one exceptional value. Moreover, if f € M(K) \ K(z), (resp.
f e My(d(a,R7))), then f admits at most one quasi-exceptional value. Further,
if f € AK)\K (resp. if f € Ay(d(a, R7))) then f admits no exceptional value.
And if f € AK)\ K[z] (resp. if f € Ay(d(a,R™))) then f admits no quasi-
exceptional value.
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C.2. Residues of meromorphic functions

Throughout this chapter, D is infraconnected, T is a hole of D and V is a
disk of the form d(a,r) or d(a,77), included in D, such that V 0 D # ().

Definition and notation: Let f € M(K) (resp. f € M(d(0,R™)) have a
-1

pole a of order q and let f(z) = Z ar(z — )* + h(z) with a_, # 0 and
k=—q

h € M(K) (resp. f € M(d(0,R~)) and h holomorphic at «. Accordingly to

previous notations for analytic elements in Chapters B.2 and B.6, the coefficient

a_1 is called residue of f at o and denoted by res(f, a).

We can now compare residues on a hole defined for analytic elements and
residues at a point, we just defined for a meromorphic function:

Theorem C.2.1: Leta € K, let R € RY, let f € M(d(a,R™)) and let r €
10, R[. Let aj, 1 <j <gq be the poles of f in d(a,r), let p €]0, min;+; |a; — o]
and for each j = 1,...,q, let p; €]0,p[, let T; = d(aj,p; ). Let D = d(a,r)\
( ?:1 T;). Then f belongs to H(D) and res(f,a;) =res(f,Tj), j=1,....q.

Proof. By Corollary C.1.2, f belongs to H(D). On the other hand, assuming
that a; is a pole of order s;, by Corollary C.1.16 f(z) has a development at

a; in a Laurent series Z bm,j(x —a;)™. Consequently, by Theorem B.6.1,
m=—s;

the Mittag-Lefller term of f on Tj with respect to the infraconnected set D

-1
is Z b, j(x —a;)™. Then res(f,T;) = b_1; = res(f,a;), which ends the

proof. [

Corollary C.2.2:  Let f € Hy(D) be meromorphic in T = d(b,r™) and admit
only one pole b inside T. Let q be the multiplicity order of b. Then the Mittag-
q

Leffler term of f associated to T is of the form g (L'b with ag # 0 and
T —
i=1

)

also is of the form where P is a polynomial of degree s < q. Moreover,

P
(z —ay)

it does not depend on r when r tends to 0.

Definition: Let f € M(d(a, R™)) and let b be a pole of order t of f, let > 0
P
be such that d(b,r) contains no pole of f other than b and let l be the

(@—a)

P
Mittag-Leffler term of f associated to d(b,r~). Then ( (xg)t will be called the
T —

singular part of f at b.
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An element f € H(D) will be said to be meromorphic in V if there exist
finitely many points (a;)(1<i<yn) in V such that f has continuation to an element
of H(DUV)\ {a;i] 1 <i<n}).

Let f be meromorphic in V' and belong to H((DUV)\ {a;] 1 <i < n}). For
eachi=1,..,nif f ¢ H(DUV)\ {an |h # i}) then by Corollary B.2.9 and
Theorem B.2.10, a; is a pole of f as an element of H((DUV)\ {a;|1 < j <n}).
Let ¢; be its order. Then a; will be called a pole of f of order q; in V. The

polynomial P(z) = H(:E —a;)% will be called the polynomial of the poles of f
i=1

mV.

Lemma C.2.3:  Let D be bounded or belong to Alg and let f € H(D). If f is
meromorphic in T, the polynomial of its poles P in T satisfies Pf € H(DUT).

Proof. Indeed, let D' = (D UT)\ {a1,...,a,}. If D is bounded, then so is D’
and therefore by Theorem B.2.4, Pf belongs to H(D’). But by construction
Pf is bounded at each point a; and therefore by Corollary B.2.6, Pf belongs

to H(DUT).
Now, suppose D € Alg. Then by Theorem B.8.9, D’ belongs to Alg and
therefore Pf belongs to H(D') so we have the same conclusion. O

Lemma C.2.4: Let D be bounded, (resp. let D € Alg) and let f be invertible

1
in H(D). Then f is meromorphic in T if and only if so is 7
Proof. First we suppose f meromorphic in 7. Let P be the polynomial of its
poles in T and let g(x) = f(x)P(x). Since D is bounded, (resp. belongs to Alg)
by Lemma C.2.3, g belongs to H(D UT). Let @ be the polynomial of the zeros
of g in T'. Since f has no zero in D, @ actually is the polynomial of the zeros of
g in DUT and then g is of the form Q(z)h(z) with h an element of H(D UT)
that has no zero in 7. Hence we have 7= ?F If D € Alg, 7 obviously
belongs to H(D). If D is bounded, we have % € Ry(D) and then by Lemma
1 1
B.2.4, % belongs to H(D). Thus 7 belongs to H(D) anyway. Now, by Lemma

P
B.15.1, h is invertible in H(DUT'). Hence f factorizes in the form ah and then

1 1P P 1
o But " belongs to H(D UT) and therefore — is meromorphic in T

and admits @ as the polynomial of its poles in T. We may obviously apply the

same reasonning to ? and this shows the converse. O

Theorem C.2.5: Let F € H(D) be meromorphic in T and satisfy |F—1], <
1. Then F has as many poles as many zeros in T.
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Proof. Without loss of generality we may obviously assume that D is bounded
because the hypothesis remains true in any set DNd(0, R). We may also assume
that T'= d(0,r77). Let P (resp. Q) be the polynomial of the zeros (resp. the

poles) of F' in T. Then by Lemma C.2.3 F factorizes in the form é with

f € HDuUT). Now, the zeros of f inside T are just those of F', hence f
factorizes in the form Pg with ¢ € H(D UT), g having no zero in T. Let

P
h = 0 Since g has no zero in T, by Theorem B.13.14 |g(x)| is equal to a

constant inside T. Let s €]0,7[ be such that all zeros of P and of @ lie in
d(0,s). Then obviously F' belongs to H(I'(0,s,r)). Now by hypothesis there
exists A > 0 such that U(F, u) < A for all u > logr. Hence by continuity , there
exists A > 0 and ¢’ in ]s,r[ such that U(F,u) < X for all u > logs’. Thus
there exists b €]0, 1[ and ¢ in |s’, r[ such that |F(x) — 1] < b for all z € T'(0,¢,r)

d
and then, |h(z)| is constant in I'(0,¢,7). Hence we have d—\I/(h,,u) = 0 for
w

all p € [logt,logr]. Since h has neither any zero nor any pole in C(0,t), by
Corollary A.3.17, h has as many zeros as many poles in d(0, ¢) and therefore in
d(0,7) and this ends the proof. O

It is useful to consider again elements meromorphic at a point.

Lemma C.2.6: Leta € D and let f € H(D) be meromorphic but not holo-
morphic at a. Then a is a pole of f.

Proof. By hypothesis, there exists 7 > 0 such that f belongs to H (DU (d(a,r)\
{a})). Suppose that a is not a pole of f. Then by Theorem 11.10 in [58], f
belongs to H(D U d(a,r)) and then f is holomorphic at a. O

Corollary C.2.7: Leta € D and let f € H(D). Then f is meromorphic at
a and admits a as a pole of order q if and only if there exists a disk d(a,r)
included in D and an element h € H(d(a,r)) such that f(x)(z — a)? = h(z)
whenever x € d(a,r) \ {a} and h(a) # 0.

Corollary C.2.8: Let D satisfy Condition B) and let f € H(D). For every
a € D, f is meromorphic at a. For every a € D, f is holomorphic at a.

Remark: Let a € D\ D and let f admit a as a pole of order q. This does
not imply that f is meromorphic at a. Indeed, by [43], [49] we know that there

exist infraconnected sets E with a point a € E\ E and elements h € H(FE) such
h
that lim Oh(m) =0 and such that limsup| (z) |=400. Let E' = E\ {a}
a

|z—a|— |z—a|—0 T —

h
and let g = i It is easily seen that a is a pole of order 1 for g. But h does
x

—a
not belong to any space H(d(a,r)), whenever r > 0 (because if it did, it should
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factorize in H(d(a,r)) in the form (z — a)é(x), with £ € H(d(a,r)) ). Thus it is
seen that (z —a)g does not belong to H(E) and therefore g is not meromorphic
at a.

Concerning the derivation, Theorem C.2.9 is easy and follows the classical
rules:

Theorem C.2.9: Let f € M(K) (resp. f € M(d(a,R™)) ). For each o € K
(resp. « € d(a, R™)) such that f is holomorphic at o, f has a deriwative f'(«)
at «. Further, given a point 3 € K (resp. [ € d(a,R™)) and the Laurent

development of f at 3: Z ar(z — B)* with a—_q # 0, the development of f' at
k—*q

Proof. Suppose first f is holomorphic at a. By Theorem C.1.4 f(x) is equal

to a power series Zak(ac — a)® converging inside a disk d(c,r~) where 7 is
k=0
the minimal distance from « to the various poles. Then by Theorem B.9.1 we

know that f has a derivative whose development is obtained by deriving term
by term.

Suppose now that § is a pole of order ¢ and let r €]0, R[ be strictly in-
ferior to the minimal distance from [ to the other poles (with just r < R
if 8 is the unique pole of f). By Lemma C.1.1, for every p €]0,7[, f be-
longs to H(d(B,r) \ d(B,p~)) and the Laurent development of f at ( is its
Mittag-Leffler development as an element of H(d(5,r) \ d(8,p)): the Mittag-

Leffler term associated to the hole d(3,p™) is Z ar(x — B)F with a_, # 0
k=—q

and the term associated to d(G,r) is Zak z — B)F with a_q # 0. Conse-
quently, by Theorem B.9. 19 the derlvatlve has a Mittag-Leffler development at

0: Z kayp(x — B)F~1 + Z kay(x — B)F~1. This is true for all  €]0, R[ strictly
k=—q k=1

inferior to the minimal distance from g to the other poles and for every p €]0, |,

which ends the proof. O

The following Theorem C.2.10 is an improvement of the classical upper
bound f’ in function of f. That is due to J.P. Bézivin [8].

Theorem C.2.10: For each n € N and for all v €]0, R, we have

£y < g 10,
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Moreover, given r €]0, R[ such that vt (f,logr) = v~ (f,logr), if the residue
characteristic p does not divide v(f,logr), then v(f',logr) = v(f,logr)—1 and

1716 = 1)

r

Proof. When f € A(d(0,R™)), this was shown at Corollary B.9.16. Now, con-
sider the general case and set f = % with U,V € A(d(0,R~)). The stated

inequality is trivial when ¢ = 1. So, we assume it holds for ¢ < n — 1 and

consider f("). Writing U = V(%), by Leibniz Theorem we have

U zn: (Z) (n—a) (%)(‘”

q=0

and hence

—

n—

V(%)(n) WO <Z> o) <%><q)'

q=0

Now, by Theorem B.9.16 we have

@ () < T
and for each ¢ < n — 1, we have |V(”*q)|(R) <|(n- @”%
and ’(%)(q)’(R) < |q!||‘|/|U(;§I){q, Consequently,
()"0l (5)" o < - omet i
and then we can derive .
n (9) (n—q)
@I el o < g

So, by (1) and (2) the first conclusion holds for ¢ = n.
Suppose now that v (f,logr) = v~ (f,logr) and that the residue character-
istic of K does not divide v(f,logr). Without loss of generality we may assume

that f has no pole in C(0,r) because all conclusions hold by continuity. In
+oo

C(0,7), f(z) is equal to a power series Zanx”. Set ¢ = v(f, —log(r)). Then

—0o0

If1(r) = |ag|r? and |f’|(r) = |q||ag|r9™" = |a,|r?~! which ends the proof. O
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It seems obvious that the condition for a meromorphic function to admit
primitives is that all residues are null. This is stated by Theorem C.2.11 but
the proof is not this immediate [22].

Let us remark that the topology of uniform convergence in all disks of K
(resp. of all disk included inside an open disk d(a, R™)) is obviously defined on
the algebra M(K) (resp. M(d(a, R™))) and that M(K) (resp. M(d(a, R7))) is
complete for that topology.

We are now able to solve the problem of Bezout rings A(K) and A(d(a, R7)).
Theorem C.2.13 is a Mittag-Leffler theorem similar to this known in complex
analysis.

Theorem C.2.11:  Let (G, gm)men be a divisor of K (resp. of d(a, R7)),
a €K, R>0) and for everyn € N, let Q,, € Klz] be of degree < q,,. There
exists f € M(K) (resp. f € M(d(a,R™))) admitting for poles each an, of order

qm and no other pole and such that its singular part is ————————.
(1‘ — am)(Im

Proof. The proof is similar to that in the complex case [40]. Without loss of
generality, we can suppose that |a;,| < |am+1]- Let (((n))nen be the strictly
increasing sequence such that ay,)| < |ayn41)| and let 7, = |a;;)| n € N.
For each m € N, set S,,(x) = M Now, for each n € N, we can
(= )9
set fp, = Z Sm(x). So, by construction, f, belongs to H(d(0,r,—_1)) hence

meL,

1\"
there exists P, € K[z] such that || f,, — Ppllao;r,_,) < (5) . Consequently, the
sequence (f, — P, )nen converges to 0 with respect to the topology of M(K)
(resp. of M(d(a,R7))). Set f(z) = fi(x) + Z(fn(:r) — P,(x)). By construc-
n=2
tion, f belongs to M(d(0,r~)) Vr > 0, hence f belongs to M(K) (resp. to
M(d(a,R™))). Moreover, the poles of f are the points a,,, m € N. Let us take
g > 1 and p > 0 such that |a,, —aq| > p Ym # ¢. Then f — S, belongs to
H(d(a,p)), so Sy is the singular part of f at S,. O

Now, we can give an easy proof of the following Theorem already proven in
[22] in a more complicated way.

Theorem C.2.12: K is supposed to have characteristic 0. A function f €
M((K) (resp. f € M((d(a,R7)), a €K, R>0) admits primitives in M(K)
(resp. in M((d(a, R7))) if and only if all residues of f are nul.

Proof. Let a be a pole of f. According to the Laurent series of f at a, if f admits
primitives then f has no residue different from zero at a because the function
—L— has no primitive in M(d(a,r)) (whenever 7 > 0). Now let (am)men be the
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sequence of poles of f, each of respective degree ¢, and suppose that suppose
that res(f,a,) = 0. Since res,, (f) = 0, the singular part of f at a,, is of
Qm(z —am))
xr — am)qm
< gm — 2. Consequently, the singular part of f at a,, admits a primitive of

Pm - Um .

((a:);z)l with deg(Pp, (X)) < ¢m — 2. Then by Theorem C.2.11,
T — Q)T
there exisis G € M(K) (resp. G € M(d(a,R™))) admitting the a,, for poles

the form with ¢, > 2 and @,,(X) is a polynomial of degree

the form

. m
(1‘ — a"l)Qm,*l

for each m € N, the singular part of G’ at a,, is

and no other pole. By construction,

Om(® = am)) hence G’ — f has
T — Q)M

no pole at a,, and hence has no pole in K (resp. in d(a, R~)). Consequently,
G’ — f belongs to A(K) (resp. to A(d(a, R™))). But then by Corollary B.9.7,
G’ — f admits a primitive L € A(K) (resp. L € A(d(a, R7))) and hence the
function F = G — L is a primitive of f that belongs to L € M(K) (resp. to

L € M(d(a,R™))). O

with respective singular part

Corollary C.2.13: The field K is supposed to have characteristic 0. Let
fe M((K) (resp. f e M((d(a,R™)), a€K, R>0). Then f" belongs to K(x)
if and only if so does f.

Proof. If f belongs to K(z), of course, so does f’. Now, suppose f’ belongs to

q
b
K(x). We can write it in the form Z —2  And by Theorem C.2.11, we
= (@ —ay)®

have ¢; > 2 Vj = 1,...,q. Consequently, since K has characteristic 0, f(z) is of
q

b
the form — Z ———~—— + ¢ with ¢ € K and hence f belongs to K(z). [

j=1 gj(z —a;)%~

We can now show the Bezout property of rings A(K), A(d(a, R7)).

Lemma C.2.14: Let E be a divisor of K (resp. a divisor of d(a,R™), a €
K, R > 0) and for eachr > 0 (resp. r €]9, R]), let g, € H(C(0,r)). There exists
g € A(K) (resp. g € A(d(a,R7))), not depending on r, such that D(g — g.) >
E,.

Proof. Let f € A(K) (resp. f € A(d(a,R7))) be such that D(f) > E. By
Theorem C.2.11, there exists F € M(K) whose principal parts at the poles
located in C(0,7) are respectively the same as those of g,f~! for each r > 0.
Then fF belongs to A(K) (resp. to A(d(a, R7))). Putting g = fF, we can see
that D(g — g») > E,, which ends the proof. O

Theorem C.2.15:  Ewvery ideal of finite type of A(K) (resp. of A(d(a, R7)),
a €K, R>0 ) is closed and is of the form T(E) (resp. Tr(E)) with E a
divisor of K (resp. of d(a, R™)).
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Proof. Let I be an ideal of finite type of A(K) (resp. of A(d(a, R™))) generated

by fi,..., fq and let E = D(I). By Theorem B.18.9 the closure J of I is 7 (E)

(resp. by Theorem B.18.10 the closure J of I is Tr(E)). Consequently, we

can see that £ = min(D(f1), ..., D(f,)). Let us fix r > 0. In H(C(0, 7)), there
q

exist gi,r, ..., gq,r € H(C(0,7)) such that g = Zgj’rfj. For each j = 2,...,q,
j=1

let f;, be the polynomial of the zeros of f; in C(0,7). By Lemma C.2.14

there exists g; € A(K) (resp. g; € A(d(a, R™)), not depending on r, such that

q

gjr — g; be divisible in H(C(0,r)) by D(f1,r). Now, set h = g — Zgjfj. We
j=2

have D(h) > D(f1) hence h factorizes in the form g f; with ¢g; € A(K) (resp.

g1 € A(d(a, R7))) and then

q q
g=h+>_gifi=> gl
j=1

Jj=2

Corollary C.2.16: A(K) is a Bezout ring.

Proof. Indeed, consider an ideal of finite type I. By Theorem C.2.15, it is closed
and hence, by Corollary B.18.11 it is principal. O

And by Corollary B.19.8, we have Corollary C.2.17

Corollary C.2.17: Leta € K and let R > 0. If K is spherically complete,
A(d(a, R™)) is a Bezout ring.

Proof. Indeed, consider an ideal of finite type I. By Theorem C.2.15, it is of
the form 7r(E) with E a divisor of d(a, R~) and hence it is closed. But then,
by Theorem B.19.7, it is principal. O
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C.3. Meromorphic functions out of a hole

Notation: We fix R > 0 and denote by I the interval [R, +oo[. Throughout
the chapter, we denote by S the disk d(0, R~) and put D =K\ S.

We denote by Hy(D) the K-subvector space of the f € H(D) such that
lir:l_ f(z) =0.

By classical properties of analytic elements, we know that given a circle
“+o0

C(a, R) and an element f of H(C(a, R)) i.e. a Laurent series f(x) = Z en(z—a)”

— 00

||

converging whenever |z| = r, then |f(z)| is equal to sup|c,|r" in all classes
nez
of the circle C(a,r) except maybe in finitely many. When ¢ = 0, we put

|£](r) = sup |en|r™. Then |f|(r) is a multiplicative norm on H(C(0,r)).
neL

We denote by A(D) the K-algebra of Laurent series converging in D and
by A¢(D) the set of f € A(D) having infinitely many zeros in D. Similarly,
we will denote by M(D) the field of fractions of A(D) that we will call field
of meromorphic functions in D and we denote by M¢(D) the set of functions
f € M(D) which have infinitely many zeros or poles in D.

Similarly as we did in K and inside a disk, here we define a pseudo-exceptional
value and a quasi-exceptional value in D. Given a meromorphic function f €

M(D)) avalue b € Kis called a pseudo-ezxceptional value for f ifl Ilim f(z) =0,
x|—+o00
it is called a quasi-ezceptional value for f if f — b has finitely many zeros in

D) and it is called an exceptional value for f if has no zero in in K (resp. in
d(a,R™), resp. in D).

Proposition C.3.1: Let f € MY (D) and let b be a quasi-exceptional value.
Then b is a pseudo-exceptional value.

Proof.  Without loss of generality, we may assume that b = 0. Therefore

we can write f in the form W with P a polynomial whose zeros lie in D and

“+o0

h € A°(D). On the other hand, h(x) is a Laurent series Z apz™ converging in
— 00

all D, having infinitely many zeros, hence infinitely many coefficients a,, with

P
n > 0, are diiferent from zero, therefore one sees that lim |Pl(r)] =0, and
|z|—+00 |h‘(’f’)
P
hence lim (@) =0. O

2| —+oo  |(z)]

Proposition C.3.2: Let f € M(D). If f has infinitely many zeros in D
(resp. nfinitely many poles in D), the set of zeros (resp. the set of poles) is a
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sequence (o, )nen such that 1irJ£1 |an| = 4+00. If f has no zero in D, then it is
n—-—+oo

+oo
of the form Zanx” with |ag|r? > |ay|r™ Vn € Z, n # ¢q,¥r > R.

— 0o

Proof.  Suppose first f € A(D). Foreach L > R, f belongs to H(Delta(0, R, L))
and by Corollary B.12.11 it is quasi invertible in H(Delta(0, R, L)), hence it
has finitely many zeros in Delta(0, R, L), for every L > R. Consequently, if f
has infinitely many zeros in D, the zeros form a sequence (v, )nen such that

lim |oy| = 4o0. Suopose now f € M(D). Then f is of the form % with

n—-+oo

g, h € f € AD). If f has infinitely many zeros, so does g, and each zero

of f is a zero of g, hence the zeros of f form a sequence (ay,)nen such that
lim |a,| = +oo. Similarly, if f has infinitely many poles, the h has infinitely

n—-+o0o

many zeros, and each pole of f is a zero of h, hence the poles of f form a
sequence (B, )nen such that liT |Bn| = +00. O
n—-—+0oo

Theorem C.3.3: Let f € M(D) have no zero and no pole in D. Then f(x)

q
is of the form Zanx” with |ag|r? > |an|r™ VYn < ¢, Vr > R and |f(z)| =

lag|r? Vo € D.

Proof.  For every r > R, f belong to H(C(0,r)) and by Theorem B.13.1 we
have vT(f,log(r)) = v~ (f,log(r)). Consequently, by continuity, v(f,log(r) is a
constant ¢ in log(R), +oo[. It is then clear that | f(x)| = |aq|r? Yz € D. O

Theorem C.3.4: Let f € M(D) have at least infinitely many zeros or in-
finitely many poles in D. Then [ admits at most one pseudo-exceptional value.

Proof.  Suppose that f € M¢(D) has two distinct pseudo-exceptional values
a and b. Without loss of generality, we can assume that ¢ = 0 and hence f
is of the form % with phi and ¢ € A(D), ¢ admitting infinitely many zeros

—b
and satisfying  lim ¢|,(T) =0.. Then f—b= -ty
r—+nfty |psi|(r) P

enough, we have |¢ — byp(r)| = |bp|(r), therefore P — bip(r) does not admit 0 as
a pseudo-exceptional value, a contradiction. O

. But when 7 is big

Corollary C.3.5: Let f € M(D) have at least infinitely many zeros or in-
finitely many poles in D. Then f admits at most one exceptional value.

q
Definition: Let f € H(D) have no zeroin D, f(z) = Zanx" with |aq|R? >

|an|R™ Vn < ¢ and ay = 1. Then f is a Motzkin factor associated to S and the
integer ¢ is called the Motzkin index of f and will be denoted by m(f, S).
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Theorem C.3.6: Let f € M(D). We can write f in a unique way in the form
5 f0 with f5 € H(K\ D) a Motzkin factor associated to S and f° € M(K),
having no zero and no pole in S.

Proof: Suppose first f € A(D) and take V > R. Then as a quasi-invertible
element of H(A(0, R, V)), by Theorem B.20.16, f admits a factorization in the
form f° f where f° is a Motzkin factor and f° belongs to H(d(0,V)) and has no
zero in S. Moreover by Lemma B.20.6, f° does not depend on V. Consequently,
since f° is obviously invertible in .A(D), we can factorize f € A(D) in the form
5% where f° belongs to A(K) and has no zero in S.

Consider now the general case: f = % with g, h € A(D). Then we can
s 0

write g = ¢°¢°, h = h®h°, hence f = (%) (%) Then we can check that this
g9° 9°
is the factorization announced in the statement: f° = 7S and f0 = 70"

The following Lemma C.3.7 is immediate:

Lemma C.3.7: The set of Motzkin factors associated to S makes a multi-

1\5 1

plicative group. Let f, g € M(D). Then (fg)° = (f°)(g°), (?) =
1\0 1

(f9° = (6", (7) =75 and m(fg,8) = m(f,S) +mlg.S), m(

£
—m(f,S).

Definitions and notations: =~ We will denote by M*(D) the set of f € M(D)
such that fO ¢ K(z) i.e. the set of f admitting at least infinitely many zeros in
D or infinitely many poles in D. Similarly, we will denote by A*(D) the set of
f € A(D) such that fO ¢ K[z] i.e. the set of f admitting infinitely many zeros
in D. Next, we set M°(D) = M(D) \ M*(D) and A*(D) = A(D) \ A*(D).

F7
5) =

| =
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C.4. Nevanlinna Theory in K and in an open disk

Throughout the chapter the field K is supposed to have characteristic 0. The

Nevanlinna Theory was made by Rolf Nevanlinna on complex functions [64], [77].
It consists of defining counting functions of zeros and poles of a meromorphic
function f and giving an upper bound for multiple zeros and poles of various
functions f — b, b € C.

A similar theory for functions in a p-adic field was constructed and correctly
proved by A. Boutabaa [29] in the field K, after some previous work by Ha Huy
Khoai [63]. In [31] the theory was extended to functions in M(d(0,R™)) by
taking into account Lazard’s problem. A new extension to functions out of a
hole was made in C.6.

Notations: Recall that given three functions ¢, v, ¢ defined in an interval
J =la,+oo[ (resp. J =la, R]), with values in [0, 4+o0[, we shall write ¢(r) <
®(r) + O(¢(r)) if there exists a constant b € R such that ¢(r) < ¢(r) + b((r).
We shall write ¢(r) = 1(r) + O(¢(r)) if |¢(r) — ¢(r)| is bounded by a function
of the form b((r).

Similarly, we shall write ¢(r) < 9 (r) + o(¢(r)) if there exists a function

h from J =la,+oo[ (resp. from J =l|a,R[) to R such that lirf ?E:; =0
(resp. lin}%m = 0) and such that ¢(r) < ¢(r) + h(r). And we shall write
T— T
o(r) = ¥(r) + o(¢(r)) if there exists a function h from J =l]a, +oo[ (resp. from
. h(r) - h(r)
J =la, R[) to R such that lim ——= =0 (resp. lim —= = 0) and such that
Jo. ) i 2 0 resp. T 2 0

o) = 4(r) + ().

Throughout the next paragraphs, we will denote by I the interval [t, +o0]
and by J an interval of the form [t, R[ with ¢ > 0.

We have to introduce the counting function of zeros and poles of f, counting
or not multiplicity. Here we will choose a presentation that avoids assuming
that all functions we consider admit no zero and no pole at the origin.

Definitions: We denote by Z(r, f) the counting function of zeros of f in d(0, r)
in the following way.
Let (an), 1 < n < o(r) be the finite sequence of zeros of f such that
0 < |an| < 7, of respective order s,,.
o(r)
We set Z(r, f) = max(wo(f),0) longrZ sn(logr —log|ay,|) and so, Z(r, f)
n=1
is called the counting function of zeros of f in d(0,r), counting multiplicity.
In order to define the counting function of zeros of f without multiplicity,
we put Wo(f) =0 if wo(f) <0 and wo(f) = 1 if wo(f) > 1.

Now, we denote by Z(r, f) the counting function of zeros of f without mul-
tiplicity:
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o(r)
Z(r, f) =wo(f)logr+ Z(logr —log |a,|) and so, Z(r, f) is called the counting

function of zeros of f in d(0,r) ignoring multiplicity.

In the same way, considering the finite sequence (b,), 1 <n < 7(r) of poles
of f such that 0 < |b,| < r, with respective multiplicity order ¢,, we put
™(r)
N(r, f) = max(—wo(f),0)logr + Ztn(logr —log|b,|) and then N(r, f) is

n=1
called the counting function of the poles of f, counting multiplicity

Next, in order to define the counting function of poles of f without multi-
plicity, we put @o(f) = 0 if wo(f) > 0 and Wo(f) = 1 if wo(f) < —1 and we

set ")
N(r, f) = wo(f)logr+ Z(log r —log |b,|) and then N(r, f) is called the count-

n=1
ing function of the poles of f, ignoring multiplicity
Now we can define the the Nevanlinna function T'(r, f) in I or J as

T(r, f) = max(Z(r, f), N(r, f)) and the function T'(r, f) is called characteristic
function of f or Nevanlinna function of f.

Finally, if S is a subset of K we will denote by Z§ (r, f') the counting function
of zeros of f’, excluding those which are zeros of f — a for any a € S.

Remark: If we change the origin, the functions Z, N, T are not changed, up
to an additive constant.

By Corollary B.13.2, Lemma C.4.1 is easy:

Lemma C.4.1: LetK be a complete algebraically closed extension ofK whose
absolute value extends that of K and let f € M(K) (resp. let f € M(d(0,R™))).
Let d(0,R) = {x € K | |z| < R}. The meromorphic function [ defined by f in

d(O, R) has the same Nevanlinna functions as f.

In a p-adic field such as K, the first Main Theorem is almost immediate and
is an immediate consequence of Corollary B.13.27.

Theorem C.4.2: Let f € M(K) (resp. f € M(d(0,R™))) have no zero and
no pole at 0. Then log([|(r)) = ¥ (£, log ) = log(| FO)]) + Z(r. f) — N(r. f).

Proof. We can write f(z) = % with h, | € A(K), (resp. h, | € A(d(0,R7)))

such that [(0)2(0) # 0. By Corollary B.13.27 we have log(|h|(r)) = log(] f(0)|) +
Z(r,h), log()l|(r)) = log(]l(0)]) + N(r,1), so the conclusion is obvious. O

Theorem C.4.3 is now immediate:

Theorem C.4.3: Let f, g € M(K) (resp. f, g € M(d(0,R™))). Then
Z(r,f9) < Z(r, [)+ Z(r,9), N(r,fg) < N(r, f)+N(r.g), T(r, fg) <T(r, f) +
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T(T,gl); T(r.f+g) <T(rf)+T(rg)+0Q), T(r,cf) = T(r, f) Ve € K,
T(r.7) = T(r ), (r,§> <T(r. ) + 1(r.9).
Suppose now f,g € A(K) (resp. f, g € A(d(0,R™))). Then Z(r,fg) =

Z(r, f)+Z(r,g9), T(r.f)=2Z(r,[)), T(r, fg) = (f)+T(T79)+O(1)(md
T(r, f+g9) <max(T(r, ), T(r,g)). Moreover, if ErilooT(r,f)—T(r,g)z—i—oo

then T(r, f + g) = T(r, f) when r is big enough.

n
Lemma C.4.4: Letoay, -,y € K be pairwise distinct, let P(u) = H(u—ai)
i=1

and let f € M(d(0,R™)). Then Z(r, P(f)) = ZZ(r,f—ozi) and Z(r, P(f)) =
27 =)

Lemma C.4.5: Let f € M(K). Then f belongs to K(x) if and only if
T(r,f) =O(logr).

Proof. If f belongs to K(z), one can write it ggi with P, @Q € K][z] having
T

no common zeros, hence Z(r, f) = Z(r,P) and N(r, f) = Z(r,Q) and hence
T(r, f) = O(logr).

Now suppose that f ¢ K(z). Suppose for instance that f has infinitely many
zeros (ay,) of respective order gy,. Then let us fix s € Nand let t € N be > s+ 1.

For r big enough, we have Z(r, f) > Z logr — n)) > slogr, hence Z(r, f)

is not O(logr). Similarly, if f has mﬁmtely many poles we get to the same
conclusion. O

/

Applying Theorem C.4.1 and Theorem C.2.10 to f7, up to a change of origin,

we can derive Corollary C.4..6:

Corollary C.4.6: Let f € M(K) (resp. f € M(d(0,R™))). Then

J;/) —N(r,f—l) < —logr+ O(1).

Z(r, 7

Theorem C.4.7: Let f € A(K) (resp. f € A(d(0,R™))) and let b € K. Then
Zir, f)=Z(r,f —b)+O0Q) rel (resp. € J).
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Proof. Let f(z) = Zanx" and let p € R% (resp. p €]0, R[) be such that

n=0

vt (f,logp) > 0 and v*(f — b,logp) > 0. Then we have v+ (f,u) = v (f —
b, i) Y > log p (resp. Vu €]logp,log R[). Consequently, on each circle C(0, )
such that r > p (resp. r €]p, R]), f and f — b have the same number of zeros,
taking multiplicity into account. Let (a,) be the sequence of zeros of f, with
respective mutiplicity ¢, with |a,| < |an+1], n € N* and |a,| > p if and only if
n >t.

Similarly, let (b,,) be the sequence of zeros of f—b, with respective mutiplicity
Sn, with |by] < |bpta],n € N* and |b,| > p if and only if n > w. Since f and
f — b have the same number of zeros in d(0, p), we also have
(1) Z;:l Gn = D_p—1 Sn-

Consequently, for all > p (resp. r €]p, R[) we have

Z gn(logr —¥(ay)) = Z sn(logr — U(by,)).

n>t, n>u
lan|<r [bn|<r

Now, suppose that both f(0), f(0) — b are not 0. Then

Z(r,f) =Y an(logr —W(an)), Z(r,f—b) = Y sn(logr—U(b,)).

lan|<r [br|<r

Therefore, Z(r, f) — Z(r, f — b) is reduced to

S (ogr - W(an) — Y (logr— (b))

|lan|<r, |[bn|<r,
lan|<p [bn|<p

= Z gn(logr — ¥(ay,)) — Z sp(logr — W (b))

n=1 n=1

that this is a constant by (1), for r > p (resp. for r €]0, R]).
And now, suppose that 0 is a zero of order ¢; of f. Then,

Z(r,f)=aqlogr+ Y qu(logr —¥(ay))

n>2,la,|<r

and therefore Z(r, f) — Z(r, f — b) is reduced to

q logr + Z qn(logr — ¥(a,)) — Z sp(logr — (b))

ol

t u
= qlogr + Z gn(logr — ¥(a,)) — Z sn(logr — W(by,))
n=2 n=1
and we check that this is a constant again thanks to (1).
Similarly, if f(0) = b, then f and f — b playing the same role, we have the
same conclusion. O
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Theorem C.4.8 (First Main Fundamental Theorem): Let f, g € M(K)
(resp. let f, g € M(d(0,R™))). Then T(r,f+b)=T(r,f)+O(1). Let h be a
Moebius function. Then T(r, f) =T(r,ho f)+ O(1). Let P(X) € K[X]. Then
T'(r,P(f)) = deg(P)T(r, f) + O(1) and T(r, f'P(f) = T(r, P(f)).

Suppose now f,g € AK) (resp. f, g € A(d(0,R™))). Then Z(r,fg) =
Z(Tv f) + Z(T7g)7 T(Ta f) = Z(’/‘, f))v T(Ta fg) = T(’/‘, f) + T<T7 g) + O(l) and
T(r, f+g9) <max(T(r, f), T(r,g)). Moreover, if Tlirfoc T(r,f) —T(r,g) = +o0

then T(r, f + g) = T(r, f) when r is big enough.

Proof. T(r,f+b) <T(r,f)+0O(1) <T(r,f+b)+ O(1), hence T(r, f +b) =
T(r, f) 4+ O(1) ¥b € K. Now, consider T(r, f + g) when f, g € A(K) (resp. if
fy g € A(d(0,R7))). Wehave T'(r, f+g) = Z(r, f+g) = (¥(f+g,logr)+0O(1) <
max(¥(f,logr), ¥(g,logr)) = max(T(r, f) + O(1), T(r, f) + O(1)).

Let h(X) = CLXLIZ be a Moebius function and let g(x) = ho f(z). We can
c
. a . a
write h(X) = - + X 1d with A =d(1 — E) Then
T(r.) = T, 52) + O(1) = T(rcf (@) + )+ O(1) = T f(@)) + O(1).

q
Now, let P(X) = H(X —ay) € Kz] be a polynomial of degree ¢ and

k=1
let F(z) = P(f(x)). Then T(r,f —ar) = T(r,f) + O(1) Yk = 1,...,q and
hence T(r, F) = ¢T(r, f) + O(1). Moreover, zeros of P(f) are not poles of f’
and poles of f’ are poles of f and hence are not zeros of P(f). Consequently,
N(r, f'P(f) = N(r, P(f)) + N7, /') = N(r, P(])) + N(r, ) + N(r, ]),
Z(r, f'P(f)) = Z(r, P(f) + Z(r, f"). Therefore T(r, f'P(f) > T(r, P(f)).

It now only remains to prove that T'(r, P(f)) = ¢T(r, f)+O(1). Let P(X
[[=1(X —a;). It is immediate to check that Z(r, P(f)) = > i_, Z(r,
a;) = qZ(r, f) + O(1) and that N(r, P(f)) = ¢N(r, f) therefore 1'(r, P(f)
qT'(r, )+ O(1).

NI

ot

Theorem C.4.9: Let f € M(K) (resp. f € M(d
o, ¥ € AK) (resp. ¢, p € A(d(0, R7))) such that f =
T(r,f)+0@1), rel (resp. (relJ)).

—

0,R7))). There exists
and max(T(r, ¢),T(r,¢)) <

<[

1
Proof. Let Vi = D(f) and let V5 = D(?) Suppose first f € M(K). By The-

orem B.18.4 there exists ¢, ¥ € A(K) such that D(f) = D(¢), D(%) = D).
Consequently, Z(r, f) = Z(r,$), N(r, f) = Z(r,1) and the claim is immediate.

Now, suppose f € M(d(0,R7)). By Theorem B.18.14 there exists ¢ € A(K)
such that D(f) < D(¢) and such that [D(¢)|(r) < |V1|(r) + 1, r € J, hence
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Z(r,9) < Z(r,f)+1, reJ. Lety =

|-

. Then 9 lies in A(d(0, R™)) because

D(f) < D(¢). And D() = D(%) 4+ D($) - D(f). Consequently, [D(#)|(r) <

ID(%)I(THL But T(r, ¢) = Z(r, $)+0(1) = log(|D(¢)[(r))+0o(1) and T(r, ) =

Z(r,) + O(1) = log(|D()|(r)) + O(1). Therefore max(T(r,$),T(r,v)) <
max(Z(r, f), N(r, f)) + O(1), r € I (resp. (r € J)). O

Theorem C.4.10: Let f € M(d(0,

7). Then f belongs to My(d(0,R™)) if
and only if T(r, f) is bounded in [0, R].

Proof. Suppose first f € A(d(0, R7)). Without loss of generality, we can ob-
viously suppose that f(0) # 0. By Theorem C.4..2, we have log|f|(r) =
log(|f(0))) + Z(r, f). And |f|(r) = sup{|f(x)| | = € d(0,r7)}, so the claim
is clear. Now, consider the general case. Suppose T'(r, f) is not bounded, so

either Z(r, f) or N(r, f) is not bounded. Let f = g with ¢, ¥ € A(d(0,R7)).
If Z(r, f) is not bounded, then ¢ ¢ Au(d(0,R™)). If N(r, f) is not bounded,
then ¢ ¢ Au(d(0,R7)). Thus, f cannot be put in the form g with ¢, 9 €
Ap(d(0, R7)) and therefore f ¢ A,(d(0, R7)).

Conversely, if f € Ap(d(0,R™)), then it is of the form % with ¢, 9 €

Ap(d(0, R7)), hence both Z(r,¢), Z(r,v) are bounded. But since Z(r, f) <
Z(r,¢) and N(r, f) < Z(r,v), T(r, f) is clearly bounded in [0, R]. O

Corollary C.4.11: Let f € M,(d(a,R™)), and let h € My(d(a, R7)), h # 0.
Then fh belongs to M, (d(a,R7)).
By Theorem C.4.8 and Theorem C.4.10 we can also derive Corollary C.4.12

Corollary C.4.12: Let f € M(d(a,R™)) and let P € K[z]. Then P(f)
belongs to My(d(a, R™)) if and only if so does f.

Lemma C.4.13 is classical and easily checked:
Lemma C.4.13: Let ai,...,aq € K be pairwise distinct, let S = {aq,..., a4}
and let P(z) = [[j_,(z — a;). Let f € M(K) (resp. f € M(d(0,R™))). Then

J

Z(r, f — o) = Z(r, P(f)), Z?(n f—o;)=2Z(r,P(f)) Vrel

1

(resp. ¥r € J). Moreover, assuming that K is of characateristic 0, we have

Z(Z(r,f —aj)—Z(r, f— ozj)) = Z(r, f') = Z5(r, f) Vr € I (resp. Vr € J).

j=1
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Theorem C.4.14: We assume that K is of characateristic 0. Let f € M(K)
(resp. f € M(d(0,R™))). Then Z(r,f')—N(r,f') < Z(r,f)— N(r, f) —logr+
O(1), » € T (resp. r € J). Moreover, N(r, f®)) = N(r, f) + EN(r, f) +
o), eI and Z(r, f®) < Z(r, f) + kN(r, f) — klogr + O(1), r € I (resp.
red).

Proof. Without loss of generality, we can assume that f, f/, ..., f*) have no zero
and no pole at 0.

The first statement is immediate and just comes from this basic property:
if a is a pole of f of order g, then it is a pole of f) of order ¢ + k. Next,
by Theorem C.4.2, we have Z(r, f) — N(r, f) = ¥(f,logr) — log(|f(0)|) and
Z(r, 1) = N(r, f') = W(f",logr) — log(|f'(0)]). But W(f’,logr) < W(f,logr) —
log r, hence we obtain Z(r, f') < N(r,f') — N(r, f) + Z(r, f) — logr + O(1).
Actually, N(r, f') — N(r, f) = N(r, f), hence N(r, f¥)) = N(r, f) + kN(r, f).
Next, Z(r,f) < Z(r,f) + N(r, f) — logr + O(1). Now, suppose the second
statement has been proved for k < t. Thus we have Z(r, f¢+1)) < Z(r, f®) +
N(r, f®) —logr 4+ O(1). But as we just noticed, N(r, f)) = N(r, f), hence
Z(r, Y < Z(r, f) +tN(r, fO) + N(r, fO) — (¢t + 1) logr + O(1). O

Corollary C.4.15: We assume that K is of characateristic 0. Let f € M(K)
(resp. f € M(d(0,R™))). Then T(r, f®) < (k+1)T(r, f)+0O(1) (r € I) (resp.
reld).

Theorem C.4.16: We assume that K is of characateristic 0. Let f € M(K)
(resp. f € M(d(oa Ri))) Thenz T(T7 f) - Z(Ta f) S T(T, fl) - Z(Ta f,) + O(l)
Further, given o € M(d(0,R™)), we have T(r,af) — Z(r,af) < T(r,f) —
Z(r, )+ T(r,a).

Proof. By Theorem C.4.14, the first statement is immediate. Let us check the
last one. On one hand, T(r, f) — Z(r, f) = max(Z(r, f),N(r, ) — Z(r, f) =
max(0, N(r, f) — Z(r, f)) » < R. On the other hand,

T(T, f/)_Z(T7 f/) = ma‘X(Z(T7 f/)7 N(Tr f/))_Z(T’ f,) = max((), N(T7 f/)_Z(Tv f,))

=max(0, N(r, f) + N(r, f) — Z(r, f')) r < R.

But by Theorem C.4.14, —Z(r, f') > —Z(r, f) — Z(r, f) + log(r) + O(1) r < R
hence T'(r, f') — Z(r, f') > max(0, N(r, f) — Z(r, f) +log(r)) + O(1) > T(r, f) —
Z(r, f)+0(1), r<R.

Now, let « € M(d(0,R™)). Suppose N(r,af) > Z(r,af), r < R. Then
T(r,af)— Z(r,af) = N(r,af) — Z(r,af) r < R. We can write « in the form
plz)
A(z)
A in the form AjAg were each zero of A; is not a zero of f and each zero of
A2 is a zero of f. Then we can check that N(r,af) = N(r, f) + Z(r, A1) and
Z(ryaf > Z(r, f) — Z(r,A2). Consequently, N(r,af) — Z(r,af) < N(r,f) +

with 8, A € H(d(0,r)), 8, A having no common zero. Next, we can write
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Z(n)‘l)_(Z(Ta f)—Z(’I’, )‘2)) = N(Tv f)_Z(T, f)+Z(T7>‘1)+Z(Ta )‘2) = N(rv f)_
Z(r. f)+ Z(rA) < N(r, f) = Z(r, /) + T(r,A) 7 < R.

Suppose now that N(r,af) < Z(r,af). We can do a symmetric reasoning
with the zeros of (. O

Lemma C.4.17 is an immediate consequence of Corollary B.13.27 and The-
orem C.2.10:

Lemma C.4.17: Let K be of characateristic 0. Let f € M(K) (resp.

!
f e M(O,R7))) and let G = f7 Then, G satisfies Z(r,G) < N(r,G) —
logr+O(1) r €I (resp. (r € J).

Proof. Without loss of generality we can assume that 0 is neither a pole of f
nor a zero for ff’. By Theorem C.2.10 G satisfies ¥(G,logr) < —logr. On
the other hand, by Theorem C.4.2 we have ¥(G,logr) = log |G(0)| + Z(r, G) —
N(r,G). Consequently, we obtain log |G(0)| + Z(r,G) — N(r,G) < logr, which
proves the claim. O

We can now prove the Second Main Theorem under different forms. The
following Lemma C.4.18 is essential and directly leads to the theorems.

Lemma C.4.18: Let f € M(K) (resp. f € M,(d(0,R™))). Suppose that
there exists £ € K (resp. £ € My(d(0,R™))) and a sequence of intervals I, =
[ty U] SUCh that up < U < Upp1, UMy ioo Uy = +00 (Tesp. My, yoo Up =
R) and

S (5] 70 )= 20 = 9) = 4o

(resp. Tim_( inf T(r.f) = 20, f =€) = +00).

Let 7 € K (resp. let 7 € Myp(d(0,R7))), 7 # & Then Z(r,f — 1) =
T(r, f) 4+ O(1) Vr € I,, when n is big enough.

Proof. We know that the Nevanlinna functions of a meromorphic function f are
the same in K and in an algebraically closed complete extension of K whose
absolute value extends that of K. Consequently, without loss of generality, we
can suppose that K is spherically complete because we know that such a field
does admit a spherically complete algebraically closed extension whose absolute
value expands that of K. If f belongs to M(K), we can obviously set it in the

form < where g, h belong to A(K) and have no common zero. Next, since K is
supposed to be spherically complete, if f belongs to M(d(0, R™)) we can also
set it in the form % where g, h belong to A(d(0, R~)) and have no common

zero. Consequently, we have T'(r, f) = max(Z(r, g), Z(r, h)).

When £ is a constant we can obviously suppose that & = 0. Suppose now
&€ M, (d(0,R™)). Then f —¢ also belongs to M, (d(0, R7)) and 7 — £ belongs
to My(d(0,R™)). Consequently, in both cases, we can assume & = 0 to prove
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the claim. Next, up to a change of origin, we can also assume that none of the
functions we consider have a pole or a zero at the origin.

Now, we have lim ( 1é11f T(r, f) — Z(r,f)) = 400 ie.

n—-+o00
» i (1070500 =

Particularly, we notice that T'(r, f) = Z(r, h) + O(1) whenever r € I, when n is
big enough.

Consider now Z(r, f — 1) = Z(r,g — 7h). But by (1) we can see that |g|(r) <
|7|h|(r) Vr € I, when n is big enough, hence Z(r,g — 7h) = Z(r,7h) Vr € I,
when n is big enough, hence Z(r,7h) = Z(r,h) ¥r € I, when n is big enough.
Therefore Z(r, f — 1) = Z(r,h) + O(1) = T(r, f) + O(1), Vr € I, when n is big
enough. So the claim is proven when 7 is a constant.

Suppose now that f € M(d(0,R7)) and 7 € My(d(0,R™)). By Theorem
C.1.10, we can write 7 in the form g where ¢,9 € Au((d(0,R7)) have no

common zero. Consider

Z(r, f —7h) = Z(r, L) Since g and h have no common zero and since

vh
both ¢, are bounded, we have Z(r, wgwh(b )= Z(r,vg — ¢h) + O(1). By (1),

in I, we have |[¢g|(r) < |¢h|(r) when n is big enough and since | . |(r) is an
absolute value, [1pg — ¢h|(r) = |ph|(r) in I, when n is big enough. Therefore,
we have Z(r,vg — ¢h) = Z(r,ph) = Z(r,h) + O(1) in I,, when n is big enough.
Consequently, Z(r, f—7) = Z(r,h)+0O(1) = T(r,h)+0O(1) = T(r, f)+O(1) ¥r €
I,, when n is big enough. That finishes proving Lemma C.4.18. O

The following Theorems C.4.19 and C.4.21 may be found in a very different
form in [85]

Theorem C.4.19:  Let f € M(K) and let aq, ..., aq € K be distinct. Then
q
(¢g—1T (rf<max( Z er—a]>—|-0(1).

1<k<q
J=1j#k

Corollary C.4.20:  Let f € M(K) and let ay,...,aq € K be distinct. Then
(¢ =DT(r, f) <325 Z(r, f = a;) + O(1).

Theorem C.4.21:  Let f € M(d(0,R™)) and let 1, ..., 74 € Myp(d(0,R™)) be
distinct. Then

(¢— 1T (rf<max(zq: )—!—O()

1<k<q Lk

j
Corollary C.4.22:  Let f € M(d(0,R™)) and let 1,...,7q4 € My(d(0,R7))
be distinct. Then (¢ — 1)T(r, f) <325, Z(r, f —15) + O(1).
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Proof. of Theorems C.4.19 and C.4.21 Suppose Theorems C.4.19 (resp. The-
orem C.4.21) is wrong. In order to make a unique proof for the two theo-
rems, in Theorem C.4.19 we set 7; = a;. Thus, there exists f € M(K) (resp.
feM(d0,R7))) and 1, ..., 74 € K (resp. 71, ...,74 € My(d(0,R7))) such that
(g —1)T(r, f) — maxi<p<q (Z;I’:l sk Z(r, f = Tj)) admits no superior bound
in ]0,4o00[. So, there exists a sequence of intervals J; = [ws,ys] such that
Wy < Ys < Wst1, Mg 400 wg = 400 (resp. limg_ 4o ws = R) and two distinct
indices m < ¢ and t < ¢ such that

slH-Poo TngfS (T(r, H=2Zr f- Tm)) =400
and

Jim Tiéli (T(r,f) = Z(r, f — 7)) = +o0
But by Lemma C.4.18, this is impossible. This ends the proof of Theorems
C.4.19 and C.4.21. O

Remark: Theorem C.4.19 does not hold in complex analysis. Indeed, let f be
e(l?

a meromorphic function in C omitting two values a and b, such as f(z) = =1
T —

Then Z(r,f —a)+ Z(r, f —b) = 0.

Theorem C.4.23  Let aq,...,oq € K, with g > 2, let S = {ou, ..., a4} and let
fe M(K) (resp. f € M(d(0,R™))). Then
q

(¢g—1)T(r, f) < Z?(r,f —a;)+ Z(r, f') = Z5(r, f)+O(1) Vrel (resp.

VreJ).
Moreover, if f belongs to f € A(K) (resp. A(d(0,R™))), then

q
qT(r, f) < Z?(r,f—ajH-Z(r, =250 fY+0Q) Yrel (resp. VreJ).

j=1

Theorem C.4.24 (Second Main Theorem): Letay,...,aq € K, with g > 2,
let S ={ai1,...,aq} and let f € M(K) (resp. f € M,(d(0,R7))). Then

q
(qf 1)T(7’,f) S Zi(raf - aj) +N(Taf) - Zf)g(r7f/) 710g7"+0(1) vrel
j=1

(resp. Vr € J).

Proof. of Theorems C.4.23 and C.4.24 By Theorem C.4.23 (resp C.4.24) there
exits a constant B > 0 and for each r > 0 (resp. for each r €]0, R]), there exists
k(r) € N, k(r) < g, such that (¢ — 1)T'(r, f) < Z;?:Lj#k(r) Z(r,f —aj)+ B ie.
(q—DT(r, f) < 23:1 Z(r, f —a;) — Z(r, apry + B. Now, Z‘;—:l Z(r,f—aj) =

G Z(r, f —ag) + Z(r, f') = Z§ (r, f') — logr Consequently, (¢ — 1)T(r, f) <

;1‘:1 Z(r, f—aj)+Z(r, f)=Z5 (r, f)=Z(r, J—auy)+B and this proves the first
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claim of Theorem C.4.23. Particularly, if f € A(K) (resp. if f € A(d(0,R7)))
then we have Z(r, f —a;) =T(r, f —a;) = T(r, f) + O(1) Vj =1, ..., q, hence
Z(r, f — axy) = T(r, f) + O(1) and therefore ¢T'(r, f) < 23217(71 f—a;)+
Z(r, f') — Zg (r, f') + O(1), which ends the proof of Theorem C.4.23.

Henceforth, by Theorem C.4.14, there exists a constant ¢; > 0 such that
Z(r, f"Y<Z(r,f —a;) = N(r, f —a;) —logr+c¢;. Let ¢ = max(cy, ...,¢q). Then
Zlr, )= 28 (') = Z(r, f—angry < N(r, f—ariry)+o—logr = N(r, f)+c—logr.
Consequently,

q q
ZZ(T, Z? i)+ N(r, f) —logr + O(1).
j=1 j=1
That finishes the prooof of Theorem C.4.24. O

Remark: In Theorem C.4.21, in the hypothesis f € M(d(0, R7)), the term
—log r has no veritable meaning since r is bounded.

Corollary C.4.25: Let ay,...,aq € K, with g > 2, let S = {aq, ..., a4} and let
fe M(K) (resp. f € M(d(0,R™))). Then
q

Z ’I“ f Oé] (’I", f_aj)) < T(T’ f)+N(T7 f)_Z(Sg(T7 f/)_log T+O(1) Vr €

]=1

I (resp. ¥r e J).
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C.5. Nevanlinna Theory out of a hole

Throughout the chapter the field K is supposed to have characteristic 0. Here

we mean to construct a Nevanlinna theory for meromorphic functions in the
complement of an open disk thanks to the use of specific properties of the
Analytic Elements on infraconnected subsets of K already examined in Chapter

C.3.

Notation: Throughout the chapter and in the next, we will conserve the nota-
tions introduced in Chapter C.3. Particularly, we denote by S the disk d(0, R™)
and put D = K\ S. Recall that we denote by Hy(D) the K-vector space of
analytic elements f in D such that lim f(x)=0. The definitions of A(D),

|z|—o00

Ay (D), M(D), M, (D) are those given in Chapter C.3.

Given f € M(D), for r > R, here we will denote by Zg(r, f) the counting
function of zeros of f between R and r, i.e. if ag, ..., a,, are the distinct zeros
of f in A(0, R,r), with respective multiplicity u;, 1 < j < m, then Zg(r, f) =

Zuj(log(r) —log(|ey])). Similarly, we denote by Ng(r, f) the counting func-

tion of poles of f between R and r, i.e. if f1,..., 3, are the distinct poles of
f in A0, R, ), with respective multiplicity v;, 1 < j < m, then Ng(r, f) =
n

Zvj(log(r) —log(|8;])). Finally we put Tr(r, f) = max (ZR(T7 f), Ng(r, f))

Next, we denote by Zg(r, f) the counting function of zeros without counting
multiplicity: if aq, ..., apy, are the distinct zeros of f in A(0, R, ), then we put

Zlog — log(|oy ).

Slmllarly, we denote by Ng(r, f) the counting function of poles without
counting multiplicity: if 31, ..., 3, are the distinct poles of f in A(0, R, ), then
we put

Ng(r,f) = Zlog — log(|8;])-

Finally, puttmg W = {ay,...,a,4}, we denote by Z¥ (r, f') the counting func-
tion of zeros of f’ on points x where f(x) ¢ W.

Throughout the paper, we denote by | . |, the Archimedean absolute value of
R. Given two functions defined in an interval I = [b, +oo[, we will write ¢(r) =
P(r)+O(log(r)) (resp. ¢(r) < ¢(r)+O(log(r))) if there exists a constant B > 0
such that [¢(r)—9(r)|e < Blog(r), r € I (resp. ¢(r)—y(r) < Blog(r), r € I).

We will write ¢(r) = o(y(r)), r € I if 7)&1}_100 1/1(:) =0.

Theorem C.5.1: Let f € M(D). Thenlog(|f|(r))—log(|fI(R)) = Zg(r, ) —
Ng(r, ) +m(f,S)(ogr —log R) (r € I).
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Proof. By Theorem C.3.6 we have f = f9f° Since f° has no zero and
no pole in D, by Theorem C.3.3 it satisfies |f5|(r)) = r™/5) ¥r € I, hence
log(|£%](r)) —log(|f°|(R)) = m(f,S)(logr —log R) (r € I). Next, since f° has
no zero and no pole in S, we have log(|f°|(r)) — log(|f°|(R)) = Zr(r, f°) —
Ng(r, f) (r € I) therefore the statement is clear.

Corollary C.5.2: Let f € M(D). Then Tg(r, f) is identically zero if and
only if f is a Motzkin factor.

Corollary C.5.3: Let f € A(D) and let ¢ € Ho(D). Then Zg(r,f + ¢) =
Zg(r, f) + O(log(r)) (r € I).

Proof. Indeed, since ¢ is bounded and tends to zero at infinite, we have
log |f|(r) =log|f + ¢|(r) when r is big enough. 0

Corollary C.5.4: Let f, g € A(D) satisfy log(|f|(r)) < log(|g|(r)) V

R)(TGI)- Then Zn(r, f) < Zn(r, g)+(m(g, S)—m(F,S))(log(r) —log(R)), (r
I).

2
€

Theorem C.5.5: Let f € A(D). Then Zg(r, ') < Zg(r, f) + O(log(r)) (r €

I).
Proof.  Indeed, by Theorem B.9.2 we have |f'|(r) < |f|74(7“)' Therefore, the
conclusion comes from Theorem C.5.1. O

We can now characterize the set M*(D):

Theorem C.5.6: Let f € M(D). The three following statements are equiva-

lent: (e f)
O lLim B ) _ I
i) BN =400 (rel),
i1) Tr(r. /) is unbounded,
log(r)

iii) [ belongs to M*(D).

Proof.  Consider an increasing sequence (uy, )nen in Ry such that hm Uy = +00

n—-+o0o

and let (k,)nen be a sequence of N*. Clearly, we have

%, o hallog(r) ~ loglun)
rBr+noo log(r) -

Consequently, if a function f € /\/l (D) has infinitely many zeros (resp. infinitely

N
many poles in D) then lim ( /) =400 (resp. lim M

n—-+0o log() —+oo IOg(T') :+OO)
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T
hence in both cases, lim M = +o00. Conversely, if f has finitely many
n—-+oo 1og( )
zeros and finitely many poles in D, then we check that

lim Tr(r, /)

< +00. Thus the equivalence of the three statements is clear.
n—+o00 log(r)

O

Operations on M(D) work almost like for meromorphic functions in the
whole field.

Theorem C.5.7: Let f, g € M(D). Then for every b € K, we have Tr(r, f +

b) = Tr(r, {)+0(10g(7”)), (r € 1) Tr(r, f-g9) < Tr(r, f)+Tr(r, 9)+O0(log(r)) (r €

I), Tg(r, ?) =Tr(r, f)), Tr(r,f+g) < Tr(r,f)+Tr(r,9)+O0(og(r)) (r € I)

and TR(Tv f’n) = nTR(T, f)

Let h be a Moebius function. Then Tr(r,ho f) = Tr(r, f) + O(log(r)) (r € I).
Moreover, if both [ and g belong to A(D), then

Tr(r, f +g) < max(Tg(r, ), Tr(r, g)) + O(log(r)) (r € I)

and Tr(r, fg) = Tr(r, f) + Tr(r,g), (r € I). Particularly, if f € A*(D), then
Tr(r, f+b) =Tgr(r, f)+OQ) (r € I). Given a polynomial P(X) € K[X], then
Tr(r,Po f) = qTr(r, f) + O(log(r)).

Proof.  Suppose first f, g € A(D). Tt is immediate to check that
Tr(r, fg) = Zr(fg) = ZR%JC) + Zr(r,9) = Tr(r, f) + Tr(r, g), that Tr(r, f") =
nTr(r, f) and that Tr(r, ?) =Tr(r, f).

Then Tr(r, f +9) = Zgr(r, f + g) = log(|f + ¢|(r)) —m(f + g, 5)(log(r) —
log(R)), (r € I). But log(|f + gl(r)) < max (log(|f|(r)),log(|g|(r))), hence

Zr(r, f+g) < max (Zg(r, f)+m(f,S)(log(r)—log(R), Zr(r, g)+m(g, S)(log(r)—~log(R),)

))-

and hence Tg(r, f + g) < max (Tr(r, f), Tr(r,g)) + O(log(r
Tr(r, f) + O(log(r) <
ot

Particularly, given b € K, we have Tgr(r, f + b)

o(l
<
Tr(r. f) + Olog(r)), hence Tr(r. f +b) = Tr(r. f) + (Z( ().

Now, given a polynomial of degree ¢, we have Z f) =qZr(r, f)+
O(log(r )) and
Ng(r,Po f) =qNg(r, f), hence Tr(r,Po f) = qTr(r, f).
+oo
Now, suppose f € A*(D). Then f(x) is a Laurent series Z anx™ convergent

in all D such that lim, 4 |f|(r) = +00. Let b € K and take V be such that
|fI(r) > |b] ¥r > V. Then for every r > V, |f|(r) is of the form |a|r* with
k > 0, |an|r™ < |ag|r® ¥n > k and the number of zeros of f in A(0, R,7) is
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+o00
—m(f,S). Next, f — b is of the form chx" with ¢, = a, VYn # 0 and

¢o = ag —b. Consequently, f — b has the same number of zeros in A(0, R, r) and
in each circle C(0,r) for r > V. Therefore Tr(r, f) = Tr(r, f —b) when r is big
enough.

Next, consider the general case: f, g € M(D). First it is immediate to check

1
that Tr(r, fg) < Tr(r, f) + Tr(r,g). Similarly, for Tg(r, ?) By definition, we

1 1 1
have ZR(rv ?) = NR(rv f) and NR(rv ?) = ZR(rv f)7 hence TR(Ta ?) = TR(T7 f)
Now consider Txr(r, f + ¢) in the general case: f, g € M(D). By Theorem

C.3.6, we can write
f+g=fs(f1> +g (g?, 93)

29
hence 5200 1 5. 0f0
To(r, f +g) = TR(T, 179 +g 91f2)
f2g2
with £, f9, 49, ¢9 € A(K), having no zero in T and f°, g° Motzkin factors
associated to S. Then Zg(r, f5f099) = Zr(r, f2) + Zg(r, g2) Zr(r, g%V f9) =

Zg(r, ) + Zr(r, f3), hence , by what we just saw, Zr(r, f° f0g5 + g1 f9) <
max (TR(T‘7 ), Tr(r, g)) + O(log(r)). And obviously, Zg(r, fage) < Tgr(r, f) +
Tr(r,g). So we obtain in the general case Tr(r, f + g) < Tr(f) + Tr(r,g9) +

O(log(r)).
Finally, consider a Moebius function h. Then h o f(z) is of the form C +

e
of@) + B and thereby, Tr(r,ho f) = Tr(r, f) + O(log(r)). 0

Corollary C.5.8: Let f, g € MY(D). Then Tg(r, g) > Tg(r, f)=Tr(r,g) (r €
I) and
Ta(r, ) = Tu(r,g) = Tutr. ) (r € )

By Theorems C.5.6 and C.5.7, we have this immediate corollary:
Corollary C.5.9: M?(D) is a subfield of M(D).

Theorem C.5.10: Every f € M*(D) is transcendental over M°(D).

Proof.  Consider a polynomial P(Y) = Zanj € M°(D)[Y] with a, = 1.
=0

Let f € M*(D) and suppose that P(f) = 0. Then f™ = —Z ajfl. Set
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n—1
= Zajfj and f = fo% with g, h € A(D) having no zero in S. Then
7=0
T a1
hn—l

n—1
Since Z ajg’ k"~ belongs to A(D), by Theorem C.5.7 we have
§=0

[1]

(1]

Talr, Y a;'h" 71 9) < (n = DTa(r ) + Olog(r)). (v € 1)

and of course Tr(r,h"~1) < (n — 1)Tr(r, f), (r € I). Consequently
Tr(r,E) < (n— 1)Tg(r, f) + O(log(r), (r€I).

But on the other hand, by Theorem C.5.7, Tr(r, f™) = nTg(r, f). There-
fore we should have nTr(r, f) < (n — 1)Tgr(r, f) + O(log(r), (r € I), which
is impossible by Theorem C.5.6 because f belongs to M*(D). Consequently,
the equality P(f) = 0 is impossible, which proves that f is transcendental over

MO(D). O

Theorem C.5.11: Let f € M(D). Then Ng(r, f*)) = Np(r, {)+kNg(r, f), (r €
I) and Zg(r, f®) < Zgr(r, f) + kNg(r, f) + O(log(r)), (r € I).

Proof. The inequality Ng(r, f*¥)) = Ng(r, f) + kNg(r, f) + O(1), r € I is
obvious. Next consider f in the form % with g, h € A(K). Recall that we can

write h in the form hh with & and h in A(K), each zero of h being of order one

and all zeros of h being a zero of h. So, h’ is of the form hh where h belong to
g'h — gh
A(K) and none of the zeros of h is a zero of h. Then f’ is of the form Jr— 9%

So, Zr(r, f') < Zg(r,g'h — gﬁ) and hence, by Theorem C.5.7,

(4) Zr(r, f) < max(Zgr(r,g'h), Zr
<

On one hand, by Theorem C.5.5, Zgr(r,g’) (r,9) + O(logr) and by
). Obviously, Zr(r, h) <
Zg(r, f) + Ng(r, f).
<1

og(|h|(r)) —logr, we

(r.g
ZRr
Corollary C.5.4, we have Zg(r,g') < ZR(T f)+0og(r
Zgr(r,h) = NR(T, 0) = Ng(r, f) hence Zg(r, (r,g'h) <
Now, let us estimate ZR(T,/H) Since log(|h'|(r))
have . N
Zp(r,W') < Zg(r,h) + O(log(r)). But since h’ = hh, we have Zgr(r,h) =
ZR(T W)= Zp(r,h) < Zr(r,h) — Zgr(r, h) + O(log(r)) = Zg(r, k) + O(log(r))
Nr(r, f) + O(log(r)). Consequently,

ZR(Tv gﬁ) < ZR(Ta g) +NR(T’ f) + O(log(?“)) = ZR(Ta f) +NR(T7 f) + O(log(r))
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Thus, by (4) we have proven the claim when k& = 1 and then it is immediately
derived by induction on k. O

The following Lemma C.5.12 will be necessary in the proof of Theorem
C.5.13.

Lemma C.5.12:  Let f € M(D). Suppose that there exists £ € K and a

sequence of intervals Jy, = [un,v,] such that u, < vy < Upy1, UMy qoo Uy =
400 and
T -7 —
lim inf R(rv f) R(Ta f f) = +00.
n—+too Lred, log(r)

Let e K7 #¢E. Then Zg(r, f —7) = Tr(r, f) + O(log(r))) Vr € J, when
n is big enough.

Proof.  Without loss of generality, we can obviously suppose that £ = 0. By
Theorem C.3.6, f is of the form f° f° and f° is of the form % with g, h € A(D),

having no zero in S. Set w = f°. Thus we have

lim [ inf Zr(r,h) - ZR(T’Q)} = +00.
n—+oo Lred, log(r)
Consequently, by Theorem C.5.1,

1 —1

- [ i 2800 ol
n—+too Lred, log(r)

. wg —
Consider now f — 7. We have f — 7 = o hence

log(|f|(r)) = log (Jwg — Th|(r) —log(|A|(r)).

But by (7), we have log(|7h|(r)) > log(Jwg|(r)) because log(|w|(r) = O(log(r)),
therefore log (Jwg — 7h|(r)) = log(|Th|(r)) Vr € J,, when n is big enough and
hence

ot log(irh — wgl(r) — log(Rl()] _
® tig_ | sup log(r) J-o

n—-+oo

Consequently, by (8) and by Theorem C.5.1,

. Zgr(r,Th —wg) — Zg(r, h)
1 =0
Jim [ sup e () ]
1.e.
A — - T
lim [sup R(Taf T) R(r7f)i| =0
n—+oo Lycy, log(r)

which proves the claim. O
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The Nevanlinna second Main Theorem is based on the following theorem:

Theorem C.5.13:  Let f € M(D) and let ay,...,aq € K be distinct. Then

(¢g—1)Tgr(r, f) < max ( Z Zg(r, f — aj)) + O(log(r)) (r € I).

1<k<e N\ 1=,
Proof.  Suppose Theorem C.5.13 is wrong. Thus, there exists f € M(D) and

ai, ..., aq € K such that (¢ — 1)Tgr(r, f) — 121]?21( Z Zr(r, f — )) admits
J=1.3#k

no superior bound in ]0,4+o00[. So, there exists a sequence of intervals J; =

[ws, ys] such that ws < ys < wst1, lims_, o0 ws = 400 and two distinct indices

m < g and t < ¢ such that

T -7 — Qm
lim [ inf ( r(r, /) R(r,f —a ))} = +00
s—too Lred, log(r)
and
[ ag LR 20 o))
s—+oo Lred, log(r)
But by Lemma C.5.12, that is impossible. O

We can now state and prove the Second Main Theorem for M(D).

Theorem C.5.14: Let f € M(D), let o, ...,aq € K, with ¢ > 2 and let
W ={o,....,aqs}. Then
q

(q_l)TR(Tv f) < ZZR(Tv f_aj)+ZR(T’ f/)_Z}I%V(T’ f/)+0(10g(T)) (T € I)
Moreover, ifszblelongs to A(D) then

qTr(r, f) < ZZRO: f—aj)+ Zp(r, )= ZF (r, f') + O(log(r))  (r € 1).

Theorem C.5.15 (Second Main Theorem): Let f € M(D), let o, ...,q4 €
K, with ¢ > 2 and let W ={a1,...,aq}. Then

(¢q—1)Tr(r, <ZZR ,f=a)+ Ng(r, )= Zg (r, f')+O(log(r))  (r € I).

Proof. ( Proof of Theorems C.5.14 and C.5.15) By Theorem C.5.13 there
exists a constant B > 0 and for each r > R there exists k(r) € N, k(r) < ¢,
such that

(@=DTr(nf)< S Zrlr f—a;) + Blog(r)

J=1,j#k(r)
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ie. (¢q— D)Tg(r, f) < Z?:l Zg(r, f — aj) — Zr(r, agy + O(log(r)). Now,

q q
> Zr(r,f—a;) =Y Znr i)+ Zr(r. f') = Z (r, f') + Blog(r).
j=1 j=1
Consequently,
(9) ,
(¢=1)Tr(r Z vy f=a;)+Zr(r, [))=Zg (r, ') = ZRr(r, f=ak())+O0(og(r))

and this proves the first claim of Theorem C.5.14.

Particularly, if f € A(D) then we have Zg(r, f — a;) = Tr(r, f — a;) =
Tr(r, f) +O(log(r)) Vj = 1,...,q, hence Zgr(r, f — ayy) = Tr(r, f) + O(log(r))
and therefore

TR0 ) < 3 Znlrf =)+ Zalr )= 2 (') + Olog(r),

which ends the proof of Theorem C.5.14.

Consider now the situation in Theorem C.5.15. By Theorem C.5.11, for each
Jj =1,...,q, there exists a constant B; > 0 such that Zg(r, f') < Zg(r, f —a;)+
Ng(r,f —aj) + Bjlog(r)). Consequently, there exists a constant C' > 0 such
that Zgr(r, f') < Zr(r, f — @) + Ng(r, f — ap(ry) + Clog(r) ¥r > R.

Therefore, by Relation (9) that remains true in Theorem C.5.15, we can
derive

q
(q—V)Tr(r Z r(r, f—a;) + Ng(r, f)— ZW (r, f) + O(log(r)) Vr e I.
O

Corollary C.5.16:  Let f € M(K) and let a1, ...,aq € K be distinct. Then
(¢ = V)Tr(r,f) < 371 Zr(r, f — a;) + O(log(r)) (r € I).

Corollary C.5.17: Let f € M(D), let ai,...,aq € K, with ¢ > 2 and let
W ={o1,....,aq}. Then
q

Z (Zr(r, f~aj)=ZR(r, f~a;)) < Tr(r, ))+Nr(r, f)=Zg (r, f)+O(log(r))  (r €

I).
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C.6. Immediate applications of the Nevanlinna Theory

Throughout the chapter the field K is supposed to have characteristic 0.

Notations: As in Chapter C.6, we denote by D the set K\ d(0, R™) with R
a positive number. The definitions of A(D), A, (D), M(D), M, (D) are those
given in Chapter C.3.

As immediate applications of the Second Main Theorem, we can notice the
following Theorems C.6.1, C.6.2, C.6.3, C.6.4.
Theorem C.6.1: Let aj,az € K (a1 # az) and let f, g € AK) satisfy
“(ait) =97 ({ai}) (i=1, 2). Then f =g.

Remark: Theorem 6.1 does not hold in Complex analysis. Indeed, let f(z) =
e*, g(z) =e ? let ag = 1, ag = —1. Then f~*({a;}) = g ' ({a;}) (i =1, 2),
though f # g.

Theorem C.6.2: Let a1, a2, a3 € K (a; # a; Vi # j) and let f, g €

Au(d(a, R7)) (resp.f, g € Au(D) ) satisfy f~'({a:i}) = g7 ({ai}) (=1, 2, 3).
Then f =g.

Theorem C.6.3: Let a1, a2, as, as € K (a; # a; Vi # j) and let f, g €
M(K) satisfy f~1({a;}) =97 '({ai}) (i =1, 2, 3, 4). Then f =g.

Theorem C.6.4: Let a1, a2, a3, a4, as € K (a; # a; Vi # j) and let

f, g € My(d(a,R7))) (resp. f, g € Myu(D) satisfy = ({a;}) = g~ ({ai})
(t=1,2,3,4,5). Then f =g.

T IL'2

) -1 Y Ea
3 Then we can check that f~*({a;}) = g7 *({a;}), i = 1, 2, 3. So, Theorem
C.6.3 is sharp.

Remark: Let f(x) =

.Leta():O, CLl:l’ g =

Proof. (Theorems C.6.1, C.6.2, C.6.3, C.6.4) Let I =]0,4o00[ in Theorems
C.6.1, C.6.3 and let I =|0, R[ in Theorems C.6.2 and C.6.4. Foreach j =1,...,n
let S; be the set of all zeros of f—a; (without taking multiplicities into account).
Since a; # a; Vi # j, we have S;NS; = (0 Vi # j. Next, we notice that f(z) = a;
implies f(z) — g(x) = 0. Consequently, we check that
(]-) Z;'Lzl 7(7’, f - aj) < Z(Ta f - g)'
Suppose first that f and g either belong to A(K) or belong to A(d(0, R™)).
By applying Theorem C.4.24 to f we obtain

(n—1)T(r, f) SZ )+ N(r, f) —log(r) + O(1) <
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<nZ(r, f—g)+ N(r, f) —log(r) + O(1) (r € I)
hence by (1),
(n—1)T(r,f) <T(r,f — g) + N(r, f) —log(r) + O(1) (r € I)
and finally
(n=1)T(r, f) <T(r,f — g)+ N(r, f) —log(r) + O(1) (r € I).
Similarly,
(n=1)T(r,g) <T(r,f—g)+ N(r,g) —log(r) + O(1) (r € I),

therefore we obtain

(2) (n=1)max(T'(r, ), T(r,9)) < T(r, f—g)) +max(N(r, f), N(r,g)) —log(r) +
O(1) (rel.

Assume we are in the hypothesis of Theorem C.6.1. We have N(r, f) =
N(r,g) =0, and by Theorem C.4.3, T(r, f — g) < max(T(r, f),T(r,9)) + O(1).
Consequently, by (2),

(n = 1) max(T'(r, f), T(r,9)) < max(T(r, f),T(r,g)) —log(r) + O1) (r € I).

Since 7 is not bounded, we can see that the inequality does not hold with n = 2,
when r goes to 4o0.

Now, assume the hypothesis of Theorem C.6.2. Again, we have N(r, f) =
N(r,g) = 0 and by Theorem C.4.3, T(r, f — g) < max(T(r, f),T(r,9)) + O(1),
hence by (2),

(n—1)max(T(r, f),T(r,9)) < max(T(r, ), T(r,g)) +O(1) (r € I).

Since f, g are unbounded, by Theorem C.4.10, so are T'(r, f), T(r, g) in intervals
|70, R hence the inequality does not hold with n = 3.

Suppose now that f and g belong to A, (D). We then obtain
(n=1)Tr(r, f) < Tr(r, f=g)+0(log(r)) (r > R) < max(Tg(r, f), Tr(r, g))+O(log(r)
and similarly
(n=1)Tr(r,g) < Tr(r, f—g)+0(log(r)) (r > R) < max(Tg(r, f), Tr(r, 9))+O(log(r),
therefore
(n — 1) max(Rg(r, f),T(r,9)) < max(Tr(r, f), Tr(r, g)) + O(log(r),

and hence n < 2, which proves the conclusion whenever n > 3.

Assume now the hypothesis of Theorem C.6.3. Since

max(N(r, f), N(r, g)) < max(T(r, f),T(r, 9)),
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by (2) and Theorem C.4.3 we have
(n = 1) max(7T(r, f),T(r,g)) < 3max(T(r, ), T(r, g)) —log(r) + O1) (r € I).

Since r is not bounded, the inequality does not hold with n = 4, when r goes
to oo.

Finally, assume we are in the hypothesis of Theorem C.6.4. Supose first that
f and g belong to M, (d(0, R7)). By (2) and Theorem C.4.3, we have

(n—1)max(T(r, f),T(r,g)) < 3max(T(r, f),T(r,g)) + O1) (r € I).

Since T'(r, f), T'(r,g) are not bounded, the inequality does not hold with n = 5.
And now, suppose that that f and g belong to M, (D). We then obtain

(n=1)Tg(r, [) < Tr(r, f=g)+O(log(r)) (r > R) < 3(Tr(r, [)+Tr(r,9))+O(log(r)

and similarly

(n=1)Tr(r,9) < Tr(r, f~9)+O0(og(r)) (r > R) < 3(Tr(r, f)+Tr(r, g))+O(log(r),

therefore

(n = 1)(Tr(r, f) + Tr(r,g)) < 3(Tr(r, f) + Tr(r,g)) + O(log(r),

and hence n < 4, which proves the conclusion whenever n > 5. That finishes
the proof of Theorem C.6.4 O

Definitions:  Let f € M(K). The function f will be called a function of
uniqueness (resp. a function of strong uniqueness) for a family F of functions
defined in a suitable subset of K if given any two functions f, g € F satisfying
hof=hog (resp. ho f=>b(hog) with b€ K*), then f and ¢ are identical.

Similarly, we will consider the same question in the purely algebraic context.
Let E be an algebraically closed field, let h € E(x) and let F be a subset of E(x).
Then h will be called a function of uniqueness for F (resp. a function of strong
uniqueness for F) if given any two functions f, g € F satisfying ho f = hog
(resp. ho f =b(hog), with b € E*), f and g are identical.

Particuliarly in each case, if h is a polynomial, it will be called a polynomial
of uniqueness for the family F (resp. a polynomial of strong uniqueness for the
family F.

In Theorem C.6.6 we will need the following basic lemma [59]:

Lemma C.6.5: Let E be an algebraically closed field of characteristic 0 and
let P(x) = (n—1)%(a" —1) —n(n—2)(z"~! —1)* € E[z]. Then P admits 1 as
a zero of order 4 and all other zeros u; (1 <j<2n—06) are simple.

Theorem C.6.6: Let

Qz) = b((n +2)(n+ 12" —2(n+3)(n + D" + (n+3)(n + Q)I”H)
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with b € K*. Let R €]0,+00[. Then Q is a polynomial of uniqueness for M(K)
for every n > 2 and is a polynomial of uniqueness for M, (d(0, R™)) for every
n > 3.

Proof. Suppose f, g € M(K) (resp. f, g € My(d(0,R7)), resp. f, g €
M, (D)) and suppose that Q(f) = Q(g). Let h = g We can derive

(n+2)(n+1) (A" =1)g* =2(n+3) (n+1) (" ~1)g+(n+3) (n+2) (A" +' ~1) = 0.

If h is a constant, it is 1, a contradiction. So, we suppose h is not constant. If
g lies in M(K), so does h. Now, if g belongs to M, (d(0, R™)) or to M, (D) so
does h, respectively. Indeed, suppose that h € M;(d(0, R~)). Then clearly we
have T'(r, (n+2)(n+ 1)(h" +2)g?) > 2T(r,g) + O(1), while T(r, —=2(n + 3)(n +
(A2 = 1)g + (n+ 3)(n + 2)((A"*! — 1)) < T(r,g) + O(1), a contradiction.
Similarly if h € M;(D), we have the same contradiction.

Let P(z) = (n+2)?(2"™®)—1)— (n+3)(n+1)(2"*?—1)? € K[z]. By Lemma
C.6.5 P admits 1 as a zero of order 4 and all other zeros u; (1 < j < 2n) are
simple. By change of variable, we can obviously assume that h —u; has no zero
and no pole at 0. Consequently, we check that

(o (23 () e DD
n+2/\het3 —17)  (n+2)2(n+ 1)(hnt3 —1)2 7
Since (n+3)(h - 1)4 szl(h — ) is equal to a square, clearly each zero of
(n+2)2%(n— +1) (A3 —1)2 ©° duare, Y
h—uj, (1 < j < 2n) has order at least 2. Let J =|0, +o00] (resp. J =]0, R|, resp.
J = [R,+o0[). Consequently

(2n)T(r,h) + O(1) (r € J).

DN =

— 1
Z(r,h —uj) < §ZZ(T,h—uj) <

Suppose first that f and g belong to M(K) or to M(d(0,R™)). Then,
applying Theorem C.4.24 to h at the points u; (1 < j < 2n), we obtain

(2n — 1)T(r,h) <Y Z(r,h —u;j)+ N(r,h) —log(r) + O(1) <

1

fz r,h—u;)+N(r, h)+0(1) < =(2n)T(r, h)+N(r, h)—log(r)+O(1) (r € J).

[\D
l\:JM—l

and therefore (2n—1)T(r,h) < nT(r,h)+T(r,h) —log(r)+O(1). If f, g belong
to M(K), we conclude that n < 1. And if f, g belong to M, (d(0,R™)), we
conclude that n < 2.

Suppose now that f and g belong to M(D). Then we can apply Theorem
C.5.15 and we have (2n — 1)T(r,h) < nT(r,h) + T(r,h) + O(log(r)), therefore
we have again n < 2, which ends the proof. O
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Corollary C.6.7: Let P(x) € K[z]| have a derivative of the form c¢(x—a)™(z—
b)2. Then P is a polynomial of uniqueness for M(K) Vn > 2 and is a polynomial
of uniqueness for M(d(a, R™)) and for M(D) for every n > 3.

Theorem C.6.8: Let Q(x) = 2"t —2". Leta € K and R €]0, +oo[. Then Q
is a polynomial of uniqueness for A(K) and for A,(d(0, R™)) for every n > 2.

Proof. Let f, g € A(K)) (resp. f, g € A,(d(0,R™)), (resp. f, g € Au(D).
Suppose f*(f —1) = g"(g — 1). Let h = = and suppose h is not the constant
g

A" —1

1. Then we have g = (m

My(d(0, R7)), resp. to My(D)), so does g, a contradiction. Thus h belongs to
M(EK)\ K (resp. to M, (d(0,R™)), resp to M, (D)).

Now, since n > 2, by Corollary C.1.23 h has to take at least one of the

(n + 1)-th roots of 1 other than 1 and such a (n + 1)-th root of 1 cannot be a

n-th root of 1. Consequently, g admits a pole, a contradiction. Therefore, h is

identically equal to 1 and hence f = g. O

). Consequently, if h belongs to K (resp. to

Now, we must examine the situation in M(D) in order to obtain a result
similat to Theorem C.6.8

Notation: We will denote by A°(D) the set of functions f € A(D) having
infinitely many zeros in D and by M®(D) the set of functions f € M(D)
admitting at least either infinitely zeros or infinitely many poles.

Theorem C.6.9: Let Q(z) = 2" —a™. Let a € K and R €]0,+00[. Then
Q is a polynomial of uniqueness for A°(D) for every n > 2.

Proof. Let f, g € A%(D). Suppose f*(f —1) = g"(g —1). Let h = g and

n

hrtl —1
if h does not belong to M¢(D), neither does g, a contradiction. Thus h belongs
to M°(D)).

Now, since n > 2, by Theorem C.3.4, h has to take at least one of the (n+1)-
th roots of 1 other than 1 and such a (n + 1)-th root of 1 cannot be a n-th root
of 1. Consequently, g admits a pole, a contradiction. Therefore, h is identically
equal to 1 and hence f = g. O

suppose h is not the constant 1. Then we have g = ( ) Consequently,

We will examine particular cases where curves are defined by their equations
so that, for most of them, the p-adic Nevanlinna Theory lets us find easy proofs.
Most of results come from [32].

Definitions: Let F(z,y) € K[z,y]. A point (a,b) of the algebraic curve of
oF OF

9 = oy = 0. An algebraic

equation F'(x,y) = 0 is called a singular point if
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curve is said to be degenerate if it admits a singular point. An algebraic curve
of degree 2 (resp. 3) is called a conic (resp. an elliptic curve).

Remark: The p-adic functions sin and cos are bounded inside d(0, (p_ﬁ)*)
when the residue characteristic is p (resp. inside d(0,17) when the residue
characteristic is 0) and satisfy sin z 4+ cos? z = 1. Throughout the chapter, we

will denote by D an infinite bounded set included in a disk d(a,r), for some
r < R.

Remark: Let P, Q € K[z]. A point (o, 8) € K2 is a singular point of the
curve of equation P(xz) = Q(y) if and only if P(a) = Q(8) and P'(a) = Q'(B) =
0.

Remark: The p-adic functions sin and cos are bounded inside d(0, (pfﬁ )7)
when the residue characteristic is p (resp. inside d(0,17) when the residue
characteristic is 0) and satisfy sin? z 4+ cos?z = 1. Throughout the chapter, we

will denote by D an infinite bounded set included in a disk d(a,r), for some
r < R.
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C.7. Branched values

In complex functions theory a notion closely linked to Picard’s exceptional
values was introduced: the notion of ”perfectly branched value” [37]. Here we
shall consider the same notion on M(K), on M(d(a, R™)) and on M(D). Most
of results come from [54], [56] and [28].

Definitions Let f € M(K) (resp. let f € M(d(a, R™)), resp. let f € M(D))
and let b € K. The value b is said to be a perfectly branched value for f if all
zeros of f — b are multiple zeros, except finitely many. And in the present book,
b will be said to be a totally branched value for f if all zeros of f —b are multiple
zeros, without exception. Similarly, co will be called a perfectly branched value
for f if all poles of f are multiple but finitely many and it will be called a totally
branched value for f if all poles of f are multiple, without exception.

In C it is known that a transcendental meromorphic function admits at most
4 perfectly branched values and an entire function admits at most 2 perfectly
branched values. As explained by K. S. Charak in [37], these numbers, respec-
tively 4 and 2, are sharp. The Weierstrass function P has 4 totally branched
values (considering oo as a value) and of course, sine and cosine functions admit
two totally branched values: 1 and —1.

Here we will do a similar study on p-adic functions and obtain sometimes cer-
tain better results. Particularly, an entire function admits at most one perfectly
branched value.

Lemma C.7.1 is immediate:

Lemma C.7.1: Let f € M(K), (resp. let f € M, (d(0,R™)), resp. let f €
1 1
ME(D)), admitting a perfectly branched value b # 0. Then 7 admits 5 a5 @

1
perfectly branched value. If f admits O as a perfectly branched value, — admits
oo as a perfectly branched value. If f admits oo as a perfectly branched value,

? admits 0 as a perfectly branched value.

We have an immediate application of the definition with meromorphic func-
tions whose denominator is a small function with respect to the numerator or
vice versa.

Theorem C.7.2: Let f, g € AK)\ K[z] (resp. f, g € Au.(d(0,R7)), resp.

. 1(r, f) : T(r, f)
f, g € A°(D)) be such that lim sup > 2 (resp. limsup
( )) r—-+00 T(Ta g) ( r—R— T(T, g)
Tg(r, f)

lim sup i > 2). Then both i and g have at most two perfectly branched
r—l>+oo Tr(r, g) g /
values.

> 2, resp.

Proof. Set ¢ = i Without loss of generality, we can suppose that f and g have
g
no common zero. Indeed, suppose first that f, g € A(K)\K]z] or f, g € A°(D).
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By Lemma C.1.3 we can write f and g in the form f = f h and g = g.h
where f and § have no common zero and then Z(r,f) = Z(r, f) + (7‘7 h),
T
Z(r,g) = Z(r,g) + Z(r,h) and so much the more, we have Tin ]:3
)

Now, if f, g € A,(d(0,7)7)), we can place ourselves in an algebraically
closed spherically complete extension to obtain the same conclusion because the
Nevanlinna functions are the same in such an extension. Therefore we assume
that f and ¢ have no common zero.

Suppose first that f and g belong to A(K) \ K[z] or to A, (d(0, R™)), Since
f, ¢ have no common zero, we have Z(r,¢) = Z(r, f) and N(r,¢) = Z(r,g),
hence T'(r, ¢) = max(Z(r, f), Z(r,g)) + O(1).

1
Now, by hypothesis, there exists A\ < 3 and a sequence (1, )nen such that

lim 7, =400 (resp. lim 7, = R) and such that
n—-4o0o n—-—4oo

(1) T(rn,g9) < AXLT(rn, f) Vn € N.

Suppose that ¢ has 3 perfectly branched values b;, j =1, 2, 3. Applying
Theorem C.4.24 we have

3
(2) T(r,$) gz (r,¢ — b;) + N(r,¢) — logr + O(1).

— Z — b
But here, for each j = 1, 2, 3, we notice that Z(r,¢ — b;) < W +

q;log(r) with ¢; € N and Z(r,¢ — b;) = Z(r, f — bjg) < max(T(r, f), T(r, 9))-
But since T'(rp, f) > T'(rn, g), we have T(ry,, ¢ — b;) < T(ry, f) + O(1), hence

Z(r,¢—by) < Tmd) 4 g log(r,) + O(1). Now, putting ¢ = g1 + g2 + g3, by (2)
we obtain

3T (rn, f)

2T (1, f) < =

+T(rn,9) +2qlog(rn) + O(1)

hence
T(rn, ) < 2T (rn, g) + qlog(r,) + O(1),

a contradiction to (1).
Similarly, if f and g belong to A°(D), we can make the same reasoning by
replacing T' by Tr, Z by Zr and N by Ng. O

Theorem C.7.3: Let f, g € A(K)) (resp. let f, g € A(d(0,R™))) be such
that +00 > p(f) > p(g). Then

lim inf T(r,g)

r—R~ T(’/‘, f) =0
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Proof.  Suppose first f, g € A(K)). Let v = z((‘jt; and let (rp)nen be a se-
log(1 n
quence in |0, +o0o[ such that nll)rfoo T = 400 and nETm W =p(f).

By hypothesis, we have

i Lo8(og(lg[(rn)))

noFos Tog(log(|f1(ra)) =

hence
log(T'(7, 9))

n=to Log(T (1, f)
Take 3 €]v,1[. Then when n is big enough, we can get

T(rn,9)
T(ry, f)
But since 8 < 1 and since, by Lemma G, lim T(r,, f) = 400, one sees that
lim (T(r,, f))?~! = 0, which ends the proof when f and g belong to A(K).

Next, when f and g belong to A(d(0, R™)), we can make the same proof
with a sequence (r,) of limit R. O

<

2

< (T(rn, )P

Corollary C.7.4: Let f, g € AK) (resp. let f, g € A,(d(0,R7))) be such
that p(f) # p(g). Then both g and ? have at most two perfectly branched

values.

Corollary C.7.5: Let f € A,(d(0,R™)) and let f € Ay(d(0,R™)). Then both
f

= and g have at most two perfectly branched values.
g

The proof of the next theorems will require several basic lemmas.

Lemma C.7.6. Let (ov)i<i<t, (Bi)i<i<t be two finite sequences of K such that

t Bs
1- B

|| < R, |6i] <R Yi=1,....,t. Let O(z) = H (1 é) Then the function
i=1 @

\/O(x) is defined and belongs to A(K\ d(0,4R)). Moreover, if p # 2, it belongs
to A(K\ d(0, R)).

Proof. By Theorem B.20.23 there exists a unique function ¢ € A(d(1,(3)7))
with value in d(1,17) such that (€(u))? = u Vu € d(1,(3)~). Moreover, if p # 2,
then £ has continuation to a function £ € A(d(1,17)) with value in d(1,17) again

¢ y
and such that (¢(u))?> =u Vu € d(1,1). Here, we put u = H (1 i) O

=1 z
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Lemma C.7.7. Let g, h € AK) with % transcendental and let
t Bs

1— B
O(z) = H (1 i) with |oy;| < R and |B;| < RYi=1,...,t. Then the function
i=1 x
g(x)? — h(x)?0(x) belongs to A(K\ d(0,4R)) and satisfies
2 _'p2
lim Mim@mzm vm €N,

Proof. We first notice that g2 — h2© obviously belongs to A(K \ d(0, R)). Let
us fix m € N. By Lemma C.7.6, VO is defined in K\ d(0, R) and belongs to
A(K\ d(0,4R)). Let £ = v/O. Then can write g> — h?© = (g — hf)(g + ht).

Since < is transcendental, g2 — h2© is not identically zero. So, by Theorem
B.13.22 there exists a > 0 and g € Z such that |g — hl|(r) > ar? ¥r > R.

Suppose first h is transcendental. Since h is entire and since |[¢|(r) =1 Vr >
R, by Theorem B.13.22, we have

(1) VmeN, tim AT

r—oo T

Consequently |hl|(r) > |g — he|(r) and hence |he|(r) = |g + he|(r). Thus,
lg — he|(r)|g + hL|(r) > ar?|he|(r).

Then the conclusion comes from (1). Suppose now h is not transcendental,

hence it is a polynomial and then g is transcendental. Consequently, when r is
big enough, we have |g — h¢|(r) = |g|(r) = |g+ h¢|(r) and hence |g> — h?O|(r) =
(|g](r))?, which yields the same conclusion. O

Theorem C.7.8: Let f € M(K) be transcendental (resp. let f € M, (d(a, R7))).
Then [ has at most four perfectly branched values. Moreover, any function
g € M(K) has at most three totally branched values.

Remark. Let f € M(K). If « € K is a perfectly branched value for f,
then for every b € K, a + b is a perfectly branched value for f + b. Moreover,

1 1
if a # 0, then p is a perfectly branched value for —. So, we are going to
construct a function f € M(K) admitting three distinct totally branched values.
Let £ = H(l - £) € AK) with lim |aj| =+oc0 and a; # ax Vj # k. Let
a; Jj—-+o0

j=1 J
oo

u= 10_0[(1— i)aundletw: H(l—
k=1

a
2k he1

). So, both v and w belong to A(K)
a2k—1

2 2 2 _ 2
u” 4+ w and ¢ = w U

and satisfy uw = £. Now, let ¢ = . Then ¢%—o% = 2.
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2
Now, let g = (%) . Note that g admits 0 and 1 as totally branched values.

Consequently, g + 1 admits 1 and 2 as totally branched values and hence the

1
function f = T admits 1 and 3 as totally branched values. But, on the other

hand, all poles of g are multiple, hence so are those of g + 1. Consequently, f
also admits 0 as a totally branched value. Thus, Theorem C.7.8 is sharp as
far as totally branched values are concerned for meromorphic functions. One
can only ask whether there exist meromorphic functions admitting 4 perfectly
branched values where some of them are not totally branched values.

Theorem C.7.9: Let f € M(K) be transcendental and have finitely many
poles. Then f has at most one perfectly branched value.

Corollary C.7.10: Let f € A(K) be transcendental. Then f has at most one
perfectly branched value.

Remark. However, a polynomial can admit two values looking like ”perfectly
branched values”. Yet, the definition of a perfectly branched value does not
really apply to a polynomial or a rational function.

4 4
Example: Let P(z) = 23 — 2% + o7 Then 0 and 57 are two perfectly

4
branched values that are not totally branched. Indeed, on one hand —5 is

4
perfectly but not totally branched since P(z) — o7 = ch(x —1). On the other
2\2 1
hand, we can check that P(z) = (J: - g) (z+ 3)

Theorem C.7.11: Let f € My(d(a, R™)) have finitely many poles. Then f
has at most two perfectly branched values.

Corollary C.7.12: Let f € A,(d(a, R™)). Then f has at most two perfectly
branched values.

Corollary C.7.13: Let a; € K,© = 1,2,3 be pairwise distinct. There do not
exist f, g € M(K)\K, there do not exist f, g € A,(d(a, R™)) and there do not

eaist f, g € A(D) such that (g(x))? = (f(x) — a1)(f() — a2)(f() — as).

Proof. Suppose two functions f, g € M(K) \ K satisfy (g9(z))* = (f(z) —
a1)(f(x) — a2)(f(x) — a3). Then each zero of f —a;, ¢ = 1, 2, 3 must be
of order at least 2. And each pole of (f —a1)(f — a2)(f — a3) is a pole of g2,
hence is of even order and hence each pole of f is at least of order 2. f admits 4
totally branched values: aj, as, ag, 0o, what is impossible by Theorem C.7.8. [

Remark. We don’t know whether there exists a function f € A, (d(a, R7))
admitting two perfectly branched values. The only case when we can improve
Theorem C.7.11 is the case when K has residue characteristic 0.
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In the proofs of Theorems C.7.8 and C.7.9, without loss of generality, we can
obviously assume that all supposed perfectly branched values of the functions
we consider are finite, what we will do for simplicity.

Proof. (Theorems C.7.8, C.7.9, C.7.11.) If f lies in M, (d(a, R™)), we assume

that @ = 0. Suppose f has ¢ perfectly branched values b; with j = 1,...,¢
q

For each j, let s; be the number of simple zeros of f —b; and let s = Z 55.

j=1
Applying Theorem C.4.24, we have
q

(1) (¢ —1D)T(r, f) SZer i)+ N(r, f) —logr + O(1).
But since f — b; has s; simple zeros, we have
— Z —b; i1 T 1
Z(r, f—b) < 2] 32)“” %" L oy < I f)gsf BT L 0(1) vj =1,
hence

qT(rf)

(2) (¢=1DT(r, f) < T(r, f)+ (* —1logr +O(1).

2

By (2) clearly we have ¢ < 4 in all cases, which shows the first statement of
Theorem C.7.8 whenever f € M(K) or f € M,(d(0,R7)).

Further, suppose that f lies in M(K) or in K(z) and that b1,...,b, are
totally branched values. Then s = 0, hence by (2) we have

(3) (3 = DT(r, ) < —logr +0(1)

In Theorem C.7.8, since f is transcendental, we have logr = o(T'(r, f)) hence
q < 3.

Consider now the hypotheses of Theorems C.7.9 and C.7.11. Let ¢ be the
number of poles of f, taking multiplicity into account. We have N(r, f) <
tlogr 4+ O(1) hence by (1) we obtain (¢ — 1)T'(r, f) < gT(r7 f) + O(logr) and
hence ¢ < 2. Thus, Theorem C.7.11 is proved.

For the proof of Theorem C.7.9, without loss of generality, we may assume
that these perfectly branched values are 0 and b. Suppose first that f has

infinitely many zeros of order > 3. Then Z(r, f) — 2Z(r, f) is a function ()
such that

()
(@) TETM logr oo
therefore
(5) Z(T7 f) < T(T, f) B w(r) .

2
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On the other hand, by (1), with ¢ = 2 we have

vir)

T(va)gT(Taf)_ 2

+ O(logr)
and then, by (4), we can see a contradiction proving that f cannot admit 0 and
b as branched values.

Suppose now that all zeros of both f and f — b are of order 2 except finitely
many. So, there exists S > 0 satisfying the following properties:
i) all poles of f lie in d(0,.5)
i) [f](r) > [b] Vr >S5,
iii) all zeros of f and of f —b in K\ d(0, S) are of order 2 exactly.

P 2
We can then write f in the form 7g with P,V € KJ[z], g € A(K) and
hQ

deg(P) = k. Similarly, f — b is in the form QT with @ € K[z], h € A(K),
where all zeros of P,Q,V lie in d(0,.5) and all zeros of g, h lie in K\ d(0,5)
and are simple zeros. Set deg(V') =t We notice that g is transcendental.

By ii) we have |f|(r) = | f—b|(r) Vr > S. Consequently, by Lemma C.1.20, f
and f —b have the same number of zeros in d(0,.5) and hence deg(P) = deg(Q).
k k k Bi
1-—=
Let P(z) = 21;[1(36 —a;) and Q(x) = 21;[1(96 — fi). Let O(z) = };[1 (1 — %) and

=y V(@) o B0
let 2(x) = Pl) Of course, TEEIrlOO o 0.

Now, we have

g(2)? = h(z)?0(x) + bE(x).
By Lemma C.7.7, we can derive

(I - weln)

r—-+oo rm

a contradiction to lim |:t|i)
r—400 +1

=+4ooVmeN

= 0. This completes the proof of Theorem C.7.9.
O

Remark: Corollary C.7.12 may suggest that Theorem B.19.4 is wrong. In-
deed, by Theorem B.19.4, given sequences (@, )nen, (bn)nen, (¢n)nenind(0,R7)
such that

ol =l ol =l el =

together with H % = 400, there exists functions f € A(d(0, R™)) admitting
QA
n=0

each a, as a zero of order 2 and such that f — 1 admits each b,, as a zero of
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order 2 and such that f —2 admits each ¢, as a zero of order 2. Moreover, since
R
H Tl = 400, we can check that f € A,(d(0, R7)).
an
n=0

 The explanation is that, given such a function f, either f or f —1or f —2
has infinitely many other zeros of order 1 and therefore, at least one of these
three values (0, 1, 2) is not perfectly branched.

Theorem C.7.8 gives an easy proof of the impossibility to parametrize elliptic
and hyperelliptic curvs by meromorphic functions in all K.

Corollary C.7.14: Let a; € K, i = 1,2,3 be pairwise distinct. There do not
exist f,g € M(K), there do not exist f,g € Ay((d(a, R™)) and there do not exist

f.9 € A%(D) such that (9(x))* = (f(2) — a1)(f(z) — a2)(f(z) — a3).

Proof.  Suppose two functions f, gM(K)\K satisfy (g(z))? = (f(x)—a1)(f(z)—
as)(f(x) — az). Then each zero of fa;, (i = 1,2,3) must be of order at least
2. And each pole of (f — a1)(f — a2)(f — a3) is a pole of g2, hence is of even
order and hence each pole of f is at least of order 2. Thus, f admits 4 totally
branched values: a1, as, a3, 0o, which is impossible by Theorem C.7.8. O

Remark: In general, it is proven that curves of genus n > 1 admit no parametriza-
tion by meromorphic functions f € M(K) [39].
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C.8. Exceptional values of functions and derivatives

The chapter is aimed at studying various properties of derivatives of mero-
morphic functions, particularly their sets of zeros. Many important results are
due to Jean-Paul Bezivin.

Troughout the chapter, the field K is supposed to have characteristic zero.

We will first notice a general property concerning quasi-exceptional values
of meromorphic funcions and derivatives.

Notation: Let f € M(K), (resp. f € M(d(0,R™))) and let 7 be a property
satisfied by f at certain points. Let r €]0, R[. Assume that f(0) # 0, co. We
denote by Z(r, f | T) the counting function of zeros of f in d(0,r) at the points
where f satisfies 7, i.e. if (ay) is the finite or infinite sequence of zeros of f
in d(0, R™) with respective multiplicity order s,,, where 7 is satisfied, we put
Z(r, f) = Z sn(logr — log|an|).

lan|<r,T

Given two meromomorphic functions f, g € M(K) or f, g € M(d(a,R7))
(a € K, R > 0), we will denote by W(f, g) the Wronskian of f and g: f'g— fg'.

Theorem C.8.1: Let f € M(K)\ K(z) (resp. Let f € My(d(a, R7))). If f
admits a quasi-exceptional value, then f' has no quasi-exceptional value different
from 0.

Proof. Without loss of generality, we may assume a = 0 and that f has no zero
and no pole at 0. Let b € K and suppose that b is a quasi-exceptional value
of f. There exist P € K[z] and [ € A(K) \ K[z] (resp. and ! € A,(d(0,R7)))

without common zeros, such that f =b+ T

! l 2
Let ¢ € K*. Remark that f' —c= W Let a € K (resp. let
a € d(0,R7)). If a is a pole of f, it is a pole of f' — ¢ and we can check that
(1) wa(P'l—PlU —cl?) = w,(I') =wa(l) — 1
because a is not a zero of P.

Now suppose that a is not a pole of f. Then
(2) wa(f' —¢) =wa(P'l— Pl —cl?)
Consequently, Z(r, f' —c¢) = Z(r,(P'l — Pl' — cl?) | I(x) # 0). But, by (1)
we have
(3) Z(r,(P'l—Pl —cl?) | l(z) =0) < Z(r,1).
and therefore by (2) and (3) we obtain
(4) Z(r,f'—c) = Z(r,(P'l1—-Pl'—cl?) | l(z) # 0) > Z(r, P'l—Pl'—cl*)— Z(r,1)
Now, let us examine Z(r, P'l — Pl' — cl?). Let r €]0,4o0[ (resp. let r €
10, R[). Since | € A(K) is transcendental (resp. since | € A,(d(0, R7))), we can
check that when r is big enough, we have |Pl'|(r) < |c|(\l|(7"))2 and |Pl|(r) <

|c\(|l|(7"))27 hence clearly |P'l — PU'|(r) < |c|(|l\(r))2 and hence |P'l — Pl' —
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cl?|(r) = |c|(|l|(7"))2 Consequently, when r is big enough, by Theorem C.4.2
we have Z(r, P'l — Pl' — cl?) = Z(r,1?) + O(1). But Z(r,1?) = 2Z(r,1), hence
Z(r, P'l — Pl' — cl?) = 2Z(r,1) + O(1) and therefore by (4) we check that when
r is big enough,

(5) Z(r,f' —¢) > Z(r,1).

Now, if I € A(K), since [ is transcendental, by (5), for every ¢ € N, we have
Z(r,f" —c¢) > Z(r,l) > qlogr, when r is big enough, hence f’ — ¢ has infinitely
many zeros in K. And similarly if I € A, (d(0,R™)), then by (5), Z(r, f' — ¢)
is unbounded when 7 tends to R, hence f’ — ¢ has infinitely many zeros in
d(0, R™). O

We will now notice a property of differential equations of the form y(™) —yy =
0 that is almost classical [52].

The problem of a constant Wronskian is involved in several questions.
Theorem C.8.2: Let h, | € A(K) (resp. h, | € A(d(a, R7))) and satisfy
h
Rl —hl' = c € K, with h non-affine. If h, | belong to A(K), then ¢ =0 and 7

is a constant. If ¢ # 0 and if h, 1 € A(d(«, R7)), there exists ¢ € A(d(a, R™))
such that h'' = ¢h, 1" = ¢l.

Proof. Suppose ¢ # 0. If h(a) =0, then I(a) # 0. Next, h and [ satisfy

h// l//
) =7
Remark first that since h is not affine, h” is not identically zero. Next, every
zero of h or [ of order > 2 is a trivial zero of h'l — hl’, which contradicts ¢ # 0.
So we can assume that all zeros of h and [ are of order 1.

Now suppose that a zero a of h is not a zero of h”. Since a is a zero of h
1" 1

of order 1, — has a pole of order 1 at a and so does —, hence l(a) = 0, a

contradiction. Consequently, each zero of h is a zero of order 1 of h and is a
h//

zero of h” and hence, - is an element ¢ of M(K) (resp. of M(d(a, R7))))

that has no pole in K (resp. in d(a, R™)). Therefore ¢ lies in A(K) (resp. in
A(d(a, R7))).
The same holds for [ and so, I” is of the form ¢! with ¢ € A(K) (resp. in

" "

A(d(a, R7))). But since % =, we have ¢ = 1.

Now, suppose h, [ belong to A(K). Since h” is of the form ¢h with ¢ €
A(K), we have |h”|(r) = |¢|(r)|h|(r). But by Theorem C.2.10, we know that

|h”|(r) < —|hl(r), a contradiction when r tends to +oc. Consequently, ¢ = 0.
r
h
But then h’'l — hl’ = 0 implies that the derivative of 7 is identically zero, hence

7 is constant. O
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Corollary C.8.3 : Let h, | € A(K) with coefficients in Q, also be entire
functions in C, with h non-affine. If k'l — hl’ is a constant c, then ¢ = 0.

Theorem C.8.4: Let v € M(K) (resp. let ¥ € My(d(e, R7))) and let (€)
be the differential equations y" —1y = 0. Let E be the sub-vector space of A(K)
(resp. of A(d(a, R7))) of the solutions of (£). Then, the dimension of E is 0

or 1.

Proof. Suppose E is not {0}. Let h, | € E be non-identically zero. Then
Rl — hl"” = 0 and therefore h'l — hl’ is a constant c¢. On the other hand, since
h, | are not identically zero, neither are h”, I”. Therefore, h, | are not affine
functions.

Suppose 1 belongs to M(K) and that h, [ belong to A(K). By Theorem
C.8.2, we have ¢ = 0 and hence — is a constant, which proves that E is of

l

dimension 1.

Suppose now that v lies in M,,(d(«, R™)) and that h, [ belong to A(d(a, R7)).
If ¢ lies in A(d(«, R7)), then by Theorem C.8.1, E = {0}. Finally, suppose
that ¢ lies in M, (d(a, R7)) \ A(d(cv, R7)). If ¢ # 0, by Theorem C.8.2, there
exists ¢ € A(d(a, R7)) such that h” = ¢h, 1" = ¢l. Consequently, ¢ = 1,

h
hence ¢ € A(K) and therefore ¢ = 0. Hence h'l — hl’ = 0 again and hence 7 is

a constant. Thus, we see that F is at most of dimension 1. O

Remark: The hypothesis ¢ unbounded in d(a, R™) is indispensable to show
that the space E is of dimension 0 or 1, as shows the example given again by
the p-adic hyperbolic functions h(x) = cosh(z) and {(z) = sinh(x). The radius

of convergence of both h, [ is pp%ll when K has residue characteristic p and is 1
when K has residue characteristic 0. Of course, both functions are solutions of
y”" —y = 0 but they are bounded.

The following Theorem C.8.5 given in [13] is an improvement of Theorem
C.8.2. It follows previous results [14].

Theorem C.8.5: Let f, g € A(K) be such that W(f,g) is a non-identically
zero polynomial. Then both f, g are polynomials.

Proof. First, by Theorem C.8.2 we check that the claim is satisfied when W (f, g)
is a polynomial of degree 0. Now, suppose the claim holds when W (f,g) is a
polynomial of certain degree n. We will show it for n + 1. Let f,g € A(K) be
such that W(f, g) is a non-identically zero polynomial P of degree n + 1

Thus, by hypothesis, we have f'g — f¢' = P, hence f7g— f¢” = P’. We can
(f/g%P). Now consider the function Q = f’¢' — f'g”
(Ua=tg")y _ B[

f f

extract ¢’ and get ¢ =
and replace g’ by what we just found: we can get Q = f’
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Now, we can replace f”7g — fg” by P’ and obtain Q = (]NP,%PJM). Thus,
: : , [f1(R)|P|(R)
in that expression of @), we can write |Q|(R) < R2II(R)
@# VR > 0. But by definition, @ belongs to A(K). Consequently, @ is a
polynomial of degree t <n — 1.

Now, suppose @ is not identically zero. Since Q@ = W(f’,¢’) and since
deg(Q) < n, by the induction hypothesis f’ and ¢’ are polynomials and so are
f,g. Finally, suppose Q@ = 0. Then P'f’ — Pf” = 0 and therefore f’, P are two
solutions of the differential equation of order 1 for meromorphic functions in
K: (&) y =y with ¢ = %, whereas y belongs to A(K). By Theorem C.8.4,
the space of solutions of (£) is of dimension 0 or 1. Consequently, there exists
A € K such that f/ = AP, hence f is a polynomial. The same holds for g. [

, hence |Q|(R) <

Here we can find again the following result that is known and may be proved
without ultrametric properties:

Let F be an algebraically closed field and let P, Q € Flx] be such that
PQ' — P'Q is a constant ¢, with deg(P) > 2. Then ¢ = 0.

Notation: Let f € A(K). We can factorize f in the form Ff where the zeros
of f are the distinct zeros of f each with order 1. Moreover, if f(0) # 0 we will
take f(0) = 1.

Lemma C.8.6: Let U,V € A(K) have no common zero and let f =

If ' has finitely many zeros, there exists a polynomial P € Klx] such t
Uv-UV' =PV

v
v
hat

Proof. If V' is a constant, the statement is obvious. So, we assume that V is
not a constant. Now V divides V’ and hence V' factorizes in the way V' = VY
with Y € A(K). Then no zero of Y can be a zero of V. Consequently, we have

, u'v-uv' UV-UY
f(m): V2 = =2 :
Vv

The two functions U’V — UY and V-V have no common zero since neither
have U and V. So, the zeros of f’ are those of U’V — UY which therefore has
finitely many zeros and consequently is a polynomial. O

Theorem C.8.7:  Let f € M(K) have finitely many multiple poles, such that
for certain b € K, f' — b has finitely many zeros. Then f belongs to K(x).

U
Proof. Suppose first b = 0. Let us write f = v with U, V € A(K), having no

common zeros. By Lemma C.8.6, there exists a polynomial P € K[z] such that
U'V —UV’ = PV. Since f has finitely many multiple poles, V is a polynomial,
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hence so is U'V —UV’. But then by Theorem C.8.5, both U, V are polynomials,
which ends the proof when b = 0. Consider now the general case. f’ — b is the
derivative of f — bx that satisfies the same hypothesis, so the conclusion is
immediate. O

Notation: For each n € N*, we set A\, = max{ﬁ, 1 <k < n}. Given positive
n!
gl(n —q)!’
For convenience, in this chapter Log is the Neperian logarithm and we denote
by e the number such that Log(e) = 1 and Exp is the real exponential function.

integers n, ¢, we denote by Cd the combination

Remark: For every n € N* we have A, < n because k|k| > 1 Vk € N. The
equality holds for all n of the form p”.

Lemmas C.8.8 and C.8.9 are due to Jean-Paul Bézivin [13]:

Lemma C.8.8: LetU, V € A(d(0,R™)). Then for all r €]0,R[ and n > 1

we have
[U'V —UV'|(r)

Tnfl

UMY —ov®™(r) < [n!|An
More generally, given j, | € N, we have

U@ y® —gOy@)(r) <

. [U'V —UV'|(r)
‘(]!)(“)P‘jHT

U
Proof. Set g = v and f = ¢g’. Applying Theorem C.2.10 to f for k — 1, we

obtain

|g(k)\(r) _ ‘f(k_l)l(r) < |(]€— 1)" |f|(7“) _

rk=1 7
[U'V —UV'|(r)
oy == J
=D g

U
As in the proof of Theorem C.2.10, we set U = V(V) By Leibniz formula

again, now we can obtain

v =) v ()

q=1

hence
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Now we have

)"

(g |{U'V —UV'|(r)
(r)=19“(r) < (g — 1)!|W

and

Vo9 < o — g 2.

—q

Consequently, the general term in (1) is upper bounded as

cavtren (£)]y < 100~ 0o~ 0] 7 UV ()

l(g)((n —q)Y)] Vi(ryrm=t  —
[n|U'V —UV'|(r)
VIt
Therefore by (1) we obtain
‘Umy_vm(g)ngpmmxﬁﬁ&ﬁfyﬂ
and finally
(U<")V - V(”)U‘(r) < |n!|/\n|ljlv;ﬂ.

We can now generalize the first statement. Set P; = UWV — UV, By
induction, we can show the following equality that already holds for I < j:

l
j j I—h
U@hy® _ gOy@) — Z Clh(_l)th(Jrh ).
h=0

Then, the second statement gets just an application of the first. O

Lemma C.8.9: Let UV € A(K) and let r, R €]0,400[ satisfy r < R. For
all z,y € K with |z] < R and |y| < r, we have the inequality:
RIU'V —UV'|(R)

e(LogR — Logr)

Uz +y)V(z) = U@)V(z +y)| <
Proof. By Taylor’s formula at the point x, we have

U™ (2)V (z) — U(z)V(")(l‘)yn

Ul+y)V(z)-U@)V(r+y) = Z

n!
n>0

Now, by Lemma C.8.8, we have

n

U™ (2)V () = U(@)V" () "

n!

_ v — o)
— 'n Rn—1




302 Meromorphic functions and Nevanlinna Theory

= MRU'V — UV’|(R)(%)"

(n) _ (n
Consequently, lim U (z)V(x) — U(z)V " (x)

= 0, therefore we can de-
n—-+o0o ’n,'

yTL

fine
B= maxnzl{)\n(%) YR|U'V —UV'|(R) and we have |U (z+y)V (z)—U(2)V (z+
y)| < B. Now, as remarked above, we have A, < n. We can check that the

t
function h defined in )0, +o00] as h(t) = t(%) reaches it maximum at the point
1

u = m. Consequently, B < ————————— and therefore

e(LogR — Logr)

R|U'V — UV'|(R)
e(LogR — Logr)

Uz +y)V(z) = U@)V(z+y)| <

Notation: Let f € M(d(0,R™)). For each r €]0, R], we denote by ((r, f)
the number of zeros of f in d(0,r), taking multiplicity into account and set
&lry f) = ¢(r, %) Similarly, we denote by 3(r, f) the number of multiple zeros

of f in d(0,r), each counted with its multiplicity and we set v(r, f) = 5(r, %)

Theorem C.8.10: Let f € M(K) be such that for some c,q €]0,+oo[, v(r, f)
satisfies y(r, f) < er? in [1,+o0[. If ' has finitely many zeros, then f € K(x) .

U
Proof. Suppose f’ has finitely many zeros and set f = —. If V is a constant,
the statement is immediate. So, we suppose V is not a constant and hence it
admits at least one zero a. By Lemma C.8.6, there exists a polynomial P € K]z]
such that U'V —UV’ = PV. Next, we take r, R € [1,4+o00[ such that |a| <7 < R
and z € d(0, R), y € d(0,7). By Lemma C.8.9 we have

R|IU'V — UV'|(R)
e(LogR — Logr)

Uz +y)V(z) = U@@)V(z+y)| <

Notice that U(a) # 0 because U and V have no common zero. Now set | =

1
max(1, |a|) and take r > [. Setting ¢y = ————, we have
(1, la) \= T
R|P|(R)|V|(R)
<c¢g—t".
Viaty)ls e LogR — Logr

Then taking the supremum of |V (a + y)| inside the disk d(0,r), we can derive

R|P|(R)|V|(R)

1 < .
(1) Vie) < e LogR — Logr
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1
Let us apply Corollary B.13.30, by taking R = r + ot after noticing that the
N r
number of zeros of V(R) is bounded by B(R, V). So, we have

1 \B(r+570).V) ~
) V|(r).

Now, due to the hypothesis: 8(r,V) =~(r, f) < er? in [1,4o00[, we have

(2) VIR < (1+

3)

1 \B((r+77),V) 1\ [letr+3)™
(1+ ) < (1+ )

1 1
Exp [c(r + T—q)qLog(l + rqﬁ)}

The function h(r) = c(r + —=)™Log(l + —r) is continuous on ]0, +oo[ and

equivalent to ¢ when r tends to +oo. Consequently, it is bounded on [I, +o0].
r
Therefore, by (2) and (3) there exists a constant M > 0 such that, for all

r € [I,4o00[ by (3) we obtain
(1) 71+ ) < MIPIGr).

On the other hand,

1 1
Log(r + T—q) — Logr = Log(l + Mﬁ)

clearly satisfies an inequality of the form

1 C2
Lo(1+ 1) 2 o

in [I, +oo[ with ¢o > 0. Moreover, we can obviously find positive constants c3, ¢4
such that

1 1 .
(r+ T—q)\P| (rJr r—q) < cgr.

Consequently, by (1) and (4) we can find positive constants c5, c¢g such that
[V|(r) < csrs|V|(r) ¥r € [I,+oco[. Thus, writing again V = V'V, we have
[V|(r)|V|(r) < esr6|V|(r) and hence

[V |(r) < esr® ¥r € [l, +oo|.

Consequently, by Corollary B.13.31, V is a polynomial of degree < cg and hence
it has finitely many zeros and so does V. But then, by Corollary C.8.7, f must
be a rational function. O

Corollary C.8.11: Let f be a meromorphic function on K such that, for some
¢, q €)0,+oo[, y(r, f) satisfies y(r, f) < er? in [1,+00]. If for someb e K f' —b
has finitely many zeros, then f is a rational function.
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Proof. Suppose f' — b has finitely many zeros. Then f — bx satisfies the same
hypothesis as f, hence it is a rational function and so is f. O

Corollary C.8.12: Let f € M(K)\K(z) be such that (r, f) < er? in [1,+00]
for some ¢,q €]0,+0c0[. Then for each k € N*, %) has no quasi-exceptional
value.

Proof. Indeed, if £ = 1, the statement just comes from Corollary C.8.11. Now
suppose k > 2. Each pole a of order n of f is a pole of order n + k of f*) and
%) has no other pole. Consequently, we have y(r, f*=1) = &(r, fF=D) < kerd,
So, we can apply Corollary C.8.11 to f*~1 to show the claim. O
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C.9. The p-adic Hayman conjecture

In the fifties, Walter Hayman asked the question whether, given a meromor-
phic function in C, the function ¢’¢"™ might admit a quasi-exceptional value
b # 0 [65]. W. Hayman showed that ¢’¢g™ has no quasi-exceptional value, when-
ever n > 3. Henceforth, the problem was solved for n = 2 by E. Mues in 1979
[76] and next for n > 1, in 1995 by W. Bergweiler and A. Eremenko [5] and
separately by H. Chen and M. Fang [38]. The same problem is posed on the
field K, both in M(K) and in a field M(d(a, R7)) (a € K, R > 0).

Throughout the chapter, the field K is supposed to have characteristic 0.

The following lemma is immediate.
Lemma C.9.1: Let g € M(K), (resp. let g € M(d(a,R7)), a €K, R>0),
1
set f = = and let n € N*. Then ¢'g"™ admits a quasi-exceptional value b € K*
g

if and only if f' + bf"2 has finitely many zeros that are not zeros of f.

Remark: We can also consider the same problem when n = —1 ie. the
question whether f’ + bf has infinitely many zeros. We will examine this in
p-adic analysis. When n = 0, in C the well known counter-example furnished
by the function tan z shows that f’ — f2 may have no zero. On the field K, we
will examine the cases n = —1 and n = 0.

Henceforth we will examine that problem by considering the set of zeros of
f +bf™, with b # 0. In the field K, two theorems are specific to p-adic analysis.
Both are based on the following lemma.

Lemma C.9.2: Let f € M(K), (resp. let f € M(d(0,R™)), R >0), suppose

that f admits infinitely many zeros and suppose that there exists a sequence of

intervals [r},, ] such that lim 7/ =-+occ (resp. lim r), = lim r) =R)
n—-—+oo n—+oo n—-+o0o

n''n

and such that |(f" + f™)|(r) = |f™|(r) Vr € U [rh,,ri]. Let m € N* be # 2.
neN
Then f' 4+ f™ has infinitely many zeros that are not zeros of f.

Proof. Let J = U [r!.,7]. By Corollary B.13.6 we have
neN

vi(f + f™logr) = vt (™ logr), v (f + ™ logr) = v (f,logr) Vr € J.

Consequently, in each disk d(0,7) with » € J, f and f' + f™ have the same
difference between the number of zeros and poles. Now, if m > 3 the poles of
f'+ f™ and f™ are the same taking multiplicity into account. And when m = 1,
each pole of f is a pole of ' + f with a strictly greater order. Consequently,
for each r € J, the number of zeros of f' + f™ in d(0,r) is superior or equal to
this of f™.
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Now, for each n € N, let s,, be the number of distinct zeros of f in d(0,7]).
Since f has infinitely many zeros, the sequence s, is increasing and tends to
+00. On the other hand, for each zero a of order u of f, either « is not a zero of
f 4+ f™ (when w = 1), or it is a zero of order u — 1. Consequently, the number
of zeros of '+ f™ in d(0,r]) which are not zeros of f is at least s,,. Thus we
have proved that f’ + f™ has infinitely many zeros that are not zeros of f. [

We will prove together Theorems C.9.3 and C.9.4.
Theorem C.9.3: Let f € M(K) \ K(z) satisfy limsup|f|(r) >0 and let b €

K*. Let m € N* be > 3. Then f' + bf™ has infinitely many zeros that are not
zeros of f.

Theorem C.9.4: Let f € My(d(a, R™)) satisfy hmbup|f|( ) = 400 and let

beK*. Letm e N* be>3. Then f'+bf™ has mﬁmtely many zeros that are
not zeros of f.

Proof. (Theorems C.9.3 and C.9.4). Without loss of generality, we can assume
b =1 and when f € M(d(a,R™)), we may assume a = 0. By hypotheses,

there exists a sequence of intervals [r!,7!/] such that liIJIrl rl =400 (resp.
n—

lim 7/, lim 7! = R) and such that, putting J = U [rl,, 7], we have

n)'n
n—-+o0o n—>+oo

limsup | f|(r) > 0 (resp. lim |f|(r) = +o0).
T—00, s R—
redJ reJ

Suppose first we assume the hypothesis of Theorem C.9.3. Let

limsu r
= Pr—o0 |I( ) We will prove that there exists ¢ > 0 such that

2
I+ f™(r) = |f™](r) Vr € JN[t,+o00[. By Theorem C.2.10 we have |f’|(r) <
@. Consequently, when r lies in J, there exists s > 0 such that |f|(r) >
M Vr € [s,+oo[NJ.

neN

(1) ™ = L) M™=E = | £ () M
Next, when r is big enough, rM ™~ is greater than 1, hence (|f|(7))™ > | f'|(r).
Thus there exists ¢ > s such that (|f|(r))™ > |f'|(r) Vr € J N [t,+o0[. Let
J'=JN[t,+oo. So we have |f' + f™|(r) = |f™|(r) Vr € J'.

Suppose now that we assume the hypothesis of Theorem C.9.4. We have
f fl(r 1
ey < I L0 g1

. Then we have

(1£1)™ = BIF () (| f1(r))™

Now, when r is close enough to R, r € J, B|f(x)|™ ! is strictly greater than
1, hence (|f|(r))™ > |f’|(r). Thus there exists ¢ > 0 such that (|f|(r))™ >
[£'|(r) Vr € [t,+o0[NJ. We can set again J' = J N [t, R[ and then we have

[f ) = 17 () vr e J!
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We can now conclude in both theorems C.9.3 and C.9.4. For each n € N,
let g, be the number of zeros of f in d(0,7//). Suppose the sequence (¢, )nen

is bounded. Then, f has finitely many zeros, hence it is of the form W with

P € Klz] and h € A(K) (resp. h € A,(d(0,R7))). Consequently, we have
lir+n |f1(r) =0 (resp. liIII%li |f](r) = 0), a contradiction to the hypothesis in

both theorems. Therefore, the sequence (g )nen which is increasing by defi-
nition, tends to +00. Now, in each Theorems C.9.3 and C.9.4 we may apply
Lemma C.9.2 showing that f’ 4 f™ has infinitely many zeros that are not zeros
of f. O

In the case m = 1, we can have a better conclusion in M(K).

Theorem C.9.5: Let f € M(K)\K(z). For eachb € K*, f'4+bf has infinitely
many zeros that are not zeros of f.

Proof. Without loss of generality, we can assume again b = 1. By Theorem
C.2.10 we have |f’|(r) < |f|(r) when r is big enough and hence |f’ + f|(r) =
|£](r) in an interval I = [s, +oo[. Suppose first that f has infinitely many zeros.
We can then apply Lemma C.9.2 and get the conclusion.

Suppose now that f has finitely many zeros. Then f has infinitely many
poles ¢, of respective order t,. Since K has characteristic zero, f’ admits each
¢, as a pole of order t,, + 1 and similarly, f' + f also admits each ¢, as a pole
of order t,, + 1. Thus, we have N(r, f' + f) = N(r,f) + N(r, f). But since
|+ fl(r) = |f|(r) holds in I, we have v(f’' + f,logr) = v(f,logr) Vr € I and
hence Z(r, f' + f) — N(r, f' + f) = Z(r, f) — N(r, f), therefore Z(r, f' + f) —
(N(r, )+ N(r, f)) = Z(r, )~ N(r, f) and hence Z(r, '+ f) = Z(r, [) + N(r. f).
Since we have supposed that f has finitely many zeros and since f has infinitely
many poles, f’ + f has infinitely many zeros and all but finitely many are not
zeros of f. O

Concerning functions f’ + bf2, we can obtain a first conclusion when f is
analytic:

Theorem C.9.6: Let f € A(K)\ K(z) (resp. let a € K, let R €]0,+00[ and
let f € Ay(da(, R7))). For each b € K*, f' +bf? has infinitely many zeros that
are not zeros of f.

Proof. Without loss of generality, we can assume b = 1 and a = 0. Clearly,
when 7 is big enough, in |0, +-00[ (resp. in ]0, R[), we have |f' + f|(r) = | f?|(r)
therefore, by Corollary B.13.6, f2 and f’ 4+ f2 have the same number of zeros
in C(0,7) (taking multiplicity into account). Let @ € C(0,7) be a zero of f of
order q. When 7 is big enough, it is a zero of order 2¢ for f2 and it is a zero of
order ¢ — 1 for f' + f2. Consequently, by Corollary B.13.6, f’ + f2 has at least
g+ 1 zero in C(0,r) that are not zeros of f (taking multiplicity into account).
This is true for every such zeros of f and hence f’+ f2 has infinitely many zeros
that are not zeros of f. O
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Corollary C.9.7: Letm € N* be > 1, let f € A(K) \ K(x). For each b € K*,
f'+bf™ has infinitely many zeros that are not zeros of f.

Corollary C.9.8: Let m € N be > 2, let a € K, let R €]0,+00[ and let
f € Au(d(a,R7))). For each b € K*, f' + bf™ has infinitely many zeros that
are not zeros of f. Theorems C.9.9 was published in [23] and partially in [78]:

Theorem C.9.9: Let f € M(K)\K(x) (resp. let a € K and R € R% and let
feMy(d(a,R7))) and let m € N. If m > 5 then for each b € K*, f'+bf™ has
infinitely many zeros that are not zeros of f. If m =4, if f € M(K)\K(z) and
if f admits at least s multiple zeros and at least t multiple poles, then f' + bf*
admits a number of zeros that are not zeros of f (taken account of multiplicity)
+t

5

Proof. By Corollary B.13.2 the zeros of f' + bf™ in K are the same as in a
spherically complete algebraically closed extension K of K. So, for simplicity,
we can suppose that the field K is spherically complete without loss of generality.
We can also suppose that b = 1. Then if f € M(K) \ K(z) we can obviously

S
which is strictly superior to

we can write f = 7 with h, I € A(K), having no common zeros and if f €

h
M(d(a, R7)), since K is spherically complete, we can write f = 7 with h, | €
A(d(a, R™)), having no common zeros again.

1
Let g = ? and let n = m — 2. So, by Lemma C.9.1, the problem is re-

duced to show that ¢’¢g™ — 1 has infinitely many zeros. Then, ¢'¢" — 1 =
(I'h — B — p+2
hn+2

and since h, | have no common bzeros, this is of the form

— where P is a polynomial of degree q. Now, set F' = (I'h—h'l)I™. Applying
Corollary 43.13 to F' we have
(1) T(r,F)=ZrF)+0Q1) < Z(r,F)+ Z(r,F — P)+ T(r,P) + O(1). By
(1) we derive
Z(r,'h=h'1)+nZ(r,l) < Z(r,'h—=W1)+Z(r,1)+ Z(r, F = P)+T(r, P)+ O(1).
Actually, Z(r, F—P) = Z(r, h), hence nZ(r,1) < Z(r,1)+Z(r,h)+T(r, P)+O(1)
and hence (n —1)Z(r,1) < Z(r,h) +T(P)+ O(1). But since T(r, P) = qlogr +
O(1), we have
(2) (n—1)Z(r,l) < Z(r,h) +qlogr + O(1)

Now, consider the hypothesis f € M(K). By Theorem C.9.3, if lrlgigf |f](r) >0

ie. if
liminf Z(r, f) — N(r, f) > —oo the claim is proved. Consequently, if the claim

r——4oo
is not true, we can assume lim+inf Z(r,f) = N(r, f) = —oc0 i.e.
r—+4o00
(3)  liminf Z(r,l) — Z(r,h) = +o0
r—-+4o0
Since f is transcendental, by (3) we notice that [ is transcendental. Conse-
quently, (2) is impossible whenever n > 3, i.e. m > 5.

+
Z
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slogr
2

Now, suppose m = 4 .i.e n = 2. More precisely Z(r,l) < Z(r,1) —
tlogr

and Z(r,h) < Z(r, h) , so by Relation (1) we have

(1) (0= 1D)Z(1) < Z(r, ) + (g~ “5) logr +0(1).

t
Then Relation (3) implies g — % > 0 and hence f’f™ admits a number of
+t

zeros strictly superior to i
Now, suppose that f € M, (d(0, R~)). By Theorem C.9.4, if TEIE, |fl(r) = +o0

ie. if lilil}zllf Z(r, f) — N(r, f) = +oo the claim is proved. Consequently, if the

claim is not true, we can assume

(5) lirgli{r}fZ(r, f)—=N(r, f) < 4o0.

But by (2), we see that (5) is impossible whenever n > 3 i.e. m > 5. O

Corollary C.9.10: Leta € K, R > 0 and let f € My((a,R™)). For every
neN, n>3, for every b € K*, f'f™* — b has infinitely many zeros.

Corollary C.9.11: Let f € M(K)\K(x) have s multiple zeros and t multiple
poles. Let b € K*. Then if f has infinitely many multiple zeros or poles, then
f'+bf* has infinitely many zeros that are not zeros of f.

We will now thorougly examine the situation when m = 4 i.e. n = 2, as
made in [71]. This requires several basic lemmas.

Lemma C.9.12: Let f € M(K) be transcendental and such that f' has finitely
ff
(f')?

many multiple zeros. Then

has no quasi-exceptional value.

Proof. Let g = fi A pole of g is a zero of f’, hence by hypothesis, g has

/

finitely many multiple poles. Consequently, by Theorem C.8.7, ¢’ has no quasi-
AV "
exceptional value. And hence neither has 1—¢’. But ¢’ = =17 =1- ﬁ

‘ (72 (72

Therefore -5 has no quasi-exceptional value. O

(")

Lemma C.9.13: Let f € M(K) be transcendental and have finitely many
multiple zeros. Then f"f + 2(f")? has infinitely many zeros that are not zeros

of f.

Proof. Suppose first that f’ has infinitely many multiple zeros. Since f has
finitely many multiple zeros, the zeros of f’ are not zeros of f except at most
finitely many. Hence f’ has infinitely many multiple zeros that are not zeros
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of f. And then, they are zeros of f”, hence of f”f + 2(f’)?, which proves the
statement.
So we are now led to assume that f’ has finitely many multiple zeros. By

" N2
Lemma C.9.12, M

72 has infinitely many zeros. Let ¢ € K be a pole of

order g of f. Without loss of generality, we can suppose ¢ = 0. The beginning
o(z)

of the Laurent developpement of f at 0 is of the form a—_qq + 7 whereas
x x
" 2 ! 2
» € M(K) has no pole at 0. Consequently, ff(—;,)Z(f) is of the form

(a—q)*(3¢> + q) + z¢(x)
(a—q)%(q?) + z1p(x)

"+ 2(f1)?
(f')?
is a zero of f”f + 2(f")? and

whereas ¢, 1 € M(K) have no pole at 0. So, the function has no

ff+2(f)?
(f')?
hence f”f + 2(f’)? has infinitely many zeros.
Now, let us show that the zeros of f”f + 2(f’)? are not zeros of f, except
maybe finitely many. Let ¢ be a zero of f”f + 2(f’)? and suppose that c is a
zero of f. Then, it is a zero of f’ and hence it is a multiple zero of f. But by
hypotheses, f has finitely many multiple zeros, hence the zeros of f” f + 2(f')?
are not zeros of f, except at most finitely many. That finishes proving the
claim. O

zero at 0. Therefore, each zero of

Lemma C.9.14: Let f € M(K) be transcendental and let b € K* be such that
f2f" — b has finitely many zeros. Then, N(r, f) < Z(r, f) + O(1).

Proof. Let F = f2f’. Since F —b is transcendental and has finitely many zeros,
P
it is of the form h((x)) with h € A(K) \ K[z]. Consequently, |F|(r) is a constant
x
when r is big enough and therefore, by Theorem C.4.2 we have Z(r,F) =
N(r,F) + O(1) when r is big enough. Now, Z(r,F) = 2Z(r, f) + Z(r, f')
and, by Theorem C.4.14, Z(r, f') < Z(r, f) + N(r, f) — logr 4+ O(1). On the
other hand, by Theorem C.4.14 again, we have N(r, F)) = 3N(r, f) + N(r, ).
Consequently, 3N(r, f) + N(r, f) < 3Z(r,f) + N(r, f) — logr + O(1), which
proves the claim. O

Theorem C.9.15 was published in [55].

Theorem C.9.15: Let f € M(K)\K(z). Then for each b € K*, f' 2 —b has
infinitely many zeros.
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Proof. Let b € K* and suppose that the claim is wrong, i.e. f2f’—b has s zeros,
taking multiplicity into account. By Theorem C.9.9, we may assume that f has
finitely many multiple zeros and finitely multiple poles. Set F' = f2f’. Then
F' = f(f"f+2(f)?). By Lemma C.9.13, f” f+2(f")? has infinitely many zeros
that are not zeros of f. Consequently, F’ admits for zeros: the zeros of f and
the zeros of f”f + 2(f")?. And by Lemma C.9.13, there exists a sequence of
zeros of f"f + 2(f’)? that are not zeros of f.

Let S = {0,b} and let Z5 (r, F') be the counting function of zeros of F’
when F(xz) is different from 0 and b. Since F' — b has finitely many zeros, the
zeros ¢ of F’ which are not zeros of f cannot satisfy F(c) = b except at most
finitely many. Consequently, there are infinitely many zeros of F’ counted by
the counting function Z§ (r, F’) and hence for every fixed integer ¢ € N, we have

(1) Zg(r, F') > tlogr + O(1).

Let us apply Theorem C.4.24 to F'. We have
(2) T(r,F)<Z(r,F)+Z(r,F—b)+N(r,F)— Z@g(r, F') —log(r) + O(1).
Now, we have

(3) Z(r, F) < Z(r, f)+ Z(r, )

(4) N(r, F) = N(r, f)

and since the number of zeros of F' — b is s, taking multiplicity into account,
(5) Z(r,F —b) < slogr + O(1).

Consequently, by (2), (3), (4), (5) we obtain

6) T(r,F)< Z(r,f)+ Z(r, f')+ N(r, f) — Z5 (r, F') + (¢ — 1) log 7 + O(1).

On the other hand, by construction, T'(r,F) > Z(r,F) = 2Z(r, f) + Z(r, ')
hence by (6) we obtain (7):

(7) Z(r, f) < N(r, f) = Z5(r, F') + (s — 1) logr + O(1).

Now, by Lemma C.9.14, we have N(r, f) < Z(r, f) + O(1) hence by (7) we
obtain 0 < (s — 1) logr — Z5 (r, F') + O(1) and hence by (1), fixing t > s — 1 we
can derive 0 < (s — 1)logr — tlogr + O(1), a contradiction. That finishes the
proof of Theorem C.9.15. O

By Lemma C.9.1, Theorems C.9.9 and C.9.15, we can now state the general
result on the p-adic Hayman conjecture:
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Corollary C.9.16: Let f € M(K) be transcendental and let b € K*. Then
for every n > 2, f'f™ — b has infinitely many zeros. For every m >4, f' 4+ bf*
has infinitely many zeros that are not zeros of f.

Concerning the case m = 3 i.e. n = 1 which remains unsolved, thanks to
Theorem C.8.10, Corollary C.9.16 has an immediate application to the conjec-
ture with additional hypotheses.

Corollary C.9.17: Let f € M(K). Suppose that there exists c,q €]0,+o0],
such that (r, f) < er? Vr € [1,4+o00[. If f'f™ — b has finitely many zeros for
some b € K*, with n € N, then f € K(z).

Proof. Suppose f is transcendental. By hypothesis, f**! satisfies ((r, ﬁ) =

E(r, fPY) < e(n + 1)r? Vr € [1,4+o0[ hence by Corollary C.9.16 and Theorem
C.8.10, f'f™ has no quasi-exceptional value different from 0. O

Corollary C.9.17 may be writen in another way:

Corollary C.9.18: Let f € M(K) \ K(z). Suppose that there exists c,q €
10, 40|, such that ¢(r, f) < cr? Vr € [1,+o0o[. Then for allm € N, m > 3 and
for allb e K, f/ —bf™ admits infinitely many zeros that are not zeros of f.

1
Proof. Weset g = ? Then by Theorem C.9.17 ¢’¢g™ 2 has no quasi-exceptional

value. Consequently, given b € K*, ¢’¢g™ 2 + b has infinitely many zeros and
hence [ —bf™ has infinitely many zeros that are not zeros of f. Next, if b = 0,
by Theorem C.8.10, f’ has infinitely many zeros. O

Consider now the case m = 3 ie. n = 1.

Theorem C.9.19: Let f € M(K). Suppose that there exists c,q €]0,+00],

/

such that B(r, f) < cer? ¥r € [1,400[. Then, for allb € K, el b has infinitely

many zZeros.

1
Proof. Set ¢ = = again. Since the poles of g are the zeros of f, we have

~(r,g) < er?. Consequently, by Corollary C.8.11, ¢’ has no quasi-exceptional
value. O

Remark: Using Theorem C.9.19 to study the zeros of f — bf? that are not
zeros of f is not so immediate, as we will see below because of residues of f
at poles of order 1. Of course, if % is an affine function, f' + f2 has no zeros,
except if it is identically zero. And if it is not identically zero, the residue at
the pole is not 1 in the general case.
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h
Lemma C.9.20: Let f = 7€ M(K) with h, 1 € A(K) having no common
zero, let b € K* and let a € K be a zero of h'l — hl' + bh? that is not a zero of

1
f'+bf2. Then a is a pole of order 1 of f and res(f,a) = 7
Proof. Clearly, if [(a) # 0, a is a zero of f'+bf?2. Hence, a zero a of h'l—hl’+bh?
that is not a zero of f’ + bf? is a pole of f. Now, when [(a) = 0, we have
h(a) # 0 hence I'(a) = bh(a) # 0 and therefore a is a pole of order 1 of f such

h h
that l/EZi =3 But since a is a pole of order 1, we have res(f,a) = Z’EZ;’ which
ends the proof. O

Theorem C.9.21 is not a result specific to p-adic analysis but it will be useful
in Theorem C.9.23.

Theorem C.9.21: Let f € M(K), (resp. let a € K, let f € M(d(a,R7))),
let b e K* and let o € K (resp. let o € d(a, R™)) be a point that is not a zero

of f and such that the residue of f at « is different from 5 Then « is a zero
!/

of f' +bf? if and only if it is a zero of f—Q +b. Moreover, if it is a zero of both

functions, it has the same multiplicity with both.

Proof. Suppose first o is a zero of f/ + bf2. If a is not a pole of f, of course
it is a zero of P + b with same multiplicity. Suppose now that « is a pole of
f: since it is not a pole of f’ 4+ bf? it must be a pole of order 1 of f. Without
loss of generality, we may assume that o = 0 (resp. a = a = 0). Consider
the Laurent series of f at 0: f(x) = il O ao + a1z + 22¢(x) with ¢ € M(K)
(resp. ¢ € M(d(0,R™)) and ¢(0) # oo?c Then f’ + bf? is of the form

F(x) +bf(x)? = 2 + a1+ b(a2 + 2a1a_1) + an(z)

(71 ;|> ba_l) + 2ba0a1
T

T

with n € M(K) (resp. n € M(d(0, R™)) and 7n(0) # oo and hence, we have
a_1(=1+ba_1) = 0, apa_; = 0, a3 + 2a;a_; = 0. Since by hypothesis

res(f,a) # —1 we have (1 +ba_1) # 0, hence a_; = 0, a contradiction. Conse-
!/

quently, every zero of f/ + bf? that is not a zero of f is a zero of % + b with
same multiplicity.
!

Conversely, suppose now that « is a zero of F +b. If a is not a pole of f, it

is a zero of f' 4 bf?2, with the same multiplicity, because by hypothesis it is not
!

a zero of f. Now suppose that « is a zero of < + b and is a pole of f. Clearly,

it is a pole of order 1 and again, we may assume that o = 0.
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Consider again the Laurent series of f at 0: f(x) = % + ag + a1z + 3¢ (x)
with ¢ € M(K) and ¢(0) # co. Then

I —zt + a1 + ay(x)

x2

P 7((1721)2 + Ll;al + a3+ 2ar1a_1 + zn(x)

x

/

where both 1, n € M(K) have no pole at 0. Clearly, % is analytic at 0 and

/

-1 1
its value is —. But since 0 is a zero of ﬁ + b, we have a_q = 7 what is
a1
!

excluded by hypothesis. Thus we have proved that every zero of - +b is a zero

of f'+bf? (that is not a zero of f) with the same multiplicity and this ends the
proof of Theorem C.9.21. O

Theorem C.9.22: Letb € K* and let f € M(K) have finitely many zeros and

finitely many residues at its simple poles equal to 7 and be such that f' + bf?
has finitely many zeros. Then f belongs to K(z).

P
Proof. Let f = T with P € K[z], | € A(K) having no common zero with P.

Then q_p L2
Pl—1UP+bP
fravft = ——pm——

zeros. Moreover, if a is a zero of Pl —I'P + bP? but is not a zero of f’ + bf?,

then by Lemma C.9.20 it is a pole of order 1 of f such that res(f,a) = 3

Consequently, P'l — I’ P + bP? has finitely many zeros and hence, we can write
Pl —1I'P+bP?
—2+ = ZQQ with Q € K[z], hence P'l —I'P = —bP? + Q. But then,

by Theorem C.8.5, [ is a polynomial, which ends the proof. O

By hypothesis, this function has finitely many

1
Remark: If f(z) = —, the function f’ + bf? has no zero whenever b # 1.
x

Theorem C.9.23: Let f € M(K) be transcendental and have finitely many
/

zeros of order > 2 and let b € K. Then F + b has infinitely many zeros.
!

Moreover, if b # 0, every zero a of + b that is not a zero of f' + bf? is a

1?

1

pole of f of order 1 such that the residue of f at « is equal to 7
!/

Proof. Let g = <7 +b. Since all zeros of f are of order 1 except maybe finitely
many, g has finitely many poles of order > 3, hence a primitive G of g has finitely
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many poles of order > 2. Consequently, by Theorem C.8.7, g has infinitely many
Z€ros.

Now, suppose b # 0. Let a be a zero of g. If a is not a pole of f, it is a zero
of f' +bf? and we can see that it is not a zero of f.

Finally, suppose that « is a pole of f. Then it must be a pole of order 1 and
then, by Lemma C.9.20, the residue of f at « is %‘ O

Corollary C.9.24: Let f € M(K) \ K(z) have finitely many zeros of order
> 2 and finitely many poles of order 1 and let b € K*. Then f' + bf? has
infinitely many zeros that are not zeros of f.

Remark: On the field K, we find the same we don’t know whether a mero-
morphic function f similar to the function tan is such that f'+bf2 have finitely
many zeros.
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C.10. Small functions

Small functions with respect to a meromorphic functions are well known in
the general theory of complex functions. Particularly, one knows the Nevanlinna
theorem on 3 small functions. Here we will construct a similar theory.

Definitions and notation: Throughout the chapter we set a € K and R €
]0,4+o00[ and we still denote by D the set K\ d(0,R~). For each f € M(K)
(resp. f € M(d(a,R7)), resp. f € M(D)) we denote by M;(K), (resp.
M;y(d(a,R7)), resp. My(D)) the set of functions h € M(K), (resp. h €
M(d(a,R7)), resp. M(D)) such that T(r,h) = o(T(r, f)) when r tends to
+oo (resp. when 7 tends to R, resp. when r tends to +oo). Similarly, if
f € AK) (resp. f € A(d(a,R™)), f € A(D)) we shall denote by As(K) (resp.
As(d(a,R7)), resp. Af(D)) the set M;(K) N A(K), (resp. My(d(a,R7))N
A(d(a, R™)), resp. M;(D)NA(D)).

The elements of M¢(K) (resp. My(d(a,R7)), resp. My(D)) are called
small meromorphic functions with respect to f, small functions in brief. Sim-
ilarly, if f € A(K) (resp. f € A(d(a,R™)), resp. f € A(D)) the elements of
A;(K) (resp. As(d(a,R™)), resp. A;(D)) are called small analytic functions
with respect to f small functions in brief.

Theorems C.10.1 and Theorem C.10.2 are immediate consequences of The-
orem C.4.3:

Theorem C.10.1: Leta € K and r > 0. A¢(K) is a K-subalgebra of A(K),
As(d(a,R7)) is a K-subalgebra of A(d(a,R7)), As(D) is a K-subalgebra of
A(D), M;(K) is a subfield field of M(K), My(d(a,R™)) is a subfield of field
of M(a,R™)) and My(D) is a subfield field of M(D). Moreover, Ay(d(a, R™)
is a sub-algebra of A¢(d(a, R™) and My(d(a, R™) is a subfield of Ms(d(a, R™).

Theorem C.10.2 : Let f € M(K), (resp.f € M(d(0,R™)), resp. f €
M(K)) and let g € M;(K), (resp.g € Ms(d(0,R™)), resp. g € My(D)).

T(r, fg) = T(r, )+o(T(r. f)) and T(r, §> = T(r. f)+o(T(r, f)). resp. Tr(r, fg) =

Ti(r, f) + o(Ta(r, £)) and Ta(r, §> = T(r, f) + o(Tr(r ))).

Here we can mention some precisions to Theorem C.10.1 that will be useful
later:

Theorem C.10.3: Let f € A(K) (resp. let f € Ay(d(a,77)), resp. let f €
A(D)). Let g, h € Af(K) (resp. let g, h € Ag(d(a,r™), resp. let g, h €
A¢(D) ) with g and h not identically zero. If gh belongs to Af(K) (resp. to
Ar(d(a,r™)), resp. to Ap(D) ), then so do g and h.
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Proof. Concerning the claim on f € A, (d(a,r7)), we can obviously assume a =
0. By Theorems C.4.3 nad C.5.7, we have T(r,g.h) = T(r,g9) + T(r,h) + O(1).
Consequently, T(r,g.h) = o(T(r, f)) if and only if T(r,g) = o(T(r, f)) and
T(r,h) =o(T(r, f))- O

Theorem C.10.4: Let f, g € A(K) (resp. let f, g € A,(d(0,77)), resp. let

fy g€ A(D)) and let g € N*. If f is not a q-th root of 1, then f?— g% does not
g

belong to As(K) (resp. to Ap(d(0,77)), resp. to Ap(D)).

Proof. Concerning the claim on f € A,(d(a,77)), we can obviously assume
a=0. Let h = i Since h is not a g-th root of 1, neither f — g nor the function
g

qg—1
F(z) = Z f7g77 7 is identically zero. Suppose that f? — g? € A;(K) (resp.
j=0
f4—g?€ Af(d(0,77), resp. A¢(D). So, by Theorem C.10.3, both f — g and F
belong to A¢(K) (resp. to A¢(d(0,r~), resp to A¢(D). Let w = f — g, hence
q—1
g=f+w. Then F(z) = Z fI(f +w)? 7. Thus, we can check that F(z) is
§=0
of the form 41+ P(f(z)) with P(Y) a polynomial in Y of degree at most ¢ —2,
with coefficients in A ¢ (K) (resp. in A¢(d(0,77), resp. in Af(D)). Consequently,
by Theorems C.4.3 and C.5.7, T'(r, F'(z)) is of the form (¢—1)T(r, f)+o(T'(r, f))
because T'(r, P(f(x))) < (¢ — 2)T(r, f) + o(T(r, f)), which proves that F does
not belong to Af(K) (resp. to Ay(d(0,77), resp. to As(D)). O

In the proof of Theorem C.10.5 and in the sequel, we will have to use the
following notation.

Notation: Let h € M(K) \ K (resp. h € E(x) \ E) and let Z(h) be the set
of zeros ¢ of W' such that h(c) # h(d) for every zero d of h' other than c. If
E(h) is finite, we denote by Y(h) its cardinal and if Z(h) is not finite, we put
T(h) = 4o00. Let f € M(K) (resp. let f € E(x), resp. let f € M(d(0,R™)),

let f € M(D). We will denote by
Z(r, f | " f(x) satisfying Property P")
(vesp. Z(r, f | " f(z) satisfying Property P”),
resp Zg(r, f | 7 f(x) satisfying Property P"))
the counting function of zeros of f when Property P is satisfied.
Similarly, we will denote by Z(r, f | " f(x) satisfying Property P”)
(vesp. Z(r, f | " f(x) satisfying Property P”),
resp. Zg(r, f | " f(x) satisfying Property P”))
the counting function of zeros of f without counting multiplicity, when Property
P is satisfied.
We will denote by N(r, f | ” f(x) satisfying Property P"),
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(resp N(r, f | " f(x) satisfying Property P”),
, resp. Ng(r, f | " f(z) satisfying Property P”) the counting function of poles
of f when Property P is satisfied.
And we will denote by N(r, f | ” f(z) satisfying Property P”)
(resp. N(r, f | " f(z) satisfying Property P"),
Nrg(r, f | " f(x) satisfying Property P"))
the counting function of poles of f without counting multiplicity when Property
P is satisfied.

Theorem C.10.5 is a wide generalization of Theorem C.4.8. It consists of
the following claim: given a meromorphic function f and a rational function
G of degree n whose coefficients are small functions with respect to f, then
T(r,G(f)) is equivalent to nT'(r, f). The big difficulty consists of showing that
T(r,G(f)) is not smaller than nT(r, f). The proof, based on an elementary
property of Bezout’s Theorem, was given in C by F. Gackstatter and I. Laine
[60] and was made in a field such as K by C.C. Yang and Peichu Hu [66].

Theorem C.10.5: Let f € M(K) (resp. f € M(d(0,R7)), let f € M(D)).
Let G(Y) € My(K)(Y), (resp. G € Ms(d(0,R™))(Y), resp. G(Y) € M;(D)(Y))
and let n = deg(G). ThenT(r,G(f)) = nT(r, f)+o(T(r, f)), (resp. T(r,G(f)) =
’n’T(Ta f) + O(T(T’ f)): resp. TR(Ta G(f)) = nTR(Tv f) + O(TR(Tv f))

P

Proof. Let G = 0 with P, Q relatively prime in the ring M ;(K) (resp. M(d(a, R7)),
My (D)). Suppose first G(Y) € My(K)[Y], (resp. G € My(d(0,R7))[Y],
resp. G(Y) € M#(D)[Y])), hence G = P. Let P(X) = E?:o b; X7 with
cj € My(K) (resp. ¢; € M(d(0,R), ¢; € My(D)). By Theorems C.4.8
and C.5.7 we have T'(r, P(f)) = T(r,b;;*P(f)) + o(T(r, f)) (resp. T'(r, P(f)) =
T(Ta b;lp(f)) + O(T(T7 f))v resp. TR(Tvp(f)) = TR(Tv b:LlP(f)) + O(TR(ra f)))
Consequently, without loss of generality, we may also assume that P is monic.

Let K be an algebraically closed spherically complete extension of K. Given
a € K, we denote by d(a, R™) the disk {z € K| |z — a| < R}.

h

Suppose first f € M(K) or f € M(D. We can write f = 7 with h,l €
A(K) having no common zero. Now suppose that f € M(d(0,R™)). Since
f has continuation to a function f meromorphic in the disk d(0, R™) of the
field K, by Lemma C.4.1 we know that the Nevanlinna functions T'(r, f) in

K is exactly this of f in K. Consequently, without loss of generality we may
assume that K is spherically complete. Thus, we can write f in the form f =

% with h,l € A(d(0, R7)) having no common zero. Then we P(f) is in the
Z;‘L:O bjhilm I
Bl
B, b; € As(D)). Clearly we have Z(r,

form

with B, b; € A¢(K) (resp. B, b; € As(d(0,R7)), resp.

" b n o
Zﬂ—#) < Z(r,> b;h?1"7) and
§=0
by Theorem C.4.8 (resp. by Theorem C.4.8, resp. by Theorem C.5.7)
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(r,fjbjhjzn—] < max Z(r,b;h’1"7) < nT(r, f) + o(T(r, f).

0<j<n
(resp.
Z(:)b W) < Jnax. Z(r,b;h3 1) < nT(r, f) + o(T(r, f),
resp. J

Zb W) < max Zr(r, bR 1"77) < nTr(r, f) 4+ o(Tr(r, f)).
7=0

On the other hand N(r, P(f)) < nN(r,f) + o(T(r, f)) (resp. N(r,P(f)) <
nN(r, f) + o(T(r, f)), resp. Nr(r,P(f)) < nNg(r, )+ o(Tr(r, f))) hence
T(r, P(f)) < nT(r, f)+o(T(r, ) (resp-T(r, P(f)) < nT(r, f)+0(T(r, 1)), resp.
Tr(r, P(f)) < nTr(r, ) + o(Ta(r, ))).

So, now it remains us to prove the reverse inequality. Indeed, suppose that
inequality does not hold. For simplicity we will first suppose that f lies either
in M(K) or in M(d(0,R7)).

Then there exists p €]0,1] and a sequence of intervals |r/, .7/ [ such that
limyy, 400 75, = 400 (resp. limy, oo 7, = R, Tesp. lim,, oo 7, = +00) and
that
T(r, P(f)) < pnT(r, f) Vr € U, s _1]r. [, Particularly, we have
NG P(f)) < pnT(r. ) Ve € U el

Let us write again P(f) in the form Z?:o ¢; f7. We shall prove the following

(1) N P(f) =nN(r,f)—nd_ N(r,e;) =nN(r, f) +o(T(r, f)).

=0

Indeed, let a be a pole of f and suppose it is not a pole of order > —nw, (f)
of P(f). We can check that there must exist j € {0,...,n — 1} such that
—wa(cj) > —wa(f). Consequently at o we have —wo(P(f)) > —nwa(f) —
max;—o, . n—1(—nwa(c;j)) hence

N(T,f | wa(P(f)) < nwa(f)) < HZN(T7CJ')’

hence (1) follows clearly.
Consequently, there exists ¢ € N such that nN(r, f) < pnT(r,f) Vr €
Uso_ Jrl., v [ and therefore there exists s € N and A €]0, 1] such that

m=q

(2) ]\[(7"7 Bln) < ’I’LAT VT € U T m
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In particular, there exists ¢t € N such that

T(r, b7 1" 7Y < AT (r,b,h™) Vj = —1,Vre U |

n—1,Yr € Upo_ 1. im], we

m7 m
/

Now, since T'(r,b,h™) > T(r,bjhI1"=9) Vj =
) Vr e Ufno:t]rm, [, hence

notice that | Z?:o bih? 1" I|(r) = |by|(r

T(r, Y bhd1"~7) = T(r,byh") Vr € U |
j=0

m=t

Consequently, there exists o €]p, 1] and u € N (u > t) such that

(3) T(r, ijhjlnfj) > onT(r,h) Vr € U Jrr sl

7=0 m=u

Now, by (2) we have T'(r,h) = T(r, f) Vr € U, _, [T, rm[ and

T(r, P(f Zb I Y € U |

hence finally, by (3) we obtain T'(r, P(f)) > onT(r, f) ¥Yr € Upe_Jrm.Tm[, a
contradiction which proves the claim when G is a polynomial.

Similarly, replacing N by Ng, T by Tgr, we can make the same reasoning
when f belongs to M(D).

We now consider the general case G(Y) € M;(K)(Y), (resp.
G € M;(d(0,R™))(Y)). Without loss of generality, we may assume deg(G) =
deg(P).

Since P and @ are relatively prime, by Bezout’s Theorem in a ring of polyno-
mials on a field, we can find A, B € M¢(K)[Y], (resp. A, B € M;(d(0,R™))[Y])
such that AQ + PB = 1. Since deg(Q) < deg(P) of course deg(B) < deg(A4),

A
hence deg(E) = deg(A). Now,

BU) QU)o Lo
T 3 + B = T i pey) = T AP +0)
Consequently, by the Theorem already proven when G is a polynomial, we have
@ w = (de e r o(T(r
TS5 + ) = (eB4) + deg(P)T(r. ) + o(T(r. )

and since deg(P) = deg(G), actually we have
@ 76,20 4 G~ (qega) + deg(@) T 1) + o1 1))
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B(f) | Q) B(/) Q)

Now, T.(r7 a0 + W) < T(r, m) —|—'T(r, W) + o(T'(r, f) and by the first
inequality already proven above, we obtain
BU) Q) aou Byt 111 70 20 4 o
T 30 + i) < des(T () + Tl B +o(T(r ).
But since deg(B) < deg(A), actually we have
Tl 30 + B < dew(AT(r 1) + Tl 2e) + ol (¢ 1) e
6) TG0+ PER) < des(T( ) + T, + oI ).

Now by (4) and (5) we can see that deg(G)T'(r, f) < T(r,G(f)) + o(T(r, f)).
Similarly, when f belongs to M (D) and G belongs to M ;(D)(Y), we can make
the same reasoning, as above. This completes the proof. O

Theorem C.10.6: Let a € K and r > 0. Let f € M(K) \ K(z) (resp.
feMuld(a, R7)), resp. f € M®D) ). Then, f is transcendental over M ;(K)
(resp. over Myg(d(a, R™)), resp. over My(D)).

Proof. Suppose there exists a polynomial P(Y) = 37 a;Y7 € My(K)[Y] #0
such that P(f) = 0. If f belongs to M,(d(a, R™)) we may obviously suppose
that @ = 0. By Theorem C.10.5 we have T'(r,a,f") = nT(r, f) + o(T(r, f))
whenever f belongs to M(K) \ K(z) or to M¢(d(0,R™)) and Tg(r,a,f") =
nTr(r, f)+o(Tr(r, f)) whenever f belongs to M¢(K, whereas T'(r, Z;L;Ol ajfi) =
(n—=1)T(r, )+ o(T(r, f)), a contradiction.

O

Corollary C.10.7: leta € K andr > 0. Let f € M(K)\ K(z) (resp. f €
My (d(a,R™)), resp. f € M(D). Then, f is transcendental over K(z).

A function h € My(d(a, R™)) is obviously small with respect to any function
f € My(d(a, R7)). So, we have the following corollary:

Corollary C.10.8: Leta € K andr >0 and let f € My(d(a,R™)). Then, f
is transcendental over My(d(a, R7)).

By Corollary C.1.23 we know that a meromorphic function f € M(K) or
f € M(d(0,R™)) admits at most one quasi-exceptional value. Here we will
generalize that statement.

Theorem C.10.9 : let a € K and r > 0. Let f € M(K) \ K(z), (resp.
f e My(d(a,R7)), resp. f € M(D)). There exists at most one function
g € M;y(K), (resp.
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g € My(d(a,R7)), resp. g € My(D)) such that f — g have finitely many zeros.
Moreover, if | belongs to A(K) \ K[z] (resp. to A,(d(a, R7)), resp. to A°(K))
then there exists no function g € M;(K)\K(x), (resp. g € My(d(a,R7))) such
that f — g have finitely many zeros.

Proof. Concerning claims on M, (d(a, R~)) we can obviously assume a = 0.
Suppose that there exist two distinct functions g1, g2 € M;(K), (resp. g1, g2 €
M;(d(0, R7))) such that f— gy has finitely many zeros. So, there exist P, P> €
K[z] and hi, he € A(K) (resp. hi, he € A(d(0,R7))) such that f — gx =

P,
hfk’ k =1, 2 and hence we notice that
k

Py

T f) =T(T7E)+0(T(T, £) =T h) +o(T(r, f)) k=1, 2.

Consequently, putting g = g2 — g1, we have
P P

hi  ho

and by Theorem C.10.1, g belongs to M ¢(K) (resp. to M(d(0,R7))). There-
fore Pitho — Pohy = ghihs and hence

(2) T(r, Pihs — Pyhy) = T(r,gh1ho).
Now, by Theorem C.4.3 we have
T(r, Ptho—Pyhy) < max(T(r, Prh2), T(r, Pohy)) < max(T(r, h1),T(r, he))+o(T(r, f))
and hence by (1), we obtain
(3) T(r, Pihe — Pohy) < T(r, f) + o(T(r, f)).
On the other hand, by Theorem C.10.2, we have
T(r,ghihs) = T(r,h1ha) + o(T(r, hiha)) = 2T(r, f) + o(T(r, f)),

a contradiction to (3).
Now, if f belongs to M¢(D) we can make the same reasoning with T instead
of T.

Suppose now that f belongs to A(K) \ K[z] and that there exists a function

l
w € M#(K) such that f —w has finitely many zeros. Set w = - where [ and
tf —1

each zero of tf — [ cannot be a zero of ¢ hence is zero of f — w. Consequently,
since f — w has finitely many zeros, tf — [ has finitely many zeros and hence
is a polynomial. But since [ belongs to Af(K), when r is big enough we have
|£1(r) > |I](r) and hence [tf|(r) > |I|(r), therefore |tf—1|(r) = |tf](r). And since

and

t belong to Af(K) and have no common zeros. Thus, f —w =
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f is transcendental, by Corollary B.13.23 for every fixed ¢ € N, | f|(r) > r? when
r is big enough. Similarly, |¢f —I|(7) > 7% when r is big enough. Consequently,
by Corollary B.13.23 tf — [ is not a polynomial, which proves that w does not
exist.

Suppose now that f belongs to A, (d(0, R~)) and that there exists a function
w € My(d(0,R7)) such that f — w has finitely many zeros. Without loss
of generality, we can assume that the field K is spherically complete because
both f and w have continuation to an algebraically closed spherically complete
extension of K where their zeros are the same as in K. Consequently, we can

l
write w = - where [ and ¢ have no common zeros. Now, the zeros of f — w are

those of tf — [, hence tf — [ has finitely many zeros and hence, is bounded in
d(0, R~). But since w belongs to M¢(d(0,R™)), so does [ and hence [tf|(r) >
[I|(r) when r tends to R. Consequently, |[tf —I|(r) = |tf|(r) is not bounded in
d(0, R™), a contradiction proving again that w does not exist.

Suppose finally that f belongs to A°(K). We can make the same raesoning
as in A(K) by replacing T' by Tk. O

Theorem C.10.10 is known as Second Main Theorem on Three Small Func-
tions in p-adic analysis [66]. It holds as well as in complex analysis, where it
was showed first. Notice that this theorem was generalized to any finite set of
small functions by K. Yamanoi in complex analysis, through methods that have
no equivalent on a p-adic field [92]. However, Corollary C.4.22 provides us with
a kind of Second Main Theorem on ¢ bounded functions, inside a disk.

Theorem C.10.10: Let f € M(K) (resp. f € Myu(d(0,R™)), resp. f €
Me(D)) and let wr, we,ws € Ms(K) (resp. w1, ws, w3 € Mf(d(O ~)), resp.
wi,wa, w3 € My(D)) be pairwaise distinct. Then T(r, f) < Z VZ(r, f -
U)j)—f—O(T(’I", f))7 resp T(’I“, f) < Z?:lf(raf_wj)—i_o( (T7 f)) TeESP. TR(T,f) >~
5=t Zr(r, f = w;) +o(T(r, f).

Proof. We will make the proof when f belongs to M(K) or to M, (d(0,R7)).

B O )
Let ¢(z) = (@)~ ws(@) (wa(z) —wr () By Th C.4.24 we h
On the other hand, we have T'(r, f) < T(r, f —w;) + T(r,w;) (j = 1,2,3),

(r
hence T'(r, f) < T(r, ’ll]g;:}l}l) +o(T(r, f)), thereby
— w3

f
w3 — Wy _ f—w
T(r. ) < T =2 1) 4o ) = Tl ) + o<7}<r ).
Wy — W1 o — W — W1
Now, T'(r, m) = o(T(r, f). Consequently, by writing s ¢(w2 — w3>

we have T'(r,

/- wl) <T(r,¢)+T(r, ﬁ) < T(r,¢) + o(T(r, f)) and fi-
nally T'(r, f) < (r ¢) +o(T(r, f)). Thusz, by (31) we obtain
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(2) T(Ta f) < 7(7‘7 ¢) + 7(7.7 ¢ - 1) + N(Tu ¢) + O(T('I", f))

Now, we can check that

3
Z(r,¢)+ Z(r,¢ — 1)+ N(r ZZ’I“f w;) Z Z(rwg —wj) <

1<j<k<3
3
27 r, f —wj) 4+ o(T(r, f)) which, by (2), completes the proof when f be-

longs to M(K) or to M, (d(0,R™)). When f belongs to M(D we can make a
similar proof just by replacing 7' by Tr and Z by Zg. O

Theorem C.10.11: Let f € M(K) (resp. f € My(d(0,R™)), resp. f €
MI(D) and let wy, wy € M;(K) (resp. wi,ws € My (d d(0,R™)), resp. wi,wy €
M¢(D)) be distinct. Then T(r,f) < Z(r, f —w1) + Z(r, f —wa) + N(r, f) +

2
O(T(Tv f))7 Tesp. I(Tv f) < Z(T’ f: wl) + Z(va 7’(1}2) +N(T7 ) + ( ( f))
resp. Tr(r, f) < Zr(r, f —wi) + Zg(r, f —w2) + Nr(r, f) + o(Tr(r, f))).
Proof. Suppose first f € M(K) or f € M, (d(0,R7)). Let g = %, hj = %, j=1,2, hg =
j

0. Clearly,
T(T7 g) = T(Ta f) + O<1)a T(Ta h) = T(T, wj)7 J = 1; 27

so we can apply Theorem C.10.10 to g, hi, he, hs. Thus we have: T(r,g) <
Z(r,g —h1) + Z(r,g — h2) + Z(r, g) + o(T(r,9)).

But we notice that Z(r,g — hj) = Z(r, f — w;) for j = 1,2 and Z(r,g) =
N(r, f). Moreover, we know that o(T(r,g)) = o(T(r, f)). Consequently, the
claim is proved when wjws is not identically zero.

Now, suppose that w; =0. Let A€ K*, let [ = f+Xand 7 =u; + A, (j =
1, 2, 3). Thus, we have T'(r,1) = T'(r, f)+O( ), T(r,7m;) =T (r,w;)+0(1), (]
1, 2)7 N(r,l) = N(r, f). By the claim already proven whenever wjwq # 0 w
may write T(r,1) < Z(r,l — 1) + Z(r,l — 72) + N(r,1) + o(T(r,1))) hence
T(T, f) < Z(Thf - wl) + Z(T, f - w2) + N(TJ) + O(T(ﬁ f)))

Suppose now f € M(D). By replacing T by Tr, Z by Zr, N by Ng, we
can check that the same reasoning applies. O

Next, by setting ¢ = f — w; and w = w; + we, we can write Corollary
C.10.12:

Corollary C.10.12: Let g € M(K) (resp. g € M,(d(0,R™)), resp. g €

Me(D)) and let w € My(K) (resp. w € My(d(0,R7)), resp. w € My(D)).
Then T(r,g) < Z(r,g) + Z(r,g — w) + N(r,g) + o(T(r,g)), resp. T(r g9) <
Z(r,g)+Z(r,g— w)+ N(r, g)—i—o(T(r7 9)), resp. Tr(r,9) < Zr(r,g9)+Zgr(r,g—
w) + N(RT’ g) + O(TR(T’ g)))
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Corollary C.10.13: Let f € A(K) (resp. f € Au(d(0,R7)), resp. [ €

AC(D)) and let wi, we € Af(K) (resp. wi,ws € Af(d(0,R™)), resp. wi,ws €
Af(D)) be distinct. Then T(r,f) < Z(r,f —w1) + Z(r, f —w2) + o(T(r, f)),

7"6517 T(r,f) < Z(r, f —w1) + Z(r, f — w2) + o(T(r, f))), resp. Tr(r,f) <
Zp(r, f —wi) + Zg(r, f —w2) + o(Tr(r, f))).

And similarly to Corollary C.10.12, we get Corollary C.10.14:

Corollary C.10.14: Let f € A(K) (resp.

[ € Au(d(0,R7)), resp. f € A°(D) ) and let w € As(K) | (resp w €
Ap(d(0,R7)), resp. w € Af(D)). Then T(r,f) < Z(r, f) + Z(r, f —w) +
o(T(r, f)), (Tesp T(r,f) < Z(r, f) + Z(r, f —w) + o(T(r, [)), resp. Tr(r, f) <
Zg(r, f) + Zr(r, f —w) + o(Tr(r, f))).

Here is now an application of that theory:

Theorem C.10.15: Let h, w € Ay(d(a, R™)) and let m, n € N* be such that
min(m,n) > 2, max(m,n) > 3. Then the functional equation

(&) (g(x)" = h(x)(f(x)™ + w(z)
has no solution in A, (d(a, R7)).

Proof. Without loss of generality, we can obviously assume a = 0. Let F(z) =
g(x)™. Thanks to Corollary C.10.14 we can write

T(r,F)< Z(r,F)+Z(r,F —w) +o(T(r, F)).

Now, it appears that Z(r, F')

<
is bounded, hence Z(r, hf™) <

1Z(r, F). Moreover, since h is bounded, Z(r, h)
Z(r, )+ Z(r,h) = Z(r, f) + O(1), hence

(1) Z(r,hf™) < 20, hf™) + O(1) = - Z(r, F) + O(1).
On the other hand, Z(r, F) = Z(r, F—w)4+0(1) = T(r, F)+0O(1). Consequently,

by (1), we can derive

T(r,F) < (% + %)T(r, F)+o(T(r, F)).

1 1
Therefore we have — + — > 1, a contradiction to the hypothesis which implies
n

1 1 5
—+ =< . O
m n_ 6

Theorem C.10.16: Let f € M(K)be transcendental (resp. f € M, (d(0,R7)),
resp. f € M%(D)) and let w; € M;(K) (j=1,...,q)
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(resp. wj € Mys(d(a,R7)), resp. w; € My(D) ) be q distinct small functions
other than the constant co. Then

qT(r,f) <33 Z(r, f = wj) +o(T(r, ))),
(resp. .
qT(r, ) <3 ZZ(T, f=wj) +o(T(r, f)),
resp. ,
qTr(r, f) < Z (r, f —wj) + o(Tr(r, f))).

Moreover, if f has finitely many poles in K (resp. in d(0,R™), resp. in D),
then

qT(r, f) <2 Z?(r, f=w;)+o(T(r, f)),

(resp.

qT(r,f) <2 Z(r, f —w;) +o(T(r, [)),

'M@

1

J
resp.

qTr(r. ) <23 Zr(r, f —w;) + o(Tr(r, f))).
j=1

J

Proof.  Suppose first that f and w;, (j = 1,...,q) belong to M(K) or to
M(d(0,R7)). By Theorem C.10.10, for every triplet (i, j, k) such that 1 <i <
j <k < q, we can write

T(r,f) < Z(r, f —wi) + Z(r, f —w;) + Z(r, f —wi) + o(T(r, f)).

The number of such inequalities is C’;;’. Summing up, we obtain

C3T(r, f) < > Z(r, f—w;i)+Z(r, f—w;)+Z(r, f—wi)+o(T(r, f)).

(i,4,k), 1<i<j<k<q

In this sum, for each index i, the number of terms Z(r, f — w;) is clearly
Cz_,. Consequently, by (1) we obtain

C3T(r, f) < Co_y Y Z(r, f —wi) + o(T(r, f))

=1
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and hence

rfézzrf1m+d0ﬁ)

Suppose now that f has finitely many poles. By Theorem C.10.11, for every
pair (¢,7) such that 1 <14 < j < ¢, we have

T(r,f) < Z(r, f —wi) + Z(r, f —w;) + o(T(r, f)).

The number of such inequalities is then qu. Summing up we now obtain

2)  CiT(rf)< > Z(rf—w)+Z(r, f—w)+o(T(r, [)).

(1,4, 1<i<j<q

In this sum, for each index i, the number of terms Z(r, f — w;) is clearly

0371 = g — 1. Consequently, by (1) we obtain

iT(r f q—lz (r f —wi) + o(T(r, f))

and hence

rfézzrf1m+d0ﬁ)

Now, if f and wj, (j = 1,...,q) belong to M(D), we can make the same
reasoning with T instead of T" and Zp instead of Z. O]

Definition: Let f, g € M(K) (resp. f, g € My(d(a,R7)), resp. f, g €
ME(D)). Then f and g will be to share a small function w € M(K) (resp.
w € M(d(a,R7)), resp. w € M(D)) I. M. if f(z) = w(z) implies g(x) = w(x)
and if g(z) = w(z) implies f(x) = w(x).

Theorem C.10.17:  Let f, g € M(K)be transcendental (resp. f, g € My(d(a,R7)),
resp. f, g € MS(D)) be distinct and share q distinct small functions I.M.

w; € My(K) N My(K) (j = 1,..,0)

(resp. w; € My(d(a, R)) 0 My (d(a, B)) (G = 1, .. 0),

(resp. w; € My(D) N Mgy(D) (j =1,...,q)), other than the constant co. Then

Y 2, f —w;) < Z(r.f = g) +o(T(r, f)) + o(T(r,9))-

Jj=1

Proof.  Suppose that f and g belong to M(K), are distinct and share ¢ distinct
small functions LM. w; € M¢(K) N My(K) (j =1,...,9).
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Lat b be a zero of f — w; for a certain index i. Then it is also a zero of
q

g — w;. Suppose that b is counted several times in the sum Z?(r,f — wj),
j=1

which means that it is a zero of another function f — wy for a certain index

h # 4. Then we have w;(b) = wy (b) and hence b is a zero of the function w; —wy,

which belongs to M ;(K). Now, put Z(r, f —w;) = Z(r, f — w1) and for each

Jj > 1,let Z(r, f — wj) be the counting function of zeros of f — w; in the disk

d(0,77) ignoring multiplicity and avoiding the zeros already counted as zeros
q

of f — wy, for some h < j. Consider now the sum ZZ(’I“,f — wj). Since the
j=1
functions w; — w; belong to M¢(K), clearly, we have

D20 f—wj) =D Z(r, fwy) = o(T(r, f))

j=1

It is clear, from the assumption, that f(z)—w;(x) = 0 implies g(z) —w;(z) =
0 and hence f(x) — g(x) = 0. Since f — ¢ is not the identically zero function, it
follows that

D2 f—w) SZ(f - g).

Consequently,

Y Z(r,f = wy) < Z(r.f = g) + o(T(r, ) + o(T(r,g)).

Jj=1

Now, if f and g belong to M(d(0, R™)) or to M(D), the proof is exactly the
same.
O

Theorem C.10.18: Let f, g € M(K) be transcendental (resp. f, g € My(d(a, R7)),
resp. f, g € MS(D ) be distinct and share 7 distinct small functions (other
than the constant o) IL.M. wj € M(K)NMy(K) (j = 1,...,7) (resp. w; €
My(d(a,R7)) N My(d(a,R™)), resp. w; € Mp(D)NMyD) (j =1,..,7), ).
Then f =g.

Moreover, if f and g have finitely many poles and share 3 distinct small
functions (other than the constant oo) L. M. then f = g.

Proof.  We put M(r) = max(T(r, f),T(r,g)). Suppose that f and g are dis-
tinct and share ¢ small function LM. w;, (1 < j < ¢). By Theorem C.10.16, we
have

T(r,f)<3 Z 1y f = w;) +o(T(r, f)).
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But thanks to Theorem C.10.17, we can derive

qT(T’ f) S 3T(Ta f - g) + O(T(Tv f))

and similarly
qT(r,g) <3T(r.f = g) + o(T(r, g))

hence
1) qM(r) < 3T(r, f — g) + o(M(r)).
By Theorem C.4.8, we can derive that
qM(r) < 3(T(r, f) + T(r,g)) + o(M(r)))

and hence gM () < 6M (r)+o(M(r)). That applies to the situation when f and
g belong to M(K) as well as when when f and g belong to M, (d(0, R™)) and
when f and g belong to M (D), after replacing T' by Tr and Z by Zr. We have
a similar proff whenever f, g and the w; belong to M(d(0, R™)), or to M(D)
after replacing T by Tr and Z by Zi. Consequently, it is impossible if ¢ > 7
and hence the first statement of Theorem C.10.18 is proved.

Suppose now that f and g have finitely many poles. By Theorems C.4.8,
Relation (2) gives us

aM(r) < 2M(r) + o M(r))

which is obviously absurd whenever ¢ > 3 and proves that f = g when f and g
belong to M(K) as well as when f and g belong to M,,(d(0, R™)) or to M¢(D),
after replacing T by Tr and Z by Zg. O

Corollary C.10.19: Let f, g € A(K) be transcendental (resp. f, g € A,(d(a, R7)),
resp. f, g € A°(D ) be distinct and share 3 distinct small functions (other
than the constant co) IL.M. w; € Ay(K) N AyK) (j = 1,2,3) (resp. w; €
Ar(d(a, R7)) N Ag(d(a,R7)), (j = 1,2,3), resp. w; € Ap(D)N Ay (D) (j =
1,2,3)). Then f = g.
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Definitions

Chapter A.1l.
closure, adherence,
interior, opening,
value group, valuation group,
absolute value,
valuation ring, valuation ideal,
residue class, residue class field, residue characteristic,
dense valuation, discrete valuation, trivial valuation,
dense absolute value, discrete absolute value, trivial absolute value,
hole of a set,
infraconnected set, infraconnected component,
affinoid set
empty annulus of a set.

Chapter A.2.
filter thinner than another one
sequence thinner than a filter,
filter secant with a set, with another filter,
increasing distances sequence, decreasing distances sequence,
monotonous distances sequence,
equal distances sequence,
increasing filter of center a and diameter r,
decreasing filter of center a and diameter r,
decreasing filter with no center of diameter r, of canonical basis (D,,),
monotonous filter,
spherically complete field,
pierced monotonous filter,
circular filter of center a and diameter r,
peripheral of a bounded set
circular filter with no center, of diameter diameter r, of canonical basis (D,,),
large circular filter, punctual circular filter,
F-affinoid.

Chapter A.3.
Gauss norm.

Chapter A .4.
quasi-monic polynomial.

Chapter A.5.
p-adic absolute value.

Chapter A.6.
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Eisenstein polynomial,
uniformizer of an extension of Qp,
ramification index of an extension of Q,.

Chapter A.7.
principal ultrafilter,
incomplete ultrafilter,
immediate extension of an ultrametric field.

Chapter A.8.
transcendence order < 7 over Q.
denominator of an algebraic number,
transcendence type < 7 in C,,
infinite transcendence type.

Chapter B.2.
analytic element on D,
invertible element of a space H(D),
pole of order ¢ of an element f € H(D),
polynomial of poles of an element of H(D) in D \ D,
residue of an element f € H(D) at a pole a.

Chapter B.3.
bianalytic element from A onto B.

Chapter B.4.
punctual semi-norm

Chapter B.5.
radius of convergence,
entire function,
power series, Laurent series,
zero of multiplicity order q.

Chapter B.6.
f-hole, Mittag-Leffler term of f associated to a hole Ty,
principal term of f,
Mittag-LefHler series of f on the infraconnected set D,
specific circular filter,
residue of an analytic element on a hole.

Chapter B.7.
polynomial of zeros of an analytic element on a subset A,
semi-invertible analytic element,
quasi-invertible analytic elements,
quasi-minorated analytic element.
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Chapter B.8.
analytic element vanishing along a filter F,
analytic element properly vanishing along a filter F.

Chapter B.9.
piercing of a subset,
well pierced subset.

Chapter B.11.
analytic element strictly vanishing along a monotonous filter F,
analytic element collapsing along a monotonous filter F.

Chapter B.12.
analytic set.

Chapter B.18.
divisor on K, divisor on a disk d(a,r7),
bounded divisor in a disk,
divisor of a function,
Euclidean division by a polynomial.

Chapter B.20.
index of an analytic element,
pure factor associated to a hole,
Motzkin factor in a hole,
Motzkin index,
f-supersequence,
Motzkin factorization,
principal factor.

Chapter B.21.
order of growth of an entire function,
cotype of growth of an entire function,

Chapter B.22.
type of growth of an entire function,
a function satisfies Hypothesis L.

Chapter B.24.
order of growth of a function in an open disk,
cotype of growth of a function in an open disk,
type of growth of a function in an open disk

Chapter C.1.
meromorphic function in K, in a disk d(a, R™),
pole of order s of a meromorphic function,

Definitions
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divisor of a meromorphic function in K, in a disk d(a, R™),
divisor of the poles of f,

exceptional value,

pseudo-exceptional value,

quasi-exceptional value.

Chapter C.2.
residue of a meromorphic function at a point a,
analytic element meromorphic in a hole,
singular part of f at b,
polynomial of the poles in a hole.

Chapter C.3.
meromorphic unction out of a hole
exceptional value, for a meromorrphic function out of a hole
pseudo-exceptional value,
quasi-exceptional value.

Chapter C.4.

counting function of zeros, counting multiplicity,

counting function of zeros, ignoring multiplicity,

counting function of poles, counting multiplicity,

counting function of polcs, ignoring multiplicity,

characteristic function Nevanlinna function of a meromorphic function.
Chapter C.5.

counting function of zeros, counting multiplicity in M (D),

counting function of zeros, ignoring multiplicit n M (D),

counting function of poles, counting multiplicity n M(D),

counting function of poles, ignoring multiplicity, n M(D),

characteristic function Nevanlinna function of a meromorphic function n

M(D).

Chapter C.6.
function of uniqueness,
function of strong uniqueness,

Chapter C.T7.
perfectly branched value,
totally branched value.

Chapter C.10.
small meromorphic function,
small analytic function,
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Notations

Chapter A.1l.
N, Z, Q,RC

S, S
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N

e

= MG D 2B
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S

Chapter A.2.
Cp(F)
Bp(F)
diam(F)

G

Chapter A.3.
-l
®(D), 2°(D)
v(h, p)
(h, )
ha(u)
\I/a(ha /u‘)
|- llo
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IfI(r), feK(x)

PF, Pa,r

Pa

v (fow), v=(f,m), v(f, 1)

r l

d,u’@

Chapter A.4.
(9,h)

Chapter A.5.
irr(a, L)
N

|n|p
v,
Ly, Qp, Qp, Cp, Fp

Chapter A.6.

o~

d(a,r™)

Chapter A.8.
S(7)
Card(S)
|a| = man:L...,nﬂaj'OO)

s(a) = max(log(]a|,den(a))

Chapter B.1.
Up
R(D)v Rb(D)v RO(D)
|- 1Ip
Mult(A)

Mult(A, || . 1)), Mult,m (A, - |), Mult1(A,] .

Chapter B.2.
H(D)? Hb(D)7 HO(D)
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Alg
res(f, a)

Chapter B.3.
=(D’, D)

Chapter B.4.
Mult(H(D),Up)
D@f? D‘pa,’!‘a Pay D(ppv DQODa DQOOO
\.7(-7:)3 j()(]:)7 j(a)7

Chapter B.5.
AK), A(d(a,r7)), Ap(d(a,r™)), Ay
|Afl‘ng)\d(aa7"))» A (K\ d(a, r)) AT(
vi(fon), v (fm), v(fiw)

Chﬂ)th.&
fo, fr
H(D)
ves(f, T)
E@

(d(a,r™)), A(K\ d(a,7)),
a,r’,r")), Ap(I'(a,r’, 7))

Chapter B.7.
wa(f)

Chapter B.8.
Alg
LAY
f
J(a)
Condition A, Condition B

Chapter B.10.
Aa)
U(x), Y(f p), Yalf, )

Chapter B.13.
f<n>

Chapter B.15.
9,(D), Q(D) Chapter B.16.

T'q
Log, exp,
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Chapter B.18.

D(f)
7, [T|(r)

Chapter B.19.

C(Qﬂ S, ’l"), 7'((]7 S, n)
Tr

Chapter B.20.
m(h, T)
fT
v1+u

Chapter B.21.
p(f) for an entire function,

¢(r, f), &(r, f)

¥(f) for an entire function,
Chapter B.22.
a(f), o(f) for an entire function.

Chapter B.24.
p(f) for an analytic function inside a disk,
(o f), €0 f)
¥ (f) for an analytic function inside a disk,
¢(r, f) and O(f) for an analytic function inside a disk,
M(K)
M(d(a,r7)), Mp(d(a,r7)), My(d(a,r7))
D(f)

wa(f) (f meromorphic function)

Chapter C.2.
res(f,a) (f meromorphic function)

Chapter C.3.
M(:(D)

Chapter C.4.
Z(r, f),Z(r, f)
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Chapter C.6.
g.c.d.(m,n)

Chapter C.10.
M;(K), M (d(0, R))),
A (K), A (d(0, R)).
(h), T(h).

r, f | f(x) satisfying Property P"),
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