Blocked at the Stomatal Gate, a Key Step of Wheat Stb16q-Mediated Resistance to Zymoseptoria tritici - I-Site CAP 20-25 Accéder directement au contenu
Article Dans Une Revue Frontiers in Plant Science Année : 2022

Blocked at the Stomatal Gate, a Key Step of Wheat Stb16q-Mediated Resistance to Zymoseptoria tritici

Résumé

Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici , is among the most threatening wheat diseases in Europe. Genetic resistance remains one of the main environmentally sustainable strategies to efficiently control STB. However, the molecular and physiological mechanisms underlying resistance are still unknown, limiting the implementation of knowledge-driven management strategies. Among the 22 known major resistance genes ( Stb ), the recently cloned Stb16q gene encodes a cysteine-rich receptor-like kinase conferring a full broad-spectrum resistance against Z. tritici . Here, we showed that an avirulent Z. tritici inoculated on Stb16q quasi near isogenic lines (NILs) either by infiltration into leaf tissues or by brush inoculation of wounded tissues partially bypasses Stb16q -mediated resistance. To understand this bypass, we monitored the infection of GFP-labeled avirulent and virulent isolates on Stb16q NILs, from germination to pycnidia formation. This quantitative cytological analysis revealed that 95% of the penetration attempts were unsuccessful in the Stb16q incompatible interaction, while almost all succeeded in compatible interactions. Infectious hyphae resulting from the few successful penetration events in the Stb16q incompatible interaction were arrested in the sub-stomatal cavity of the primary-infected stomata. These results indicate that Stb16q -mediated resistance mainly blocks the avirulent isolate during its stomatal penetration into wheat tissue. Analyses of stomatal aperture of the Stb16q NILs during infection revealed that Stb16q triggers a temporary stomatal closure in response to an avirulent isolate. Finally, we showed that infiltrating avirulent isolates into leaves of the Stb6 and Stb9 NILs also partially bypasses resistances, suggesting that arrest during stomatal penetration might be a common major mechanism for Stb -mediated resistances.
Fichier principal
Vignette du fichier
2022_Battache_fpls-13-921074 (1).pdf (8.35 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
licence : CC BY - Paternité

Dates et versions

hal-03727443 , version 1 (19-07-2022)

Licence

Paternité

Identifiants

Citer

Mélissa Battache, Marc-Henri Lebrun, Kaori Sakai, Olivier Soudière, Florence Cambon, et al.. Blocked at the Stomatal Gate, a Key Step of Wheat Stb16q-Mediated Resistance to Zymoseptoria tritici. Frontiers in Plant Science, 2022, 13, ⟨10.3389/fpls.2022.921074⟩. ⟨hal-03727443⟩
61 Consultations
13 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More