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Abstract

A subset of NP is said to have a dichotomy if it contains problem that are either solvable
in P-time or NP-complete. The class of finite Constraint Satisfaction Problems (CSP) is
a well-known subset of NP that follows such a dichotomy. The complexity class NP does
not have a dichotomy unless P = NP. For both of these classes there exist logics that are
associated with them.

• NP is captured by Existential Second-Order (ESO) logic by Fagin’s theorem, i.e., a
problem is in NP if and only if it is expressible by an ESO sentence.

• CSP is a subset of Feder and Vardi’s logic, Monotone Monadic Strict NP with-
out inequalities (MMSNP), and for every MMSNP sentence there exists a P-time
equivalent CSP problem.

This implies that ESO does not have a dichotomy as well as NP, and that MMSNP has
a dichotomy as well as CSP. The main objective of this thesis is to study subsets of NP
that strictly contain CSP or MMSNP with respect to the dichotomy existence.

Feder and Vardi proved that if we omit one of the three properties that define MMSNP,
namely being monotone, monadic or omitting inequalities, then the resulting logic does
not have a dichotomy. As their proofs remain sketchy at times, we revisit these results
and provide detailed proofs.

Guarded Monotone Strict NP (GMSNP) is a known extension of MMSNP that is
obtained by relaxing the monadic restriction of MMSNP. We define similarly a new logic
that is called MMSNP with Guarded inequalities (GMMSNP ̸=), relaxing the restriction
of being without inequalities. We prove that GMMSNP ̸= is strictly more expressive than
MMSNP and that it also has a dichotomy.

There is a logic MMSNP2 that extends MMSNP in the same way as MSO2 extends
Monadic Second-Order (MSO) logic. It is known that MMSNP2 is a fragment of GMSNP
and that these two classes either both have a dichotomy or both have not. We revisit this
result and strengthen it by proving that, with respect to having a dichotomy, without
loss of generality, one can consider only MMSNP2 problems over one-element signatures,
instead of GMSNP problems over arbitrary finite signatures.

We seek to prove the existence of a dichotomy for MMSNP2 by finding, for every
MMSNP2 problem, a P-time equivalent MMSNP problem. We face some obstacles to
build such an equivalence. However, if we allow MMSNP sentences to consist of countably
many negated conjuncts, then we prove that such an equivalence exists. Moreover, the
corresponding infinite MMSNP sentence has a property of being regular. This regular
property means that, in some sense, this sentence is still finite. It is known that regular
MMSNP problems can be expressed by CSP on ω-categorical templates. Also, there is
an algebraic dichotomy characterisation for ω-categorical CSPs that describe MMSNP
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problems. If one manages to extend this algebraic characterisation onto regular MMSNP,
then our result would provide an algebraic dichotomy for MMSNP2.

Another potential way to prove the existence of a dichotomy for MMSNP2 is to mimic
the proof of Feder and Vardi for MMSNP. That is, by finding a P-time equivalent CSP
problem. The most difficult part there is to reduce a given input structure to a structure of
sufficiently large girth. For MMSNP and CSP, it is done using expanders, i.e., structures,
where the distribution of tuples is close to a uniform distribution. We study this approach
with respect to MMSNP2 and point out the main obstacles.

We also consider an extension of CSP: the Matrix Partition (MP) problems class.
We study it from several perspectives. It is well-known that CSP over an arbitrary fi-
nite signature has a dichotomy if and only if CSP on directed graphs has a dichotomy.
Motivated by this result, we consider MP problems over arbitrary finite signatures and
show that they have a dichotomy if and only if MP problems over one-element signatures
have a dichotomy, similarly to our result for MMSNP2. Another perspective is to charac-
terise MP problems with respect to being definable in First-Order (FO) logic. For CSP,
a problem is FO-definable if and only if it has a finitary duality, i.e., a finite family of
digraphs such that an input digraph is accepted by the CSP if and only if no digraph from
the family is homomorphically mapped to the input one. There have already been some
attempts to classify Matrix Partition problems in terms of having finitely many minimal
obstructions, i.e., an input graph is accepted by the MP problem if and only if it does
not contain an induced subgraph from a given finite family. We manage to show that,
for MP problems, these two notions are the same. The third perspective is to find a logic
that would be related to MP in a similar way as MMSNP is related to CSP. We intro-
duce, as a potential candidate, a logic obtained from MMSNP by relaxing the monotone
restriction, and show that it contains MP. However, it is not known how to show the
equivalence. At last, we study the notion of polymorphism for MP problems. We do it in
order to consider the algebraic dichotomy characterisation for finite CSP and see if there
is some potential to consider polymorphisms for MP problems. In the case of CSP, a
structure has a non-trivial polymorphism if and only if the corresponding CSP is P-time
solvable. We manage to provide an MP problem that has only trivial polymorphisms and
that is P-time solvable. This means that, for MP problems, the existence of an algebraic
characterisation is unlikely.

In an independent chapter, we investigate the Maximum Cut (MaxCut) problem.
Although being NP-complete in general, its complexity becomes unknown if we consider
only unit interval graphs in the input. Knowing that MaxCut is NP-complete on interval
graphs, we approach as close as possible to unit interval graphs by proving that it remains
NP-complete even if we are allowed to operate with intervals of only two different lengths.
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Glossary

Complexity

We try to use the same definitions as in Papadimitriou’s book [Pap94].
A Turing machine is a quadruple M = (Q,Σ, δ, q0). Here Q is a finite set of states ;

q0 ∈ Q is the initial state. Σ is a finite set of symbols (we say that Σ is the alphabet of M).
Σ always contains the special symbols ⊔ and ▷: the blank and the first symbol. Finally, δ
is a transition function which maps Q× Σ to

(
Q ∪ {“yes”, “no”}

)
× Σ× { ,!}.

For an alphabet Σ, a string of symbols of Σ is a finite sequence s1s2 . . . sr, for some r
in N. The set of all strings of symbols of Σ is denoted by Σ∗.

The input of a Turing machine is a one-way infinite tape with a head that can move
freely across the tape. A tape is a sequence of cells, each cell contains one symbol of the
alphabet Σ. The first cell of the tape always contains a special symbol ▷ that represents
the left end of the tape. We assume that there exists N in N such that, for all n > N ,
the nth cell contains ⊔, and, for all i such that 1 < i ≤ N , the ith cell contains a symbol
from Σ∖ {▷,⊔}. That is, there is a one-to-one correspondence between one-way infinite
tapes and finite strings in

(
Σ ∖ {▷,⊔}

)∗. The head is always in some state of Q, it can
move across the tape, and overwrite the symbol of a cell where it is at the moment. At
the beginning, the head is at the first cell of the tape, at the cell with ▷, and it is in the
starting state q0 ∈ Q. The execution of a Turing machine is a sequence of iterations. In
this thesis, we always suppose that this sequence is finite. Each iteration is described as
follows.

1. The head having a state q in Q finds itself in some cell of the tape.

2. The head reads the symbol s in Σ of that cell.

3. The transition function δ(q, s) commands the head what it should do. Suppose
δ(q, s) = (q′, s′, D), where q′ is in Q ∪ {“yes”, “no”}, s′ is in Σ, and D is in { ,!};
then the head changes its state to q′, overwrites s with s′, and, depending on D,
either moves one cell to the left or one cell to the right.

The head cannot move to the left from the first cell. So we assume that, for any transition
rule δ(q, ▷) = (q′, s′, D), we have s′ = ▷ and D =!. Also we assume that the first cell is
always a unique cell that contains ▷. So, for any rule δ(q, s) = (q′, s′, D), where s ̸= ▷, we
have s′ ̸= ▷.

Once the head is in a state from {“yes”, “no”} the machine halts. If the state of M is
“yes”, then we say that M accepts the input, if it is “no”, then M rejects the input.

Let M be a Turing machine, and x in Σ∗ be a string of symbols. If M reaches one
of the states of {“yes”, “no”} in t iterations, then we say that the time required by M on
input x is t.
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Let f : N! N. We say that a Turing machine M operates within time f(n) if, for any
input string x, the time required by M on x is at most f(|x|) (by |x| we denote the length
of string x).

Let M be a Turing machine, and x in Σ∗ be its input. By M(x) we denote the output
of the machine. That is a string of (Σ ∪ {⊔})∗ that is associated with the configuration
of the tape at the end of the execution of M .

Let L ⊂ (Σ ∖ {⊔})∗ be a language. Let M be a Turing machine such that, for any
string x in (Σ∖{⊔})∗, if x is in L, then M accepts x, and, if x is not in L, then M rejects
x. Then we say that M decides L.

Let O(nk) be a set of functions from N to N that satisfies the following property. For
any function f in O(nk) there exist positive integers c and n0 such that, for any n ≥ n0,
f(n) ≤ cnk.

We say that M operates within polynomial time if it operates within time f(n), and if
there is k in N such that f(n) is in O(nk).

A nondeterministic Turing machine is a quadruple N = (Q,Σ,∆, q0). Q,Σ, and q0 are
as before. But now ∆ is a relation: ∆ ⊂ (Q× Σ)×

[(
Q ∪ {“yes”, “no”}

)
× Σ× { ,!}

]
.

For a nondeterministic Turing machine, its execution is not uniquely determined by the
input. Suppose that before some iteration the head is in some state q in Q and is at some
cell that contains a symbol s in (Σ∪ {⊔}). Then N chooses an element from ∆(q, s) and
the head acts depending on the choice.

For a nondeterministic machine N and some string x in Σ, N accepts x if there is
an execution of N such that N halts in the “yes” state. Otherwise, N rejects x. We say
that a nondeterministic Turing machine N decides a language L if, for any x in Σ∗, the
following is true: x is in L if and only if N accepts x. We say that N decides L in time
f(n), where f : N ! N, if N decides L, and, for any x in Σ∗, any execution of N with
input x has at most f(|x|) iterations.

Denote by P the set of all the languages L that can be decided by a Turing machine
operating within polynomial time. And denote by NP the set of all the languages L that
can be decided by a nondeterministic Turing machine operating within polynomial time.

Let f : (Σ ∖ {⊔})∗ ! Σ∗. We say that a Turing machine M computes f if, for any x
in (Σ ∖ {⊔})∗, M(x) = f(x). If M operates within polynomial time, then we write that
M computes f in polynomial time.

Let L1,L2 be languages over an alphabet Σ. We say that L1 reduces in polynomial
time to L2, denoted by L1 ≤p L2, if there is a function f : (Σ∖ {⊔})∗ ! Σ∗ and a Turing
machine M such that f is computable by M in polynomial time, and that x is in L1 if
and only if f(x) is in L2. This is also called Karp reduction.

We say that L1 and L2 are polynomial time equivalent, denoted by L1 ≡p L2, if
L1 ≤p L2 and L2 ≤p L1.

Denote by NP-complete the set of all the languages L such that, for any L′ in NP, we
have L′ ≤p L.

Suppose that P ̸= NP. Denote by NP-intermediate the set of all languages L such
that L is in NP, L is not in P, and L is not NP-complete.

For C ⊆ NP, we say that C has a dichotomy if C ∩ NP-intermediate = ∅.
Let C1,C2 in NP be two sets of languages. We say that C1 is contained in C2 under

polynomial time reductions, denoted by C1 ⊆p C2, if for every L1 in C1 there exists L2 in
C2 such that L1 ≡p L2. If C1 ⊆p C2 and C2 ⊆p C1, then we say that C1 is equivalent to C2

under polynomial time reductions, denoted by C1 ≡p C2. Clearly, if C1 ⊆p C2, then if C2
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has a dichotomy, so does C1. And, if C1 ≡p C2, then C1 has a dichotomy if and only if C2

has a dichotomy.

Structures and homomorphisms

We try to use the same definitions as in the book of Hell and Nešetřil [HN04] and as in
Bodirsky’s book [Bod21].

Let A,B be two sets. The product of sets A and B, denoted by A × B, is the set of
pairs: {(a, b) | a ∈ A, b ∈ B}. For a set A and k in N, the k-ary product of A, denoted by
Ak, is the following set of k-tuples: {(a1, . . . , ak) | a1, . . . , ak ∈ A}.

A relational signature τ is a set of relation symbols R each of which has an associated
finite arity k in N. A relational structure A over a signature τ (also called τ -structure)
consists of a set A (the domain) together with a relation RA ⊆ Ak for each relation
symbol R in τ , where k is the associated arity. For any k-tuple a in Ak, if a is in RA,
then we usually write RA(a). We consider only finite relational signatures; and relational
structures with at most countable domains.

A homomorphism between τ -structures A and B with domains A and B is a mapping
h : A ! B that preserves the relations; that is, for any R in τ of some arity k and any
(a1, . . . , ak) in Ak, RA(a1, . . . , ak) implies RB

(
h(a1), . . . ,h(ak)

)
. If h is a homomorphism

between A and B, then it is denoted by h : A ! B. For a tuple a = (a1, . . . , ak) in Ak

and a homomorphism h : A! B, we denote h(a) :=
(
h(a1), . . . ,h(ak)

)
. For τ -structures

A,B, if there exist homomorphisms h1 : A! B and h2 : B! A, then A and B are called
homomorphically equivalent, it is denoted by A ⇆ B. A homomorphism h : A ! B is
called surjective if the mapping h : A ! B is surjective. An injective homomorphism is
defined similarly.

A homomorphism f : A ! B is called full if, for any R in τ of arity k and any a in
Ak, RB

(
f(a)

)
implies RA(a). A full homomorphism i : A ! B is called an isomorphism

between A and B if i : A ! B is one-to-one. If there exists an isomorphism i : A ! B,
then the two structures are said to be isomorphic, we denote it by A ∼= B. An isomorphism
a : A! A from a structure to itself is called an automorphism.

Let A be a τ -structure for some relational signature τ . Let B ⊆ A. A τ -structure B
with domain B is called a substructure of A if, for any R in τ , RB ⊆ RA. And B is called
an induced substructure of A if, for any R in τ of arity k, RB = Bk ∩ RA. Equivalently,
we can say that B is the substructure of A induced on B and write A[B]. When B is an
induced substructure of A, we also say that B embeds into A and denote it as follows:
B ↪! A.

Let h : A ! B be a mapping between two sets. The set h(A) := {b ∈ B | ∃a ∈
A : h(a) = b} is called the image of h. A homomorphism e : A! B is called an embedding
if A ∼= B[e(A)], it is denoted by e : A ↪! B.

Let A,B be τ -structures with domains A and B correspondingly. The union of two
τ -structures A and B, denoted by A∪B, is a τ -structure with domain A∪B and, for any
R in τ of arity k, RA∪B = RA ∪RB. The intersection of τ -structures A and B, denoted by
A∩B, is defined similarly. A disjoint union of A and B, denoted by A⊎B, is the union
of two isomorphic copies of A and B with disjoint domains. As disjoint unions are unique
up to isomorphism, we usually speak of the disjoint union of A and B. If a structure is
not isomorphic to the disjoint union of structures, then it is called connected.
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For two k-tuples a = (a1, . . . , ak) in Ak, b = (b1, . . . , bk) in Bk, denote a × b :=(
(a1, b1), . . . , (ak, bk)

)
. For τ -structures A and B, the product of A and B, denoted by

A ×B, is a τ -structure with domain A × B and, for any k-ary R in τ and, for any a in
Ak ,b in Bk, if RA(a) and RB(b), then RA×B(a× b).

A binary relation e(·, ·) is called an equivalence relation on a set A if it is reflexive,
symmetric and transitive.

Let ∼ be an equivalence relation on a set A. For some a in A, a set [a]∼ = {x ∈ A |
a ∼ x} is called the ∼-equivalence class of a. For any equivalence relation, its equivalence
classes make a partition of A. The set of all the ∼-equivalence classes of elements of A is
denoted by A/ ∼.

For a relational structure A and an equivalence relation ∼ defined on this structure,
the quotient A/ ∼ is also a relational structure with domain A/ ∼, and, for some relation
R, a k-tuple a = ([a1]∼, . . . , [ak]∼) belongs to RA/∼ of A/ ∼ if there exists a tuple a′ =
(a′1, . . . , a

′
k) such that, for all i in [k], a′i is in the equivalence class [ai]∼, and a′ belongs

to RA. There is always a surjective homomorphism π : A! A/ ∼ such that π(a) = [a]∼.
For a k-tuple a = (a1, . . . , ak) in Ak, denote [a]∼ := ([a1]∼, . . . , [ak]∼).

Let τ and σ be two relational signatures. For a τ ⊎ σ-structure A and a τ -structure
Aτ , we say that Aτ is the τ -reduct of A if the structures have the same domain A and, for
any R in τ , RA = RAτ . In this case, A is called a σ-expansion of Aτ . Observe that there
is a unique reduct but there may be many expansions.

A relational structure G = (G,EG), where E has arity 2, is called a directed graph.
Elements of G are called vertices, tuples of EG are called arcs.

Two distinct vertices v, w in G are called adjacent if (v, w) is in EG or (w, v) is in EG.
A sequence of vertices v1, . . . , vn of G is called an walk, if, for any i in [n−1], v is adjacent
to vi+1. A path is a walk v1, . . . , vn such that all its vertices are pairwise distinct. A cycle
is a path v1, . . . , vn such that v1 is adjacent to vn. The length of a walk is the number of
vertices in the sequence. A digraph is called a tree if it contains no cycle.

For a walk v1, . . . , vn, an arc EG(vi, vi+1) is called a forward arc, and an arc EG(vi+1, vi)
is called a backward arc. The net length of a walk is the difference between the number
of forward arcs and the number of backward arcs. A walk/path/cycle is called directed if
all its arcs are forward. If a digraph contains no directed cycle, then it is called acyclic.

For a directed graph G, the girth of G is the shortest length of a cycle of G.
For a vertex v in G, the degree of v is the number of vertices w in G such that v is

adjacent to w. The in-degree of v is the number of vertices w in G such that (w, v) is in
EG. The definition of the out-degree is similar.

Let A be a relational τ -structure. Two elements a1, a2 of A are called adjacent if there
is a tuple a in RA, for some R in τ , such that both a1, a2 are contained in a. The definitions
of a walk, path, cycle, and degree are similar.

We use the same definitions for the notions of the category theory as in the book
of Awodey, see [Awo10]. For a relational signature τ , the τ -structures together form a
category, where the objects are τ -structures themselves and the arrows are homomor-
phisms between the corresponding τ -structures. The category of τ -structures is denoted
by Struct[τ ].

Any relational structure can be encoded by a string consisting of 0 and 1. Such string
is an input instance of a Turing machine. We explain how the encoding is described
in [Lib04]. Consider an n-element relational τ -structure A, where τ = {R1, . . . ,Rt}.
Suppose that its elements are linearly ordered: a1 < a2 < · · · < an. It induces lexico-
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graphical orderings of k-tuples consisting of these elements, for any k in N, (a1, . . . , a1) <
(a1, . . . , a1, a2) < · · · < (an, . . . , an). For R of arity k in τ , the relation RA can be encoded
by a nk-bit string enc

(
RA
)
: the ith element of enc

(
RA
)

equals 1 if and only if the ith tuple
in the lexicographical ordering belongs to RA. The whole structure A can be encoded by
the following string:

enc(A) := 0n1 · enc
(
RA
1

)
· · · · · enc

(
RA
t

)
,

where 0n means the string of length n consisting only of 0s, and the sign · means the
concatenation of strings.

Remark. Further in this thesis, when we show a reduction from one problem to another,
we neither consider the problems as languages of strings nor explicitly describe the Turing
machine that computes the function between the languages. Usually, input instances of
a problem are relational structures. The reduction is shown by describing an algorithm
that takes an input structure A1 of the first problem P1 and returns an input structure
A2 of the second problem P2 such that A1 is accepted by P1 if and only if A2 is accepted
by P2. And, moreover, the runtime of the algorithm must be polynomial in size of A1.

Logic

We try to use the same definitions as in Libkin’s book [Lib04].
Let τ be a relational signature. We assume a countably infinite set of (first-order)

variables that range over the domains of τ -structures. We inductively define first-order
formulae over τ as follows.

• If x1, x2 are variables, then x1 = x2 is an (atomic) formula.

• If x1, . . . , xk are variables and R in τ is a k-ary relation symbol, then R(x1, . . . , xk)
is an (atomic) formula.

• If ϕ1, ϕ2 are formulae, then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, and ¬ϕ1 are formulae.

• If ϕ is a formula, then ∀x ϕ and ∃x ϕ are formulae.

The set of all first-order formulae is denoted by FO and is called first-order logic. We
do not consider signatures with constants and function symbols, so we do not need to
mention them in the definition of FO. For a formula ϕ in FO, denote by Var(ϕ) its set of
variables.

For a relation symbol R in τ , an atomic formula of the form R(x1, . . . , xk) is called an
R-atom or a τ -atom.

A formula that does not use existential (∃) and universal (∀) quantifiers is called
quantifier-free. It is called universal if all the quantifiers are universal. It is called exis-
tential if all the quantifiers are existential.

A τ -formula ϕ(x1, . . . , xn) is called primitive positive if it is of the form:

∃xn+1, . . . , xl(ψ1 ∧ · · · ∧ ψm),

where ψ1, . . . , ψm are τ -atoms.
We use the standard shorthand ϕ! ψ for ¬ϕ∨ψ and ϕ↔ ψ for (ϕ! ψ)∧ (ψ ! ϕ).
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Suppose that a formula ϕ contains a variable x. If x is not quantified neither existen-
tially nor universally, then the variable x is called free; otherwise it is called bound. If x
is a tuple of all the free variables of ϕ, then we write ϕ(x).

If a formula ϕ contains no free variables, then ϕ is called a sentence. If we want to
precise that it is over a signature τ , then we usually call it a τ -sentence.

Given a τ -structure A, we define inductively, for each first-order formula ϕ with its
tuple a of free variables, the notion A |= ϕ(a) (i.e. ϕ(a) is true in A). That is, we define
the semantics of the first-order logic.

• If ϕ is of the form (x1 = x2), then, for a = (a1, a2), A |= ϕ(a1, a2) if and only if
a1 = a2.

• If ϕ is of the form R(x1, . . . , xk), for some k-ary R in τ , then A |= ϕ(a) if and only
if a is in RA.

• A |= ¬ϕ(a) if and only if A |= ϕ(a) is false.

• A |= ϕ1(a1) ∧ ϕ2(a2) if and only if A |= ϕ1(a1) and A |= ϕ2(a2).

• A |= ϕ1(a1) ∨ ϕ2(a2) if and only if A |= ϕ1(a1) or A |= ϕ2(a2).

• If ψ(x) is of the form ∃yϕ(y,x), then A |= ψ(a) if and only if A |= ϕ(a′, a) for some
a′ in A.

• If ψ(x) is of the form ∀yϕ(y,x), then A |= ψ(a) if and only if A |= ϕ(a′, a) for all a′
in A.

A set of first-order τ -sentences is called a first-order theory. For some first-order theory
T , a τ -structure A is called a model of T , if any ϕ of T is true in A. For a τ -structure A,
the first-order theory of A is the set of all first-order sentences ϕ such that ϕ is true in A,
it is denoted by Th(A).

Assume, apart from first-order variables, that for any k in N there is a countably
infinite set of second-order variables Xk

1,X
k
2, . . . ranging over k-ary relations. The second-

order logic, denoted by SO, is the set of all second-order formulae ϕ(x,X); each such
formula contains both first and second order variables and is inductively defined as follows.

• Any atomic FO formula is an atomic SO formula; also, for variables x1, . . . , xk and
for a k-ary SO variable X, X(x1, . . . , xk) is an atomic SO formula.

• If ϕ1, ϕ2 are in SO, then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2,¬ϕ1,∃x ϕ1,∀x ϕ1 are in SO.

• If ϕ(x, Y,X) is in SO, then ∃Y ϕ(x,X) and ∀Y ϕ(x,X) are in SO.

The semantics of the second-order logic extend the semantics of FO as follows.

• Suppose ϕ(x,X) is of the form X(x1, . . . , xk); then A |= ϕ(b, B) if and only if b is
in B, where B is some subset of Ak.

• Suppose ψ(x,X) is of the form ∃Y ϕ(x, Y,X), where Y is a second-order variable
with arity k in N; then A |= ψ(b,B) if and only if there is C ⊆ Ak such that
A |= ϕ(b, C,B).
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• Suppose ψ(x,X) is of the form ∀Y ϕ(x, Y,X), where Y is a second-order variable
with arity k in N; then A |= ψ(b,B) if and only if for any subset C ⊆ Ak, we have
A |= ϕ(b, C,B).

Let L be a logic, i.e., a set of formulae. Let S be a set of τ -structures. We say that S is
definable in L (or, L-definable), if there is a sentence ϕ in L such that, for any τ -structure
A, A |= ϕ if and only if A is in S.

For a τ -structure A, we say that a k-ary relation R ⊆ Ak is definable by a formula
ϕ(x1, . . . , xk) if, for every k-tuple (a1, . . . , ak) in Ak, we have (a1, . . . , ak) ∈ R if and only
if A |= ϕ(a1, . . . , ak). In particular, if ϕ is primitive positive, then we say that R has a
primitive positive definition in A, or just R is pp-definable in A.

Let ϕ be a conjunction of non-negated atomic formulae over some relational signature
τ . Let A be a τ -structure. Suppose that there is a one-to-one correspondence f between
variables x1, . . . , xn of ϕ and the vertices a1, . . . , an of A. Also suppose that, for any R in
τ , ϕ contains an atom R(x) if and only if the tuple f(x) belongs to the relation RA. In
this case, ϕ is called the canonical conjunctive query of A, and A is called the canonical
database of ϕ.
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Chapter 1

Introduction

1.1 Dichotomy question overview

1.1.1 The beginning

Ladner theorem

P vs NP is one of the most famous open computer science problems. Despite failing to
solve it, researchers pose new questions assuming that there is an answer to P vs NP con-
jecture. In particular, Ladner shows in [Lad75] that the class of NP-intermediate problems
is not empty under the assumption that P ̸= NP, see Figure 1.1 for an illustration.

Theorem 1.1.1 ([Lad75]). Suppose that P ̸= NP. Then there is a problem L in NP that
is neither solvable in polynomial time, nor NP-complete.

NP
NP-complete

NP-intermediate ̸= ∅

P

Figure 1.1: An illustration of complexity subclasses of NP assuming that P ̸= NP.

1.1.2 Constraint Satisfaction

The Constraint Satisfaction Problem enjoys many definitions. A simple one is as follows.
Let B be a finite relational structure. The problem CSP(B) accepts every finite relational
structure A that homomorphically maps to B. The class CSP is the set of all such
problems CSP(B), for any B.

The complexity of this NP problem that generalises both SAT and 3-Colorability
is then classified when parametrised by the target of the homomorphism – the so called
template of the problem – which is fixed and not part of the input.
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Feder and Vardi conjectured a dichotomy for this class in [FV98] in particular because
of the following noted results in the boolean case and in the case of undirected graphs.

Theorem 1.1.2 (Schaefer, [Sch78]). Let B be a relational structure with a two-element
domain. Then either ({0, 1};NAE) has a primitive positive definition in B, and CSP(B)
is NP-complete, or

1. B is preserved by a constant operation.

2. B is preserved by min. In this case, every relation of B has a definition by a
propositional Horn formula.

3. B is preserved by max. In this case, every relation of B has a definition by a
dual-Horn formula, that is, by a propositional formula in CNF where every clause
contains at most one negative literal.

4. B is preserved by the majority operation. In this case, every relation of B can be
defined by 2-CNF.

5. B is preserved by the minority operation. In this case, every relation of B can be
defined by a conjunction of linear equations modulo 2.

In each of these five cases, CSP(B) can be solved in P-time.

Theorem 1.1.3 (Hell, Nešetřil, [HN90]). If an undirected graph H is bipartite, then
CSP(H) is P-time solvable. Otherwise CSP(H) is NP-complete.

This conjecture was attacked on several fronts. One direction of research involved the
study of special case of digraphs as it was shown that proving the conjecture for digraphs
was sufficient.

Theorem 1.1.4 ([FV98]). For a finite relational structure B there exists a balanced
directed graph H such that CSP(B) is P-time equivalent to CSP(H).

The approach that proved the most fruitful involved algebra, pushing further the
methods initially used by Shaefer : progress was made in the nineties by Cohen, Jeavons
and their co-authors. An important milestone was the two dichotomy theorems of Bulatov
at the turn of the century, in the three element case and in the conservative case [Bul03,
BJK05, Bul06], pushing the methodology further into algebra, using Congruence Tame
Theory.

Finally, the dichotomy conjecture on finite relational structures was proved indepen-
dently by Bulatov in [Bul17] and Zhuk in [Zhu20]. The tractability condition is described
by an existence of symmetries within the structure. The symmetries are described by
polymorphisms. Below we provide an equivalent formulation of the theorem that uses the
notion of Siggers polymorphism, as we also use it in this thesis. The absence of a Siggers
polymorphism was already known to imply NP-completeness, and it remained to provide
a classification in the presence of a Siggers polymorphism. This was done by providing
tractable algorithms in all such remaining cases.

Theorem 1.1.5 (Bulatov, Zhuk). For every finite relational structure A, if A admits a
Siggers polymorphism, then CSP(A) is P-time solvable. Otherwise it is NP-complete.
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Meanwhile researchers investigated many variations of CSP : quantified and in P-
space with QCSP [Mar17], with an aspect of optimization with VCSP [KZ17] or more
recently approximation with the promise CSP (PCSP) [BBKO21]. An extension of the
CSP that shall concern us in this thesis is championed by Bodirsky and involves CSP on
infinite domains, most often on languages that can be described by an omega-categorical
template. The problem definition is the same as in the finite case, but with an infinite
domain structure. Such well known structures in model theory are sufficiently similar
to finite structures that some of the algebraic approach can be adapted and extended
and allows to prove many dichotomies on natural classes of problems that could not be
captured in the finite setting and were already studied in the literature.

The field of infinite CSP is now quite mature, see [Bod21]. There is an analogue of
the Feder and Vardi’s conjecture. Here, P denotes the clone of projections:

P := {πn
i : Xn ! X | i, n ∈ N, i < n,∀x1, . . . , xn πn

i (x1, . . . , xn) = xi}.

Conjecture 1.1.6. [BKO+17,BMM18] Let B be a first-order reduct of a finitely bounded
homogeneous structure with finite relational signature. If there is no uniformly continuous
minor-preserving map from Pol(B) to P, then CSP(B) is in P. If there is such a mapping,
then it is NP-complete.

1.1.3 Descriptive complexity

Descriptive complexity relates (finite) model theory with complexity theory by showing
a correspondence between the amount of logic one needs to describe a problem with the
amount of computation problem necessary to solve it. This area goes back to the following
theorem.

Theorem 1.1.7 ([Fag74]). For every ESO sentence Φ, the problem SAT(Φ) is in NP.
For every property P defined on the set of finite structures and decidable in P-time, there
is a sentence ΦP in ESO such that, for any finite structure A, we have A |= ΦP if and
only if A has the property P.

Feder and Vardi in [FV98] introduced the logic MMSNP as a candidate to express CSP.
This logic is a fragment of SNP ⊂ ESO, which is defined by three conditions: monotone,
monadic and without inequalities.

They showed that if MMSNP loses one of them, then it becomes P-time equivalent to
NP, and, thus, it has no dichotomy, by Ladner’s theorem. We revisit these three classes
in Chapter 2.

On the other hand, they showed that MMSNP ≡p CSP, which, as they conjectured,
should have a dichotomy. Their approach used randomised reductions, that is, the reduc-
tion is polynomial but probabilistic. Nonetheless, Kun in [Kun13] provided an explicit
P-time equivalence between MMSNP and CSP by determinising this randomised reduc-
tion.

THe problems described by sentences of MMSNP may not be in CSP, Madelaine et
al. showed in [MS07] that the question of being in CSP is decidable for MMSNP prob-
lems. However, they are always P-time equivalent to infinite CSP with an ω-categorical
template, see [BD13]. After the algebraic characterisation of CSP given by Bulatov and
Zhuk, a similar question was answered for a fragment of CSP on ω-categorical structures
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which is definable by MMSNP sentences. Bodirsky, Madelaine and Mottet in [BMM18]
proved the following result.

Theorem 1.1.8 ([BMM18]). Let B be an ω-categorical structure such that CSP(B) is
described by an MMSNP sentence. Then exactly one of the following holds:

• There is a uniformly continuous minor-preserving map from Pol(B) to the clone of
projections on a 2-element set, and CSP(B) is NP-complete, or

• there is no such map and CSP(B) is in P.

1.1.4 The whole picture

The purpose of this thesis is to investigate classes of problems and fragments of logics
that are between the three known non dichotomic logics and above the known logic or
classes of problems known to have a dichotomy (CSP, MMSNP) (see Figure 1.2 for an
illustration).

The various classes of interest investigated in this thesis are introduced in more details
in the next section. MP is a family of combinatorial problems. MMSNP2 and GMSNP are
logics.

NP

MMSNP

SNP with ̸=

MMSNP2 MP

GMSNP

CSP

MMSNP̸= MonadicSNPMonotoneSNP

ESO=

Figure 1.2: An illustration of complexity classes with respect to having a dichotomy. An arc going from
a class C1 to a class C2 means that C2 ⊆p C1 – for every problem of C2, C1 contains a P-time equivalent
problem. This implies that, if C1 has a dichotomy, then so does C2. If a class C1 is below a class C2 and
if there is an edge between C1 and C2, then C1 is a subclass of C2.

The main objective is to expand known classes that admit a dichotomy. For some
classes like MMSNP2 that is an example of an infinite CSP à la Bodirsky, we hope to
obtain an algebraic dichotomy in the spirit of Theorem 1.1.8.
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1.2 Motivation

1.2.1 Investigate MMSNP extensions

Guarded fragments

There are natural ways when can think of to create a logic that lies above MMSNP and
below the three fragments that are provably non dichotomic, and drop a restriction on
MMSNP, namely to relax this restriction: one canonical example is MMSNP2 which relaxes
the requirement that the logic is not necessarily monadic as in MMSNP, yet does not allow
proper binary quantification as in MonotoneSNP, and only allows for colouring tuples of
input relations. This is similar in spirit to MSO2 and MSO1 considered by Courcelle in
[CE12].

MMSNP2 is subsumed by GMSNP, the guarded fragment of MonotoneSNP, yet they
are in fact equally expressive as any sentence of the latter is logically equivalent to a
sentence of the former.

Looking at Figure 1.2 on page 22 may give reader a feeling that, similarly to GMSNP
being a guarded fragment of MonotoneSNP, there might be fragments of MonadicSNP and
of MMSNP with inequalities that are also “guarded” in some sense.

We investigate in Section 3.1 a logic GMMSNP ̸= that extends MMSNP by allowing
inequalities within negated conjuncts. But, for each inequality x ̸= y there must be a
τ -atom R(z) within the same conjunct such that both x and y are contained in z. We say,
in this case, that R(z) guards x ̸= y. We manage to show that GMMSNP ̸= ≡p MMSNP
and thus it has a dichotomy.

It is not quite clear what it could mean to weaken MonadicSNP (the extension of
MMSNP that allows negation) by guarding negation. We study this case in Section 6.5,
where we attempt to find a logic that is equivalent to the class of Matrix Partition prob-
lems, an extension of CSP that is not monotone to be introduced shortly. This logic is
still monadic, it does not have inequalities, but violates the property of being monotone,
that is, input atoms may be both negated and non-negated. But we restrict it to be such
that, within each negated conjunct, all the input atoms have the same polarity: either
all negated or all non-negated. The question of having a dichotomy for this logic is still
open.

Edge colouring

It is known, see [BtCLW14], that the guarded fragment GMSNP of MonotoneSNP is strictly
more expressible than MMSNP, so showing a dichotomy (or its absence) would be an
important result. We study this logic in Section 3.2.

Feder and Vardi showed in [FV98] that the signature of a CSP problem can be sim-
plified up to digraph homomorphisms. We ask a similar question several times in this
thesis: for the logic GMSNP in Section 3.2.1 and for generalisations of Matrix partitions
in Section 6.3.2. Both times we manage to show that problems over an arbitrary finite
signature are P-time equivalent to problems over a signature consisting of a unique re-
lation symbol. However, it is not known in any of these two cases, if we can reduce the
arity of this symbol up to 2 as Feder and Vardi did for CSP.

Bienvenu et al. showed in [BtCLW14] that their logic GMSNP is P-time equivalent
to a logic MMSNP2 which had been introduced earlier by Madelaine in [Mad09]. This
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class is as expressive as GMSNP but its definition is simpler. It is similar to MMSNP but
now we can colour edges (tuples) as well, when in MMSNP we can colour vertices only.
In Section 3.2.2 we show that without loss of generality we can study MMSNP2 problems
over one-relation signatures.

Infinite MMSNP

It is not known if MMSNP2 has a dichotomy. But it is quite natural to try showing
that it is equivalent to MMSNP, as these two logics are similar. In Chapter 4 we study
connections between them.

As MMSNP2 colours edges, we try to mimic this by adding to every edge a new vertex
whose mission is to represent the edge and its colour. As we all know, an edge is incident
to just one pair of vertices. But these new vertices are not aware of this rule, and MMSNP
is not expressive enough so that we could inform them about it. Because of this, we obtain
an undesirable concept of duplicated edges (tuples). This becomes an obstacle for us to
find an equivalent MMSNP problem for a given one from MMSNP2.

However, in Section 4.3 we construct a countably infinite class of structures that can
be thought as an infinite extension of an MMSNP sentence. And we manage to show that
for any MMSNP2 sentence there is an equivalent MMSNP sentence of countable length.

It is known that any MMSNP problem is described by a CSP problem on ω-categorical
structure. In Section 4.4 we prove that the countably infinite class of structures that is
associated with a MMSNP2 sentence is regular. The notion of regularity for relational
structure families is studied by Hubička and Nešetřil in [HN15], where they show that for
any regular class of structures F there exists an ω-categorical structure B such that, for
any finite structure A, A homomorphically maps to B if and only if no structure from
F maps to A. This implies that any infinite MMSNP problem that we have obtained in
Section 4.3 is described by some ω-categorical CSP. Although it is known (see [Mad09])
that MMSNP2 problems are already described by ω-categorical CSPs, representing these
problems as regular families of forbidden structures seems to be an interesting result.

Bodirsky et al. in [BMM18] characterized a dichotomy condition for CSP on ω-
categorical structures that are described by MMSNP sentences. We think that a dichotomy
for MMSNP2 can potentially be investigated by a similar approach.

Expanders for MMSNP2

Apart from reducing to MMSNP, one could try to use an approach similar to Feder and
Vardi’s proof of MMSNP ≡p CSP. The most difficult part of their proof was to find, for a
given structure S, a structure S′ that is equivalent to S with respect to the CSP and that
contains no short cycles. The authors construct S′ by replacing each vertex of S with
a large bag of vertices and then, for each tuple of S, the tuples are uniformly randomly
distributed in its preimage. By manipulating the number of tuples in S′, this structure
becomes both sparse and dense at the same time. It is sparse because it contains few
short cycles. And it is dense because of the uniform distribution. These two properties
are usually discussed when talking about expander graphs. In particular, when Kun
derandomised the construction of S′ in [Kun13], he also used such graphs.

We face a similar task: to find such S′. In Section 5.3 we study different approaches
to construct a desired expander structure. For every approach, we highlight the obstacle
that does not let us complete the task.
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1.2.2 Investigate CSP extensions

Overview

Motivated by the CSP conjecture, many homomorphism type problems have been intro-
duced and studied under the realm of a dichotomy, e.g., full homomorphism [BNP10],
locally injective/surjective homomorphism [MS10, BKM12], list homomorphism [HR11],
quantified CSP [ZM20], infinite CSP [BMM18], VCSP [KZ13], etc. In this thesis, we
are interested in the Matrix Partition Problem introduced in [FHKM03] which finds its
origin in combinatorics as other variants of the CSP conjecture, e.g., list or surjective
homomorphism.

Trigraphs

A trigraph is a pair G = (G,EG) where EG : G2 ! {0, 1, ⋆}. A homomorphism between two
trigraphs G and H is a mapping h : G! H such that for all (x, y) ∈ G2, EH(h(x),h(y)) ∈
{EG(x, y), ⋆}. As any graph is a trigraph, Hell et al. ([FHKM03,FHX07,Hel14]) proposed
a way to consider combinatorial problems on graphs as trigraph homomorphism problems,
and called them Matrix Partition Problems The term Matrix Partition Problem is a
natural one because any trigraph can be represented by a matrix where each entry is in
{0, 1, ⋆}, and a trigraph homomorphism is a partition problem where the edges between
two parts Vi and Vj are controlled by the entry of the matrix on (i, j). Particularly, any
CSP problem on (directed) graphs can be represented as a Matrix Partition Problem,
thus the latter is a generalisation of the class CSP. Motivated by the CSP conjecture,
and the similarity of Matrix Partition Problem with CSP, Hell et al. [FHX07,Hel14] asks
whether Matrix Partition Problems may follow a dichotomy as CSP does.

Motivation

Motivated by the P-time equivalence between general CSP and CSP on directed graphs
[FV98], we investigate a similar question for Matrix Partition Problems. But, contrary to
CSP, there are several ways to generalise Matrix Partition Problems on relational struc-
tures. We first propose to generalise the definition of trigraphs to relational structures,
where a tuple can be now labeled ⋆, and as in the trigraph homomorphism, a tuple la-
beled 0 can be only mapped to tuples labeled 0 or ⋆, similarly for 1-labeled tuples that
can be mapped to 1 or ⋆-labeled tuples, and a tuple labeled ⋆ can be only mapped to
tuples labeled ⋆. Another generalisation of Matrix Partition Problem concerns the in-
puts. While in Hell et al.’s definition of the problem the inputs are graphs, we propose to
consider instead trigraphs as inputs, for their definition see [HN07]. We denote such new
problems by MP⋆(H), and the original ones by MP(H) where H is the target structure of
the problem. As in the CSP case, we wonder whether this generalisation is P-time equiv-
alent to trigraph homomorphism. We prove that MP⋆ and MP are P-time equivalent:
MP⋆ ≡p MP. Hell and Nešetřil in [HN07] provided a probabilistic proof of this equiv-
alence. In this thesis, we make it deterministic. In doing so, we replace any ⋆-labeled
tuple by a large enough Hadamard matrix [FRW88]. Hadamard matrices are matrices
over {1,−1} with the property that any large submatrix is not monochromatic. This
property of Hadamard matrices and the pigeonhole principle allow us to show the P-time
equivalence (see Section 6.2).
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Feder and Vardi in [FV98] showed that a CSP over a finite signature is P-time equiva-
lent to a CSP on directed graphs. Bulin et al. in [BDJN15] gave a more detailed proof of
this fact and showed that all the reductions are log-space. In Section 6.3.2, we raise similar
questions about Matrix Partition Problems. Using the result achieved in Section 6.3.1, we
show that any problem in MP over any finite signature is P-time equivalent to a problem
in MP on relational structures with one single relation.

We then turn our attention to the P-time equivalence between MP on relational struc-
tures with a single relation to MP on directed graphs. While we think that, contrary to
the CSP case, MP on relational structures is richer than MP on directed graphs, we fail
to prove it. Instead, we analyse the type of reductions used in the CSP case and show
that it is unlikely that such reductions work for MP, unless MP ≡p CSP. In order to
show this, we introduce another generalisation of Matrix Partition Problems, denoted by
MP∅. We first encode any problem in MP by a CSP problem by identifying for each
tuple whether it is labeled 1 or 0 (we introduce for each relation R two relations R0, for
0-labeled tuples, and R1 for 1-labeled tuples). Therefore, any MP problem is a CSP prob-
lem, but restricted to “complete structures”, i.e., any tuple should be in either R0 or in R1.
When we relax this completeness property, we obtain the class of problems MP∅, where
we introduce a new value for tuples, namely ∅, which can be mapped to any value among
{0, 1, ⋆}. Firstly, we show in Section 6.2 that MP∅ ≡p CSP, and that the correspondence
between the classes of problems is one-to-one. We later use this correspondence to show
in Section 6.3.2 that any reduction similar to the one of Bulin et al. cannot prove the
P-time equivalence between MP over any finite signature and MP on directed graphs,
unless MP ≡p CSP. The four values ∅, 0, 1⋆ are ordered in a form of a Boolean lattice.
We also show in Section 6.2 that, if relational tuples have values in an arbitrary finite
lattice, then the corresponding class of MP problems is embedded into CSP under P-time
reductions, and thus has a dichotomy.

A natural way to prove that a problem is in P is to show that it is described by a
finite set of obstructions. In the case of CSP, F is called a duality set for an instance
CSP(H) if for any structure G, G does not homomorphically map to H if and only if there
is F ∈ F such that F homomorphically maps to G. It is known that CSP(H) has a finite
set of obstructions if and only if it is definable by a first-order formula [Ats08]. Feder,
Hell and Xie proposed in [FHX07] to study Matrix Partition Problems with finite sets
of (inclusion-wise minimal) obstructions, that is a graph admits a partition if and only
if it does not have an induced subgraph that belongs to a finite family F of forbidden
graphs. They proposed a necessary (but not sufficient) condition for a matrix M to have
finitely many obstructions, and Feder, Hell and Shklarsky later showed in [FHS14] that
any Matrix Partition Problem has finitely many obstructions if the input consists only of
split graphs. In Section 6.4, we show that a Matrix Partition Problem has finitely many
inclusion-wise minimal obstructions if and only if there are finitely many of them for the
MP⋆ case. We also consider duality sets for Matrix Partition Problems. We show that
the following are equivalent for a trigraph H (it holds also for relational structures):

1. MP(H) has a finite duality set.

2. MP(H) has a finite set of inclusion-wise minimal obstructions.

3. MP⋆(H) has a finite duality set.

4. MP⋆(H) has a finite set of inclusion-wise minimal obstructions.
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Apart from it, we study how the finiteness of obstruction sets for the CSPs is related
to the finiteness for trigraphs. We demonstrate that if MP∅(H) (that is associated with a
CSP, see Section 6.2) has a finite set of obstructions, then MP(H) has also a finite set of
obstructions. We show that the other direction is false by giving an example of a ⋆-graph
H such that MP⋆(H) has finitely many obstructions and MP∅(H) has an infinite set of
obstructions.

Any MP problem can be described by a sentence from MonadicSNP. This means that
potentially there exists a logic that is P-time equivalent to MP. Finding such a logic will
provide more tools to study MP with respect to a possible dichotomy. In Section 6.5 we
provide a fragment of MonadicSNP and show that it strictly contains MP.

Being inspired by the result of Bulatov and Zhuk for CSP, we study polymorphisms
on MP instances. In Section 6.6 we define what is a polymorphism in the MP case
and provide an MP instance that is solvable in P-time and that does not have a Siggers
polymorphism. This means that MP does not have a characterization similar to CSP.

This is not completely surprising as MP can be seen as a CSP with restricted in-
put. There are numerous examples of CSP that are NP-complete, yet become tractable
when their input is restricted. For example, when the input has bounded tree-width, see
[Gro07]
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Chapter 2

Strict NP and its three syntactic
fragments

We revisit the three logics from Feder and Vardi’s paper [FV98] that extend Monotone
Monadic SNP without inequality (MMSNP) by omitting one of the three conditions that
define MMSNP. The authors state that none of these classes has a dichotomy, however
some of their proofs are given rather as sketches of proofs. We show the absence of a
dichotomy for these three fragments of SNP by providing detailed proofs.

Denote by τ a signature that contains the input relation symbols. An SNP sentence is
an existential second-order τ -sentence with the universal first-order part, i.e., a sentence
of the form

∃X1, . . . ,Xs ∀x ϕ(x1, . . . , xn),

where ϕ is a quantifier-free first-order formula over the signature τ ⊎ {X1, . . . ,Xs},
and x is the tuple of (first-order) variables x1, . . . , xn. Denote the set of the existentially
quantified second-order variables {X1, . . . ,Xs} by σ. We call τ the input signature and
σ the existential signature. Relation symbols of τ are called input relations and relation
symbols of σ are called existential relations.

Let a τ -sentence Φ ∈ SNP be written in the following form:

∃X1, . . . ,Xs ∀x
∧
i

¬(αi ∧ βi).

Here αi is a conjunction of atomic or negated atomic formulae involving relation sym-
bols of τ and variables from x; and βi is a conjunction of atomic or negated atomic for-
mulae involving relation symbols of σ and variables from x. Every subformula ¬(αi ∧ βi)
is called a negated conjunct. A sentence Φ is called monotone if each conjunction αi does
not contain negated atomic formulae.

Remark. We frequently replace a negated conjunct ¬(αi ∧βi) with an equivalent implica-
tion (αi ! ¬βi).

An SNP-sentence Φ is called monadic if all existential relation symbols M in σ have
arity 1.

Denote by MMSNP the class of SNP-sentences that are monotone, monadic, and with-
out inequality, that is, they do not contain literals of the form x ̸= y. Similarly, denote
by
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• MonotoneSNP those SNP-sentences that are monotone and without inequality;

• MonadicSNP those ones that are monadic and without inequality;

• MMSNP ̸= those ones that are monotone and monadic, and possibly with inequality.

If Φ is a τ -sentence of SNP, then the problem of satisfiability of Φ, denoted by SAT(Φ),
is a set of relational τ -structures that satisfy the sentence Φ:

SAT(Φ) := {A | A |= Φ}.

Example 2.0.1. We provide three sentences from each of these classes. Let Φ1 be the
following sentence:

∃A,B ∀x, y

¬
(
A(x) ∧ B(x)

)
∧ ¬
(
¬A(x) ∧ ¬B(x)

)
∧

¬
(
E(x, y) ∧A(x) ∧A(y)

)
∧ ¬
(
E(x, y) ∧ B(x) ∧ B(y)

)
∧

¬
(
¬E(x, y) ∧A(x) ∧ B(y)

)
∧ ¬
(
¬E(x, y) ∧ B(x) ∧A(y)

)


This sentence is not monotone because the last two negated conjuncts contains a negated
τ -atom ¬E(x, y). So it belongs to MonadicSNP ∖ MMSNP. For a directed graph G, we
have G |= Φ1 if and only if G is a complete bipartite graph.

Let Φ2 be the following sentence:

∃T ∀x, y, z

¬T(x, x)∧
¬
(
E(x, y) ∧ ¬T(x, y)

)
∧

¬
(
T(x, y) ∧ T(y, z) ∧ ¬T(x, z)

)


This sentence is not monadic because the existentially quantified relation T is not unary.
So it belongs to MonotoneSNP ∖ MMSNP. For a digraph G, we have G |= Φ2 if and only
if G is acyclic.

Let Φ3 be the following sentence:

∀x, y, z

(
¬
(
E(x, y) ∧ E(x, z) ∧ y ̸= z

)
∧

¬
(
E(x, y) ∧ E(z, y) ∧ x ̸= z

) )

This sentence contains inequalities, so it belongs to MMSNP ̸= ∖ MMSNP. For a digraph
G, G |= Φ3 if and only if the in- and out-degrees of any vertex are not greater than 1.
This means that, in this case, G is a disjoint union of directed paths and cycles. △

Our aim is to reprove the three following theorems. All of them are stated in [FV98].
However, their proofs are not very detailed there: the authors only provide the main ideas
how the reductions must look like. Our goal is to make them more precise. The proof of
Theorem 2.0.1 is almost the same as the original one, here, we also explicitly show the
two reduction directions. The proof of Theorem 2.0.2 uses the same constructions as in
[FV98], but we also explicitly write both reductions, and they are non-trivial. The proof
of Theorem 2.0.3 is different in the sense that the original proof was only sketched and
referred to another paper of Vardi on fragments of Datalog with no explicit result that
allowed us to be fully convinced. Our proof is complete and uses the key idea of oblivious
Turing machines as proposed in the sketched proof of Feder and Vardi.
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Theorem 2.0.1 (Theorem 2 in [FV98]). Any non trivial MMSNP ̸= problem is P-time
equivalent to a problem in MonadicSNP.

Theorem 2.0.2 (Theorem 3 in [FV98]). Any non trivial MMSNP ̸= problem is P-time
equivalent to a problem in MonotoneSNP.

Theorem 2.0.3 (Theorem 1 in [FV98]). Any non trivial NP problem is P-time equivalent
to a problem in MMSNP ̸=.

Remark. When we prove each of these three theorems, we do not consider trivial problems:
a problem that either accepts any input or rejects any input. Each of the three classes:
MonadicSNP, MonotoneSNP and MMSNP ̸=, contains both of the trivial problems. The
problem that accepts all the input is described by the following MMSNP sentence, for
example:

∃Red(·),Blue(·) ∀x ¬Red(x),
as we can colour all the input structure elements in Blue. The problem that rejects any
input can be described by the following MMSNP sentence:

∃Red(·) ∀x ¬
(
Red(x) ∧ ¬Red(x)

)
.

2.1 MMSNP with ̸= embeds into Monadic SNP with-
out ̸=

First, we explain how to construct, for a sentence Φ of MMSNP ̸=, the corresponding
sentence Φ′ in MonadicSNP in order to prove Theorem 2.0.1. Let Φ in MMSNP ̸= be a
τ -sentence as follows:

∃M1, . . . ,Ms ∀x ϕ(x),
where τ = {R1, . . . ,Rt} is the input relational signature and σ = {M1, . . . ,Ms} is the
existential relational signature consisting of unary relation symbols. We are going to
construct a sentence Φ′ in MonadicSNP with an input signature τ ′ and the same existential
signature σ.

Construction 1. The new input signature τ ′ is obtained from τ by adding a new relation
symbol eq(·, ·). Firstly, we require that eq is an equivalence relation. We denote this
formula by ϵ1.

ϵ1 := ∀x, y, z
(
eq(x, x) ∧

(
eq(x, y)! eq(y, x)

)
∧
((

eq(x, y) ∧ eq(y, z)
)
! eq(x, z)

))
.

Remark. By construction, eq violates the monotonicity property in the sentence Φ′ in ϵ1.
Any equivalence relation ∼ defined on a set A can be extended to an equivalence

relation on the set Ak of k-tuples of A as follows: (x1, . . . , xk) is equivalent to (y1, . . . , yk)
if, for any i in [k], we have xi ∼ yi. The next condition, denoted by ϵ2,τ , states that if a
τ -relation R contains a tuple x, then it contains every other tuple y that is equivalent to
x in a sense described above.

ϵ2,τ :=
∧
R∈τ

∀x1, . . . , xkR , y1, . . . , ykR((
R(x1, . . . , xkR) ∧ eq(x1, y1) ∧ · · · ∧ eq(xkR , ykR)

)
! R(y1, . . . , ykR)

)
.
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Similarly, for any σ-relation M, we require that any two eq-equivalent elements agree on
M.

ϵ2,σ :=
∧
M∈σ

∀x, y
((

M(x) ∧ eq(x, y)
)
!M(y)

)
.

Let ϕ′ be the quantifier-free first-order (τ ⊎ σ)-formula obtained from the quantifier-free
part ϕ of Φ, where each literal x ̸= y is replaced by ¬eq(x, y). Let Φ′ be the following
sentence:

Φ′ := ∃M1, . . . ,Ms

(
ϵ1 ∧ ϵ2,τ ∧ ϵ2,σ ∧ ∀x ϕ′(x)

)
,

By construction, Φ′ is monadic and without inequality. This is the end of Construction 1.

Remark. We assume without loss of generality that Φ of MMSNP ̸= is non trivial in the
sense that there is a structure that does not satisfy Φ. Such structure is called a NO
instance. We can assume that Φ always has a NO instance.

In order to prove Theorem 2.0.1, we show that SAT(Φ) ≤p SAT(Φ′), and then we
prove the other direction. Thus, together, the following Lemmas 2.1.1 and 2.1.2 prove
Theorem 2.0.1.

Lemma 2.1.1. Suppose that Φ in MMSNP ̸= and Φ′ in MonadicSNP are as in Construc-
tion 1. Then SAT(Φ) reduces in P-time to SAT(Φ′).

Proof. For any τ -structure A, we construct a τ ′-structure A′, by keeping all relations from
τ the same and interpreting eq as the identity, that is, we set

eqA′
:= {(x, x) | x ∈ A′}.

This interpretation satisfies ϵ1, ϵ2,τ , and ϵ2,σ. And also, for all x, y in A, x ̸= y if and only
if ¬eq(x, y), so A |= Φ if and only if A′ |= Φ′. As we can construct A′ in time polynomial
in the size of A, we have SAT(Φ) ≤p SAT(Φ′).

Lemma 2.1.2. Suppose Φ in MMSNP ̸= and Φ′ in MonadicSNP are as in Construction 1.
Then SAT(Φ′) reduces in P-time to SAT(Φ).

Proof. Consider a τ ′-structure A′. We can check in P-time in |A′| whether A′ |= ϵ1 ∧ ϵ2,τ .
If this is false, then A′ ̸|= Φ′, and we reduce A′ to a fixed NO instance of Φ. Otherwise
we reduce A′ to its eq-quotient. That is, we set A := A/eq.

We now prove that A |= Φ if and only if A′ |= Φ′. Suppose that A′ ̸|= Φ′ and, on
the contrary, A |= Φ. Let MA

1 , . . . ,M
A
s be the choice of σ-relations for A that satisfies

the sentence Φ. It is associated with a unique choice MA′
1 , . . . ,M

A′
s for A′: such that for

any M in σ and [a]eq in A, MA([a]eq) ↔ MA′
(a), its uniqueness is provided by ϵ2,σ. By

assumption, there is a tuple a′ = (a′1, . . . , a
′
n) from A′ such that some negated conjunct

¬ϕ′
i(a

′
i) of ϕ′(a′) is false. Take the tuple [a′]eq := ([a′1]eq, . . . , [an]

′
eq). By ϵ2,τ and ϵ2,σ, the

corresponding negated conjunct ¬ϕi([a
′]eq) is false, this is a contradiction.

Suppose now that A ̸|= Φ and, on the contrary, A′ |= Φ′. Let MA′
1 , . . . ,M

A′
s be the

choice of the σ-relations for A′ that satisfies the sentence Φ′. Let us choose MA
1 , . . . ,M

A
s

such that for any a′ in A′ and M in σ, we have MA([a′]eq)↔MA′
(a′). For this choice of

MA
1 , . . . ,M

A
s there is a tuple a such that some negated conjunct ¬ϕi(a) is false. Pick any

tuple a′ such that a = [a′]eq. Then, by ϵ2,τ and ϵ2,σ, the corresponding negated conjunct
ϕ′
i(a

′) is false in A′, this is a contradiction.
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A′σ A′σ/eq

Figure 2.1: On the left, we depict a σ-extension of a structure A′. On the right, we depict its eq-quotient.
Arcs denote binary input relations. Coloured dots denote monadic existential relations. Dotted closed
curves denote eq-equivalence classes.

Example 2.1.1. We provide an example of the reduction from Lemma 2.1.2, see Figure 2.1
on page 33.

We can observe that if a map e : A′/eqA′
! A′ sends any eq-equivalence class [a]eq to

some element of the same class, then this map is an embedding. In particular, this means
that if A′ satisfies Φ′, then A′/eq satisfies Φ′ as well. △

2.2 MMSNP with ̸= embeds into Monotone SNP with-
out ̸=

Let Φ in MMSNP ̸= be a τ -sentence with the existential signature σ = {M1, . . . ,Ms}
consisting of unary relation symbols. We construct a τ ′-sentence Φ′ in MonotoneSNP with
the existential signature σ′ such that SAT(Φ) ≡p SAT(Φ′), which will prove Theorem 2.0.2.

Construction 2. The new input signature τ ′ is obtained from τ by adding two relation
symbols: special(·) and succ(·, ·). The new existential signature σ′ is obtained from σ
by adding three relation symbols: Marked(·), Eq(·, ·) and Pred(·, ·). We have certain
requirements for every new relation.

Every special element must be Marked:

θ1 := ∀x
(
special(x)!Marked(x)

)
.

Any element that is connected (in any direction) to a Marked element by a succ-arc
must also be Marked:

θ2 := ∀x, y
(((

Marked(x) ∧ succ(x, y)
)
!Marked(y)

)
∧

∧
((

Marked(x) ∧ succ(y, x)
)
!Marked(y)

))
.

The relation Pred must be irreflexive and transitive:

θ3 := ∀x, y, z
(
¬Pred(x, x)∧

((
Pred(x, y) ∧ Pred(y, z)

)
! Pred(x, z)

))
.

Any succ-arc is a Pred-arc, so Pred must contain the transitive closure of succ:

θ4 := ∀x, y
(
succ(x, y)! Pred(x, y)

)
.
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Similarly as in the proof of Theorem 2.0.1, Eq must be an equivalence relation, that is,
ϵ1 must be satisfied:

ϵ1 := ∀x, y, z
(
Eq(x, x) ∧

(
Eq(x, y)! Eq(y, x)

)
∧
((

Eq(x, y) ∧ Eq(y, z)
)
! Eq(x, z)

))
.

Every two special elements must be Eq-equivalent:

θ5 := ∀x, y
((

special(x) ∧ special(y)
)
! Eq(x, y)

)
.

The relation Pred must be preserved under replacing each of the elements by an equivalent
one:

θ6 := ∀x, y, z
(((

Pred(x, y) ∧ Eq(y, z)
)
! Pred(x, z)

)
∧

∧
((

Pred(x, y) ∧ Eq(x, z)
)
! Pred(z, y)

))
.

The successors and predecessors of two equivalent elements must also be equivalent with
one another:

θ7 := ∀x, y, x′, y′
(((

Eq(x, y) ∧ succ(x, x′) ∧ succ(y, y′)
)
! Eq(x′, y′)

)
∧

∧
((

Eq(x, y) ∧ succ(x′, x) ∧ succ(y′, y)
)
! Eq(x′, y′)

))
.

Also, all relations M from σ keep holding after replacing one of their elements x by another
element that is equivalent to x, similarly to ϵ2,σ from Theorem 2.0.1:

θ8 :=
∧
M∈σ

∀x, y
((

M(x) ∧ Eq(x, y)
)
!M(y)

)
.

Note that we can not require the something similar for the input relations as in ϵ2,τ in
the proof of Theorem 2.0.1, otherwise, we would violate the monotonicity.

We can suppose without loss of generality that, for an MMSNP ̸= sentence Φ, its
quantifier-free part ϕ(x) is as follows:

¬ϕ1(x1) ∧ · · · ∧ ¬ϕn(xn),

where each ϕi(xi) is of the following form:(
αi(x

τ
i ) ∧ βi(xσ

i ) ∧ γi
(
x ̸=
i

))
.

Here, αi is a conjunction of τ -atoms, βi is a conjunction of σ-atoms or negated σ-atoms,
and γi is a conjunction of inequalities. There are no literals of the form x = y, as every
literal of such form can be removed if we replace y with x everywhere in the conjunct. In
order to construct the sentence Φ′, for which we will later show the P-time equivalence
with Φ, we do the following transformations within every negated conjunct ¬ϕi.

• Suppose that the part αi of ϕi contains two τ -atoms R1(x1) and R2(x2) such that
both tuples x1 and x2 share a variable x. In this case, we introduce a new variable
x′, add an atom Eq(x, x′) to ϕi, and replace x with x′ in the tuple x2. Repeat this
procedure until no two τ -atoms of αi share variables.
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• After that, within γi, we replace all inequalities x ̸= y by negated σ-atoms ¬Eq(x, y).

• For every variable x of ϕi, we add an atom Marked(x) to this conjunct. This means
that now we can restrict any input structure on Marked elements. In model theory,
the substructure consisting of Marked elements is usually called the relativised
reduct with respect to the relation Marked, see [Hod97].

For ϵ1 and θ3, . . . , θ8, that is, for all the introduced formulae that do not describe the
Marked relation, we also require that all their variables are Marked, as well as for any
negated conjunct of ϕ(x). To do this, we add the atom Marked(x) into the implication
body, for every variable x of each rule.
Example 2.2.1. The rule θ5 that forces two special elements be Eq-equivalent is trans-
formed to the following one:

θ5 := ∀x, y
((

special(x) ∧ special(y) ∧Marked(x) ∧Marked(y)
)
! Eq(x, y)

)
.

△
Let ϕ′ be obtained from the quantifier-free part ϕ of Φ after doing the procedures

described above. Then, the desired sentence Φ′ is obtained by requiring all the conditions
from above:

∃M1, . . . ,Ms,Marked,Eq,Pred ∀x
(
ϵ1 ∧ θ1 ∧ · · · ∧ θ8 ∧ ϕ′(x)

)
.

This is the end of Construction 2.

We prove a well-known fact which states that any SNP sentence is preserved under
taking induced substructures. So that we are sure that without loss of generality the
Marked relation can be chosen to be minimal possible by inclusion. That is, the one
that contains all special elements, by θ1, and all the elements that are connected to a
special element by a sequence of succ-arcs, by θ2, and contains nothing else.

Lemma 2.2.1. Let Φ in SNP with some input and existential signatures τ and σ, A is a
relational τ -structure, and B is an induced substructure of A. Then A |= Φ implies that
B |= Φ.

Proof. Suppose that A |= Φ. Let A′ := (A,XA′
1 , . . . ,X

A′
s ) be a σ-expansion of A that

satisfies the first-order part ∀x ϕ(x) of the sentence Φ. Observe that ∀x ϕ(x) is a universal
first-order formula. Let B′ := (B,XB′

1 , . . . ,X
A′
s ) be the substructure of A′ induced on the

set B. It is well-known that universal first-order formulae are preserved under taking
induced substructures, see [Hod97]. Then B′ |= ∀x ϕ(x). Thus, B |= Φ.

We have split the proof of Theorem 2.0.2 in two parts: Lemma 2.2.2 and Lemma 2.2.4.
Together, they imply Theorem 2.0.2.

Lemma 2.2.2. For any sentence Φ in MMSNP ̸=, the problem SAT(Φ) reduces to SAT(Φ′),
where Φ′ is a sentence in MonotoneSNP which is obtained from Φ by Construction 2.

Proof. For a τ -structure A with domain A = {a1, . . . , an}, we construct a τ ′-structure A′

with the same domain A′ := A such that, for any R in τ , we have RA = RA′ , and the other
two input relation symbols special and succ are interpreted as follows:

specialA
′
:= {a1}, succA

′
:= {(ai, ai+1) | i ∈ [n− 1]}.
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For such interpretations there is a unique choice of the existential relations Marked, Eq,
and Pred satisfying ϵ1, θ1, . . . , θ7, namely,

MarkedA′
:= A, EqA′

:= {(a, a) | a ∈ A}, PredA′
:= {(ai, aj) | i < j}.

Similarly as in the proof of Theorem 2.0.1, for all x, y in A, x ̸= y if and only if ¬Eq(x, y).
There is a one-to-one correspondence between interpretations of the existential rela-

tions M1, . . . ,Ms of σ, for A and A′, as these two structures have the same domain. Let
Aσ and A′σ′ be two expansions such that all M1, . . . ,Ms are interpreted identically. If
there is a negated conjunct ¬ϕi(xi) of Φ such that, for some tuple ai, we have Aσ |= ϕi(ai),
then we also have A′σ′ |= ϕ′

i(a
′
i), where a′

i is associated with ai similarly as the variables of
ϕ′
i are associated with the variables of ϕi. Recall that the variables may not be the same

because we may have replaced a variable x, that belonged to two distinct τ -atoms, with
two variables x and x′ now related by Eq. If two variables of ϕ′

i are related by the Eq-
atom, then we have to assign the same value to them. Backwards, if A′σ′ |= ϕ′

i(ai), then,
for any two variables of ϕ′

i that are related by an Eq-atom, there is a common element
of A that is assigned to them. Then we uniquely define which element of A should be
assigned to any variable of ϕi, then, for some tuple ai, we have Aσ |= ϕi(ai). This means
that A |= Φ if and only if A′ |= Φ′.

Before proving the other reduction direction, we want to assume without loss of gen-
erality that any element a of A is forced to be Marked by θ1 and θ2. That is, either a is
special or it is connected to a special element by a sequence of succ-arcs.

Lemma 2.2.3. Let A′ be a τ ′-structure. Denote by A′ |Marked its substructure induced
on the elements that are either special or connected to a special element by a sequence
of succ-arcs. Then we have A′ |= Φ′ if and only if A′ |Marked|= Φ′, where Φ′ is as in
Construction 2.

Proof. Lemma 2.2.1 states that every SNP-sentence is closed under embeddings. This
means that A′ |Marked|= Φ′ if A′ does. Suppose now that A′ |Marked|= Φ′. Choose the
interpretation for the relation symbol Marked in A to consist exactly of the elements
from A′ |Marked. By definition, it satisfies both conditions θ1 and θ2. All other conditions
of Φ′ are applied only to Marked elements. All of them are satisfied in A′ |Marked, so they
are also satisfied in A′.

Lemma 2.2.4. Let Φ in MMSNP ̸= and Φ′ in MonotoneSNP be as in Construction 2.
Then SAT(Φ′) reduces to SAT(Φ).

Proof. Let A′ be a τ ′-structure. By Lemma 2.2.3, we can assume without loss of generality
that any element a in A′ is either special or connected by a sequence of succ-arcs to a
special element.

It turns out that the structure A has a σ′-extension that satisfies ϵ1, θ1, . . . , θ7 if and
only if A∼ := A′/ ∼ is a balanced graph with respect to succ-arcs, where ∼ is the minimal
by inclusion equivalence relation that identifies precisely all special elements, that is,

∀x, y ∈ A′
((

special(x) ∧ special(y)
)
↔ (x ∼ y)

)
.

Recall that a directed graph G is called balanced if it admits a height function, i.e., a
function f : G! Z such that, for any two vertices x, y in G, if there is an arc E(x, y), then
we have f(y) = f(x)+ 1. One can check in P-time if a digraph is balanced, see [BDJN15].
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Claim 2.2.5. A′ has a σ′-extension that satisfies the conditions ϵ1 ∧ θ1 ∧ · · · ∧ θ7 if and
only if (A∼, succ

A∼) is a balanced digraph.

Proof of the Claim. We are going to prove the claim by arguing, first, that a height func-
tion yields an interpretation of Eq and Pred that satisfy the formulae; and then we argue
that if it not balanced, then no choice for Eq,Pred can satisfy the formulae.

Suppose (A∼, succ
A∼) is balanced; then let f∼ : A∼ ! Z be its height function. Let

f : A′ ! Z satisfy
∀x ∈ A

(
f(x) = f∼([x]∼)

)
,

where [x]∼ is the ∼-equivalence class that contains x. Construct the σ′-extension A′σ′ as
follows. Choose EqA′σ′

:= {(x, y) ∈ (A′)2 | f(x) = f(y)}, and PredA′σ′

= {(x, y) ∈ (A′)2 |
f(x) < f(y)} (recall that we assume without loss of generality that MarkedA′σ′

= A′).
All the other relations from σ′ can be chosen arbitrarily.

ϵ1 is true as “=” is an equivalence relation on Z, θ1, θ2 are satisfied by the assumption,
θ3 is satisfied because “<” is irreflexive and transitive on Z, θ4 is true because f∼ is a
height function, θ5 is true by the construction of f from f∼, θ6 is true because, for a, b, c
in (Z, <), a < b and b = c imply a < c, θ7 is true because f∼ is a height function. We
have proved one direction.

For the other direction, suppose that there is a σ′-extension A′σ′ that satisfies θ1, . . . , θ7.
Let s = (a1, . . . , as) be a sequence of elements of A′σ′ such that, for any i in [s− 1], either
succA

′σ′
(ai, ai+1) or succA

′σ′
(ai+1, ai), or EqA′σ′

(ai, ai+1). Denote the family of all such
sequences by S. Any s in S of length s is associated with a tuple ts = (t1, . . . , ts−1) such
that, for any i in [s− 1],

• if succA′σ′
(ai, ai+1), then ti = 1;

• if succA′σ′
(ai+1, ai), then ti = −1;

• if EqA′σ′

(ai, ai+1), then ti = 0.

For any s in S, denote h(s) :=
∑s−1

i=1 ti. This function h computes the difference between
the number of forth-coming succ-arcs of the sequence and the number of back-coming
ones. In particular, if s is a succ-path, then h returns its net length.

We want to show that, for any sequence s = (a1, . . . , as) in S, if h(s) = 0, then (a1, as)

belongs to EqA′σ′

. By construction, this property holds for any s in S of length 2. Let s
be a sequence of the shortest length such that this property does not hold. Observe that
ts cannot contain two consecutive 0s, as Eq is transitive, thus ts must contain at least one
element from {−1, 1}. Consider the four following cases for the tuple s that are displayed
on Figure 2.2 on page 37.

ai−1

ai

ai+1

ai−1

ai

ai+1

ai−1

ai ai+1

ai+2

ai−1

ai ai+1

ai+2

Case 1 Case 2 Case 3 Case 4

Figure 2.2: The four cases that may occur in s. Dotted closed curves denote Eq-tuples.
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If none of these cases happens, then all the succ-arcs of the sequence s have the same
direction, so h(s) ̸= 0. Cases 1 and 2 imply that EqA′σ′

(ai−1, ai+1), by θ7. Thus, we can
delete ai from s, and obtain a shorter sequence that violates the property. Cases 3 and
4, similarly, imply that EqA′σ′

(ai−1, ai+2). Thus, if we delete ai, ai+1 from s, then the
resulting sequence is shorter and it violates the property.

We want to show that, for any sequence s = (a1, . . . , as) in S, if h(s) > 0, then (a1, as)

belongs to PredA′σ′

. Suppose the opposite, then choose s to be a sequence of the shortest
length that violates the property. If one of the four cases from Figure 2.2 happens, then
we can reduce the length of s without changing the value of h. If none of them happens,
then either ts consists only of 0s and 1s, or it consists only of 0s and −1s. Without loss
of generality, suppose the first case. Then we have h(s) > 0, and θ3, θ4, θ6 provide that
(a1, as) belongs to PredA′σ′

, this is a contradiction.
Suppose that (A∼, succ

A∼) is not balanced; then there exist two elements x, y in A∼
and two sequences s1 = (a11, . . . , a

1
s1
), s2 = (a21, . . . , a

2
s2
) in S such that x = a11 = a21,

y = a1s1 = a2s2 , and h(s1) ̸= h(s2). Otherwise we could construct a height function
f by setting f([x]∼) = 0, for x in specialA

′
, and by setting f(y) = h([x]∼, . . . , y), for

some sequence of S connecting [x]∼ and y. Let s−1
2 be the result of reversing s2, that is,

s−1
2 = (a2s2 , . . . , a

2
1). For any sequence s in S, we have h(s) = −h (s−1). Let s1s

−1
2 be the

concatenation of s1 and s−1
2 . Then h(s1s

−1
2 ) = h(s1) + h

(
s−1
2

)
= h(s1)− h(s2) ̸= 0. This

implies that (x, x) belongs to PredA′σ′

, that is forbidden by θ3.

Suppose that (A∼, succ
A∼) is a balanced graph. Then there is only one way to choose

the relations Eq and Pred as they depend on the values of the function h. We know
that, if h(x, . . . , y) = 0, then (x, y) ∈ EqA′

; and if h(x, . . . , y) > 0, then (x, y) ∈ PredA′
.

And also we know that, for any pair (x, y) in (A′)2, it cannot belong to PredA′
and to

EqA′
at the same time, this is forbidden by θ3 and θ6. We can conclude now that, for

any x, y in A′, (x, y) ∈ EqA′
if and only if h(x, . . . , y) = 0 and (x, y) ∈ PredA′

if and
only if h(x, . . . , y) > 0. This implies a uniqueness of the choice of these two relations.
So we can assume that either Φ′ rejects A′ in P-time or there is a unique interpretation
EqA′σ′

,PredA′σ′

that satisfies ϵ1 ∧ θ1 ∧ · · · ∧ θ7.
We are ready to construct the corresponding τ -structure A. It is the τ -reduct of the

quotient of A′ with respect to EqA′σ′

: A :=
(
A′/EqA′σ′)τ

. The condition θ8 requires that

any two elements of the same EqA′
-equivalence class have to agree on any σ-relation, thus

there is a one-to-one correspondence between choices of σ-relations MA
1 , . . . ,M

A
s for A

and choices for A′.
We need to prove that A |= Φ if and only if A′ |= Φ′. Let A′σ′ be a σ′-expansion

of A′ that satisfies all the conditions ϵ1, θ1, . . . , θ8. Let Aσ be the σ-expansion of A that
is associated with A′σ′ . It suffices to show that each negated conjunct ¬ϕi(a) of the
quantifier-free part ϕ of Φ is true in Aσ, for any choice of variables a, if and only if the
corresponding negated conjunct ¬ϕ′

i(a
′) is true in A′σ′ , for any choice of variables a′.

Suppose that, for some a and some negated conjunct ϕi(a), every atom of ϕi(a) is true
in Aσ. We need to find a tuple a′ such that every atom in ϕ′

i(a
′) is true in A′σ′ . For any

atom R(b) of a τ -relation R, we know that it holds in A. By the construction of A, there
exists a tuple b′ in A′ such that b = [b′]Eq and that R(b′) holds in A′. By the construction
of ϕ′

i, we know that any variable of ϕ′
i may appear only in one atom with a τ -relation;

this means that the choice of the tuple b′ that is associated with b does not influence
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(A′,Eq) A′/EqA′

Figure 2.3: From left to right, a τ ′-structure A′, the same structure expanded with the existential
equivalence relation Eq, and the Eq-quotient of this structure. Red squares are special elements, closed
curves are τ -relational tuples, black arcs are succ-arcs, dotted closed curves are Eq-equivalence classes.

the choices for other τ -relational atoms of ϕi. We can suppose now that we can choose
elements of A′ such that any τ -relational atom of ϕ′

i is true. Consider a σ-relational atom
M(d) of ϕi(a). Suppose that the element d appears in a tuple b of some τ -relational atom
R(b): d = bi; then we have already chosen an element of A′ that is associated with d: it
is b′i of the tuple b′. By θ8 and, by the construction of A, bi belongs to M if and only
if [bi]Eq belongs to M. Suppose that the element d does not appear in any τ -relational
atom of ϕi; then we choose any element d′ in A′ such that [d′]Eq = d. We have shown that
any τ -relational and any σ-relational atom is satisfied in A′σ′ . Recall that, for any a′1, a′2
in A′, ¬Eq(a′1, a′2) ⇔ [a′1]Eq ̸= [a′2]Eq; thus any atom of ϕ′

i that has the form ¬Eq(x, y)
is satisfied. The rest consists of atoms of the form Eq(x, x′) that are added during the
construction of ϕi. Both of the elements of any such atom appear in τ -relational atoms,
and we know that [x]Eq = [x′]Eq, because they are associated with the same element of A.
We have shown that, for our choice, any atom of ϕ′

i is true in A′σ′ .
Let us show the other direction. Suppose that, for some tuple a′, any atom of some

ϕ′
i is true in A′σ′ . For any element b′ of a′, we associate [b′]Eq to it. By the construction

of A, every atom of ϕi is true in Aσ.

Example 2.2.2. Have a look at a structure A′ that is displayed on Figure 2.3 on page 39.
Here, the signature τ ′ is obtained from τ by adding special and succ relations, and τ
consists of just one ternary relation. By default, there may be more than one special

element, but they belong to the same Eq-equivalence class. Then, their succ-neighbours
must also belong to the same Eq-equivalence class, and so on. If succA

′ was not a
balanced graph, then we would have two elements connected by a succ-arc within the
same Eq-equivalence class.

△
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2.3 NP embeds into MMSNP with ̸=
We show that for any nondeterministic Turing machine there exists a P-time equivalent
MMSNP ̸= sentence. Feder and Vardi in [FV98] consider only oblivious Turing machines.
An oblivious Turing machine is defined by the following property: for any two input
instances of the same size, the head movements during the machine executions are the
same. That is, the head movement does not depend on the symbols written on the tape,
it depends only on the size of the input. More formally, a (possibly non-deterministic)
Turing machine Mo is called oblivious if there exists a function f : N ! N such that, for
any input x of size |x| = n, Mo decides x in precisely f(n) steps. And that, for every
two inputs x1,x2 such that |x1| = |x2|, and, for any moment t in [f(n)] of each execution,
the positions of the head are the same. The concept of oblivious Turing machines is
introduced by Pippenger and Fischer in [PF79].

The proof of Theorem 2.0.3 is only vaguely sketched in [FV98]. We provide a complete
proof in this section. This proof relies on a specific choice of the way in which we expect
an oblivious Turing machine to work. That is, we do not know how to provide a proof
of Theorem 2.0.3 that would use [PF79] as a black box reduction from non-deterministic
Turing machines to oblivious ones.

Before explaining how NP can be embedded into MMSNP ̸=, we argue that without
loss of generality one can consider only oblivious Turing machines with a one-way infinite
tape. Then, for any oblivious Turing machine, we construct an MMSNP ̸= sentence Φ and
then show that the corresponding problems are P-time equivalent.

In the reduction, an input instance of a Turing machine is associated with a structure
that looks like a two-dimensional grid, which represents the set of tape configurations at
any moment of the execution. That is, the structure shall be used to represent a canvas for
the space-time diagram of the oblivious Turing machine. A row consists of cells that are
either occupied by the input or visited by the head by this time. When the head reaches
the rightmost cell of the tape it does one more step to the right and, thus, increases
the row size by 1, as a new cell is visited. The first row is associated with the initial
configuration of the tape (t = 0): the head is at the leftmost cell, the string of symbols is
the initial input string. The next row is associated with the next moment of time (t = 1),
the head has done one step to the right. The movements of the head are independent of
the input contents. So it shall be possible to check that the grid is in the correct shape
in MMSNP ̸=.

We assume that a Turing machine that we consider is non-trivial, i.e., it neither accepts
all input instances nor rejects all of them.

Oblivious Turing machines

For a Turing machine M , we say that the running time of M depends only on the size of
the input if there is a function f : N ! N such that, for any input x of size |x| = n, M
decides x in precisely f(n) steps. The following lemma allows us to consider without loss
of generality only Turing machines whose running time depends only on the size of the
input.

Lemma 2.3.1. Let M be a nondeterministic Turing machine. Let f : N! N be a function
such that M operates within time f(n). Then there is a nondeterministic Turing machine
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M ′ that is P-time equivalent to M and whose running time depends only on the size of
the input.

Proof. We know that, for some c, k in N, f(n) ≤ cnk. We construct a Turing machine
M ′ that decides an input of M of size n precisely in time f′(n), for some other function
f′ : N! N. The machine M ′ has two tapes. The alphabet of the first tape is the same as
the alphabet of M . The alphabet of the second tape has m symbols, where m = 2k + c′

such that mlog2 n > cnk. Such m exists and it is fixed and does not depend on n. Suppose
without loss of generality that it consists of the symbols 1, . . . ,m. Then every execution
of M ′ is as follows:

• The head of the first tape of M ′ scans it and writes on the second tape the sequence
of 1s of length ⌈log2 n⌉. This procedure takes the same amount of time for any input
on the tape 1 of size n.

• Then, M ′ does the same things as M for this input. And, for the tape 2, M ′ acts
as a deterministic Turing machine. It consequently writes all the ⌈log2 n⌉-sequences
consisting of numbers from 1 to m. For m large enough, the execution for the tape
2 always stops after the execution for the tape 1. At the end, it is always in the
accepting state.

The machine M ′ accepts the input if it both tapes answer YES. Otherwise it rejects the
input. By construction, it is equivalent to M . And it is well-known, see [Pap94], that a
machine with two tapes can be simulated by a machine with one tape. Thus, it is possible
to construct an equivalent machine such that its running time depends only on the size
of the input.

The next lemma states that without loss of generality we can assume that the move-
ment of the head of the machine is the same for any two input instances of the same size.
For a Turing machine M , we construct an oblivious Turing machine Mo. The movement
of head of Mo is always the same: for every iteration of M , the head of Mo walks to the
right end of the tape, increases the tape size by 1, and then walks to the left end of the
tape, see Figure 2.4 on page 41. If M halts in precisely f(n) steps, for an input of size n,

▷
▷

▷

▷

▷

⊔
⊔

⊔
⊔

⊔▷

Figure 2.4: The trajectory of the head movement of Mo.

then Mo halts, for any input of size n, in fo(n) steps, where:

fo(n) := 2n+ 2(n+ 1) + . . .+ 2(n+ f(n)) = (f(n) + 1)(2n+ f(n)).

Lemma 2.3.2. For any nondeterministic Turing machine M with a one-way infinite tape
whose running time depends only on the size of the input, there exists a P-time equivalent
oblivious nondeterministic Turing machine Mo with a one-way infinite tape.

Proof. Let M have the alphabet Σ = {s1, . . . , sk, ▷,⊔}, where ▷ is the first symbol and
⊔ is the blank symbol; and the states Q = {q0, . . . , qm}, where q0 is the starting state.
Firstly, we describe the alphabet Σo and the set of states Qo of Mo.
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• For s in Σ ∖ {▷,⊔}, add to Σo two symbols: s, sh. The h-superscript helps to
remember the position of the head of M . Instead of one blank symbol in Σ, Σo

has three symbols: ⊔,⊔′,⊔′h. ⊔ is written in cells that are not visited by the head
of Mo. ⊔′ is written in those cells that are blank but the head of the machine M
potentially could have already visited them. ⊔′h, similarly as sh, informs the head
of Mo that the head of M is at the same cell. At last, add the first symbol ▷ to Σo.

• Any state qi in Q is replaced by two states: qLi , qRi in Qo – they highlight the head
movement direction (Left or Right). Then, for every pair of states qi, qj of Q, we
add four states to Qo: qLi!j and qRi!j and qRi!j(write), qi!j(write) – they are used when
Mo simulates the transition of M . And also we add to Qo states qstart, qsearch, qreturn
that are used at the start of the execution in order to check if the input of Mo is
associated with the input of M ; qstart is the starting state. And, finally, for every
newly added state, we add a copy of it that is labeled with the word “error”, e.g.
for qRi we add qR,error

i . For every state of the type q, the corresponding state of the
type error does the same function but, in this case, at the end of the execution, the
machine always answers YES.

We explain how Mo works. Our informal explanation is followed by an explicit description
of Mo.

We assume that for every input tape there is N in N such that the first cell contains
▷, next N cells contain symbols of Σo ∖ {▷,⊔}, and every other cell contains the blank
symbol ⊔. We also assume that the head of Mo is in the first cell of the tape and in the
state qstart when the execution starts.

Informal description of Mo. We want to check if the input of the machine Mo is
associated with an input of the machine M . It must have the following form: the first cell
must contain the first symbol ▷, the next n cells must contain an element of Σ∖ {▷,⊔},
and all other cells must contain ⊔.

Check if the input of Mo is exactly like an input of M . At the start of any
execution, the head turns into the state qsearch and moves to the right end of the input in
this state. When it reads the blank symbol ⊔, it turns into the state qreturn and moves back
to the initial position in this state. During the left-to-right walk, the head scans every
cell and changes the state to qerrorsearch if the cell contains an element not from Σ ∖ {▷,⊔}.
The head edits the bad cell by writing in it a symbol from Σ ∖ {▷,⊔}. Thus, when the
head returns back to the initial position, the input of the machine is of the right form.
But the machine already knows that there is an error, and it shall accept this input at
the end of the execution anyway.

Simulate one move of M by two walks: left to right, then right to left.
After this scanning and editing procedure, the machine Mo starts the simulation of the
execution of M . Every move of the head of M is associated with the walk of the head
of Mo towards the right end of the tape and its return to the left end. The head of Mo

moves to the right, until it scans the first cell with the blank symbol ⊔. It rewrites ⊔ to
⊔′ in order to mark that during the next walk it does not have to stop at the same cell
and can make one more step to the right. Then it returns to the left end of the input
string.
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If the head is at a cell with a symbol s without the h-superscript, then the head of Mo

does not rewrite the symbol and keeps walking in the same direction.
Any cell, except for the first and the last ones, is visited by the head of Mo exactly

two times: when it goes left-to-right and right-to-left. Suppose that the head of Mo scans
a cell that contains sh and that the original Turing machine M is in the state qi now. As
it is non-deterministic, there is more than one possible transition from this configuration.
For every transition when M decides to move to the right, Mo simulates this transition
during the left-to-right walk, and for every transition when M decides to move to the left,
Mo does this when the head is returning to the left end. Suppose that the head of Mo is
moving towards the right end now, that it is in the state qRi , and that it reads sh from
the current cell; then the machine Mo can do one of the following things.

right : Mo decides to simulate one of the possible transitions of M for the configuration
(qi, s) when, during the transition, the head of M moves to the right, e.g. (qi, s)!
(qj, s

′,!). In this case, Mo changes its state to qRi!j(write), writes s′, and moves one
cell to the right. Then it changes to the state qRi!j and, for the symbol s1 of this
new cell, writes sh1 and keeps walking to the right end. Then it changes to the state
qLi!j and walks towards the left end. And, at the left end, it changes to the state qRj
and repeats the walk. See Figure 2.5 on page 44.

left : The machine Mo decides to simulate one of the transitions when the head of M
walks to the left. In this case, Mo does not change its state qRi until it is at the right
end of the tape. Then it turns to the state qLi , arrives to the cell with sh during the
right-to-left walk and does the steps similar to those from the previous case.

If the head of M is at the first cell, then it always moves to the right. This means
that Mo must simulate this movement when it is going to the right from the first cell.

Any state of the type error is similar to the corresponding one of the type q. The only
difference is that at the end of the execution the machine in an error-type state always
answers YES.

Explicit description of Mo We give below the transitions of Mo. For the sake of
brevity, we do not write the transition rules for the states of the type error as they just
repeat the transition rules of the usual states, and, once Mo is in an error state, it will
always be in an error state.

Transitions checking the input. If the cell, where the head of Mo is before the
run, contains something different from ▷, then the machine turns to the qerrorsearch state,
writes ▷ in the first cell, and starts walking to the right. If the first cell contains ▷, then
the machine writes nothing and just walks to the right while being in the state qsearch.

∀s ̸= ▷
(
(qstart, s)! (qerrorsearch, ▷,!)

)
,

(qstart, ▷)! (qsearch, ▷,!).

When the head of Mo walks to the right: either it meets a symbol not from Σ, edits it to
a symbol from Σ, changes the state to qerrorsearch, and keeps moving to the right; or it edits
nothing and keeps moving to the right.

∀s ̸∈ Σ
(
(qsearch, s)! (qerrorsearch, s1,!)

)
, for some arbitrary s1 ∈ Σ,
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⊔

⊔

⊔
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Figure 2.5: A move of the head of a machine M is simulated by a walk of the head of the corresponding
oblivious machine Mo.

∀s ∈ Σ∖ {▷,⊔}
(
(qsearch, s)! (qsearch, s,!)

)
.

Now we describe what the head does when it reaches the right end. Observe that, when
the machine is at the right end and in the state qsearch, the tape already has a good form,
so we do not need to edit it anymore.

(qsearch,⊔)! (qreturn,⊔′, ), ∀s ∈ Σo ∖ {▷}
(
(qreturn, s)! (qreturn, s, )

)
.

When the head of Mo returns to the first cell, it simulates the first move of M . Suppose
that M has the following transition rule:

(q0, ▷)!
{
(qi1 , ▷,!), . . . , (qik , ▷,!)

}
;

then Mo has the following transition rule:

(qsearch, ▷)!
{
(qR0!i1(write), ▷,!), . . . , (qR0!ik(write), ▷,!)

}
.

For qi, qj in Q, the states qLi!j(write), q
R
i!j(write) are used when the head of Mo simulates

the change of the head position of the initial machine M . The head of Mo adds the
h-superscript to the symbol of the next cell. Thus, Mo must have the following rules for
any symbol of Σo ∖ {⊔, ▷} without the h-superscript:

∀qi, qj ∈ Q, s ∈
(
Σ ∪ {⊔′}

)
∖ {⊔, ▷}

(
(qRi!j(write), s)! (qRi!j, s

h,!)
)
,
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∀qi, qj ∈ Q, s ∈
(
Σ ∪ {⊔′}

)
∖ {⊔, ▷}

(
(qLi!j(write), s)! (qLi!j, s

h, )
)
.

Note that by construction, the head of Mo cannot be simultaneously in the state of the
type qi!j(write) and scan the symbol ⊔. The head cannot be in the first cell (that contains
▷) in a state of the types qRi!j, q

R
i!j(write), as there is no cell to the left from the first cell.

However, it can be at the first cell in a state of the type qLi!j(write). We will describe this
case later.

If the head of Mo, being in a state not of the type qi!j(write), reads a symbol without
the h-superscript, then it does not change the symbol and keeps moving further:

∀qi, qj ∈ Q, s ∈
(
Σ ∪ {⊔′}

)
∖ {⊔}

(
(qRi , s)! (qRi , s,!)

)
,

∀qi, qj ∈ Q, s ∈
(
Σ ∪ {⊔′}

)
∖ {⊔}

(
(qRi!j, s)! (qRi!j, s,!)

)
,

and similarly for the right-to-left direction:

∀qi, qj ∈ Q, s ∈
(
Σ ∪ {⊔′}

)
∖ {⊔}

(
(qLi , s)! (qLi , s, )

)
,

∀qi, qj ∈ Q, s ∈
(
Σ ∪ {⊔′}

)
∖ {⊔}

(
(qLi!j, s)! (qLi!j, s, )

)
,

If the head of M is not at the first cell, then, for a rule

(qi, s)!
{
(qj1 , sj1 , D1), . . . , (qjm , sjm , Dm)

}
of M , we write a rule

(qRi , s
h)! (qRi!jk(write), sjk ,!)

for any k in [m] such that Dk =!; and if Dk = , then we write a rule

(qLi , s
h)! (qLi!jk(write), sjk , ),

and we also want to let the head of Mo pass sh when it moves left-to-right:

(qRi , s
h)! (qRi , s

h,!).

If the head of Mo is in a state of the type qi!j, then it has simulated the current
transition of M and is returning now to the first cell in order to change its state to qRj .

∀s ∈ Σo ∖ {▷,⊔}
(
(qRi!j, s)! (qRi!j, s,!)

)
,

∀s ∈ Σo ∖ {▷,⊔}
(
(qLi!j, s)! (qi!j, s, )

)
.

By construction, Mo reaches the right end in one of the states of the type: qRi , qRi!j, for
some i, j. In this case, it pushes the right end one cell to the right by changing ⊔ to ⊔′

and starts moving to the left:

(qRi ,⊔)! (qLi ,⊔′, ), (qRi!j,⊔)! (qLi!j,⊔′, ).

When it returns to the first cell, it turns into the state qRj and moves to the right:

(qLi!j, ▷)! (qRj , ▷,!).

It remains to explain what Mo does when the head of M moves to the first cell.
Consider the following situation, it is displayed on Figure 2.6 on page 46. The head of M
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is in the second cell with a symbol s, being in the state qi. Then it rewrites s to s′, moves
one cell to the left and arrives to the first cell being in the state qj. And then it moves
one cell to the right and turns into the state qk. In total, there are two moves of the head
of M . As each move of M is associated with a walk of Mo left-to-right and back, the head
of Mo must simulate these two moves with two walks. It starts the first walk at the first
cell and turns into the state qRi . Then it passes the second cell from left to right and does
nothing. Then it reaches the end of the tape and turns into the state qLi . When it visits
the second cell again, it turns into the state qLi!j(write), rewrites sh to s′, and moves to the
first cell. Then it acts according to the following rule:

(qLi!j(write), ▷)! (qRj!k(write), ▷,!).

As it arrives to the second cell again, being in the state qRj!k(write), it has to rewrite s′ to
s′h, turn into the state qRj!k and continue walking to the right. When it arrives to the end
of the tape, it turns into the state qLj!k and walks left. Eventually, it arrives to the first
cell and turns into the state qRk . With this setting, one move of M is associated with one
left-right-left walk, thus, Mo does not violate the obliviousness property.

▷

qi

▷

M

▷

Mo

▷

⊔ ⊔

⊔

▷ ⊔

▷ ⊔′ ⊔

▷ ⊔′ ⊔

▷ ⊔′

▷

qRi

⊔ ⊔
...

...

...

...

...

...

s

s′

qj

▷ s′

qk

sh

qRi

⊔′

⊔′

sh

sh

qLi

⊔

⊔

⊔

⊔

⊔

⊔

⊔

s′

qLi→j(write)

qRj→k(write)

s′

s′h

s′h

qRj→k

... ...
⊔′

qLj→k

▷ ⊔′ ⊔s′h

... ...
⊔′

qRk

Figure 2.6: Description of the Mo simulation when the head of M is at the first cell.

We have explained how Mo executes. Every execution for the input of size n will take
the same amount of time fo(n) as the running time of the machine M depends only on the
size of the input. The movement of the head of Mo is also the same for all input instances
of the same size. We conclude that Mo is oblivious. Moreover, Mo is P-time equivalent
to M , because if the input of Mo is not of the form that fits M , then we reduce to a fixed
YES instance of M , and if it is of the good form, then we reduce to the same input tape
of M . The reduction from M to Mo is the identity.
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Lemmas 2.3.1 and 2.3.2 together imply the following.

Corollary 2.3.3. For any Turing machine there exists a P-time equivalent oblivious Tur-
ing machine with a one-way-infinite tape.

By Corollary 2.3.3, it is sufficient to show the existence of an MMSNP ̸= sentence that
is P-time equivalent to a given oblivious Turing machine Mo with a one-way-infinite tape,
for any such Mo.

Construction of the MMSNP ̸= sentence

Let an oblivious Turing machine Mo be the same as in the proof of Lemma 2.3.2.

• Mo has the alphabet Σo := Σ ⊎ {sh | s ∈ Σ∖ {▷,⊔}} ⊎ {⊔′,⊔′h}.

• It has the states Qo: qstart, qsearch, qreturn in Qo; then, for every qi in Q, qLi , qRi in Qo;
and, for every two distinct qi, qj in Q: qLi!j, q

R
i!j, q

L
i!j(write), q

R
i!j(write) ∈ Qo; and Qo

contains all the error-copies of each of these states.

The input A of the MMSNP ̸= sentence Φ to be constructed shall be a canvas for a
space-time diagram of a run of Mo. The expressing power of the inequality allows us
to forbid the structure A to be over-complete, that is, to have more than one tuple of
the same relation that are incident to the same element. For example, by using of the
inequality, we can require that all the out- and in-degrees of digraph elements are at most
one.

However, we cannot forbid the structure A to be incomplete, that is, not to have
tuples where they ought to be. This is because any MMSNP ̸= formula is monotone with
respect to τ -relations. For example, we cannot require that all the out- and in-degrees
are precisely one.

The main difficulty of the proof is to come up with an encoding that can be dealt with
using the expressivity of MMSNP ̸= when A is not of the correct form.

We are planning to construct Φ in MMSNP ̸= such that, for any input structure A:

• if A is over-complete, then A ̸|= Φ,

• if A is not complete enough to simulate a run of Mo, then A |= Φ,

• if A is in an appropriate form and can simulate a run of Mo that returns YES, then
A |= Φ,

• if A is in an appropriate form and can simulate a run of Mo that returns NO, then
A ̸|= Φ.

By an appropriate form we mean the form of a two-dimensional (space-time) grid. It
is formed by horizontal succ-arcs directed from left to right and by vertical next-arcs
directed from top to bottom. Every row of this grid represents the tape at some moment
of time t. The row below is the tape at the next moment t+1, and the row above stands
for the moment t−1. Every element of a row is connected to the first and the last member
of the row with a ternary relation between, this will allow us to require some properties
precisely from all the elements of the tape at some fixed moment of time. The contents
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of the tape – the symbols, the states, the positions of the head – are encoded with both
input and existential relations.

The input relations are represented by a signature τ :

τ = {s(·) | s ∈ Σ} ⊎ {start(·), succ(·, ·),next(·, ·),between(·, ·, ·)},

where

• start(x) represents a constant that highlights the grid element that is associated
with the leftmost element of the tape, where the head must be at the start of the
execution;

• succ(x, y) – a horizontal arc, it means that the cell corresponding to y is the right
neighbour of the cell corresponding to x on the tape;

• next(x, x′) – a vertical arc, it means that x′ represents some cell of the tape at the
time t, and x represents the same cell at the time t+ 1;

• s(x), for each s in Σ, means that the symbol s is written in the cell corresponding to
an element x; these relations matter only in the first row, where they set the initial
values for the corresponding existential relations;

• between(x, y, z) means that y represents an element of a tape that starts at x and
ends at z.

The existential relations are represented by a signature σ. All of them must be unary.
In order to distinguish τ -relations from σ-relations, we write the name of each σ-relation
with an initial upper case letter while every τ -relation starts with a lower case letter. This
is convenient because there are both input and existential relations that describe symbols
on the tape and that are named identically up to the letter case.

σ = {S(·) | s ∈ Σo} ⊎ {Marked(·),Head(·)} ⊎ {Q(·) | q ∈ Q},

where

• S(x), for s in Σo, means that the cell corresponding to x contains a symbol s;

• Marked(x) has the same role as in the proof of Theorem 2.0.2: it marks the elements
that need to be considered;

• Initial(x) highlights the elements corresponding to the initial configuration of the
tape, it is used in order to generate all Marked elements;

• Head(x) means that the head of Mo is at the cell corresponding to x;

• Q(x) means that the cell corresponding to x belongs to the tape at the moment of
time when the machine is in the state q.

Below, we provide the conditions that force an element to be Marked. We require
that the elements of the first row are Initial, where the first row consists of all x such
that between(a, x, a′)∧start(a). We demand every Initial element to be Marked. And
then we force Marked relation to spread from an element to its bottom next-neighbour
if the structure contains all the necessary tuples around this point.
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⇒ ⇒

Figure 2.7: A graphical representation of formulae that set the Initial relation on the first row of the
grid. Arcs with black heads are succ, arcs with white heads are next, dashed closed curves are between-
triples, red squares are start elements, small white circles are Initial elements, large white circles are
Head elements. Relations s and S are implicit.

Simultaneously, we set the values for existential relations that are associated with
alphabetical symbols as we do not want to have an Initial element that is associated
with a cell with no symbol. For any s in Σ, we add the following conjuncts to Φ:

start(a) ∧ succ(a, x) ∧ next(a, a′) ∧ between(a, x, a′) ∧ s(x)!

Initial(x) ∧ S(x) ∧Head(x) ∧Qstart(x),

start(a) ∧ Initial(x) ∧ succ(x, y) ∧ between(a, y, a′) ∧ next(a, a′) ∧ s(y)!

Initial(y) ∧ S(y),

we require that every element of the row highlighted with start must be Initial, except
for the start itself. We also want the structure to be complete with respect to between

and next, i.e., an element does not need to be Initial if any such tuple is missing.
In the same rule we assign the existential symbol relations S(·) depending on the input
symbol relations s(·), and also demand that the Head is in the leftmost cell (the right
succ-neighbour of the start element) in the state Qstart. See Figure 2.7 on page 49 for a
graphical representation.

Initial elements generate all the Marked elements. Firstly, we require that all the
elements of the first row are Marked: Initial(x) ! Marked(x). Secondly, we force
the relation Marked to spread from top to bottom via next-arcs. If the neighbourhood
of an element y′ has one of the four appropriate patterns from Figure 2.8 on page 50
and if its next-predecessor y is Marked, then y′ must also be Marked. It will be more
convenient to display them as graphs, see Figure 2.8. As the corresponding formulae are
rather difficult to read. We explicitly write only the rule corresponding to Figure 2.8a. It
goes as follows.

succ(a, y) ∧ succ(y, z) ∧ succ(a′, y′) ∧ succ(y′, z′)∧
next(a, a′) ∧ next(y, y′) ∧ next(z, z′) ∧ next(a′, a′′)∧
between(a, y, a′) ∧ between(a, z, a′) ∧ between(a′, y′, a′′)∧
between(a′, z′, a′′) ∧Marked(y) ∧Marked(z)

!Marked(y′)

We want from the relations that represent the states to be a partition:

¬

(∧
q∈Q

¬Q(x)

)
∧
∧

q,q′∈Q

¬
(
Q(x) ∧Q′(x)

)
,

and that two points at the same row of the grid (i.e., from the tape at the same moment
of time) can not have different states, thus, they are in precisely one state:∧

q,q′∈Q

¬ (between(a, x, a′) ∧ between(a, y, a′) ∧ next(a, a′) ∧Q(x) ∧Q′(y)) .
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z

z′

a

a′

a′′

y

y′

(a) y is the first element of the tape. If y, z are Marked,
then y′ has to be Marked.

x y z

x′ y′ z′

a

a′

a′′

(b) The general case, when y is in the middle of the
tape. If x, y, z are Marked, then y′ has to be Marked.

x y

x′ y′

a

a′

a′′

(c) y is at the end of the tape. The head is not at y, this
is highlighted with a cross. Then, at the next moment
of time, the tape will not be augmented. If x, y are
Marked, then y′ has to be Marked.

x y

x′ y′ z′

a

a′

a′′

(d) y is at the end of the tape. The head is at y, this
is highlighted with a large circle. Then the tape will be
augmented with z′. Both y′, z′ have to be Marked and
the head has to move upon x′.

Figure 2.8: All the four cases when an element y′ is forced to become Marked. All the elements are
required to be pairwise distinct, using ̸=. Black-headed arcs are succ. White-headed arcs are next.
Dashed closed curves are between. Small white discs are Marked elements.

The relations S, for s in Σo form a partition, as a cell cannot contain two different
symbols simultaneously:

¬

(∧
s∈Σo

¬S(x)

)
∧
∧

s,s′∈Σo

¬
(
S(x) ∧ S′(x)

)
.

The symbol predicates S(·), for s in Σo ∖ {⊔}, are propagated from top to bottom
when the predicate Head is not upon the considered element. These symbol predicates
can change only when Head is present. This is because a machine can change the contents
of the tape only with its head. For every s in Σo ∖ {⊔} and the corresponding relation S

written in upper-case, we write:

Marked(x) ∧ ¬Head(x) ∧ S(x) ∧ next(x, x′)! S(x′). (2.1)

We shall add constraints for the Head movement when we provide the formulae that
describe the transitions of Mo. There is only one other constraint for the Head relation.
It states that at any moment of time there cannot be two different cells of the tape where
the Head is at:

between(a, x, a′)∧between(a, y, a′)∧next(a, a′)∧Head(x)∧Head(y)! x = y. (2.2)

The head of Mo is on the initial cell containing ▷ at the start. We have one element to the
left of ▷ in our structure so the conjunct will not be start(x)! Head(x) but something
morally similar.
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Figure 2.9: A graphical representation of the formulae that describe the transition of Mo. Horizontal
black-headed arcs are succ. Vertical white-headed arcs are next. Dashed closed curves are between-
tuples. Small white circles are Marked elements. Medium white circles are Head elements. Large squares
are existential symbol relations S. If two squares on the same figure have the same colour, then they are
associated with the same relation. There is a letter h near the square if and only if the corresponding
symbol has the h-superscript. A square with ▷ is associated with the first symbol relation ▷(·). Squares
with ⊔,⊔′ are relations corresponding to the blank symbol that highlights the end of the tape and to the
blank symbol that can be written in the middle of the tape. Large circles stand for the state relations.
If two circles have the same colour, then they are associated with the same relation. A letter w near the
circle means that the head is in a state of the type qi!j(write). Symbols ⇐ and ⇒ near circles denote the
direction of the walk. A symbol ⇒ between structures means that the left structure represented as the
conjunction of all the corresponding atomic formulae implies any atomic formula that is present on the
right structure and absent on the left. Symbols ∨ · · · ∨ mean that the structure on the left implies one of
the structures on the right.
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The formulae are displayed on Figure 2.9 on page 51. The figure has 6 lines. Every
line is associated with a class of head transitions. Every such class is described by an
implication between (τ ⊎ σ)structures. The caption of Figure 2.9 explains the meaning of
every detail of the figure. We describe the transitions one by one. Observe that in the
base of every implication the element with the Head is Marked. This means that if the
Head comes into a non-Marked element, then no transition rule has to be used.

1. The first line describes the case when the Head is in the first cell. The transition
of Mo is always deterministic when the first symbol ▷ is read. During the transition
the Head writes the same symbol and then moves right. The new state is uniquely
determined by the state in which the machine was before the transition. The cor-
responding rule of Mo is of the following form: (qLi!j, ▷) ! (qRj , ▷,!). Below, we
write the formula that is associated with this rule:
between(a, y, a′)∧
succ(a, y) ∧ succ(y, z) ∧ succ(a′, y′) ∧ succ(y′, z′)∧
next(a, a′) ∧ next(y, y′) ∧ next(z, z′)∧
Marked(y) ∧Head(y) ∧ S▷(y) ∧QL

i!j(y)

!
(
S▷(y

′)∧
Head(z′) ∧QR

j (z
′)

)
.

For brevity, we write the formula only for one case, as, for other cases, the formulae
can be written similarly.

2. The second line describes the situation when the Head is in the last cell. By the form
of the input tape, the last cell is the cell that contains the blank symbol ⊔. When
the Head of Mo is reads ⊔, then the transition is deterministic. For any possible
state of Mo, the Head rewrites ⊔ to ⊔′ and moves to the left. The new state is
uniquely determined by the previous state. As the length of the grid increases every
time when the head reaches its end, we also assign the relation ⊔(·) to the newly
added element.

3. The third line contains two rules that are similar to each other. They describe the
case when the Head reads a symbol in the middle of the tape that does not contain
the h-superscript. This means that the transition is deterministic: the Head does
not rewrite the symbol and keeps moving in the same direction. This line also
describes the situation when the Head has done the transition and now is returning
to the first cell in order to start a new tour.

4. The fourth line is associated with the case when the Head is moving towards the
right end and reads a symbol with the h-superscript. This means that it can imitate
some of the transitions of the original Turing machine M , where the Head moves
to the right. In this case, the Head of Mo has a choice: either to continue moving
further and imitate the transition when it visits this cell for the second time, or to
imitate one of the transitions. If it decides to imitate them now, then it rewrites
the symbol according to the transition, and turns into a state of the type qi!j(write)

in order to add the h-superscript to the next symbol.

5. The fifth line is associated with the case when the Head is moving towards the left
end and reads a symbol with the h-superscript. This case is similar to the fourth
line, but now the Head cannot do nothing and keep moving. It is the last time
when it visits this cell, so it has to do the transition now.
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6. The sixth line contains two similar rules. Each of them is associated with the case
when the Head is in a state of the type qi!j(write) and it reads a symbol without
the h-superscript. In this case it adds the h-superscript to the symbol highlighting
that the head of the original machine M changes its position. After doing this it
keeps moving to the same direction.

We have described how to represent the transition rules of Mo in the language of
MMSNP ̸=. We know that Mo rejects the input if at the end of the execution it is in a
rejecting state. We are going to reject the structure if, for some point x, it has both Head

and Qreject at this point (for any Qreject that is associated with a rejecting state of Q):

¬
(
Marked(x) ∧Head(x) ∧Qreject(x)

)
(2.3)

We have explained all the rules that describe the behaviour of the existential predi-
cates. This is sufficient to show that the problem corresponding to Mo can be reduced to
SAT(Φ), where Φ is a sentence from MMSNP ̸= with the existential predicates from σ, the
input relations from τ , and the quantifier-free part is the conjunction of all the formulae
mentioned earlier in this proof.

Lemma 2.3.4. Let L(Mo) be the set of tapes accepted by Mo. Then the problem L(Mo)
reduces in P-time to SAT(Φ).

Proof. For a tape of length n, we reduce to a grid that consists of f(n) rows, where f is
the running time of Mo. The horizontal arcs are succ, the vertical are next, each element
of the row is connected by between with the start of this row and with the start of the
next row. The start of a row is the succ-successor of the end of the precedent row. As
every time the the head reaches the right end of the tape, it extends the tape by one cell,
we need to augment the length of each row by 1 every time the head reaches its end. So,
the first n rows of the grid have length n, the next 2(n+ 1) rows have length n+ 1, and
so on. The top-left element of the grid has the predicate start. And the elements of the
first row have predicates from {s(·) | s ∈ Σo} that are associated with symbols in the cells
of the tape. Such a grid is displayed on Figure 2.10 on page 53.

Figure 2.10: An example of the grid that is associated with the tape of Mo. The horizontal arcs are succ,
the red square element is the start. All tuples of the relation between and the symbol relations s(·) are
not drawn in order to make the figure look less complex.

By the construction of Φ and the construction of the grid, every grid element has to be
Marked unless it is the leftmost element of a row. For the predicate Head there is only
one possible interpretation on the set of Marked elements. See Figure 2.11 on page 54.

As any element that is associated with a cell of the tape is Marked and as the Head

movement coincides with the one of Mo, we conclude that this grid is accepted by Φ if
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Figure 2.11: The colouring of the grid from Figure 2.10 with the predicates Marked (small white circles)
and Head (large white circles).

and only if all the conjuncts from eq. (2.3) are satisfied. That is, if and only if Mo does
not reject its input tape. This proves the reduction.

We need to show the other direction of P-time equivalence. That is, for any relational
τ -structure, either we need to solve SAT(Φ) in time polynomial in the structure size or
we need to reduce this τ -structure to an equivalent tape of Mo.

In order to do this we have to treat all the input that does not look like a grid from
Figure 2.11. We are going to use ̸= to forbid all the inputs that are over-complete.
Informally speaking, ̸= helps us to forbid degrees two or more and to forbid two or more
appearances of a predicate.

Let us list these conditions, which are displayed on Figure 2.12 on page 55:

• there can be at most one point highlighted with start:

¬(start(x) ∧ start(y) ∧ x ̸= y),

• every element may have at most one in-neighbour and at most one out-neighbour
with respect to succ and next:

¬(succ(x, y) ∧ succ(x, y′) ∧ y ̸= y′), ¬(succ(x, y) ∧ succ(x′, y) ∧ x ̸= x′),

¬(next(x, y) ∧ next(x, y′) ∧ y ̸= y′), ¬(next(x, y) ∧ next(x′, y) ∧ x ̸= x′),

• every element can not belong to several tapes at the same time, that is, it can
participate in at most one between-tuple:

¬(between(x, y, z) ∧ between(x′, y, z′) ∧ x ̸= x′),

¬(between(x, y, z) ∧ between(x′, y, z′) ∧ z ̸= z′),

• if an element is on the 1st or on the 3rd coordinate in a between-tuple, then it can
not be on the second coordinate of another between-tuple:

¬
(
between(a, x, b) ∧ between(a′, a, b′)

)
, ¬
(
between(a, x, b) ∧ between(a′, b, b′)

)
,

• loops of any kind are forbidden:

¬succ(x, x), ¬next(x, x′), ¬between(a, x, a),
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̸=

̸= ̸= ̸= ̸=

̸=

Figure 2.12: A graphical representation of forbidden conjunctions. Red squares are start elements. Arcs
with black heads are succ-arcs. Arcs with white heads are next-arcs. Closed curves are between-triples.
Red and blue disks are different input symbol relations s, s′.

• a point can belong to at most one symbol relation, that is, for each s, s′ in Σo, we
add:

¬
(
s(x) ∧ s′(x)

)
.

Observe that grids corresponding to tapes satisfy all these sentences. Thus, if we add
them to Φ, the reduction from NP to MMSNP ̸= still works correctly.

Informal outline of our reduction from SAT(Φ) to Mo. For some input τ -structure
A, we first check if it omits all the forbidden patterns from Figure 2.12. If it does, then we
can understand which elements must be Marked, and at which elements the Head has
to be. We shall argue that without loss of generality one needs to consider the minimal
by inclusion interpretations of the Marked and Head relations. For an oblivious Turing
machine, we know exactly how much time we do need to finish the execution. Thus,
we can just see if the size of the substructure induced on Marked elements is large
enough to achieve it. If the size is not large enough, then we are certain that the head
never reaches a rejecting state, thus, all the conjuncts of Φ are satisfied. In this case we
reduce the structure to some input instance of Mo that is accepted by the machine. If
the substructure induced on Marked elements is sufficiently large to finish the execution,
then the input instance of Mo is provided by the first row of the grid.

Lemma 2.3.5. SAT(Φ) reduces in P-time to L(Mo).

Proof. It takes P-time to check if the input structure A of SAT(Φ) satisfies conditions
given on Figure 2.12 as they all are first-order formulae. If it is rejected, then we reduce
it to some input instance rejected by Mo. If not, then we use the following claim in order
to understand which elements of A must be Marked and reconstruct the movement of
the Head.

Claim 2.3.6. Among all valid interpretations of the relations Marked and Head there
exist unique minimal by inclusion interpretations, and, if Φ holds on A, then there exists a
valid assignment of σ-relations such that MarkedA and HeadA are minimal by inclusion.

Proof of the Claim. Denote by a0 an element of A such that start(a0); if such element
does not exist, then no element is forced to be Marked. Denote by Cm ⊆ A the set of
elements that are forced to be Marked. It is defined inductively. Firstly, we add to Cm
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the right succ-neighbour of a0; then we put the neighbour of the neighbour and so on,
by using the formulae from Figure 2.7 on page 49. Eventually, we add all the elements
that are forced to be Initial. Then, we use the formulae from Figure 2.8 on page 50 and
add every element that is forced to be Marked by one of the rules. Repeat this until no
more element can be added.

We now know that in- and out-degrees of succ- and next-arcs of A are at most one.
Thus, we can assign to every element of Cm a pair of natural numbers. Assign (1, 0) to
the right succ-neighbour of the start, assign (2, 0) to the neighbour of the neighbour,
and so on. For the bottom next-neighbour of (i, j), we assign (i, j+1). One can prove by
induction that, for any x, y in Cm with coordinates (ix, jx), (iy, jy), we have succA(x, y)
if and only if ix + 1 = iy and jx = jy; also, a similar statement is true for next-arcs, and
for between-triples as well: x and y are on the same row if and only if jx = jy.

We show that any interpretation MarkedA either contains Cm as a subset or does not
satisfy Φ. If there is x in Cm such that x ̸∈ MarkedA, then choose such x that is added
to Cm at the earliest possible moment. Then, as x is not Marked, it does not satisfy one
of the formulae from Figures 2.7 and 2.8, as all its predecessors are Marked.

Suppose that A |= Φ and MarkedA = B is the interpretation of a solution. We show
now that if we set MarkedA = Cm, then this assignment is still satisfiable. Suppose
that it is not satisfiable, thus, some conjunct of Φ is false. It cannot be a rule from
Figures 2.7 and 2.8, as Cm satisfies them. And there are no conjuncts with an atomic
Marked formula that has an even number of negations before it. This means that all other
conjuncts cannot be violated because of the Marked relation. All other relations being
the same, we conclude that Φ is also satisfied when MarkedA = Cm. We have proved
that without loss of generality we can assume that the relation Marked is interpreted as
the minimal possible one.

Now we proceed similarly for the relation Head. We define a set Ch as follows. Firstly,
add the right succ-neighbour of a0 to Ch (only if it belongs to Cm). Then, follow the
rules that are responsible for the head movement, i.e., those that simulate the transitions
of the Turing machine displayed on Figure 2.9 on page 51. Recall that any transition rule
is fired only if the current Head element is Marked; also recall that the movement of
the Head is unambiguous. This means that there is at most one Head element that is
not in Cm: it is the last element that is added to Ch.

Similarly as for Cm, for any interpretation HeadA, either Ch ⊆ HeadA or a rule of Φ
that describes the transition is not satisfied in A.

Suppose that there is a satisfiable assignment for the existential relations of Φ, where
HeadA = B ⊋ Ch. We show now that if we set HeadA = Ch, then the assignment is still
valid. Suppose that it is not valid when HeadA = Ch; then there is a conjunct of Φ that
is not satisfied. This conjunct has to contain a Head-atom that is true when HeadA = B
and that is false when HeadA = Ch. This means that this atom has an even number of
negations before it. The only conjunct that can be false and that has a Head-atom is
eq. (2.1), it means that, if there is no Head at a cell, then this cell contains the same
symbol as before at the next moment of time. This means that, when HeadA = B, it can
put the Head where it is not supposed to be and change the symbol written on the tape
such that the Head is never in a rejecting state.

When HeadA = Ch, we need to satisfy this conjunct, so we need to change the
interpretation of the relation S such that the new interpretation satisfies the conjunct.
That is, if the head is not at the cell, the symbol written in the cell stays the same at the
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Cm

f(N)

N

Figure 2.13: The substructure of A induced on Cm. The red square is start, horizontal arcs are succ,
vertical are next. White circles with black boundaries are the elements of Ch. White circles with red
boundaries are the elements of B∖Ch. Thick red line highlights the moment of time when the execution
of Mo stops. There cannot be an element of B ∖Ch above this red line. The region where they could be
is highlighted with grey.

next moment of time. If with this new interpretation SA every conjunct is satisfied, then
we are done. Suppose that it is not satisfied; then the only type of negated conjuncts that
are false is the one that is associated with Mo being in a rejecting state:

¬
(
Marked(x) ∧Head(x) ∧Qreject(x)

)
.

We use the fact that one can assign a pair of coordinates to any element of Cm.
By eq. (2.2), no two points x, y with coordinates (ix, jx), (iy, jy) can belong to HeadA

if jx = jy. By the construction of Ch, we know that, if an element x with coordinates
(ix, jx) belongs to Ch, then, for any j′ < jx there exists x′ in Ch with its second coordinate
equal to j′. So, for any b in B ∖ Ch and for any x in Ch, the second coordinates cannot
be the same: jb ̸= jx. Thus, in the case when HeadA = B, changing a symbol on the
tape does not change the rejecting state of the machine at the last point of Ch. This is
a contradiction as we suppose that Φ is satisfied when HeadA = B. See Figure 2.13 on
page 57 for a graphical representation of this proof.

Now we can prove Lemma 2.3.5. We know now that without loss of generality we can
interpret Marked and Head as Cm and Ch. We can construct these two sets in time
linear of the size of A. We know that Mo decides an input of size n in exactly f(n) steps.
The size of the input is equal to N = max{i | (i, 0) ∈ Cm}. Then we see if Ch ∩ Cm

contains an element with its second coordinate equal to f(N). If it does, then we know
that the structure is large enough to simulate the execution of Mo, and we associate it with
a string of symbols written in cells (1, 0), . . . , (N, 0). Otherwise any element of Ch ∩ Cm

has a too small second coordinate, so no negated conjunct of the following type can be
false:

¬
(
Marked(x) ∧Head(x) ∧Qreject(x)

)
.
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This means that A |= Φ, and we associate with A some YES instance of Mo.

Together, Lemmas 2.3.4 and 2.3.5 prove Theorem 2.0.3.

Why oblivious Turing machines are necessary? In this paragraph we explain why
the proof of Theorem 2.0.3 works only for oblivious Turing machines. We use this property
in the proof of Lemma 2.3.5, where we reduce MMSNP ̸= back to NP. Suppose that the
Turing machine is not oblivious; then the head movements and the execution time can
be arbitrary. We can make the input to look like a two-dimensional grid. But we cannot
manipulate its height (the number of rows) and width (the number of columns). If the
Turing machine is oblivious, then we know the exact head movement and the time of the
execution. Consider two grids that are displayed on Figure 2.14. If the head movement is
oblivious, then it will perform as we expect, for every grid that is in a good form. If the
grid is too short in terms of height and width, then the execution will not be finished, then
the rejecting state will never be reached, this means that such short input will never be
rejected. However, if the movement is not oblivious, then, for some input string, it can be
rejected arbitrarily quickly. This means that we cannot predict if a short grid is sufficient
to imitate the whole execution leading to a rejecting state. The right two-dimensional
grid is an example of a short grid: the red dashed line marks the boundary, everything
beyond it is deleted. The white circles mark the head movement. The execution time is
small enough to reject the input encoded in the first row.

Figure 2.14: On the left, there is a space-time grid in a good form. On the right, there is a space-time
grid in a bad form.
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Chapter 3

Guarded extensions of MMSNP

We consider extensions of MMSNP that allow for a limited relaxation of some of the
constraints imposed on MMSNP, namely absence of inequalities and monotonicity in the
input signature. This limitation on the relaxation of a constraint involves guardedness.
We describe two such guarded fragments of MMSNP ̸= and MonotoneSNP that both extend
MMSNP. The objective is to study these two classes with respect to having a dichotomy.
We first show that MMSNP with guarded inequalities has a dichotomy. The guarded
fragment of MonotoneSNP, denoted by GMSNP, is a well-studied class, see [BtCLW14]. We
then show that, for any GMSNP problem over any signature there is a P-time equivalent
MMSNP2 problem over a signature consisting of a unique relation symbol. Here, MMSNP2

is a fragment of GMSNP that extends MMSNP by being able to colour tuples as well as
vertices.

3.1 Dichotomy for MMSNP with guarded inequalities

Let τ be an input signature and σ = {M1, . . . ,Ms} be the signature of the existentially
quantified unary relations.

Definition 1. The guarded MMSNP with ̸= (GMMSNP ̸=) is an extension of MMSNP such
that every sentence Φ in GMMSNP ̸= is of the following form:

∃M1, . . .Ms ∀x
∧
i

¬(αi ∧ βi ∧ x1 ̸= x′1 ∧ · · · ∧ xki ̸= x′ki),

where, for each i, αi is a conjunction of non-negated τ -atoms, βi is a conjunction of σ-
atoms and negated σ-atoms, and, for each inequality xj ̸= x′j of the ith negated conjunct,
there exists a τ -atom in αi that contains both xj and x′j.

Example 3.1.1. Let τ = {E(·, ·)} be the directed graph signature. The following first-order
τ -sentence belongs to GMMSNP ̸=:

∀x, y ¬
(
E(x, y) ∧ x ̸= y

)
.

This sentence describes the class of graphs where every arc is a loop. Such class is not
closed under inverse homomorphisms as any directed graph can be mapped to a loop.
As any MMSNP problem is closed under inverse homomorphisms, see e.g. [Bod21], we
conclude that GMMSNP ̸= is strictly more expressive than MMSNP. △
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The goal of this section is to show that such extension of MMSNP has a dichotomy.
For simplicity, we consider the case τ = {R}, where R has arity n. The proof for an
arbitrary finite signature τ is similar, we can independently do the same steps for any
relation of τ as we do for R in this proof.

Lemma 3.1.1. Any GMMSNP ̸= sentence Φ is logically equivalent to a GMMSNP ̸= sen-
tence Ψ such that, for any negated conjunct ¬ψi of Ψ and for any two different variables
x, y that appear within some R-atom of ψi, this conjunct contains the inequality x ̸= y.

In the following, we explain how to obtain the sentence Ψ from the statement of
Lemma 3.1.1.

Construction 3. For every negated conjunct of Φ and for any two variables that appear
in the same τ -atom, replace this negated conjunct with two negated conjuncts: the first
one is obtained from the original one by adding the inequality x ̸= y to the conjunction,
the second one is obtained from the original one by replacing every occurence of the
variable y with the variable x. Denote this new τ -sentence by Ψ.

Example 3.1.2. If Φ contains the following negated conjunct:

¬
(
R(x, y) ∧M1(x) ∧M2(y)

)
,

then this negated conjunct is replaced by the two following negated conjuncts:

¬
(
R(x, y) ∧M1(x) ∧M2(y) ∧ x ̸= y

)
∧ ¬
(
R(x, x) ∧M1(x) ∧M2(x)

)
.

△
Remark. This transformation is similar to one used in the proof of Theorem 3 in [FV03].
The theorem states that, for classes of finite structures closed under inverse homomor-
phisms, MonadicSNP is as expressive as MMSNP.

Proof of Lemma 3.1.1. Let Φ and Ψ be as in Construction 3, and A be a τ -structure.
Suppose that A ̸|= Φ; then for any σ-expansion there exists a negated conjunct ¬ϕi of Φ
that is false for some assignment of elements of A to the conjunct variables. Among the
negated conjuncts of Ψ that are obtained from ϕi we choose the one that is associated
with this assignment: if two variables x, y of ϕ have the same element a in A assigned
to them, then x and y must be identified in the corresponding conjunct of Ψ; if two
different elements a, a′ in A are assigned to x and y, then the corresponding conjunct of
Ψ must contain the inequality x ̸= y. By the construction of Ψ, such a conjunct exists. If
A ̸|= Ψ, then for any σ-expansion there is a negated conjunct of Ψ that is false for some
assignment. It is associated with some negated conjunct ¬ϕi of Φ, and, by construction,
ϕi is also false for the same assignment. We conclude that A |= Φ ↔ A |= Ψ, for any
τ -structure A.

Consider any sentence Φ of GMMSNP ̸=. By Lemma 3.1.1, we assume that, without
loss of generality, for any two variables x, y that appear within the same τ -atom in some
negated conjunct, this negated conjunct contains the inequality x ̸= y.

We need to introduce some necessary notations. For n in N, denote by ϵ(n) the number
of equivalence relations on a set of n elements: ∼1, . . . ,∼ϵ(n). For each ∼k, denote by
nk := |[n]/ ∼k | the number of equivalence classes of this relation. Observe that every
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n-tuple x is associated with exactly one equivalence relation ∼k on the set [n] such that
xi = xj if and only if i ∼k j. If ∼k is associated with x then we say that this tuple has
equivalence type k. For every equivalence class {xc1 , . . . , xcl} of an equivalence relation
∼k, denote it by [c]∼k

, where c = min{c1, . . . , cl} – the smallest number of this set. Then,
introduce a linear ordering ≺k on the set [n]/ ∼k by setting [x]∼k

≺k [y]∼k
if x < y.

Definition 2. For a set X, define a function p :
⊎∞

n=1X
n !

⊎∞
n=1X

n as follows. Let
x = (x1, . . . , xn) in Xn be a n-tuple of equivalence type k, for some n in N. Let
[s1]∼k

, . . . , [snk
]∼k

be the ∼k-equivalence classes such that [si]∼k
≺k [sj]∼k

if and only
if i < j. Then we say that p(x) := (xs1 , . . . , xsnk

) belongs to Xnk .

Example 3.1.3. Informally, the function p removes an element from a tuple if it is not
its first occurence. Consider a 3-tuple t = (y, x, x), it is associated with the equivalence
relation ∼4 from Figure 3.1 on page 61, the equivalence classes of ∼4 on the set [3] =
{1, 2, 3} are [1]∼4 = {1} and [2]∼4 = {2, 3}. Then p(t) = (y, x) because y is on the first
coordinate of t, x is on the second, and [1]∼4 ≺4 [2]∼4 . △

∼1 ∼2 ∼3 ∼4 ∼5

1 2 3

1

2

3

1 2 3

1

2

3

1 2 3

1

2

3

1 2 3

1

2

3

1 2 3

1

2

3

Figure 3.1: All the 5 equivalence relations on the 3-element set depicted as 3× 3 logical matrices (white
cells stand for ones, grey cells stand for zeros.) That is, for i, j in [3], k in [ϵ(3)], the cell (i, j) of the kth
matrix is white if and only if i ∼k j.

In the following construction we explain how to obtain an equivalent MMSNP sentence
Φ′, for a given GMMSNP ̸= sentence Φ, in order to prove Theorem 3.1.2 on page 62.

Construction 4. We need to find, for any Φ in GMMSNP ̸=, an MMSNP sentence Φ′ over
some input and existential signatures τ ′ and σ′ such that SAT(Φ) ≡p SAT(Φ′). At first, we
set σ′ = σ to be the same signature. In order to construct the new input signature τ ′, we
consider any R in τ that has arity n, and we add to τ ′ new relation symbols R1, . . . ,Rϵ(n).
Each Ri is associated with one of the ϵ(n) equivalence relations ∼i on the set [n], the arity
of Ri equals to ni – the number of equivalence classes of ∼i.

Example 3.1.4. If R is ternary, then we add to τ ′ five relation symbols:

R1(·, ·, ·),R2(·, ·),R3(·, ·),R4(·, ·),R5(·).

The corresponding equivalence relations on the set [3] = {1, 2, 3} are shown on Figure 3.1.
△

We are going to describe how to construct the MMSNP sentence Φ′ from Φ. At first,
we get rid of the inequalities as they are not allowed in MMSNP. And then we show how
to represent them with the relations of τ ′.

• Firstly, for every negated conjunct ¬ϕi(xi), we delete all the inequalities from it.
Recall that, before this procedure, every negated conjunct contained an inequal-
ity x ̸= y for every pair of distinct variables x, y that appeared together in some
relational τ -tuple.
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• After doing that, change every τ -atom in any negated conjunct ¬ϕi(xi) to the cor-
responding τ ′-atom. Consider a relational τ -tuple R(x), where x is an n-tuple of
equivalence type k. Then, replace R(x) with Rk

(
p(x)

)
.

• Finally, we require that an element cannot appear in a τ ′-relational tuple more than
once. In order to do this, for any Rk in τ ′ and for any i < j in [nk], we add to Φ′

the following negated conjunct consisting of one atom:

¬Rk(x1, . . . , xi−1, xi, xi+1, . . . , xj−1, xi, xj+1, . . . , xnk
), (3.1)

that is the elements at the ith and the jth coordinates are the same.

This is the end of Construction 4.

Example 3.1.5. Let Φ in GMMSNP ̸= describe bipartite directed graphs, but loops are not
prohibited. It can written as follows:

∃M1,M2 ∀x, y

¬
(
¬M1(x) ∧ ¬M2(x)

)
∧ ¬
(
M1(x) ∧M2(x)

)
∧

¬
(
M1(x) ∧M1(y) ∧ x ̸= y ∧ E(x, y)

)
∧

¬
(
M2(x) ∧M2(y) ∧ x ̸= y ∧ E(x, y)

)


Observe that all the negated conjuncts contain inequalities for every pair of distinct vari-
ables. So we can follow the stages from Construction 4. At first, we delete all the
inequalities from Φ and the sentence is now in the following form:

Φ1 := ∃M1,M2 ∀x, y

(
¬
(
¬M1(x) ∧ ¬M1(x)

)
∧ ¬
(
M1(x) ∧M2(x)

)
∧

¬
(
M1(x) ∧M1(y) ∧ E(x, y)

)
∧ ¬
(
M2(x) ∧M2(y) ∧ E(x, y)

))

There are two equivalence relations on a 2-element set. This means that the signature τ ′
consists of a binary relation symbol E1 and of a unary relation symbol E2. As there are
no atoms of the form E(x, x), all τ -atoms are replaced by E1-atoms:

Φ2 := ∃M1,M2 ∀x, y

(
¬
(
¬M1(x) ∧ ¬M1(x)

)
∧ ¬
(
M1(x) ∧M2(x)

)
∧

¬
(
M1(x) ∧M1(y) ∧ E1(x, y)

)
∧ ¬
(
M2(x) ∧M2(y) ∧ E1(x, y)

))

Finally, we add the negated conjunct ¬E1(x, x) and we obtain the desired MMSNP sen-
tence Φ′:

Φ′ := ∃M1,M2 ∀x, y

(
¬E1(x, x) ∧ ¬

(
¬M1(x) ∧ ¬M1(x)

)
∧ ¬
(
M1(x) ∧M2(x)

)
∧

¬
(
M1(x) ∧M1(y) ∧ E1(x, y)

)
∧ ¬
(
M2(x) ∧M2(y) ∧ E1(x, y)

))

△

Theorem 3.1.2. For any formula Φ in GMMSNP ̸= there exists a formula Φ′ in MMSNP
such that the problems SAT(Φ) and SAT(Φ′) are P-time equivalent.

Proof. Let Φ′ be obtained from Φ by Construction 4. We need to show that the problems
SAT(Φ) ≡p SAT(Φ′). We describe how to construct an equivalent τ ′-structure A′ from a
given τ -structure A, and then show the P-time equivalence between the problems.
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Let A be a τ -structure. The corresponding τ ′-structure A′ has the same domain
A′ = A. Consider any n-ary R in τ . Then, for every relation Rk in τ ′ and for every tuple
a = (a1, . . . , an) of equivalence type k:

RA′

k

(
p(a)

)
↔ RA(a). (3.2)

For a τ ′-structure A′ there exists a corresponding τ -structure A if and only if any
relation Rk of A does not contain a tuple with some element appearing in it more than
once. Also observe that such A′ is constructible from A in P-time.

It remains to prove the correctness of two reductions: we show that SAT(Φ) ≤p

SAT(Φ′) and then do the reverse.
For any relational τ -structure A, we construct the τ ′-structure A′. By construction,

A′ satisfies every negated conjunct of the type described in eq. (3.1). It is sufficient to
show that, for the same choice of any σ-relation for both structures, the corresponding
expansions Aσ and A′σ either both satisfy the first-order parts of corresponding formulae
or both do not satisfy them. That is, we assume that, for any M in σ, a in A, we
have MAσ

(a) if and only if MA′σ
(a). Observe that, for any negated conjunct ¬ϕi(xi)

of Φ, the corresponding negated conjunct of Φ′ uses the same variables: ϕ′
i(xi). Let

a(xi) be an assignment of elements of A to the variables of xi. For any τ -atom R(y) of
ϕi(xi) we know that, for any two different variables yi, yj within y, the negated conjunct
¬ϕi(xi) also contains the inequality yi ̸= yj. The conjunct ϕ′

i is obtained from ϕi by
replacing every τ -atom R(y) and the corresponding inequalities yi ̸= yj with a τ ′-atom
Rk

(
p(y)

)
. So, if the tuple a(y) is in RA and all the inequalities: a(yi) ̸= a(yj), then, by

the construction of A′, the tuple p(a(y)) belongs to RA′

k . If p(a(y)) is in RA′

k , then, by the
construction of A′, R(a(y)) is satisfied in A; and also any inequality is satisfied because
the coordinates of p(y) are pairwise distinct, by the definition of the function p. Hence,
for any assignment a, ϕi(a(xi)) holds in Aσ if and only if ϕ′

i(a(xi)) holds in A′σ. This
proves that SAT(Φ) ≤p SAT(Φ′).

We prove now the reduction from SAT(Φ′) to SAT(Φ). Consider any relational τ ′-
structure A′. It takes P-time in its size to check that every formula of the type from
eq. (3.1) is true in A′. If it is not true, then A′ ̸|= Φ′, thus we can reduce it to a fixed NO
instance of Φ. If any such formula is satisfied, then there exists a τ -structure A with the
same domain A = A′ such that the condition from eq. (3.2) holds. This structure A is
constructible from A′ in P-time in its size. And these two structures are equivalent w.r.t.
the problems SAT(Φ) and SAT(Φ′), as shown previously.

This concludes that SAT(Φ) ≡p SAT(Φ′).

3.2 MMSNP2 and Guarded Monotone Strict NP

Let τ = {R1, . . . ,Rt} be the input relational signature and σ = {X1, . . . ,Xs} be the
existential relational signature. A sentence of guarded monotone strict NP (GMSNP) has
the form

∃X1, . . . ,Xs ∀x ϕ(x),
where ϕ is a conjunction of formulae

¬ϕi := ¬(α1 ∧ · · · ∧ αn ∧ ¬β1 ∧ · · · ∧ ¬βm) with n,m ≥ 0,

where each αi is either
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• an atom Xi(y), for Xi in σ, or

• an atom R(y), for R in τ , or

• an equality x = y;

and each βi is of the form Xi(y), for Xi in σ. Additionally, we require that for every
negated atom ¬βi there is an atom αj such that αj contains all variables from βi. It is
said that αj guards βi.

Example 3.2.1. Suppose that we have a ternary input τ -relation C3(x, y, z) that encodes
the directed cycle C3. We want to check that a given τ -structure does not have a 2-cycle.
In order to check this property, we introduce two binary σ-relations:

• E(x, y), which means that (x, y) is an arc, and

• C2(x, y), which means that x and y make a directed cycle of length 2.

The query can be expressed by the following GMSNP sentence:

∃E,C2 ∀x, y

¬
(
C3(x, y, z) ∧ ¬E(x, y)

)
∧

¬
(
C3(x, y, z) ∧ ¬E(y, z)

)
∧

¬
(
C3(x, y, z) ∧ ¬E(z, x)

)
∧¬

(
E(x, y)∧E(y, x)∧¬C2(x, y)

)
∧¬C2(x, y).

△
Suppose now that the existential signature σ can be represented in the following form:

σ = σ0
⊎

1≤i≤t σi, where σ0 consists of unary relation symbols, and each σi consists of
relation symbols of the same arity as the corresponding input relation Ri. A sentence of
MMSNP2 logic has the form

∃X1, . . . ,Xs ∀x ϕ(x),

where ϕ is a conjunction of formulae

¬ϕi := ¬(αi ∧ βi),

where each αi is a conjunction of non-negated τ -atoms, each βi is a conjunction of σ-atoms
or negated σ-atoms. And, for each atom in βi of the form X(y) or ¬X(y), where X is in
σi, for 1 ≤ i ≤ t, αi contains a τ -atom of the form Ri(y).

Example 3.2.2. (No-Monochromatic-Arc-Triangle) Let Φ describe the following
problem. That is, a directed graph G satisfies Φ if and only if one can colour its arcs in
two colours B and W such that G does not contain a 3-cycle as a subgraph, where all 3
arcs have the same colour. Φ can be written as follows:

∃B,W ∀x, y, z


¬
(
E(x, y) ∧ B(x, y) ∧W(x, y)

)
∧

¬
(
E(x, y) ∧ ¬B(x, y) ∧ ¬W(x, y)

)
∧

¬
(
E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ B(x, y) ∧ B(y, z) ∧ B(z, x)

)
∧

¬
(
E(x, y) ∧ E(y, z) ∧ E(z, x) ∧W(x, y) ∧W(y, z) ∧W(z, x)

)


△

64



The class GMSNP is studied in the paper [BtCLW14] of Bienvenu et al. The authors
investigate its relation with MMSNP and show that GMSNP is strictly more expressive
than MMSNP. Moreover, they compare GMSNP to MMSNP2 (that was introduced before
by Madelaine in [Mad09]) and show that MMSNP2 has the same expressive power as
GMSNP. That is, for any GMSNP sentence Φ there exists an MMSNP2 sentence Φ′ that
is logically equivalent to Φ and vice versa.

In Section 3.2.1 we first show that for any finite relational signature τ there is a
signature τ1 consisting of just one relation symbol such that for any τ -sentence Φ in
GMSNP there is a P-time equivalent τ1-sentence Φ1 in GMSNP. Then, in Section 3.2.2,
we strengthen the result of Bienvenu et al. by showing that for any τ1-sentence Φ in
GMSNP there is a logically equivalent τ1-sentence in MMSNP2, as in their proof the
signature contains arbitrarily many relation symbols. So now without loss of generality
one can study the dichotomy question for MMSNP2 over a signature with a unique relation
symbol, this makes the notations much simpler. We also rewrite this proof for convenience
as the original proof of Bienvenu et al. uses different notations.

3.2.1 Signature simplification for Guarded Monotone Strict NP

Here we show how one can simplify a GMSNP problem such that without loss of generality
one can consider the case when the input relational signature consists only of one relation
symbol. We do it by showing that for any finite signature τ = {R1, . . . ,Rt} there exists a
signature τ1 = {P} such that for any GMSNP problem over τ there is a P-time equivalent
GMSNP problem over τ1, see Lemma 3.2.10.

An SNP τ -sentence Φ is called connected if no negated conjunct ¬ϕ(x) of Φ has the
form

¬ (ψ1(x1) ∧ ψ2(x2)) ,

where the tuples x1 and x2 share no variables. Denote by ConnectedGMSNP the set of all
connected GMSNP sentences over all finite relational signatures.

We first show that GMSNP and ConnectedGMSNP are P-time equivalent. Then we
show that any ConnectedGMSNP sentence is equivalent to a ConnectedGMSNP sentence
over a one-element relational signature.

Recall that the family of structures that satisfy some connected SNP sentence is closed
under taking disjoint unions.

Proposition 3.2.1 ([Bod21]). Let Φ be an SNP sentence. Then the class of structures
that satisfy Φ is closed under disjoint unions if and only if Φ is logically equivalent to a
connected SNP sentence.

It is known that one can rewrite any GMSNP sentence as a disjunction of connected
sentences.

Proposition 3.2.2 ([BKS20]). Every GMSNP sentence Φ is logically equivalent to a finite
disjunction Φ1 ∨ · · · ∨ Φk of connected GMSNP sentences.

The following result is similar to a well-know similar result for MMSNP sentences. One
can find a proof for the case of MMSNP in [BMM18]. We provide a similar proof for the
class GMSNP.
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Proposition 3.2.3. Let Φ be a GMSNP τ -sentence that is logically equivalent to a dis-
junction Φ1 ∨ · · · ∨ Φk of ConnectedGMSNP sentences. Then SAT(Φ) is P-time solvable
if all SAT(Φi) are in P. If one SAT(Φi) is NP-hard, then so is SAT(Φ).

Proof. If all SAT(Φi) are P-time solvable, then, for any τ -structure A, we can check in
P-time in its size if A satisfies one of Φis. If yes, then A |= Φ; if no, then A ̸|= Φ. So
SAT(Φ) is P-time solvable.

Suppose that, for some i in [k], SAT(Φi) is NP-hard. Let k be the smallest number
such that Φ is represented as a disjunction of k connected sentences. Then there exists a
structure B such that, for all j in [k]∖ {i}, B ̸|= Φj, and B |= Φi. If such structure does
not exist, then we can delete Φi from the disjunction and keep it logically equivalent to
Φ, this contradicts the minimality of k. We reduce SAT(Φi) to SAT(Φ) as follows: for
any τ -structure A we construct a τ -structure A′ := A ⊎B and show that A |= Φi if and
only if A′ |= Φ.

Suppose A |= Φi; then, as B also satisfies Φi, by Proposition 3.2.1, their disjoint union
A′ also satisfies Φi, thus, A′ |= Φ.

Suppose A′ |= Φ. Then, for some j in [k], A′ |= Φj. Lemma 2.2.1 states that any
SNP sentence is closed under taking induced substructures, thus, we have B |= Φj. This
means that j = i. As A is also an induced substructure of A′, by Lemma 2.2.1, we have
A |= Φi as well.

Corollary 3.2.4. Let τ be a finite relational signature. The class of GMSNP problems
over τ has a dichotomy if and only if the class of connected GMSNP problems over τ has
a dichotomy.

We shall prove that from the perspective of dichotomy we can assume that a GMSNP
sentence has only one input symbol, that is we prove the following.

Theorem 3.2.5. For any finite relational signature τ there exists a signature τ1 consisting
of just one relational symbol such that, for any GMSNP τ -sentence Φ there exists a GMSNP
τ1-sentence Φ1 such that the problems SAT(Φ) and SAT(Φ1) are P-time equivalent.

Let R in τ have arity k in N. Let BR be a τ -structure that consists of one R-tuple:
bR = (bR,1, . . . , bR,k). That is, BR = {bR,1, . . . , bR,k}, the relation R contains just one tuple
bR, and any other relation is interpreted as the empty set.

Recall that GMSNP problems are closed under inverse homomorphisms because they
all belong to MonotoneSNP.

Theorem 3.2.6 ([FV03]). Let Φ be an SNP sentence. Then the class of structures that
satisfy Φ is closed under inverse homomorphisms if and only if Φ is logically equivalent
to a MonotoneSNP sentence.

We shall first discard input symbols of GMSNP that are implicitly forbidden by the
sentence. This will allow us to eventually encode the many – now necessary – input
symbols into a single input symbol.

Lemma 3.2.7. If a connected GMSNP τ -sentence Φ does not satisfy the structure BR,
for some R in τ , then the problem SAT(Φ) is P-time equivalent to SAT(Φ�R), where Φ�R is
a connected (τ ∖ {R})-sentence that is obtained by removing from Φ all negated conjuncts
that contain R-atoms.
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ϕi ϕi ∧ ∧ . . .∧
xR1

xRt

R1 Rt

A A
⊎ ⊎ . . .⊎bR1

bRt

R1 Rt

Figure 3.2: Above, one can see the transformation of each negated conjunct of Φ to a negated conjunct
of Φ′. Below, it is shown how the structure A′ is constructed from A.

Proof. Suppose that BR ̸|= Φ. Let a τ -structure A be an input instance of SAT(Φ). If
RA ̸= ∅, then BR ! A, so, by Theorem 3.2.6, A ̸|= Φ, and we reduce it to some NO
instance of SAT(Φ�R). Suppose that RA = ∅; then we reduce A to its (τ ∖ {R})-reduct
A�R. For any σ-expansion of A, any negated conjunct with an R-atom is always satisfied,
as RA = ∅. Thus, A |= Φ if and only if A�R |= Φ�R. For τ -structures A such that RA = ∅,
the correspondence A↔ A�R is one-to-one. This means that the two problems are P-time
equivalent.

Suppose that Lemma 3.2.7 does not apply to Φ. Then we shall construct a new
sentence Φ′ and, for any τ -structure A, a τ -structure A′ such that

• any negated conjunct of Φ′ contains at least one R-atom of each R in τ ;

• A |= Φ if and only if A′ |= Φ′.

Construction 5. The sentence Φ′ is obtained from Φ as follows. Take any negated
conjunct ¬ϕi of Φ and replace it with

¬ϕ′
i := ¬

(
ϕi ∧

∧
R∈τ

R(xR)

)
,

where each xR is a tuple of new variables. Φ′ is no longer connected. However, it is still
in GMSNP. And Φ is more restrictive than Φ′, as we enrich negated conjuncts of Φ with
τ -atoms. That is, for any τ -structure A, we have that A |= Φ implies A |= Φ′.

For a τ -structure A, let A′ := A⊎
(⊎

R∈τ BR

)
– be the disjoint union of A and singleton

tuples, for every relation in τ . The sentence Φ′ and the structure A′ are displayed on
Figure 3.2 on page 67. This is the end of Construction 5.

Lemma 3.2.8. Let Φ,Φ′,A and A′ be as in Construction 5. Then A |= Φ if and only if
A′ |= Φ′. Consequently, SAT(Φ) is P-time reducible to SAT(Φ′).

Proof. Let A be an input instance of SAT(Φ), and A′ be an input instance of SAT(Φ′)
obtained from A as in Construction 5. We need to prove that A |= Φ if and only if
A′ |= Φ′. Suppose that A |= Φ. We also know that, for any R in τ , BR |= Φ. Then, by
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Proposition 3.2.1, A′ |= Φ, as A′ is the disjoint union of structures satisfying Φ. But then,
as Φ′ is less restrictive than Φ, we have A′ |= Φ′.

Suppose that A′ |= Φ′; then, for some σ-expansion A′σ, the first-order part ϕ′ of Φ′

is satisfied. Choose a σ-expansion Aσ of A to be equal to A′σ[A], the substructure of
A′σ induced on A. Suppose that, for some negated conjunct ¬ϕi(xi) of Φ, there is an
assignment that makes it false in Aσ. But then we can take the corresponding negated
conjunct ¬

(
ϕi ∧

∧
R∈τ R(xR)

)
of Φ′, and assign bR to each new tuple of variables xR. Under

this assignment the conjunct is false in A′σ, this is a contradiction. We have shown that
A |= Φ if and only if A′ |= Φ′.

Lemma 3.2.9. Let Φ,Φ′ be as in Construction 5. Then SAT(Φ′) is P-time reducible to
SAT(Φ).

Proof. Consider a τ -structure A that is an input instance of SAT(Φ′). We first suppose
that, for some R in τ , RA = ∅. Then, by Construction 5, A |= Φ′. Then we reduce it to
some fixed YES instance of SAT(Φ), e.g., to BR, as we know that BR |= Φ.

Suppose now that any relation of A is interpreted as a non-empty set. Then, A |= Φ
implies A |= Φ′ because Φ is more restrictive than Φ′. Suppose that A ̸|= Φ; then, for any
σ-expansion Aσ of A there is a negated conjunct ¬ϕi(xi) of Φ and a tuple ai of elements
of A such that Aσ |= ϕi(ai). But then, take the negated conjunct ¬

(
ϕi(xi) ∧

∧
R∈τ R(xR)

)
,

assign ai to xi and assign aR to xR such that, for any R in τ , aR ∈ RA. At least one such
aR exists, by our assumption. But then we have Aσ |=

(
ϕi(ai) ∧

∧
R∈τ R(aR)

)
. This means

that the two problems SAT(Φ) ≡p SAT(Φ′).

By Lemma 3.2.7, Lemma 3.2.8, and Lemma 3.2.9, we can assume that every negated
conjunct of Φ contains a τ -atom of each relation symbol of τ . Set τ1 := {P}, where

arity(P) :=
∑
R∈τ

arity(R). (3.3)

For two tuples x = (x1, . . . , xn),y = (y1, . . . , ym), we use the following notation for
their concatenation: (x,y) := (x1, . . . , xn, y1, . . . , ym).

Now we construct a GMSNP τ1-sentence Φ1 and then show that SAT(Φ) with the
restricted input is P-time equivalent to SAT(Φ1). It will be the main result of this sub-
section.

Construction 6. Consider a negated conjunct ¬ϕi of Φ and construct the corresponding
negated conjunct ¬ϕ1

i as follows. The σ-atoms of ϕ1
i are the same as in ϕi. Each τ -atom

of ϕi is replaced by a τ1-atom as follows. For any j in [t] and a τ -atom Rj(x), ϕ1
i contains

a τ1-atom P(y1, . . . ,yt), where yj = x and all other variables of this formula are new and
they are used only in this atomic formula. Φ1 is a GMSNP sentence because the σ-parts
are kept the same and all the variables of a τ -atom of Φ are contained in the corresponding
τ1-atom of Φ1. An example of such construction is displayed on Figure 3.3 on page 69.
Observe that Φ1 is connected. This is the end of Construction 6.

Lemma 3.2.10. Suppose that Φ1 is obtained from Φ by Construction 6. Then, for any
τ -structure A there exists a τ1-structure A1 such that A |= Φ if and only if A1 |= Φ1; and
for any τ1-structure A1 there is a τ -structure A such that A1 |= Φ1 if and only if A |= Φ.
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R1(x1, x2) ∧ R2(x2, x3) ∧ R1(x1, x3)

x1

x2

x3 x1

x2

x3

y1

y2y3

y4

y5 y6

P(x1, x2, y1, y2) ∧ P(y3, y4, x2, x3) ∧ P(x1, x3, y5, y6)

Figure 3.3: On the left, there is the τ -part of some negated conjunct of Φ. On the right, there is the
τ1-part of the corresponding negated conjunct of Φ1.

A A1

Figure 3.4: The original τ -structure A is on the left. The corresponding τ1-structure A1 is on the right.

Proof. For a τ -structure A we construct the corresponding τ1-structure A1 as follows. The
structures have the same domain: A1 = A. The relation PA1 is defined by the relations of
A as on eq. (3.4). An example of such construction is displayed on Figure 3.4 on page 69.

PA1(a1, . . . , at)↔ RA
1 (a1) ∧ · · · ∧ RA

t (at). (3.4)

Observe that, if RA = ∅, for some R in τ , then PA1 = ∅. In this case, we have
A |= Φ, as every negated conjunct contains an R-atom. And we also have A1 |= Φ1, as
every negated conjunct of Φ1 contains at least one P-atom. So, we can now assume that
RA ̸= ∅, for any R in τ , and that PA1 ̸= ∅.

Let Aσ and Aσ
1 be two σ-expansions of A and A′ such that, for any X in σ, XAσ

=
XAσ

1 . It is sufficient to show that Aσ |= ∀x ϕ(x) if and only if Aσ
1 |= ∀x,y ϕ1(x,y),

where y represents variables that are added during the construction of Φ1. Suppose that
Aσ ̸|= ∀x ϕ(x); then, for some negated conjunct ¬ϕi(xi) of Φ and for some tuple ai, we
have Aσ |= ϕi(ai). Consider the ith negated conjunct ¬ϕ1

i (xi,yi) of Φ1. To the tuple of
variables xi that are used in ϕi as well, we assign the same tuple ai of elements of A.
Let P(y1, . . . ,yt) be a τ1-atom that is contained in ϕ1

i . Pick a tuple yj of variables of
this atomic formula such that nothing is assigned to these variables yet. We know that,
for the jth relation symbol Rj in τ , ϕi contains at least one τ -atom Rj(zj), thus each
variable of zj is contained in xi. As ai is assigned to xi, some tuple bj of elements of A
is already assigned to zj. Hence, we assign the tuple bj to yj. Repeat this procedure for
all unassigned variables of P(y1, . . . ,yt). By eq. (3.4), we have Aσ

1 |= P(b1, . . . ,bt). This
is true for any τ -atom of ϕ1

i . Thus, Aσ
1 ̸|= ∀x,y ϕ(x,y). For the other direction, suppose

that Aσ
1 ̸|= ∀x,y ϕ(x,y); then there is a negated conjunct ¬ϕ1

i (xi,yi) and tuples ai,bi
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of elements of A such that Aσ
1 |= ϕ1

i (ai,bi). Take the corresponding negated conjunct
¬ϕi(xi) of Φ and assign ai to xi. We have Aσ |= ϕi(ai), by eq. (3.4).

For an arbitrary τ1-structure B1, we construct a τ -structure B. They have the same
domain B and, for any j in [t], the relation RB

j is defined as follows:

RB
j (xj) ! ∃x1, . . . ,xj−1,xj+1, . . . ,xt P

B1(x1, . . . ,xt). (3.5)

Similarly as above, we consider two σ-expansions Bσ and Bσ
1 such that, for all X in

σ, XBσ
= XBσ

1 . Suppose that Bσ
1 ̸|= ∀x,y ϕ1(x,y); then there exists a negated conjunct

¬ϕ1
i (xi,yi) and assignments ai,bi to xi,yi correspondingly such that Bσ

1 |= ϕ1
i (ai,bi).

Take the ith negated conjunct ¬ϕi(xi) of Φ and assign ai to xi. As ϕi and ϕ1
i have the

same σ-part, we have Bσ satisfies any σ-atom and negated σ-atom of ϕi. Any τ -atom of
ϕi is satisfied, by eq. (3.5). So we have Bσ |= ϕi(ai). For the other direction, suppose
that Bσ |= ϕi(ai), for some negated conjunct ¬ϕi(xi) of Φ and for some assignment ai of
elements of B to the variables xi of ϕi. For any atomic formula Rj(z) of αi, the conjunction
ϕ1
i contains an atomic formula P(y1, . . . ,yt), where yj = z. We know that some tuple c

is assigned to z such that Bσ |= Rj(c). By eq. (3.5), there exist b1, . . . ,bj−1,bj+1, . . . ,bt

such that PBσ
1 (b1, . . . ,bt), where bj = c. So, for any y1, . . . ,yt except for yj = z, we

assign b1, . . . ,bt. Then, Bσ
1 |= P(b1, . . . ,bt), this is true for any τ -atom of ϕ1

i . Any
σ-atom and negated σ-atom of ϕi is also satisfied by the choice of σ-expansions. This
implies that Bσ

1 ̸|= ∀x,y ϕ1(x,y) and we are done.

Proof of Theorem 3.2.5. For a given finite relational signature τ , the sole symbol P of τ1
has arity as in eq. (3.3). Let Φ be some GMSNP τ -sentence. We can assume without loss
of generality that it is connected, by Corollary 3.2.4. If the condition of Lemma 3.2.7
applies to Φ, then SAT(Φ) ≡p SAT(Ψ), where Ψ is a GMSNP τ ′-sentence, and τ ′ ⊊ τ ,
and the condition of Lemma 3.2.7 does not apply to Ψ. So, we can assume that it does
not apply to Φ. Then, by Lemma 3.2.8 and Lemma 3.2.9, SAT(Φ) ≡p SAT(Φ′), where
every negated conjunct of Φ′ contains at least one R-atom, for every R in τ . Then, by
Construction 6, we construct a GMSNP τ1-sentence Φ1 such that SAT(Φ′) ≡p SAT(Φ1),
by Lemma 3.2.10. This means that SAT(Φ) ≡p SAT(Φ1).

3.2.2 Equivalence between Guarded Monotone Strict NP and
MMSNP2

Suppose that τ = {R} is the input signature that consists of one relation symbol of
arity k. Our objective is to show that for every GMSNP τ -sentence there is a logically
equivalent MMSNP2 τ -sentence, and vice versa. This yields that the two classes have the
same expressive power.

There are two major differences between GMSNP and MMSNP2. At first, within a
GMSNP sentence a negated existential atom may be guarded by another existential atom,
while in MMSNP2 sentences existential atoms are always guarded by τ -atoms. The second
difference is that the existential relations within a GMSNP sentence may have arbitrary
arity, while, within MMSNP2 sentences the arity is determined: either it equals the arity
of the input relation, or it is 1. The following definition is helpful with respect to the
second difference.
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Definition 3. Let Em
k denote the family of injective mappings from sets of size at most

m to sets with at most k elements, for m < k. That is,

Em
k :=

{
e : [m′]! [k′] | m′ ≤ m, k′ ≤ k, e is injective

}
.

Denote n := |Em
k | to be the number of these mappings and suppose that all of them

are linearly ordered: Em
k = {e1, . . . , en}. Let p be the function from Definition 2 on

page 61 that deletes repeating elements from a tuple. Let x be an m-tuple, y be a k-
tuple, x′ := p(x) and y′ := p(y) be the corresponding m′- and k′-tuples with all repeating
elements having been removed. We say that x has guarding type i in y if, for any j in
[m′], we have x′j = y′ei(j), where ei : [m

′]! [k′] is the ith element in Em
k .

The following statement is the main result of this part. It is initially proved in [Bt-
CLW14]. However, we reprove it here, for convenience.

Proposition 3.2.11. GMSNP and MMSNP2 have the same expressive power.

Proof. It is straightforward to show that any MMSNP2 sentence is also a GMSNP sentence:
if ¬βi is of the form ¬X(y), for some unary X in σ, then we can enrich the conjunction ϕi

with the equality y = y that guards βi, and all other βs are already guarded by τ -atoms.
As y = y always holds, the resulting sentence is logically equivalent to the original one.

Now, consider a GMSNP sentence Φ. We want to do the following steps in order to
finish the proof:

1. To remove all the equalities from Φ.

2. To enrich the negated conjuncts of Φ such that within any conjunct, for any σi-atom
there is a τ -atom in the same conjunct that guards this σ-atom. By transitivity,
this implies that any negated σ-atom is also guarded by a τ -atom. The modified
sentence is logically equivalent to Φ.

3. To replace the existential relational signature σ with a new signature σ′ consisting
only of k-ary relation symbols. And to replace every σ-atom with a σ′-atom so that
the result is an MMSNP2 sentence Φ′ that is logically equivalent to Φ.

Removing equalities. For every equality x = y that is in some negated conjunct ¬ϕi

of Φ, we replace every occurence of y within ϕi with x. If this equality guards some
negated σ-atoms, then, after replacing ys with xs, there might be a negated σ-atom of
the form ¬X(x, . . . , x). For every X in σ, we add to σ a unary relation symbol LX and add
to Φ the following negated conjuncts:

¬
(
X(x, . . . , x) ∧ ¬LX(x)

)
∧ ¬
(
LX(x) ∧ ¬X(x, . . . , x)

)
.

These two negated conjuncts require that an element x belongs to the relation LX if and
only if the k-tuple (x, . . . , x) belongs to X. Then, we replace all the unguarded negated
σ-atoms ¬X(x, . . . , x) by a unary negated atom ¬LX(x). As this atom is unary, it does
not have to be guarded.
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Making every σ-atom be guarded by a τ-atom. Consider any negated conjunct
¬ϕi(xi) that contains a σ-atom X(z) that is guarded by no τ -atom. Let n denote the
number of guarding types of z in a k-tuple. We replace the negated conjunct ¬ϕi(xi)
with the following conjunction:

¬
(
ϕi(xi) ∧ R(y1)

)
∧ · · · ∧ ¬

(
ϕi(xi) ∧ R(yn)

)
,

where, for any j in [n], the atom X(z) has guarding type j in R(yj). There is more than
one way to choose yj, so suppose that any variable of yj that is not ought to be in z is
distinct.

The new sentence, denoted by Φ′, is less restrictive than the old one. That is, for
any τ -structure A, if A |= Φ, then A |= Φ′. We need to prove that Φ′ is still logically
equivalent to Φ. Suppose that there is a τ -structure A that satisfies Φ′ but does not
satisfy the original sentence Φ. Then, let Aσ

0 be a σ-expansion of A that satisfies the first-
order part ∀x,y ϕ′(x,y) of Φ′, where y denote new distinct variables from y1, . . . ,yn.
By assumption, Aσ

0 does not satisfy the first-order part ∀x ϕ(x) of Φ. Then, as all other
negated conjuncts are the same, we have, for some assignment ai to xi, Aσ

0 |= ϕi(ai).
Assume that, under this assignment, the tuple z of the atom X(z) is mapped to some
tuple c of A. We have Aσ

0 |= X(c) and that this tuple c is not contained in any R-tuple
bj of A, as then we would have Aσ

0 |= ϕi(ai) ∧ R(bj), that would contradict one of the n
new negated conjuncts of Φ′. Then we modify the σ-expansion Aσ

0 by deleting this tuple
c from the relation XAσ

0 . We do this procedure for any other X-tuple that does not belong
to any R-tuple. If the new σ-expansion, denoted by Aσ

1 , does not satisfy ∀x ϕ(x), then
there is a negated conjunct ¬ϕi1(xi1) that contains a negated X-atom ¬X(z1) and there
is an assignment xi1 ! ai1 that maps z1 to c1 such that the tuple c1 is not contained
in XAσ

1 and that was contained in XAσ
0 – before we deleted those X-tuples that were not

guarded by R-tuples. This means that, within ϕi1 , the negated σ-atom ¬X(z1) is guarded
by another σ-atom, say X1(z2). Let c2 be the tuple assigned to z2, then c2 contains the
tuple c1, and c2 is in X

Aσ
1

1 = X
Aσ
0

1 . We keep modifying the σ-expansion by deleting c2 from
X
Aσ
1

1 and so on until all the negated conjuncts of ∀x ϕ(x) are satisfied. At each next step,
any negated σ-atom that becomes satisfied is always guarded by another σ-atom, not by
a τ -atom because c ⊆ c1 ⊆ c2 ⊆ . . . and, for no R-tuple bj, we have c ⊆ bj. We cannot
keep deleting the σ-tuples indefinitely, so this process will halt. This means that A |= Φ,
which is a contradiction, so the sentences Φ and Φ′ are logically equivalent.

We continue modifying Φ′ by choosing another σ-atom that is not guarded by a τ -
atom and replace the corresponding negated conjunct similarly as above. After every
such modification, the result is logically equivalent to the original sentence. We do this
modification for every σ-atom of Φ that is not guarded by a τ -atom. At the end, we
obtain a sentence that is equivalent to Φ and that any of its σ-atoms is guarded by a
τ -atom. We can assume now that Φ already satisfies this property.

Changing the arity of σ-relations. Now we are going to modify the existential signa-
ture σ so that the new signature consists of either unary or k-ary relation symbols. That
is, they are either unary or have the same arity as R.

Define a function f : σ ! N such that f(X) is equal to the number of guarding types of
an X-tuple in a R-tuple. The new existential signature σ′ is defined as follows: σ′ = {Xi |
X ∈ σ ∧ i ∈ [f(X)]}, each relation symbol has arity k. Now we construct an MMSNP2

sentence Ψ that is logically equivalent to Φ.
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• For any negated conjunct ¬ϕi of Φ, we add to Ψ its copy denoted by ¬ψi. The
τ -atoms in ¬ψi are kept the same as in ¬ϕi.

• As the existential signature is different, we need to replace σ-atoms with σ′-atoms.
Let X(x) be some σ-atom guarded by a τ -atom R(y). Let X(x) have guarding type
j in R(y), for some j in [f(X)]. We replace X(x) with a σ′-atom Xj(y). Do a similar
thing for every other σ-atom.

• Let y1,y2 be two R-tuples that have some variables in common. For l-ary X in σ,
let x be an l-tuple consisting of some of the variables shared between y1 and y2. Let
X(x) have guarding type j1 in R(y1), and guarding type j2 in R(y2). Then, for any
such two intersecting R-tuples y1,y2, for any X in σ, and for any such x contained
in both y1,y2, we add the following negated conjuncts:

¬
(
R(y1)∧R(y2)∧Xj1(y1)∧¬Xj2(y2)

)
∧¬
(
R(y1)∧R(y2)∧¬Xj1(y1)∧Xj2(y2)

)
. (3.6)

Informally, these two conjuncts mean that, for two R-tuples y1,y2 that intersect,
x having guarding type j1 in y1 implies it having guarding type j2 in y2, and vice
versa.

If a σ′-expansion Aσ′ of some τ -structure A satisfies all the negated conjuncts of
the form as in eq. (3.6), then it is associated with a unique σ-expansion Aσ, and this
correspondence is one-to-one. The correspondence is defined as follows: for any σ-tuple
X(a) of Aσ that is contained in some τ -tuple R(b) there is a σ′-tuple Xi(b) of Aσ′ such
that X(a) has guarding type i in R(b). And backwards, if there is no such σ-tuple, then
there is no corresponding σ′-tuple. If we did not add the negated conjuncts of the form as
in eq. (3.6) to Ψ, then we would have to consider those σ′-expansions that are associated
with no σ-expansion of an input τ -structure. Observe that, given one expansion, the other
expansion can be constructed in P-time in the size of the given one.

Let A be a τ -structure, let Aσ be a σ-expansion of A, and let Aσ′ be the σ′-expansion
that is associated with Aσ by the rule above. By the construction of Aσ′ , for any negated
conjunct ¬ϕi(x) of Φ and the corresponding negated conjunct ¬ψi(x) of Ψ, and for any
assignment ai to the variables xi of the conjuncts, we have Aσ |= ϕi(ai) if and only if
Aσ′ |= ψi(ai). Also, Aσ′ satisfies all the negated conjuncts of the form as in eq. (3.6). Thus,
these two expansions either both satisfy the first-order parts of Φ and Ψ correspondingly
or both do not satisfy them. As any σ′-expansion of A that is not associated with a
σ-expansion violates one of the negated conjuncts from eq. (3.6), we can conclude that
A |= Φ if and only if A |= Ψ.

Example 3.2.3. Consider the GMSNP sentence Φ given in Example 3.2.1:

∃E,C2 ∀x, y

¬
(
C3(x, y, z) ∧ ¬E(x, y)

)
∧

¬
(
C3(x, y, z) ∧ ¬E(y, z)

)
∧

¬
(
C3(x, y, z) ∧ ¬E(z, x)

)
∧¬

(
E(x, y)∧E(y, x)∧¬C2(x, y)

)
∧¬C2(x, y).

Here, there is one input relation C3, and two existential relations E and C2. This query
checks if a directed graph encoded by its 3-cycles does not have 2-cycles. We transform
Φ to an equivalent MMSNP2 sentence according to the steps from Proposition 3.2.11. As
Φ does not contain equalities, we have no equalities to remove. There are two negated
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conjuncts, where σ-atoms are not guarded by τ -atoms: ¬
(
E(x, y)∧E(y, x)∧¬C2(x, y)

)
and

¬C2(x, y). There are six different injective mappings from a 2-element set to a 3-element
set. The negated conjunct ¬C2(x, y) is replaced by the following negated conjuncts:

¬
(
C2(x, y) ∧ C3(x, y, z)

)
∧ ¬
(
C2(x, y) ∧ C3(y, x, z)

)
∧ ¬
(
C2(x, y) ∧ C3(x, z, y)

)
∧

¬
(
C2(x, y) ∧ C3(y, z, x)

)
∧ ¬
(
C2(x, y) ∧ C3(z, x, y)

)
∧ ¬
(
C2(x, y) ∧ C3(z, y, x)

)
.

(3.7)

Similarly, the negated conjunct ¬
(
E(x, y)∧E(y, x)∧¬C2(x, y)

)
is replaced by six negated

conjuncts. After completing the second step, we modify the existential signature so that all
existential relations have arity 1 or 3. Right now, both relations are binary, so, eventually,
we will have only ternary relations. For a binary relation C2 there are 9 ways how a E-
tuple can be guarded by a C3-tuple: 6 ways are as in eq. (3.7), the other three ways are
as follows:

¬
(
C2(x, x) ∧ C3(x, y, z)

)
, ¬
(
C2(x, x) ∧ C3(y, x, z)

)
, ¬
(
C2(x, x) ∧ C3(y, z, x)

)
.

Instead of two relations E,C2 we now use 18 relations: E1, . . . ,E9,C1
2, . . . ,C

9
2. Every E-

atom and C2-atom is replaced by the corresponding atom of this new signature σ′. Then
we add all the conjuncts as in eq. (3.6), therefore, if a σ-tuple is contained in more than one
τ -tuple, then each of these τ -tuple must be coloured in the corresponding σ′-colour. △
Remark. As the τ -atoms in the MMSNP2 sentence Ψ are the same as in Φ, we know that
if Φ is connected, then Ψ is connected. By Lemma 3.2.10, we consider only connected
GMSNP sentences, so further we can consider only connected MMSNP2 sentences.
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Chapter 4

MMSNP2 on ω-categorical structures

We show that any MMSNP2 problem can be reduced to an MMSNP problem, this reduction
is provided by a functor between the inputs. Then, we consider an infinitary extension
of MMSNP that allows a sentence to have countably many negated conjuncts. We show
that any MMSNP2 problem is P-time equivalent to an infinite regular MMSNP, where the
word “regular” has a similar meaning as in regular languages. Regularity of an infinite
MMSNP sentence provides the existence of an ω-categorical relational structure with an
equivalent CSP. For every MMSNP2 sentence there also exists an ω-categorical structure
with an equivalent CSP. Finally, we show that the functorial image of this structure
is homomorphically equivalent to the ω-categorical template associated with the infinite
MMSNP.

4.1 Reduction from MMSNP2 to MMSNP

Clearly, any MMSNP problem is also an MMSNP2 problem, by the definition. In this
section we show that any MMSNP2 problem reduces to some MMSNP problem. Firstly, we
describe how to construct the MMSNP sentence for a given one of MMSNP2. And then, for
any relational τ -structure of the MMSNP2 input, we construct the corresponding relational
τ̃ -structure of the MMSNP input. It happens that this construction is functorial. That is,
it is described by a functor from the category of τ -structures Struct[τ ] to the category
of τ̃ -structures Struct[τ̃ ]. In the category of τ -structures, the objects are τ -structures
themselves and the morphisms are homomorphisms between structures.

By Theorem 3.2.5 and Proposition 3.2.11 from the previous chapter, we can assume
without loss of generality that the input signature consists of a unique relation symbol.
Let τ = {R} be the input signature of MMSNP2 sentences and σ = σV ⊎ σT be the
existential signature, where σV = {M1, . . . ,Mu} and σT = {X1, . . . ,Xs}. Let R have arity
k, each M in σV be unary, and each X in σT be k-ary. We introduce signatures τ̃ and σ̃
and show that any MMSNP2 problem over τ reduces to some MMSNP problem over τ̃ .
Construction 7 describes how we modify the sentence, Construction 8 describes how we
modify the input of the corresponding problem. These two transformations are similar:
the main idea is to add to every tuple a special vertex that represents the colour of this
tuple.

Construction 7. The new input signature τ̃ has unary relation symbols V and T , and
a (k + 1)-ary relation symbol R̃. The new existential signature σ̃ := σ̃V ⊎ σ̃T contains a
unary relation symbol X̃, for any X in σ.
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R(x) R̃(tx,x)

T(tx) V(x)

Figure 4.1: The relation between τ -tuples and τ̃ -tuples. The long closed curves are the relations R and
R̃, the green disc is the relation T , the white circles denote the relation V .

Any MMSNP2 τ -sentence Φ transforms to an MMSNP τ̃ -sentence Φ̃ as follows. Every
τ -atom R(x) of Φ is replaced by the following conjunction that is displayed on Figure 4.1
on page 76:

R̃(t,x) ∧ T(t) ∧
∧

x in x

V(x).

Every unary σ-atom M(x) is replaced by the following conjunction:

M̃(x) ∧ V(x).

Every k-ary σ-atom X(x) that is guarded by a τ -atom R(x) is replaced by a unary σ̃T -atom
X̃(t), where t is a new variable that appears when we replace R(x) with R̃(t,x). Finally,
we add to Φ̃ all the negated conjuncts of the two types displayed on Figure 4.2 on page 77.
For any X̃ in σ̃T , we add the negated conjunct ¬

(
V(x)∧ X̃(x)

)
. For any M̃ in σ̃V , we add

the negated conjunct ¬
(
M̃(x) ∧ T(x)

)
. This is the end of Construction 7.

Example 4.1.1. Let Φ be the MMSNP2 sentence that is associated with the problem
No-Monochromatic-Arc-Triangle from Example 3.2.2 on page 64:

∃B,W ∀x, y, z


¬
(
E(x, y) ∧ B(x, y) ∧W(x, y)

)
∧

¬
(
E(x, y) ∧ ¬B(x, y) ∧ ¬W(x, y)

)
∧

¬
(
E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ B(x, y) ∧ B(y, z) ∧ B(z, x)

)
∧

¬
(
E(x, y) ∧ E(y, z) ∧ E(z, x) ∧W(x, y) ∧W(y, z) ∧W(z, x)

)


Then, the MMSNP sentence Φ̃ obtained by Construction 7 can be written as follows:

∃B,W ∀txy, tyz, tzx, x, y, z

¬
(
V(x) ∧ B(x)

)
∧ ¬
(
V(x) ∧W(x)

)
∧

¬
(
Ẽ(txy, x, y) ∧ T(txy) ∧ V(x) ∧ V(y) ∧ B(txy) ∧W(txy)

)
∧

¬
(
Ẽ(txy, x, y) ∧ T(txy) ∧ V(x) ∧ V(y) ∧ ¬B(txy) ∧ ¬W(txy)

)
∧

¬
(
Ẽ(txy, x, y) ∧ Ẽ(tyz, y, z) ∧ Ẽ(tzx, z, x)∧

∧ T(txy) ∧ T(tyz) ∧ T(tzx) ∧ V(x) ∧ V(y) ∧ V(z) ∧ B(txy) ∧ B(tyz) ∧ B(tzx)
)
∧

¬
(
Ẽ(txy, x, y) ∧ Ẽ(tyz, y, z) ∧ Ẽ(tzx, z, x)∧

∧ T(txy) ∧ T(tyz) ∧ T(tzx) ∧ V(x) ∧ V(y) ∧ V(z) ∧W(txy) ∧W(tyz) ∧W(tzx)
)


We first add two negated conjuncts from Figure 4.2, and then modify the other conjuncts
of Φ as described in the construction. △

Now we explain how to transform an input structure A of MMSNP2 to an input
structure Ã of MMSNP.
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¬(V(x) ∧ X̃(x)) ¬(T(x) ∧ M̃(x))

Figure 4.2: The two additional negated conjunct that are added to Φ̃. The green disc is the T relation.
The white circle is the V relation. The blue disc is the X̃ relation corresponding to some X in σT . The
grey disc with the black boundary is the M̃ relation corresponding to some M in σV .

Construction 8. The domain Ã of Ã is the disjoint union ÃT ⊎ ÃV . Here, ÃV is equal
to the domain A of A. And, for any tuple a of RA there exists a vertex ta in ÃT . That
is, ÃT :=

{
ta | a ∈ RA

}
. The relation V Ã contains all the elements that are associated

with the elements of A, that is, V Ã := ÃV . The relation T contains all the vertices of
the type ta: T Ã := ÃT . For any tuple a of RA, the relation R̃Ã contains a tuple (ta, a).
This construction is similar to the one from Figure 4.1 on page 76. Transforming a finite
τ -structure A to a τ̃ -structure Ã can be achieved in P-time in |A|. This finishes the
Construction 8.

Example 4.1.2. See Figure 4.3. Let A be a directed 3-cycle: A = {x, y, z}, EA ={
(x, y), (y, z), (z, x)

}
. Then the domain Ã of Ã is equal to the disjoint union ÃT⊎ÃV , where

ÃV := A = {x, y, z}, and ÃT :=
{
tx | x ∈ EA

}
= {txy, tyz, tzx}. The relations of Ã are

defined as follows: V Ã := ÃV , T Ã := ÃT , and ẼÃ :=
{
(txy, x, y), (tyz, y, z), (tzx, z, x)

}
. △

x

y

z

tzx

tyz

txy
x y

z

A Ã

Figure 4.3: An example of Construction 8.

Remark. Further, we will usually call any element x a V-vertex if V(x) is satisfied and a
T -vertex if T(x) is satisfied. Also, the relations V and T are not really necessary because
they can be defined by the tuple coordinate where the considered element of Ã appears.
If x appears on the first coordinate, then it is a T -vertex. If it appears anywhere else
except for the first coordinate, then it is a V-vertex.

We prove now that SAT(Φ) is reduced in P-time to SAT(Φ̃): SAT(Φ) ≤p SAT(Φ̃).

Proposition 4.1.1. Let Φ be in MMSNP2 and Φ̃ in MMSNP be obtained from Φ by
Construction 7. Then, for any τ -structure A there exists a τ̃ -structure Ã constructible
from A in P-time such that A |= Φ if and only if Ã |= Φ̃.
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Proof. For any τ -structure A, we obtain Ã according to Construction 8. We need to show
that these two structures are equivalent with respect to being models for Φ and Φ̃.

Suppose that A |= Φ, that is, there is a σ-expansion Aσ of A such that any negated
conjunct of Φ is satisfied. We can assume that, for any X in σT , XAσ ⊆ RA, otherwise,
if we delete all the X-tuples not belonging to RA, then any negated conjunct will still be
satisfied. Then we choose a σ̃-expansion Ãσ̃ of Ã such that, for any X in σT and any
k-tuple a in RA, the T -vertex ta is in X̃Ãσ̃ if and only if a is in XAσ . And, for any M in σV
and any a in A, a is in M̃Ãσ̃ if and only if a is in MAσ . By the construction of Φ̃ and Ã,
we have that Ãσ̃ satisfies any negated conjunct of Φ̃ as well.

Suppose that Ã |= Φ̃; then there is a σ̃-expansion that satisfies any negated conjunct
of Φ̃. In particular, it satisfies any negated conjunct of one of the types from Figure 4.2
on page 77. This means that no V-vertex is coloured by a σ̃T -relation and that no T -
vertex is coloured by a σ̃V-relation. Then there exists a σ-expansion Aσ of A such that
Aσ and Ãσ̃ are related to each other as in the previous paragraph of this proof. Then,
by the constructions of Φ̃ and Ã, if some negated conjunct of Φ is not satisfied, then the
corresponding negated conjunct of Φ̃ is not satisfied in Ã.

Using the method from the proof of Proposition 4.1.1, we can extend Construction 8
onto (τ ⊎ σ)-structures, where all k-ary existential relations X ∈ σT are interpreted as
subsets of the τ -relation R.

Construction 9. Let A be a τ -structure, and Aσ be one of its σ-expansions such that,
for any X in σT , XAσ ⊆ RAσ

= RA. Let Ã be obtained from A by Construction 8. The
σ̃-expansion Ãσ̃ of Ã associated with Aσ is constructed as follows. For any X in σT and
any R-tuple a in RA, the T -vertex ta is in X̃Ãσ̃ if and only if a is in XAσ . And, for any M

in σV and any a in A, a is in M̃Ãσ̃ if and only if a is in MAσ .

The (τ̃ ⊎ σ̃)-structures obtained from (τ ⊎ σ)-structures by Construction 9 agree on
homomorphisms.

Proposition 4.1.2. Let Ã and B̃ be constructed from (τ ⊎σ)-structures A and B. Then,
A homomorphically maps to B if and only if Ã homomorphically maps to B̃.

Proof. Let h : A ! B be a homomorphism. Construct a map h̃ as follows. For any
V-vertex v of Ã, its image h̃(v) equals h(v). Any T -vertex tx of Ã is associated with some
R-tuple x of A. The homomorphism h requires that h(x) is an R-tuple in B. Then, B̃
contains a T -vertex th(x). We set h̃(tx) := th(x). For any R̃-tuple (tx,x) of Ã, its h̃-image
is
(
th(x),h(x)

)
, by construction, it is an R̃-tuple of B̃. Any σ̃T -coloured vertex tx of Ã is

associated with a σT -tuple x of A. Its image h(x) is a σT -tuple of B. So, by construction,
the image h̃(tx) is coloured in the same σ̃T -colour. h̃ is the same as h, once restricted on
the V-vertices, so any σ̃V-colour is also preserved.

Let h̃ : Ã! B̃ be a homomorphism. Let h : A! B be associated with the restriction
of h̃ on the V-vertices of Ã. Any σV-colour is preserved. Consider an R-tuple x of A such
that x also belongs to XA, for some X in σT . It is associated with an R̃-tuple (tx,x) of
Ã, where tx is coloured in X̃. This R̃-tuple is mapped to an R̃-tuple

(
h̃(tx), h̃(x)

)
, where

h̃(tx) is coloured in X̃. This tuple is associated with an R-tuple h̃(x) that is coloured in
X. As h̃(x) = h(x), we conclude that h is a homomorphism.

Construction 9 induces a functor D̃ : Struct[τ ⊎ σ] ! Struct[τ̃ ⊎ σ̃] between the
categories of (τ⊎σ)-structures and (τ̃⊎σ̃)-structures such that, for any A in Struct[τ⊎σ],
D̃(A) is equal to Ã.
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Proposition 4.1.3. There exists a functor D̃ between the categories Struct[τ ⊎ σ] and
Struct[τ̃ ⊎ σ̃].

Proof. For an object A in Struct[τ ⊎ σ], we put D̃(A) := Ã. For an arrow h : A! B in
Struct[τ ⊎ σ], we put D̃(h) := h̃, as in Proposition 4.1.2.

It is routine to check that D̃ preserves the identity arrows and the associative property.

Remark. The functor D̃ can be naturally “reduced” on the category Struct[τ ], as any
τ -structure is the τ -reduct of a (τ ⊎ σ)-structure with every σ-relation being interpreted
as the empty set.

The following definition describes those structures in the MMSNP input that are asso-
ciated with some input of MMSNP2. They are called good because we know how to treat
them.

Definition 4. A structure is called good if it is isomorphic to D̃(A), for some A in
Struct[τ ] ∪ Struct[τ ⊎ σ].

4.2 Normal1 form for MMSNP2

We show that MMSNP2 sentences can be rewritten in a certain form that we use further.
The transformed sentence is logically equivalent to the original one. Once a sentence
is in this new form, we are able to represent the corresponding MMSNP2 problem as a
forbidden patterns problem (FPP), see Section 4.3 and Section 4.4.

As usual, we consider connected MMSNP2 sentences over a relational signature with
one k-ary symbol: τ = {R}. The existential relations (colours) of Φ are from some
relational signature σ = σT ⊎ σV , where all symbols of σT = {X1, . . . ,Xs} are k-ary, and
all symbols of σV = {M1, . . . ,Mu} are unary.

Definition 5. An MMSNP2 sentence Φ is said to be in normal1 form if the following
conditions hold.

1. Any element and any R-tuple have at least one colour. That is, the first two negated
conjuncts of Φ are:

¬
(
¬M1(x) ∧ · · · ∧ ¬Mu(x)

)
∧ ¬
(
R(x) ∧ ¬X1(x) ∧ · · · ∧ ¬Xs(x)

)
.

2. Any element and any R-tuple have at most one colour. That is, for any distinct
M,M′ in σV and X,X′ in σT , Φ contains the negated conjuncts:

¬
(
M(x) ∧M′(x)

)
, ¬

(
R(x) ∧ X(x) ∧ X′(x)

)
.

3. The clauses of Φ are fully colored. This means that, for any negated conjunct ¬ϕi

of Φ except for the first two ones and for any variable x of ϕi, ϕi contains an atom
M(x), for some M in σV . And, similarly, for any negated conjunct ¬ϕi of Φ except
the first two ones and for any R-tuple x of ϕi, ϕi contains an atom X(x), for some
X in σT .
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4. Any negated conjunct ¬ϕi of Φ is biconnected, i.e., the conjunction ϕi cannot be
divided in two parts ψ1 and ψ2 such that the negated conjunct ¬ϕi equals

¬
(
ψ1(x,y) ∧ ψ2(x, z)

)
,

where x is some variable of ϕi and y, z are two disjoint tuples of variables of ϕi.

5. There are no implicit small clauses. That is, any (τ⊎σ)-structure A with n elements
satisfies the first-order parts of Φ if and only if it satisfies all the negated conjuncts
with at most n variables.

If Φ is an MMSNP sentence (notice the absence of the 2 subscript), then this normal
form is used by Feder and Vardi to prove the following theorem.

Theorem 4.2.1 ([FV98]). For any MMSNP sentence Φ there is a finite relational struc-
ture A such that SAT(Φ) and CSP(A) are P-time equivalent under randomized P-time
reductions.

In the rest of this section, we show how to transform a sentence to have normal1
form. We do a similar transformation to the one of Feder and Vardi in [FV98] which
is described with more details in [BMM18]. In our case, the only difference is to make
the σT -existential relations form a partition on the R-tuples of an input structure and to
ensure that any clause is fully coloured with respect to R-tuples. We proceed as for unary
existential relations by Feder and Vardi in [FV98].

Proposition 4.2.2. For any MMSNP2 sentence Φ there is an MMSNP2 sentence Φ′ in
normal1 form which is logically equivalent to Φ.

Proof.

Make every conjunct biconnected. If there is a negated conjunct ¬ϕi that has the
form:

¬
(
ψ1(x,y) ∧ ψ2(x, z)

)
,

then we augment σV with a new unary relation P and replace ¬ϕi with the two negated
conjuncts:

¬
(
ψ1(x,y) ∧ P(x)

)
, ¬

(
ψ2(x, z) ∧ ¬P(x)

)
.

Make all implicit small clauses explicit. This transformation has the same nature
as Construction 3 on page 60. Let ¬ϕ(x1, . . . , xl) be some negated conjunct of Φ. Let x
be a variable that does not appear among the variables x1, . . . , xn used in Φ. Construct
the negated conjunct ¬ϕ(y1, . . . , yl), where, for any i in [l], yi equals either xi or x, and,
for at least two different i, j ≤ l, we have yi = yj = x. If this conjunct is biconnected,
then we add it to Φ. If it is not biconnected, then we use the procedure from the first step
and, instead of ¬ϕ(y1, . . . , yl), add the corresponding conjunction of biconnected negated
conjuncts. Do this procedure for any negated conjunct of Φ, this process eventually
ends as the number of variables reduces each time. Let now A be a (τ ⊎ σ)-structure
with n elements. Suppose that it does not satisfy a negated conjunct ¬ϕ(x1, . . . , xl)
with l > n variables. Then some variables must have a common element of A which is
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assigned to them. Then we find the corresponding negated conjunct ¬ϕ(y1, . . . , yn) (if it
is biconnected) or one of the biconnected negated conjuncts obtained from it and that is
not satisfied by A. Each of these conjuncts has at most n variables.

Partition and fully coloured clauses. We describe the procedure only for k-ary
existential relations of σT . The procedure for unary relations is similar to the procedure
for the case of MMSNP as described in [BMM18]. We check if for any R-atom R(x) of
Φ and for any X in σT there is either the X-atom X(x) or the negated X-atom ¬X(x) in
the same conjunct as R(x). If there is a negated conjunct ¬ϕi that does not satisfy this
condition, then we replace it with

¬
(
ϕi ∧ X(x)

)
∧ ¬
(
ϕi ∧ ¬X(x)

)
.

Once this property is achieved, we replace the existential signature σT with a signature
2σT , where each relation symbol is associated with a subset of σT . It is uniquely determined
which new relation we should assign to any R-atom R(x) because now, for any X in σT ,
the negated conjunct containing the atom R(x) also contains either X(x) or ¬X(x) but
not both at the same time. We demand that the new relations must form a partition of
the R-tuples of an input structure by adding the following negated conjuncts:

¬

(
R(x) ∧

∧
X∈2σT

¬X(x)

)
∧

∧
X,Y∈2σT

¬
(
R(x) ∧ X(x) ∧ Y(x)

)
.

Example 4.2.1. Let Φ describe the No-Monochromatic-Arc-Triangle problem. Sim-
ilarly as in Example 3.2.2. Φ can be written as follows:

∃B,W ∀x, y, z


¬
(
E(x, y) ∧ ¬B(x, y) ∧ ¬W(x, y)

)
∧

¬
(
E(x, y) ∧ B(x, y) ∧W(x, y)

)
∧

¬
(
E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ B(x, y) ∧ B(y, z) ∧ B(z, x)

)
∧

¬
(
E(x, y) ∧ E(y, z) ∧ E(z, x) ∧W(x, y) ∧W(y, z) ∧W(z, x)

)


This sentence is not in normal1 form by several reasons. We do not restrict any element

to be coloured, as there are no unary existential relations. Consequently, the clauses are
not fully coloured. However, all of the conjuncts are biconnected. But there are implicit
small clauses, as the structure consisting of a single vertex with a loop does not satisfy Φ,
but, as any negated conjunct has at least 2 variables, this structure satisfies any conjunct
with at most 1 variable.

We repeat the steps of the proof of Proposition 4.2.2. We skip the first step, as all
conjuncts are already biconnected. Then, we explicitly write all implicit small clauses. Up
to isomorphism, there are two digraphs that can be obtained from the directed cycle of
length 3. They are displayed on Figure 4.4. Observe that both of them are biconnected.

As only monochromatic-arc triangles are forbidden, for every triangle with coloured
arcs, we add the two images with all arcs having the same colour. After this step, the
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Figure 4.4: The directed 3-cycle and its homomorphic images.

sentence Φ is written as follows:

∃B,W ∀x, y, z



¬
(
E(x, y) ∧ ¬B(x, y) ∧ ¬W(x, y)

)
∧

¬
(
E(x, y) ∧ B(x, y) ∧W(x, y)

)
∧

¬
(
E(x, x) ∧ B(x, x)

)
∧

¬
(
E(x, y) ∧ E(y, x) ∧ E(x, x) ∧ B(x, y) ∧ B(y, x) ∧ B(x, x)

)
∧

¬
(
E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ B(x, y) ∧ B(y, z) ∧ B(z, x)

)
∧

¬
(
E(x, y) ∧W(x, x)

)
∧

¬
(
E(x, y) ∧ E(y, x) ∧ E(x, x) ∧W(x, y) ∧W(y, x) ∧W(x, x)

)
∧

¬
(
E(x, y) ∧ E(y, z) ∧ E(z, x) ∧W(x, y) ∧W(y, z) ∧W(z, x)

)


Now we only need to introduce one unary existential relation M, require that every
element must be coloured with it, and colour every variable of any conjunct with this
colour. After this change, the sentence Φ will be in normal1 form. It will be written as
follows:

∃M,B,W ∀x, y, z

¬
(
¬M(x)

)
∧ ¬
(
E(x, y) ∧ ¬B(x, y) ∧ ¬W(x, y)

)
∧

¬
(
E(x, y) ∧M(x) ∧M(y) ∧ B(x, y) ∧W(x, y)

)
∧

¬
(
E(x, x) ∧M(x) ∧ B(x, x)

)
∧

¬
(
E(x, y) ∧ E(y, x) ∧ E(x, x) ∧M(x) ∧M(y) ∧ B(x, y) ∧ B(y, x) ∧ B(x, x)

)
∧

¬
(
E(x, y) ∧ E(y, z) ∧ E(z, x) ∧M(x) ∧M(y) ∧M(z) ∧ B(x, y) ∧ B(y, z) ∧ B(z, x)

)
∧

¬
(
E(x, x) ∧M(x) ∧W(x, x)

)
∧

¬
(
E(x, y) ∧ E(y, x) ∧ E(x, x) ∧M(x) ∧M(y) ∧W(x, y) ∧W(y, x) ∧W(x, x)

)
∧

¬
(
E(x, y) ∧ E(y, z) ∧ E(z, x) ∧M(x) ∧M(y) ∧M(z) ∧W(x, y) ∧W(y, z) ∧W(z, x)

)


△

4.3 MMSNP2 and infinite MMSNP

In Proposition 4.1.1 of Section 4.1, we have shown that for any MMSNP2 sentence Φ there
exists an MMSNP sentence Φ̃ such that SAT(Φ) ≤p SAT(Φ̃). We now argue that it is
not likely to have the other reduction direction between SAT(Φ) and SAT(Φ̃), even if we
consider instead of Φ̃ another τ̃ -sentence that is logically equivalent to Φ̃ on the input
consisting of good τ̃ -structures. Failing to find an equivalent MMSNP problem, we show
that SAT(Φ) is P-time equivalent to a problem that looks like an infinite MMSNP. We
turn to the language of forbidden patterns problems that is equivalent to MMSNP when
there are finitely many forbidden patterns. Although, in our case, we need infinitely many
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Figure 4.5: The five types of negated conjuncts that are added to Φ. The green disc is the T -relation.
The white circle is the V-relation. The closed curves are the R̃-tuples. The grey and orange discs with
black boundaries are any two different σ̃V -relations. The blue and yellow discs are any two different
σ̃T -relations.

forbidden patterns, it happens that the family consisting of these patterns is regular, which
roughly means “finitely describable”. This regularity property will be specified later, in
Section 4.4.

By Proposition 4.2.2 from Section 4.2, we can assume that any connected MMSNP2

sentence that we consider is also in normal1 form. This means that the existential relations
always make a partition of both R-tuples and vertices of the input structure.

Recall that τ = {R} and τ̃ = {T ,V , R̃}; and that the arity of the τ -relation symbol R
is k, T and V are unary, and the arity of the corresponding τ̃ -relation symbol R̃ is k + 1.

Now we modify the MMSNP sentence Φ̃ so that the resulting sentence rejects more
input structures that are not good. To do this, we add to Φ̃ a family of negated conjuncts
that help us reject some non good τ̃ -structures. There are five types of negated conjuncts,
all of them are displayed on Figure 4.5 on page 83. Denote the new formula by Φ̃′. These
conjuncts are not fully coloured, therefore we consider every possible way to assign σ̃-
relations to uncoloured elements.

• The first type contains just one negated conjunct: ¬
(
T(x) ∧ V(x)

)
. It forbids an

element to be both a T -vertex and a V-vertex at the same time.

• The second type forbids a T -vertex to be in an R̃-tuple on any coordinate except for
the first one. For every i in [k], we add the following: ¬

(
T(xi) ∧ R̃(t,x)

)
, where xi

is the ith element of the k-tuple x.

• The third type forbids a V-vertex to be on the first coordinate of some R̃-tuple. We
just add the following negated conjunct: ¬

(
V(t) ∧ R̃(t,x)

)
.

• The fourth type is the most interesting. We would like to forbid one T -vertex
to be adjacent to more than one R̃-tuple. Sadly, it is not likely to be expressed
unless we use inequalities. However, we are still able to require that, for any two
R̃-tuples (t,x), (t,y) having a common T -vertex and for any coordinate i in [k], the
corresponding elements xi, yi must be coloured in the same σ̃-relations.

• The fifth type requires that any two R̃-tuples that have the same V-vertices must
have their T -vertices coloured in the same σ̃-relations.

Proposition 4.3.1. SAT(Φ) is reducible in P-time to SAT(Φ̃′).

Proof. For any τ -structure A, its image Ã := D̃(A) satisfies all the negated conjuncts
from Figure 4.5 on page 83. Thus, by Proposition 4.1.1, we have Ã |= Φ̃ if and only if
Ã |= Φ̃′.
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Observe that the sentence Φ̃′ adds constraints only for those elements that are con-
tained either in T -relation or in V-relation. This means that, for any τ̃ -structure A, we
have A |= Φ̃′ if and only if A[ATV ] |= Φ̃′, where ATV = {a ∈ A | a ∈ TA ∪ VA}.

We introduce two useful notions that describe the situation when a τ̃ -structure is not
good.

Definition 6. Let us call a τ̃ -structure A ugly if it does not satisfy some negated conjuncts
of the first three types from Figure 4.5.

In particular, it is FO-definable to check if a structure is ugly, as the negated conjuncts
of the first three types do not have σ̃-atoms.

Definition 7. If, for a τ̃ -structure A, there are two R̃-tuples (t,x) and (t,y) such that x
is distinct from y, then we say that that A has duplicated tuples.

The current goal is to argue that τ̃ -structures with duplicated tuples is the only ob-
stacle for having SAT(Φ) ≡p SAT(Φ̃).

Proposition 4.3.2. Let A be a τ̃ -structure. Then one of the following statements holds.

• A has duplicated tuples.

• A is an ugly structure and is rejected by Φ̃′.

• One can construct in P-time in |A| a τ -structure B such that B |= Φ if and only if
A |= Φ̃′.

Proof. Suppose that A is neither ugly nor has duplicated tuples. Recall that without loss
of generality we can assume that, for any a in A, a belongs to TA ⊎ VA. This union is
disjoint as A is not ugly.

Suppose that there are two tuples (t,x), (t′,x) in R̃A with distinct T -vertices t and t′.
If we prove that A |= Φ̃′ if and only if A[A ∖ {t′}] |= Φ̃′, then we are done, because we
can delete all such T -vertices one-by-one, and, at the end, we get a good structure. And
for any good structure there exists an equivalent τ -structure, by Proposition 4.1.2.

By Lemma 2.2.1, we know that any SNP sentence is closed under taking induced
substructures. Thus, A |= Φ̃′ implies A[A ∖ {t′}] |= Φ̃′. For the other direction, suppose
that A[A ∖ {t′}] |= Φ̃′. Let A[A ∖ {t′}]σ̃ be a valid σ̃-expansion i.e., it satisfies every
negated conjunct of Φ̃′. Pick a σ̃-expansion Aσ̃ such that Aσ̃[A∖ {t′}] = A[A∖ {t′}]σ̃ and
that the T -vertex t′ is in X̃Aσ̃ if and only if t is in X̃Aσ̃ , for any X̃ in σ̃T . That is, the σ̃T
colours for t and t′ have to be the same. Otherwise, it would not satisfy some negated
conjunct of the fifth type from Figure 4.5 on page 83. Suppose that, for some negated
conjunct ¬ϕ̃i(xi) of Φ̃′ and for some tuple ai, we have Aσ̃ |= ϕ̃i(ai). Let a′

i be obtained
from ai by replacing each occurence of t′ with t. As the T -vertices t and t′ agree on the
σ̃T relations, as they do not belong to any σ̃V-relation, by the construction of Φ̃, and as
A contains no duplicated tuples, we can conclude that Aσ̃ |= ϕ̃i(a

′
i). But then we have

Aσ̃[A∖ {t′}] |= ϕ̃i(a
′
i) which contradicts our assumption that A[A∖ {t′}] |= Φ̃′.

It is not clear which τ -structure should be associated with a τ̃ -structure with duplicated
tuples. Such R̃-tuples represent two distinct R-tuples. But, as they share the T -vertex,
the corresponding R-tuples must have the same σT -colours. And it is not clear how to
construct a τ -structure that can express such constraints.
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Although we do not know how to show a P-time equivalence between MMSNP2 and
MMSNP, we still can generalise MMSNP sentences by using the language of forbidden
patterns problems (FPPs). This approach is introduced by Madelaine in [MS07] in order
to describe the MMSNP problems that are not CSP problems. It is shown to be P-time
equivalent to MMSNP. This notion has later been extended for the case of the MMSNP2

logic in [Mad09]. Though, these classes have always been defined to have finitely many
forbidden structures. We need more than that. In the rest of this subsection we define
the class of problems FPP∞

1 and show that any MMSNP2 problem SAT(Φ) over a finite
signature τ is P-time equivalent to some FPP∞

1 problem over the corresponding signature
τ̃ .

At first, we provide the definitions of forbidden patterns problems FPP1 and FPP2 as
they are defined in [MS07,Mad09]. Let V be a finite set of vertex colours, F1 be a finite
family of pairs (Fτ , vFτ ), where Fτ is a τ -structure and vFτ : F ! V is a mapping that
assigns a colour of V to each element of Fτ . FPP1(F) is a decision problem defined on
τ -structures such that a τ -structure A belongs to the class FPP1(F) if and only if there
is a mapping vA : A ! V such that, for any (Fτ , vFτ ) in F, if there is a homomorphism
h : Fτ ! A, then vA ◦ h ̸= vFτ .

Example 4.3.1. Consider the problem No-Monochromatic-Triangle: this is a deci-
sion problem defined on directed graphs, it accepts the input graph G if one can colour its
vertices with 2 colours B,W such that we cannot map to G the directed 3-cycle with its
vertices having the same colour. The family F1 consists of 6 structures that are displayed
on Figure 4.6. It is the two monochromatic 3-cycles and all the possible homomorphic
images of them.

Figure 4.6: The forbidden structures of the No-Monochromatic-Triangle problem.

△

Let τ = {R}. Let V be a finite set of vertex colours, E be a finite set of edge (tuple)
colours, and F be a finite set of triples (Fτ , vFτ , eFτ ), where Fτ is a τ -structure, vFτ : F ! V

is a mapping that colours the elements of Fτ , and eFτ : RFτ
! E is a mapping that colours

the R-tuples of Fτ . For a τ -structure A, we say that A belongs to the class FPP2(F) if and
only if there are mappings vA : A! V and eA : R

A ! E such that, for any (Fτ , vFτ , eFτ ) in
F, there is no homomorphism h : Fτ ! A such that vA ◦ h = vFτ and eA

(
h(f)

)
= eFτ (f),

for any tuple f in RFτ .

Example 4.3.2. The No-Monochromatic-Arc-Triangle is an MMSNP2 problem. It
was considered before, in Example 3.2.2 and Example 4.2.1. It is also an FPP2 problem,
defined by the family of forbidden structures displayed on Figure 4.7 on page 86. △

Every FPP2 problem is associated with an MMSNP2 sentence in normal1 form.

Proposition 4.3.3. Let Φ be an MMSNP2 sentence in normal1 form. Then there exists
a family of triples F2 such that SAT(Φ) and FPP2(F2) are the same problem.
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Figure 4.7: The forbidden structures of the No-Monochromatic-Arc-Triangle problem. The heads
of arcs highlight the arc colours: B (black) and W (white).

Proof. As Φ is in normal1 form, this sentence contains negated conjuncts that force the
choice of the existential relations to be partitions of both vertices and R-tuples. That is,
the negated conjuncts of the following forms:

¬

( ∧
M∈σV

¬M(x)

)
∧

∧
M,M′∈σV

¬
(
M(x) ∧M′(x)

)
,

¬

(
R(x) ∧

∧
X∈σT

¬X(x)

)
∧

∧
X,X′∈σT

¬
(
R(x) ∧ X(x) ∧ X′(x)

)
.

For any other negated conjunct of Φ, we know that its canonical database is a connected
(τ ⊎ σ)-structure F such that any of its vertices and any of its R-tuples is coloured in
exactly one existential colour of σ, where σ = σT ⊎ σV . We say that the set of vertex
colours V is equal to the set of monadic existential relation symbols σV , and that the set
of edge colours E is equal to the set of k-ary existential relation symbols σT . For a negated
conjunct ¬ϕi of Φ, we construct the triple (Fτ

i , vFτ
i
, eFτ

i
) as follows. The τ -structure Fτ

i is
the τ -reduct of the canonical database Fi of ϕi. For any variable x of ϕi there is exactly
one σ-atom M(x) in ϕi, so, in this case, we set vFτ

i
(x) := M. For any τ -atom R(x) of ϕi

there is exactly one σ-atom X(x) in ϕi, so we set eFτ
i
(x) = X. The mappings vFτ

i
and eFτ

i

are well-defined for every negated conjunct ¬ϕi of Φ. The class F2 is constructed.
Take any τ -structure A. Suppose that A |= Φ; then there exists a σ-expansion Aσ such

that any element and any R-tuple of A are coloured in exactly one colour of σ and that
any negated conjunct of Φ is satisfied. This σ-expansion induces the mappings vA : A! V

and eA : R
A ! E. By the construction of F2, we must have A be accepted by FPP2(F2).

Suppose that A satisfies FPP2(F2). Then there exist corresponding mappings vA and eA.
These mappings induce a partition of elements of A and a partition of R-tuples of A, thus,
they induce a σ-expansion of A. If this expansion does not satisfy some negated conjunct
¬ϕi, then, by the construction of F2, there is a homomorphism h : Fτ

i ! A that violates
the property.

We depart marginally from the way the classes FPP1 and FPP2 are defined: this is
purely notational. We get rid of the mappings and propose the concept of a colouring
expansion. One should think of colourings as of expansions, where we can define σT -
relations only on input tuples.

Definition 8. A σ-expansion Aσ of some τ -structure A is called a σ-colouring if

• for any element a of A there is a unique unary M in σV such that MAσ
(a), and

• for any tuple a in RA there is a unique X in σT such that a belongs to XAσ , and

• for any relation X in σT , it is contained in the set of R-tuples of A: XAσ ⊆ RA.
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Similarly, a σ̃-expansion Bσ̃ of some τ̃ -structure B is a σ̃-colouring if

• for any V-vertex v of B there is a unique σ̃V-relation M̃ such that M̃Bσ̃
(v), and

• for any T -vertex t of B there is a unique σ̃T -relation X̃ such that X̃Bσ̃
(t), and

• any σ̃V-relation M̃ is contained in the set of V-vertices of B: M̃σ̃ ⊆ VB, and

• any σ̃T -relation X̃ is contained in the set of T -vertices of B: X̃σ̃ ⊆ TB.

A (τ ⊎ σ)-structure F is called coloured if it is a σ-colouring of its τ -reduct Fτ . The
definition of a coloured (τ̃ ⊎ σ̃)-structure is similar.

Usually, it is more convenient to consider a coloured (τ ⊎ σ)-structure F instead of
the corresponding triple (Fτ , vFτ , eFτ ). Moreover, for a coloured structure, it is natural to
say that its vertices and tuples are coloured. The following Proposition 4.3.4 immediately
follows from the definition.

Proposition 4.3.4. A τ -structure A is accepted by FPP2(F2) if and only if there is
a σ-colouring Aσ of A such that for any F, we have F ̸! Aσ, where F is a coloured
(τ ⊎σ)-structure corresponding to some triple (Fτ , vFτ , eFτ ) in F2. Similarly, a τ̃ -structure
B is accepted by FPP1(F) if and only if there is a σ̃-colouring Bσ̃ such that for no G
corresponding to some (Gτ̃ , vGτ̃ ) in F there is a homomorphism G! Bσ̃.

Because of duplicated tuples, we fail to find an MMSNP sentence that produces a
problem P-time equivalent to SAT(Φ). For any finite family of forbidden structures there
exists a structure with duplicated tuples such that it is not known what it should be
reduced to. However, later in this section, we manage to resolve this issue by extending
the set of forbidden structures infinitary long. The resulting family provides a P-time
equivalent problem to a given MMSNP2 problem. As now we have infinitely many forbid-
den structures, the problem does not belong to FPP1 anymore, so we need to use another
notation: FPP∞

1 .
The definition of the class FPP∞

1 (F) is similar to the finite case, but now the family
F can be also countably infinite.

Definition 9. Let τ be a finite relational signature and let σ be a finite relational signature
consisting of unary symbols. Let F be a countable family of coloured (τ ⊎ σ)-structures.
The infinite forbidden patterns problem for the family F, denoted by FPP∞

1 (F), is the
following class of τ -structures. For a τ -structure A, A is accepted by FPP∞

1 (F) if there
exists a σ-colouring Aσ such that for any F in F there is no homomorphism F! Aσ.

Example 4.3.3. The 2-colourability problem that accepts precisely all bipartite di-
rected graphs can be represented as an FPP∞

1 problem. In this case, the set of vertex
colours σ is empty. The family of forbidden structures F consists of all possible orienta-
tions of odd cycles. The members of F of length 3, 5, and 7 are displayed on Figure 4.8
on page 88. △

In the next construction and subsequent chapters, duplicated tuples are a niggling
challenge, that can be somewhat alleviated by the following equivalence relation.

Definition 10. For any τ̃ -structure, let eq be the minimal by inclusion equivalence
relation such that, for any two R̃-tuples (t,x), (t,y) that have a common T -vertex t,
the pair (xi, yi) belongs to eqA, for any i in [k]. See Figure 4.9 on page 88.
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Figure 4.8: All oriented odd cycles of length 3, 5, and 7.

eq

Figure 4.9: The eq relation (marked with red edges) and a pair of duplicated tuples.

Before we describe how F1 is constructed, we would like to explain informally why
and how we shall proceed. We could use as obstruction set the family O = {G | F̃ !
G/eq, for some F ∈ F2}. Although it is easier to show that FPP∞

1 (O) ≡p FPP2(F2), this
family would not have the regularity property we wish for, which is made precise later,
in Section 4.4. So we construct a subset F1 of O with some care.

We want that for any O in O there is some G in F1 such that G has a homomorphism h1

to O. By construction of O, there is some F in F2 and a homomorphism h0 : F̃! O/eq.
Let Old be the set of elements of O that are in an equivalence class of eq in the image
of the homomorphism h0. We informally refer to such elements as Old elements.

We want G to be “simple” enough so that the class F1 is regular. Here, “simple”
will mean that locally it shall be tree-like. Indeed, viewing the computation of eq as an
inductive process, i.e., two vertices are made eq-equivalent if they appear in the same
coordinate of a duplicated tuple, then we can reconstruct a minimal “explanation” as to
why Old elements of O are in the same eq-equivalence class. This minimal explanation
is by nature tree-like.

What amounts to one image of a tuple of F̃ under the homomorphism h0 may be
associated with several tuples in O. Because taking the quotient under eq “squashes”
duplicated tuples, we may have in O something that amounts to “stretched” tuples in the
inverse of the surjective homomorphism from O to O/eq.

Because we need a simple obstruction G to have a homomorphism h1 to O, it means
that at the very least it must also have such “stretched tuples”. This is made precise in
the construction of F̃◦ below.

This structure F̃◦ seems not general enough for our purpose as the distance between
some Old elements of O may be large unlike the elements of F̃◦, where there is a unique
Old element within each equivalence class. So we have no hope to guarantee a homomor-
phism from F̃◦ to O. We can however describe a specific structure G that is inductively
constructed from F̃◦, where the preimage of Old elements is connected in a tree-like
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fashion that encapsulates minimal explanation of the computation of eq. Figure 4.10 on
page 89 illustrates these ideas.

F̃◦ F̃G

O O/eq

F

D̃. . .

F1

O

F2

h1

h0

Figure 4.10: An illustration of the construction of F1. Grey dots are Old vertices. Small circles are
eq-equivalence classes. Red lines are tree edges.

Making the class F1. Now we are going to construct a countably infinite class F1 of
coloured (τ̃ ⊎ σ̃)-structures and then show that SAT(Φ) ≡p FPP∞

1 (F1). The family F1 is
the disjoint union of the families:

F1 := Fugly ⊎
⊎
F∈F2

FF.

Here, Fugly is a family of coloured (τ̃ ⊎ σ̃)-structures that are canonical databases of the
negated conjuncts of the types from Figure 4.2 on page 77 and Figure 4.5 on page 83
reproduced below.

For those negated conjunct variables that are not coloured, we consider all possible σ̃-
colourings of them.

Every family FF is obtained from some coloured (τ ⊎ σ)-structure F in F2, where F2

is constructed from Φ as in the proof of Proposition 4.3.3.
As we require that the V-vertices that are on the same coordinate of two duplicated

tuples cannot be coloured with different σ̃-relations, we know that no two V-vertices of
the same eq-equivalence class can be coloured with different σ̃-relations. This relation is
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useful because we plan to add to FF all minimal by inclusion coloured (τ̃ ⊎ σ̃)-structures
G such that G/eq contains F̃ as an induced substructure.

We define a unary relation Old, for any structure that we add to FF. For a structure
F̃, where F is in F2, we set OldF̃ := V F̃. As any structure of FF is constructed from F̃ by
adding new vertices, the relation Old helps us to remember which vertices are associated
with the original ones in F̃.

Recall that k is the arity of the relation symbol R in τ . For a coloured (τ ⊎σ)-structure
F in F2, denote by F̃◦ the following coloured (τ̃ ⊎ σ̃)-structure. This structure is obtained
from F̃ by replacing any R̃-tuple (t,x) with k duplicated R̃-tuples (t,y1), . . . , (t,yk), where,
for i in [k], the ith element yi,i of the tuple yi is equal to the ith element xi of x, and
all other elements are new and do not appear anywhere else. The relation OldF̃◦ consists
of the V-vertices yi,i that are associated with the vertices xi of F̃ . See Figure 4.11 on
page 90, for an illustration.

F̃ F̃◦ F̃◦

Figure 4.11: Suppose that F is a triangle (e.g. C3). Its D̃-image F̃ is as on the left. There are two
ways to represent the structure F̃◦: as in the middle and as on the right. In the middle, yellow zones
between two arcs highlight pairs of duplicated R̃-tuples, and, for convenience, T -vertices are not displayed
in the middle. However, the figure on the right contains T -vertices, they are denoted by green disks. The
relation Old is marked on both figures with grey disks. Red, green and black dots inside white circles
represent σ̃V -coloured V-vertices.

The following construction describes the countably infinite family of coloured (τ̃ ⊎ σ̃)-
structures associated with a given coloured (τ ⊎ σ)-structure F in F2.

Construction 10. The class FF is defined by induction. For the base case, we add F̃◦ to
FF.

For the induction step, let a coloured (τ̃ ⊎ σ̃)-structure G belong to FF. A new
coloured structure G′ is constructed from G as follows. Firstly, let G′ be a copy of G,
with OldG′

= OldG.
Let x be an Old vertex of G′. Suppose that there is more than one R̃-tuple that

contains x: (t1,v1), . . . , (tn,vn), where the ordering of these tuples is chosen arbitrarily.
We split these n tuples in two non-empty sets X1, X2, without loss of generality, choose
some m in [n− 1] and put (ti,vi) in X1 if i ≤ m, otherwise put it to X2.

We introduce two new V-vertices x1 and x2 and require that they have the same unary
(τ̃ ⊎ σ̃)-relations as x: they are both Old V-vertices that have the same σ̃-colour as x
does. Then we introduce a new T -vertex t and 2(k− 1) new V-vertices, and add to R̃G′ a
pair of duplicated tuples (t,w1), (t,w2), where w1,w2 consist of x1, x2 and of the recently
added 2(k− 1) V-vertices. Moreover, for some i in [k], the ith coordinate of w1 is x1 and
the ith coordinate of w2 is x2. We assign some σ̃T colour to t and some σ̃V colours to the
2(k− 1) V-vertices such that any two vertices that are on the same coordinate in w1 and
w2 must have the same σ̃V colour.
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Finally, delete x from G′ and replace all its occurences in tuples of X1 with x1 and
replace all its occurences in tuples of X2 with x2. The construction of G′ from G is
finished. Any structure G′ obtained by this procedure from some G in FF is added to FF.
This finishes Construction 10.

F̃◦ G2G1F̃

x
x x1 x2 x11 x2

u y
u u u

y y y

v v v v

x12

Figure 4.12: An example of new structure creation for FF. Yellow and blueish zones highlight pairs of
duplicated R̃-tuples. Coloured dots highlight the sets of V-vertices that have the same σ̃-colour.

Example 4.3.4. Consider Figure 4.12 on page 91. Suppose that R is a binary relation
and that F̃ is as on Figure 4.12. At the first step, we copy the vertex x that is coloured
in “red”. The new vertices x1 and x2 are also Old and have the same colour as x. The
vertex x1 is not connected to y, and x2 is not connected to u and v. Then we add a pair
of duplicated R̃-tuples that have x1 and x2 on the same coordinate. The pair of newly
added V-vertices is coloured with the same σ̃V-colour. The resulting structure is called
G1. Similarly, G2 is obtained from G1 by replacing x1 with x11 and x12. △

Tree families. There is a nice way to represent structures of every family FF. Any G
in FF can be encoded by a family of labeled unoriented trees TG = {Tf | f ∈ F}, where
F is the domain of F ∈ F2. Each tree is associated with an element of F or, equivalently,
with a V-vertex of F̃.

Construction 11. The vertex set Tf of a tree Tf in TG consists of Old vertices that
belong to the same eq-equivalence class [f ]eq of G, that is, Tf := OldG ∩ [f ]eq. For two
vertices v, w in Tf there is an edge vw in Tf if G contains a pair of duplicated R̃-tuples
(t,y) and (t, z) that have v and w on the same coordinate, i.e., for some i in [k], v = yi
and w = zi, see Figure 4.13.

t

v

w

v

w

G Tf

Figure 4.13: Duplicated tuples in G are associated with edges of Tf .

For any tree Tf of TF there is a set of labels Lf that are assigned to vertices of Tf .
Each Lf is associated with the set of R-tuples of F that contain the element f . Let lf in
Lf be associated with some tuple f = (f1, . . . , fk) in RF, where f = fi, for some i in [k].
The label lf is assigned to a vertex y of Tf if there is an R̃-tuple (t, y1, . . . , yk) such that,
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for any j in [k], yj belongs to the eq-equivalence class [fj]eq. By the construction of FF,
for any label of Lf there is a unique vertex of Tf that has this label.

Any edge of any tree Tf of TG has a number i in [k], a relation symbol from σ̃T , and
a (k − 1)-tuple of relation symbols of σ̃V assigned to it. Suppose that v and w are two
Old vertices that are contained on the same coordinate within a pair of duplicated tuples
R̃(t,y) and R̃(t, z), that is, for some i in [k], v = yi and w = zi. Then the corresponding
edge vw has a number i assigned to it. We require that any element of G is coloured with
exactly one monadic relation of σ̃, so we need to assign a σ̃T -relation to the T -vertex t and
σ̃V-relations to the other 2(k − 1) V-vertices of the tuples R̃(t,x) and R̃(t,y). As every
two V-vertices on the same coordinate must have the same colour, we can express it by a
(k − 1)-tuple of relation symbols of σ̃V . See Figure 4.14.

t

v

w

v

w

G Tf3

Figure 4.14: We assign to every edge of Tf the number i of [k] representing the position of v and w in y
and z, and we also assign the tuple of σ̃-relation symbols that colour (t,y) and (t, z).

Example 4.3.5. Look at Figure 4.15. It has three families of labeled trees that are associ-
ated with the structures from Figure 4.12 on page 91. Those elements that are connected
by a pair of duplicated tuples are adjacent within the corresponding tree. Every tree of
the first added structure F̃◦ consists of one vertex that has all the labels. After that, trees
grow in size. In the tree family TG1 , the edge has label 2 because x1 and x2 are both on
the second coordinate within the pair of duplicated tuples in G1. Similarly, the edges of
TG2 have labels 1 and 2, which is associated with the structure G2 of Figure 4.12. The
coloured squares represent the monadic relations of σ̃ that are assigned to the T -vertex
and to the pair of V-vertices, for each pair of duplicated tuples.

uvy

uvxvxy

uxy

uvxvxy

uxy

uv y

vxy

uxy

u v y

TF̃◦
TG1

TG2

uvx

2 1 2

Figure 4.15: Tree families TF̃◦
,TG1 and TG2 . For simplicity, the labels are expressed with single letters

u, v, x, y. In particular, a vertex in [x]eq that has an edge to a vertex in [y]eq has label y instead of xy.

△
Recall that a vertex of a tree is called a leaf if its degree is equal to 1.

Proposition 4.3.5. Let G be in FF, and TG be the corresponding labeled tree family.
Then, for any tree Tf of TG and for any leaf of Tf there is a label in Lf assigned to this
leaf.
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Proof. This is proved by induction. Consider the structure F̃◦. Any tree of TF̃◦
has only

one vertex. Thus, there are no leaves.
Suppose that any leaf of any tree Tf of TG has a label in Lf assigned to it. Consider a

structure G′ that is obtained from G by Construction 10. All the trees of TG′ but one are
the same as the ones of TG. Let Tf in TG and T′

f in TG′ be the pair of different trees. The
tree T′

f is obtained from Tf by taking some vertex x of Tf and replacing it with a pair of
adjacent vertices x1 and x2 such that either none of x1, x2 are leaves or some of them is a
leaf but with a label from Lf . This is provided by the collections of tuples X1,X2 being
non empty. Every tuple of each of these collections either provides an edge or provides a
label from Lf to the corresponding vertex among x1 and x2.

Any structure G in FF is associated with a family of labeled trees. We show now that
this correspondence is one-to-one.

Proposition 4.3.6. Let F be in F2. For any f in F , let Tf be a tree and Lf be a set of
labels for vertices, and [k]× σ̃T × (σ̃V)

k−1 be a set of labels for edges. Each element of Lf

is associated with some R-tuple of F that contains f . Suppose the following:

• for any l in Lf there is a unique vertex v in Tf such that l is assigned to v;

• any leaf of Tf has some label of Lf assigned to it;

• any edge of any tree Tf has a number i in [k] and a k-tuple of σ̃-relation symbols
assigned to it, where the first element of the tuple is a σ̃T -relation and the other k−1
elements are σ̃V-relations.

Denote this family of labeled trees by T′. Then there is a structure G in FF such that
TG = T′.

Proof. Recall that the structures of FF are constructed inductively. Any new structure
is obtained from some structure that has already been added to FF by picking an Old

vertex x and replacing it with two copies x1 and x2 that also belong to the relation Old.
Any R̃-tuple that contained x now contains exactly one of x1 and x2.

Similarly, as any structure G of FF is obtained from F̃◦, any tree family TG is obtained
from a collection of one-vertex trees, where the vertex has all the labels. Each transfor-
mation, where x is replaced by x1 and x2, is associated with the following transformation
of the labeled tree family. Suppose that we are replacing some Old vertex x that belongs
to an equivalence class [f ]eq by two vertices x1, x2. We pick the corresponding vertex x
in Tf . We replace x with two adjacent vertices x1 and x2 by assigning a number i and
a k-tuple of σ̃-relations to the edge x1x2. The edge label i depends on the coordinate of
the pair of duplicated R̃-tuples where x1 and x2 are. And the k-tuple defines the way how
the vertices of the duplicated tuples are coloured. Any vertex y that was adjacent to x is
now adjacent to exactly one of {x1, x2}, we can choose it independently. The set of labels
assigned to x is now split between x1 and x2, we can also choose it independently, as well
as the labels for the edge between x1 and x2. Any other tree Tf ′ , for f ′ in F ∖ {f}, is
kept the same during the modification of Tf . Clearly, any collection of labeled trees can
be obtained by repeating this transformation sufficiently many times.

We can prove two useful statements: Lemma 4.3.7 states that any homomorphism
from A to a good structure factors through A/eq, Lemma 4.3.8 states that the family FF

is sufficient to reject any structure G whose eq-quotient contains a homomorphic image
of F̃. They help to prove then that FPP∞

1 (F1) ≡p SAT(Φ2).
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Lemma 4.3.7. Let A be a finite (τ̃ ⊎ σ̃)-structure, B be a good (τ̃ ⊎ σ̃)-structure (in
particular, B ∼= B/eq). Then A! B if and only if A/eq! B.

Proof. Denote by [x]eq an element of A/eq that is associated with an equivalence class of
A containing x.

Suppose that A/eq ! B. By the definition of quotient, we have A ! A/eq. By
transitivity of homomorphism, we have A! B.

Suppose that A ! B. Let h : A ! B be a homomorphism. Consider two R̃-tuples
of A: R̃(t, a1), R̃(t, a

′). As B is good, for the image h(t) of t there is only one R̃-tuple
of B: R̃(h(t),b), that is adjacent to h(t). Then we must have h(a) = h(a′) = b. By
transitivity, for any two a1 and a2 that belong to the same eq-equivalence class of A/eq,
we have h(a1) = h(a2). So we can construct a homomorphism heq : A/eq! B such that
heq([a]eq) = h(a).

Lemma 4.3.8. Let A be a finite (τ̃ ⊎ σ̃)-structure such that there is a homomorphism
h : F̃! A/eq, for some F in F2. Then, either there exists G in FF such that G! A, or
there exists a structure in Fugly that is mapped to A.

Proof. Denote by h(F̃) the substructure of A/eq consisting of the elements and of the
R̃-tuples of the h-image of F̃ . Pick any V-vertex [x]eq of A/eq that is contained in h(F̃).
Let Fx := {f1, . . . , fp} be the preimage of [x]eq, that is, the set of V-vertices of F̃ such
that, for any f in Fx, we have h(f) = [x]eq. Denote by Tx := [x]eq the corresponding set
of vertices of A. Define a labeled undirected graph (Tx;E) on the set Tx as follows: if A
contains a pair of duplicated R̃-tuples that contain x1 and x2 on the ith coordinate and
are coloured with σ̃-relations X,M1, . . . ,Mk, then add to (Tx;E) an edge x1x2 labeled
with i in [k] and (X,M1, . . . ,Mk). If x1 and x2 are coloured differently, then there is a
structure in Fugly that can be mapped to A, so we assume that they are always coloured
by the same σ̃V-relation. Similarly, we assume that any two elements of this pair of tuples
that are on the same coordinates have the same colour. Suppose that x is contained in an
R̃-tuple (t, x1, . . . , xk) such that (t, [x1]eq, . . . , [xk]eq) is contained in h(F̃); then we assign
to x a corresponding label from

⋃
f∈Fx

Lf . For any label of this set there is at least one
element in Tx having this label, because h is a mapping.

The structure G of FF that we want to obtain is defined by its family of trees TG, by
Proposition 4.3.6. Any V-vertex f of F̃ belongs to some Fx. For any label l in Lf there
is an element xl in Tx that has this label. Choose Tf to be isomorphic to a minimal by
inclusion tree that is a subgraph of (Tx;E) and that contains all these elements xl. This
tree exists because (Tx;E) is a connected graph. And any leaf of this tree has a label from
Lf , otherwise it is not minimal by inclusion. The edges of Tf have the same labels as the
corresponding edges of (Tx,E).

A homomorphism h′ from G to A is constructed as follows. Any Old vertex v of G
is associated with a vertex of some tree Tf of TG. We map the Old vertices according
to the isomorphisms between the trees. Any other vertex of G is adjacent to exactly one
Old vertex of G by exactly one R̃-tuple (t,x). So it suffices to explain how h′ maps any
R̃-tuple. A R̃-tuple may belong to a pair of duplicated tuples that are added to G at
some step of its construction. In this case, we know that A contains a similar pair of
duplicated tuples, this is provided by the coincidence of the corresponding edge labels
of Tf and (Tx;E). Otherwise, an R̃-tuple belongs to a collection of k duplicated tuples,
this collection is associated with some R̃-tuple of F̃, and this collection is added when we
introduce the structure F̃◦. Any tuple of this collection is adjacent to exactly one Old
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vertex. This vertex is associated with some tree vertex vG that has a label indicating that
it is adjacent to this tuple. The vertex vG is mapped by h′ to vA that also has the same
label. Thus, there is a tuple in A where we can map it.

Now we can show that any MMSNP2 problem is P-time equivalent to some FPP∞
1

problem.

Theorem 4.3.9. For any Φ in MMSNP2 there is a countably infinite family of finite
structures F1 such that SAT(Φ) is P-time equivalent to FPP1(F1).

Proof. Let F2 be the family of coloured (τ ⊎ σ)-structures constructed from Φ as in
Proposition 4.3.3. Then, for F2, we construct a countably infinite family F1:

F1 := Fugly ⊎
⊎
F∈F2

FF.

Now we prove that FPP2(F2) ≤p FPP∞
1 (F1). Consider any τ -structure A and the

τ̃ -structure Ã := D̃(A).
Suppose that there is a σ-colouring Aσ such that for no F in F2 there is a homomor-

phism h : F! Aσ. Then, choose the σ̃-colouring Ãσ̃ of Ã to be equal to D̃(Aσ).
As Ãσ̃ is a good structure, there is no homomorphism u : U ! Ãσ̃, for U in Fugly. If

there is a homomorphism g : G! Ãσ̃, for some G in FF ⊂ F1, then, by Lemma 4.3.7, we
have G/eq! Ãσ̃. By the construction of FF, F̃ embeds into G/eq, for any G in FF, then,
by transitivity, there is also a homomorphism f̃ : F̃ ! Ãσ̃. By Proposition 4.1.2, there
exists a homomorphism f : F! Aσ. This is a contradiction.

Suppose that, for any σ-colouring Aσ there always exists some F in F2 such that
F ! Aσ. Take any σ̃-colouring Ãσ̃. It is the D̃-image of some σ-colouring Aσ such that
F! Aσ, for some F in F2. So, by Proposition 4.1.2, there is a homomorphism f̃ : F̃! Ãσ̃.
Then, by transitivity, we have F̃◦ ! Ãσ̃. We have proved that SAT(Φ) ≤p FPP∞

1 (F1).
Now we prove that FPP∞

1 (F1) ≤p SAT(Φ). Let B be some τ̃ -structure. We are
going to show that B is accepted by FPP∞

1 (F1) if and only if A |= Φ. The structure Ã
is obtained from B/eq by removing every T -vertex t such that both tuples (t,x), (t′,x)
belong to R̃B/eq, where t′ ̸= t and x is some k-tuple of V-vertices, similarly as in the
proof of Proposition 4.3.2. We assume that no structure of Fugly can be mapped to B,
otherwise we know that B is rejected by FPP∞

1 (F1).
Let Bσ̃ be a σ̃-colouring of B such that, for any U in Fugly, U ̸! Bσ̃. Denote by Ãσ̃

the substructure of Bσ̃/eq induced on Ã. It is a σ̃-colouring of Ã. Let Aσ be a σ-colouring
of A such that D̃(Aσ) ∼= Ãσ̃.

Suppose that there exists G in FF such that G ! Bσ̃, then, by Lemma 4.3.8, we
have F̃ ! B̃σ̃/eq. The structure F̃ contains no R̃-tuples (t,x), (t′,x) such that t ̸= t′,
and no ugly structure can be mapped to Bσ̃, so we also have F̃ ! Ãσ̃. This means, by
Proposition 4.1.2, that F! Aσ. This means that A is rejected by FPP2(F2).

Suppose that there exists F in F2 such that F ! Aσ. Then, by Proposition 4.1.2,
we have F̃ ! Ãσ̃, and, by transitivity, F̃ ! Bσ̃/eq. Then, by Lemma 4.3.8, there is
G in FF such that G ! Bσ̃. So B is rejected by FPP∞

1 (F1). We have proved that
FPP∞

1 (F1) ≤p SAT(Φ).
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4.4 ω-categorical templates for MMSNP2 and infinite
MMSNP

We show that the class F1 is regular. By the result of Hubička and Nešetřil, it implies the
existence of an ω-categorical (τ̃ ⊎ σ̃)-structure Csynt such that a τ̃ -structure A is accepted
by FPP∞

1 (F1) if and only if A homomorphically maps to the τ̃ -reduct Cτ̃
synt of Csynt.

We also show that for any MMSNP2 τ -sentence Φ that is in normal1 form there is an
ω-categorical (τ ⊎ σ)-structure CΦ such that, for any τ -structure A, A satisfies Φ if and
only if there is a homomorphism from A to the τ -reduct Cτ

Φ of CΦ.
Finally, we show, for the functorial image Csem := D̃(CΦ), that the structures Csem

and Csynt are homomorphically equivalent.

Preliminaries

A pair (P, r) is called a rooted structure, if P is a relational structure with domain P and
r is a linearly ordered proper subset of elements of P. The elements of r are called the
roots of P.

Let F be a relational structure. A rooted structure (P, r) is called a piece of F, if

• P is an induced connected substructure of F;

• r = (r1, . . . , rp) is a minimal set of elements of P such that, for any relational tuple
x, if x contains an element x that belongs to the complement F ∖P and an element
x′ that belongs to P , then x′ must be contained in r.

In this case, we say that F contains the piece (P, r). If F is a member of some family of
structures F, then we also call (P, r) a piece of F.

P2

r2

F2

r1

P1

F1

Figure 4.16: Examples of a piece and of not a piece.

Example 4.4.1. If the structure F1 is a graph, then any induced connected subgraph P1 of
F1 is a piece, where the set of roots r1 is a minimal separator, i.e., a minimal by inclusion
subset r1 of P1 such that F1[F1 ∖ r1] is not connected. However, if relational tuples of F2

have arity greater than two, then there might be an induced connected substructure P2

and a minimal separator r2 such that (P2, r2) is not a piece of F2. These two cases are
displayed on Figure 4.16. △
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Let (A, a) and (B,b) be rooted structures. Suppose that the substructures induced
on their sets of roots a and b are isomorphic: A[a] ∼= B[b]. Denote by (A, a) ⊕ (B,b)
a structure that is obtained by taking two disjoint copies of A and B and by pairwisely
identifying the roots of a and b. See Figure 4.17.

(A, a) (B,b) (A, a)⊕ (B,b)

Figure 4.17: An example of the ⊕ operation.

Let F be a family of structures. Suppose that (P, r) and (P′, r′) are pieces of structures
of F such that the pairwise correspondence between their roots induces an isomorphism
between the induced substructures P[r] and P′[r′]. Then, (P, r) and (P′, r′) are called
incompatible with respect to F if (P, r)⊕ (P′, r′) belongs to F.

Let (P, r) be a piece of some structure F in F. Then, I(P,r) denotes the set of all pieces
that are incompatible with (P, r) with respect to F.

One can define the following equivalence relation ∼F on the set of all pieces of F. We
say that two pieces (P, r) and (P′, r′) of F are equivalent, denoted (P, r) ∼F (P′, r′), if
I(P,r) = I(P′,r′).

A family of τ -structures F is called regular if the number of the ∼F-equivalence classes
is finite.

(P1, r1)

(P2, r2) (P3, r3)

(P1, r1)⊕ (P2, r2) (P1, r1)⊕ (P3, r3)

Figure 4.18: Pieces of odd cycles (coloured in red), and graphs obtained from them by the ⊕ operation.

Example 4.4.2. Let F be a family of undirected graphs that consists of odd cycles. Every
piece of an odd cycle is a path. There are two equivalence classes of pieces: paths of odd
length and paths of even length. As any odd length path is incompatible to any even
length path with respect to F. Indeed, if we join them by the ⊕ operation, then we will
obtain an odd cycle.
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Consider three pieces displayed on Figure 4.18. (P1, r1) and (P2, r2) are paths of odd
length. (P3, r3) is a path of even length. And, as a result, (P1, r1) ⊕ (P2, r2) is an even
cycle that does not belong to F, and (P1, r1)⊕ (P3, r3) is a member of F. △

A countably infinite relational structure A is called ω-categorical if all models of the
first-order theory of A are isomorphic to each other.

The concept of ω-categorical structure has another equivalent definition. An isomor-
phism a : A! A from a structure to itself is called an automorphism. The set Aut(A) of
automorphisms of A is a group with respect to the composition. Consider actions of this
group on sets of tuples of elements of A: A,A2, A3, . . ., where, for (a1, . . . , ak) in Ak and
a in Aut(A), we put a · (a1, . . . , ak) :=

(
a(a1), . . . ,a(ak)

)
.

For an action of a group G on a set X, the orbit of an element x in X is a subset
of elements of X where x can be mapped by the elements of G. A group G is called
oligomorphic if, for any k in N, the action of G on Xk has finitely many orbits.

Proposition 4.4.1. A countably infinite structure A is ω-categorical if and only if Aut(A)
is oligomorphic.

Example 4.4.3. Consider a structure (Z, <) – its domain consists of integers, and the only
relation is the linear ordering. Any automorphism at of (Z, <) is of the form x 7! x + t,
for t ∈ Z. For any two elements x, y in Z there exists an automorphism ay−x ∈ Aut(Z, <)
that maps x to y. This means that all elements are in the same orbit. Thus, (Z, <) is
ω-categorical. △

It is well-known, that, for a finite family of forbidden relational structures there exists
a universal ω-categorical structure.

Theorem 4.4.2 (Theorem 4 in [CSS99]). Let F be a finite set of finite connected relational
structures. Then there exists an ω-categorical τ -structure B such that, for any finite
structure A, there is an embedding: A ↪! B if and only if for any F in F there is no
homomorphism from F to A.

Hubička and Nešetřil extend this result by showing that this property holds not only
for finite but also for regular families of forbidden structures.

Theorem 4.4.3 (Theorem 3.1 in [HN15]). Let F be a regular family of finite connected
relational structures. Then there exists an ω-categorical structure C such that, for any
finite structure A, there is an embedding: A ↪! C if and only if for any F in F there is no
homomorphism from F to A.

Regularity

For showing the regularity of F1, it suffices to show that the number of ∼F-equivalence
classes is finite within any subfamily FF, as there are finitely many such subfamilies that
make F1.

Our aim is to prove that the class F1 is regular, we do it at the end of this part in
Theorem 4.4.6. In order to prove this theorem, we represent every piece of a structure
of FF in a better-looking form which is based on the labeled tree family construction
discussed on page 91. We first describe this form, then justify that we can consider these
forms instead of pieces, and finally prove that these forms have the regularity property.

We first define what is the label graph of a structure F in F2.
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Definition 11. Take some (τ ⊎ σ)-structure F from F2. Let LF be an undirected graph
with possibly multiple edges that is obtained from F as follows.

1. The domain of LF is the same as the domain F of F.

2. Edges of LF have labels from the set
{
lx | x ∈ RF

}
.

3. Every k-tuple x of elements of F is replaced in LF by a k-clique induced on the
vertices of x, each edge of this clique has a label lx that is associated with x.

We call such LF the label graph of F.

F LF

Figure 4.19: An example of a structure and its label graph.

Example 4.4.4. Let F be as on Figure 4.19. Every tuple of arity k in F is replaced by a
k-clique in LF. In our case, every relational tuple of F is ternary, so we replace it with a
3-clique K3. If K3 substitutes a tuple t, then every edge of it obtains a label associated
with t. △

We are going to use the concept of a semi-edge that is discussed in [BFJ+22]. Semi-
edge is an edge with just one end. Every edge xy contains two semi-edges, one semi-edge
is incident to x, the other is incident to y. For every graph G = (G,EG) there exists a
unique set of semi-edges SG = {(v, e) | v ∈ G, e ∈ EG, v is incident to e}.
Remark. We need semi-edges because edges of trees of TG represent pairs of duplicated
tuples. Semi-edges help us to describe the case when only one tuple of the pair belongs
to a piece.

Definition 12. Let G be a graph, V ⊆ G be a subset of vertices, and S ⊂ SG be a subset
of semi-edges. We say that a pair (V, S) is connected if:

• for any semi-edge s in S there is a vertex v in V such that s is incident to v;

• for any two vertices v and w in V there is a path in G such that, for any edge of
this path, both its semi-edges are contained in S.

Example 4.4.5. Consider 3 pairs (Vi, Si), for i in [3], displayed on Figure 4.20. A vertex
is red if it belongs to Vi. A semiedge is red if it belongs to Si. For the pair (V1, S1) there
exist two vertices of V1 that are not connected with a path consisting of semi-edges from
S1, so this pair is not connected. For the pair (V2, S2) there exist semi-edges in S2 that
are not incident to any vertex of V2, so this pair is not connected too. The pair (V3, S3)
satisfies both conditions, so it is connected. △
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(V1, S1) (V2, S2) (V3, S3)

Figure 4.20: Two not connected pairs of subsets of vertices and semiedges of the Petersen graph and one
connected pair.

Definition 13. Let G be in FF and P be a collection of pairs:

P :=
{(
VLF

, SLF

)
,
(
V1, S1

)
, . . . ,

(
Vn, Sn

)}
.

Here, VLF
and SLF

are some subsets of vertices and semi-edges of the graph LF, and
n := |VLF

|. For i in [n], Vi and Si are some subsets of vertices and semi-edges of the tree
Tfi in TG, where fi is the ith element of VLF

= {f1, . . . , fn}. Such family P is called piece
alike if the following conditions hold.

•
(
VLF

, SLF

)
is connected.

• For any i in [n], for any semi-edge s in Si there is a vertex v in Vi such that s is
incident to v.

• If, for some element fi of LF, fi ̸∈ VLF
, then the corresponding sets Vi and Si are

empty.

• Suppose that a semi-edge s in SLF
is incident to a vertex v in VLF

and that it belongs
to an edge of LF with a label lx, for some x in RF; then any other semi-edge of LF

which is incident to v and has a label lx must belong to SLF
.

• It is possible to define a connected binary relation P on the set V1 ∪ · · · ∪ Vn such
that a pair (x, y) belongs to P if and only if either

– x and y belong to the same Vi, (x, y) is an edge , and Si contains both semi-
edges of (x, y), or

– x belongs to some Vi, y belongs to some Vj, (fi, fj) is an edge of LF such that
both its semi-edges belong to SLF

, and x and y have labels in Lfi and Lfj that
are associated with the same R-tuple of F.

Example 4.4.6. Consider Figure 4.21 on page 101. On the left, there is a structure F from
F2. In the middle, there is the label graph LF. As R is ternary, this graph is obtained
from F by replacing tuples with 3-cliques. Every tuple of F is highlighted with its own
colour, the edges of every 3-clique of the label graph have the corresponding label. On
the right, there is the labeled tree family TG, for some structure G ∈ FF.
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LF TGF

Figure 4.21: An example of a piece alike family for a structure G in FF.

The vertices and semi-edges (VLF
, SLF

) of LF are highlighted with red. Similarly, for
all the trees of TG, these sets of vertices and semi-edges are highlighted with red. The
relation P is comprised of red edges and dashed edges between red vertices.

The family on Figure 4.21 is indeed piece alike, it satisfies all the properties. We would
also like to point out some details about it.

• The pair (Vi, Si), for i in [n] does not need to be connected. There is one such tree
in the family (the path in the middle of the left side). Both its leaves are connected
by P through the tree in the bottom center.

• If the degree of a vertex of F is 1, then the corresponding tree of TG always consists
of a single vertex, for any G in F1.

• In the piece alike family definition, it may seem unclear why do we need the condition
that requires that all semi-edges incident to the same vertex of LF must either all
belong to SLF

or all not belong to it. This condition arises from the way all G in FF

are constructed. All of them are obtained from F̃◦. The construction of F̃◦ is given
on Figure 4.11 on page 90, we recall that it is obtained from F̃ by replacing each
(k+ 1)-ary R̃-tuple with k R̃-tuples. Within LF, each of these k tuples is associated
with the set of semi-edges that have the same label and that are incident to the
same vertex of LF.

△
Remark. When we just defined a labeled tree family on page 91, we also assigned labels
to every edge of every tree of the family. Those edge labels carried the information about
the vertex colours of the corresponding pair of duplicated tuples and about the coordinate
where the Old vertices were placed. Our current goal is to prove that F1 is regular and
edge-labels are never used here. So, for simplicity, we do not mention them in this part
although they always are where they are supposed to be. Sometimes, in particular, in
Construction 12 on page 103, we add a new edge to a labeled tree. As we are free to
assign any possible label to this edge, we assume that it is assigned arbitrarily.

The next result allows us to represent pieces as piece alike families.

Lemma 4.4.4. Let G be in FF. Then, there is a one-to-one correspondence between pieces
of G and piece alike families constructed from G.
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Proof. Let (P, r) be a piece of G. The roots r can contain either Old elements of G or
those T -vertices that are in pairs of duplicated R̃-tuples. As r is minimal by inclusion,
any vertex that is neither Old nor a T -vertex within a pair of duplicated tuples cannot
be contained in r.

There is a one-to-one correspondence between Old elements of G and tree vertices
in TG. Every R̃-tuple of G is associated either with a set of semi-edges of LF that are
incident to the same vertex or with a semi-edge of some tree of TG, this correspondence
is also one-to-one.

We construct the piece alike family PG :=
{
(VLF

, SLF
), (V1, S1), . . . , (Vn, Sn)

}
that is

associated with (P, r).

• For an Old element x in G, suppose that it belongs to an eq-equivalence class [fi]eq;
then, if x belongs to the domain P of P, we add x to Vi and add fi to VLF

.

• Suppose that an R̃-tuple (t,x) of G is in a pair of duplicated tuples and the Old

element x in x is in some eq-equivalence class [fi]eq; then we add the semi-edge
associated with (t,x) to Si if P has the R̃-tuple (t,x).

• Suppose that an R̃-tuple (t,x) belongs to a set of k duplicated tuples that are
associated with some R-tuple f of F, and that the Old element x of x belongs to
[f ]eq; then, if (t,x) is contained in P, we add to SLF

all semi-edges incident to f
with label lf .

This construction induces an injection, as two distinct pieces have different sets of R̃-
tuples. It is a routine to check that the resulting family P is piece alike.

For any piece alike family P, we construct a piece (P, r) as follows.

• If a set of semi-edges of LF that have the same label and are incident to the same
vertex, and all belong to P, then we add to P all the vertices of the corresponding
tuple of G.

• If the semi-edge corresponding to an R̃-tuple (t,x) is contained in some Si, then we
add to P all the elements of this tuple.

• If a vertex x contained in VLF
or in some Vi is incident to a semi-edge that does not

belong to P, then we add x to r.

This construction also induces an injection, as different families are associated with
two substructures of G that differ either with respect to Old elements or with respect to
R̃-tuples. We need to show that (P, r) is a piece. It is connected because P is a piece alike
family. r is minimal by inclusion as any vertex of P incident to a semi-edge not from P is
added to the set of roots r.

This implies that there is a one-to-one correspondence between pieces and piece alike
families. Moreover, these two construction mappings are inverses of each other, because
there is a one-to-one correspondence between semi-edges of the family and R̃-tuples of the
piece.

Proposition 4.4.5. Let (P, r) be a piece of some structure G in FF. Then the size of r
is bounded by k2|F |2k−1 + k|F |k, where k is the arity of R.
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Proof. Let P be the corresponding piece alike family, provided by Lemma 4.4.4. The
binary relation P defined on the set V1 ∪ · · · ∪ Vn is connected. Pick any tree Tf of TG.
Any connected component of P induced on Tf must contain a labeled vertex. The number
of labeled vertices is at most the number of distinct R-tuples that can be adjacent to an
element f of the structure F. Thus, it is at most k|F |k−1. So, the number of leaves of
each tree of TG is at most k|F |k−1, as every leaf has a label.

Any vertex of r is associated either

• with some v in Vi that is incident to a semi-edge not from Si, for some i in [n], or

• with some v in Vi that has a label lf , for some tuple f in RF, such that the lf -labeled
semi-edges incident to fi are not contained in SLF

, or

• with a semi-edge s in Si such that the other semi-edge of the edge where they belong
to is not in Si, for some i in [n], or

• with a set of semi-edges of LF that are incident to the same vertex and have the
same label.

For any element fi of F, and for any connected component of the graph induced by
P on Tfi , the number of vertices and semi-edges corresponding to roots in r cannot be
greater than the number of labeled vertices of Tfi . This is justified as follows. Pick any
vertex x of the component. Call a branch every path from x to a labeled vertex, the
number of branches is at most to the number of labeled vertices because Tfi is a tree.
Any branch can contain exactly one vertex y such that either

• y belongs to the same component as x, and the next vertex z of the branch does
not belong to this component, or

• y is the end of the branch, i.e., a labeled vertex.

Thus, each Tfi contains at most k2|F |2k−2 elements of r, as the number of connected
components is at most the number of leaves.

The number of trees in TG equals to |F |, the number of sets of semi-edges of LF that
have the same label and are incident to the same vertex is at most k|F |k. So the total
number of roots is at most k2|F |2k−1 + k|F |k.

Consider a structure G that belongs to FF. Before proving Theorem 4.4.6, we are going
to show in Construction 12 how to modify any piece (P, r) of G so that the resulting piece
has bounded size, and the resulting structure still belongs to FF.

Construction 12. Consider a piece (P, r) of G. Let P be a piece alike family that is
associated with (P, r), by Lemma 4.4.4. Denote by P the substructure of G induced on
G ∖ (P ∖ r). By the definition of ⊕ operation, G is isomorphic to (P, r) ⊕ (P, r). Our
goal is to provide a finite family R of rooted structures such that, for each given G of F1

and any its piece (P, r), R will contain a piece (P′, r′) such that P[r] is isomorphic to
P′[r′] and that G′ := (P′, r′)⊕ (P, r) belongs to F1. If we show that any such (P, r) has
bounded size, then this will imply that there are finitely many of them.

We describe the process of obtaining (P′, r′) from (P, r) by modifying P and the trees
of TG. Let Tfi be some labeled tree in TG and Vi and Si be subsets of its vertices and
semi-edges such that the pair (Vi, Si) is in P. We mentioned before, in Example 4.4.6, that
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(Vi, Si) is not always connected. So we choose any of its connected components induced
by the relation P. Let (V c

i , S
c
i ) denote the vertices and semi-edges of some connected

component of (Vi, Si). We highlight the important vertices of V c
i as follows:

• Labeled vertices. Their number is bounded by k|F |k, where |F | is the domain size
of F ∈ F2.

• Vertices of degree strictly greater than 2. The number of such vertices is as most
the number of leaves in Tfi , which is at most the number of labeled vertices.

• Vertices that are adjacent to a vertex not from Vi. This means that either such a
vertex is incident to a semi-edge not from Si, or this vertex is incident to an edge
such that one of its semi-edges is not in Si. The number of these vertices is at most
the number of roots r. So their number is also bounded, by Proposition 4.4.5.

All other vertices of V c
i have degree 2 and both incident semi-edges belong to Si (and,

consequently, to Sc
i ), their number may be arbitrarily large. Our aim is to get rid of them,

leaving only vertices of the listed classes. Let v be one such vertex, let u and x be its
neighbours. The procedure is as follows, it is displayed on.

1. Delete v and both incident edges uv, vx from Tfi . This will automatically remove v
from Vi and all 4 semi-edges (u, uv), (v, uv), (v, vx), (x, vx) from Si.

2. Add an edge ux to Tfi and both semi-edges (u, ux), (x, ux) to Si.

u v x u x

Figure 4.22: The procedure of Construction 12.

We repeat this procedure for every vertex that does not belong to any of the three
highlighted classes until there are no such vertices. The result of this procedure applied
for one connected component is displayed on Figure 4.23. Do this for every connected
component of every tree of TG. This finishes Construction 12.

Tfi T′
fi

Figure 4.23: On the left, there is the original labeled tree Tfi . The elements of (Vi, Si) are coloured in
red. The circles are the labels. On the right, there is the modified labeled tree T′

fi
.

Theorem 4.4.6. The class F1 is regular.
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Proof. Consider some structure G ∈ FF and one of its pieces (P, r) that is represented by
a piece alike family P. Denote by T′ and by P′ the tree and piece alike families obtained
by Construction 12. By Proposition 4.3.6 from page 93, we know that there is a structure
G′ in F1 such that TG′ = T′. The rest is to show that, for any pair (V ′

i , S
′
i) in P′, |V ′

i |
and |S ′

i| are bounded. The maximal degree of a vertex in a tree is at most the number
of leaves in this tree. So, as the number of leaves of any tree of TG′ is bounded by the
number of labels, by Proposition 4.3.5 on page 92, the boundedness of |S ′

i| is implied by
the boundedness of |V ′

i |. The set V ′
i consists only of vertices of the three types described

in Construction 12. The number of vertices of each type is bounded.

Equivalence of ω-categorical templates

Let Φ in MMSNP2 be a τ -sentence in normal1 form and σ be the set of existentially
quantified relations of Φ. We are going to show that there is an ω-categorical (τ ⊎ σ)-
structure CΦ such that a τ -structure A satisfies Φ if and only if A homomorphically maps
to the τ -reduct Cτ

Φ.
The existence of a similar structure for MMSNP sentences is shown in [BMM18]. The

MMSNP2 case is treated similarly.

Theorem 4.4.7. Let F2 be a finite set of finite connected (τ ⊎ σ)-structures correspond-
ing to Φ in MMSNP2. Denote by BF2

ind the universal ω-categorical structure provided by
Theorem 4.4.2. That is, for any (τ ⊎σ)-structure A, A embeds into BF2

ind if and only if no
structure F in F2 homomorphically maps to A. Then there is an ω-categorical structure
CΦ such that a finite τ -structure A satisfies Φ if and only if there is a homomorphism
from A to Cτ

Φ.

Proof. Let CΦ be the substructure of BF2
ind that contains only σV-coloured vertices of BF2

ind

and contains only σT -coloured R-tuples. By Theorem 4.4.2, BF2
ind is ω-categorical. Thus,

its automorphism group is oligomorphic, by Proposition 4.4.1. Any automorphism a in
Aut(BF2

ind) induces an automorphism on CΦ, so Aut(CΦ) is also oligomorphic. Any auto-
morphism of a structure is an automorphism of its reduct, so Aut(Cτ

Φ) is also oligomorphic.
We conclude that both CΦ and its τ -reduct are ω-categorical.

Suppose that a finite τ -structure A satisfies Φ. Then there exists a σ-expansion Aσ of
A, where any vertex and any R-tuple is coloured in precisely one colour, such that no F
in F2 homomorphically maps to Aσ. Then Aσ embeds into BF2

ind, as it is all coloured, it
also embeds into CΦ. Thus, A embeds into the τ -reduct Cτ

Φ.
Suppose that there is a homomorphism h : A ! Cτ

Φ. Assign to any a of A the same
σV colour that the image h(a) has in CΦ. Assign to any R-tuple a of A the same σT colour
that the tuple of the image h(a) has in CΦ. Each element and each R-tuple of CΦ has
precisely one colour because Φ is in normal1 form. Denote the corresponding σ-expansion
by Aσ, by its construction, it maps homomorphically to CΦ. If there is F in F2 that maps
to Aσ, then, by transitivity, it maps to CΦ, that is a contradiction. So, we have A is
accepted by FPP2(F2), thus, A satisfies Φ.

Denote Csem := D̃(Cτ
Φ) – the functorial image of the CSP template constructed in

Theorem 4.4.7.
Let BF1

ind be the universal ω-categorical (τ̃ ⊎ σ̃)-structure provided by Theorem 4.4.3 of
Hubička and Nešetřil. Denote by Csynt the τ -reduct of the substructure of BF1

ind induced
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by coloured vertices and coloured R̃-tuples. By arguments similar to the ones in the proof
of Theorem 4.4.7, we can obtain the following result.

Theorem 4.4.8. For any regular family F1 of (τ̃ ⊎ σ̃)-structures there exists an ω-
categorical structure Csynt such that, for any finite τ̃ -structure A, A is accepted by the
problem FPP∞

1 (F1) if and only if A homomorphically maps to Csynt.

Observe that the structure Csem is a good structure, as it belongs to the functorial
image. And the structure Csynt contains duplicated tuples. In the rest of this section, we
prove that, despite this difference, the two structures are homomorphically equivalent. So
they define the same CSP problem.

Lemma 4.4.9. For any finite induced substructure G of Csem, G homomorphically maps
to Csynt.

Proof. Observe that G is good as every substructure of Csem is good, so there exists G2

such that G is isomorphic to the functorial image D̃(G2). Then, suppose that G does
not map to Csynt; then there is a forbidden structure F1 in FF ⊂ F1 that maps to G. By
Lemma 4.3.7, the quotient F1/eq maps to G, as G is good. Then, by transitivity, we
have F̃ maps to G, as it maps to any eq-quotient of FF structures. But F̃ is the functorial
image of F in F2. By Proposition 4.1.2, we know that F maps to G2 if and only if F̃ maps
to G. We conclude that F maps to G2, and thus G2 does not map to C2. So, also by
Proposition 4.1.2, G does not map to Csem, that is a contradiction.

Lemma 4.4.10. For any finite induced substructure G of Csynt, G homomorphically maps
to Csem.

Proof. By Lemma 4.3.7, G maps to Csem if and only if G/eq maps to Csem, as Csem is a
good structure. Suppose that G/eq does not map to Csem. The structure G/eq is good,
so there exists a (τ⊎σ)-structure G2 such that G/eq = D̃(G2). G2 does not map to C2, by
Proposition 4.1.2. So, there is a (τ ⊎ σ)-structure F in F2 that maps to G2. Then F̃ maps
to G/eq, by Proposition 4.1.2. Then, by Lemma 4.3.8, there is a forbidden structure F′

in F1 that maps to G. So G does not map to Csynt, that is a contradiction.

It is well known that there is a homomorphism (embedding) between two ω-categorical
structures A and B if any finite substructure of A maps to B.

Lemma 4.4.11 (Lemma 4.1.7 in [Bod21]). Let B be a finite or countably infinite ω-
categorical structure with relational signature τ , and let A be a countable τ -structure. If
there is no homomorphism (embedding) from A to B, then there is a finite substructure
of A that does not map homomorphically (embed) to B.

Lemma 4.4.9, Lemma 4.4.10 and Lemma 4.4.11 imply that the two ω-categorical tem-
plates constructed in this section are homomorphically equivalent.

Corollary 4.4.12. Csem and Csynt are homomorphically equivalent.
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Chapter 5

MMSNP2 and expander structures

We reduce MMSNP2 to finite CSP through MMSNP by Feder and Vardi’s method from
[FV98]. We provide a new notion of normal form for MMSNP2 sentences that eases a
potential reduction in the other direction by providing new useful tools. And, finally, we
study the main obstacle that prevents us from proving a dichotomy for MMSNP2. This
obstacle is to construct, for a given structure, an equivalent (w.r.t. a given CSP) structure
that is sufficiently sparse, in a sense. We consider different approaches that try to get
over this obstacle, for a better understanding of this problem.

5.1 Introduction to expanders

We know, by Proposition 4.1.1 in Section 4.1, that MMSNP2 problems can be reduced to
MMSNP problems. Moreover, once restricted on the good input, this reduction becomes
a P-time equivalence. We can detect ugly input structures and reject them. The only
obstacle that stops us from showing a dichotomy for MMSNP2 is the inability to deal with
structures containing duplicated tuples.

It is not known if there is an approach to show a dichotomy for MMSNP2 other than
trying to show that SAT(Φ) is equivalent to a CSP problem under (possibly randomized)
P-time reductions, where Φ is a connected MMSNP2 sentence. That is, similarly as it is
done for MMSNP by Feder and Vardi in [FV98]. Their approach is as follows: the input is
transformed according to Construction 13, and the target structure that defines the CSP
problem is obtained from an MMSNP sentence Φ̃ according to Construction 14.

We first describe how Feder and Vardi reduce MMSNP problems to CSP problems,
then we briefly show how they reduce CSP back to MMSNP, and finally we conclude what
can be done for our case of MMSNP2 problems.

In the following construction we explain how to transform the input of an MMSNP
problem on τ̃ -structures to the input of the CSP problem.

Construction 13. For a family of (τ ⊎ σ)-structures F, denote by Fτ the set of their
τ -reducts: Fτ := {Fτ | F ∈ F}; when F is a family of (τ̃ ⊎ σ̃)-structures, denote a similar
set by Fτ̃ . Recall the functor D̃ defined on page 79: it maps a (τ ⊎ σ)-structure F to a
(τ̃ ⊎ σ̃)-structure F̃ := D̃(F). Denote by D̃(Fτ ) the family of D̃-images of the members
of Fτ : D̃(Fτ ) :=

{
D̃(Fτ ) | F ∈ F

}
. Let ρ be a finite relational signature corresponding

to the CSP problem that we construct. For every τ̃ -reduct G of D̃(Fτ ), we add to ρ a
relation symbol SG of arity mSG := |G| equal to the number of elements in the domain of
G.
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A D̃(A) F̂(D̃(A))

Figure 5.1: On the left, there is the original τ -structure A. In the middle, there is its D̃-image Ã. On
the right, there is the F̂-image of Ã. Green disks are T -vertices, white disks are V-vertices. Closed curves
are ρ-relational tuples.

We assume that the elements of G are linearly ordered, this ordering is defined by
a one-to-one correspondence ordG : G !

[
|G|
]
. Also assume that the set of T -vertices

precedes the set of V-vertices in this ordering, that is, for any T -vertex t and for any V-
vertex v in G, we have ordG(t) < ordG(v). For any relation symbol SG in ρ that has arity
m, we frequently say that it has arity (mT ,mV): mT denotes the number of T -vertices in
G, they are on the coordinates from 1 to mT ; and mV denotes the number of V-vertices
in G, they are on the coordinates from mT + 1 to m.

Define a mapping F̂ : Struct[τ̃ ] ! Struct[ρ] as follows. Let A be a τ̃ -structure. The
domain of the corresponding ρ-structure Â := F̂(A) is the same as the domain of A. For
any |G|-ary tuple x = (x1, . . . , x|G|) of elements of Â and for any relation symbol SG in ρ,
the tuple x belongs to the relation SÂ

G if and only if the mapping h : G ! A defined by
h : g 7! xordG(g) is a homomorphism from G to A. That is, we find all possible ways to
map G to A and highlight them with the relation SÂ

G. This is the end of Construction 13.

Proposition 5.1.1. The mapping F̂ : Struct[τ̃ ] ! Struct[ρ] from Construction 13 is a
functor.

Proof. Let h : A ! B be a homomorphism between two τ̃ -structures. Let Â and B̂ be
the corresponding F̂-images. We are going to prove that the same mapping h is also
a homomorphism between Â and B̂. Pick any ρ-tuple x =

(
x1, . . . , x|G|

)
from SÂ

G, for
some SG in ρ. It suffices to prove that the image h(x) of this tuple belongs to SB̂

G . By
assumption, there is a homomorphism g : G! A such that, for all g in G, g(g) = xordG(g).
Then h ◦ g : G ! B is a homomorphism. This implies that, for all g in G, (h ◦ g)(g) =
h
(
xordG(g)

)
, so h(x) belongs to SB̂

G .

Example 5.1.1. Suppose that the family F2 consists of directed paths of length 3 (that
is, containing 2 arcs having the same orientation and 3 vertices). Then ρ contains one
(2, 3)-ary relation symbol corresponding to such a path. On Figure 5.1 on page 108 we
show how the functor F̂ works for good structures. There are three ways to map the path
to A. So the structure F̂

(
D̃(A)

)
contains three ρ-tuples corresponding to paths. As D̃(A)

is a good structure, every two ρ-tuples of F̂
(
D̃(A)

)
that have a common T -vertex also

have in common the corresponding V-vertices.
△
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A F̂(A)

Figure 5.2: On the left, there is a τ̃ -structure A. On the right, there is the F̂-image of A. Green disks are
T -vertices, white disks are V-vertices. Closed curves are ρ-relational tuples.

Example 5.1.2. Similarly as in Example 5.1.1, suppose that there is only one τ -reduct
up to isomorphism, and that it is isomorphic to a directed path of length 3. Consider
a τ̃ -structure A that is not good, that is, it contains a pair of duplicated tuples. See
Figure 5.2 on page 109 for an example of such structure. Then, the ρ-tuples that are
associated with directed paths might share a single T -vertex.

△
The following construction explains how to obtain the ρ-structure TΦ̃ from a given

MMSNP sentence Φ̃. It is the target structure of the problem CSP(TΦ̃) to which we
reduce SAT(Φ̃).

Construction 14. The domain TΦ̃ of TΦ̃ is the set of existential relations σ̃ = σ̃T ⊎ σ̃V .
Denote by TT those elements of TΦ̃ that are associated with σ̃T , and denote by TV those
ones that are associated with σ̃V . Consider a relation symbol SG in ρ, suppose that it
has arity (mT ,mV). Consider a tuple (t,v), where t consists of mT elements of TT , and v

consists of mV elements of TV . We add (t,v) to S
TΦ̃
G if the σ̃-expansion of G, where we

assign to the element gi the colour corresponding to the ith element of the tuple (t,v),
does not belong to D̃(F2). That is, we add to S

TΦ̃
G all tuples associated with σ̃-colourings

of G not from D̃(F2).

Proposition 5.1.2. A problem SAT(Φ̃) reduces to CSP(TΦ̃) in P-time.

Proof. For any τ̃ -structure A, that is an input instance of SAT(Φ̃), we reduce it to a
ρ-structure Â := F̂(A) – the functorial image of A.

Suppose that there is a homomorphism h : Â ! TΦ̃. Then, consider a σ̃-expansion
Aσ̃ of A such that we assign to each element a of A a relation of σ̃ corresponding to the
element h(a) of T . Suppose that this expansion does not satisfy Φ̃; then, there is some G
in D̃(F2) that homomorphically maps to Aσ̃. Any element of G is coloured with exactly
one σ̃-relation, because we assume that Φ is in normal1 form. Then, there is an SG-tuple
in Â that is associated with the image of G in A. The h-image of this tuple cannot belong
to S

TΦ̃
G , this contradicts h being a homomorphism.
Suppose that A models Φ̃. Then there is a σ̃-expansion Aσ̃ such that no G in D̃(F2)

maps to Aσ̃. As Φ is in normal1 form, we assume that, for any element a of A there is
a unique σ̃-relation assigned to it. Construct a mapping h as follows. Pick an element
a in A, suppose without loss of generality that a is a T -vertex that is coloured with a
relation M̃. Then, set h(a) := tM̃, where tM̃ is an element of T that is associated with
M̃. Suppose that h is not a homomorphism, then, for some S in ρ there is a tuple x that
belongs to SÂ and its image h(x) does not belong to STΦ̃ . This means that there is a
structure G′ in D̃(F2) that maps to Aσ̃, it is a contradiction.
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ρ τ

Figure 5.3: On the left there are three ρ-tuples. They are replaced by the corresponding τ -reducts that
have here the form of a triangle. The result, on the right, contains (in the center) an implicit triangle.

Let Φ be the MMSNP2 sentence such that Φ̃ is obtained from it by Construction 7
from page 75. So Proposition 4.1.1 from page 77 and Proposition 5.1.2 together imply
that SAT(Φ) reduces to CSP(TΦ̃), where Φ is a sentence in MMSNP2.

Corollary 5.1.3. For any sentence Φ in MMSNP2 in normal1 form there is a finite
structure TΦ̃ such that SAT(Φ) reduces in P-time to CSP(TΦ̃).

The diagram below explains how the three problems are related to each other. A
τ -structure A satisfies Φ if and only if there is a σ-expansion Aσ such that no structure
from F2 is mapped to Aσ or, equivalently, iff the ρ-structure F̂

(
D̃(A)

)
is mapped to TΦ̃.

τ τ̃ ρ

F2 D̃(F2) F̂
(
D̃(A)

)
Aσ D̃(A)σ̃ TΦ̃

The least trivial part of Feder and Vardi’s proof is the reduction from CSP(TΦ̃) to
SAT(Φ̃), where Φ̃ is an MMSNP τ -sentence with the existential signature σ, TΦ̃ is the
relational ρ-structure constructed from Φ̃. In order to reduce CSP(TΦ̃) to SAT(Φ̃) one
has to find, for every given input ρ-structure S, a τ -structure AS such that S ! TΦ̃ if
and only if AS |= Φ̃. Suppose that we just take S and replace each Si-tuple with the
corresponding τ -reduct Fτ

i . Then the resulting τ -structure BS might have a substructure
isomorphic to the hom-image of some τ -reduct Fτ

j and the Sj-tuple corresponding to this
substructure is not in SS

j . See Figure 5.3 on page 110, for example.
In order to avoid this issue, Feder and Vardi assume that the given sentence Φ̃ can

be transformed to a logically equivalent sentence that has some special properties. These
properties are known now as normal form properties. When Φ̃ is in normal form, Feder
and Vardi use the following adaptation for ρ-structures of the result of Erdős on graphs
in [Erd59]. When Φ̃ is in normal form, all the τ̃ -reducts corresponding to ρ-tuples are
biconnected, and if the girth is larger than the maximal arity of a ρ-relation, then a large
girth ρ-structure does not contain implicit ρ-tuples. In this case, they are able to replace
every ρ-tuple with a τ̃ -structure in order to obtain an equivalent input τ̃ -structure of
SAT(Φ̃).

Lemma 5.1.4 ([FV98]). Let T be a ρ-structure, and l be a natural number. Then, for
every ρ-structure S on n vertices there exists a ρ-structure S′ on na vertices such that:
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• a depends only on l and |T |;

• there is a surjective homomorphism from S′ onto S;

• S′ maps to T if and only if S maps to T;

• the girth of S′ at least l.

S′

S T

Sketch of Proof. The domain of S′ is the disjoint union
⊎

s∈S Xs, where each Xs is a
set of copies of s of size N := na−1. For any m-ary S-tuple s = (s1, . . . , sn) of S, we
impose the relation SS′ on a tuple s′ in Xs1 × · · · × Xsm with probability N1−m+ϵ. As
|Xs1 ×· · ·×Xsm| = Nm, the expected number of tuples that are associated with s is N1+ϵ.
If the arity m is equal to 1, then we impose S on all the elements of the corresponding set
of copies. There is a surjective homomorphism π : S′ ↠ S such that π(Xs) = s, for any
s in S. So, by transitivity, if S! T, then S′ ! T.

The expected number of cycles of length less than l is at most N ϵ′ , where ϵ′ = c1
a−1

+ ϵl
and c1 is a constant value. Markov’s inequality states that, for any δ > 0,

Pr(X ≤ δ) ≥ 1− E[X]

δ
.

Set δ := 2E[X], then the probability that S′ has at most twice as many such cycles is at
least 1

2
.

Suppose that S′ homomorphically maps to T by some h′, then, for each Xs, at least
|Xs|
|T | of its elements map to the same vertex of T, we denote them by Ys and define a
mapping h : S ! T such that h(s) := h′(Ys). For a S-tuple s = (s1, . . . , sm) of S, the
expected number of tuples imposed on Ys1 , . . . , Ysm is at least

(
N
|T |

)m
N1−m+ϵ = N1+ϵ

|T |m .
The multiplicative Chernoff bound states that, for any δ > 0,

Pr
(
X < (1− δ)E[X]

)
<

(
e−δ

(1− δ)1−δ

)E[X]

,

where X is the sum of independent random variables taking values in {0, 1}. Thus, the
probability that the number of such tuples is at most half of the expected number is less
than p := Exp

[
−N1+ϵ

c2

]
, where c2 is a constant value.

For N large enough, we have 2N ϵ′ < 1
2
N1+ϵ

|T |m . With probability at least 1
2
, we can get

rid of all the cycles of length less than l by deleting 2N ϵ′ tuples from S′. Denote by nc3

the number of all the tuples s of S that are contained in some relation. The probability
that, after removing the tuples, there are no tuples imposed on some Ys1 , . . . , Ysm is
at most 1 − (1 − p)n

c3 < nc3p. For N large enough, this probability is very small, so
there exists a structure S′. In this case, h is a homomorphism, as, for any S-tuple s,
h(s) = h′(Ys1 , . . . , Ysm) and there is at least one S-tuple imposed on Ys1 , . . . , Ysm .
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Example 5.1.3. Have a look at Figure 5.4 on page 112. For simplicity, relations are binary.
For every of three vertices of S, we add N vertices to S′ and then randomly add edges.
There is no cycle of length 3, unlike in S. However, there are two cycles: red and blue.
The red one has length 9, the blue one has the length 4. They have different nature: all
edges of the blue cycle are in the preimage of just one edge of S, and this is not the case
for the red cycle. △

SS′

Figure 5.4: An illustration of the construction of the structure S′ from Lemma 5.1.4. Red and blue edges
highlight cycles that appear in S′.

What can be done for MMSNP2? If we use Lemma 5.1.4 from page 110 and then
replace ρ-tuples with the corresponding τ̃ -structures, then we might obtain a structure
with duplicated tuples. Such structure is not good, and it is not clear what τ -structure
we can associate with it. In Section 5.2 we show how to transform any MMSNP2 sentence
to a form such that the input of CSP(TΦ̃) can be restricted to good structures, without
loss of generality. That is, to structures without implicit duplicated tuples. An example
of a τ̃ -structure with duplicated tuples is displayed on Figure 5.2 on page 109. Apart
from that, the new normal form for MMSNP2 sentences, that we introduce in Section 5.2,
allows two ρ-tuples intersect by an implicit τ̃ -tuple without having any implicit ρ-tuples.
For example, two ρ-tuples corresponding to triangles could intersect by an edge as well.
In the MMSNP case, they could only share a vertex.

On one hand, the large girth structure S′ must be good – this is more restrictive that
the MMSNP case. However, on the other hand, the notion of “large girth” is less restrictive
as we can now join two ρ-tuples by an edge, this gives us more tools to build the desired
structure.

In Section 5.3, we discuss various approaches to build an appropriate structure S′ that
could be associated with an input instance of SAT(Φ). For each of these approaches, we
explain why it is problematic to find such a structure.

5.2 Normal2 form for MMSNP2

We are going to show that, for MMSNP2 sentences, the analogue of normal form for
MMSNP is not sufficient for providing a reduction similar to the one of Feder and Vardi.
We provide some new properties that are necessary for the potential existence of a similar
proof for MMSNP2.

At first, we recall that, by Proposition 4.2.2, for any MMSNP2 sentence there exists
a logically equivalent MMSNP2 sentence in normal1 form. We show now the insufficiency
of the normal1 form for the case of MMSNP2 sentences.
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Proposition 5.2.1. Let Φ in MMSNP2, and Φ̃ in MMSNP be obtained from Φ by the
transformation described in Section 4.1. Then, for some Φ in normal1 form and for some
l in N, there is a ρ-structure G such that G ̸! TΦ̃, and for any ρ-structure G′ of girth at
least l, if G′ ! G, then G′ ! TΦ̃.

Proof. In order to prove the statement, we are going to provide a counterexample. Let
τ = {R(·, ·)}, then τ̃ = {T(·),V(·), R̃(·, ·, ·)}. Suppose that there are four unary relation
symbols in σ : Ma,Mb,Mc,Md; and eight binary: Xab,Xbc,Xca,X

′
ca,Xad,Xdc,Xbd,Xdb. The

τ -reducts of the forbidden (τ ⊎ σ)-structures induced by Φ belong to one of the three
following types: a cycle of length 3, a cycle of length 2, or a loop, they all are displayed
on Figure 5.5 on page 113.

Figure 5.5: The τ -reducts of the forbidden structures corresponding to Φ.

Then, ρ consists of three relations: a binary S2, a 4-ary S4, and a 6-ary S6. Let l
denote the maximal arity among the ρ-relations. That is, in our case, l = 6. Suppose
that

• Φ forbids loops for any possible colouring of their vertices and arcs.

• There is only one valid colouring of a 2-cycle:

R(x, y) ∧ R(y, x) ∧Mb(x) ∧Md(y) ∧ Xbd(x, y) ∧ Xdb(y, x).

• There are just two valid colourings of 3-cycles. They are associated with these
conjunctions:

R(x, y)∧R(y, z)∧R(z, x)∧Ma(x)∧Mb(y)∧Mc(z)∧Xab(x, y)∧Xbc(y, z)∧Xca(z, x),

R(x, y)∧R(y, z)∧R(z, x)∧Ma(x)∧Md(y)∧Mc(z)∧Xad(x, y)∧Xdc(y, z)∧X′
ca(z, x).

The resulting ρ-structure TΦ̃ is displayed on the right side of Figure 5.6 on page 114.
Observe that we have chosen Φ such that it is in normal1 form: we can require that

the existential relations form a partition of both vertices and R-tuples, all the forbidden
structures are biconnected, they are closed under homomorphisms, and we can make
them be fully coloured. Our goal is to show that, for some relational ρ-structure S, any
ρ-structure S′ of girth greater than l that maps to S is either not equivalent to S with
respect to being mapped to TΦ̃ or there is no τ -structure that is associated with S′ if we
try to replace any ρ-tuple with the corresponding τ -structure.

As a counterexample, we choose a structure S as on the left side of Figure 5.6. Clearly,
S ̸! TΦ̃.

Now, consider any ρ-structure S′ such that S′ has girth greater than l = 6 and that
S′ ! S. Any two relational tuples of S′ intersect by at most one point as, otherwise,
there would be a cycle of length 2, that is smaller than l. If there are two tuples that
intersect by a point that is associated with a T -vertex, then such S′ does not are associated
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dc
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TΦ̃

bd db

x

y
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xy
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xw

S

yw wy

Figure 5.6: On the right, TΦ̃ consists of 12 vertices, two S6-tuples, that are associated with 3-cycles and a
S4-tuple that is associated with the only allowed 2-cycle. Any vertex t in TΦ̃ is associated with some Mt

in σ, the subscripts are highlighted. On the left, a ρ-structure S is similar to TΦ̃, but in S two S6-tuples
share a T -vertex zx, when in TΦ̃ there are two distinct ca, ca′. Implicit R̃-tuples are highlighted with
dotted arcs.

with any τ -structure, because, if two R̃-tuples have a common T -vertex, then they must
also share all the V-vertices. Suppose now that all the tuples of S′ intersect only at
V-vertices.

We know that there exists a homomorphism g : S′ ! S. Let f : G ∖ {zx} ! TΦ̃
be the obvious mapping, that is, f(w) = d, f(x) = a, f(y) = b, f(z) = c, and so on. We
construct a homomorphism h : S′ ! TΦ̃ as follows. For any v in S′, if g(v) ̸= zx, then
set h(v) = (f ◦ g)(v). If g(v) = zx, then there is at most one S6-tuple that contains v.
This tuple must contain an element v′ such that g(v′) is in {w, y}. If g(v′) = w, then set
h(v) = ca′; if g(v′) = y, then set h(v) = ca. This means that S′ is not equivalent to S
regarding having a homomorphism to TΦ̃.

Definition 14. Let S be a ρ-structure, x = (x1, . . . , xm) be a tuple of S that belongs
to some ρ-relation SS. Let G be a τ̃ -structure of size m that is associated with S in ρ.
For any R̃-tuple g = (g0, . . . , gk) of G, a subtuple

(
xordG(g0), . . . , xordG(gk)

)
of x is called

an implicit R̃-tuple of S. If g is a T -(V-)vertex of G, then xordG(g) is called an implicit
T -(V-)vertex.

Example 5.2.1. Consider ρ-structures S and TΦ̃ displayed on Figure 5.6 on page 114. All
the dotted arcs stand for implicit R̃-tuples. They have arity 3 as R is binary. △

Our aim is to modify Φ such that we may allow two relational ρ-tuples from S′ to share
a T -vertex. When two ρ-tuples share a T -vertex t, they must also share all the V-vertices
that make an implicit R̃-tuple together with t. Otherwise, it would be impossible to find a
ρ-structure S′ that is associated with a ρ-structure S, as in Proposition 5.2.1. Moreover,
we want ρ-tuples to be able to share implicit R̃-tuples so that nothing new appears once
we replace ρ-tuples with the corresponding τ -reducts.

Definition 15. Let ¬ϕ be a negated conjunct of Φ and k in N be a natural number. ¬ϕ(x)
is called k-separable if the variables x of ϕ can be grouped into three disjoint sets s,y, z
of variables such that the tuple s contains k (possibly not pairwise distinct) variables and
¬ϕ(x) can be written in the form:

¬
(
ψ1(s,y) ∧ ψ2(s, z)

)
,

where ψ1 and ψ2 are subformulae of ϕ obtained by splitting the conjunction ϕ into two
parts. If ¬ϕ is not k-separable, then it is called k-inseparable.
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Sometimes, within a k-separable conjunct of Φ, the tuple s is already contained in a
τ -atom R(s). We want to track all such conjuncts and to get rid of them because they can
be replaced by two smaller conjuncts which represent the separation parts. In order to
do this, we give the following definition that is analogous to the “biconnected” property.

Definition 16. A negated conjunct ¬ϕ(x) of an MMSNP2 τ -sentence Φ is called tuple-
biconnected if, for every partition of its variables x into 3 groups y, s, z, it cannot be
written in the following form:

¬
(
ψ1(s,y) ∧ R(s) ∧ ψ2(s, z)

)
,

where ψ1, ψ2 are subformulae of the conjunction ϕ that are obtained from it by removing
the atom R(s) and splitting the rest into two parts.

Example 5.2.2. The canonical conjunctive query of the graph from Figure 5.8 on page 117
is not tuple-biconnected: if we remove the vertical arc together with both incident vertices,
then the result will not be connected. On the other side, the canonical conjunctive query
of the graph from Figure 5.9 on page 118 is tuple-biconnected. △

We can now give a better definition of normal form for MMSNP2 sentences.

Definition 17. A τ -sentence Φ in MMSNP2 is said to be in normal2 form if the following
conditions hold.

• Φ is in normal1 form.

• Any negated conjunct of Φ is tuple-biconnected.

• For any negated conjunct ¬ϕ of Φ that is k-separable by a k-tuple s such that it
can be written in the form:

¬
(
ψ1(s,x) ∧ ψ2(s,y)

)
,

and, for any existential k-ary relation X in σT , Φ contains precisely one of the two
following negated conjuncts:

¬
(
ψ1(s,x) ∧ R(s) ∧ X(s)

)
,

¬
(
ψ2(s,y) ∧ R(s) ∧ X(s)

)
.

• Any σT colour must uniquely define the σV colours of the tuple elements. That is,
if there are two negated conjuncts

¬
(
ϕ1 ∧ R(x1) ∧ X(x1)

)
and ¬

(
ϕ2 ∧ R(x2) ∧ X(x2)

)
that contain similarly coloured R-atoms, then, for any i in [k] and for any M in σV ,
ϕ1 contains the atom M(xi1) if and only if ϕ2 contains the atom M(xi2). Here, xi1
and xi2 are the elements at the ith coordinates of x1 and x2 correspondingly.

Proposition 5.2.2. For any connected τ -sentence Φ in MMSNP2 there is a connected
τ -sentence Ψ in MMSNP2 such that Ψ is in normal2 form and logically equivalent to Φ.
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Proof. In order to satisfy the fourth condition of normal2 form, we replace any σT -relation
X with |σV |k relations of the set{

X(M1,...,Mk) | i ∈ [k], Mi ∈ σV
}
.

Within every negated conjunct, we replace an atom X(x) with X(M1,...,Mk)(x) if the con-
junct also contains an atom Mi(xi), for any i in [k].

Next, we transform Φ to a logically equivalent sentence in normal1 form, this is pro-
vided by Proposition 4.2.2. Denote the mapping that transforms a sentence to normal1
form by nf1 : MMSNP2 ! MMSNP2. Since now, we can assume that Φ is in normal1
form, as we can set Φ := nf1(Φ). Notice that nf1 preserves the fourth condition of the
normal2 form property.

It remains to achieve the second and the third conditions. Let ¬ϕ1, . . . ,¬ϕs be negated
conjuncts of Φ such that they are k-separable, where k is the arity of R in τ , and that
they have the maximal number of variables, denoted by N , and that they violate the third
condition of the normal2 form property. Some of them also are not tuple-biconnected.
Denote the current sentence Φ by ΦN . Below, we transform ΦN to an equivalent sentence
in normal1 form, where any k-separable negated conjunct violating the third condition has
strictly less than N variables. Hence, we can obtain, in finitely many steps, an equivalent
sentence Ψ := Φ0 that is in normal2 form.

We now describe the procedure that is applied to each of these negated conjuncts until
all the non-tuple-biconnected conjuncts are removed and all of the rest satisfy the third
condition. Pick any k-separable negated conjunct ¬ϕi from ¬ϕ1, . . . ,¬ϕs. For any k-tuple
s that separates ¬ϕi as follows:

¬
(
ψ1(s,x) ∧ ψ2(s,y)

)
,

we add to ΦN the two following negated conjuncts (each of them contains strictly less
than N variables):

¬
(
ψ1(s,x) ∧ R(s) ∧ P(s)

)
∧ ¬
(
ψ2(s,y) ∧ R(s) ∧ ¬P(s)

)
.

Here, P is a new k-ary existential relation that we have added at this step. Adding
these conjuncts keeps the sentence logically equivalent to the original one. Because if any
of these two new negated conjuncts is violated, then either the original negated conjunct
¬ϕi is also violated or we can choose another interpretation for the relation symbol P
and satisfy both negated conjuncts. Also, if ¬ϕi is connected, then both new negated
conjuncts are connected.

If ¬ϕi is not tuple-biconnected with respect to s, that is, if it can be written as
¬
(
ψi
1(xi, s) ∧ R(s) ∧ ψi

2(s,yi)
)
, then we remove it from Φ.

We do this procedure for every k-separating tuple of every negated conjunct ϕ1, . . . , ϕs.
Observe that we have extended the existential signature with new relation symbols, e.g. P.
The number of them is bounded by some constant depending on ΦN . The fourth normal2
condition is satisfied as, for any new relation symbol P there is a unique non-negated
P-atom.

Apply now the transformation nf1 to this sentence. Denote the result by ΦN ′ . This
sentence is in normal1 form, it is logically equivalent to Φ, and any negated conjunct that
violates the second or the third normal2 form property contains at most N ′ variables,
where N ′ is strictly smaller than N . We repeat this procedure for ΦN ′ , and in at most N ′
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iterations we obtain Ψ := Φ0 such that any negated conjunct satisfies the second and the
third normal2 form conditions.

Example 5.2.3. Let ¬ϕi are associated with a 4-cycle, where the relation R is binary. Then
¬ϕi is 2-separable, however it is tuple-biconnected. It can be separated by four different
tuples that create eight new graphs, however, each of them is 2-inseparable. See Figure 5.7
on page 117. △

Figure 5.7: F, corresponding to ϕi, is on the left. On the right, the eight structures obtained from F by
separating it in two in the all possible ways. The corresponding eight negated conjuncts are added to the
sentence when we transform it to normal2 form. Dashed arcs mean negated existential atomic formulae.

In the rest of this section we discuss the new opportunities that we have when Φ is in
normal2 form. Consider Figure 5.8 on page 117.

Suppose that some of the negated conjuncts of Φ encode triangles (e.g., C3). Then
the relational signature ρ from Proposition 5.2.1 would contain a 6-ary relation symbol △
corresponding to the triangle. In the proof of Proposition 5.2.1, the ρ-structure S′ cannot
contain two △-tuples that share an arc, as on Figure 5.8. Because, in this case, the girth
is at most 2. But, if the sentence Φ is in normal2 form, then two tuples are allowed to
share a whole arc. If some negated conjunct of Φ encodes a structure from Figure 5.9 on
page 118. then ρ must contain a 8-ary relation symbol □ corresponding to this structure.
Observe that on Figure 5.8 there is a □-tuple implicitly contained in the union of two
triangles. But, by the condition of normal2 form, it is forbidden to assign colours to these
two △-tuples such that the implicit □-tuple has a forbidden colouring.

We can conclude that it is not necessary anymore for S′ to have large girth. We need
to define a new metric that is more appropriate in our case. Recall that the relation
symbols of ρ are associated with τ̃ -reducts of forbidden structures.

Definition 18. Let S be a ρ-structure and x,y be two relational ρ-tuples. We say that
x and y are V-adjacent if there is an implicit V-vertex z that is contained in both of the

Figure 5.8: Two triangles share an arc.
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Figure 5.9: An implicit □-tuple contained on Figure 5.8.

Figure 5.10: An example of a ρ-structure. The red ρ-tuples (triangles) highlight a tuple-cycle of the
minimal length.

tuples, and if no other vertex is shared by the tuples. We say that x and y are T -adjacent
if there is an implicit R̃-tuple z that is an implicit R̃-tuple of both ρ-tuples x and y, and
if x and y do not share any other vertices.

A sequence of ρ-tuples x1, . . . ,xn is called a tuple-cycle if, for i in [n − 1], xi and
xi+1 are either V-adjacent or T -adjacent, and similarly for xn and x1. The length of a
tuple-cycle is simply the number of tuples in the sequence. A structure S is said to have
tuple-girth be equal to l, for l in N, if S has a tuple-cycle of length l and if it has no
tuple-cycle of length less than l.

Example 5.2.4. Consider Figure 5.10 on page 118. It is a ρ-structure that contains △-
tuples. Some of the tuples are T -adjacent, some are V-adjacent. The original girth of this
structure is equal to 2. The tuple-girth is equal to 6. A cycle of the minimal length is
highlighted with the red triangles. △

At last, we explain the fourth condition of the normal2 form property. This condition
requires that a σT -relation X uniquely determines the σV-relations that are assigned to
elements of a tuple from X.

Definition 19. We say that implicit R̃-tuples (t,v1) and (t,v2) of a ρ-structure A are
duplicated if v1 ̸= v2. Two implicit tuples (t1,v) and (t2,v) of A are called multiple if
t1 ̸= t2.

Observation 1. Let Φ be an MMSNP2 sentence in normal2 form. Let TΦ̃ be the corre-
sponding finite CSP ρ-structure. Then TΦ̃ does not contain implicit duplicated tuples.
Though, TΦ̃ still may contain multiple implicit tuples which makes our situation more
difficult.
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5.3 Expanders

Further, we consider the following problem. Being able to solve it is sufficient to prove
the dichotomy property for MMSNP2.

Problem 1. Let T be a ρ-structure without duplicated implicit tuples. Then, for any
ρ-structure S and for any l in N, one can construct in time polynomial in |S| a ρ-structure
S′ of tuple-girth at least l and without duplicated implicit R̃-tuples such that there is a
homomorphism h : S! T if and only if there is a homomorphism h′ : S′ ! T.

S′

S T

h′

h

Remark. The name of this section contains the word expander because of the ε-expander
property that is very useful in our situation. This property is given by Kun in [Kun13],
where he proves that the structure S′ of Feder and Vardi’s Lemma 5.1.4 can be constructed
by a deterministic P-time algorithm. Roughly speaking, this property estimates how
closely to a uniform distribution the relational tuples are distributed. More precisely, let
A be a ρ-structure and let ε > 0. Then A is called an ε-expander if, for any S in ρ of arity
m and for any subsets A1, . . . , Am of A, we have∣∣∣∣|S(A1, . . . , Am)| −

|A1| × · · · × |Am|
|A|m

|SA|
∣∣∣∣ < ε|SA|,

where S(A1, . . . , Am) denotes the set of S-tuples imposed on the subsets A1, . . . , Am. This
formula states that the difference between the actual number of tuples imposed on the
subsets differs from their expected number under the uniform distribution by a small
proportion of the total number of tuples.

Further in this section we consider different approaches that can be used in order to
solve the problem. We explain every time why the approach can not be used to solve
Problem 1.

V-vertex expander

Let ρV be a signature obtained from ρ such that, for every S in ρ of arity (mT ,mV)
there is a relation symbol SV in ρV of arity mV . For any ρ-structure A with the domain
A = AT ⊎ AV , denote by AV a ρV-structure with the domain AV such that, for any SV in
ρV and for any v in AmV

V , the tuple v belongs to SAV

V if and only if (t,v) ∈ SA for some
t ∈ AmT

T .
Now we explain how to obtain the structure S′ for a given input structure S and

target structure T. After that, we discuss if it is a good candidate for Problem 1.

Construction 15. For two given ρ-structures S and T, we consider the corresponding
ρV-structures SV and TV . In this case, we can find a ρV-structure S′

V of large girth that
is equivalent to SV with respect to CSP(TV), by Feder and Vardi’s Lemma 5.1.4. And
then we return to the signature ρ by adding T -vertices: for every SV-tuple v of every SV

in ρV , we introduce a tuple t of pairwise distinct new T -vertices and require that (t,v)
belongs to SS′ . This finishes Construction 15.
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This approach does not work because T may contain multiple tuples.
Counterexample 5.3.1. Let S and T be the same as S and TΦ̃ in Proposition 5.2.1 from
Section 5.2, see Figure 5.11 on page 120. Then, S does not map to T, but any S′ obtained
from S by Construction 15 maps to T.

a

b

c

d

ab

bc

caca′

dc

ad

TΦ̃

bd db

x

y

z

w

xy

yz

zx

wz

xw

S

yw wy

Figure 5.11: A counterexample for the V-vertex expander strategy.

T-vertex expander

Let ρT be a signature obtained from ρ in a similar way as ρV is obtained for V-vertex
expanders. That is, for every S ∈ ρ of arity k = mT +mV , we introduce a relation symbol
ST ∈ ρT of arity mT . And for any ρ-structure A with the domain AT ⊎ AV , we denote by
AT a ρT -structure with the domain AT such that, for any ST ∈ ρT and any t ∈ AmT

T , the
tuple t belongs to the relation SAT

T if and only if (t,v) is contained in SA for some tuple
v ∈ AmV

V .

Construction 16. One can treat the structure AT similarly to the structure AV . For
given ρ-structures S,T we consider ρT -structures ST ,TT and find a structure S′

T such
that it satisfies the conditions of Feder and Vardi’s Lemma 5.1.4 over the signature ρT .
Then, we add V-vertices to S′

T in order to obtain the desired ρ-structure S′. At first,
we add to S′ all the vertices of S′

T , they make the set of implicit T -vertices. Let t be a
ST -tuple of S′

T , for some ST in ρT . Suppose that the arity of ST is mT , and the arity of the
corresponding ρ-relation S is (mT ,mV). For t, we add mV new pairwise distinct vertices v,
they become implicit V-vertices, and we add the tuple (t,v) to the relation SS′ . Do this
procedure for any tuple t of any ρT -relation of S′

T . If an implicit T -vertex t is contained
in more than one ρ-tuple, then it is contained in a pair of duplicated implicit R̃-tuples.
For any such pair (t,v1) and (t,v2), we identify v1 and v2 in the coordinate-wise fashion.

Counterexample 5.3.2. Suppose that S contains two relational tuples (t1,v1), (t2,v2) such
that t1∩t2 = ∅ and v1∩v2 ̸= ∅. Then, during the construction of ST , the corresponding
tuples share no elements. Thus, none of them intersect in S′ neither. We can consider a
case where any two tuples of S can only share some V-vertices but not T -vertices. Then,
all ST ,S

′
T and S′ consist of pairwise disjoint tuples, for any choice of TΦ̃. This means

that, for some TΦ̃, S and S′ are not equivalent with respect to having a homomorphism
to TΦ̃.

TV-expanders

In this part, we construct the structure S′ directly from S unlike V-vertex expanders and
T -vertex expanders. We use the same approach as in Feder and Vardi’s Lemma 5.1.4: we
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tv1
t v2

t

(t1,v1) (t2,v2)

S′

t vt

S′/eq

(t1,v1) (t2,v2)

Figure 5.12: To the left, there are duplicated implicit tuples in S′. Tuples (t1,v1) and (t2,v2) share one
T -vertex t but not the V-vertices of the corresponding implicit tuples v1

T ,v
2
T . To the right, there is the

result of their identification within S′/eq that does not have duplicated implicit tuples.

substitute every vertex s of the domain S of S by a set Xs of vertices and then, for any
tuple (t1, . . . , tmT

, v1, . . . , vmV
) of S, we randomly impose tuples on the sets Xt1 , . . . , XvmV

.
The resulting structure S′ has large tuple-girth, as the tuple-girth is always at least

as large as the girth. But S′ does not look exactly as what we want. Particularly, it has
duplicated implicit R̃-tuples, i.e., it contains tuples that have some T -vertex t in common
but that do not share the V-vertices vT of the corresponding implicit tuple (t,vT ), see the
left part of Figure 5.12 on page 121. This is a problem because the ρ-structure S′ should
be associated with some τ̃ -structure. If the target structure TΦ̃ does not have duplicated
implicit R̃-tuples, then, for any structure S′, one can construct in time polynomial in
the size of S′ a ρ-structure S′/eq that is equivalent to S′ with respect to CSP(TΦ̃) and
that does not have duplicated implicit R̃-tuples. Here, eq is the minimal by inclusion
equivalence relation over S ′ such that two V-vertices v1, v2 are equivalent if there is a
T -vertex t and two implicit R̃-tuples (t,v1), (t,v2), where v1 and v2 are on the same
coordinate. The quotient does not have duplicated implicit R̃-tuples.

On one hand, the structure S′/eq does not have duplicated tuples. But, on the other
hand, we still can not derive a τ̃ -structure from it because taking a quotient might make
the tuple-girth smaller. In the rest of this section we estimate how many new cycles of
short length appear after taking the quotient.

For simplicity, we consider a particular case when τ̃ = {E(·, ·)} and ρ = {S(·, ·, ·, ·, ·, ·)}.
Here, S is a (3, 3)-ary relation that represents a triangle. We are going to consider a
cycle of length n in a ρ-structure S′ and calculate the probability that, after taking the
quotient S′/eq, this cycle contains a subcycle of length at most l, for some fixed l. Let
the cycle consist of tuples (t1,v1), . . . , (tn,vn) such that, for each two neighbour tuples
(ti,vi), (ti+1,vi+1) there is a unique vertex x that is contained either in both ti, ti+1 or
in both vi,vi+1. This means that tuples intersect correctly with respect to the partition
into implicit T - and V-vertices: a vertex cannot be simultaneously an implicit T -vertex
and an implicit V-vertex. We also make an assumption that the way how two neighbour
tuples intersect is uniformly arbitrary: say that in a tuple (ti,vi) we randomly choose a
vertex (with the same probability for each vertex) and if it appears to be a T -vertex, then
we also randomly choose a T -vertex in (ti+1,vi+1) and identify these two.

It is important how exactly neighbour tuples touch. Suppose that a tuple (ti,vi) =
(ta, tb, tc, a, b, c) of the cycle touches the precedent tuple (ti−1,vi−1) by a T -vertex, say,
by ta. Then there are 5 different cases, see Figure 5.14 on page 123, how the next tuple
(ti+1,vi+1) can touch (ti,vi):

• ‘tDv’: by the V-vertex a, in this case, taking the quotient does not reduce the cycle
length;

• ‘tLv’: by the V-vertex b, in this case, the (i+1)th tuple touches the (i− 1)th tuple
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Figure 5.13: A finite automaton that accepts a word if and only if it is associated with a sequence of
tuples. The starting state is s0, the accepting state is s1.

after taking the quotient;

• ‘tRv’: by the V-vertex c, in this case, the (i+1)th tuple touches the (i− 1)th tuple
after taking the quotient;

• ‘tLt’: by the T -vertex tc, in this case, the (i+1)th tuple touches the (i− 1)th tuple
after taking the quotient;

• ‘tRt’: by the T -vertex tb, in this case, the (i+1)th tuple touches the (i− 1)th tuple
after taking the quotient.

Sequences of tuples can be encoded by a regular language L ⊂ {t, v,D, L,R}∗. A
finite automaton displayed on Figure 5.13 on page 122 defines this language. A string of
symbols of {t, v,D, L,R} belongs to L if and only if any odd symbol is either t or v, and
any even symbol is either D, L, or R.

Suppose that a tuple (ti,vi) = (ta, tb, tc, a, b, c) touches the precedent tuple (ti−1,vi−1)
by a V-vertex, say, by a. Then there are 3 different cases, see Figure 5.15 on page 123,
how the next tuple (ti−1,vi−1) may touch (ti,vi):

• ‘vDv’ or ‘vDt’: by the V-vertex b or c or by the T -vertex ta correspondingly, in each
of these cases, the cycle length is not reduced by taking the quotient;

• ‘vLt’: by the T -vertex tc, or

• ‘vRt’: by the T -vertex tb, in both of these cases, the (i + 1)th tuple touches the
(i− 1)th tuple.

Every case has its own label. The first lower-case letter explains how the (i − 1)th
tuple touches the ith one: either by a T -vertex (t) or by a V-vertex (v). The upper-case
letter describes which side of the ith triangle touches the (i+1)th one: left (L), right (R),
or the distant side (D). The last lower-case letter precises if the ith and (i+ 1)th tuples
touch either by a T -vertex (t) or by a V-vertex (v).

After giving a label to each triangle, depending on how it touches the precedent and the
next triangles, we can represent any such cycle by a word. And we can characterize how
each combination of labels reduces the length. Consider an example given on Figure 5.16
on page 123.

Observe that for a sequence of tuples there is a unique word, but for the same word
there may be more than one different sequence of tuples. However, they all have the
same length even after taking the quotient. We are going to consider all possible cases
how the addition of the next tuple changes the length of the sequence in the quotient.
And to provide an upper bound for the probability that, after increasing the sequence by
one more tuple, the length of the sequence increases once we identify all the duplicated
implicit tuples.
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Figure 5.14: Five cases how the (i+1)the tuple can touch the ith tuple if the (i− 1)th and the ith tuples
intersect by a T -vertex. Light blue zones between two implicit edges mean that they are duplicated.

vLt vRtvDv and vDt

i− 1

ii+ 1

i+ 1

i+ 1

i+ 1

i

i− 1 i− 1

i

i+ 1

Figure 5.15: Three cases how the (i+1)the tuple can touch the ith tuple if the (i−1)th and the ith tuples
intersect by a V-vertex. Light blue zones between two implicit edges mean that they are duplicated.

a

b

Figure 5.16: A sequence of S-tuples corresponding to the word tLtRtLtRtLvRtLtRtRtRtDvDvDt. Grey
triangles make the shortest path between a and b after taking the quotient. Light blue zones between
two implicit edges mean that they are duplicated.
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• If a word ends with tLt, then adding Lt or Lv does not increase the length because
the last two tuples intersect the same tuples. If we assume that adding each label
has equal probability 1

5
, then the black triangle is added with probability at most

3
5
. The case for tRt is similar.

• If a word ends with tLv, then adding Lt or Rt does not increase the length because
the newly added tuple intersects the same tuples as the previous one. Thus, the
length increases with probability at most 3

5
. The case for tRv is similar.

• If a word ends with vLt, then adding Lt or Lv does not add a new black triangle.
The probability that the length increases is at most 3

5
. The case for vRt is similar.

• If a word ends with tDv or with vDv, then adding Lt or Rt does not add a black
triangle. Thus, the probability is again at most 3

5
.

• If a word ends with vDt then adding anything but Dv does not add a black triangle,
thus the probability is at most 1

5
so we can assume that it is at most 3

5
.

Let p ≤ 3
5
. Let X =

∑k
i=0Xi, where k denotes the number of tuples in the sequence,

and Xis are independent random values that take values in {0, 1} such that, for all i in
[k], we have Pr(Xi = 1) = p. Below, we write the probability that a sequence, having
length k before taking the quotient, has length at most l after taking the quotient:

Pr(X < l) =
l∑

i=0

(
n

l

)
pi(1− p)k−i.

The smaller the value of p, the greater this probability becomes. So this probability
is minimal when p = 3

5
. This implies the following lower bound:

Pr(X < l) >
l∑

i=0

(
n

l

)(
3

5

)i(
2

5

)k−i

>

(
2

5

)k

.

Consider a random ρ-structure S′, as in the proof of Lemma 5.1.4, with the domain
of size n, where, as every relation has 6 coordinates, the probability that for given 3 T -
vertices and 3 V-vertices there is a tuple on them is nε

n5 , where ε > 0 is fixed. We want
to compute the expected number of cycles on k vertices, for some natural number k. We
use the following information in order to do this:

•
(
n
k

)
– the number of ways to choose k vertices that make the cycle;

• k!
2k

– the number of different cycles consisting of k elements;

• (n− k) . . . (n− 5k + 1) – the number of ways to choose the vertices that belong to
some tuple but do not participate in the cycle;

•
(

n1+ε

n6

)k
– the probability that every of the k tuples of the cycle is present.

The expected number of cycles of length k is the product of these four values.(
n

k

)
k!

2k
(n− k) . . . (n− 5k + 1)

nεk

n5k
=

n!

2k(n− 5k)!
· n

εk

n5k
(5.1)
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Stirling’s formula states that n! ∼
√
2πn

(
n
e

)n, so the expected number of such cycles
transforms as follows.

nn

2ke5k(n− 5k)n−5k
· n

εk

n5k
=

1

2ke5k
·
(
1 +

5k

n− 5k

)n−5k

· nεk > nε′k.

Here, ε′ in (0, ε) is a fixed value such that n(ε−ε′)k > 2ke5k, for any k < ⌊n/5⌋ and n
large enough.

So, the expected number of cycles that have length k within S′ and that have length
at most l within the quotient S′/eq is at least

(
2
5

)k
nε′k, so it belongs to Ω(nε′′k), where

ε′′ in (0, ε′) is a constant such that n(ε′−ε′′)k >
(
5
2

)k, for all k < ⌊n/5⌋ and n large enough.
As k can take values up to ⌊n/5⌋, we conclude that the number of cycles that become
short in the quotient is greater than the number of tuples in S′, so we cannot guarantee
that we can remove all short cycles from S′/eq by removing O(nεl) tuples as in the proof
of Lemma 5.1.4.

Regular graphs

A graph is regular if all the vertices have the same degree, i.e., if there exists d ∈ N such
that for any vertex there are exactly d edges adjacent to it. If G is a graph, then a graph
LG is called the line graph of G if its vertex set LG = EG is the edge set of G and two
vertices e1, e2 ∈ LG are adjacent if the corresponding edges share a common point in G.

In this part, we introduce two properties such that if a graph satisfies them, then one
could use this graph for proving the dichotomy of MMSNP2. The first property is used in
the deterministic proof of the equivalence between CSP and MMSNP of Kun in [Kun13].

Property 1 (ε-expander). Let G be a graph. For two subsets S, T ⊆ G, denote by
E(S, T ) the subset of EG of edges with one end in S and the other in T . Then G is called
ε-expander if it satisfies the following condition, for any subsets S, T ⊆ G:∣∣∣∣|E(S, T )| − |S||T |

|G|2
|EG|

∣∣∣∣ < ε|EG|. (5.2)

The second property appears from the difference between MMSNP and MMSNP2 and
from the construction of an ε-expander structure from a regular graph in [Kun13].

Property 2. Let G be a graph. Let TG be a graph with its vertex set TG consisting of all
the triangles of G. Two vertices t1, t2 ∈ TG are adjacent if the corresponding two triangles
of G have two vertices out of three in common. TG is called the triangle graph of G. The
graph G is called an ε-triangle-expander if TG is an ε-expander.

Property 1 is well-studied and there are numerous examples of graphs that satisfy it.
Despite, Property 2 is introduced here for the first time. We could provide an example of
a graph that is an ε-triangle-expander.

Example 5.3.1. Let G be a graph with the domain {a, b, c1, . . . , cn}. The set of edges EG

is {ab, ac1, bc1, . . . , acn, bcn}. Then any triangle is of the form abci and every two triangles
have the edge ab in common. Thus, TG = Kn is the clique on n vertices. △
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Figure 5.17: An example of a graph G whose triangle graph TG is a clique.

Our goal is to obtain a relational structure over a relational signature with symbols
of large arity from a graph, similarly to what is made in Kun’s paper [Kun13]. However,
he does not consider triangles, he constructs relational tuples of arity k from paths of the
length k within a regular graph. And the resulting relational structure satisfies Property 1
which is sufficient for him. This is not sufficient for us as we need to take into the account
Property 2 as well.

We are going to show that the approach of Kun fails to satisfy Property 2. For
simplicity, we consider a particular case, when the corresponding relational structure
has one ternary symbol (that is associated with a triangle). In order to construct an
ε-expander, Kun takes some regular graph G with a small enough value of λ2

d
, where λ2

denotes the second largest eigenvalue (with respect to its absolute value) of the adjacency
matrix of G and d denotes the degree of any vertex of the graph. The value λ2

d
is called

the eigenvalue gap of G.
The following proposition shows that if one constructs TG by considering paths of

length 2 instead of triangles, then no graph G can satisfy both Property 1 and Property 2
at the same time.

Proposition 5.3.1. Let G be a regular graph of degree d, with second largest eigenvalue
λ2. Also suppose that G has girth at least 5 so that saying that two paths of length 2 share
two vertices is equivalent to saying that these two paths share an edge. Let LG be the line
graph of G. And let TG be a graph with the domain TG = {abc | ab, bc ∈ EG} consisting
of all the paths of length 2 in G. And there is an edge between two vertices a1a2a3 and
b1b2b3 of TG if |{a1, a2, a3}∩{b1, b2, b3}| = 2. Then, the eigenvalue gap of TG is at least 3

4
.

Proof. Recall that, for a graph G on n vertices and with m edges, the adjacency matrix
AG is an n×n matrix where aij = 1, if ij ∈ EG, and aij = 0, otherwise. And the incidence
matrix of G is an n×m matrix XG where xve = 1, if the edge e is incident to the vertex
v, and xve = 0, otherwise.

It is known that XGXt
G = AG + dIn where In is the incidence matrix of size n. Also,

Xt
GXG = ALG

+ 2(d− 1)Im, where LG is the line graph of G.
There is a proof of Sachs that shows how the characteristic polynomials of AG and ALG

are related to each other, in the book “Algebraic Graph Theory” of Biggs [Big74]. Two
matrices are considered:

U =

(
λIn −XG

0 Im

)
, V =

(
In XG

Xt
G λIm

)
.

These matrices provide the following fact about the characteristic polynomials of XG

and XLG
:

det(UV) = det(VU) ⇔ λm det(λIn − XGXt
G) = λn det(λIm − Xt

GXG) ⇔
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⇔ λm det
(
(λ−d)In−AG

)
= λn det

(
(λ−2)Im−ALG

)
⇔ (λ+2)m−nχG(λ−d+2) = χLG

(λ).

Characteristic polynomials are useful if one needs to compute the second largest eigen-
value. So, in order to finish the proof, we need to compute the characteristic polynomial
of TG. Firstly, in a d-regular graph the number of edges equals m = nd

2
, and the number

of paths of length 2 equals m2 :=
nd(d−1)

2
. Let X∆ be an m×m2 matrix, where every row

is associated with an edge of G and every column is associated with a path of length 2,
X∆[e, p] = 1, if the edge e belongs to the path p, and it equals 0, otherwise. Observe that
ATG

= Xt
∆X∆ − 2Im2 and ALG

= X∆Xt
∆ − 2(d− 1)Im as every edge is contained in exactly

2(d−1) paths. For every path there are exactly (d−1)+2(d−2)+(d−1) = 2(2d−3) other
paths that share an edge with it. Hence, the degree of every vertex of TG is 2(2d − 3).
Using the similar approach as above we get:

χTG
(λ) = det(λIm2 − ATG

) = det
(
(λ+ 2)Im2 − Xt

∆X∆

)
=

= (λ+ 2)m2−m det
(
(λ+ 2)Im − X∆Xt

∆

)
=

= (λ+ 2)m2−m det
(
(λ− 2d+ 4)Im − ALG

)
=

= (λ+ 2)m2−mχLG
(λ− 2d+ 4) = (λ+ 2)m2−nχG

(
λ− 3(d− 2)

)
.

Thus, the second largest eigenvalue of TG is λ2 + 3(d − 2), therefore, the eigenvalue
gap of TG is λ2+3(d−2)

2(2d−3)
that cannot be smaller than 3(d−2)

2(2d−3)
≈ 3

4
.

As we need the eigenvalue gap to be arbitrarily small, this approach is not useful for
us.
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Chapter 6

Matrix Partition

We consider an extension of CSP which is called Matrix Partition problems (MP). We
mainly study its generalisations by manipulating the containments of the problem input
and by considering problems over arbitrary relational signatures. We show how these
generalisations are related to each other in terms of having a dichotomy. Being motivated
by Atserias’ characterization of FO-definable fragment of CSP by having a finitary dual-
ity in [Ats08], we study how different input extensions influence an MP problem to be
expressed by finitely many minimal obstructions. Apart from that, we provide an MP
problem which is P-time solvable with a trivial clone of polymorphisms. Finally, we pro-
vide a logic that is an extension of MMSNP and a fragment of MonadicSNP that contains
MP and that becomes a candidate to be P-time equivalent to MP.

6.1 Preliminaries

We deal mostly with labeled complete relational structures, i.e., each relation of arity k is
V k, and tuples are labeled by the elements of a partially ordered set, defined for example
in [Sta00].

Definition 20 ((∗, τ)-structures). Let (P∗,⪯∗) be a partially ordered set (poset), and τ
be a finite relational signature. A (∗, τ)-structure is a tuple G := (G;RG

1 , . . . ,R
G
n ) with

G a finite set, and for each i ∈ [n], RG
i : G

ki ! P∗ is interpreted as a mapping to the
elements of the poset.

We will always denote a (∗, τ)-structure by a boldface capital letter, e.g. A, and its
domain by the same letter in plain font, e.g. A. It is worth mentioning that the notion
of (∗, τ)-structure is different from the one in universal algebra, where in the latter case
the functional symbol Ri is interpreted in G as a function from Gki ! G.

For a (∗, τ)-structure G and X ⊆ G, the substructure of G induced by X is the (∗, τ)-
structure G′ with domain G′ = X and, for R ∈ τ of arity k and t ∈ Xk, RG′

(t) = RG(t);
and we denote by G∖X the substructure of G induced by G∖X.

We now extend the notion of homomorphism between relational structures to (∗, τ)-
structures, the difference being the ability to map a tuple to a “greater" one.

Definition 21 (homomorphism for (∗, τ)-structures). For two (∗, τ)-structures G and H,
a mapping h : G ! H is called a homomorphism from G to H if, for each R ∈ τ of arity
k, and t ∈ Gk, RG(t) ⪯∗ R

H
(
h(t)

)
.

129



As usual, we will write h : G! H to mean that h : G! H is a homomorphism from
G to H. We say that h : G! H is surjective (resp. injective) if h : G! H is surjective
(resp. injective).

We can now explain how the notion of homomorphism between (∗, τ)-structures sub-
sumes the usual ones. Before, let us recall the partial orders we consider in this thesis.

• (P01,⪯01), where P01 = {0, 1} and ⪯01 is the empty order with 0 and 1 incomparable.

• (PCSP,⪯CSP), where PCSP = {0, 1} and ⪯CSP is a total order with 0 ⪯CSP 1.

• (P⋆,⪯⋆), where P⋆ = {0, 1, ⋆} and ⪯⋆ is the poset with 0 ⪯⋆ ⋆ and 1 ⪯⋆ ⋆, and 0
incomparable with 1.

• (P∅,⪯∅) where P∅ = {∅, 0, 1, ⋆} and ⪯∅ is the poset with ∅ ⪯∅ 0 ⪯∅ ⋆ and
∅ ⪯∅ 1 ⪯∅ ⋆, and 0 incomparable with 1.

Remark. If the signature τ is clear from the context, then we will just write ∗-structure
instead of (∗, τ)-structure, for ∗ ∈ {01, ⋆,∅}. Also, if τ = {E(·, ·)}, then we will write
∗-graph instead. Finally, we will talk about relational τ -structures and directed graphs,
instead of (CSP, τ)-structures and CSP-graphs. Furthermore, for any tuple (arc) t ∈ Ak

of a ∗-structure (∗-graph) A corresponding to a symbol R in τ that is clear from the
context, we will call t a p-tuple (p-arc) if RA(t) = p for some element p of the poset
(P∗,⪯∗).

It is not hard to check that (CSP, τ)-structures are exactly associated with the usual
notion of relational τ -structures, and homomorphisms between (CSP, τ)-structures to
usual homomorphisms. Notice that homomorphisms between (01, τ)-structures are ex-
actly full homomorphisms on relational structures.

Proposition 6.1.1. Let (P∗,⪯∗) and (P∗′ ,⪯∗′) be two posets, with (P∗,⪯∗) a sub-poset
of (P∗′ ,⪯∗′). Then every (∗, τ)-structure is also a (∗′, τ)-structure, for any τ .

Particularly, for any τ , every (01, τ)-structure is a (⋆, τ)-structure, and every (⋆, τ)-
structure is a (∅, τ)-structure. For ∗ ∈ {01, ⋆,∅}, we denote by Struct∗[τ ] the set of all
(∗, τ)-structures. We use the notation Struct∗ because one can use (∗, τ)-structures as
objects and homomorphisms as arrows to make a category. From the proposition above,
and the definitions of (P01,⪯01), (P⋆,⪯⋆) and (P∅,⪯∅), we have the following inclusion:

Struct01[τ ] ⊂ Struct⋆[τ ] ⊂ Struct∅[τ ].

We can now define the homomorphism problems, that we restrict for conciseness to
the four posets: (P01,⪯01), (P⋆,⪯⋆), (P∅,⪯∅), (PCSP,⪯CSP).

Definition 22. Let τ be a finite signature and ∗ ∈ {01, ⋆}. For a ⋆-structure H, the
problem MPτ

∗(H) denotes the set of all ∗-structures G such that there exists a homo-
morphism h : G ! H. If H is a CSP-structure, then we write CSPτ (H) as the set of all
CSP-structures G such that there exists a homomorphism h : G ! H. We always omit
subscript 01 in MPτ

01(H).
The set of all ∅-structures G such that there is a homomorphism h : G! H, with H

a ∅-structure, is denoted by MPτ
∅(H).
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By MPτ , MPτ
⋆, MPτ

∅ and CSPτ we denote, respectively, the families of problems
MPτ (H), MPτ

⋆(H), MPτ
∅(H) and CSPτ (H), for all ⋆-structures H. For CSPτ (H) we of

course demand that H is a relational τ -structure, and for MPτ
∅(H), we consider H to be

a (∅, τ)-structure. If τ = {E(·, ·)} – the directed graph signature, then we will omit the
τ -superscript and will just write MP, MP⋆, MP∅ and CSP.

Remark. All along the thesis, whenever we consider a problem MPτ
∗(H), for ∗ ∈ {01, ⋆,∅},

we consider that there is no x ∈ H such that for all R ∈ τ , R(x, . . . , x) = ⋆. Otherwise,
the problem is trivial as then MPτ

∗(H) equals Structτ∗.

Notice that as every 01-structure is also a ⋆-structure, and every ⋆-structure is also a
∅-structure, our problems are well defined.

Example 6.1.1. Let H be as on Figure 6.1 on page 131. We can define three problems:
MP(H),MP⋆(H), and MP∅(H). The first one takes an input directed graph and checks if
all the loopless vertices induce an independent set, if all the vertices with loops induce a
clique, and if there is an arc from any vertex with a loop to any loopless one. The second
one takes an input ⋆-graph and checks if all vertices with 0-loops induce an independent
set, if all the vertices with 1-loops induce a clique, and if there is a 1-arc from any vertex
with a 1-loop to any with a 0-loop. The third problem checks if there is a partition of the
domain of an input ∅-graph G in two parts G0, G1 such that

• for all x, y in G0, we have EG(x, y) ∈ {∅, 0}, or equivalently EG(x, y) ⪯∅ 0;

• for all x, y in G1, we have EG(x, y) ⪯∅ 1, and

• for all x in G1, y in G0, we have EG(x, y) ⪯∅ 1.

?

1

10

Figure 6.1: An example of a ⋆-graph H.

△

Nuance in the definition

The original definition of Matrix Partition problem is as follows. Further, we explain why
this definition is inconvenient for some questions that we consider.

Definition 23 (Matrix Partitions [FHX07]). Let M be a an n×n-matrix with entries on
{0, 1, ⋆}. A loopless graph G admits an M-partition if there is a function m : G ! [n]
such that for all distinct x, y ∈ G, EG(x, y) ⪯⋆ M[m(x),m(y)].

There are some differences between the definition of M-partition in [FHX07] and the
definition of MP(H). Unlike Feder and Hell, we consider all possible graphs in the input,
not only the loopless ones. Thus, we consider every two vertices that are not necessarily
distinct, however, Feder and Hell consider every two distinct ones.
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We can put 01-graphs and ⋆-graphs into the same category. For convenience, we
want to consider directed graphs and ⋆-graphs as objects of the same category Struct⋆.
In this case, directed graphs become 01-graphs, according to the definition of MP. Mor-
phisms (arrows) of any category must be transitive. Our definition permits to put di-
graphs as 01-graphs into the same category as trigraphs, where a morphism between two
01-graphs represents a full homomorphism between the corresponding digraphs. Full ho-
momorphisms are transitive. But they are not transitive in the case of Feder and Hell,
we justify it in Example 6.1.2.

Example 6.1.2. Consider three 01-graphs: K2,2, K2, and L. They are displayed on Fig-
ure 6.2. Each edge is 1 and each non-edge is 0 within the corresponding partition matrices.
K2,2 admits K2-partition, where the 2 parts of K2,2 are exactly the partition classes. And

K2,2 K2 L

Figure 6.2: The graphs from Example 6.1.2.

K2 admits L-partition, as it is a clique. But K1,2 does not admit L-partition as it is not a
clique. △

We need a less expressive logic for our definition. Feder and Hell’s definition
requires more expressivity from logical sentences that describe their problems, as they
have to use inequalities. When, at the same time, our definition does not have this
constraint. In Example 6.1.3, we construct MonadicSNP sentences that describe both
problem variations about the same ⋆-graph.

Example 6.1.3. Let H be a ⋆-graph with the 2-element domain: H = {a, b}, and with
E interpreted as follows: EH(a, a) = EH(a, b) = 0, EH(b, b) = 1, and EH(b, a) = ⋆. Then
the corresponding Matrix Partition problem of Feder and Hell can be formulated by the
sentence:

∃M1,M2 ∀x, y

(
¬
(
¬M1(x) ∧ ¬M2(x)

)
∧¬
(
M1(x) ∧M2(x)

) )∧

 ¬
(
M1(x) ∧M1(y) ∧ x ̸= y ∧ E(x, y)

)
∧¬
(
M1(x) ∧M2(y) ∧ x ̸= y ∧ E(x, y)

)
∧¬
(
M2(x) ∧M2(y) ∧ x ̸= y ∧ ¬E(x, y)

)
 .

And the problem MP(H) can be formulated by a similar sentence but without inequalities:

∃M1,M2 ∀x, y

(
¬
(
¬M1(x) ∧ ¬M2(x)

)
∧¬
(
M1(x) ∧M2(x)

) ) ∧

 ¬
(
M1(x) ∧M1(y) ∧ E(x, y)

)
∧¬
(
M1(x) ∧M2(y) ∧ E(x, y)

)
∧¬
(
M2(x) ∧M2(y) ∧ ¬E(x, y)

)
 .

△
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It is more natural to generalise according to our definition. It is natural when
a relational structure has a relational tuple of the form R(x, . . . , x). It is not clear why we
should omit all structures with such tuples. Apart from that, we show, see Section 6.3.2,
that without loss of generality we can consider only classes MPσ, where σ consists of a
unique relation symbol. The techniques used in the proof cannot be applied to show a sim-
ilar result for problems where input structures contain no tuples of the form R(x, . . . , x).

Remark. It is not known if these two definitions are give P-time equivalent classes of
problems. It can be shown that any problem MP(H) can be reduced to a list matrix
partition problem with the matrix M, where M is a |H| × |H|-matrix such that, for any
i, j in [|H|], M[i, j] = EH(hi, hj). This implies that if a list matrix partition problem is
P-time solvable, then the corresponding MP problem is also P-time solvable.

6.2 Matrix Partition and CSP

Let τ = {R1, . . . ,Rn} be a signature, the arity of each Ri denoted by ki. We prove in this
section that there is a signature τCSP such that any problem in MPτ

∅ is P-time equivalent
to a problem in CSPτCSP and vice versa, that is, MPτ

∅ ≡p CSPτCSP .
The signature τCSP is defined by repeating each symbol of τ two times, one for 0-tuples

and one for 1-tuples, ⋆-tuples will be considered as 0- and 1-tuples at the same time. Let
τCSP = {R1,0,R1,1, . . . ,Rn,0,Rn,1}, for i ∈ [n],Ri,0,Ri,1 both have arity ki.

Every ∅-structure A∅ is associated with a relational τCSP-structure ACSP with the
same domain A and the symbols Ri,0,Ri,1 of τCSP are interpreted as follows:

∀Ri ∈ τ, t ∈ Aki , j ∈ {0, 1} : RACSP
i,j (t) = 1 ⇔ j ⪯∅ R

A∅
i (t). (6.1)

Observation 2. ACSP is constructible in P-time in the size of A∅.

Observation 3. For any (∅, τ)-structure A∅, there exists a unique relational τCSP-structure
ACSP, and for any relational τCSP-structure, there exists a unique (∅, τ)-structure A∅ such
that eq. (6.1) is satisfied. That is there is a one-to-one correspondence between (∅, τ)-
structures and relational τCSP-structures.

Theorem 6.2.1. MPτ
∅ and CSPτCSP are P-time equivalent.

Proof. Let A∅ be a ∅-structure. We first prove that B∅ ∈ MPτ
∅(A∅) if and only if

BCSP ∈ CSPτCSP(ACSP).
Assume that B∅ ∈ MPτ

∅(A∅) and let h : B ! A be a homomorphism from B∅ to
A∅. We will show that the same map h is a homomorphism from BCSP to ACSP. For any
tuple t and its image h(t), we know that for any Ri,j ∈ τCSP:

RBCSP
i,j (t) = 1 ⇔ j ⪯∅ R

B∅
i (t) ⇒ j ⪯∅ R

A∅
i

(
h(t)

)
⇔ RACSP

i,j

(
h(t)

)
= 1.

Now, backwards, assume that BCSP ∈ CSPτCSP(ACSP), and let h : B ! A a homomor-
phism from BCSP to ACSP. Similarly as in the first part, for a tuple t, we know that for
all Ri ∈ τ, j ∈ {0, 1}:

j ⪯∅ R
B∅
i (t) ⇔ RBCSP

i,j (t) = 1 ⇒ RACSP
i,j

(
h(t)

)
= 1 ⇔ j ⪯∅ R

A∅
i

(
h(t)

)
.

This implies that h is a homomorphism from B∅ to A∅.
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For ∗ ∈ {01, ⋆,∅}, the notion of homomorphism between (∗, τ)-structures admits a
core notion. It generalises the notion of a core for trigraphs (⋆-graphs) given in [HN07].
For ∗ ∈ {01, ⋆,∅}, a (∗, τ)-structure C is called a core if any homomorphism h : C! C is
an isomorphism, where isomorphism between (∗, τ)-structures is the same as usual.

Proposition 6.2.2. Let ∗ ∈ {01, ⋆,∅}. Then for any (∗, τ)-structure A∗, there exists a
unique, up to isomorphism, (∗, τ)-structure C∗ such that it is a core and A∗ ⇆ C∗, and
C∗ embeds into A∗.

Proof. We know that A∗ is also a ∅-structure by Proposition 6.1.1. Then, consider the
relational τCSP-structure ACSP provided by Theorem 6.2.1. It is well-known, see [HN04],
that ACSP has the core CCSP embedded into ACSP. Let C∗ be the corresponding ∅-structure
by Theorem 6.2.1, it must also be homomorphically equivalent to A∗ and be embedded
into it. As C∗ embeds into A∗, it is also a ∗-structure. Let e : C ! C be a non-injective
endomorphism. Then the same map e will be a non-injective endomorphism of the core
CCSP which is impossible. Let C′

∗ be another core of A∗, that is not isomorphic to C∗. But
then C′

CSP must be the core of ACSP and CCSP ̸∼= C′
CSP which is impossible as CCSP is a

core.

If, for a class of problems C, C ⊆p CSP, then C has a dichotomy. We manage to
embed the class MP∅ into CSP because of the smallest element ∅. Now we show that
this happens every time when the poset (P∗,⪯∗) is a lattice.

A poset (P,⪯) is called a lattice if, for any two elements x, y in P there are two
elements:

• x ∨ y – the least upper bound, that is, for any element z, we have

x ⪯ z and y ⪯ z implies x ∨ y ⪯ z;

• x ∧ y – the greatest lower bound, that is, for any element z, we have

z ⪯ x and z ⪯ y implies z ⪯ x ∧ y.

In the rest of this section, we prove the following theorem.

Theorem 6.2.3. Let τ be a finite relational signature. Suppose that (P∗,⪯∗) is a lattice.
Then, for any (∗, τ)-structure A∗ there is a τCSP-structure ACSP such that MPτ

∗(A∗) is
P-time equivalent to CSPτCSP(ACSP), where τCSP is a finite relational signature.

We first explain how to construct ACSP from A∗.

Construction 17. The signature τCSP is constructed as follows:

τCSP :=
{
Rl | R ∈ τ, l ∈ P∗ ∖ {min}

}
,

where min denotes the minimal element of the lattice. Each Rl has the same arity as R

has.
The domain of ACSP is the same as the domain of A∗. For any k-ary R in τ , and for

any k-tuple a of the elements of A∗, for any l in P∗ ∖ {min}, a belongs to RACSP
l if and

only if RA∗ ⪰∗ l. This is the end of Construction 17.
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a b c

0

abc

Figure 6.3: The Hasse diagram of (P∗,⪯∗).

Example 6.2.1. Let (P∗,⪯∗) be as on Figure 6.3.
Let τ be the graph signature: τ = {E(·, ·)}. Then τCSP contains 4 relational symbols:

Ea,Eb,Ec, and Eabc. For a ∗-graph A∗, the structure ACSP is constructed as follows.

• For any (x, y) ∈ A2 such that EA∗(x, y) = 0, it is contained in no τCSP-relation of
ACSP.

• For any (x, y) ∈ A2 such that EA∗(x, y) = a, it is contained in EACSP
a . The cases

EA∗(x, y) = b and EA∗(x, y) = c are treated similarly.

• For any (x, y) ∈ A2 such that EA∗(x, y) = abc, it is contained in all four relations
EACSP
a ,EACSP

b ,EACSP
c ,EACSP

abc .

△
To prove Theorem 6.2.3, we need the two following propositions.

Proposition 6.2.4. Let A∗,B∗ be two (∗, τ)-structures, and ACSP,BCSP be the relational
structures that are obtained by Construction 17. Then, B∗ ! A∗ if and only if BCSP !
ACSP.

Proof. Let h : B ! A be a mapping between the domains. Pick some R-tuple b, it is
mapped to h(b). Suppose that RB∗(b) = l. By construction, we have b ∈ RBCSP

l′ , for any
l′ ⪯∗ l. Also, by construction, RA∗

(
h(b)

)
⪰∗ l if and only if h(b) is contained in RACSP

l′ ,
for any l′ ⪯∗ l. This implies that h is a homomorphism between B∗ and A∗ if and only if
it is a homomorphism between BCSP and ACSP.

Proposition 6.2.5. Let G be a finite τCSP-structure. Suppose that, for any R in τ of
arity k and for any k-ary tuple x of G, there is l in P∗ such that x belongs to RG

m, for any
m ⪯∗ l. Then there is a (∗, τ)-structure B∗ such that G = BCSP, where BCSP is obtained
from B∗ by Construction 17.

Proof. Let B∗ have the same domain as G has. For any R ∈ τ of arity k, and for any
k-ary tuple x, we put RB∗(x) = l, where l is the maximal element such that x is contained
in RG

l . Let BCSP be obtained from B∗ by Construction 17. By construction, BCSP and
G is the same structure.

Proof of Theorem 6.2.3. For a (∗, τ)-structure A∗, we construct in P-time in size of A∗,
the relational structure ACSP, by Construction 17. By Proposition 6.2.4 on page 135, we
have MPτ

∗(A∗) ≤p CSPτCSP(ACSP).
Now, consider an arbitrary relational τCSP-structure G, we will find a (∗, τ)-structure

B∗ such that G ! ACSP if and only if B∗ ! A∗. For any R in τ of arity k, consider a
k-tuple x of G. Let Xx denote the following subset of P∗:

Xx :=
{
l ∈ P∗ | x ∈ RG

l

}
.
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If there is a homomorphism g : G! ACSP, then the tuple g(x) must belong to RACSP
m , for

any m which is smaller than the least upper bound
∨
Xx of the elements of Xx. For any

such m, we add x to RG
m. Observe that, after doing this, the result can be mapped to

ACSP if and only if the original structureG can be mapped to ACSP, by the construction
of ACSP. For any other k-tuple, we do a similar operation. After that, for any k-tuple y,
Xy contains all the elements l′ such that l′ ⪯∗

∨
Xy. For any other R′ ∈ τ of arity k′, we

do a similar operation.
The structure that we obtain from G satisfies the condition from Proposition 6.2.5 on

page 135, this means that there is a (∗, τ)-structure B∗ such that G and BCSP is the same
structure. By Proposition 6.2.4, B∗ ! A∗ if and only if BCSP ! ACSP.

6.3 Generalised Matrix Partition

6.3.1 Input extension

In this section we will prove the following theorem.

Theorem 6.3.1. For any finite signature τ , MPτ and MPτ
⋆ are P-time equivalent.

In order to prove the P-time equivalence, we will show that for any ⋆-structure H,
MPτ (H) ≡p MPτ

⋆(H). We first do the proof for ⋆-graphs, and then explain how to modify
the construction for any τ . Hell and Nešetřil proved in [HN07] that for any ⋆-graph G there
is a 01-graph G01 such that G ∈ MP⋆(H) ⇔ G01 ∈ MP(H) using probabilistic arguments.
We prove the equivalence by giving a deterministic algorithm running in P-time.

In order to prove that for any ⋆-graph G, there is a 01-graph G01 such that G ∈ MP⋆(H)
if and only if G01 ∈ MP(H), we will use the notion of Hadamard matrices.

An n× n-matrix Hn, which entries are in {1,−1}, is called a Hadamard matrix if

Hn · HT
n = n · In,

where In is the identity matrix of size n, and HT is the transpose of H.
Hadamard matrices exist for any power of 2.

Lemma 6.3.2 ([Wal23]). For every positive integer n > 1, one can construct in time
2poly(n) a 2n × 2n-Hadamard matrix.

If Hn is an n× n-Hadamard matrix, that we assume its rows and columns indexed by
[n], then for any two sets A,B ⊆ [n], we denote by Hn[A,B] the submatrix of Hn, whose
rows are indexed by A and columns are indexed by B. If all the entries of Hn[A,B] are
equal, then we call Hn[A,B] a monochromatic submatrix. We will need the following to
prove that if G01 ∈ MP(H), then G ∈ MP⋆(H).

Lemma 6.3.3 ([Alo86,PRS88]). Let Hn be an n× n-Hadamard matrix, whose rows and
columns are indexed by [n]. Then, for any two disjoint sets A,B ⊆ [n], with |A| = |B| >√
n, the submatrix Hn[A,B] of Hn is not monochromatic.

Remark. We use Hadamard matrices because the distribution of 1s is close to the uni-
form one. It is not the only class that can be used in this case. Every graph with a
good expanding property, see [Alo86], would also be sufficient to prove Theorem 6.3.1.
Hadamard matrices were the first ones that we found that had this property of being close
to uniform, so we decided to use them in this thesis.
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Proof of Theorem 6.3.1. Let us first explain the case of ⋆-graphs. Let H be a ⋆-graph
with m = |H|. We will show the P-time equivalence between the problems MP(H) and
MP⋆(H).

Every 01-graph is also a ⋆-graph, so MP01(H) trivially reduces to MP⋆(H). For the
opposite direction, let us construct for every ⋆-graph G, a 01-graph G01 such that G ∈
MP⋆(H) if and only G01 ∈ MP01(H).

Let k be the smallest positive integer such that 2k > 4m2 + 1, and let H2k be the
Hadamard matrix ensured by Lemma 6.3.2. Let the domain of G01 be the disjoint union⊔

g∈G Vg, where for all g ∈ G, |Vg| = 2k. Let us enumerate the set Vg as {vg,1, . . . , vg,2k},
for each g ∈ G. Now, for each vg1,i ∈ Vg1 and vg2,j ∈ Vg2 , 1 ≤ i, j ≤ 2k,

EG01(vg1,i, vg2,j) =

{
EG(g1, g2) if EG(g1, g2) ̸= ⋆,

(H2k [i, j] + 1)/2 otherwise.

Observe that in the case EG(g1, g2) = ⋆, if H2k [i, j] = 1, then EG01(vg1,i, vg2,j) = 1, otherwise
it is equal to 0.

By construction, there exists a surjective homomorphism π : G01 ! G such that for
all g ∈ G, π(Vg) = g. If there exists a homomorphism h : G ! H, then, by transitivity,
h ◦ π : G01 ! H will be a homomorphism. Suppose that there exists a homomorphism
h01 : G01 ! H. By pigeonhole principle, for every Vg, there is a set of size at least |Vg |

m

elements of Vg that are mapped by h01 to the same element of H, and let us call it Ag ⊆ Vg,
for each g ∈ G. Let us define a map h : G! H with h(g) = h01(Ag). Now, for every two
elements g1, g2 ∈ G, if EG(g1, g2) ∈ {0, 1}, then for all a1 ∈ Ag1 , a2 ∈ Ag2 , EG01(a1, a2) =
EG(g1, g2), so EG(g1, g2) ⪯⋆ EH

(
h(g1),h(g2)

)
. If EG(g1, g2) = ⋆, then H2k [Ag1 , Ag2 ] is of

size at least 4m2+1
m

× 4m2+1
m

, where Ag is identified with the set {i ∈ [2k] | vg,i ∈ Ag}. One
checks easily that there are subsets B1 of Ag1 , and B2 of Ag2 , that do not intersect and
both of size at least |Vg |

2m
. Observe that

|Vg|
2m

≥ 4m2 + 1

2m
≥

√
4m2 + 1.

By Lemma 6.3.3, the submatrix H2k [B1, B2] is not monochromatic. This means that
EH
(
h(g1),h(g2)

)
= ⋆ and h is a homomorphism from G to H, and we are done.

Let us now prove the general case. Let τ = {R1, . . . ,Rp} a signature, with ki the arity
of Ri, for i ∈ [p]. We recall that MPτ (H) trivially reduces to MPτ

⋆(H) as it is the same
problem, but with restricted inputs.

For the other direction, we use the same technique as in the proof for the binary
case, we construct a 01-structure G01. For a given input G, and for any element g ∈ G,
we introduce a set Vg = {vg,1, . . . , vg,2k} of size 2k such that 2k ≥ 4|H|2 + 1 and k is
the smallest such positive integer. Let also H2k be the Hadamard matrix guaranteed by
Lemma 6.3.2. Now, the domain G01 of G01 is the disjoint union

⊔
g∈G Vg. For each Ri ∈ τ

and for each tuple (vg1,i1 , vg2,i2 , . . . , vgki ,iki ),

RG01
i (vg1,i1 , . . . , vgki ,iki ) =

{
RG
i (g1, . . . , gki) if RG

i (g1, . . . , gki) ̸= ⋆,

(H2k [i1, i2] + 1)/2 otherwise.

Suppose now that there exists h01 : G01 ! H. Then, by pigeonhole principle, in each
set Vg, there is a set of size at least |Vg |

|H| elements that are mapped to the same element
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of H, denoted by Ag. Then, the sets Ag1 and Ag2 define a submatrix of H2k of size at
least 2

√
2k and thus it is not monochromatic by the same argument as in the proof for

the binary case.

6.3.2 Signature simplification

Recall that a primitive-positive formula φ(x1, . . . , xn) is a first-order formula (FOτ ) of the
form

∃xn+1, . . . , xm.(ψ1 ∧ · · · ∧ ψl)

where each ψi is either xs = xj, true, or R(xi1 , . . . , xik) = 1.
Let τ = {R1, . . . ,Rn}, τ ′ = {S1, . . . ,Sm} be two signatures, and A,A′ be relational τ -

and τ ′-structures over the same domain A. We say that A pp-defines A′ if for every k-ary
relation SA′

j of A′ there exists a primitive-positive formula φj ∈ FOτ with k free variables
such that for all (a1, . . . , ak) ∈ Ak, SA′

j (a1, . . . , an) = 1 ⇔ A′ |= φj(a1/x1, . . . , an/xn).

Theorem 6.3.4. [BK17] Suppose that a relational τ -structure A pp-defines a relational
τ ′-structure A′. Then the problem CSPτ ′(A′) reduces in P-time to CSPτ (A).

6.3.3 From directed graphs to many relations

Let τ = {R1, . . . ,Rn} be a finite signature with arities k1, . . . , kn, and such that k1 ≥ 2.
We show that the existence of a dichotomy for the class of problems MPτ

⋆ implies the
existence of a dichotomy for the class of ⋆-graphs MP⋆. Let γ = {E(·, ·)} be the directed
graph signature and let γCSP = {E0(·, ·),E1(·, ·)} be obtained from γ by the construction
from Section 6.2.

Theorem 6.3.5. For every ⋆-graph H⋆ there exists a (⋆, τ)-structure A⋆ such that the
problems MP⋆(H⋆) and MPτ

⋆(A⋆) are P-time equivalent.

Proof. Let us recall from the Section 6.2 that there is a one-to-one correspondence between
a (∅, τ)-structure A∅ and a relational τCSP-structure ACSP such that for any two (∅, τ)-
structures A∅,B∅:

B∅ ! A∅ ⇔ BCSP ! ACSP.

Now, let us consider a ⋆-graph H⋆ with its corresponding relational γCSP-structure HCSP.
We construct the τCSP-structure ACSP by the following pp-definition:

∀j ∈ {0, 1} RACSP
1,j (x1, . . . , xk1) = 1 ⇔ EHCSP

j (x1, x2) = 1; (6.2)

∀i > 1, j ∈ {0, 1} RACSP
i,j (x1, . . . , xki) = 1 ⇔ true. (6.3)

Observe that the relational γCSP-structure HCSP is also pp-definable from the relational
τCSP-structure ACSP:

EHCSP(x1, x2) = 1 ⇔ ∃x3, . . . , xk1 .R
ACSP
1 (x1, . . . , xk1). (6.4)

Now consider any ⋆-graph G⋆. Every ⋆-graph is also a ∅-graph, so there is a relational
γCSP-structure GCSP such that G⋆ ! H⋆ if and only if GCSP ! HCSP. By the pp-
definability in eq. (6.4) and Theorem 6.3.4, we construct a relational τCSP-structure BCSP
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such that GCSP ! HCSP if and only if BCSP ! ACSP. From BCSP we obtain a (⋆, τ)-
structure B⋆ such that BCSP ! ACSP if and only if B⋆ ! A⋆. Observe that, because G⋆ is
a ⋆-graph, in GCSP for any (x, y) ∈ G2, we have either EGCSP

0 (x, y) = 1 or EGCSP
1 (x, y) = 1;

thus in BCSP any relation other than R1 is interpreted trivially and for each tuple x ∈ Bk1

either RBCSP
1,0 (x) = 1 or RBCSP

1,1 (x) = 1. So, B⋆ is indeed a (⋆, τ)-structure, that finishes the
reduction from MP⋆(H⋆) to MPτ

⋆(A⋆).
For the other direction, consider any (⋆, τ)-structure B⋆. Similarly, we construct a

relational τCSP-structure BCSP, and by the pp-definition in eqs. (6.2) and (6.3), we can
compute a relational γCSP-structure GCSP such that GCSP ! HCSP if and only if B⋆ ! A⋆,
and then a ⋆-graph G⋆ such that B⋆ ! A⋆ if and only if G⋆ ! H⋆. With similar arguments
as in the other direction, we can prove that G⋆ is indeed a ⋆-graph. We have then shown
that MP⋆(G⋆) ≡p MPτ

⋆(A⋆)

One notices that the proof of Theorem 6.3.5 is still correct if we replace γ by any
relation R of arity ℓ ≥ 2, we require in this case that R1 has arity at least ℓ.

6.3.4 From many relations to one

Suppose that τ = {R1, . . . ,Rp}, Ri has arity ki, let k = maxi ki. We show that for any
such τ there exists τ̃ = {R} with R of arity k + p − 1 such that for any (⋆, τ)-structure
A there exists a (⋆, τ̃)-structure Ã such that MPτ

⋆(A) and MPτ̃
⋆(Ã) are P-time equivalent.

This means that MPτ
⋆ ⊆p MPτ̃

⋆.
Now we will describe how the τ̃ -structure Ã is constructed. If A is the domain of A,

then the domain Ã of Ã is Ã = A ⊔ {cA}, with cA a new element. The relation RÃ is
defined as follows:

• Let A1 = {t̃ = (cA, . . . , cA︸ ︷︷ ︸
i−1

, t, cA, . . . , cA︸ ︷︷ ︸
k+p−ki−i

) | Ri ∈ τ, t ∈ Aki}, and

for all, t̃ ∈ A1, R
Ã(t̃) = RA

i (t); (6.5)

• Let A2 = {(cA, . . . , cA)}, then for all t̃ ∈ A2 : R
Ã(t̃) = 1;

• Let A3 = Ãk+p−1 ∖ (A1 ⊔A2), then for all t̃ ∈ A3 : R
Ã(t̃) = 0.

Now we will prove one direction of the P-time equivalence. The size of Ã is polynomial
in |A|, so the construction takes P-time, and below we show that B! A ⇔ B̃! Ã.

Lemma 6.3.6. MPτ
⋆(A) reduces in polynomial time to MPτ̃

⋆(Ã).

Proof. Let B be an input instance of the problem MPτ
⋆(A). Assume that there is h : B!

A – a homomorphism. We will show that h̃ : B̃ ! Ã such that h̃(cB) = cA and for all
x ∈ B ∖ {cB} : h̃(x) = h(x), is a homomorphism.

Recall that B̃k+p−1 = B1 ⊔ B2 ⊔ B3. Consider t̃ = (cB, . . . , cB, t, cB, . . . , cB) ∈ B1,
where t = (b1, . . . , bki) ∈ Bki for Ri ∈ τ . Then h̃(t̃) = (cA, . . . , cA,h(t), cA, . . . , cA) ∈ A1.
As h is a homomorphism, we have that by eq. (6.5):

RB̃(t̃) = RB
i (t) ⪯⋆ R

A
i

(
h(t)

)
= RÃ

(
h̃(t̃)

)
.
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For t̃ ∈ B2, we have that h̃(t̃) = (cA, . . . , cA), so RÃ
(
h̃(t̃)

)
= RB̃(t̃) = 1. Let us consider

a tuple t̃ = (x1, . . . , xk+p−1) ∈ B3. We know that h̃(x) = cA if and only if x = cB, thus
h̃(t̃) ∈ A3. Then RÃ

(
h̃(t̃)

)
= RB̃(t̃) = 0. We have shown that h̃ is a homomorphism.

Assume that there is h̃ : B̃! Ã – a homomorphism. We know that x = cB if and only
if RB̃(x, . . . , x) = 1, and otherwise RB̃(x, . . . , x) = 0. We also know the same thing for Ã.
Thus, x = cB if and only if h̃(x) = cA. This allows us to correctly construct h : B ! A,
where for all x ∈ B, h(x) = h̃(x).

For any Ri ∈ τ and t ∈ Bki , t is associated with t̃ = (cB, . . . , cB, t, cB . . . , cB) ∈ B1

and its image h(t) ∈ Aki is associated with h̃(t̃) = (cA, . . . , cA,h(t), cA, . . . , cA) ∈ A1. We
know that by the construction of Ã and B̃, and by eq. (6.5):

RB
i (t) = RB̃(t̃) ⪯⋆ R

Ã
(
h̃(t̃)

)
= RA

i

(
h(t)

)
.

So, h is a homomorphism and MPτ
⋆(A) reduces to MPτ̃

⋆(Ã).

Now we have to find in polynomial time for any input (⋆, τ̃)-structure G̃ of MPτ̃
⋆(A) a

(⋆, τ)-structure B such that
G̃! Ã ⇔ B! A.

Lemma 6.3.7. MPτ̃
⋆(Ã) reduces in polynomial time to MPτ

⋆(A).

Proof. Let G̃ be an input instance of MPτ̃
⋆(Ã). Firstly, for any element x ∈ G̃, we check

whether RG̃(x, . . . , x) = ⋆. If such an x exists, then we cannot map G̃ to Ã as for all
y ∈ Ã we have that RÃ(y, . . . , y) ∈ {0, 1}. This can be checked in time linear in |G̃|. In
this case, we output some fixed NO input instance of MPτ

⋆(A), e.g., some B where there
is b ∈ B and RB

i (b, . . . , b) = ⋆ for all Ri ∈ τ .
Now we can assume that, for all x ∈ G̃, RG̃(x, . . . , x) ∈ {0, 1}. We divide the elements

of G̃ into two classes: G̃ = C1 ⊔ C0 by the following rule:

for all x ∈ G̃, x ∈ Ci ⇔ RG̃(x, . . . , x) = i. (6.6)

Observe that if there exists a homomorphism h : G̃! Ã, then for all x ∈ G̃ : h(x) = cA ⇔
x ∈ C1. We are going to construct a τ̃ -structure B̃ with the following properties:

1. G̃! B̃;

2. G̃! Ã ⇔ B̃! Ã;

3. Either we can check in P-time that B̃ ̸! Ã or there exists a τ -structure B such
that B̃ can be obtained from B by the construction described above in this section.

The domain B̃ := C0 ⊔ {cB}. The element cB should be considered as the result of
identifying all in C1 into a single element, namely cB.

Let us consider a tuple t̃ = (b1, . . . , bk+p−1) ∈ B̃k+p−1. Denote by It̃ ⊆ [k + p − 1]
the set of indices such that bi = cB in t̃. Denote by Ct̃ ⊆ Gk+p−1 the class of all tuples
(x1, . . . , xk+p−1) ∈ G̃k+p−1 such that

∀i ∈ [k + p− 1] : (i ∈ It̃ ⇒ xi ∈ C1) ∧ (i /∈ It̃ ⇒ bi = xi) .
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The interpretation RB̃ is defined as follows, here
∨

denotes the least upper bound of two
element with respect to the ordering ⪯⋆:

RB̃(t̃) =
∨

(x1,...,xk+p−1)∈Ct̃

RG̃(x1, . . . , xk+p−1). (6.7)

Observe that we can construct B̃ in time polynomial in the size of the input G̃.
Let us check the property 1, that G̃! B̃. Let us consider a map π : G̃! B̃ s.t.

• if x ∈ C1, then π(x) = cB;

• if x ∈ C0, then π(x) = x.

Consider a tuple x̃ = (x1, . . . , xk+p−1) ∈ G̃k+p−1 and π(x̃) = (b1, . . . , bk+p−1) ∈ B̃k+p−1

where

• bi = cB, if xi ∈ C1;

• bi = xi, otherwise.

As x̃ ∈ Cπ(x̃), by eq. (6.7) we have RG̃(x̃) ⪯⋆ R
B̃
(
π(x̃)

)
. This proves that π is a homomor-

phism.
Let us check the property 2, that G̃! Ã ⇔ B̃! Ã. As G̃! B̃, we need to show only

one direction, i.e., ⇒. Assume that there is hG : G̃ ! Ã – a homomorphism. Observe
that, for all x, x ∈ C1 ⇔ hG(x) = cA. We define a map hB as follows:

• if x = cB, then hB(x) = cA;

• if x ̸= cB, then hB(x) = hG(x).

Consider a tuple t̃ = (b1, . . . , bk+p−1) ∈ B̃k+p−1. Observe that hB(t̃) = hG(Ct̃) that is any
tuple from Ct̃ is mapped to hB(t̃) by hG. We know that

RÃ
(
hB(t̃)

)
⪰⋆ R

G̃(x1, . . . , xk+p−1)

for all (x1, . . . , xk+p−1) ∈ Ct̃. Thus,

RÃ
(
hB(t̃)

)
⪰⋆

∨
(x1,...,xk+p−1)∈Ct̃

RG̃(x1, . . . , xk+p−1) = RB̃(t̃),

where
∨

denote the least upper bound of the elements. This shows that hB is a homo-
morphism.

Finally, we need to check the property 3 to finish the proof. Recall that we split all
the tuples (b1, . . . , bk+p−1) ∈ B̃k+p−1 into three classes: B1,B2,B3. Observe that for any
homomorphism h : B̃ ! Ã, we have that for any x ∈ B̃, (x = cB ⇔ h(x) = cA); then,
for any j ∈ [3], h(Bj) ⊆ Aj. At first, we look at the tuple t̃ = (cB, . . . , cB) ∈ B2. By
eqs. (6.6) and (6.7), we know that RB̃(t̃) ⪰⋆ 1. If RB̃(t̃) = ⋆, then we output some fixed
NO input instance of MPτ

⋆(A) for G̃. If RB̃(t̃) = 1, then we continue.
Now, we look at every tuple t̃ ∈ B3 and check whether RB̃(t̃) = 0. If there exists

t̃ ∈ B3 such that RB̃(t̃) ̸= 0, then we output some fixed NO input instance of MPτ
⋆(A) for

G̃. If, for all tuples of B3, we have that RB̃(t̃) = 0, then we continue. We can do all these
checks in time polynomial in |G̃|.

Now we can assume that RB̃(t̃2) = 1 and RB̃(t̃3) = 0, for all t̃2 ∈ B2, t̃3 ∈ B3. We are
ready to construct the (⋆, τ)-structure B:
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• the domain B of B is B̃ ∖ {cB};

• for any relation Ri ∈ τ and any tuple t = (b1, . . . , bki) ∈ Bki it is interpreted as
follows:

RB
i (t) = RB̃(cB, . . . , cB︸ ︷︷ ︸

i−1

, t, cB, . . . , cB︸ ︷︷ ︸
k+p−ki−i

). (6.8)

If we apply the (̃·)-transformation to this (⋆, τ)-structure B, then we will get B̃,
because for all tuples of B2,B3: RB̃ always has values 1 and 0 correspondingly, and for
all tuples of B1 there is a one-to-one correspondence with the tuples of all Ri ∈ τ , the
equivalence of their values is provided by eqs. (6.5) and (6.8). By Lemma 6.3.6, B ! A
if and only if B̃ ! Ã. We have shown that, for any (⋆, τ̃)-structure G̃, we can find in
time polynomial in |G̃| a (⋆, τ)-structure B such that G̃ ! Ã ⇔ B̃ ! Ã. Thus MPτ̃

⋆(Ã)
reduces in polynomial time to MPτ

⋆(A).

Lemma 6.3.6 and Lemma 6.3.7 provide the following statement.

Theorem 6.3.8. If the class of problems MPτ̃
⋆ has a dichotomy, then the class MPτ

⋆ has
a dichotomy.

Observe that in order to prove the other direction, for every (⋆, τ̃)-structure A, we
have to find a (⋆, τ)-structure Â such that MPτ

⋆(Â) and MPτ̃
⋆(A) are P-time equivalent.

We show in the next section the difficulties to obtain such a reduction.
The dichotomy implications between the considered classes are displayed on the dia-

gram below. Each arrow shows an implication of the existence of a dichotomy, i.e., if the
class at the tail has a dichotomy, then the class at the head has it. The vertical ones are
shown in Section 6.3.1, and the horizontal ones are shown in Section 6.3.2. One can see
now that the existence of a dichotomy for MPτ̃ implies such existence for all other classes
considered there.

MP⋆ MPτ̃
⋆ MPτ

⋆

MP MPτ̃ MPτ

6.3.5 From one relation to directed graphs

We do not prove that for any (⋆, τ̃)-structure H, with τ̃ consisting of one single symbol,
there exists a ⋆-graph H2 such that MPτ̃

⋆(H) ≡p MP⋆(H2). However, we will discuss
some necessary conditions for the existence of such a reduction. And also we will discuss
why approaches that are similar to the one used in [BDJN15, FV98] cannot be applied
to the homomorphism problems considered in this thesis, in particular, Matrix Partition
Problems.

For the simplicity of the notations, we will consider the reduction from τ̃ = {R(·, ·, ·)}
to ⋆-graphs. In the very beginning, we are going to show that if there exists such a
correspondence between (⋆, τ̃)-structures and ⋆-graphs, then the size of the domain of
the constructed ⋆-graph must be significantly greater than the one of the corresponding
ternary ⋆-structure.

142



Let Gn
2 be the class of all ⋆-graphs on n elements that are cores and pairwise not

homomorphically equivalent. Recall that a core G ∈ Gn
2 cannot have an element x with

EG(x, x) = ⋆. Let Gn
3 be the class of (⋆, τ̃)-structures with the same property.

Lemma 6.3.9. For every positive integer n, |Gn
3 | ≥ |Gn

2 | · 3n(n−1)2−1.

Proof. We suppose that all G ∈ Gn
2 have the same domain {a, x1, . . . , xn−1}, we fix one

element a, and linearly order the elements from {x1, . . . , xn−1} with xi < xj if i < j. Let
G ∈ Gn

2 . We will construct a family of (⋆, τ̃)-structures GG of size 3n(n−1)2−1 such that
every two (⋆, τ̃)-structures from there will not be homomorphically equivalent. We will
construct such a class for every ⋆-graph in Gn

2 , and then show that any two structures
from different classes will not be homomorphically equivalent as well.

Any G3 ∈ GG must satisfy the following properties:

• the domain is the same as the one of G: G3 = G = {a, x1, . . . , xn−1};

• for all x, y ∈ G3 : R
G3(a, x, y) = EG(x, y) – we define all the relations of G using only

the triples that have a on the first coordinate;

• for all x ∈ G3 ∖ {a} : RG3(x, x, x) = 1 − EG(a, a) – all the elements other than a
have the value on the loop, that is different from the loop RG3(a, a, a) = EG(a, a);
the loop property

• for all i, j ∈ [n], RG3(xi, xj, a) = ⋆ if i < j and RG3(xi, xj, a) = 0 if i ≥ j; the linear
ordering property

• fix one (xi1 , xi2 , xi3) ∈ (G3 ∖ {a})3, such that the number i1, i2, i3 are not all equal,
and set RG3(xi1 , xi2 , xi3) = ⋆.

The values are restricted for the n2 tuples that are associated with the arcs of G, for
the (n − 1)2 tuples of the linear ordering, and for the (n − 1) loops, and for the triple
(xi1 , xi2 , xi3). For any other triple (x, y, z) ∈ G3, there is no restriction on the value of
RG3 among {0, 1, ⋆}. Thus,

|GG| = 3n
3−n2−(n−1)2−(n−1)−1 = 3n(n−1)2−1.

Let us consider A,B ∈ GG, suppose that there is a homomorphism h : A ! B, then
h(a) = a and for all x ̸= a, h(x) ̸= a by the loop property of G3. Also, by the linear
ordering property, we have that for all x ∈ A, h(x) = x. But these two structures differ
on at least one tuple, this is a contradiction.

Let us consider A1 ∈ GG1 ,A2 ∈ GG2 – structures from different classes of two ⋆-graphs
G1,G2 that are not hom-equivalent. Suppose that there is no homomorphism from G1 to
G2 and there is a homomorphism h : A1 ! A2. If EG1(a, a) ̸= EG2(a, a), then by the loop
property, for all x ∈ A1 ∖ {a}, h(x) = a, this is a contradiction as EG2(a, a) ̸= ⋆ on one
hand and ⋆ = RA1(xi1 , xi2 , xi3) ⪯⋆ RA2(a, a, a) = EG2(a, a) on the other hand. Thus, we
assume that EG1(a, a) = EG2(a, a) and that h(a) = a and, for all x ̸= a, h(x) ̸= a (again
by the loop property), but, by the linear ordering property, we must have that h(x) = x.
The homomorphism h implies that the identity mapping on the set G = {a, x1, . . . , xn−1}
is a homomorphism from G1 to G2 that is a contradiction as G1 and G2 are pairwise not
homomorphically equivalent.

This proves that we are able to construct at least |Gn
2 | ·3n(n−1)2−1 (⋆, τ̃)-structures such

that any two of them are not homomorphically equivalent.
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This lemma ensures that when we make a correspondence between ternary and binary
structures, in the general case we need to add a lot of elements to the binary one.

Corollary 6.3.10. Let n,m ∈ N. If |Gn
3 | < |Gm

2 |, then m >
√
n(n− 1)2 − 1.

Proof. The number of all possible ways to assign one of three values to each of the m2

pairs equals 3m
2 . Then, by Lemma 6.3.9:

3m
2 ≥ |Gm

2 | > |Gn
3 | ≥ 3n(n−1)2−1|Gn

2 | ≥ 3n(n−1)2−1 ⇒ m2 > n(n− 1)2 − 1.

We will argue that all the approaches similar to the one used in [BDJN15] do not
work for the case of MP⋆ (equivalently MP, see Section 6.3.1). Such an approach can
be described by these steps: for any (⋆, τ̃)-structure H3 the corresponding ⋆-graph H2 is
constructed as follows:

1. take the same domain H2 = H3 and

2. substitute every tuple RH3(x1, x2, x3) by a ⋆-graph Tv
x1x2x3

for v ∈ {0, 1, ⋆} that
contains only these 3 elements x1, x2, x3 among those of H3. Letter T stands for
“tuple” and the superscript v is for “value”. It is required that for two different tuples
t1 and t2, the domains of Tv1

t1 and of Tv1
t2 intersect only on H3.

So, the domain of H2 is the union of the domain H3 of the (⋆, τ̃)-structure H3 and the
domains of all the ⋆-graphs Tv that represent the tuples of H3:

H2 = H3 ∪
⋃

(x1,x2,x3)∈H3
3 , RH3 (x1,x2,x3)=v

T v
x1x2x3

.

This union is not disjoint because each Tv contains elements of H3.
In [BDJN15] every such Tv was a balanced directed graph obtained from the star with

three leaves by subdividing each arc p times, for some p, the leaves being the elements of
H3. So, during the reduction from CSP on directed graphs to CSPτ̃ , it was clear which
elements of the input directed graph are associated with the elements of the domain of
the τ̃ -structure from which this directed graph is reduced. This constructive approach
can be generalised by the following list of conditions applied to H2. This means that
any construction of H2 that satisfies them, is called similar to the construction given in
[BDJN15]. All the results in this section are related only to such similar constructions.

1. For each ⋆-graph Tv
x1x2x3

that represents a tuple RH3(x1, x2, x3) = v, the problem
MP⋆(T

v
x1x2x3

) is solvable in P-time and vx = RH3(x1, x2, x3) ⪯⋆ R
H3(y1, y2, y3) = vy if

and only if Tvx
x1x2x3

! T
vy
y1y2y3 .

2. Let H2,H
′
2 be two ⋆-graphs obtained from (⋆, τ̃)-structures H3,H

′
3 by this approach.

Then, for any homomorphism h : H2 ! H′
2, it is true that for all x ∈ H2, x ∈ H3 ⊆

H2 ⇔ h(x) ∈ H ′
3 ⊆ H ′

2.

3. For each ⋆-graph A that is an input instance of MP⋆(H2), one can decide in time
polynomial in |A| which elements of A can only map to the elements of H3. That
is, we can decide, for every x ∈ A, if any h : A! H2, implies that h(x) ∈ H3 ⊂ H2.
Also, for every x ∈ A, either any homomorphism from A ! H2 maps x to H3, or
any homomorphism from A! H2 maps x to H2 ∖H3.
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4. For two elements w,w′ ∈ H2 such that w,w′ /∈ H3 and w,w′ do not belong to the
same T v

xyz, then EH2(w,w′) = 0.

5. Let A be a ⋆-graph. Suppose that for some v ̸= v′ there is h : A ! Tv
xyz and

A ̸! Tv′
xyz. Suppose that, for every a0, an ∈ A such that h(a0),h(an) ∈ {x, y, z},

there exist a1, . . . , an−1 ∈ A such that:

• for every 1 ≤ i < n, h(ai) ̸∈ {x, y, z},
• for every 0 ≤ i < n, EA(ai, ai+1) ̸= 0 or EA(ai+1, ai) ̸= 0.

Then, for any other h′ : A ! Tv
xyz and for all a ∈ A such that h(a) ∈ {x, y, z}, we

have that h(a) = h′(a).

In particular, the reduction from CSPτ to CSP on directed graphs in [BDJN15] satisfies
the first four conditions. The fifth one cannot be applied to CSP because there are no
three different types of Tv in that case. Any polynomial time reduction satisfying these
five conditions, cannot prove the P-equivalence with ⋆-graphs, unless CSP ≡p MP. We
assume that CSP ≡p MP∅ by Section 6.2.

Proposition 6.3.11. Let a ⋆-graph H2 be constructed from some (⋆, τ̃)-structure H3 and
satisfy all the five conditions above. Then MPτ̃

⋆(H3) reduces in P-time to MP⋆(H2), and
MP⋆(H2) reduces in P-time to MPτ̃

∅(H3).

Proof. Consider (⋆, τ̃)-structures G3,H3 and the corresponding ⋆-graphs G2 and H2 that
satisfy the conditions 1–5. If there is h : G3 ! H3, then, by the conditions 1 and 2, there
is h2 : G2 ! H2. If there is h2 : G2 ! H2, then, by the condition 2, one can consider the
restriction h of this map on the set G3, and the codomain of this map will be the set H3.
By the condition 1, h is a homomorphism between G3 and H3.

Now, consider any ⋆-graph A from the input of MP⋆(H2). By the condition 3, we can
mark in P-time all the elements that can map only to the elements of H3, denote the set
containing them by A3. Then on the set A∖A3 we define the following equivalence relation
eq(·, ·): for two elements a0, an ∈ A∖A3, we say that eq(a0, an) if there exists a sequence of
elements a0, a1, . . . , an−1, an ∈ A∖A3 such that for any 0 ≤ i < n, either EA(ai, ai+1) ̸= 0
or EA(ai+1, ai) ̸= 0. For every eq-equivalence class Aa (containing an element a), consider
an induced ⋆-subgraph Aa on the subset consisting of Aa itself together with those b ∈ A3

such that there exists c ∈ Aa such that either EA(b, c) ̸= 0 or EA(b, c) ̸= 0. Below we will
show that the image of every Aa can only be contained in some Tv

xyz.

Claim 6.3.12. If there is h : Aa ! H2, then h(Aa) ⊆ T v
xyz for some Tv

xyz.

Proof of Claim 6.3.12. For any two elements a0, an of the eq-equivalence class Aa, there
exists a sequence a1, . . . , an−1 of elements of Aa such that, for any 0 ≤ i ≤ n − 1, one
of EA(ai, ai+1) and EA(ai+1, ai) is not 0. As for all a ∈ A ∖ A3 and for all h′ : A ! H2,
h′(a) ̸∈ H3, h(a0), . . . ,h(an) ∈ H2 ∖ H3 (by condition (3)). Then, by the condition 4,
that is in H2 any two elements w and w′ belonging to different Tv,Tv′ , EH2(w,w′) = 0, we
have that all h(a0), . . . ,h(an) are in the same Tv.

By the condition 1, we find in P-time for every Aa the list of values v ∈ {0, 1, ⋆} such
that Aa maps to Tv

xyz. If Aa ̸! Tv
xyz for any v, then there is no way that A can be mapped

to H2 and we reject this instance. Among all v such that Aa ! Tv, we label Aa with the
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smallest possible such v with respect to ⪯⋆. If Aa maps to Tv
xyz for any possible v, then

we say that Aa is ∅-labeled. Introduce a new equivalence relation map(·, ·) on the set
A3, we say that map(a1, a2) if there exists Aa ∋ a1, a2 and there is h : Aa ! Tv such that
h(a1) = h(a2). By the condition 5, for any a1, a2 ∈ A3 such that map(a1, a2): there is
h : A ! H2 ⇒ h(a1) = h(a2). Let us construct a new ⋆-graph A2 based on A. Take the
domain A2 = A3/map and, for any (a1, a2, a3) ∈ (A2)

3, add a gadget Tv
a1a2a3

following the
rules below. Consider Aa labeled with v ̸= ∅ such that for any element x ∈ H3 (or y or
z) of Tv

xyz there exists an A3-element ax of Aa such that ax is mapped to x. In this case
we substitute Aa by Tv

axayaz for ax, ay, az ∈ A2. Consider those Aa labeled with v ̸= ∅
where there exists an element x ∈ H3 (or y or z) of Tv

xyz so that no element ax of Aa maps
to x. For such a case we add to A2 a new element aAa,x and substitute Aa by Tv for the
corresponding 3 elements of A2. All the eq-equivalence classes Aa labeled with ∅ are not
substituted with anything in A2. The ⋆-graph A2 is associated with a (∅, τ̃)-structure A3

as follows: each triple a1, a2, a3 of A3 is either contained in Tv
a1a2a3

or not. If yes, then we
set RA3(a1, a2, a3) = v, if not, then RA3(a1, a2, a3) = ∅. It is routine to check now that
A! H2 if and only if A3 ! H3.

6.4 Minimal Obstructions

We prove that the inclusion-minimal obstructions considered in [FHX07] coincide with
finitary duality in Struct01. We also show that being characterised by a finite set of
inclusion-minimal obstructions in Struct01 is equivalent to be characterised by a finite
set of inclusion-minimal obstructions in Struct⋆. The main results of this section are
summarised in the following.

Theorem 6.4.1. Let H be a ⋆-structure. Then, the following are equivalent.

1. MP(H) has finitary duality.

2. Obs⊂01(H) is finite.

3. MP⋆(H) has finitary duality.

4. Obs⊂⋆ (H) is finite.

Throughout this section, let τ = {R1, . . . ,Rp} be a fixed signature. We recall that, for
∗ in {01, ⋆,∅}, Struct∗ is the set of all (∗, τ)-structures.

Let us now recall the definitions of obstructions from [FHX07] and of finitary duality,
that we extend to all structures.

Definition 24 ([FHX07]). Let ∗ be in {01, ⋆,∅} and let H be a ⋆-structure. A ∗-structure
G is called an inclusion-minimal obstruction for MP∗(H) if G ̸! H and for all v in G,
G∖{v}! H. The set of all obstructions for the problem MP∗(H) is denoted by Obs⊂∗ (H).

Definition 25. Let ∗ be in {01, ⋆,∅} and let H be a ⋆-structure. We say that a set F of
∗-structures is a duality set for the problem MP∗(H) if

G /∈ MP∗(H) ⇐⇒ F! G, for some F ∈ F.

If, moreover, the set F is finite, we say that MP∗(H) has finitary duality.
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We prove that the inclusion-minimal obstruction set is finite if and only if there is a
finite duality set. We also show how their finiteness depends on the category from which
the input structures are taken. We summarise on the diagram below all the dependencies
that we have proved. Every arrow of this diagram means the implication.

|Obs⊂01(H)| <∞ |Obs⊂⋆ (H)| <∞ |Obs⊂∅(H)| <∞

MP(H) has f.d. MP⋆(H) has f.d. MP∅(H) has f.d.

Let us first prove that on Struct01 the inclusion-minimal obstruction set is also a
duality set.

Proposition 6.4.2. Obs⊂01(H) is a duality set for MP(H). Moreover, among all duality
sets, Obs⊂01(H) is the minimal one by inclusion.

Proof. Let A ̸! H. We start iteratively removing arbitrary elements from A until the
substructure induced on the elements of the rest is an inclusion-minimal obstruction, i.e.,
if we remove any element, then the resulting structure will map to H. Such a substructure
belongs to Obs⊂01(H) and maps to A, thus, Obs⊂01(H) is a duality set.

Let F be a duality set for MP(H) such that |F| ≤ |Obs⊂01(H)|. We can assume without
loss of generality that F ⊆ Obs⊂01(H): any F in F has an induced substructure that belongs
to Obs⊂01(H), so we can substitute F with this substructure.

Let G be in Obs⊂01(H). G is a core, otherwise it contains a proper induced substructure
that does not map to H, a contradiction. Assume now that there exists G1 in Obs⊂01(H)
such that there is a homomorphism h : G1 ! G, and that G ̸! G1. Let G′ = h(G1) and
let G′ be the substructure of G induced by G′. If G′ is a proper induced substructure of
G, then by the assumption of inclusion-minimality, and by transitivity of homomorphism:
G1 ! H – a contradiction. Thus, h(G1) = G, but since h is a full homomorphism, G is
either a proper induced substructure of G1, which would contradict our assumption that
G1 is a core, or is isomorphic to G1, which would contradict the assumption that G ̸! G1.
We can then conclude that Obs⊂01(H) contains no proper subsets that are duality sets for
MP(H), which means that this duality set is a subset of any other duality set.

Corollary 6.4.3. |Obs⊂01(H)| <∞ if and only if MP(H) has finitary duality.

The result of Proposition 6.4.2 does not hold on Struct⋆.

Proposition 6.4.4. For any 01-structure H, Obs⊂⋆ (H) is not a duality set of minimal
size.

Proof. Pick some vertex x in the domain H of H. Consider a ⋆-graph G = ({u, v},EG)
with EG(u, u) = EG(v, v) = EH(x, x) and EG(u, v) = EG(v, u) = ⋆. Also consider a ⋆-graph
G′ obtained from G by setting EG′

(v, u) = 0, and keeping the rest as in G, see Figure 6.4.
Both G and G′ belong to Obs⊂⋆ (H) as H has an element x such that EH(x, x) =

EG(u, u) = EG(v, v) and as G ̸! H and similarly G′ ̸! H because they both have a ⋆-arc
and H is a 01-graph. Also, G′ ! G and G ̸! G′, so G can be removed from Obs⊂⋆ (H) if
it is a duality set. For and arbitrary signature τ the proof will be similar.
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Figure 6.4: The ⋆-graphs G and G′ from the input of MP⋆(H). Without loss of generality, we assume
that EH(x, x) = 0, the case when it is equal to 1 is equivalent.

6.4.1 01- and ⋆-obstruction sets agree on being finite

We prove Theorem 6.4.1 in this section. From now on, we fix a ⋆-structure H. We have
showed, see Corollary 6.4.3, that Theorem 6.4.1(1.) and Theorem 6.4.1(2.) are equivalent.
We prove the other equivalences with the following propositions. Corollary 6.4.6 of the
following Proposition 6.4.5 proves that Theorem 6.4.1(3.) is equivalent to Theorem 6.4.1
(1.).

Proposition 6.4.5. A family of 01-structures F is a duality set for MP⋆(H) if and only
if F is a duality set for MP(H).

Proof. Let F be a duality set for MP⋆(H). Any 01-structure G is also a ⋆-structure. So,
if G ̸! H, then F! G for some F in F. This means that F is a duality set for MP(H).

Let F be a finite duality set for MP(H). Let G be a ⋆-structure that does not map to
H. By Theorem 6.3.1, for any G in Struct⋆∖Struct01 there exists G01 in Struct01 such
that

• there is a surjective homomorphism πG : G01 ↠ G;

• G ̸! G01;

• G is in MP⋆(H) if and only if G01 is in MP(H).

As G01 is in Struct01 and as it also does not map to H, there exists F in F such that
F! G01. By transitivity, F! G, this means that F is also a duality set for MP⋆(H).

Corollary 6.4.6. MP⋆(H) has finitary duality if and only if MP(H) has finitary duality.

Proof. Let F be a finite duality set for MP⋆(H). Every 01-structure G is also a ⋆-structure.
So, G ̸! H implies F ! G for some F in F. Such a structure F must also be a 01-
structure, thus, the subfamily F01 ⊆ F consisting of 01-structures is a finite duality set
for MP(H).

Remark. Proposition 6.4.2 provides that Obs⊂01(H) is the minimal by inclusion duality set
for MP(H). Proposition 6.4.5 and the proof of Corollary 6.4.6 allow us to conclude that
Obs⊂01(H) is also the minimal by inclusion duality set for MP⋆(H). So, without loss of
generality, we can think of Obs⊂01(H) when we consider a duality set for MP⋆(H).

The following statement proves the equivalence between Theorem 6.4.1(2.) and The-
orem 6.4.1(4.).
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Proposition 6.4.7. Obs⊂⋆ (H) is finite if and only if Obs⊂01(H) is finite.

Proof. Let us first prove the right implication. As any 01-structure is also a ⋆-structure,
we can conclude that Obs⊂01(H) ⊆ Obs⊂⋆ (H).

Let us now turn our attention to the left implication. Let us consider the class
Obs⊂01(H), that is obtained from Obs⊂01(H) by taking all ⋆-structures A such that there
exists a surjective homomorphism from B to A for some B in Obs⊂01(H). Observe that
|Obs⊂01(H)| is finite. We know by Theorem 6.3.1 that, for any G in Obs⊂⋆ (H) there exists
a 01-structure G01 such that:

• there is a surjective homomorphism πG : G01 ↠ G;

• G ̸! G01;

• G is in MP⋆(H) if and only if G01 is in MP(H).

As G /∈ MP⋆(H), we can conclude that G01 /∈ MP(H). And as G01 is a 01-structure,
there exists G′

01 in Obs⊂01(H) such that G′
01 is an induced substructure of G01, and thus,

by transitivity, G′
01 ! G. By inclusion-minimality of G (recall that G is in Obs⊂⋆ (H)),

this homomorphism is surjective, i.e., G belongs to Obs⊂01(H). We have thus proved that
Obs⊂⋆ (H) ⊆ Obs⊂01(H), i.e., is finite.

6.4.2 Looking at obstructions in Struct∅

The goal now is to prove the remaining arrows on the diagram from page 147. As in the
previous section, let H be a fixed ⋆-structure.

Proposition 6.4.8. If MP∅(H) has finitary duality, then MP⋆(H) has finitary duality.

Proof. Let F∅ be the finite duality set for MP∅(H). Let F⋆ be a duality set for MP⋆(H).
Recall that without loss of generality we can assume F⋆ = Obs⊂01(H). For any G in
Obs⊂01(H), we have G ̸! H, so we have G∅ ! G, for some G∅ in F∅. This homomorphism
must be surjective because any proper induced substructure of G maps to H. As F∅ is
finite, there is some constant c such that, for any G∅ in F∅, |G∅| < c. But then we also
have |G| < c, for any G in Obs⊂01(H).

We now prove a similar statement for inclusion-wise minimal obstructions.

Proposition 6.4.9. If Obs⊂∅(H) is finite, then Obs⊂⋆ (H) is finite.

Proof. Any ⋆-structure is also a ∅-structure. Then, Obs⊂⋆ (H) ⊆ Obs⊂∅(H).

We are now going to prove that Obs⊂∅(H) is finite if and only if MP∅(H) has finitary
duality.

Proposition 6.4.10. If MP∅(H) has finitary duality, then Obs⊂∅(H) is finite.

Proof. Let F∅ be a finite duality set for MP∅(H). Consider any G in Obs⊂∅(H). Suppose
that it is not in F∅; then there exists T in F∅ such that T! G. Moreover, we know that
T always maps surjectively to G, because otherwise the substructure of G induced by the
image of T would not map to H, contradicting that G is an inclusion-minimal obstruction.
The set of ∅-structures G such that T surjectively maps to G is finite because |G| ≤ |T |.
Thus, for every ∅-structure in Obs⊂∅(H) there exists T in Obs!∅ (H) such that T surjectively
maps to G, and we can then conclude that Obs⊂∅(H) is finite.
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We state the following which finishes the proof of the diagram from page 147.

Proposition 6.4.11. If Obs⊂∅(H) is finite, then MP∅(H) has finitary duality.

Proof. It is sufficient to show that Obs⊂∅(H) is a duality set. Suppose that G ̸! H, for
some G in Struct∅. Then we can remove elements from G until it is no longer possible.
The resulting structure belongs to Obs⊂∅(H) and is embedded into G as it is an induced
substructure. This means that Obs⊂∅(H) is a duality set.

It is possible to show that there exists H such that Obs⊂01(H) is finite and Obs⊂∅(H) is
infinite. Hence, there are no arrows on the diagram from page 147 from the right column
(Struct∅) to the other two.

Proposition 6.4.12. Let H = K2 be a 01-graph, the clique on 2 vertices. Then Obs⊂01(H)
is finite and Obs⊂∅(H) is infinite.

Proof. Feder and Hell proved in [FH08] that once H is a 01-graph, the inclusion-minimal
obstructions for MP(H) have bounded size. Thus, Obs⊂01(H) is finite.

Let us show that Obs⊂∅(H) is infinite. Consider a ∅-graph Cn on the domain v1, . . . , vn
with ECn(vi, vi+1) = 1 for all i in [n − 1] and with ECn(vn, v1) = 1, and with all other
arcs equal to ∅. The problem Cn ! H is equivalent to the 2-coloring of a directed cycle
that is a directed graph, for which we know that odd cycles are all inclusion-minimal
obstructions. Similarly, deleting any vertex from Cn creates a ∅-graph that maps to H.
Thus, the set C = {Cn | n is odd} is an infinite set of inclusion-minimal obstructions for
MP∅(H).

6.5 Matrix Partition and its relation with logic

Feder and Vardi show in [FV98] that MMSNP and CSP denote the same class of problems,
up to P-time equivalence. This means that this class can be studied from both logic
and homomorphism perspectives. We discuss logics that potentially could be P-time
equivalent to the class MP.

Let τ be the input relational signature, and σ = {M1, . . . ,Ms} be the existential
signature consisting of unary relation symbols. Recall that the logic MonadicSNP from
Chapter 2 consists of the sentences of the following form:

∃M1, . . . ,Ms ∀x
m∧
i=1

¬
(
αi ∧ βi

)
,

where, for any i in [m], αi is a conjunction of τ -atoms or negated τ -atoms, and βi is a
conjunction of σ-atoms or negated σ-atoms.

Clearly, MP is a subclass of MonadicSNP, that is, every MP problem can be defined
by a MonadicSNP sentence.

Proposition 6.5.1. For any s× s matrix M consisting of 0, 1, ∗, there is a sentence ΦM

in MonadicSNP such that SAT(ΦM) is P-time equivalent to MP(M).
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Proof. Let τ = {E(·, ·)} be the input signature of ΦM and σ = {M1, . . . ,Ms} be the
existential signature. Then, the sentence ΦM is of the following form:

∃M1, . . . ,Ms ∀x
(
¬
(
¬M1(x)∧· · ·∧¬Ms(x)

)
∧

∧
i,j∈[s],i ̸=j

¬
(
Mi(x)∧Mj(x)

))
∀x, y

∧
i,j∈[s]

¬ϕij.

Here, the first negated conjunct requires that any element must belong to at least one
σ-relation, and the next s negated conjuncts restrict an element to be in two different
σ-relations. Then, every ϕij depends on the value of the corresponding matrix element
mij of M:

• if mij = 0, then ϕij :=
(
Mi(x) ∧Mj(y) ∧ E(x, y)

)
;

• if mij = 1, then ϕij :=
(
Mi(x) ∧ ¬Mj(y) ∧ E(x, y)

)
;

• if mij = ∗, then ϕij := ⊥, and, consequently, ¬ϕij = ⊤. In this case, we just can
omit ϕij, as ∗ gives no restriction.

By definition of MP, a directed graph satisfies ΦM if and only if it admits M-partition.

By Theorem 2.0.1 in Chapter 2, MonadicSNP does not have a dichotomy. But this does
not mean that MP does not have it, as we do not know if MonadicSNP can be embedded
into MP. In fact, being written in the MonadicSNP form, MP problems define a small
fragment of MonadicSNP, which can be described by the following property satisfied by
ΦM, for any M.
Observation 4. Any negated conjunct of ΦM contains at most one τ -atom or negated τ -
atom. Which implies that, within any negated conjunct, all its τ -atoms have the same
polarity: either they are all non-negated or all negated.

It is easy to show that the set of MonadicSNP sentences satisfying the property from
Observation 4 coincides with the class MP. For any such sentence Φ, we can modify
its existential signature σ in order to make the σ-relations form a partition of the input
structure elements. This can be done similarly to the normal form transformation in
Section 4.2. Where we, firstly, ensure that, for any negated conjunct ¬ϕ of Φ and for
any variable x in ϕ, and for any σ-relation M in σ, this negated conjunct ¬ϕ contains
either the σ-atom M(x) or its negated version ¬M(x). And then we replace σ by a new
signature 2σ, where every 2σ-relation is associated with a subset of σ. Finally, we demand
that these new 2|σ| relation symbols form a partition. The resulting sentence still satisfies
the property. Now, it is straightforward to construct an equivalent MP problem.

So, it makes sense to consider a more expressive logic, where, within any negated
conjunct, its τ -atoms have the same polarity.

Definition 26. Let τ be the input signature and let σ = {M1, . . . ,Ms} be the existential
signature consisting of unary relation symbols. We say that a τ -sentence Φ belongs to the
class MMSNP∗ if it can be written in the following form:

∃M1, . . . ,Ms ∀x
m∧
i=1

¬
(
αi ∧ βi

)
,

where, for any i in [m], either αi is a conjunction only of non-negated τ -atoms or it is
a conjunction only of negated τ -atoms; and βi is a conjunction of σ-atoms or negated
σ-atoms.
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Clearly, MMSNP∗ contains MP. Regarding this class, we can formulate the following
problem.

Problem 2. Is it true that for any sentence Φ in MMSNP∗ there is a problem in MP
which is P-time equivalent to SAT(Φ)?

The logic MMSNP∗ is strictly more expressive than MMSNP.

Proposition 6.5.2. There is a sentence Φ∗ in MMSNP∗ such that, for any Φ in MMSNP,
Φ∗ is not logically equivalent to Φ.

Proof. Let Φ∗ be a sentence on directed graphs that accepts only complete graphs with
loops: ∀x, y E(x, y). Theorem 3 in [FV03] states that the class of structures satisfy-
ing a MonadicSNP sentence Ψ is closed under inverse homomorphisms if and only if Ψ
is logically equivalent to a MMSNP sentence. As SAT(Φ∗) is not closed under inverse
homomorphisms, it cannot be expressed by an MMSNP sentence.

6.6 Matrix Partition and polymorphisms

Let A be a (⋆, τ)-structure with the domain A. A mapping f : A× · · · × A︸ ︷︷ ︸
n

! A is called

a polymorphism if, for all R in τ of arity k, for any n tuples t1, . . . , tn in Ak, we have
n∧

i=1

RA(ti) ⪯∅ RA
(
f(t1, . . . , tn)

)
,

where
∧

denotes the greatest lower bound of the elements and f(t1, . . . , tn) denotes(
f(t11, . . . , t

1
n), . . . , f(t

k
1, . . . , t

k
n)
)
. The set of all polymorphisms of A is denoted by Pol(A).

A polymorphism s : A4 ! A is called Siggers if it satisfies the following identity:

∀x, y, z ∈ A s(x, y, z, x) = s(y, x, y, z). (6.9)

The following is proved in [Zhu20] for Constraint Satisfaction Problems (CSP) on finite
relational structures.

Theorem 6.6.1. Let A be a finite relational structure over some finite signature. Then
either

• there is a Siggers polymorphism s : A4 ! A and CSP(A) is in P, or

• there is no Siggers polymorphism and CSP(A) is NP-complete.

We can reduce any Matrix Partition problem in P-time to some CSP such that the
Matrix Partition problem is equivalent to this CSP being restricted on complete input
instances. In particular, for any ⋆-graph H, we can construct a relational structure HCSP

over a signature {E0(·, ·),E1(·, ·)}. Here, by complete input we mean those relational
structures A such that for all x, y in A, (x, y) belongs exactly to one of EA

0 and EA
1 .

Our goal is to show that Matrix Partition problems cannot be characterised by the
conditions from Theorem 6.6.1. To do that, we provide a ⋆-graph P such that MP(P) is P-
time solvable but the corresponding structure PCSP does not have a Siggers polymorphism
and thus CSP(PCSP) is NP-complete.
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We provide a ⋆-graph such that the corresponding Matrix Partition problem is solvable
in P-time and that it has no Siggers polymorphism. Consider a ⋆-graph P as on Figure 6.5.
We have chosen it to be of the form of a directed path because it is well-known that list
matrix partition problems are P-time solvable on them (we prove it formally, though). So
the objective is to prove that such structure has no nontrivial polymorphisms. By trivial
we mean a projection.

x y z1 1w ?

Figure 6.5: A ⋆-path P of length 4.

Theorem 6.6.2. P does not have Siggers polymorphism and MP(P) is P-time solvable.

We prove Theorem 6.6.2 at the end of this section after proving all the lemmas.

Lemma 6.6.3 (Theorem 2 in [FHSS11]). Let H be a ⋆-graph. Let H− be a directed graph
obtained from H by adding an arc for every pair (x, y) in H2 such that EH(x, y) ∈ {1, ⋆}.
Then, if H− is an oriented tree, then the list matrix partition problem of H is P-time
equivalent to the list homomorphism problem of H−.

Lemma 6.6.4. If s : A4 ! P is a polymorphism, then it is conservative. That is, for any
x1, x2, x3, x4 in P , we have s(x1, x2, x3, x4) ∈ {x1, x2, x3, x4}.

Proof. As (x, y) is the only pair such that EP(x, y) = ⋆, we must have s(x, x, x, x) = x
and s(y, y, y, y) = y. As x is the only element of P that is adjacent to w by a 1-arc, we
must have s(w,w,w,w) = w. As y is the only element of P that is adjacent to z by a
1-arc, we must have s(z, z, z, z) = z.

Suppose that s(w,w, x, x) ∈ {y, z}. If it equals y, then s(x, x, y, y) = z, but then, for
any value of s(y, y, z, z), s violates the polymorphism property. If s(w,w, x, x) = z, then,
for any value of s(x, x, y, y), s violates the polymorphism property. The proof, for other
tuples from {w, x}4 ∪ {x, y}4 ∪ {y, z}4, is similar.

Suppose that s(w,w, y, y) ∈ {x, z}. If it equals x, then it contradicts to s(w,w,w,w) =
w. If it equals z, then, for any value of s(x, x, z, z), s violates the polymorphism property.
The proof, for other tuples from {w, y}4 ∪ {x, z}4 is similar.

Suppose that s(w,w, z, z) ∈ {x, y}. If it equals x, then it contradicts to s(w,w,w,w) =
w. If it equals y, then it contradicts to s(z, z, z, z) = z. The proof for other tuples from
{w, z}4 is similar.

Suppose that s(w,w, x, y) = z; then, for any value of s(x, x, y, z), s violates the poly-
morphism property. The proof for other tuples from {w, x, y}4 ∪ {x, y, z}4 is similar.

Suppose that s(w,w, x, z) = y; then it contradicts s(z, z, z, z) = z. The proof for other
tuples from {w, x, z}4 ∪ {w, y, z}4 is similar.

Order w, x, y, z as w ≺ x ≺ y ≺ z. Take two tuples t, t′ in {w, x}4 ∪ {x, y}4 ∪ {y, z}4.
We say that t ⪯ t′ if, for any i in [4], ti ⪯ t′i, where ⪯ means ≺ or =. This ordering is
displayed on Figure 6.6 for tuples from {x, y}.

Lemma 6.6.5. Let s be a polymorphism of P. Then, for any t, t′ in {w, x}4 ∪ {x, y}4 ∪
{y, z}4, if t ⪯ t′, then s(t) ⪯ s(t′).
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Figure 6.6: The Hasse diagram of the ⪯-ordering of {x, y}4. Dotted closed curves highlight those tuples
that are mapped to the same element by a Siggers polymorphism.

Proof. If t and t′ consist of elements of different two-element sets, then, by Lemma 6.6.4,
we are done.

Suppose that t, t′ belong to {w, x}4. By Lemma 6.6.4, s(t), s(t′) belong to {w, x}.
Suppose that t ⪯ t′ and s(t) ̸⪯ s(t′), that is, s(t) = x and s(t′) = w. On one hand,
EP(t′i, ti) = 0, for any i in [4]. But EP

(
s(t′, t)

)
= EP(w, x) = 1 which contradicts s being

a polymorphism. The proof for other tuples from {w, x}4 ∪ {y, z}4 is similar.
Suppose that, for t, t′ in {x, y}4, we have t ⪯ t′. Let u and u′ be obtained from t and

t′ by replacing each occurence of x with w and each occurence of y with x. Then we have
u ⪯ u′, and, as they both belong to {w, x}4, we have s(u) ⪯ s(u′). Suppose that s(t) ̸⪯
s(t′); then, by Lemma 6.6.4, s(t) = y and s(t′) = x. Then, s(u′) = w and, consequently,
s(u) = w. As

∧4
i=1 E

P(ui, ti) ̸⪯∅ EP
(
s(u), s(t)

)
, s is not a polymorphism.

Lemma 6.6.6. Let s be a Siggers polymorphism of P. Let t be a 4-tuple from {w, x}4 ∪
{x, y}4∪{y, z}4, where 3 out of 4 elements are equal to a, for some a in P . Then, s(t) = a.

Proof. Suppose that t is in {x, y}4. We are going to show that, if 3 out of 4 elements of t
are equal to x, then s(t) ̸= y, so it can only be mapped to x. Observe that it is sufficient
to show that (x, y, x, x) does not map to y. Because, by Siggers property, s(x, y, x, x) =
s(y, x, y, x) and, by Lemma 6.6.5, s(x, x, y, x) ⪯ s(y, x, y, x) and s(y, x, x, x) ⪯ s(y, x, y, x),
and, by Siggers property, s(x, x, y, x) = s(x, x, x, y). See Figure 6.6 on page 154.

Suppose that s(x, y, x, x) = y. Then, s(y, z, y, y) = z, as EP(x, y) = EP(y, z) = 1
and as (y, z) is the only 1-arc that goes from y. By Siggers property, s(z, y, y, z) =
s(y, z, y, y) = z. Therefore, by Lemma 6.6.5, s(z, y, y, z) ⪯ s(z, y, z, z), so s(z, y, z, z) = z.
But, EP(y, z) = 1 and EP(x, z) = EP(y, y) = 0, that contradicts the assumption that s

is a polymorphism. We conclude that s(x, y, x, x) = x, and all other tuples from {x, y}4,
where 3 out of 4 elements are equal to x, must be mapped to x. Similarly, all tuples of
{x, y}4, where 3 out of 4 elements equal y, must be mapped to y. The proof for tuples
from {w, x}4 ∪ {y, z}4 is similar.

For a set A, a ternary function f : A3 ! A is called majority if, for any x, y in A,

f(x, x, y) = f(x, y, x) = f(y, x, x) = x.
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As an example, let A be equal to [n], and consider the ternary median function m : A3 ! A
that is defined as follows. Let x, y, z be three elements from A. Suppose that {x, y, z} =
{a, b, c}, where a ≤ b ≤ c. Then m(x, y, z) is defined to be b.

Proof of Theorem 6.6.2. Consider two tuples t = (w,w, x, y) and t′ = (x, y, w, w). Sup-
pose that s is a Siggers polymorphism of P. By Lemma 6.6.4, s(t), s(t′) belongs to
{w, x, y}. Suppose that s(t) = x; then, by Lemma 6.6.6, s(w,w, x, w) = w, this is a
contradiction to s being a polymorphism. Suppose that s(t) = y; then, by Lemma 6.6.6,
s(z, z, z, y) = z, this is a contradiction to s being a polymorphism. Similarly, having
s(x,w,w,w) = w and s(z, y, z, z) prevents s(t′) from belonging to {x, y}. Thus, both
these tuples must be mapped to w. If s(w,w, x, y) = w, then s(y, y, x, x) = y and,
consequently, s(x, x, w, w) = x. On the other hand, we have s(x, y, w, w) = w, this con-
tradicts to s being a polymorphism. So, any map s with Siggers property cannot be a
polymorphism of P.

For any ⋆-graph H, the MP problem MP(H) can be reduced to the list matrix partition
problem associated with H. For an input directed graph G of MP(H), do the following.
Denote by G′ the graph that is obtained from G by removing all the loops. For x in G, if
EG(x, x) = 0, then the list Lx consists of all h in H such that EH(h, h) = 0; if EG(x, x) = 1,
then Lx consists of all h in H such that EH(h, h) = 1. Then, we reduce G to G′ with the
family of lists

{
Lx | x ∈ G

}
.

Let P− denote the directed path of length 4. P− has the median polymorphism m

with respect to the ordering w < x < y < z on the set P = {w, x, y, z}. By Bulatov’s
characterisation for list-homomorphism problems from [Bul03], having a majority poly-
morphism implies that the corresponding list-homomorphism problem is P-time solvable.

By Lemma 6.6.3, the list-matrix partition problem associated with P can also be solved
in P-time, as the list-homomorphism problem is P-time solvable for P−. As MP(P) can
be reduced to a P-time solvable problem, it is also P-time solvable.
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Chapter 7

Conclusion

In this part we briefly summarize the main results of this thesis and discuss possible
perspectives for further work. We explain our ideas quite informally.

Although the main objective of this thesis is to study the dichotomy question for
extensions of MMSNP and CSP, we manage to solve it only for MMSNP with guarded
inequalities, which happens to be P-time equivalent to MMSNP, and, thus, has a di-
chotomy. For each of the other classes that we have considered, this question still remains
unanswered.

Regarding MMSNP2, we believe that one should study algebraic properties of ω-
categorical CSP templates that are associated with MMSNP2 sentences or, more broadly,
with regular infinite MMSNP sentences. Maybe, there is a chance to apply the same
methods as for MMSNP, see [BMM18]. Apart from that, we also see some potential in
constructing a right expander structure that can finish the reduction. It requires deep
understanding of the construction properties that we want our expander to have. Results
that we obtain in this thesis about infinite MMSNP and expander structures for MMSNP2,
could be useful for proving a dichotomy for this class.

Speaking of Matrix Partition problems (MP), we do not think that it is possible to
provide a PvsNP-complete characterization that uses polymorphisms, as in CSP. Because
we provide a ⋆-graph with a tractable MP problem that has no Siggers polymorphism.
This means that it has only trivial polymorphisms. The class MP is contained in MMSNP∗
that is a fragment of MonadicSNP. A dichotomy for MMSNP∗ would imply a dichotomy for
MP as well. We do not think that the complexity of MP problems can be characterized
by having some forbidden induced substructures, similarly as it is done for undirected
graphs in [HN90]. Because MP extends CSP on digraphs, and CSP on digraphs is not
characterized in this manner.

It makes sense to pose questions about “grey zone” classes that are similar to those
that have already been studied on CSP. We have considered one such question on both
MMSNP2 and MP: is it possible to simplify the signature so that we can always assume
only problems on directed graphs? In both cases, we only manage to show that we can
consider, without loss of generality, signatures with a unique relation symbol. Though,
it seems much harder to reduce the arity of this relation symbol. It is hard to be done
for MP because this class does not have a notion for “nothing”, which is similar to the
“non-edge” notion in CSP. However, for MMSNP2 it seems to be more doable as it is
not clear what the obstacle is. It remains just to understand well the properties that
we need from the directed graphs. These properties must be, in some sense, dual to the
“balanced” property that is used for CSP. Because both MMSNP and MMSNP2 classes
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are formulated dually with respect to CSP.
The question of containment of two MMSNP problems is also well-studied, see [Mad10].

It happens that SAT(Φ1) is contained in SAT(Φ2) if and only if we can replace existential
relations σ1 of Φ1 with existential relations σ2 of Φ2 such that for any negated conjunct
of Φ2 there exists a more restrictive negated conjunct of the recoloured Φ1. The map
from σ1 to σ2 is called a recolouring, it is used in the proof of the dichotomy theorem for
MMSNP in [BMM18]. For MMSNP2 logic, it is easy to show that containment implies the
existence of a recolouring. However, the other directions seems to be more complicated,
the main obstacle is the existence of duplicated tuples.

For a complexity class, it is important to understand its relation with the first-order
logic FO. This is done by characterizing the problems that are FO-definable. For example,
see [Ats08], for a finite relational structure A, CSP(A) is FO-definable if and only if CSP(A)
has a finitary duality, i.e., there is a finite family D of structures such that, for any input
structure B, we have B ! A if and only if ∀D ∈ D D ̸! B. This question can be
asked for MP problems. This is the reason why we studied minimal obstructions for these
problems. This question is unlikely to be solved for MP by a similar approach as it is
done for CSP, because MP does not have a notion for “nothing”. That is, by the same
reason as it is hard to reduce the arity.
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Appendix A

Maximum cut on interval graphs of
interval count two is NP-complete

By Ladner’s theorem, P ̸= NP implies the existence of NP-intermediate problems. How-
ever, we do not know about any naturally formulated problem that happens to be
NP-intermediate. There are many NP problems that are not known to be NP-complete
or P-time solvable, e.g. Graph Isomorphism and Integer Factoring. Some problems that
are NP-complete for general case become P-time solvable if the input is restricted. And,
for some cases of the input restriction, the questions about the problem complexity are
still open. In this appendix, we solve one of such questions. Although it is not related
to Feder and Vardi’s logic MMSNP, this result concerns the P-NP-complete dichotomy
question. This is why we decide to add it to the thesis.

A.1 Introduction

For a graph G =
(
V (G), E(G)

)
, a cut is a partition of V (G) into two disjoint subsets.

Any cut determines a cut set which is the set of all edges that have one endpoint in one
part and the other endpoint in the other part. The size of a cut is the cardinality of its
cut set. The maximum cut problem, denoted by MaxCut, asks for a cut of maximum
size in G.

MaxCut is a fundamental and well-known NP-complete problem [GJ90]. The weighted
version of the problem is one of Karp’s original 21 NP-complete problems [Kar72]. MaxCut
remains NP-hard even for cubic graphs [BK99], split graphs [BJ94], co-bipartite graphs
[BJ94], unit disk graphs [DK07], total graphs [Gur99], and interval graphs [ABMR21]. On
the positive side, polynomial time algorithms are known for planar graphs [Had75], line
graphs [Gur99], graphs not contractible to K5 [Bar83] and graphs with bounded treewidth
[BJ94].

There are two papers that mainly motivate our research. First, a recent proof of NP-
completeness of MaxCut on interval graphs provided by Adhikary et al. in [ABMR21].
Second, a more recent result of de Figueiredo et al. in [dFdMdSOS21], where they extend
the result of the first paper by proving that MaxCut is NP-complete on graphs of interval
count four. Using the technique of the above work, de Figueiredo et al. prove the NP-
completeness of MaxCut on permutation graphs as well, which too was open for a long
time [dFdMdSOS22]. The bounding of the number of interval lengths brings us closer
to the final goal: to characterize MaxCut for unit interval graphs as they are exactly
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interval graphs of interval count one. There were attempts to provide a polynomial-time
algorithm for unit interval graphs [BKN99,BES17], but they both were later shown to be
incorrect [BdFG+04,KMN20]. In this paper we extend the result of the second paper by
proving the following theorem which brings us as close as possible to MaxCut on unit
interval graphs.

Theorem A.1.1. MaxCut on interval graphs of interval count two is NP-complete.

A.2 Preliminaries

For a, b in R, an interval between a and b is the set of all x ∈ R such that a ≤ x ≤ b. A
family M of intervals {I1, . . . , In} is called an interval model of a graph G if one can order
the vertices of G: V (G) = {g1, . . . , gn} such that ∀i, j ∈ [n], gigj ∈ E(G) iff Ii ∩ Ij ̸= ∅.
Here and elsewhere, we use the notation [n] for the set {1, 2, . . . , n}, where n ∈ N. A
graph G is called an interval graph if there exists a family of intervals MG that is an
interval model of G. A graph G is said to have interval count c if there exist a set C ⊂ R
of size c and an interval model M of G, where the length of any interval of M belongs to
C. We usually think of a MaxCut partition as of a coloring of intervals into two colors:
R for red and B for blue. So, when we say that some interval is colored in some color,
we mean that it belongs to the corresponding partition class. If an interval X has a color
c ∈ {R,B}, then we frequently denote it by Color(X) = c. If B is a family of intervals
that all have a color c ∈ {R,B}, then we also can write Color(B) = c.

A.3 Background

We first start with the reduction of Adhikary et al. in [ABMR21]. They reduced MaxCut
on cubic graphs to MaxCut on interval graphs. In their paper, each vertex and edge
of the original cubic graph was represented by a set of intervals, called vertex and edge
gadgets respectively. The interval model consisted of first all the vertex gadgets, and then
all the edge gadgets arranged from left to right. If an edge was incident to a vertex, then
the corresponding vertex and edge gadgets were “linked” by a pair of very long intervals
whose left ends intersected the corresponding vertex gadgets and right ends intersected
the edge gadget. They were called link intervals. The number of intervals in any gadget
was much greater than the total number of link intervals in the graph. It was shown
that, in a MaxCut partition of this interval graph, each vertex gadget or edge gadget
could have only two possible partitions. For a vertex gadget, these two partitions were
made to correspond to its membership in one of the partitioning sets for MaxCut of
the cubic graph. If two adjacent vertices of the cubic graph belonged to different sets,
then the corresponding edge gadget would make more cut edges with link intervals than
if these vertex gadgets were in the same set. Thus, a maximum sized cut of the cubic
graph always corresponded to a maximum sized cut of the constructed interval graph and
vice versa, proving the latter to be NP-complete.

In the above reduction, intervals of two different lengths were used to construct the
gadgets. However, the length of each link interval depended on the relative positions of
its vertex and edge gadgets. So the total number of different lengths of link intervals was
linearly dependent on the size of the cubic graph. So, this interval graph seemed to be far
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away from unit interval graphs, for which the problem was still open. De Figueiredo et al.
in [dFdMdSOS21] made a very important advancement in this regard. They showed that
MaxCut was NP-complete even when the total number of lengths used for the intervals
was only 4, i.e. when the interval count of the graph was 4. In their paper, an extra
gadget, resembling the vertex and edge gadgets, was used as a “joining gadget” between
link intervals. Instead of having a link interval running through the entire length between
its corresponding vertex and edge gadgets, they used a chain of link intervals joined to
each other with the use of joining gadgets. A link chain is a sequence of link intervals with

Lj−1

Lj

Lj+1

Vi−1 Vi Vi+1

Figure A.1: Link chains between consecutive vertex gadgets.

a join gadget between every two consecutive link intervals. Such a join gadget partially
intersects only particular link intervals. The link intervals of all other link chains that
intersect the join gadget, intersect it fully. The join gadgets ensure that in a maximum cut
partition, the link intervals of every link chain are colored with red and blue alternately.
Thus, link intervals of arbitrary lengths in the original reduction can be replaced by link
intervals of a single size. However, one problem remained. Between consecutive vertex or
edge gadgets, the link chains had their join gadgets in a fixed order. For example, consider
vertex gadgets Vi−1, Vi and Vi+1, and link chains Lj−1, Lj and Lj+1 (Fig. A.1. If in the
gap between Vi−1 and Vi, the join gadget of Li−1 occurred first, followed by a join gadget
each of Lj and Lj+1 respectively, then they would occur in the same order in the gap
between Vi and Vi+1. This would pose a problem if the structure of the graph required
Lj−1 and Lj+1 to have a partial intersection with the same edge gadget. In such a case, a
second type of link interval with a different length would be used to end link chain Lj+1

early and enable it to partially intersect the same edge gadget along with Lj−1. Thus,
their reduction needed intervals of two lengths for the vertex, edge and join gadgets, and
another two lengths as the link intervals, totalling to an interval count of four.

In the present work, we bring the interval count by two due to our modifications in the
structure of gadgets and link chains. Instead of using separate lengths of short and long
intervals, the vertex, edge and join gadgets are now three consecutive cliques composed
of intervals of the same length, with the middle clique being twice as large as the two
other cliques. The link chains do not need two separate lengths of intervals anymore.
The problem of non-consecutive link chains partially intersecting the same edge gadget
is solved by using a switch gadget, which again is a sequence of cliques, that changes the
relative positions of join gadgets of link chains. This brings the interval count down to
two.
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A.4 Overview of the reduction

We reduce MaxCut on cubic graphs to MaxCut on interval graphs of interval count
two. For every cubic graph G, we construct an interval graph H of interval count 2 such
that any MaxCut partition of G corresponds to some MaxCut partition of H. In this
section, we provide basic information about the reduction.

Interval sizes We can use intervals of only two different sizes: short and long. Later,
when we give an explicit proof, we assume that short intervals have length 1, and long
intervals have length α, for some α > 1 that depends on the size of the input cubic graph.

Blocks A block is an interval model consisting of short intervals that start from and
terminate at the same coordinates. It is usually denoted by a letter B. The size |B| of
a block B is the number of intervals within it. We can without loss of generality draw
blocks as squares. A block of size x is an interval model of the complete graph Kx on x
vertices. When an interval model contains several blocks, they can be linearly ordered.
The ordering depends on the coordinates of the left ends of the blocks. Every gadget that
we use is constructed from blocks.

Block coloring Consider any interval model consisting of blocks B1, . . . ,Bs, they are
linearly ordered from the leftmost to the rightmost, say that B1 is the leftmost and Bs

is the rightmost. Then we say that the coloring of the blocks is alternating if, for every
i ∈ [s− 1], Bi and Bi+1 are entirely in different classes, i.e., Color(Bi) ̸= Color(Bi+1). The
coloring is almost alternating except for (Bi, c) if there is a constant value c such that
at most c intervals of the block Bi have the same color as Bi−1 and Bi+1 and, for every
j ̸∈ {i− 1, i}, we have Color(Bj) ̸= Color(Bj+1).

Size of the reduction graph Before we formally describe the reduction graph H, we
define all the gadgets that are used in the construction of H. It is convenient to prove
the necessary properties of a gadget right after it is defined. Sometimes, for a property
to hold, it is required that H satisfies certain numerical constraints. We list them now,
and, when we explicitly construct H, we make sure that these constraints hold. Suppose
that |V (G)| = n; then |E(G)| = 3n

2
.

1. The size of every block of H depends either on a parameter x (for vertex, join,
and switch gadgets) or on a parameter k (for edge gadgets). It is required that
x, k ∈ Ω(n6).

2. For every block of H there are at most η := 3n long intervals that intersect it.

3. Every long interval of H intersects at most µ := 30n+ 16 blocks.

A.5 3-blocks

A 3-block is an interval model consisting of three blocks B1,B2,B3 such that |B1| = |B3|
and |B2| = 2|B1|. Every interval of B1 intersects every interval of B1 ⊔ B2 and no interval
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Figure A.2: A 3-block interval model together with five long link intervals intersecting it in any possible
way.

of B3. Every interval of B2 intersects any other interval of the model. Every interval of
B3 intersects every interval of B2 ⊔ B3 and no interval of B1.

Usually, we draw a 3-block as it is done on Figure A.2. We say that an interval
terminates at a block B if B is the rightmost block that contains the right end of the
interval. Similarly, we say that an interval starts from B if B is the leftmost block that
contains the left end of the interval. For a long interval, we say that it overlaps B if
it intersects the block but neither terminates at it nor starts from it. For example, on
Figure A.2, there is a short interval that terminates at B1, another short interval that
starts from B3, and three long intervals that overlap all the three blocks.

3-block is a basic concept of this paper because almost all other gadgets are constructed
using 3-blocks. The reason of its usefulness is that, if the block size is large enough, then,
under any MaxCut coloring, the coloring of the blocks B1,B2,B3 of a 3-block is almost
alternating except for (B2, c); and the value of c depends on the number of long intervals
that overlap B2. This is proved in Lemma A.5.1. Denote the total number of link intervals
by η. In the following lemma we show that a 3-block follows an alternating pattern of
partition for all maximum sized cuts, except a few intervals in the middle block.

Lemma A.5.1. Let B = (B1,B2,B3) be a 3-block in H of size (x, 2x, x). Then any
maximum cut coloring of H satisfies the following conditions:

1. all intervals of B1 and B3 get the same color.

2. all intervals of B2 get the opposite color except for at most η intervals.

Proof. Consider a maximum cut coloring of H.

• We denote by L1 all the long intervals that terminate at B1.

• We denote by L2 all the long intervals that overlap B1, B2, and B3.

• Those long intervals that start from B3 are denoted by L3.

• Those long intervals that terminate at B2 are denoted by L4.

• Finally, L5 denotes all the long intervals that start from B2.

Let ri and bi be the numbers of intervals that respectively get red and blue colors in
Li, for any i ∈ [5]. Without loss of generality, assume that most intervals of L1 get the
color red, that is, r1 > b1.
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Also let y1, 2x − y2, and y3 be the number of intervals of respectively B1,B2,B3 that
are colored blue. Hence x− y1, y2, and x− y3 are the numbers of intervals of respectively
B1,B2, and B3 that are colored red. Now observe that

1. The number of cut edges formed between the blocks and the long intervals is r1y1+
b1(x− y1)+ r2(y1+2x− y2+ y3)+ b2(2x− y1+ y2− y3)+ r3y3+ b3(x− y3)+ r4(y1+
2x− y2) + b4(x− y1 + y2) + r5(2x− y2 + y3) + b5(y2 + x− y3).

2. The number of cut edges formed by the short intervals of the same block among
themselves is y1(x− y1) + y2(2x− y2) + y3(x− y3).

3. The number of cut edges formed by the short intervals of the different blocks is
y1y2 + (x− y1)(2x− y2) + y2y3 + (2x− y2)(x− y3).

Denote the quantity ri − bi by ∆i. Therefore the number of cut edges, denoted by C,
contributed by the 3-block B is:

C =4x2 + x(2r2 + 2r4 + 2r5 + b1 + 2b2 + b3 + b4 + b5)−
− xy1 − xy3 − y21 − y22 − y23 + 2y1y2 + 2y2y3+

+∆1y1 +∆2(y1 − y2 + y3) + ∆3y3 +∆4(y1 − y2) + ∆5(y3 − y2).

Now let us modify the cut by making Color(B1) = Color(B3) = R and Color(B2) = B.
This means that we have y1 = y2 = y3 = 0. So the number of cut edges, denoted by
CRBR, contributed by the 3-block B in this case is:

CRBR = 4x2 + x(2r2 + 2r4 + 2r5 + b1 + 2b2 + b3 + b4 + b5).

If we instead have Color(B1) = Color(B3) = B and Color(B2) = R (i.e., y1 = y3 =
x, y2 = 2x), then the number of cut edges, denoted by CBRB, contributed by the 3-block
B would be:

CBRB = 4x2 + x(r1 + 2r2 + r3 + r4 + r5 + 2b2 + 2b4 + 2b5).

Without loss of generality, assume that CRBR ≥ CBRB. This implies that

CRBR − CBRB ≥ 0 =⇒
∆1 +∆3 −∆4 −∆5 ≤ 0.
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Now observe that C − CRBR equals

− y21 − y22 − y23 − xy1 − xy3 + 2y1y2 + 2y2y3

+∆1y1 +∆2(y1 − y2 + y3) + ∆3y3 +∆4(y1 − y2) + ∆5(y3 − y2) =

= −
[
(y1 − y2 + y3)−

1

2
(∆2 +∆4 +∆5)

]2
+

1

4
(∆2 +∆4 +∆5)

2+

+ 2y1y3 − xy1 − xy3 +∆1y1 +∆3y3 −∆4y3 −∆5y1 ≤

≤ 1

4
(∆2 +∆4 +∆5)

2 + 2y1y3 − xy1 − xy3 + (∆1 −∆5)y1 + (∆3 −∆4)y3 =

=
(∆2 +∆4 +∆5)

2

4
+ 2y1y3 − xy1 − xy3 + (∆1 −∆5)(y1 − y3) + (∆1 +∆3 −∆4 −∆5)y3

≤ 1

4
(∆2 +∆4 +∆5)

2 + 2y1y3 − xy1 − xy3 + (∆1 −∆5)(y1 − y3) =

(since we assumed that ∆1 +∆3 −∆4 −∆5 ≤ 0)

=
(∆2 +∆4 +∆5)

2

4
+

(∆1 −∆5)
2

4
+ y1(y1 − x) + y3(y3 − x)−

(
y1 − y3 −

(∆1 −∆5)

2

)2

≤ 1

4
(∆2 +∆4 +∆5)

2 +
1

4
(∆1 −∆5)

2 + y1(y1 − x) + y3(y3 − x).

Notice that if y1 /∈ {0, x}, then (x− y1)y1 ≥ x− 1. Similarly, if y3 /∈ {0, x}, then (x−
y3)y3 ≥ x− 1. Since we assumed that either (y1 /∈ {0, x}) or (y3 /∈ {0, x}), it implies that
y1(y1−x)+y3(y3−x) ≤ 1−x. So we have C−CRBR ≤ 1

4
(∆2+∆4+∆5)

2+ 1
4
(∆1−∆5)

2+1−x.
But since x > n6 and each ∆i < n3, we conclude that C − CRBR < 0 =⇒ C < CRBR.
This contradicts the maximality of the first cut. Therefore we conclude that

(
y1 ∈ {0, x}

)
and

(
y3 ∈ {0, x}

)
, i.e., B1 and B3 are monochromatic.

Now we show that Color(B1) = Color(B3). For the sake of contradiction, assume that
Color(B1) ̸= Color(B3). Thus, |y1−y3| = x. Again, we calculate the difference C−CRBR,
which is at most:

1

4
(∆2 +∆4 +∆5)

2 +
1

4
(∆1 −∆5)

2 + y1(y1 − x) + y3(y3 − x)−
(
y1 − y3 −

1

2
(∆1 −∆5)

)2

=
1

4
(∆2 +∆4 +∆5)

2 +
1

4
(∆1 −∆5)

2 −
(
y1 − y3 −

1

2
(∆1 −∆5)

)2

≤ 1

4
(∆2 +∆4 +∆5)

2 − x2 + x|∆1 −∆5|.

Since x > n6 and each ∆i < n3, we have that C − CRBR < 0, which contradicts the
maximality of the first cut. So we conclude that Color(B1) = Color(B3), this proves (1).

Without loss of generality, suppose that Color(B1) = Color(B3) = R. So in order to
prove (2), we have to show that except at most η intervals, all intervals of B2 get color
blue. The number of cut edges contributed by B is

C = 4x2 + x(2r2 + 2r4 + 2r5 + b1 + 2b2 + b3 + b4 + b5).− y2(y2 +∆2 +∆4 +∆5).

Now we show that y2 ≤ b2 + b4 + b5. For the sake of contradiction assume that
y2 > b2+ b4+ b5. Let us modify the cut by coloring all intervals of B2 blue, i.e. by making
y2 = 0. The number of cut edges contributed by B in the modified cut is:

CRBR = 4x2 + x(2r2 + 2r4 + 2r5 + b1 + 2b2 + b3 + b4 + b5).
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Since we have only modified y2, the difference in cut sizes of these two cuts is:

C − CRBR = −y2(y2 + r2 − b2 + r4 − b4 + r5 − b5)

Since y2 > b2 + b4 + b5, we conclude that C −CRBR < 0, which contradicts C being a
maximal cut. Hence y2 < b2 + b4 + b5 < η.

A.6 Gadgets

After defining a 3-block and showing how it is colored under a MaxCut partition, we
can use it to construct different gadgets of the reduction graph H. For each gadget
that we introduce, we state in a corresponding lemma how it can be colored under a
MaxCut partition of H. For gadgets that are based on 3-blocks, these lemmas follow
from Lemma A.5.1 and from the gadget construction. Although there is a gadget whose
construction is not based on 3-blocks, the lemma that describes its MaxCut partition
within H is proved using methods similar to Lemma A.5.1.

Vertex gadget The interval model of a vertex gadget consists of three 3-blocks and
two short intervals: V := B1 ⊔ B2 ⊔ B3 ⊔ {S12, S23}. The blocks Bi

1,Bi
2,Bi

3 of each 3-block
Bi have sizes x, 2x, x correspondingly, for some x > 0. The 3-blocks are connected by
short intervals S12, S23, they are called short link intervals. There are three long intervals
L1, L2, L3 adjacent to a vertex gadget, they start from B1

3,B2
3,B3

3, where, for each i in [3],
Bi
3 is the rightmost block of Bi.

x x

2x

x x

2x

x x

2x

Figure A.3: A vertex gadget interval model.

Under any MaxCut partition, the coloring of each 3-block of a vertex gadget is almost
alternating. Moreover, each pair of blocks that are connected by a short link interval must
have the same color, and the short link interval must have the opposite color. The colors of
L1, L2, L3 are opposite to the colors of blocks from which they start. An optimal coloring
of a vertex gadget, under a MaxCut partition, is displayed on Figure A.3. We prove this
in Lemma A.6.1.

Lemma A.6.1. Let V be a vertex gadget of H (see Figure A.3). Then, in a MaxCut
partition of H, the two following statements hold:

1. for all i ∈ [3], all the intervals of the blocks Bi
1 and Bi

3 belong to the same class, and

2. the intervals of each of the blocks B1
2,B2

2, and B3
2, except for at most η intervals

within each block, belong to the other class, as well as S12 and S23.

Proof. By Lemma A.5.1, for i ∈ [3], Bi must be almost alternating except for η intervals
in Bi

2.
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If two adjacent 3-blocks are colored differently, then the short link interval between
them will add x to the MaxCut. If they have the same color, then it will add 2x, so all
the three 3-blocks will have a similar partition: either all RBR or all BRB except for a
small fraction in every central block Bi

2.

Let v ∈ V (G) be a vertex of a cubic graph G. It corresponds to some vertex gadget.
Then the color of v, under a MaxCut partition, is the same as the color assigned to the
long intervals starting from the vertex gadget.

Edge gadget An edge gadget consists of two 3-blocks connected by a short link inter-
val: E := B1 ⊔ B2 ⊔ {S12}. The blocks Bi

1,Bi
2,Bi

3 of each 3-block Bi have sizes k, 2k, k
correspondingly, for some k > 0. The value of k is different from the value of x – the
block size within a vertex gadget. There are two long intervals L1, L2 that terminate at
B1
1 and B2

2 correspondingly, see Figure A.4.

k k

k kk k

k k

2k

2k2k

2k

Figure A.4: The two cases of the MaxCut coloring of an edge gadget.

The colors of L1 and L2 are enforced by some two vertex gadgets. If we choose k to
be significantly smaller than x, then edge gadgets are less influential than vertex gadgets.
The colorings of B1 and B2 of an edge gadget must be almost alternating and they
depend on the colors of L1 and L2. The two possible cases are displayed on Figure A.4. If
Color(L1) ̸= Color(L2), then the MaxCut value is greater, as S12 is connected to blocks
of the same color and it can pick the opposite color. If Color(L1) = Color(L2), then S12

is adjacent to blocks of different colors, and the MaxCut value is less than in the first
case. This is proved in Lemma A.6.2. Suppose that there is a graph H and a maximum
cut partition of H; then, for some induced subgraph H ′ of H, the value provided by H ′

means the number of cut edges having at least one end in H ′.

Lemma A.6.2. Let E = B1 ⊔ B2 ⊔ {S12} be an edge gadget of H together with two long
intervals L1, L2 terminating at B1

1 and B2
2, see Figure A.4. Suppose that, for i ∈ [2],

|Bi
1| = |Bi

3| = k and |Bi
2| = 2k. Then, for a MaxCut partition of H, the colorings of

3-blocks are almost alternating except for at most η intervals of the central blocks; and if
Color(L1) ̸= Color(L2), then the maximum cut value provided by E is greater at least by
k − 2η than the maximum cut value in the case Color(L1) = Color(L2).

Proof. Suppose that E is overlapped by λ < η long intervals. By Lemma A.5.1, the
MaxCut of B1 and B2, is either alternating or almost alternating except for ∆ intervals
of B1

2 or B2
2, where ∆ < η is the difference between the numbers of red and blue long

overlapping intervals.
Suppose that Color(L1) = Color(L2) = B; then Color(B1

1) = Color(B1
3) = R. The

color of B1
2 must be blue except for at most η intervals. For B2 there are two cases.

1. The color of B2
2 is red except for at most η intervals, and Color(B2

1) = Color(B2
3) = B.

Then, for any Color(S12), the cut size is at most 8k2 + (6 + 4λ)k + 1
4
∆2 + 3

2
λ+ 1.
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2. The color of B2
2 is blue except for at most η intervals, and Color(B2

1) = Color(B2
3) =

R. Then Color(S12) = B. Then the cut size is at most 8k2 + (6+ 4λ)k+ 1
2
∆2 + 2λ.

Suppose that Color(L2) = B and Color(L1) = R. Then B2 is partitioned as RBR. B1

is also partitioned as RBR. Then the cut size would be at least 8k2+(7+4λ)k+ 1
2
∆2+2.

The difference between the value provided by E when Color(L1) ̸= Color(L2) and the
value in the case when they are equal is at least k − 2λ, which is at least k − 2η.

Join gadget Similarly to vertex gadgets, a join gadget consists of three 3-blocks con-
nected by short link intervals: J = B1 ⊔ B2 ⊔ B3 ⊔ {S12, S23}. Every join gadget has
3 long intervals terminating at Bi

1 and 3 long intervals starting from Bi
3, for i ∈ [3], see

Figure A.5. We need such gadgets to connect vertex gadgets to edge gadgets by chains of
long intervals.

x x

2x

x x

2x

x x

2x

Figure A.5: The join gadget with its MaxCut partition.

By Lemma A.5.1, the coloring of each 3-block Bi is almost alternating except for some
small fraction within its central block Bi

2. All the 3-blocks are colored similarly: either
all are BRB or all are RBR. See Lemma A.6.4 for the proof. The colors of the three
long intervals that start from a join gadget are the same as the colors of those three that
terminate at it. This means that we can keep in our memory the vertex gadget coloring
as it is preserved by join gadgets.

Stretch gadget We need to be able to manipulate the positions of long intervals within
a join gadget. Either we can increase the number of 3-blocks inside it or we can decrease
the distances between blocks without adding any new intersections, as on Figure A.6.
Such join gadgets are called stretch gadgets. We will never need more than 10 3-blocks
within one stretch gadget.

Figure A.6: The two extreme cases to compress a join gadget.

The following lemma provides a lower bound for the distance between the ends of two
long intervals of H, it is a consequence of the stretch gadget construction.

Lemma A.6.3. If the distance between the ends of two long intervals L1, L2 is greater
than 2, then we can attach them to the same stretch gadget.

Proof. See Figure A.6. Assume that L1, L2 intersect a stretch gadget and do not overlap
it. By construction, a long interval can terminate at the first block Bi

1 of some 3-block
Bi, and can start from the third one. Consider 3 cases:

1. L1 and L2 terminate at (start from) the gadget: L1 at a, L2 at b, and a < b.
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2. L1 terminates at a and L2 starts from b and a < b.

3. L1 terminates at a and L2 starts from b and a > b.

If L1 has its end in a 3-block Bi, and L2 – in Bi′ , then we say that the intervals have
|i′ − i| 3-blocks between them. In particular, if they have their ends in the same block,
then they have no 3-blocks between them.

Suppose that there are j 3-blocks between the intervals.
Case 1. The ends cannot be in the same 3-block. The distance between the ends can

be in (2j, 4j], for j ≥ 1.
Case 2. The distance can be in (2j + 1, 4j + 3], for j ≥ 0.
Case 3. The ends cannot be in the same 3-block. The distance can be in (2j−2, 4j−3],

for j ≥ 1.
One can see that the union of these three intervals, in each case, will contain (2,+∞).

We now show similar bounds on the MaxCut for stretch and switch gadgets.

Lemma A.6.4. Consider a stretch gadget of H consisting of m 3-blocks, each of them
being of sizes x, 2x, x. Then, for a MaxCut partition of H, all the colorings of the 3-
blocks are the same and almost alternating except for at most η intervals in the central
blocks, and the color of each short link interval is opposite to the color of the two adjacent
blocks, as on Figure A.5.

Proof. By Lemma A.5.1, the coloring of Bj, for j ∈ [m], must be almost alternating
except for η intervals in Bj

2. Suppose that Bj and Bj+1 are colored differently, for some
j ∈ [m − 1]. Then we invert the coloring of Bj+1 so that now they have the same color.
Do it for any other Bj′ , for k > j +1, if needed. The possible loss is at most m× η2. The
possible gain is at least x, as now, for any short link interval Sj,j+1, its color is different
than the color of both Bj

3,B
j+1
1 . As x ∈ Ω(n6) and η < 3n, this partition is MaxCut.

Switch gadget A switch gadget consists of two parts. The first part that is the most
important one is displayed on Figure A.7. It is the only gadget that is not constructed
from 3-blocks. It consists of 9 bottom blocks Bbot

1 , . . . ,Bbot
9 and 4 top blocks Btop

1 , . . . ,Btop
4 .

At the bottom, |Bbot
1 | = |Bbot

9 | = x, and, for 2 ≤ i ≤ 8, |Bbot
i | = 2x. At the top, for any

i ∈ [4], |Btop
i | = 2x′, where x′ is some value satisfying x/2 < x′ < x. It also contains

two long intervals L1, L2 that terminate at the gadget, and two long intervals R1, R2 that
start from it, where, for each i, the end of Li is to the left of the end of Ri. L1 terminates
at the bottom left block, L2 terminates at the top left one. R1 starts from the top right
block, R2 starts from the bottom right one. The main property of this gadget is that, for
any MaxCut partition, we have Color(L1) = Color(R2) and Color(L2) ̸= Color(R1).

L1

R1 L2

R2

2x′

2x

x

Figure A.7: The first part of a switch gadget.
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The second part, see Figure A.8, is just a 3-block that changes the color of the successor
of R1 to be the same as Color(L2).

x x

2x

L2

Figure A.8: The second part of a switch gadget.

The idea behind switch gadget is that it “switches” the intervals: the color of R1

depends on the color of L2, and the color of R2 depends on the color of L1.
A MaxCut partition of the first part of the switch gadget is shown on Figure A.7,

this is proved in Lemma A.6.5. If the first switch gadget part is overlapped by many
long intervals, then, under a MaxCut partition, the coloring of the blocks will be the
same as on Figure A.7 except for at most c intervals in Btop

1 or Btop
4 . This is proved in

Lemma A.6.6. Here, c also depends on the size of the input cubic graph. A MaxCut
partition of the second part is similar to the one of a 3-block.

Lemma A.6.5. Consider a graph with an interval model as on Figure A.7. Then, in any
MaxCut partition of this graph, the following statements hold:

• for each of the two levels, block colorings are alternating, and

• Color(R1) ̸= Color(L2) and Color(R2) = Color(L1).

Proof of Lemma A.6.5. At first, let us compute the size of the cut for any partition, where
the colors of the blocks on the top and on the bottom alternate. We do not consider the
four long intervals at the moment. The value is the same for any of the four such partitions:

Cutalter = 3 · 4x′2 + 2 · 2x2 + 6 · 4x2 + 4 · 4x′x = 12x′2 + 28x2 + 16x′x.

Suppose now that the alternating partition is not maximal. Then we will introduce
the following notations for each block.

• Denote by y1, y3 the numbers of blue intervals in Btop
1 and Btop

3 .

• Similarly, y2, y4 denote the numbers of red intervals in Btop
2 and Btop

4 .

• Denote by z1, z3, z5, z7, z9 the numbers of blue intervals in Bbot
1 ,Bbot

3 ,Bbot
5 ,Bbot

7 ,Bbot
9 .

• Similarly, denote by z2, z4, z6, z8 the numbers of red intervals in Bbot
2 ,Bbot

4 ,Bbot
6 ,Bbot

8 .

We are going to compute the MaxCut for a general case and to compare it to Cutalter

in order to find out when it can be the maximal. We are going to split the computation
into several parts in order to be clear:

• The Cutinside part counts the cut-edges inside each of the blocks.

• The Cuty and Cutz parts count the cut-edges between different blocks that are
both on the same level. There are two levels: the top y and the bottom z.

• The Cutinter part counts the cut-edges between the two levels.
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Now we compute the parts one by one.

Cutinside =
4∑

i=1

yi(2x
′ − yi) + z1(x− z1) +

8∑
j=2

zj(2x− zj) + z9(x− z9) =

= −
4∑

i=1

y2i −
9∑

j=1

z2j + 2x′
4∑

i=1

yi + x(z1 + 2
8∑

j=2

zj + z9).

Cuty =
3∑

i=1

(
yiyi+1 + (2x′ − yi)(2x

′ − yi+1)
)
=

= 2
3∑

i=1

yiyi+1 + 12x′2 − x′(2y1 + 4
3∑

i=2

yi + 2y4).

Cutz = z1z2 + (x− z1)(2x− z2) +
7∑

j=2

(
zjzj+1 + (2x− zj)(2x− zj+1)

)
+

+ z8z9 + (2x− z8)(x− z9) = 2
8∑

j=1

zjzj+1 + 28x2 − x(2z1 + 3z2 + 4
7∑

j=3

zj + 3z8 + 2z9).

Denote by A the set of pairs
{
(i, j) | Btop

i intersects Bbot
j

}
. That is,

A =
{
(1, 4), (1, 5), (2, 4), (2, 5), (3, 5), (3, 6), (4, 5), (4, 6)

}
.

Then

Cutinter =
∑

(i,j)∈A,i+j is odd

(
yizj + (2x′ − yi)(2x− zj)

)
+

+
∑

(i,j)∈A,i+j is even

(
yi(2x− zj) + (2x′ − yi)zj

)
= 16x′x+ 2

∑
i,j∈A

(−1)i+j+1yizj =

= 16x′x+ 2(y1 − y2)(z4 − z5)− 2(y3 − y4)(z5 − z6).

Our goal is to prove that f = Cutinside + Cuty + Cutz + Cutinter − Cutalter is less or
equal to 0 and the equality is reached only when the colors alternate. Think of f as of a
polynomial of x′ and x of degree 2:

f = f(x′, x) = f0 + f1x
′ + f2x+ f3x

′2 + f4x
′x+ f5x

2.

Clearly, f3 = f4 = f5 = 0. Now compute the terms f0, f1x′, and f2x:

f0 = −
4∑

i=1

y2i −
9∑

j=1

z2j︸ ︷︷ ︸
Cutinside

+2
3∑

i=1

yiyi+1︸ ︷︷ ︸
Cuty

+2
8∑

j=1

zjzj+1︸ ︷︷ ︸
Cutz

+

+ 2(y1 − y2)(z4 − z5)− 2(y3 − y4)(z5 − z6)︸ ︷︷ ︸
Cutinter

;
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f1x
′ = 2x′

4∑
i=1

yi︸ ︷︷ ︸
Cutinside

−x′(2y1 + 4
3∑

i=2

yi + 2y4)︸ ︷︷ ︸
Cuty

= −2x′
3∑

i=2

yi = −
3∑

i=2

y2i −
3∑

i=2

(2x′ − yi)yi;

f2x = x(z1 + 2
8∑

j=2

zj + z9)︸ ︷︷ ︸
Cutinside

−x(2z1 + 3z2 + 4
7∑

j=3

zj + 3z8 + 2z9)︸ ︷︷ ︸
Cutz

=

= −x(z1 + z2 + 2
7∑

j=3

zj + z8 + z9) =

= −z21 −
z22
2

−
7∑

j=3

z2j −
z28
2

− z29−

− (x− z1)z1 −
(
x− z2

2

)
z2 −

7∑
j=3

(2x− zj)zj −
(
x− z8

2

)
z8 − (x− z9)z9.

We have extracted the negative squares of yi, zj from f1x
′ and f2x in order to combine

them together with the negative squares of the part of f0 provided by Cutinside. The
other summands of f1x′ and f2x are almost always negative, except for the minimal and
maximal values of yi, zj. These extreme cases happen exactly when a block is either all
red or all blue. Then

f = f0 + f1x
′ + f2x = 2

3∑
i=1

yiyi+1 − y21 − 2
3∑

i=2

y2i − y24+

+ 2
8∑

j=1

zjzj+1 − 2z21 −
3

2
z22 − 2

7∑
j=3

z2j −
3

2
z28 − 2z29+

+ 2(y1 − y2)(z4 − z5)− 2(y3 − y4)(z5 − z6)−

−
3∑

i=2

(2x′ − yi)yi−

− (x− z1)z1 −
(
x− z2

2

)
z2 −

7∑
j=3

(2x− zj)zj −
(
x− z8

2

)
z8 − (x− z9)z9 =

= −
3∑

i=1

(yi − yi+1)
2 − 2

(
z1 −

z2
2

)2
−

7∑
j=2

(zj − zj+1)
2 − 2

(z8
2
− z9

)2
+

+ 2(y1 − y2)(z4 − z5)− 2(y3 − y4)(z5 − z6)−

−
3∑

i=2

(2x′ − yi)yi−

− (x− z1)z1 −
(
x− z2

2

)
z2 −

7∑
j=3

(2x− zj)zj −
(
x− z8

2

)
z8 − (x− z9)z9 =
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= −(y1 − y2 − z4 + z5)
2 − (y2 − y3)

2 − (y3 − y4 + z5 − z6)
2−

− 2
(
z1 −

z2
2

)2
− (z2 − z3)

2 − (z3 − z4)
2 − (z6 − z7)

2 − (z7 − z8)
2 − 2

(z8
2
− z9

)2
−

−
3∑

i=2

(2x′ − yi)yi−

− (x− z1)z1 −
(
x− z2

2

)
z2 −

7∑
j=3

(2x− zj)zj −
(
x− z8

2

)
z8 − (x− z9)z9.

Clearly, f ≤ 0. We are going to find all the cases when f = 0. Observe that, for
any i ∈ {2, 3}, j ∈ [9], there is a summand −yi(2x′ − yi) and a corresponding one for
zj. Thus, we need to consider only the cases when y2, y3 ∈ {0, 2x′}, z1, z9 ∈ {0, x} and
z2, . . . , z8 ∈ {0, 2x}. Suppose that y1 ̸∈ {0, 2x′}; then 0 < |y1 − y2| < 2x′ and thus
y1 − y2 − z2 + z3 ̸= 0, for any z2, z3 ∈ {0, 2x}, as x′ < x. So y1 = y2, and thus z2 = z3.
Similarly, y3 = y4, and so z5 = z6. Using other clauses of the expression, we conclude that
y1 = . . . = y4, z2 = . . . = z8, and also we have z1 = z9 = z2/2 = z8/2. This means that
the colorings of the blocks alternate.

Now we need to prove that Color(L2) ̸= Color(R1). Suppose the opposite; then the cut
between the blocks and the long intervals will be at most the sum: 4x provided by L2 plus
4x provided by R1, plus x provided by L1 plus x provided by R2 and plus 2x′ provided by
one of L2, R1. In total it makes 10x+ 2x′. On the other hand, if Color(L2) ̸= Color(R1),
then together L2 and R1 provide 7x+4x′, for each of two possible colorings of the bottom
blocks, and L1 and R2 provide 2x, in total it is 9x+4x′. This case is reachable, because we
can choose the leftmost bottom block to have a color opposite to Color(L1). As Color(R2)
is not fixed, we can choose the right one that will add x as well. So we have to satisfy the
inequality

10x+ 2x′ < 9x+ 4x′.

We assumed that 2x′ > x so the inequality holds and thus the second case is optimal. We
should note that, in the second case, L1 and R2 have the same color because the leftmost
and the rightmost bottom blocks are of the same color. We have shown that L1 and R2

are colored similarly and that L2 and R1 are colored differently.

Lemma A.6.6. Consider some switch gadget of H. For any maximum cut partition of
H, the colorings of both levels will be alternating except for at most η intervals within Btop

1

or Btop
4 .

Proof. Let the number of red and blue long intervals overlapping the switch gadget be r
and b respectively, and denote the quantity (r − b) by ∆. Suppose that r > b. Let yi, zj,
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for i ∈ [4], j ∈ [9], be the same as in Lemma A.6.5. Compute the size of the cut:

Cut = 12x′2 + 28x2 + 16x′x−
− (y1 − y2 − z4 + z5)

2 − (y3 − y4 + z5 − z6)
2−

− 2
(
z1 −

z2
2

)2
− (z2 − z3)

2 − (z3 − z4)
2 − (z6 − z7)

2 − (z7 − z8)
2 − 2

(z8
2
− z9

)2
−

− (y2 − y3)
2 −

3∑
i=2

(2x′ − yi)yi−

− (x− z1)z1 −
(
x− z2

2

)
z2 −

7∑
j=3

(2x− zj)zj −
(
x− z8

2

)
z8 − (x− z9)z9+

−∆

(
4∑

i=1

(−1)iyi +
9∑

j=1

(−1)jzj

)
+ (8x+ 4x′)(r + b) =

= 12x′2 + 28x2 + 16x′x−
− (y1 − y2 − z4 + z5 −∆/4)2 − (y3 − y4 + z5 − z6 −∆/4)2−

− 2
(
z1 −

z2
2
−∆/4

)2
− (z2 − z3 +∆/4)2 − (z3 − z4 −∆/4)2−

− (z6 − z7 +∆/4)2 − (z7 − z8 −∆/4)2 − 2
(z8
2
− z9 +∆/4

)2
−

− (y2 − y3 +∆/4)2 −
3∑

i=2

(2x′ − yi)yi−

− (x− z1)z1 −
(
x− z2

2

)
z2 −

7∑
j=3

(2x− zj)zj −
(
x− z8

2

)
z8 − (x− z9)z9+

+
∆

2
(y1 − y4) + (8x+ 4x′)(r + b) +

11

16
∆2.

Consider only those summands that participate in the size of the cut when the coloring
of the blocks alternates, i.e. when, for all i, j, yi = zj = 0:

Cutalter = 12x′2 + 28x2 + 16x′x+ (8x+ 4x′)(r + b).

If we choose x > (2∆+1)2

2
+ 11

4
∆2, then the distance between some variable (except for

y1, y4) and the closest end of its domain cannot be greater than ∆. For example, suppose
that min(z1, x− z1) > ∆. Then (x− z1)z1 > ∆x+ 11

16
∆2, and so

Cut ≤ Cutalter − (x− z1)z1 +
∆

2
(y1 − y4) +

11

16
∆2 < Cutalter.

So, in this case it will not be a maximum cut.
Suppose that |zj − zj+1| > ∆, then either |zj − zj+1| > 2x− 2∆ when j ̸∈ {1, 4, 5, 8},

or |zj − zj+1| > x− 2∆ when j ∈ {1, 8}. But then one of the clauses will be greater than
(x− 2∆−∆/4)2, hence, greater than ∆x+ 11

16
∆2. Similarly, |y2 − y3| < ∆. Consider the

variables z4, z5, z6. Choose x′ between x/2 and x such that (2x′ − 2x + 2∆ + ∆/4)2 is
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greater than ∆x + 11
16
∆2, as x > ∆2, it is easy to choose a convenient value for x′. For

such x′, we will have |z4 − z5|, |z5 − z6| < ∆.
Denote d12 = y1 − y2 and d34 = y3 − y4. Then y1 − y4 < |d12| + ∆ + |d34|. Then we

can choose only those d12, d34 that satisfy

−(d12 − z4 + z5 −∆/4)2 − (d34 + z5 − z6 −∆/4)2 +
∆

2
(|d12|+∆+ |d34|) +

11

16
∆2 > 0

as, otherwise, it will not be a maximal cut. Denote w = −z4+z5−∆/4, w′ = z5−z6−∆4,
we know that |w|, |w′| ≤ 5∆/4. Then the expression can be written in the following form:

−d212 + 2d12w − w2 − d234 + 2d34w
′ − w′2 +∆/2(|d12|+ |d34|) +

19

16
∆2 > 0 ⇒

⇒ −(d12 − w −∆/4)2 − (d34 − w′ −∆/4)2 +
∆

2
(|w|+ |w′|) + 2∆2

16
+

19

16
∆2 > 0.

Take |d12| ≥ 4∆. Then

−(d12 − w −∆/4)2 − (d34 − w′ −∆/4)2 +
∆

2
(|w|+ |w′|) + 2∆2

16
+

19

16
∆2 ≤

≤ −
(
5∆

2

)2

+
5∆2

4
+

21∆2

16
< 0.

The same is true for |d34|. We now can imply that |y1 − y4| < 9∆, otherwise the cut is
not maximal. This is an important result because we can show now that all the blocks
except for y1, y4 are monochromatic. Take any x > 9

2
∆2 + 11

16
∆2 = 83

16
∆2, then suppose

that for some variable except for y1, y4, say z1 for example: z1 ̸∈ {0, x}. Then (x−z1)z1 ≥
x − 1 > 9

2
∆2 + 11

16
∆2. So the cut will not be maximal in this case. Same is true for any

variable other than y1, y4. So we can conclude that 2z1 = z2 = . . . = z8 = 2z9 ∈ {0, 2x},
and y2 = y3 ∈ {0, 2x′}.

Suppose without loss of generality that all the variables except for y1, y4 are equal to
0. Then Cut − Cutalter equals

−(y1 −∆/4)2 − (y4 +∆/4)2 +
∆

2
(y1 − y4) +

∆2

8
= −y1(y1 −∆)− y4(y4 +∆).

One can see now that the cut will be optimal if y1 = ∆/2, y4 = 0 for ∆ > 0. For the case
when ∆ < 0 the optimal cut will be when y1 = 0 and y4 = −∆/2. Recall that η denotes
the total number of long intervals. As ∆ = (r − b), we have |∆/2| < η.

A.7 Reduction

After describing each gadget of H we can go one level higher and explain how they are
positioned in the graph. We first consider an operation that is used many times in H, the
switch procedure. It allows to change the relative positions of two long interval chains.
If we need to connect two chains to the same edge gadget and if there are other chains
between these two, then this procedure becomes extremely helpful. Further, we provide
the explicit construction of H and, at the end, prove Theorem A.1.1.
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Switch procedure Consider some adjacent vertices gi, gj of the cubic graph G, they
correspond to two vertex gadgets Vi,Vj and to an edge gadget Eij in the interval model of
H. It might be that there is another vertex gadget V ′ between Vi and Vj. Consequently,
there is a join gadget corresponding to V ′ between any pair of join gadgets of Vi,Vj. We
do not want any gadget to intersect Eij, so we have to switch some long interval chain
starting from Vi with all three long interval chains that start from V ′, and similarly for
any other vertex gadget between Vi and Vj.

We solve this issue by the switch procedure. It is displayed on Figure A.9. The line
R is split into zones and buffers between zones. Each zone (or buffer) is a disjoint union
of fragments of the same size, where the distance between two neighbor fragments is the
same and depends on the long interval length α. Every zone corresponds to some vertex
gadget, it contains the vertex gadget and most of the join gadgets of link chains starting
from it. Every fragment of Buffer(i, i + 1) is placed between the fragments of Zone(i)
and Zone(i + 1), for any pair of neighbor vertex gadgets Vi and Vi+1. Buffer(i, i + 1)
contains switch gadgets that are used to let a chain starting from Vi pass all three chains
starting from Vi+1, this is exactly what is shown on Figure A.9. By repeatedly iterating
the switching, we pass all the vertex gadgets between Vi and Vj and eventually connect
the corresponding long interval chains to a common edge gadget Eij. In order to justify the
correctness of Figure A.9, we describe precise positions of each gadget and long interval
within each zone during this procedure.

Suppose that α = 53n− 3. All the intervals are going to be inside [0,+∞). This ray
is divided into zones.

• Zones that correspond to vertices of G. For a vertex gi ∈ V (G), denote the corre-
sponding zone by Zone(i) and define it as

Zone(i) =
⋃
j∈Z

[
53i+ j(α + 3), 53i+ j(α + 3) + 32

]
.

This zone usually contains the vertex and the join gadgets corresponding to gi ∈
V (G). The size of its fragments is 32. The distance between the start of the ith
interval and the start of the (i+ 1)th interval is called the phase.

• Buffer zones. For two vertices gi, gi+1 ∈ V (G) (and also gn−1, g0), we introduce a
buffer zone between Zone(i),Zone(i+1). It is denoted by Buffer(i, i+1) (Buffer(n−
1, 0) is denoted similarly) and is defined as follows:

Buffer(i, i+ 1) =
⋃
j∈Z

[
53i+ j(α + 3) + 32, 53(i+ 1) + j(α + 3)

]
.

We need buffer zones in order to do the switching. Every fragment o f a buffer zone
has size 21.

We need to write α+3 instead of α because a long interval must start from the rightmost
block of some 3-block and must terminate at the leftmost block of another 3-block. So,
the length of long intervals must be lesser than the length of the phase by 3.

Call by a point x of Buffer(i, i+1) a set of points {53i+(j+3)α+32+x | j ∈ Z}. As
the minimal distance between two points of this set is exactly α and as we always attach
just one long interval, it can be uniquely understood which point of the set is considered
at the moment.
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Figure A.9: The switch procedure. Blue and red fragments correspond to Zone(i) and Zone(i+1). Grey
fragment is Buffer(i, i+1) between these zones. Black fragment contains all other zones and buffers. One
should read this figure from left to right and from top to bottom, like a book.

Say that a gadget is in the fragment [a, b] of some zone if its leftmost and rightmost
points are in a and b. We are going to show that no gadgets intersect each other by
considering each of nine buffer zones on Figure A.9.

1. The first buffer does not contain any gadgets.

2. The second buffer intersects two stretch gadgets. The blue one is in [0, 32] of Zone(i)
and in [0, 3] of Buffer(i, i+1). Its long intervals terminate at {0, 4, 8} of Zone(i) and
start from {3, 7} of Zone(i) and from 3 of Buffer(i, i+1). The red one is in [4, 21] of
Buffer(i, i+ 1) and in [0, 11] of Zone(i+ 1). Its long intervals terminate at {0, 4, 8}
of Zone(i+ 1) and start from 6.5 of Buffer(i, i+ 1) and from {3, 7} of Zone(i+ 1).

3. The third buffer contains the first switch gadget in [0, 9]. Its long intervals terminate
at {0, 3.5} and start from {5.5, 9} of Buffer(i, i+1). It also contains the red stretch
gadget in [10, 21] of Buffer(i, i + 1) and in [0, 7] of Zone(i + 1). Its long intervals
terminate at {0, 4} of Zone(i+ 1) and start from 12.5 of Buffer(i, i+ 1) and from 3
of Zone(i+ 1).
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4. The fourth buffer contains the second switch gadget in [6, 15]. Its long intervals
terminate at {6, 9.5} and start from {11.5, 15}. It also contains the second part of
the first switch gadget in [2.5, 5.5]. Its long intervals terminate at 2.5 and start from
4.5. It also contains a red stretch gadget in [16, 21] of Buffer(i, i+1) and in [0, 3] of
Zone(i+1). Its long intervals terminate at 21 and start from 18.5 of Buffer(i, i+1).

5. The fifth buffer contains the second part of the second switch gadget in [8.5, 11.5].
Its long intervals terminate at 8.5 and start from 10.5. It also contains the third
switch gadget in [12, 21]. Its long intervals terminate at {12, 15.5} and start from
{17.5, 21}. It also contains a red join gadget in [1.5, 4.5]. Its long intervals terminate
at 1.5 and start from 4.5.

6. The sixth buffer contains a blue join gadget in [18, 21]. Its long intervals terminate
at 18 and start from 21. It also contains the second part of the third switch gadget in
[14.5, 17.5]. Its long intervals terminate at 14.5 and start from 16.5. It also contains
a red stretch gadget in [1.5, 13.5]. Its long intervals terminate at 1.5, 7.5 and start
from 10.5, 13.5.

7. The seventh buffer intersects a blue stretch gadget that is in [18, 21] of Buffer(i, i+1),
in [0, 32] of Zone(i+1) and in [0, 4] of Buffer(i+1, i+2). Its long intervals terminate
at 18 of Buffer(i, i + 1) and start from 4 of Buffer(i + 1, i + 2). It also contains a
red stretch gadget in [7.5, 16.5]. Its long intervals terminate at {7.5, 10.5, 13.5} and
start from {10, 13, 16.5}.

8. The eighth buffer intersects a red stretch gadget. It is in [7, 21] of Buffer(i, i+1) and
in [0, 11] of Zone(i+1). Its long intervals terminate at {7, 10, 13.5} of Buffer(i, i+1)
and start from {3, 7, 11} of Zone(i+ 1).

9. The ninth buffer is empty.

Observe that the distance between any two ends of long intervals is always at least 2.5
if one end is left and the other is right, and is at least 3. Lemma A.6.3 allows us to do
this. This is the end of the switching procedure.

Construction of H Let G be a cubic graph of size n. Let the long interval length to
be α := 53n − 3. All the intervals of H are going to be inside [0,+∞). This ray is split
into zones and buffers in the following order:

Zone(1),Buffer(1, 2),Zone(2),Buffer(2, 3), . . . ,Zone(n),Buffer(n, 1),Zone(1), . . .

For i ∈ [n], put a vertex gadget Vi into the leftmost fragment of Zone(i). For each Vi

there are 3 long intervals starting from it; they terminate at a join gadget that has 3 new
long intervals starting from it. This produces 3 chains of long intervals. Each such chain
eventually terminates at some edge gadget.

For every edge gigj ∈ E(G), where i < j, we choose a chain starting from Vi and
repeatedly apply the switch procedure to this chain until it is in Zone(j). Once it happens,
this chain of Vi and one of the chains of Vj terminate at the same edge gadget Eij. No
long interval starts from Eij. Then we choose another edge of G and repeat this operation
until all edges of G are treated. If a chain does not participate in some switch procedure,
then, during this procedure, the long intervals of this chain are joined by join gadgets
that look the same as vertex gadgets. The composition of H is displayed on Figure A.10.
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vertex gadgets ≤ 3n switching procedures edge gadget

...
...

...

· · ·

...

repeat for any edge of G

· · ·

Vi

Vj

Eij

· · ·

· · · · · ·

· · ·

· · ·

Figure A.10: The composition of H.

Reduction At first, we return to the three conditions about H that we stated in Ap-
pendix A.3 and that we assumed to hold. We need to verify that the graph H that we
have just constructed indeed satisfies them. Clearly, we are free to choose x, k to be in
Ω(n6). In total, there are 3n long intervals starting from vertex gadgets, so every block
is intersected by at most 3n long intervals. Every long interval overlaps n− 1 zone and n
buffers, each zone contains a join gadget that has at most 10 3-blocks, each buffer contains
at most one switch gadget that has 16 blocks. Thus, those 3 conditions hold for H.

Let us say that a partition of V (H) in 2 classes {R,B} is good if the following condi-
tions hold.

1. For any gadget, its coloring is alternating or almost alternating except for Bi
2 of a

3-block Bi or one of Btop
1 ,Btop

4 of a switch gadget that contain at most η intervals of
the other color.

2. For any long interval L that starts from or terminates at a block B of size x′, x, or
2x, we have Color(L) ̸= Color(B).

Lemma A.7.1. Any MaxCut partition of H is good.

Proof. The first condition is provided by Lemma A.6.1, Lemma A.6.2, Lemma A.6.4, and
Lemma A.6.6.

Assume that the second condition does not hold for some long interval L, suppose
that it starts from a block B of size at least x′ > x

2
and Color(L) = Color(B). L is a part

of some long interval chain that connects a vertex gadget V to an edge gadget E . Invert
Color(L) and modify the colors of all gadgets and long intervals of this chain that are
between L and E so that this particular chain satisfies the second condition. The gain
after this operation is at least x because Color(L) ̸= Color(B). Denote by l the number
of long intervals in the chain, it is at most 3n × 9 × 3n

2
. The loss is at most the sum of

the following values:

• k, if both intervals terminating at E have the same color;

• ηµl – the cut between the gadgets of H overlapped by the intervals of the chain,
where η is an upper bound for the number of long intervals overlapping a gadget
and µ is an upper bound on blocks that a long interval intersects;
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• 2ηl – the cut between the long intervals of H intersected by the intervals of the
chain;

• η2l – the cut between the gadgets of the chain and the long intervals ofH overlapping
them (the number of gadgets in the chain also equals l).

As η, µ ∈ O(n), and l ∈ O(n2), the loss is in O(k + n4). We are free to choose x to be
large enough for the gain to be strictly greater than the maximal possible loss. Thus, for
such value of x, the second condition also holds.

A good partition p : V (H) ! {R,B} corresponds to some partition q : V (G) !
{R,B}: assign to a vertex gi ∈ V (G) the same color that is assigned to the chains
starting from the vertex gadget Vi. For such p and q, we will write p ∼ q. Clearly, the
other direction is also true: for every q : V (G) ! {R,B} there exists a good partition p
such that p ∼ q.

Lemma A.7.2. Let p : V (H) ! {R,B} be a MaxCut partition of H, and q : V (G) !
{R,B} be the corresponding partition of G, i.e., p ∼ q. Then q is a MaxCut partition
of G.

Proof. Suppose that q is not a MaxCut partition, that is, there is another q′ : V (G) !
{R,B} which is maximal. Let p′ : V (H) ! {R,B} be a good partition that satisfies
p′ ∼ q′.

For simplicity, we denote by E the set of intervals that belong to edge gadgets, and C
denotes the set of intervals that belong to chains or to other gadgets. Clearly, V (H) =
C ⊔ E.

The difference between the cut values of p and p′, for edges induced by E, is at most
η3 ∈ O(n3) because there are η

2
edge gadgets, and each of them changes the cut by at

most 2η2. The difference between the cut values, for edges induced by C, is at most

η2 · 10 · l · η︸ ︷︷ ︸
within each gadget

+ η · l · η︸ ︷︷ ︸
between long intervals

+ 2η · µ · l · η︸ ︷︷ ︸
between gadgets and long intervals

which belongs to O(n5). Finally, as q′ has a strictly greater cut value that q, we know
that the number of cut edges between C and E for p′ is greater than the corresponding
number for p by at least (k− 2η)− η · 2η · η

2
, by Lemma A.6.2 and because an edge gadget

is overlapped by at most η long intervals, each of them adds at most 2η to the cut, and
there are η

2
edge gadgets. As we choose k to be in Ω(n6), the cut for p′ is greater than

the cut for p, it is a contradiction.

Lemma A.7.2 implies Theorem A.1.1.
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