Thermal Conductivity of FeS and Its Implications for Mercury's Long‐Sustaining Magnetic Field - Université Clermont Auvergne Accéder directement au contenu
Article Dans Une Revue Journal of Geophysical Research. Planets Année : 2019

Thermal Conductivity of FeS and Its Implications for Mercury's Long‐Sustaining Magnetic Field

Geeth Manthilake
J. Monteux
Denis Andrault
Nathalie Bolfan-Casanova
E. Boulard
N. Guignot
  • Fonction : Auteur
A. King
  • Fonction : Auteur
J. Itié
  • Fonction : Auteur

Résumé

The MESSENGER mission revealed that Mercury's magnetic field might have operated since 3.7–3.9 Ga. While the intrinsic magnetism suggests an active dynamo within Mercury's core, the mechanism that is responsible for sustaining the dynamo for prolonged period of time remains unknown. Here we investigated the electrical conductivity of Fe‐S alloys at pressure of 8 GPa and temperatures up to 1,700 K. We show that the electrical conductivity of Fe‐S alloys at 1,500 K is about 103 S/m, 2 orders of magnitude lower than the previously assumed value for dynamo calculations. The thermal conductivity was estimated using the Wiedemann‐Franz law. The total thermal conductivity of FeS is estimated to be ~4 Wm/K at the Mercurian core‐mantle boundary conditions. The low thermal conductivity suggests that a thermally driven dynamo operating on Mercury is more likely than expected. If coupled with chemical buoyancy sources, it is possible to sustain an intrinsic dynamo during time scales compatible with the MESSENGER observations.

Domaines

Pétrographie
Fichier principal
Vignette du fichier
Manthilake 2019.pdf (691.67 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02284266 , version 1 (13-11-2020)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Geeth Manthilake, J. Chantel, J. Monteux, Denis Andrault, Mohamed Ali M.A. Bouhifd, et al.. Thermal Conductivity of FeS and Its Implications for Mercury's Long‐Sustaining Magnetic Field. Journal of Geophysical Research. Planets, 2019, 124 (9), pp.2359 - 2368. ⟨10.1029/2019JE005979⟩. ⟨hal-02284266⟩
132 Consultations
209 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More