Event Correlation Analytics: Scaling Process Mining Using Mapreduce-Aware Event Correlation Discovery Techniques - Université Clermont Auvergne
Article Dans Une Revue IEEE Transactions on Services Computing Année : 2015

Event Correlation Analytics: Scaling Process Mining Using Mapreduce-Aware Event Correlation Discovery Techniques

Résumé

This paper introduces a scalable process event analysis approach, including parallel algorithms, to support efficient event correlation for big process data. It proposes a two-stages approach for finding potential event relationships, and their verification over big event datasets using MapReduce framework. We report on the experimental results, which show the scalability of the proposed methods, and also on the comparative analysis of the approach with traditional non-parallel approaches in terms of time and cost complexity.
Fichier principal
Vignette du fichier
tsc-toumani-2476463-proof.pdf (1.14 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02024283 , version 1 (19-02-2019)

Identifiants

Citer

Hicham Reguieg, Boualem Benatallah, Hamid R Motahari Nezhad, Farouk Toumani. Event Correlation Analytics: Scaling Process Mining Using Mapreduce-Aware Event Correlation Discovery Techniques. IEEE Transactions on Services Computing, 2015, 8 (6), pp.847-860. ⟨10.1109/tsc.2015.2476463⟩. ⟨hal-02024283⟩
53 Consultations
325 Téléchargements

Altmetric

Partager

More