Robust Isometric Non-RigidStructure-from-Motion - Université Clermont Auvergne
Article Dans Une Revue IEEE Transactions on Pattern Analysis and Machine Intelligence Année : 2022

Robust Isometric Non-RigidStructure-from-Motion

Shaifali Parashar
Daniel Pizarro
  • Fonction : Auteur
Adrien Bartoli
  • Fonction : Auteur
  • PersonId : 1135569

Résumé

Non-Rigid Structure-from-Motion (NRSfM) reconstructs a deformable 3D object from keypoint correspondences established between monocular 2D images. Current NRSfM methods lack statistical robustness, which is the ability to cope with correspondence errors. This prevents one to use automatically established correspondences, which are prone to errors, thereby strongly limiting the scope of NRSfM. We propose a three-step automatic pipeline to solve NRSfM robustly by exploiting isometry. Step (i) computes the optical flow from correspondences, step (ii) reconstructs each 3D point’s normal vector using multiple reference images and integrates them to form surfaces with the best reference and step (iii) rejects the 3D points that break isometry in their local neighborhood. Importantly, each step is designed to discard or flag erroneous correspondences. Our contributions include the robustification of optical flow by warp estimation, new fast analytic solutions to local normal reconstruction and their robustification, and a new scale-independent measure of 3D local isometric coherence. Experimental results show that our robust NRSfM method consistently outperforms existing methods on both synthetic and real datasets.

Domaines

Imagerie
Fichier principal
Vignette du fichier
2010.04690.pdf (12.09 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03703648 , version 1 (11-01-2024)

Identifiants

Citer

Shaifali Parashar, Daniel Pizarro, Adrien Bartoli. Robust Isometric Non-RigidStructure-from-Motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (10), pp.6409 - 6423. ⟨10.1109/TPAMI.2021.3089923⟩. ⟨hal-03703648⟩
18 Consultations
13 Téléchargements

Altmetric

Partager

More