An inverse problem in an elastic domain with a crack : a fictitious domain approach - Université Clermont Auvergne
Article Dans Une Revue Computational Geosciences Année : 2022

An inverse problem in an elastic domain with a crack : a fictitious domain approach

Résumé

An inverse problem applied to volcanology is studied. It consists in the determination of the variable pressure applied to a crack in order to fit observed ground displacements. The deformation of the volcano is assumed to be governed by linear elasticity. The direct problem is solved via a fictitious domain method, using a finite element discretization of XFEM type. The ground misfit is minimized using a combination of a domain decomposition and optimatily conditions. The gradient of the cost function is derived from a sensitivity analysis. Discretization of the problem is studied. Numerical tests (in 2D and 3D) are presented to illustrate the effectiveness of the proposed approach. In particular, we find that a quasi-Newton method is more efficient than a conjugate gradient method for solving the optimization problem.

Domaines

Volcanologie
Fichier principal
Vignette du fichier
BodartCayolDabaghiKoko_post-print.pdf (1.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03524275 , version 1 (13-01-2022)

Identifiants

Citer

Oliver Bodart, Valérie Cayol, Farshid Dabaghi, Jonas Koko. An inverse problem in an elastic domain with a crack : a fictitious domain approach. Computational Geosciences, 2022, ⟨10.1007/s10596-021-10121-7⟩. ⟨hal-03524275⟩
293 Consultations
158 Téléchargements

Altmetric

Partager

More