TrIK-SVM : an alternative decomposition for kernel methods in Krein spaces - Université Clermont Auvergne
Communication Dans Un Congrès Année : 2019

TrIK-SVM : an alternative decomposition for kernel methods in Krein spaces

Résumé

The proposed work aims at proposing a alternative kernel decomposition in the context of kernel machines with indefinite kernels. The original paper of KSVM (SVM in Kre˘ ın spaces) uses the eigen-decomposition, our proposition avoids this decompostion. We explain how it can help in designing an algorithm that won't require to compute the full kernel matrix. Finally we illustrate the good behavior of the proposed method compared to KSVM.
Fichier principal
Vignette du fichier
trikSVMreduced.pdf (801.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02049004 , version 1 (26-02-2019)

Identifiants

Citer

Gaëlle Loosli. TrIK-SVM : an alternative decomposition for kernel methods in Krein spaces. ESANN - European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Apr 2019, Bruges, Belgium. ⟨hal-02049004⟩
104 Consultations
73 Téléchargements

Altmetric

Partager

More