N
N

N

HAL

open science

Event Correlation Analytics: Scaling Process Mining
Using Mapreduce-Aware Event Correlation Discovery
Techniques
Hicham Reguieg, Boualem Benatallah, Hamid R Motahari Nezhad, Farouk

Toumani

» To cite this version:

Hicham Reguieg, Boualem Benatallah, Hamid R Motahari Nezhad, Farouk Toumani.
Correlation Analytics: Scaling Process Mining Using Mapreduce-Aware Event Correlation Dis-
covery Techniques. IEEE Transactions on Services Computing, 2015, 8 (6), pp.847-860.

10.1109/tsc.2015.2476463 . hal-02024283

HAL Id: hal-02024283
https://uca.hal.science/hal-02024283
Submitted on 19 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Event

https://uca.hal.science/hal-02024283
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.8, NO.X, XXXXX 2015 1

Event Correlation Analytics: Scaling Process
Mining Using Mapreduce-Aware Event
Correlation Discovery Techniques

Hicham Reguieg, Boualem Benatallah,
Hamid R. Motahari Nezhad, Senior Member, IEEE, and Farouk Toumani

Abstract—This paper introduces a scalable process event analysis approach, including parallel algorithms, to support efficient event
correlation for big process data. It proposes a two-stages approach for finding potential event relationships, and their verification over big
event datasets using MapReduce framework. We report on the experimental results, which show the scalability of the proposed methods,
and also on the comparative analysis of the approach with traditional non-parallel approaches in terms of time and cost complexity.

Index Terms—Process mining, correlation discovery, event analytics, mapReduce, distributed computing

1 INTRODUCTION

PROCESS analysis and improvement is a key endeavor of
any enterprise. A supporting evidence is the increased
number of process execution analysis and mining tools avail-
able and used today [1], [2], [3]. Model-based analysis is a
key technique used to understand process execution land-
scape and reason about enterprise productivity factors (e.g.,
time, cost, and quality). However, this is becoming more dif-
ficult as processes in the enterprise span over a number of
heterogeneous, distributed systems and services spread
across various business functions [3]. Consequently, the
information related to process execution may be scattered
across multiple data sources, and in many cases, the knowl-
edge about how this information is related to each other and
to the overall business process execution may not be avail-
able or kept updated. Identifying relationships among pro-
cess-related information (e.g., process-related events) allows
discovering process instances and eventually process mod-
els that simplify understanding operational processes. We
refer to the problem of identifying relationships among pro-
cess-related events (process events, for short) as event correla-
tion. Event correlation has received a notable attention from
researchers and practitioners in many application domains
including process discovery, monitoring, analysis, browsing
and querying [3], [4], [5], [6], [7], [8].

Event correlation consists of discovering a set of correla-
tion conditions that specify how events are related to each
other in order to form a (process instance). A correlation
condition describes rules that allow to group together

e H. Reguieg and F. Toumani are with the LIMOS, CNRS, Blaise Pascal
Univ., France. E-mail: reguieg.hicham@gmail.com, ftoumani@isima.fr.

o B. Benatallah ia with the UNSW, Sydney, Australia.
E-mail: boualem.benatallah@gmail.com.

e H.R. Motahari Nezhad is with the IBM, Almaden, San Jose, CA.
E-mail: motahari.hamid@gmail.com.

Manuscript received 24 Feb. 2014; revised 25 July 2015; accepted 14 Aug.
2015. Date of publication 0 . 0000; date of current version 0 . 0000.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSC.2015.2476463

events that are generated as the result of the execution of
the same process instance. Event correlation discovery com-
prises of the process of analysing events in various data
sources in order to identify event types, exploring different
combinations of the attributes of event types for candidate
correlation conditions, and verifying whether a candidate
correlation condition leads to forming process instances in
the context of the overall business process. This task is com-
putationally intensive. It requires the exploration of a huge
space of possible correlation conditions among the attrib-
utes of different event types, over potentially a very large
and evolving event logs [3].

The typical approach for dealing with a large and
unstructured dataset is employing parallel algorithms over
a cluster of nodes in order to efficiently process the splitted
workload [9]. However, in case of correlation discovery
over a large dataset the problem is challenging even if a
large computational cluster is available. Parallel data proc-
essing relies on data distribution and replication for efficient
query execution. Partitioning event logs to identify correla-
tion rules, which are used to determine relationships among
events in order to identify end-to-end process instances, is a
challenging task due to the large size of datasets, the high
number of candidate correlation rules (also called correlation
conditions), and the need for efficiently sharing the interme-
diate computation results among various parallel jobs in
various nodes for maximum performance achievement.

Recently, distributed computing technologies have been
widely adopted in order to improve system performance in
terms of scalability and dependability. As a promising
framework, MapReduce has been emerged for processing
huge amounts of data on a multitude of machines in a clus-
ter. It provides a simple programming framework that ena-
bles harnessing the power of very large data centers, while
hiding low level programming details related to paralleliza-
tion, fault tolerance, and load balancing. It should be noted
that distributed parallel computing is however not a trade-
mark of the MapReduce approach but can indeed be realized

1939-1374 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.8, NO.X, XXXXX 2015

using other techniques e.g., in memory based technologies.
The arguments in favor of using MapReduce for event corre-
lation discovery are: (i) it provides a simple way to imple-
ment massive parallelism on a large number of commodity
low-end servers [11], while freeing the programmers from
the task of tackling the difficulty of traditional parallel pro-
gramming, (ii) Log files are usually heterogeneous in the
sense that they come in a variety of forms. The heterogeneity
issue is more easily handled using MapReduce since no pre-
defined schema is imposed on the input data. Finally,
MapReduce is suitable, specifically, when high memory
machines are not available.

To the best of our knowledge, our prior preliminary
work [10] is the first work that introduces parallel,
MapReduce-based, algorithms for efficient and scalable
discovery of correlation conditions from big process data,
and for the purpose of process mining. This is a unique
problem posing a number of interesting challenges which
makes MapReduce-based algorithms a suitable choice. In
this paper, we propose new MapReduce-based techniques
to scale correlation rules discovery for the purpose of pro-
cess mining, extending our previous work in [10] in the fol-
lowing directions: (i) improved and novel algorithms for
atomic correlation conditions discovery, (ii) novel algo-
rithms for composite correlation conditions discovery, (iii)
complexity analysis of the proposed algorithms, and (iv)
extensive experiments. The main difficulties encountered
when designing our approach are related to log partition-
ing and redistribution in order to generate efficient parallel
computations. The solutions proposed in this paper cater
for wide range of typical (both simple and composite) cor-
relation conditions in process mining. We believe that the
proposed solutions chart an effective new paradigm to
make correlation condition discovery reusable and scal-
able. Effective process views exploration and events proc-
essing pipelines will work in tandem with iterative
MapReduce-based analytics to scale correlation condition
discovery analyses. In summary, the main contributions of
the paper are as follows:

o We develop multi-pass algorithms to perform corre-
lation condition discovery computations using a
scalable parallel shared-nothing data processing
platform. More specifically, the proposed approach:
(i) introduces efficient methods to partition an events
log (aggregated from different data sources) across
map-reduce cluster nodes in order to balance the
workload related to atomic condition computations
while reducing data transfers, and (ii) uses algo-
rithms that are optimal w.r.t. I/O cost and hence are
very effective in situations where the size of data to
be processed is much larger than the size of the
memory available at the processing node.

e We introduce two strategies to perform a
MapReduce-based level-wise-like algorithms to
explore the space of candidate composite conditions.
(i) Single-pass strategy, we use the notion of partition-
ing conditions for partition vertically the lattice of can-
didate composite conditions, and (i) Multi-pass
strategy, we partition the lattice horizontally and pro-
cess each level in a distinct MapReduce job.

e We present experimental results that show the scale-
up and speed-up of the algorithms with regard to
variation of both data sizes and number of compute
nodes. The experiments show that the overhead
introduced by MapReduce is negligible compared to
the global gain in performance and scalability.

The rest of this paper is organized as follows. Section 2
gives an overview on the event correlation approach used
in this paper and introduces the main MapReduce concepts.
Section 3 deals with the problem of computing atomic corre-
lation conditions. Section 4 describes the problem of discov-
ering computing composite (conjunctive and disjunctive)
correlation conditions along with a set of efficient algo-
rithms for composite correlation condition discovery. Com-
plexity analysis of the proposed algorithms is given at
Section 5 while experimental results are presented in Sec-
tion 6. We discuss related work in Section 7 and draw some
future research directions in Section 8.

2 BACKGROUND

2.1 Overview on Event Correlation Discovery

Let us assume all the event data related to process exe-
cution over distributed systems and services are com-
piled in a process events log. Such a log may contain the
payload of messages that are exchanged among systems
and services in the course of process execution, and
therefore, we may refer to it as a process messages log,
interchangeably. In the spirit of [3], [10], we define a pro-
cess messages log as follows:

Process messages log. A process messages log L, can be
viewed as a relation over a relational schema £ (id,
A, As, ... A, where U = {A, Ay, ..., A,} is a set of attrib-
utes used in messages and id is a special attribute denoting
message identifier. Let X C U, we note by 7 x(L) the relation
corresponding to the projection of L on the attributes of X.
Elements of L are called messages (we use message and event
interchangeably). For a message m € L, we denote by m.A;
the value of the attribute A; in the message m and by m.id
the message id.

In addition, some of the log attributes are supposed to
determine if two given messages belong to the same conver-
sation. This attributes are called correlator attributes, and the
functions defined over them as correlation conditions or corre-
lation rules. Correlated messages are identified using a corre-
lation condition.

Correlation condition. A correlation condition, denoted by
Y(my.A;,m,.Aj), is a boolean predicate over attributes A; and
Aj; of respectively the two messages m; and m,,. If the condi-
tion ¥ (my.A;, m,.A;) returns true then we say that m; and m,
are correlated through the attributes A; and A;. We refer to a
correlation condition of the form (m;.A, m,.A), defined over
the same attribute A, as a key-based correlation condition. We
use reference-based correlation conditions, otherwise.

In the sequel, we note such an atomic condition v/ A
A conjunctive (respectively, disjunctive) condition consists
of conjunction (respectively, disjunction) of atomic condi-
tions. In [3], algorithms and heuristics are proposed to
identify correlated event sets that lead to discovering
potentially interesting process views. The following two
criteria and measures have been proposed to select

REGUIEG ET AL.: EVENT CORRELATION ANALYTICS: SCALING PROCESS MINING USING MAPREDUCE-AWARE EVENT CORRELATION... 3

relevant conditions. First, globally unique keys are not cor-
relator. Two main observations can be made at this stage:
(i) an attribute is a possible correlator only if it contains
values that are not globally unique, i.e., they can be found
in other messages, and (ii) attributes having unique values
or attributes with very small domains (e.g., Boolean) are
not interesting. The following measures are proposed to
distinct(4;

>> and

capture these properties: distinct_ratio(A;) = ;7w

shared_ratio(V) = Fo s i Ay

Given a threshold «, the distinct_ratio is used to prune
conditions defined over the same attribute A; (i.e., condi-
tions having distinct_ratio(A;) < o) while the shared_ratio is
used to prune conditions over two distinct attributes A4; and
A; (i.e., conditions with shared_ratio(y) < o). The thresh-
old « can be user provided or computed using information
categorical attributes [3].

As a second criteria, a correlation condition v is consid-
ered not interesting if it partition the log into a high number
of small instances or a few number of long instances. To
capture this property, the following measure is defined and

used: PI ratio(y) = %

where |PI,| denotes the number of process instances
identified by the condition ¢ and nonNull(y) denotes the
number of messages for which attributes A; and A; of con-
dition ¥ are not null. The ratio PI_ratio(y) enables to reason
about the number of instances. A threshold g is then used to
select interesting conditions as the ones having a
PI_ratio > p. For example, to select instances that have at
least a length of 2, the threshold g should be set to 0.5. This
criteria is referred to as imbalancedPl.

Based on the measures described above, we present in
the following sections, MapReduce-based algorithms to dis-
cover interesting correlation conditions and associated pro-
cess instances from an events log.

2.2 Overview on MapReduce Framework
MapReduce is a new programming model to facilitate
the development of parallel computations on large clus-
ters of inexpensive commodity machines [11]. MapRe-
duce provides a simple programming constructs to
perform a computation over an input file f through two
primitives: a map and a reduce functions. MapReduce
operates exclusively on (key,value) pairs and produces
as output a set of (key,value) pairs. A map function takes
as input a data set in form of a set of key-value pairs,
and for every pair (k,v) of the input returns zero or
more intermediate key-value pairs (k',v'). The map out-
puts are then processed by reduce function. A reduce
function takes as input key-list a pair (¥, list(v')), where
k' is an intermediate key and list(v') is the list of all the
intermediate values associated with £/, and returns as
final result zero or more key-value pairs (k”,v"). Several
instantiations of the map and reduce functions can oper-
ate simultaneously. Note that while map executions do
not need any coordination, a given reduce execution
requires all the intermediate values associated with a
same intermediate key &' (i.e.,, for a given intermediate
key K/, all the pairs (¥, v") produced by the different map
tasks must be processed by the same reduce task).

3 DiScoVERING AToMIC CORRELATION
CONDITIONS USING MAPREDUCE

We consider a two-stage approach to discover correlation
conditions from an event log. The first stage is devoted to
the computation of simple correlation rules (called atomic
conditions). The second stage is devoted to the discovery of
composite correlation conditions (conjunctive and disjunc-
tive conditions).

In this section, we focus on the first stage. Given an
events log L, our aim is to discover the interesting atomic
correlation conditions and associated process instances.
One of the main issues to cope with, is to decide how data
and computations should be partitioned, replicated and dis-
tributed, in order to efficiently execute the operations
entailed by this task. Indeed, there is no unique optimal
solution to such a problem since several parameters (e.g.,
characteristics of the data to be analyzed, physical charac-
teristics of the cluster, such as the bandwidth, memory and
cpu at each node, etc.) are involved and may influence the
global performance. This is why we propose three algo-
rithms, namely Sorted Values Centric (SVC), Hashed Values
Centric (HVC) and Per-split Correlated Messages (PSCM), to
handle the problem of discovering atomic correlation condi-
tions. All the three algorithms are based on the following
general idea.

First, we generate all possible candidate conditions
and partition the data across the network by hashing on
the candidate name (e.g., A; = A;). Then, we process
each candidate condition v, 4, by a single Reduce func-

tion and, thus, each candidate can be handled separately
and in parallel with the others. Then, interesting correla-
tion conditions are stored into files to be fed to the next
step (candidate composite conditions discovery). SVC
relies on one MapReduce job, it sorts the intermediate
data to efficiently compute the correlated message buffer
denoted by CMB. However, it involves a large interme-
diate data size. HVC relies on one MapReduce job, has a
low intermediate data size, but requires several iterations
to compute correlated messages. Finally, PSCM relies on
two MapReduce jobs. The first step computes the corre-
lated message buffer in parallel, where the second step
groups the correlated messages and deduces the process
instances. Based on their distinctive features, it is possi-
ble to identify suitable situations for each algorithm. For
example, SVC is adequate for situations where the dis-
covered process instances are numerous and short (hav-
ing a low number of messages) while HVC is more
suitable when the discovered process instances are less
numerous and long. Finally, PSCM is suitable for larger
datasets and also for the case of events correlated by key
attribute-based conditions. In the sequel, we present the
data structure and then we describe in more details the
proposed algorithms.

3.1 The Correlated Message Buffer (CMB)

To facilitate correlation computation, we define two types of
data structures. The first data structure is similar to inverted
index in relational databases, used to index values of the
same column (for key-based condition). The second data
structure can be obtained by performing a join between two

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.8, NO.X, XXXXX 2015

TABLE 1
Example of CMB Data Structures

(a) condition A1 = Aq

_Log L Val | ~ IdSel
msg-id A; AJ' Cl s {m37 m4}
m1 Co Ch C2 ~ {m1,m2}
mo CQ Cz C3 ~ {m5}
ms [[&F] (b) condition A1 = Ag
ma C1 | Cy Val | ~ IdSetl1 IdSet2
ms Cs | Cu Cl | ~ [{m3,ma} | {m1,ms}
C2 | ~ [{mi,ma} | {m2,ma}

inverted indices on the value part (for reference-based con-
dition). The description of this data structure is as follows:

e The first data structure is devoted to key-based condi-
tions. This data structure is defined as T : [val,
{IdSet}], where val is a given value of the attribute
forming the condition (e.g., 4;) and {IdSet} represents
the set of messages having wval as value in A; ie.,
{{my.id}|m,.A; = val}. T} is an array used to store all
the distinct values of a given attribute A;. This data
structure is used to calculate statistics such as: number
of distinct values of an attribute, number of correlated
messages with a given value. The previous metrics are
needed in the pruning phase. Table la shows the
indexed values of A; (respect, A,). We refer to this
table as CM B (Correlated Message Buffer).

e The second data structure, defined as 75 : [val,
IdSet1,1dSet2], is devoted to reference-based condi-
tion. It is obtained by joining two CMDBs on the
value part. Values that do not appear in both
indexes are discarded. Table 1b shows a shared
index of attributes A; and A,, where values C'3 and
C4 are discarded.

3.2 Sorted Values Centric Algorithm

The first algorithm devoted to computing atomic condi-
tions is Sorted Values Centric algorithm, depicted in
Algorithm 1 (Map) and Algorithm 2(Reduce). It relies on
one MapReduce job. The sorted values centric algorithm,
as input, requires a log L over the relational schema £
(A1, Ag, ..., Ay id) and the user provided thresholds «
and B. The Map reads a split of the log and, from the set
of attributes in £, generates the set of all possible candi-
date atomic correlation conditions ¥ A; for two attribute

A; and A;. This is achieved by computing the cross prod-
uct £ x £ (line 2 to 6 of Algorithm 1). For each mes-
sage, it extracts the values corresponding to A; and A;
(attributes forming the condition wAi,A;)' In order, to

keep track of the origin of each value, the Map tags the
values by their original attribute name and message-id
(line 5 and 6 of Algorithm 1). Then, it outputs the con-
ditions name and the tagged values as (key+ value,
value) pairs (lines 7 and 8 of Algorithm 1).

The Map function ensures that : (i) a given pair of attrib-
utes A; and A; is allocated to only one reducer, and (ii) a
given reducer, in charge of the attributes A; and A;, will
receive all the values of these attributes appearing in L (i.e.,
the values of the projections 74,(L) and 74,(L) are tagged
and sent to the same reducer).

Algorithm 1. Sorted Values Centric Map Function

Input: K : unused, V : a record from the log file

Output: K : IpApA/ V: rrAi_,AJ(ﬁ)

1 begin

2 foreach A; € V do

3 foreach A; € V do

4 condition « “A4; = A;”;

5 Value; — {V .A; — A; — V.id};

6 Valuej — {V .A; — A; —V.id};

7 output ({condition - Value; }, Value;);

8 output ({condition - Value; }, Value;);

9 end

0 Partitiomer (K : MapOutputKey, V : MapOutputValue, N :

numPartitions)

11 begin

12 /** We Hash Partition only the Outputed Key
part **/

13 return Hash(MapOutputKey.OutputKey) % numPartitions;

14 end

1

Algorithm 2. Sorted Values Centric Reduce Function

Input: K:4,, 4,V :aSorted list of Map-Output Values
Output: £: ¢ 4;, V2 PIset Of discovered instances
1 Reduce_Configure
2 |£]| < count_rows_log();
3 a « getUserThreshold();
4 B« getUserThreshold();
5 begin
6 CMDB « build_correlated_message_buffer(V) ;
7 shared_ratio(K) «— M;
8

if shared_ratio(IC) <|£o|z then
9 PI,, «— compute_instances(CMB);
10 if has ImbalancedPI(PI, B) then
11 output(iC, PI) ;
12 end

Note that, during the shuffle and sort phase, MapReduce
sorts and groups intermediate key-value pairs by their keys.
However, it is very convenient for our purposes to also sort
the intermediated values since, as detailed below, the com-
putations inside the reducer will take benefits from such
operations. Therefore, instead of implementing an addi-
tional secondary sorting within the reducer, we used the
value-to-key conversion design pattern [12], which is
known to provide a scalable solution for secondary sorting.
This is achieved by moving intermediate values into the
intermediate keys, during the map phase, to form composite
keys (line 7 and 8 of algorithm 1), which enables the execu-
tion components to handle the sorting. In addition, the
partitioning function is customized, to take into account only
the origin key-part for hashing and partitioning of data.
Hence, values with the same key are still assigned to the
same reducer. The merging function at the reducer is also
customized to group data w.r.t the original key. The reduce-
input are sorted in ascending order and grouped by value,
tag and id. Table 2 shows an example of a log file L and an
excerpt of the outputs corresponding to the pair of attrib-
utes A;, A; produced by two mappers that have processed
respectively a split made of the first five messages (respec-
tively, the last five messages) of the log L. Once the Reduce
(Algorithm 2) collects all the data, it proceeds in three steps,

REGUIEG ET AL.: EVENT CORRELATION ANALYTICS: SCALING PROCESS MINING USING MAPREDUCE-AWARE EVENT CORRELATION... 5

TABLE 2
Example of a Log and the Outputs of Two Mappers

Log L Mapper 1 outputs
msgid | A [A composite-key val | tag | Id
mi CS 04 Ai=Aj+(Cl,Ai,m3) Cl Ai ms3
mo 02 Cz Ai:Aj +(C’1,Ai,m4) Cl Ai myq
ms3 Ci [A¢=Aj +(C1,Aj,ﬂ’7,4) Ch Aj my
ma4 €1 | Gy

Mapper 2 outputs
composite-key val | t

S

i}
—
o

m7 Ca | Cs Ai=A; +(C1,A;;mi0) | C1 | Ay | mao
ms Cs | Ca A=A +(C2,Ajmio) | Co [Aj | mio
mo Cy | Cs A,

Ai=A; +(Cs5.4;m¢) | Cs

|8

namely building the correlated message buffer (line 6 of
Algorithm 2), pruning non-interesting conditions based on
non-repeating value criterion (line 7 to 8 of Algorithm 2),
and Computing the process instances associated to the condition
(line 9 of Algorithm 2). These steps are explained bellow.
First we recall that, correlated messages denoted by R, are
defined as Ry, = {({z,y})/Vax € A;,Vy € A;: z.val = y.val}.
Now regarding the first step, building correlated message
buffer works as follows: since the input of the Reduce are
sorted and grouped, only one iteration is needed to build
CMB in the case of reference-base conditions. Moreover,
message’s-ids from A; appear before those of A; (assuming
that ¢ < 7). So, for each new distinct value V which
appears in the reduce-input, the Reduce creates a temporary
entry in CMB, with V as wval. Then, it buffers ids from A,
into IdSet1 then those from A; into IdSet2. In case of values
having empty IdSet (1 or 2), i.e., none pair of messages
(z,y) € (A, A)) satisfies z.val = y.val =V, then V is dis-
carded. For key-based conditions, a new entry of CMB is
created for each new distinct value V in the input of the
reduce, and all messages satisfying € A4;, and z.val =V
are buffered to the corresponding IdSet.

Example 1. Using as input the buffer in Table 2, the buffer
CMB produced by the function Build Correlated
Message Buffer is as follows:

[C1, {m3, my, M1}, {ma, ms}].
[Cy, {ma, ms}, {ma, m3, mig}].
[C3, {ma, mg, ms}, {me, m7, mg}].
[047 {m77 m9}7 {ml) mS}]

Since, the input of the Reduce are sorted, then values
in column val and messages in IdSets are also sorted. In
the first row, C1 is a value which appears in both column
A; and A;, where messages having C1 as value in A; are
{mg, my,myo} and those having C1in A; are {my4, ms}.
After the CMB is created, the algorithm starts the second

step, i.e., pruning non-interesting conditions based on non-
repeating value criterion. The shared_ratio can be computed
as the ratio of the number of distinct values (number of

rows in CMDB) with regard to the size of I,
shared_ratio(y,;) = |C‘ALA|B L In case of key-based conditions,

|CMB| represents the number of distinct values present in
the corresponding attribute. In the other case (reference-based
conditions), [CMB| represents the number of shared distinct
values between A; and A;. Next, candidates that do not

satisfy shared_ratio(y,;;) < 0.2 (e = 0.2) are pruned (line 8
of algorithm 2).

The third step of the algorithm, computing Instances, is
achieved by the compute-instances function. This func-
tion, called only in the case of reference-based conditions,
applies a DFS (Depth-First Search) based algorithm to
explore the CMB. 1t is in charge of grouping together the
messages correlated by a condition ¥4 4; in order to form

individual process instances. It takes as input a buffer
CMB associated with A;, A;. Then, the computation
achieved by compute-instances is based on the observa-
tion that two messages m1 and m2 that appear in CMB are
correlated by the condition ¥4 A; if and only if one of the

following conditions is satisfied:

(i) the messages ml and m2 appear in a same row of
CMB. We state this condition more precisely as fol-
lows: m1 and m2 are correlated by v, A if there

exist an integer ¢ such that m1 € CMB [i].idset; and
m2 € CMB [i].idset,. Indeed, in this case we have by
construction of CMB that ml.A; =m2.A;=
CMBJi].val. Therefore, we can extend this observa-
tion to deduce that the elements of each CMB
[i].idset; U CMB [i].idsets, for i € [1,|CMB |], are cor-
related by the condition v, A and hence belong to

the same process instance.

(ii) the messages ml and m2 appear in two sets of CMB
that have a non-empty intersection. More formally:
there exists i,j € [1,|CMB || such that ml e CMB
[i].idset1, m2 € CMB [j].idsety and CMB [i].idset;N
CMB [j].idsets # . Indeed, let m be in such an inter-
section then m is correlated with m1 (because both m
and ml belongs to CMB [i].idset;) and m is corre-
lated with m2 (because both m and m2 belongs to
CMB [j].idset,). Hence, by using transitivity of the
correlation relation we conclude that m, m1 and m2
belong the same process instance. getNextUnvisited
Neighbor() function is used to check this property.
Since, message-ids are sorted, a one pass algorithm
is applied to check for intersection by performing
2 x (|idsetl| + |idsets|) operations

(m1,m2) belongs to the transitive closure of the cor-
relation relation computed using (i) and (ii).

The function compute-instances can be viewed as a com-
putation of the connected components of an undirected
bipartite graph. The vertices of such a graph are the sets
appearing in the columns idset; and idset; of CMB and the
edges are constructed as follows: let 7,5 € [1,|[CMB ||, then
there is an edge between CMB [i].idset; and CMB [j].idsets
if: © =7 (condition (i) above) , or CMB [i].idset; NCMB
[j].idsety # 0 (condition (ii) above). The condition (iii) is
achieved by the computation of the connected components
of this graph. Each connected component corresponds to a
discovered process instance.

However, in the case of key-based conditions, each set of
correlated messages corresponding to a distinct value forms
a process instance. In other words, each vertex in the graph
forms a connected component. Fig. 1 depicts the graph cor-
responding to the buffer CMB of the previous example. We
can observe that there are two connected components of
this graph. The associated discovered process instances

(iii)

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.8, NO.X, XXXXX 2015

B12[1].idset2 B12[3].idsetl B12[4].idsetl

B12[2].idset2 B12[3].idset2 B12[4].idset2

B12[1].idsetl

B12[2].idsetl

Fig. 1. Bipartite graph of CM B with two connected components.

are: Instance 1 = {my, m3, my, M5, My}, and Instance 2 =
{my, mg, M7, mg, Mg}

Finally, using user provided threshold g, the non interest-
ing instances are pruned (line 10 of algorithm 2). By comput-
ing the PI_ratio of each discovered atomic condition v, i.e.,
the ratio of the number of instances associated to ¥ to the
number of messages for which the attributes A; and A, of
condition v are defined. The PI_ratio is compared with g
and the conditions that do not satisfy the criteria are pruned.
In our case, PI_ratio = 0.2 < 0.5. Therefore, the condition
“A; = Aj” is considered as interesting. For more details
about using thresholds and pruning criteria, we refer to [3].

3.3 Hashed Values Centric Algorithm

In order to avoid generating and transferring intermedi-
ate data with duplicated values, as in SVC algorithm, we
propose the Hashed Values Centric algorithm. HVC pro-
cesses each candidate atomic correlation condition inde-
pendently. Also, it can be implemented in a single
MapReduce job. The Map generates the set of all possible
candidate atomic conditions from the set of attributes in
L. It ensures that each pair will be allocated to the corre-
sponding Reduce by assigning a single key to each pair.
The main difference w.r.t SVC lies in the keys used to
distinguish the target Reducers. Unlike SVC algorithm,
in HVC composite keys are not used. Therefore, the
map-output data size is not duplicated and, also, not
sorted. Table 3 shows an example of the outputs of
the log £ of Table 2 processed by two mappers of the
HVC. Once the Reduce receives it corresponding data, it
proceeds as follow: build the correlated message hash
buffer, pruning non-interesting candidates, and computing
process instances. These steps are described below.

The first step, build correlated message hash buffer, aims
at grouping together message-ids having same values, and
separate those coming from A; from those coming from A;
in different sets (IdSetl to A; and IdSet2 to A;). Since, the
input of the Reduce are not sorted, a hash table is used to
store the correlated messages. As a consequence, several
iterations are required to achieve this task. Moreover, an
additional step is needed to clean the buffer by deleting
entries with empty IdSets. This step is less effective than the
equivalent one in the SVC algorithm.

TABLE 3
Outputs, w.r.t. to (A4;, 4,), of Two Mappers

Mapper 1 outputs Mapper 2 outputs
key val | tag | Id key val | tag | Id
A=A, Cy] mi Ai=A; Cs i me
Ai:A]’ Cl i ms3 Ai:Aj CQ j mio
Ai=Aj Cy J m1 Ai=Aj Cs J meg
Ai=A; | Co J ma Ai=A; | C3 i mg

[— N_—> {m6, m1, m8} {m7, m9, mé6}
(o — N_—> {m3, m10 m4} {m4, m5}

C, — NN_—> {m9, m7} {m1, m8}

C, — N_—>| {m5, m2} {m10, m3, m2}

Fig. 2. Correlated messages hash buffer.

For example, using as input the buffer at Table 3,
the buffer CMB produced by the function Build
Correlated Message hash Buffer is depicted at Fig. 2. Sev-
eral iterations are required to fill the buffer.

The second step of the reduce function of HVC,
pruning non-interesting candidates, is devoted to the elimi-
nation of the candidate conditions that do not satisfy the cri-
terion shared_ratio(y) < . The last step, compute
Instances uses a depth-first search-like algorithm to com-
pute the transitive closure of the CMB and derives the pro-
cess instances associated to each candidate condition.An
algorithm, similar to Algorithm 2 but with few critical
changes, is used to compute the discovered instances.
The main modification is applied to getNextUnvisited
Neighbor() function. Since data are not sorted, checking the
intersection requires, in worst case, 2 x |idSetl| x |idSet2|
operations. Using this property we reduce the number of
operations to 2 X (|idSetl| + |idSet2|). Finally, conditions
are pruned using the Imbalanced_PI criterion.

3.4 Per-Split Correlated Messages Algorithm

One problem with sorted values centric and Hashed
Values Centric algorithms is the existence of non-correlating
values. Therefore, not every message from A; will be corre-
lated with one or more messages from A; for a given condi-
tion ¥4, 4. Such non-correlating values are identified only

after building CMB which lead to some overhead to elimi-
nate such values. To cope with this problem, we propose the
per-split correlated messages algorithm which distributes
the computation of the CMB over processing nodes and
anticipates such non-correlating values before constructing
the process instances. The per-split correlated message is a
two-phase algorithm, each phase corresponding to a sepa-
rate MapReduce job. This algorithm is introduced to parallel-
ize the computation of the CMB. In case of referenced-based
conditions, not all values are included into the intersection of
the distinct values of A; and A;. This property is stated more
formally as { 3V, V & distinct(A;) U distinct(A;) and V
& distinct(A;)N distinct(A;)}. In this case, V should be
ignored and all messages having this value should be dis-
carded. This is done by the phase one of the algorithm, which
can be seen as a pre-processing step.

At the phase 1, the Map function of the algorithm adds
the attribute values to the output key (the key refers to the
condition name). By this way, the map function ensures
that all messages from the same condition having the same
value will be allocated to a single Reduce. Each Reducer
produces a single row of the CM B for each condition. It fills
the buffer row by putting message-ids from A; into IdSet1
(resp. A; into IdSet2). Rows with empty IdSetl or empty
IdSet2 are ignored. This step is similar to a standard SQL

REGUIEG ET AL.: EVENT CORRELATION ANALYTICS: SCALING PROCESS MINING USING MAPREDUCE-AWARE EVENT CORRELATION... 7

query (self-join of log £) but in our case the join is computed
for each pair of attributes (4;, A;) of the log L.

At the phase 2 of the PSCM algorithm, the Map is the iden-
tity function which returns as an output-key the condition
name and as output-value the row of the CMB. The Reduce
function receives all rows of the same condition. First, it
groups them into a single buffer CMB, and then applies the
compute_instance() function to compute the set of instances
associated to each condition. Finally, non-interesting condi-
tions are pruned based on Imbalanced_PI criterion.

4 DISCOVERING COMPOSITE CORRELATION
CONDITIONS USING MAPREDUCE

Composite conditions are computed from the set of atomic
correlation condition discovered in the previous step, using
conjunction operator (respectively disjunction operator).
This step is clearly complex and challenging since the
search space, made of the candidate composite conditions,
is very huge. For example, for a set n of atomic conditions,
the number of candidate conjunctive conditions is 2". The
verification of each candidate requires the execution of
some computation-intensive operations such as counting,
join and intersection over a large volume of data. To cope
with the scalability issue, we designed two MapReduce-
Based algorithms, namely Single-Pass Composite Condition
Discovery algorithms and Muti-Pass composite Conditions
Discovering algorithms, to compute composite conditions
from a given set of atomic ones. The distinctive features of
each algorithm are the following: To achieve this work, the
Single-Pass Composite Condition Discovery algorithms use
a unique MapReduce job. This algorithm splits the space
of candidates vertically in such a way that the subsets can
be processed in parallel, each one by a unique reducer.
The Muti-Pass composite Conditions Discovering algorithm
however operates using several passes, each passe being a
separate MapReduce job. This algorithm uses a horizontal
partitioning of the computation space, each fragment corre-
sponding to a given level in the lattice of candidates. As
explained below, each algorithm is more adequate in spe-
cific situations.

For space reasons, in the sequel, we focus the presenta-
tion on the problem of computing conjunctive conditions.
The computation of disjunctive conditions is achieved using
similar algorithms, which are detailed in [13].

4.1 Single-Pass Composite Condition Discovery
Algorithms

Usually messages in logs are not only correlated by a sin-
gle atomic condition. Indeed, several conditions can cor-
relate messages and partition the logs into relevant
instances. This case can be viewed as composite keys in
relational databases, where multiple attributes are used to
identify rows. For instance, messages can be correlated
using values of attributes Customerld (y,: m;.Customerld
=m;.Customerld) and OrderID (y: m;.OrderlD =
m;.OrderID). In this case, we note ¥, ., = ¥y A V.

A Conjunctive correlation condition consists of conjunction
of at least two atomic conditions. It has the following form:
D=y, ANy AL Y,. Where, ¥;s, 1 < i < n are atomic con-
ditions. Conjunctive conditions are computed using

conjunctive operator on atomic conditions: let ¢, and v, be
two atomic conditions elicited during the previous step,
then the goal is to compute the process instances associated
to the condition v, A ¥, noted v,,,. More specifically,
given a set AC of atomic conditions, the goal is to identify
the set of minimal conjunctive conditions that partition the
log into interesting process instances. As explained in [3],
such a task can be achieved using a levelwise-like approach
[14] where, roughly speaking, each level is determined by
the length, in terms of number of conjuncts, of the consid-
ered conditions. Starting from atomic conditions (level 1),
the discovery process consists in two main parts: (i) generat-
ing candidate conditions of level / from candidates of level
I—1, and (i) pruning non interesting conditions. At each
level, the process instances associated with each generated
candidate condition are computed and used to prune, if
any, the considered candidate condition.

Example 2. Consider as an example a set of atomic condi-
tion AC' = {¥ry, ¥y, Y3, ¥y, ¥5 }. The candidate conditions
at each level are shown below:

Level 1: WD wQ’ 1p37 1/’47 ‘/f’)
Level 21 ¥y 9, Yings Ving Yinss Yons, Yonas Yons,
Ysras Vsnss Yans

o Level 3: 90003, Yinonas Yinznss Vinsats Yinsass
Yinanss Yansnas Yansass Voranss Vanans

o Level4d: ¥y, onsnas Vinonsnss Vinoatns: Visainss

Vonsndns
o Level5: Y, 9030105

To cast the algorithm Level-wise into a MapReduce
framework, the main issue to deal with is how to distribute
the candidates among reducers such that the generation
and pruning computations are effectively parallelized. We
propose to partition the space of candidates in such a way
that an element of the partition can be handled by a unique
reducer. This enables to avoid multiple MapReduce steps in
order to compute conjunctive conditions. Henceforth, each
element of the partition is called a chunk.

We proceed as follows to compute the partitions. Let AC
be a set of n atomic conditions and let PC' = {y, ..., ¥;} C
AC be a subset of AC' containing ! atomic conditions, hereaf-
ter called the partitioning conditions. The main idea is to
define partition of the space of candidate conditions with
respect to the presence or absence of partitioning condi-
tions. We annotate a chunk with a condition v; to indicate
that this chunk is made of candidates that contain the sub-
script i and with ¥; to indicate that the chunk is made of
candidates that do not contain such a subscript. Conse-
quently, given AC' and PC' defined as previously, the parti-
tion of the space of candidates (P) using PC' is obtained as
follows: P = {yr,, ¥, } x -+ x {,, ¥, }. Each element (¢1,. ..,
#,) € P, with ¢, € {y, 9}, fori € [1,]], forms a partition of
the space of candidate conditions.

Example 3. Continuing with the previous example with AC =
{1, Yo, Vs, ¥y, U5} and assuming that PC' = {y, ¢, }, we
obtain four possible chunks corresponding to the columns
of Table 4. For example, the chunk (i, ,) contains the
candidates with subscripts 1 and 2. Each column in Table 4
can be processed separately by a given reducer.

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.8, NO.X, XXXXX 2015

TABLE 4
Partitioned Candidates Space

(1, 2) (1, 2) (1, 2) (11, 2)
Level 1 1 P2 Y3, Y, Y5
Level 2 | 1n2 P1A3, Y14, Y2n3, V3na,

P1As Vand, Panas | P3as5, Yans

Level 3 | vY1a2ns, PV1A3A4, P23/, 3AAAG

P1r2/4, P1A3AS, P2A3A5,

Y1r2A5 P1r4NS P2r4NE

Note that the obtained chunks are balanced (i.e., they
have the same number of candidate conditions) and they
form a partition of the initial space of candidates. Indeed, in
Table 4, if we also consider that () € (¥,v,), then every
chunk will have eight candidates. It is also worth noting
that each chunk can be treated separately from the others in
order to compute the corresponding interesting conditions.
The algorithm that enables to compute conjunctive condi-
tions, called Conjunctive-MR, takes as input a set of atomic
conditions (AC) and iteratively generates candidates of
higher level based on candidates in lower level, then it
prunes non interesting ones. A classical candidate genera-
tion procedure, e.g., see the Apriori algorithm [15], computes
candidates at level I by a self-join on level [— 1. For example,
if both ¥, ,, and V5 appear at level 2, than the candidate
Y1003 Will be generated at level 3. The Map function is used
to partition the space of candidates. For a given condition
¥, it proceeds as follows:

1) Checks the presence of v/, in PC.

2) ¢, is sent to the corresponding reducers, i.e., sent to
each reducer in charge of processing a chunk that
contains v, if ¥, € PC.

3) ¢, is sent to all reducers, otherwise.

At the Reduce side, (subset of) the partitioning condi-
tions (PC) are buffered separately from the remainder con-
ditions. Note that the atomic conditions that do not belong
to partitioning condition set are referenced as RC, (ie.,
RC = AC'\ PC). Then, each reducer first computes the con-
junction of the partitioning conditions presented in its corre-
sponding chunk, ie., it computes ., where Yp. =
Yy APy AL AP After that, a level-wise algorithm is
applied to explore the space of candidate conjunctive condi-
tions built on .. For example, a given reducer in charge
of a chunk with PC = {yr, ¥, ¥3} and RC = {v,, Y5}, then
it computes V.5, after that it applies the level-wise algo-
rithm to compute V93,4, V19315 and V¥o5,405- At each itera-
tion of the level-wise the reducers proceed as follows:

(i) Computing process instances associated to ypo and v,
(where v, € RC). The first step computes the mes-
sages correlated by vp-,,. Indeed, this operation
relies on the following property: two messages m
and m’ are correlated by the conjunctive condition
Y, if they are correlated by both ¥, and v, (e,
< m,m > GCMB% N CMBIIIQ)

(ii) Pruming candidate conjunctive conditions. In this step,
non interesting conditions are pruned using Imbalan-
cedPl criterion. We check if the condition
PI ratio(Ypop,) < B is satistied or not. Using

conjunctive operator implies a new criteria that can
be applied to prune non interesting conditions. The
first criterion is referred as notMon(ys), it is used to
check the monotony of the number and the length of
instances with respect to the conjunctive operator. It
states that, conjunctive conditions that do not
increase the number of discovered instances and do
not decrease the length of the already discovered
instances is considered as non interesting and there-
fore pruned. Secondly, if the set of correlated mes-
sages of psi, is included in that of - (or vice
versa), then, the condition ¥y, is discarded.
Generating candidate conditions. Candidate conjunc-
tive conditions of level; are formed using non-
pruned from level;_;. In the levelness algorithm, can-
didate conjunctive conditions in the first level are
computed by conjunction of condition ¥pC with
each condition from RC. From the second level to
higher levels, conjunctive conditions are computed
by joining conditions from the previous level with
those from RC (e.g., levely = {y 3,4}, RC =
{3, ¥} then levely = {{r134}). It should be noted
that redundancy is eliminated, since V93 = VY93 =
Vg3, only v¥,53 is computed. For example, using the
algorithm Conjunctive-MR with inputs as AC =
{¥1, ¥y, V3,4, ¥5}, enables to generate the whole
space of candidates described in Table 4. An excep-
tional case needs a different processing occurs when
the reducer chunk does not contain any partitioning
condition (i.e.,, PC' =10, e.g., the fourth column in
Table 4). The candidate conjunctive conditions in
the first level are directly computed from RC and
the algorithm follows the same behavior as previous
algorithm from the step (ii).

Single-pass composite conditions discovery algorithm
provides an efficient strategy to partition, evenly, the space
of candidate composite conditions across nodes. In addi-
tion, it requires only a single MapReduce job. Therefore, the
overhead due to the scheduling and reading data multiple
time is reduced. Also, it can be easily implemented and
tested. However, the algorithm may suffer from some prob-
lems. One potential problem with single-pass discovery algo-
rithm is that nodes may be overloaded, especially at the
Reduce side where the large part of computations takes
place. In some situations, nodes may not handle a large
number of candidates having long process instances. To
deal with this issue we propose a multi-pass algorithm for
composite candidate condition discovery to overcome the
problem of overloaded nodes.

(iii)

4.2 Muti-Pass Composite Conditions Discovering
Algorithms

To enhance the performance of the algorithm presented previ-
ously and minimize the workload of each node, we introduce
a multi-pass algorithm to discover candidate composite con-
ditions. Besides generating and processing candidates, the
aim of the algorithm is to minimize the workload allocated to
each node by adopting a new strategy of partitioning and
splitting the space of candidates.

The multi-pass algorithm relies on several passes (each
pass is a MapReduce job). Taking the set of atomic

REGUIEG ET AL.: EVENT CORRELATION ANALYTICS: SCALING PROCESS MINING USING MAPREDUCE-AWARE EVENT CORRELATION... 9

conditions discovered in previous algorithms as input,
every pass of the algorithm is devoted to carry out candi-
dates composite conditions presented in a single level, in
the lattice, independently from the others. Based on this
strategy any node in the cluster may not be overloaded
since it will process only a single candidate condition at
each level. Besides that, candidate composite conditions
retained in a step (except the last level) are combined to gen-
erate the set of candidate of high level and, thus, used as the
inputs of the next pass.

The algorithm partitions the lattice horizontally, i.e by lev-
els. It discovers relevant candidate composite conditions pre-
sented in level), in iteration;. Each level is distinguished by
the number of atomic conditions merged together (e.g., ¥, 53
is in levels). Also, it is handled by a single MapReduce job.
The first iteration (job) of the algorithm combines the set of
candidate atomic conditions, discovered in the previous
stage, to generate conditions of levels then select interesting
candidates to be fed to the next iteration. Afterwards, every
iteration; generates the candidate of level;, from the selected
candidates, those that are not pruned, of iteration;_;. For a
given iteration k£ and before the Map functions start their exe-
cution, an initialization function is called to load from the Dis-
tributedCache the non-pruned candidate conditions from
iteration k& — 1 excepting the first iteration which loads the can-
didates atomic conditions. Then, it combines these candidates to
generates a set of new candidates. Thereafter, it applies the
associativity criterion to clean the list from non-interesting can-
didate. The Map function then retrieves the correlated message
buffers (CMBy,) from HDFS. Next, from each CM By, it extracts
the condition name and uses it to probes the list of keys built
in the initialization function for testing whether any key con-
tains the condition name. Hereafter, the Map function produ-
ces the key-value pair (key, CMB,) for all keys that has the
condition name as part.

In the Reduce function, each reducer will receive a single
candidate v as key, which corresponds to the candidate that
will be processed by this reducer. Associated with that key
the set of values are two conditions of level;_; such as the
combination of their name produces the key. Before, com-
puting instances, the reducer checks whether the conditions
satisfies the non Inclusion and Trivial Union criteria. If so, a
DFS-like algorithm is applied to discover the process instan-
ces involved by the composite conditions. After that, the
reducers verifies whether new candidate condition induces
a new interesting process instances by carrying out the
monotonicity and imbalanced_PI criteria. If the condition sur-
vives the criteria, then the reducer outputs the key-value
pairs (, CMBy).

Finally, selected candidate names, in iteration k, are
stored into the DistributedCache and used to generate candi-
dates for the next iteration and the computed process
instances are stored into the HDFS.

5 COMPLEXITY ANALYSIS

As explained in previous sections, event correlation discovery
requires the exploration of a large space of candidate correla-
tion conditions. This space is made of: (i) atomic conditions,
with a total number of a = (k* + k)/2 candidate atomic condi-
tions (i.e., possible pairs of attributes, where k is the number

of attributes in the log), and (ii) conjunctive and disjunctive
correlation conditions. As an upper bound, the number of
conjunctive conditions can reach ¢ = 2* — 1 while the upper
bound regarding the number of disjunctive conditions is
d = 2°"¢ — 1. Therefore, a major issue that makes the correla-
tion discovery a computationally-intensive task comes from
the combinatorial explosion of the number of candidate con-
ditions to explore. As shown above, this number depends on
the total number of attributes in the log. The number of con-
junctive conditions grows exponentially w.r.t. to the number
of attributes while the number of disjunctive conditions is
double-exponential. Indeed, the relationship between the size
of the input dataset and the size of the intermediary results
follows the same trend. For example, let us consider an event
log file of 1 Million of events with a total number of 50 attrib-
utes. Then, if the size of the log file is 1 GB, in worst case the
total size of candidate atomic conditions is roughly around 50
GB, while the size of the candidate conjunctive conditions is
in the order of magnitude of 2¢ GB, with an upper bound of
a = 1,250 (which is in this case larger than 10°" PB). Even
though, we can expect that in practical cases the effective
number of candidate atomic conditions to be much lower
than the theoretical upper bound due to the used pruning cri-
teria, the number of candidate conjunctive and disjunctive
conditions remains in general very large. For example, con-
tinuing with our input log file of 1 GB, if we assume that the
number of candidate atomic conditions have been drastically
pruned to obtain a =20 (instead of the upper bound
a = 1,250), we still have in this case a total size of candidate
conjunctive conditions around 20 TB.

Turning our attention to the complexity of the algorithms
presented in this paper, and unlike the result mentioned in
[3] which is in O(N.|£|?) for the non MapReduce approach,
our algorithms are parallel and hence candidate conditions
are processed independently from each other. Since, the
main computation is done by reduce function, we omit the
complexity of the map function. For each candidate correla-
tion conditions, the reduce function receives a list of the cor-
responding message values. Therefore, the time complexity
to explore all the space of correlation conditions is O(p)
where p is different from one algorithm to another: it con-
sists of the sum of (i) the time complexity of computing
correlated messages, and (ii) the time complexity of comput-
ing instances.

e In the case of sorted data, the worst case time com-
plexity of building correlated message buffer (CMB)
is in O(|L|), because there is no need to compare
message values with others. The worst case of com-
puting instances is in O(d.s) where d is the number
of distinct values of A4; N A; (the number of entries in
the CMB) and s is the size of the largest IdSet.

e In the case of non sorted data, time complexity to
compute correlated messages buffer is in O(L?)
while computing instances is in O(d.s?).

In both algorithms, we assume that reduce functions is
able to load CM B in memory. Therefore, the space complex-
ity is in O(|L]) for key-based conditions and in O(|L]?) for
reference-based conditions.

Single-pass composite condition: the time complexity of
the reducer in SPCC algorithm depends on the number of

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.8, NO.X, XXXXX 2015

candidate atomic conditions assigned to that reducer. Con-
sidering that the partitioning condition size parameter is equal
to r, which leads to a number of reducers equal to 2", makes
in the worst case, the number of conjunctive conditions
hold by a single reducer equal to [2?/2"] and, as a conse-
quence, time complexity in O([2%/2"].d.s?). In addition,
space complexity of the reducers is the sum of the CMBs of
all its corresponding candidate conditions.

Multi-pass composite condition: since reducers in mpcc
algorithm hold only one candidate composite condition, the
time complexity is equals to O(d.s?) and space complexity is
the size of two CMBs. However, the mpcc algorithm requires
at most M-1 rounds, where M is the depth of the lattice.

6 EXPERIMENTAL EVALUATION

In this section, we report the result of the evaluation of our
algorithms, and their performance based on the execution
time, and the scale-up and speed-up performance (increas-
ing the amout of data to be processed, and the computing
power that is available), which are classical metrics for eval-
uating the performance of MapReduce-based approaches.

6.1 Environment
We ran experiments on a cluster of five virtual machines.
Each machine has one AMD Opteron processor 6234 2.40
GHz with four cores, 4 GB of RAM, and 50 GB of Hard
disks. Thus the cluster consists of 20 cores and five disks.
Indeed, the key point is to look at MapReduce as a paral-
lel/distributed computating/programming platform, and
to Hadoop as a way to implement it over a cluster and
mainly based on disks. While, we can use in-memory archi-
tecture to realize the same/similar parallel methods.

6.2 DataSets
We run our algorithms on two different datasets:

e SCM. This dataset is the interaction log of SCM [3]
business service, developed based on the supply
chain management scenario provided by WS-I (the
Web Service Interoperability organization). There
are eight web services realizing this business service.
The interaction log of Web services with clients was
collected using a real-world commercial logging sys-
tem for Web services, HP SOA Manager. This dataset
has 19 attributes and 4,050 messages, each corre-
sponding to an activity invocation.

e Robostrike. One month collected datasets from a
multi-player on-line game service named Robostrike
(http:/ /www.Robostrike.com/). Players exchange
XML messages with game server containing several
activities that can be performed during a game ses-
sion. This dataset has 18 attributes and more than 1.8
million messages.

Increasing dataset size. To evaluate our event correlation
algorithms for computing candidate atomic correlation
conditions on large datasets, we increase the size of the
SCM dataset size while maintaining its data behaviour and
distribution. We maintain the number of interesting candi-
date atomic correlation conditions discovered in the origi-
nal size. We wanted the number of discovered process

21
14 |
7 L)

70
631 W sVC
» 26| W HVC
2 49 I PSCM-P1
g 42 | PSCM-P2
g/ 35 {
o 28T
£
I_

Map & sort

Shuffle Sort Cl+CMB

Fig. 3. Time breakdown SCMx100.

instances for each correlation conditions to increase line-
arly with regard to the size of the increased data. Increas-
ing the dataset size by replicating the original data would
only preserve the cardinality of the discovered instances,
and may blow-up their sizes. In addition, the original inter-
esting conditions may not satisfy interestingness criteria.
Therefore, we scan the whole dataset and for each new
event record, we generate clone event records by adding a
suffix to its value, and assign a unique identifier to each
new event record.

In our experiments, and for SCM dataset, we increased
the data size by factors of 100, 500 and 1,000. We refer to the
enlarged data set as “SCM” x n where n € {100, 500, 1,000}
represents the increase factor. For our two dataset with
XML event payload (SCM and Robostrike), before starting
experiments, we extracted all attributes of events and their
values from the XML content associated to events using an
ETL-like preprocessing step and represented the extracted
attribute-value pairs as event tuples in csv files. These files
are then grouped into buckets with different size (e.g.,
RS10K contains one millions events of RobotStrike dataset).
Next, we feed them into the hadoop distributed file system
for each experiment.

For all the experiments, we used the attribute names to
form correlation conditions (e.g., A; = A,), assuming A;
and A, are attribute names. We set the lower bound thresh-
old and upper bound threshold used in non-repeating values
criterion are 0.01 and 0.8 respectively. We define, also, 0.5 as
a threshold to prune correlation conditions based on
Imbalanced_PI criterion.

6.3 Atomic Correlation Condition Discovery
Algorithms

As the first experiment, we study the main differences
between the three algorithms (Sorted Values Centric,
Hashed Values and Per-Split Correlated messages algo-
rithms) for atomic correlation condition discovery. We run
the algorithms for three different sizes of SCM x n (where n
€ {100, 500, 1,000}). We report the total execution time into
two main steps (Map and Reduce). Furthermore, the reduce
is, also, subdivided into three substeps (shuffle, sort and
CMB+CI). CMB and CI denote respectively computing cor-
related message buffer and compute instances.

Figs. 3 and 4 show the execution time proportion of each
step on the 5-nodes cluster for the dataset “SCM” x 1,000

http://www.Robostrike.com/

REGUIEG ET AL.: EVENT CORRELATION ANALYTICS: SCALING PROCESS MINING USING MAPREDUCE-AWARE EVENT CORRELATION... 11

800
720
640
560
480
400
320
240
160
80
0

B svC
B HvC
B PSCM-P1
PSCM-P2

Time (seconds)

Map & sort

Shuffle Sort Cl+CMB

Fig. 4. Time breakdown SCMx1,000.

(the results corresponding to x500 are omitted for space rea-
sons and can be found [13]). Per-Split Correlated Messages
consists of two MR jobs, the first phase is denoted as PSCM-
p1 and the second as PSCM-p2.

Starting with the map phase, we observe that SVC is
always the most expensive algorithm. This is because the
SVC’s map-outputs size is twice as those of HVC and
PSCM. This fact implies moving a large amount of data
over network during the shuffle phase. A significant dif-
ference between HVC’s map and PSCM-pl’'map can be
observed in Fig. 4. This is caused by the difference in
the map-selectivity in each algorithm. In other words,
the PSCM-pl’s map step produces a larger number of
keys than HVC'map. This difference may not be seen in
case of small data sizes. Moving to the reduce phase, the
shuffle and sort phases are directly affected by the map-
output data. Therefore, we do not observe significant
changes in the performance (SVC is always the worst).
On the other hand, during CMB+CI phases, SVC shows
a better performance than HVC and PSCM, as denoted
in Fig. 3. This is because SVC'Reducers handle a sorted
data. However, in Fig. 4, PSCM was the best because it
divides this step into two stages. Finally, Fig. 5 shows
the total execution time of the three algorithms. For n
equals to 100 and 500, HVC is the best algorithm. This is
because SVC is less efficient due to the large size of
intermediate-step data, and PSCM has an additional
overhead due to the need for another MapReduce step.
Whereas, for larger dataset sizes, PSCM is the best. This

1200
1080
960
840
720
600
480
360
240
120

W SvC
B HVC
B PSCM-P1
PSCM-P2

Time (seconds)

SCM100

SCM500 SCM1000

Fig. 5. Total Run time on SCMxn datasets.

180
162 4 SVC A ?
144 | | @ HVC =

O - -, iy QO
o PSCM (p-1+p-2) o

108 ¢
90 5 &) 2 &
72 o T o <&
54 i‘, &
36
18
0

Time (seconds)

20 40 60 80 100 120 140 160 180
x 10k messages

Fig. 6. Execution times on different data size (RobotStrike).

means that the framework overheads became negligible
when the size of the workload increases.

In order to evaluate the scale up and speed up perfor-
mance of the algorithms, we conducted two experiments. In
the first, we keep the number of nodes fixed and vary the
size of the input data (Robostrike). In the second experi-
ment, we keep the input data size fixed (Robostrike and
SCMx500) and vary the number of processing nodes.

Fig. 6 presents the execution time observed from execut-
ing the three algorithms on RobotStrike dataset. We start
with 200 k messages as input log size then add 200 k in the
next steps until 1,800 k. As the data size increased the execu-
tion time of the three algorithms increase linearly. The x-
axis shows the size of input data in terms of number of mes-
sages. The y-axis shows the elapsed time in second.

In Fig. 6, moving from the left to right, we observe that as
the size of data increases, the execution times of the three
algorithms increase linearly. The main observations in Fig. 6
are: (1) Hashed Values Centric algorithm, denoted as HVC, is
the best algorithm for all data sizes. (2) Sorted Values Centric
algorithm, denoted as SVC, has approximately the same
performance as HVC until 800 thousands messages where
its execution time increases significantly. This is because the
cost of sorting and shuffling data to nodes over network
started to show up. SVC is the worst algorithm from 1,000
to 1,800 k messages. Finally, (3) Per-Split Correlated Messages
algorithm is the worst algorithm for small sizes of data and
this is mainly due to the overhead involved in writing and
reading data in/from HDFS during the first stage and the
cost of scheduling new tasks. But, when the data size gets
bigger (> 1,000 k messages), PSCM outperforms SVC
because dividing the work into two stages becomes an
advantage as there is no need for processing a large amount
of data.

Moreover, we observed that for all the three algorithms,
the amount of intermediate-data transferred over the net-
work between nodes in the shuffle phase is increasing line-
arly. SVC has the largest amount of data transferred over
network. This is caused due to the need for adding values
to the key-part to be sorted in the map-outputs. HVC and
PSCM-p1 have the same data transfer size, since they do not
replicate the values. PSCM-p2 has the smallest intermediate
data size, this is due to eliminating non-used messages in
PSCM-p2.

Robostrike dataset: In Fig. 7, we plot the execution time of
the three algorithms on the same Robostrike data size,

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.8, NO.X, XXXXX 2015

400
360
320
280
240
200
160
120

& SVC
¥ HVC

® PSCM-pl
> PSCM-p2

< ba

Time (seconds)
<ra

< ra
E

40 r

1 2 3 4 5
Number of nodes in the cluster

Fig. 7. Execution time of the algorithms for Robostrike data set on differ-
ent cluster sizes.

varying only the size of the cluster from 1 to 5 nodes. We can
see that the HVC is the best for all the settings from 1 to 5
nodes (as in previous graphs). The PSCM-pl scales faster
because of the balance in the number of map-output groups
(keys) over nodes. Unlike in SVC and HVC, the routing keys
in PSCM are numerous and therefore require the same num-
ber of reduce instances. In addition, the reducers in PSCM-p1
will receive only message ids of a single condition, and mes-
sages that have the same value for that condition. On the
other hand, PSCM-p2 has the smallest speed up. The main
reason for the poor speed up of PSCM-p2 is due to: (1) the
low size of input data (already eliminated by PSCM-p1), (2) it
only groups already computed correlated messages and
applies the pruning. In general, the execution time of the
three algorithms decrease as the number of nodes increases,
and therefore showing a positive speed up performance.

Fig. 8 shows the same result as in Fig. 7 but plotted on
“relative scale”. In other words, we plot the ratio between the
execution time of the current cluster size and the smallest size
of the cluster. For example, for the 4-node cluster, we plot the
ratio between the execution time on the 1-node cluster and
the execution time on the 4-node cluster. We can see that the
fastest algorithm is HVC. Also, we can see that PSCM-p1 sur-
passed HVC in 2-node cluster but then worsen. This fact is
due to cost of scheduling tasks and partitioning large number
of groups. However, all the three algorithms have approxi-
mately the same speed up curves and scale well.

3
C 4 SVC & i
S 55 < hvc .
o B pscm-pl 3 ! ¥
£ O pscm-p2
S
g 2 P
8 .
Q 5 !
n 15 A =

| ¥

1 2 3 4 5

Number of nodes in the cluster

Fig. 8. Relative execution time of the algorithms for Robostrike data set
on different cluster sizes.

500
450
400
350
300
250
200
150
100
50
0

< SPCC

Time (seconds)

1 2 3 4 5

Number of nodes in the cluster / partitionnig
condition size (SPCC-pc)

Fig. 9. Execution time of the SPCC algorithm for RoboStrike dataset on
different cluster sizes (resp. partitioning condition sizes).

SCMx500 dataset. The execution times of the three algo-
rithms on SCMx500 data set on different cluster sizes fol-
low the same pattern as in Fig. 7. HVC achieves the best
performance. We observed, also, that the SVC’s execution
time decreases linearly as the cluster size increases. PSCM-
pl’s execution time is the worst for all cluster sizes. How-
ever, its speed up scales faster than HVC and SVC.

6.4 Composite Correlation Condition Discovery
Algorithms

Single-pass conjunctive conditions algorithm. We ran the single-
pass conjunctive conditions algorithm on a fixed size of Robot-
Strike dataset and varied the number of nodes from 1 to 5.
We kept the number of partitioning conditions fixed to 3. Con-
sequently, the number of Reduce tasks required to achieve
the computations is 23. Fig. 10 shows the evolution of the
relative execution time w.r.t. the number of nodes. The exe-
cution time decreases as the number of nodes increases. The
breaking point can be observed moving from configuration
with 1-node to configuration with 2-nodes, where the execu-
tion time decreases, approximately, by half. This is because
the two nodes receive the same workload. Adding more
nodes decreases the execution time with a factor of 0.4. This
is due to two reasons: (i) nodes do not have the same work-
load (e.g., with 3-nodes configuration, two nodes receive
three tasks and one receives two tasks), (ii) some tasks take
more time in execution than the others, depending on the
amount of candidates that are pruned before computing
their process instances.

In the second experiment, we fix the number of nodes to
5 and vary the number of partitioning conditions from 1 to

3,6
3,2
2,8
2,4

1,6
1,2

0,8
04
0

1 2 3 4 5

Number of nodes in the cluster

Speedup factor
N

Fig. 10. Relative execution time of the SPCC algorithm for RobotStrike
dataset set on different cluster sizes.

REGUIEG ET AL.: EVENT CORRELATION ANALYTICS: SCALING PROCESS MINING USING MAPREDUCE-AWARE EVENT CORRELATION... 13

2,2
1,98
1,76
1,54
1,32
1,1
0,88
0,66
0,44
0,22
0

Speedup factor

1 2 3 4 5
Partitionning condition size

Fig. 11. Relative execution time of the SPDC algorithm for RobotStrike
dataset set on 5-nodes cluster with different partitioning conditions sizes.

5. Fig. 11 shows the relative execution time of different con-
figurations. We start with partitioning conditions size (p)
equal to 1. This implies 2' Reduce tasks. Therefore, only
two nodes were working where the other three nodes are
idle. We observe that the speed-up factor increases at the
beginning then it decreases comparing to the first configura-
tion. In configuration 2 and 3 (in Fig. 9 SPCC-PC graph), the
execution time decreases because each node processes at
most two Reduce tasks. Also, all nodes receive a piece of
workload (no idle nodes). In configuration 4 and 5, increas-
ing p spawns more Reduce tasks. However, it involves
larger intermediate data sizes and scheduling a huge num-
ber of tasks. These overheads affect the performance of the
algorithm and increase the execution time.

Based on this evaluation, we conclude that a good value
of p w.r.t. the number of nodes should be a factor of two
(e.g., if we have 10 nodes, then cluster sizes p should be
equal to 4, and one node coordinating the operation).

6.5 MapReduce versus Centralized Approach
Table 5 shows a brief comparison between the centralized
approaches reported in [3] and the approach proposed in
this paper using the RoboStrike dataset. We observe the
benefits of using a MapReduce approach. Although the
data set size is 120 times larger, MapReduce approach out-
performs the centralized one. Moreover, centralized
approaches suffer from a scalability problem since they can-
not handle hundreds of thousands or millions of messages.
In summary, we have conducted experiments to study,
most important factors that covers issues for evaluating dis-
tributed approaches, both scalability and speed up of our
algorithms. Also, we showed the effectiveness of using a
parallel method with respect to serial, single node method
for event correlation. Moreover, we compared how different
event data partitioning and routing impacts the perfor-
mance. By consequent, we concluded that: a weak or badly
designed partitioning may lead to cumulate workloads on
some nodes where others are free. Therefore, the fact of
using MapReduce does not automatically grants a linear
increase in the performance, i.e., adding more nodes will
not increase the performance of the job and may even do
not improve the performance much.

7 RELATED WORK

Event correlation discovery received a notable attention from
researchers and practitioners in many application domains

TABLE 5
Centralized versus MapReduce Approaches

Approach # of msg. AC Exec. time CC Exec. time
Centralized 15k > 300 sec > 120 sec
1,800 K HVC < 140 sec
MR appr. 1,800 K SVC < 180 sec
1,800 K PSCM < 160 sec spcc =150 sec

including process discovery, monitoring, analysis and
browsing and querying [3], [4], [5], [6], [7], [8]. However, to
the best of our knowledge, this is the first work that introdu-
ces parallel, MapReduce-based, algorithms for efficient and
scalable discovery of correlation conditions from big process
data, and for the purpose of process mining. In the following,
we discuss related work in three categories.

Correlation rules in business processes. Barros et al. [16]
characterized the problem of event correlation in the busi-
ness processes, where they identified three classes of corre-
lation patterns as function-based (key-based), chain-based
and aggregation functions. The proposed correlation pat-
terns identify how events in business processes could be
grouped into instances of the execution of business pro-
cesses. This work does not investigate the problem of cor-
relation condition discovery but focuses on characterizing
the problem.

Authors in [6] propose an approach to discover the corre-
lation between message pairs (e.g., Purchase Order and Ship-
ping message pair) from the log of service interactions.
Their approach is based on identifying the conversation
identifiers within exchanged messages. They used the term
semantic correlation to describe how these (key-based) identi-
fiers correlate messages across service interactions. This
work is limited to identifying pairwise relationships based
on a serial as opposed to a parallel approach. In our earlier
work [3], we were first in presenting a method for identify-
ing and discovering event correlation conditions for the
purpose of process instance discovery, and eventually pro-
cess discovery. An issue with investigating only the event
pair-level correlation analysis is that events may have
shared values on some attributes but may not be part of any
instances (which can be used to simply group the messages
based the shared values), and process instances that are
formed with combination of correlation conditions or chains
for them are not discovered. In [7], authors present a saticat-
ical-based approach for the discovery of simple, non-com-
posite correlation rules on business process event data. The
presented approach is a serial algorithm, and no parallel or
scalability issues have been investigated.

Data correlation in databases, query optimization and search.
Brown and Hass [4] present a data-driven technique, called
BHUNT, that uses a “Bump Hunting” technique for auto-
matically discovering fuzzy (soft) hidden relationships
between pairs of numerical attributes in relational data-
bases, and incorporates this knowledge into an optimizer in
the form of algebraic constraints. In [5], the authors intro-
duce CORrelation Detection via Sampling (CORDS), a data-
driven technique for automatically discovering correlations
and soft functional dependencies between database col-
umns. These approaches are complementary to ours and

Q1

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.8, NO.X, XXXXX 2015

focus on identifying data quality issues based on the discov-
ered relationships and constraints on the data.

Finally, we should mention that distributed and parallel
computing is a dynamic research area, advancing at a fast
pace including memory-based approaches as the latest
wave (e.g., Spark). This is still however an evolving space
due to the strong assumption that the whole data must
entirely fit in the available memory.

8 CoONCLUSION AND FUTURE WORK

We presented the first generic framework and techniques
for systematically endowing process discovery and analysis
tasks with efficient and scalable MapReduce-based algo-
rithms. We showed how to efficiently deal with problems
such as partitioning, replication, and multiple inputs by
manipulating the keys used to route the data between nodes
of a MapReduce cluster. Our future work in this area will
focus on the exploration of alternative data structures, for
example, distributed non-relational database as Hbase to
integrate and store event related data. Such kind of data
structure provides advantages in distributed cloud storage
systems as tables are always sorted by their key and thus
can be easily distributed horizontally over several
machines. Finally, it would be interesting to experimentally
compare our approach w.r.t. emerging new technologies,
such as in-memory based solutions, and to investigate their
extensions to scenarios where all data cannot fit in the tran-
sient memory to complement with fast non-transient data
storage devices such as flash.

ACKNOWLEDGMENTS

This work has been partially supported by the Labex
IMobS3.

REFERENCES

[1] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow min-
ing: Discovering process models from event logs,” IEEE Trans.
Knowl. Data Eng., vol. 16, no. 9, pp. 1128-1142, Sep. 2004.

[2] J. E. Cook and A. L. Wolf, “Discovering models of software pro-
cesses from event-based data,” ACM Softw. Eng. Methodol., vol. 7,
pp- 215-249, 1998.

[3] H. R. M. Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah,
“Event correlation for process discovery from web service interac-
tion logs,” VLDB |., vol. 20, no. 3, pp. 417-444, 2011.

[4] P. Brown and P. Hass, “BHUNT: Automatic discovery of fuzzy
algebraic constraints in relational data,” in Proc. 29th Int. Conf.
Very Large Databases, 2003, pp. 668-679.

[5] L.Ilyas, V. Markl, P.]. Haas, P. Brown, and A. Aboulnaga, “Cords:
Automatic generation of correlation statistics in DB2,” in Proc.
30th Int. Conf. Very Large Databases, 2004, pp. 1341-1344.

[6] W.D. Pauw, R. Hoch, and Y. Huang, “Discovering conversations
in web services using semantic correlation analysis,” in Proc. IEEE
19th Int. Conf. Web Services, 2007, pp. 639-646.

[7] S. Rozsnyai, A. Slominski, and G. Lakshmanan, “Discovering
event correlation rules for semi-structured business processes,” in
Proc. 5th ACM Int. Conf. Distrib. Event-Based Syst., 2011, pp. 75-86.

[8] R.S. Barga, and H. Caituiro-Monge, “Event correlation and pat-
tern detection in CEDR,” in Proc. Int. Conf. Current Trends Database
Technol., 2006, pp. 919-930.

[9]1 F.Li, B.C.Ooi, M. T. Ozsu, and S. Wu, “Distributed data manage-
ment using MapReduce,” ACM Comput. Surv., vol. 46, 2014.

[10] H. Reguieg, F. Toumani, H. Motahari-Nezhad, and B. Benatallah,
“Using mapreduce to scale events correlation discovery for busi-
ness processes mining,” in Proc. 10th Int. Conf. Bus. Process Man-
age., 2012, 279-284.

[11] J. Dean and S. Ghemawat, “MapReduce: A flexible data process-
ing tool,” Commun. ACM, vol. 53, no. 1, pp. 72-77, Jan. 2010.

[12] J. Lin and C. Dyer, “Data-intensive text processing with
MapReduce,” in Proc. HLT, 2009.

[13] H. Reguieg, “Using mapreduce to scale event correlation discov-
ery for process mining,” Ph.D. dissertation, Blaise Pascal Univ.,
Aubiere, France, 2014.

[14] H. Mannila and H. Toivonen, “Levelwise search and borders of
theories in knowledgediscovery,” Data Min. Knowl. Discov., vol. 1,
pp- 241-258,1997.

[15] R. Agrawal and R. Srikant, “Fast algorithms for mining associa-
tion rules in large databases,” in Proc. 20th Int. Conf. Very Large
Databases, 1994, pp. 487-499.

[16] A. Barros, G. Decker, M. Dumas, and F. Weber, “Correlation pat-
terns in service-oriented architectures,” in Proc. Int. Conf. Funda-
mental Approaches Softw. Eng., 2007, pp. 245-259.

Hicham Reguieg is an assistant professor of computer science at the
USTO, Algeria. His research interests include events correlation dis-
covery, process mining and web services.

Boualem Benatallah is a scientia professor of computer science and
engineering at UNSW Australia. His main research interests include
service-based programming, process discovery, end users analytics,
cloud services, and crowd sourcing.

Hamid R. Motahari Nezhad is a research staff member, and data
analytics research lead at IBM Almaden Research Center. His
research interest include data analytics, services computing, cognitive
computing and its applications in the area of business process and
case management. He is a senior member of the IEEE.

Farouk Toumani is a full professor of computer science at UBP,
France. His research interests lie in the areas services oriented com-
puting, business processes, and big data.

Q2
Q3

Queries to the Author

Q1. Please provide page range in Refs. [9] and [12].
Q2. There are 16 references in source file and 17 in authors PDF. We have followed the source file.
Q3. Please provide photos of authors.

