Fatty Acid Amide Hydrolase-Dependent Generation of Antinociceptive Drug Metabolites Acting on TRPV1 in the Brain - Université Clermont Auvergne Accéder directement au contenu
Article Dans Une Revue PLoS ONE Année : 2013

Fatty Acid Amide Hydrolase-Dependent Generation of Antinociceptive Drug Metabolites Acting on TRPV1 in the Brain

David A Barrière
  • Fonction : Auteur
Christophe Mallet
Anders Blomgren
  • Fonction : Auteur
Laurence Daulhac
  • Fonction : Auteur
Frédéric Libert
  • Fonction : Auteur
Eric Chapuy
  • Fonction : Auteur
Monique Etienne
  • Fonction : Auteur
Peter M Zygmunt
  • Fonction : Auteur
Alain Eschalier
  • Fonction : Auteur

Résumé

The discovery that paracetamol is metabolized to the potent TRPV1 activator N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Zeicosatetraenamide (AM404) and that this metabolite contributes to paracetamol's antinociceptive effect in rodents via activation of TRPV1 in the central nervous system (CNS) has provided a potential strategy for developing novel analgesics. Here we validated this strategy by examining the metabolism and antinociceptive activity of the de-acetylated paracetamol metabolite 4-aminophenol and 4-hydroxy-3-methoxybenzylamine (HMBA), both of which may undergo a fatty acid amide hydrolase (FAAH)-dependent biotransformation to potent TRPV1 activators in the brain. Systemic administration of 4aminophenol and HMBA led to a dose-dependent formation of AM404 plus N-(4-hydroxyphenyl)-9Z-octadecenamide (HPODA) and arvanil plus olvanil in the mouse brain, respectively. The order of potency of these lipid metabolites as TRPV1 activators was arvanil = olvanil..AM404. HPODA. Both 4-aminophenol and HMBA displayed antinociceptive activity in various rodent pain tests. The formation of AM404, arvanil and olvanil, but not HPODA, and the antinociceptive effects of 4aminophenol and HMBA were substantially reduced or disappeared in FAAH null mice. The activity of 4-aminophenol in the mouse formalin, von Frey and tail immersion tests was also lost in TRPV1 null mice. Intracerebroventricular injection of the TRPV1 blocker capsazepine eliminated the antinociceptive effects of 4-aminophenol and HMBA in the mouse formalin test. In the rat, pharmacological inhibition of FAAH, TRPV1, cannabinoid CB1 receptors and spinal 5-HT 3 or 5-HT 1A receptors, and chemical deletion of bulbospinal serotonergic pathways prevented the antinociceptive action of 4-aminophenol. Thus, the pharmacological profile of 4-aminophenol was identical to that previously reported for paracetamol, supporting our suggestion that this drug metabolite contributes to paracetamol's analgesic activity via activation of bulbospinal pathways. Our findings demonstrate that it is possible to construct novel antinociceptive drugs based on fatty acid conjugation as a metabolic pathway for the generation of TRPV1 modulators in the CNS.
Fichier principal
Vignette du fichier
file(1).pdf (1.21 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Licence : CC BY - Paternité

Dates et versions

hal-04337223 , version 1 (12-12-2023)

Licence

Paternité

Identifiants

Citer

David A Barrière, Christophe Mallet, Anders Blomgren, Charlotte Simonsen, Laurence Daulhac, et al.. Fatty Acid Amide Hydrolase-Dependent Generation of Antinociceptive Drug Metabolites Acting on TRPV1 in the Brain. PLoS ONE, 2013, 8 (8), pp.e70690. ⟨10.1371/journal.pone.0070690⟩. ⟨hal-04337223⟩

Collections

PRES_CLERMONT ND
8 Consultations
7 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More