On the Importance of the Mathematical Formulation to Get PINNs Working - Université Clermont Auvergne
Article Dans Une Revue IEEE Transactions on Electromagnetic Compatibility Année : 2024

On the Importance of the Mathematical Formulation to Get PINNs Working

Pierre Bonnet

Résumé

Physics-informed neural networks are a powerful approach that combines deep learning with physical principles to solve complex problems. However, like any method, they do have some drawbacks. The first one is hyperparameter sensitivity such as learning rates, network architectures, and activation functions. Many researchers have devoted their time and energy to design efficient neural network models by searching optimal hyperparameters. In this article, we follow another path by showing that the mathematical formulation of the problem to be solved, has a critical influence on the performance of the model. Electrostatic examples illustrate this.
Fichier principal
Vignette du fichier
IEEE_EMC_Special_Issue_PINN_Final_Version.pdf (5.77 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04790851 , version 1 (20-11-2024)

Identifiants

Citer

Brahim El Mokhtari, Cédric Chauviere, Pierre Bonnet. On the Importance of the Mathematical Formulation to Get PINNs Working. IEEE Transactions on Electromagnetic Compatibility, 2024, pp.1-8. ⟨10.1109/TEMC.2024.3490699⟩. ⟨hal-04790851⟩
41 Consultations
5 Téléchargements

Altmetric

Partager

More