Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories - Université Clermont Auvergne
Article Dans Une Revue Atmospheric Chemistry and Physics Année : 2018

Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories

Julia Schmale
Silvia Henning
  • Fonction : Auteur
Bas Henzing
  • Fonction : Auteur
Helmi Keskinen
  • Fonction : Auteur
Karine Sellegri
Jurgita Ovadnevaite
  • Fonction : Auteur
Mira L Pöhlker
  • Fonction : Auteur
Aikaterini Bougiatioti
Adam Kristensson
  • Fonction : Auteur
Nikos Kalivitis
Iasonas Stavroulas
  • Fonction : Auteur
Samara Carbone
  • Fonction : Auteur
Anne Jefferson
  • Fonction : Auteur
Minsu Park
  • Fonction : Auteur
Patrick Schlag
  • Fonction : Auteur
Yoko Iwamoto
  • Fonction : Auteur
Pasi Aalto
  • Fonction : Auteur
Mikko Äijälä
  • Fonction : Auteur
Nicolas Bukowiecki
Mikael Ehn
  • Fonction : Auteur
Göran Frank
  • Fonction : Auteur
Roman Fröhlich
  • Fonction : Auteur
Arnoud Frumau
  • Fonction : Auteur
Erik Herrmann
  • Fonction : Auteur
Hartmut Herrmann
Rupert Holzinger
  • Fonction : Auteur
Gerard Kos
  • Fonction : Auteur
Markku Kulmala
Nikolaos Mihalopoulos
  • Fonction : Auteur
Athanasios Nenes
  • Fonction : Auteur
Colin O 'Dowd
  • Fonction : Auteur
Tuukka Petäjä
David Picard
Christopher Pöhlker
Ulrich Pöschl
Laurent Poulain
Erik Swietlicki
  • Fonction : Auteur
Meinrat O Andreae
Paulo Artaxo
Alfred Wiedensohler
John Ogren
  • Fonction : Auteur
Atsushi Matsuki
Seong Soo Yum
  • Fonction : Auteur
Frank Stratmann
  • Fonction : Auteur
Urs Baltensperger
  • Fonction : Auteur
Martin Gysel
  • Fonction : Auteur
  • PersonId : 850750

Résumé

Aerosol–cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations , in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set – ready to be used for model validation – of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles > 20 nm) across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, κ, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2–0.3). We performed closure studies based on κ–Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of κ. The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radia-tive forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating " migrating-CCNCs " to conduct collo-cated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscop-icity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.
Fichier principal
Vignette du fichier
2018_Schmale.pdf (3.55 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01836076 , version 1 (12-07-2018)

Identifiants

Citer

Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, et al.. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmospheric Chemistry and Physics, 2018, 18 (4), pp.2853 - 2881. ⟨10.5194/acp-18-2853-2018⟩. ⟨hal-01836076⟩
427 Consultations
245 Téléchargements

Altmetric

Partager

More