Rapport (Rapport De Recherche) Année : 2017

Symmetric and Asymmetric Aggregate Function in Massively Parallel Computing

Fonctions d'agrégation symétriques et asymétriques dans le calcul massivement parallèle

Résumé

Applications of aggregation for information summary have great meanings in various fields. In big data era, processing aggregate function in parallel is drawing researchers' attention. The aim of our work is to propose a generic framework enabling to map an arbitrary aggregation into a generic algorithm and identify when it can be efficiently executed on modern large-scale data-processing systems. We describe our preliminary results regarding classes of symmetric and asymmetric aggregation that can be mapped, in a systematic way, into efficient MapReduce-style algorithms.
Fichier principal
Vignette du fichier
Symmetric and Asymmetric Aggregte Fcuntiong in Massively Parallel Computing(extended report).pdf (310.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01533675 , version 1 (06-06-2017)
hal-01533675 , version 2 (11-06-2017)
hal-01533675 , version 3 (05-08-2017)

Identifiants

  • HAL Id : hal-01533675 , version 2

Citer

Chao Zhang, Farouk Toumani, Emmanuel Gangler. Symmetric and Asymmetric Aggregate Function in Massively Parallel Computing. [Research Report] LIMOS (UMR CNRS 6158), université Clermont Auvergne, France. 2017. ⟨hal-01533675v2⟩
1293 Consultations
596 Téléchargements

Partager

More