Microstructures, hydrogen concentrations, and seismic properties of a tectonically exhumed sliver of oceanic mantle lithosphere, Moa Island, Timor-Tanimbar outer-arc, eastern Indonesia - Université Clermont Auvergne
Journal Articles Tectonophysics Year : 2024

Microstructures, hydrogen concentrations, and seismic properties of a tectonically exhumed sliver of oceanic mantle lithosphere, Moa Island, Timor-Tanimbar outer-arc, eastern Indonesia

Sylvie Demouchy
Fabrice Barou
Emmanuel Gardés
Andrea Tommasi

Abstract

We characterize and quantify the microstructure, hydrogen concentrations, and seismic properties of a tectonically exhumed sliver of oceanic lithospheric mantle outcropping in the Moa Island (Leti archipelago, Timor-Tanimbar outer-arc). The 18 spinel peridotites (lherzolites and harzburgites) have coarse-porphyroclastic microstructures and olivine crystal-preferred orientations (CPO) with axial-[010] (also known as AG-type) or [100] (010) (A-type) patterns, similar to those observed in peridotitic xenoliths from oceanic mantle lithosphere. These coarse-porphyroclastic microstructures are variably overprinted by growth of strain-free olivine neoblasts and crystallization of secondary pyroxenes. Recrystallized fractions vary from 6.9 up to 31.3%. The interstitial (cuspate) shapes and CPOs of clinopyroxene, uncorrelated with the olivine CPOs, indicate that refertilization by a reactive melt percolation post-dated deformation. Seismic properties are calculated based on the modal compositions and CPOs of all samples. Increase in the recrystallized olivine fraction decreased the seismic anisotropy, since static recrystallization produced some dispersion of the CPO, but did not change drastically the texture acquired during deformation. Mean seismic velocities (mean Vp = 7.9 km.s -1 ; mean Vs = 4.5 km.s -1 ) and anisotropy (mean maximum S wave polarization anisotropy = 4.5%), estimated by considering coherent orientation of the foliation and lineation of all samples, are within the range of typical values for the uppermost mantle. The nominally anhydrous minerals contain small amounts of hydrogen (olivine: 13-18 ppm H 2 O by weight; orthopyroxene: 58-175 wt ppm H 2 O and clinopyroxenes: 244-288 wt ppm H 2 O). A bulk water content of 50 wt ppm H 2 O is estimated based on nomminally anhydrous minerals for the Moa peridotites, in agreement with previous estimates for the oceanic mantle lithosphere based on peridotitic xenoliths. This is the first direct measurement of hydrogen concentrations in peridotites from an oceanic mantle lithosphere which experienced melt extraction.
Fichier principal
Vignette du fichier
Demouchy_2024_Moa.pdf (4.56 Mo) Télécharger le fichier
Origin Explicit agreement for this submission
Licence

Dates and versions

hal-04688518 , version 1 (05-09-2024)

Licence

Identifiers

Cite

Sylvie Demouchy, Fabrice Barou, Akira Ishikawa, Emmanuel Gardés, Andrea Tommasi. Microstructures, hydrogen concentrations, and seismic properties of a tectonically exhumed sliver of oceanic mantle lithosphere, Moa Island, Timor-Tanimbar outer-arc, eastern Indonesia. Tectonophysics, 2024, 887, ⟨10.1016/j.tecto.2024.230443⟩. ⟨hal-04688518⟩
48 View
22 Download

Altmetric

Share

More