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Abstract

We present various different approaches to constructing algebras of pseudod-
ifferential operators adapted to particular geometric situations. A general goal
is the study of index problems in situations where standard elliptic theory is
insufficient. We also present some applications of these constructions.

We begin by presenting a characterization of pseudodifferential operators
in terms of distributions on the tangent groupoid which are essentially ho-
mogeneous with respect to the natural R×+-action. This is carried out in the
generality of filtered manifolds, which are manifolds that are locally modelled
on nilpotent groups, generalizing contact, CR and parabolic geometries. We
describe the tangent groupoid of a filtered manifold, and use this to construct
a pseudodifferential calculus analogous to the unpublished calculus of Melin.

Next, we describe a rudimentary multifiltered pseudodifferential theory
on the full flag manifold X of a complex semisimple Lie group G which allows
us to simultaneously treat longitudinal pseudodifferential operators along ev-
ery one of the canonical fibrations of X over smaller flag manifolds. The mo-
tivating application is the construction of a G-equivariant K-homology class
from the Bernstein-Gelfand-Gelfand complex of a semisimple group. This
construction been completely resolved for only a few groups, and we will
discuss the remaining obstacles as well as the successes.

Finally, we discuss pseudodifferential operators on two classes of quantum
flag manifolds. First, we consider quantum projective spaces CPn

q , where we
can generalize the abstract pseudodifferential theory of Connes and Moscovici
to obtain a twisted algebra of pseudodifferential operators associated to the
Dolbeault-Dirac operator. Secondly, we look at the full flag manifolds of
SUq(n), where we instead generalize the multifiltered construction of the
classical flag manifolds, thus obtaining an equivariant fundamental class for
the full flag variety of SUq(3) from the Bernstein-Gelfand-Gelfand complex.
As applications, we obtain equivariant Poincaré duality of the quantum flag
manifold of SUq(3) and the Baum-Connes Conjecture for the discrete dual of
SUq(3) with trivial coefficients.
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Chapter 1

Introduction

The goal of this memoir is to describe a handful of different approaches to
constructing algebras of pseudodifferential operators on manifolds and non-
commutative spaces with particular geometries. In each case, the methods
will be rather different, but the goals similar. We will also present some of the
applications of these pseudodifferential algebras.

Pseudodifferential operators are, of course, a tool for studying differential
operators, particularly elliptic differential operators and their generalizations.
Our motivations come from index theoretic problems where the underlying
geometry demands more exotic pseudodifferential theories than ordinary el-
liptic theory. We will be particularly interested in:

(1) Rockland operators, including subelliptic operators on contact and
Heisenberg manifolds;

(2) the Bernstein-Gelfand-Gelfand complex, a canonical complex of equiv-
ariant differential operators on the flag manifold of a semisimple Lie
group;

(3) analogues of the above operators on quantum homogeneous spaces.

As mentioned, the techniques of analysis for the various examples will be
very different: in (1) we shall use groupoid techniques, in (2) we use convo-
lution operators on nilpotent Lie groups, and in (3) methods of noncommu-
tative geometry and noncommutative harmonic analysis. But in each case,
the general strategy—the requirements of the associated pseudodifferential
calculus—are roughly similar.

We shall dedicate this introduction to a very broad discussion of this strat-
egy. Our goal here is to isolate the general properties of pseudodifferential
operators which are essential to index theory. Finally, at the end of the in-
troduction, we will give a brief overview of the particular problems to be
discussed in the following chapters.
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1.1 Elliptic operators and their generalizations

Index theory begins with the study of analytic properties of elliptic differential
operators on a closed manifold M. The crucial properties of elliptic operators,
which for the moment we will state imprecisely1 , are:

(1) Elliptic differential operators on a closed manifold are Fredholm.

(2) If two elliptic differential operators have the same principal symbol then
their difference is a compact operator.

These two properties imply that the Fredholm index of an elliptic differential
operator depends only upon the principal symbol of the operator. Moreover,
the index is unchanged by smooth perturbations of the principal symbol. In
other words, the index of an elliptic operator depends only on some topolog-
ical data associated to the principal symbol. The appropriate topological data
is the K-theory class of the principal symbol σ(D), and for elliptic operators,
the index is calculated by the famous Atiyah-Singer Formula:

Ind(D) =
∫

M
ch(σ(D))Td(M).

Properties (1) and (2) are valid for a much larger class of operators than
elliptic differential operators. The examples we consider will all be Rockland
(see Definition 2.9.3). This is a generalization of ellipticity to filtered mani-
folds, i.e. manifolds with a filtration of the tangent bundle compatible with
the Lie bracket of vector fields. Such operators appear naturally in applica-
tions, particularly in CR and contact geometry, and more recently in parabolic
geometry, see e.g. [FS74, Roc78, BG88, Tay, Mel82, EMM91, ČSS01, DH17].

One example of particular interest to us is the Bernstein-Gelfand-Gelfand
complex. This is a canonical equivariant differential complex on a flag man-
ifold of a semisimple Lie group, or more generally on a parabolic manifold
[ČSS01]. The Bernstein-Gelfand-Gelfand complex has gained much attention
recently, originally due to its appearance in twistor theory [BE89]. From our
point of view, the BGG complex is an obligatory replacement of a Dirac-type
operator for the equivariant index theory of semisimple Lie groups and their
quantizations; see Sections 3 and 4.

Another important property of elliptic differential operators, also shared
by Rockland operators, is hypoellipticity. Let E be a vector bundle over a
manifold M without boundary. We write C∞(M; E) for the space of smooth
sections of E, and D′(M; E) for the space of distributional sections.

Definition 1.1.1. A linear differential operator P : D′(M; E) → D′(M; E) is
hypoelliptic if, for any open set U ⊆ M and any distribution u ∈ D′(M; E) we
have

Pu|U ∈ C∞(U; E) =⇒ u|U ∈ C∞(U; E).
1For a precise interpretation of these statements, one should consider an elliptic operator of

order m as a bounded operator between Sobolev spaces Hs+m(M)→ Hs(M) for any s ∈ R.
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In other words, hypoellipticity guarantees smooth solutions u to the par-
tial differential equation Pu = f whenever the right-hand-side f is smooth.
Both hypoellipticity and Fredholmness are typically proven by constructing a
pseudodifferential calculus adapted to P.

1.2 Pseudodifferential operators

Let M be a smooth manifold without boundary. For simplicity, we will sup-
press coefficient vector bundles in this section. We will also be lazy about the
difference between functions and densities. We will be more precise in later
chapters.

Definition 1.2.1. A distribution p ∈ D′(M×M) is called

• properly supported if the restriction to supp(p) of each of the two coordi-
nate projections pr1, pr2 : M×M � M is a proper map;

• semiregular in both variables if u ∈ C∞(M)⊗̄D′(M) ∩ D′(M)⊗̄C∞(M).

We write D′p(M × M) for the space of distributions on M × M which are
properly supported and semiregular in both variables—for a better context
see Definition 2.2.3.

Via the Schwartz kernel theorem, D′p(M × M) is in bijection with the al-
gebra of operators on D′(M) which preserve each of the subspaces E ′(M),
C∞(M) and C∞

c (M), see [Trè67]. By abuse of notation, we will often identify
such an operator with its kernel in D′p(M×M). The product of such operators
corresponds to the convolution product of distributions:

p ∗ q(x, z) =
∫

M
p(x, y)q(y, z) dy, p, q ∈ D′p(M×M),

which makes sense thanks to semiregularity. In particular, linear differential
operators on M correspond to elements of D′p(M × M) with support on the
diagonal.

Now let E`̀ be some set of linear differential operators on M. We are
imagining a class of operators for which we hope to prove hypoellipticity or
Fredholmness. The following definition is intended only as a guiding philos-
ophy.

Definition 1.2.2. An algebra of pseudodifferential operators adapted to E`̀ will
mean a Z-filtered algebra Ψ• ⊂ D′p(M×M) which has the following proper-
ties:

1. Ψ• contains (Schwartz kernels of) all linear differential operators on M.

2. Pseudolocality: Every p ∈ Ψ• is equal to a smooth function off the
diagonal.

3. Ψ−∞ =
⋂

m∈Z Ψm = C∞
p (M × M) is the algebra of properly supported

smoothing kernels.
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4. Existence of asymptotic limits: Let m ∈ Z and pi ∈ Ψm−i for all i ∈ N
Then there exists p ∈ Ψm such that for every n ∈ Z,

p−
k

∑
i=0

pi ∈ Ψ−n for all k� 0.

5. Existence of parametrices: If p ∈ E`̀ , then there exists q ∈ Ψ• such that

I − p ∗ q, I − q ∗ p ∈ Ψ−1,

where I is the Schwartz kernel of the identity operator.

For instance, the algebra of classical (step one polyhomogeneous) pseu-
dodifferential operators on M is adapted to the class of elliptic differential
operators in this sense. If M is a contact manifold then the Heisenberg calcu-
lus of Beals and Greiner [BG88] is adapted to the maximally hypoelliptic (i.e.,
Rockland) operators.

The point of the five properties above is that they imply the hypoellipticity
of operators in E`̀ .

Theorem 1.2.3. Let E`̀ be a class of linear differential operators on a manifold M
and suppose that there exists an algebra of pseudodifferential operators Ψ• adapted to
E`̀ in the sense of Definition 1.2.2. Then the operators in E`̀ are hypoelliptic.

Proof. Let P ∈ E`̀ of order m. Let Q ∈ Ψ−m be a parametrix, and put R =
I − PQ ∈ Ψ−1. The series Q ∑∞

k=0 Rk admits an asymptotic limit, which we
denote by Q̃. One checks that I − PQ̃, I − Q̃P ∈ Ψ−∞.

Now, for any u ∈ D′(M) we have

u = (I − Q̃P)u + Pu,

and it follows that sing-supp(u) ⊆ sing-supp(Pu). Thus P is hypoelliptic.

A similar philosophy could be applied to Fredholmness. By adding slightly
more structure to Definition 1.2.2, replicating basic elements of Sobolev theory,
we could deduce Fredholmness of the operators in E`̀ . We will not formulate
a precise statement here.

1.3 Overview

The goal of the following chapters, roughly speaking, will be to obtain some
version of the properties stated in Definition 1.2.2 for algebras of pseudodif-
ferential operators which are adapted to particular differential operators. This
will be achieved with more or less success depending on the examples.

In Chapter 2, we will describe an approach to pseudodifferential theory
based on the tangent groupoid of a filtered manifold [vEY]. The main result
is a simple groupoid definition of pseudodifferential kernels which repro-
duces the classical calculus, the Heisenberg calculus [BG88, Tay], and more
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generally, Melin’s unpublished pseudodifferential calculus on an arbitrary fil-
tered manifold [Mel82]. Philosophically, this result is supposed to indicate a
general principal: in order to define a pseudodifferential calculus, it is suffi-
cient to construct a tangent groupoid adapted to the geometry, from which
the pseudodifferential calculus follows automatically.

In Chapter 3, we consider longitudinal pseudodifferential operators on
manifolds equipped with multiple foliations [Yun13]. The examples of inter-
est are the flag manifolds of complex semisimple Lie groups, which admit a
family of canonical fibrations over smaller flag manifolds. The results pre-
sented are designed to simultaneously treat longitudinally pseudodifferential
operators along the fibres of different fibrations.

The theory we present is far from being a pseudodifferential calculus in
the sense of Definition 1.2.2, since it essentially distinguishes only between
longitudinal pseudodifferential operators of order 0 and those of negative or-
der. Still, it allows us to interpret the Bernstein-Gelfand-Gelfand complex as
an equivariant fundamental class in the Kasparov K-homology of the full flag
manifold of SL(3,C). As has been shown in [Yun11], this leads an explicit
construction of the γ element from the Baum-Connes Conjecture.

Finally, In Chapter 4, we pass to pseudodifferential theory in noncommu-
tative geometry—specifically, on quantized flag manifolds. These noncom-
mutative spaces would seem to deserve the status of “noncommutative man-
ifolds”, but it has been very difficult to incorporate them into Connes’ frame-
work. Much of the difficulty is due to the absence of a reasonable notion of
pseudodifferential calculus for these spaces.

We will consider two classes of quantum flag manifolds, with rather differ-
ent behaviours. Firstly, we look at the quantized projective spaces CPn

q , where
things are relatively simple. We show that the existing spectral triples on
CPn

q [Krä04, KTS15, DD10] are twisted regular, in the sense of [CM08]. This
is achieved by means of a generalization of the abstract pseudodifferential
calculus of Connes and Moscovici [CM95, CM08, Mos10].

Secondly, we consider the full flag manifold Xq of SUq(n), for which we
have no candidates for a spectral triple. Instead, we show that essential ele-
ments of the multi-filtered harmonic analysis of Chapter 3 can be carried over
to quantum flag manifolds [VY15]. As a result, the quantum analogue of the
Bernstein-Gelfand-Gelfand complex for SUq(3) yields a fundamental class in
equivariant K-homology KSLq(3,C)(Xq,C), which allows us to prove equivari-
ant Poincaré Duality for Xq and the Baum-Connes Conjecture (with trivial
coefficients) for the discrete dual of SUq(3).

This document is intended as a survey. Proofs, when given, will be sketched,
with references to the original publications for details.
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Chapter 2

Pseudodifferential operators
from tangent groupoids

Lie groupoids are a fusion of differential geometry and algebra. This structure
allow us to describe linear operators on smooth manifolds as convolution
operators. In particular, pseudodifferential operators on a smooth manifold M
can be interpreted as convolution operators by their Schwartz kernels on the
pair groupoid M×M, while the principal symbol, up to Fourier transform, is
a convolution operator on the tangent bundle TM seen as a bundle of abelian
Lie groups. Connes introduced the tangent groupoid [Con94] as a tool for
smoothly deforming a pseudodifferential operator to its principal symbol.

Debord and Skandalis realized that classical pseudodifferential operators
could be characterized in terms of the tangent groupoid [DS14]. Inspired by
this, we showed in [vEY] that tangent bundles can be used to define pseu-
dodifferential calculi adapted to a wide variety of geometric situations. The
context we work in is that of a filtered manifold M, which is a structure gen-
eralizing contact manifolds, Heisenberg manifolds, and parabolic manifolds.
Pseudodifferential calculi on such manifolds have been developed by many
authors [FS74, Tay, BG88, EM, Mel82].

One can construct a tangent groupoid TH M for such manifolds [vE05,
Pon06, vEY17, CP]. It is a deformation of the pair groupoid M × M to the
bundle of osculating groups of M. As in [DS14], it admits a one-parameter
group of automorphisms (αλ)λ∈R×+

. We define a pseudodifferential kernel of
order m to be a properly supported semiregular Schwartz kernel p which is
the restriction to M×M of a smooth family p of distributions on the r-fibres
of TH M satisfying

αλ∗p− λmp ∈ C∞(TH M), ∀λ ∈ R×+.

A precise statement will be given in Section 2.6. We showed in [vEY] that this
coincides with the usual definitions for the classical and Heisenberg calculi.
This chapter is dedicated to explaining this definition and its consequences.

8



2.1 Filtered manifolds

Definition 2.1.1. A filtered manifold (also called a Carnot manifold in [CP]) is a
C∞ manifold M equipped with a filtration of its tangent bundle by subbundles

0 = H0 ≤ H1 ≤ · · · ≤ HN = TM,

such that the space of smooth vector fields Γ∞(TM) becomes a filtered Lie
algebra:

[Γ∞(Hi), Γ∞(H j)] ⊆ Γ∞(Hi+j) ∀i, j.

Here we are using the convention Hk = TM for all k ≥ N.
The number N will be called the depth of the filtration. Smooth sections of

Hk are called vector fields of H-order ≤ k.

The filtration of vector fields by H-order generates an algebra filtration on
the differential operators1 DO(M). The set of differential operators of H-order
≤ m will be denoted DOm

H(M).

Example 2.1.2. Any manifold M can be equipped with the trivial filtration of
depth 1, where H1 = TM. The resulting filtration on DO(M) corresponds to
the usual notion of order of a differential operator.

Example 2.1.3. Let M be the Heisenberg group of dimension 3. We write
X, Y, Z for the usual left-invariant vector fields which satisfy [X, Z] = [Y, Z] =
0 and [X, Y] = Z. We obtain a filtration of TM of depth 2 by defining H1 to
be the 2-dimensional subbundle spanned by X and Y. Then the vector fields
X and Y are order 1, while Z = XY−YX counts as order 2.

This example generalizes to the notion of Heisenberg order for differential
operators on a contact manifold, see [BG88].

Example 2.1.4. Any subbundle H of the tangent bundle of M gives rise to a
filtered manifold of depth 2,

0 ≤ H ≤ TM,

since the condition on Lie brackets is trivial. This includes contact mani-
folds, where H is the contact hyperplane bundle, as well as foliated manifolds,
where H is the tangent space to the leaves.

Example 2.1.5. Flag manifolds and, more generally, parabolic geometries are
examples of filtered manifolds [ČS09].

The principal part of a differential operator on a filtered manifold is de-
fined via the passage from the filtered algebra DOH(M) to its associated
graded algebra. We fix some general notation.

Notation 2.1.6. For any N-filtered vector space (or vector bundle) V•, we write

gr V =
⊕

m
grm V :=

⊕
m

Vm/Vm−1

1If M is noncompact, we will insist that DO(M) consists of the differential operators of finite
order.
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for the associated graded space (or graded bundle) and

σm : Vm → grm V ↪→ gr V

for the canonical quotient maps.

Definition 2.1.7. If P ∈ DOm
H(M) is a differential operator of H-order m, its

principal part is defined as σm(P).

As in elliptic theory, it is the principal part of a differential operator which
will be used to prove hypoellipticity and Fredholmness. The usual criterion
of ellipticity needs to be replaced by the Rockland condition, which we will
state in Section 2.9.

2.2 Schwartz kernels and fibred distributions on
Lie groupoids

Definition 2.2.1. The pair groupoid of a smooth manifold M is the Cartesian
product M×M equipped with range and source maps

r(x, y) = x s(x, y) = y

and groupoid laws

(x, y)(y, z) = (x, z), (x, y)−1 = (y, x).

This is the appropriate structure for describing Schwartz kernels of con-
tinuous operators on C∞(M); see below. Recall, from Section 1.2 that we are
interested in Schwartz kernels which are properly supported and semiregular
in both variables. These notions have groupoid interpretations, which will
important in the sequel.

Definition 2.2.2. Let G be a Lie groupoid with base space G(0). Consider
C∞(G) as a C∞(G(0))-module via the range fibration:

a. f = r∗(a) f , a ∈ C∞(G(0)), f ∈ C∞(G). (2.2.1)

Then an r-fibred distribution2 on G means a continuous C∞(G(0))-linear opera-
tor

u : C∞(G)→ C∞(G(0)). (2.2.2)

The space of r-fibred distributions on G is denoted by E ′r(G).
Likewise, we define the space Es(G) of s-fibred distributions on G, where

we replace the C∞(G(0))-module structure (2.2.1) with its analogue using the
source fibration.

2 Strictly speaking, we are defining here the r-fibred distributions with compact vertical support
(or r-proper support). We will not need any more general support conditions.
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It is possible to integrate an r- or s-fibred distribution to an ordinary dis-
tribution on G by composing with a fixed choice of nowhere zero smooth
density µ on the base space G(0). This yields maps

µr :E ′r(G)→ D(G); u 7→ µ ◦ u,

µs :E ′s(G)→ D(G); v 7→ µ ◦ v.

These maps depend on the choice of µ, but their images do not. In this way,
we may see the r-fibred or s-fibred distributions as those distributions on G
which can be disintegrated as a smooth family of distributions on the r-fibres
or s-fibres, respectively. We will want to have both.

Definition 2.2.3. A distribution w ∈ D′(G) will be called proper if it lies in the
image of both µr and µs. We write D′p(G) for the space of proper distributions.
We also define the spaces of proper r-fibred and proper s-fibred distributions, re-
spectively, as

E ′r,s(G) = µ−1
r D′p(G) and E ′s,r(G) = µ−1

s D′p(G).

To see the importance of these definitions, consider again the pair groupoid
G = M × M. We will fix, once and for all, a nowhere vanishing smooth
density µ on M, which allows us to identify C∞(M) as a subspace of D′(M).
Recall that if p ∈ D′(M×M) is an arbitrary distribution, the Schwartz kernel
operator with kernel p defines a linear map C∞

c (M) → D′(M), and so these
operators do not form an algebra. In this respect, the proper distributions are
better.

Proposition 2.2.4. The following are equivalent for a distribution p ∈ D′(M×M):

(1) The Schwartz kernel operator with kernel p extends to an operator preserving
each of the spaces D′(M), E ′(M), C∞(M) and C∞

c (M);

(2) p is properly supported and semiregular in both variables (see Section 1.2);

(3) p ∈ D′p(M×M).

In a similar fashion, the convolution product of distributions on a groupoid
G,

p ∗ q(γ) =
∫

β∈Gr(γ)
p(β)q(β−1γ),

does not make sense for arbitrary distributions p, q ∈ D′(G), but it does make
sense for p, q ∈ E ′r(G), via the interpretation

〈p ∗ q, ϕ〉 = 〈p(β), 〈q(β−1γ), ϕ(γ)〉〉, ϕ ∈ C∞(G).

(See [LMV17, vEY].) Moreover, this product restricts to the subspace E ′r,s(G).
In particular, under the equivalences of Proposition 2.2.4, composition of
Schwartz kernel operators corresponds to groupoid convolution on E ′r,s(M×
M) ∼= D′p(M×M).

We next need to introduce the Lie groupoid analogue of the ideal of
smoothing operators on M.
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Definition 2.2.5. Let Ωr denote the bundle of 1-densities along ker(dr), the
tangent bundle of the r-fibres. We denote by C∞

p (G; Ωr) the space of sections
f of Ωr with proper support, meaning that r, s : supp( f )→ G(0) are both proper
maps.

Lemma 2.2.6. The space C∞
p (G; Ωr) is a two-sided ideal of E ′r,s(G).

Remark 2.2.7. Note that the subalgebra of smooth densities in E ′r(G) is a right
ideal but not a left ideal. Likewise, the algebra of smooth densities in E ′s(G) is
a left ideal but not a right ideal.

When G = M × M, this corresponds to the fact that the properly sup-
ported smoothing operators on M are a left ideal in the algebra of continuous
operators on E ′(M), but not a right ideal, and a right ideal in the algebra
of continuous operators on C∞

c (M) but not a left ideal. For this reason, it is
crucial that we work with proper r-fibred distributions on G.

2.3 The osculating groupoid

Note that the tangent bundle TM of a smooth manifold is a Lie groupoid,
viewed as a bundle of abelian Lie groups. The osculating groupoid TH M is
a replacement for TM in the world of filtered manifolds. As usual, we start
with the Lie algebroid.

Definition 2.3.1. The osculating Lie algebroid tH M of a filtered manifold M is
the associated graded bundle of the filtered tangent bundle:

tH M = gr TM =
⊕

m∈N

Hm/Hm−1.

This is indeed a Lie algebroid, with anchor zero, thanks to the following
calculation. Let X ∈ Γ∞(Hm), Y ∈ Γ∞(Hn) be vector fields on M of H-order
m and n respectively. Then for any f , g ∈ C∞(M) we have

[ f X, gY] = f g[X, Y] + f (Xg)Y− g(Y f )X

≡ f g[X, Y] mod Γ∞(Hm+n−1).

Thus the Lie bracket of vector fields induces a C∞(M)-linear Lie bracket on
sections of the associated graded bundle, and hence a pointwise Lie bracket
on the fibres tH Mx (x ∈ M). In this way, tH M is a smooth bundle of nilpotent
Lie algebras.

Definition 2.3.2. The osculating groupoid TH M of a filtered manifold M is the
bundle of connected, simply connected nilpotent Lie groups which integrates
tH M.

In other words, TH Mx = tH Mx with product defined by the Baker-Campbell-
Hausdorff formula.

The principal part σm(P) of a differential operator of H-order m (see Def-
inition 2.1.7) can now be interpreted in groupoid language. Let us spell this
out.
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The classical tangent bundle TM � M is the Lie algebroid of the pair
groupoid M × M. Its section space Γ∞(TM) is the space of vector fields,
and its universal enveloping algebra U (TM) is the algebra DO(M) of linear
differential operators on M (see [NWX99]). A Lie filtration on M is equivalent
to a Lie algebroid filtration on TM, and this induces an algebra filtration on
the enveloping algebra DO(M). This is precisely the filtration DO•H(M) by
H-order.

Passing to the associated graded spaces is functorial for all these construc-
tions. The osculating groupoid tH M = gr TM is the associated graded of TM,
and thus the universal enveloping algebra of tH M is U (tH M) = gr DO•H(M).
The principal part of a differential operator of H-order m is given by the
canonical grading map

σm : DOm
H(M)→ Um(tH M). (2.3.1)

2.4 The tangent groupoid of a filtered manifold

The tangent groupoid TH M of a filtered manifold M was introduced indepen-
dently in [CP] and [vEY17]. It is a smooth one-parameter family of groupoids
which deforms the pair groupoid

M×M ⇒ M

to the osculating groupoid
TH M ⇒ M.

Algebraically, we have

TH M = (TH M⊗ {0}) t (M×M× R×) ⇒ M× R. (2.4.1)

The Lie groupoid structures on the two disjoint components in (2.4.1) are
the standard ones, namely two elements of M × M × R× are composable if
and only if their R× components are equal and their M × M components
are composable in the pair groupoid, and two elements of TH M × {0} are
composable if and only if their TH M components are.

The difficulty lies in giving the correct global smooth structure on TH M.
As usual, this is most easily achieved by beginning with the Lie algebroid
tH M. Note that tH M is a deformation of TM to its associated graded tH M =
gr(TM).

Notation 2.4.1. When dealing with a space X which is fibred over R, we will
write X|t for the fibre over t. Likewise if f is a function or section of a bundle
over X we write f |t for its restriction to X|t.

Lemma 2.4.2. There is a unique C∞ structure on the disjoint union

tH M = (tH M× {0}) t (TM× R×)

which makes it into a smooth vector bundle over M× R with the the following prop-
erty: for any smooth vector field X ∈ Γ∞(Hm), the section X : M × R → tH M
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defined by

X(x, t) =

{
tmX(x), if t 6= 0,
σm(X(x)), if t = 0

(2.4.2)

is a smooth section of tH M � M× R. With this smooth structure, tH M becomes a
Lie algebroid with anchor and Lie bracket defined fibrewise on each tH M|t.

Proof. See [vEY17]

The sections X will play a major role in the sequel. We will write �m for
the map

�m : Γ∞(Hm)→ Γ∞(tH M); X 7→ X. (2.4.3)

Having defined a smooth Lie algebroid structure on tH M, there are many
results which permit us to integrate it to a Lie groupoid [Deb01, CF03]. In this
case, we already have smooth groupoid structures on the two components
tH M× {0} and TM× R×, so the most easily applicable result from the liter-
ature is a theorem of Nistor [Nis00] (with its correction in [BN03]). Modulo
the technical issue of s-simply connectedness—which we will sweep under
the rug here—we can immediately deduce the existence of a C∞-structure on
TH M making it into a Lie groupoid with Lie algebroid tH M. See [vEY17] for
full details.

2.5 The R×+-action

The tangent groupoid TH M admits a crucial extra piece of structure, namely
an action of R×+ by Lie groupoid automorphisms, cf. [DS14]. We begin with
an R×+-action on the bundle of osculating groups TH M, which generalizes the
action of R×+ on TM by homotheties.

Definition 2.5.1. Let V =
⊕

m∈N Vm be a finite dimensional N-graded vector
space (or vector bundle). The dilations δλ of V are the linear automorphisms
defined for each λ ∈ R×+ by

δλv = λmv for all v ∈ Vm.

Lemma 2.5.2. Let M be a filtered manifold. The dilations (δλ)λ∈R×+
of tH M =

gr(TM) define a smooth action of R×+ by Lie algebroid automorphisms. This integrates
to a smooth R×+-action by groupoid automorphisms on the osculating groupoid TH M,
which we again denote by δλ.

Definition 2.5.3. We define an R×-action α on TH M by

αλ :(x, y, t) 7→ (x, y, λ−1t), t 6= 0, (x, y) ∈ M×M

(x, ξ, 0) 7→ (x, δλξ, 0), t = 0, ξ ∈ TH Mx.

We also use the same notation αλ for the corresponding automorphisms of
the Lie algebroid tH M:

αλ :(x, v, t) 7→ (x, v, λ−1t), t 6= 0, v ∈ TMx

(x, ξ, 0) 7→ (x, δλξ, 0), t = 0, ξ ∈ tH Mx.
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Note that the sections X = �(X) of tH M which we defined in Lemma 2.4.2 are
homogeneous with respect to this action, in the sense that

αλ∗X = λmX, for all λ ∈ R×+. (2.5.1)

It follows that the maps αλ are smooth, both on the Lie algebroid tH M and
the tangent groupoid TH M.

Since the α-action on TH M is by Lie groupoid automorphisms, it induces
an action on the spaces of r- and s-fibred distributions

αλ∗ : E ′r(TH M)→ E ′r(TH M), αλ∗ : E ′s(TH M)→ E ′s(TH M).

These actions restrict to the subalgebras of proper r- and s-fibred distribu-
tions, and to the ideals C∞

p (TH M; Ωr) and C∞
p (TH M; Ωs) of properly sup-

ported smooth r- and s-fibred 1-densities.

2.6 Pseudodifferential operators

We can now give the characterization of pseudodifferential operators on a
filtered manifold M.

Let p ∈ E ′r(TH M) be a properly supported r-fibred distribution on the
tangent groupoid. Recall that we will write p|t for the restriction of p ∈
E ′r(TH M) to the fibre TH M|t. In particular,

p|1 ∈ E ′r(M×M), p|0 ∈ E ′r(TH M).

Thus p is a smooth deformation of a properly supported Schwartz kernel,
semiregular in both variables, to a smooth family of properly supported dis-
tributions on the osculating groups.

Definition 2.6.1. Let M be a filtered manifold. An r-fibred distribution p ∈
E ′r(TH M) is called

• homogeneous of weight m if αλ∗p = λmp for all λ ∈ R×+;

• essentially homogeneous of weight m if αλ∗p− λmp ∈ C∞
p (TH M; Ωr) for all

λ ∈ R×+.

The crucial definition is the following.

Definition 2.6.2. Let p ∈ E ′r(M×M) be a properly supported Schwartz kernel
on M, semiregular in the first variable. We say p is an H-pseudodifferential kernel
of order ≤ m if p = p|1 for some properly supported p ∈ E ′r(TH M) which is
essentially homogeneous of order ≤ m.

The associated Schwartz kernel operator P : C∞(M) → C∞(M) will be
called an H-pseudodifferential operator.

Remark 2.6.3. The proper support condition implies that P restricts to an op-
erator on C∞

c (M). Moreover, we will shortly see that this definition forces p
to be proper, so that P also extends to D′(M) and E ′(M) by Proposition 2.2.4.
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Amongst the H-pseudodifferential kernels are those p = p|1 where p ∈
E ′r(TH M) is homogeneous of weight m, and not just essentially homogeneous.
In this case, P is a differential operator.

Proposition 2.6.4. Let p ∈ E ′r(M × M). Then p = p|1 for some p ∈ E ′r(TH M)
which is homogeneous of weight m if and only if p is the Schwartz kernel of a differ-
ential operator of H-order ≤ m on M.

Proof. Let us write E ′r(G)(0) for the r-fibred distributions on a Lie groupoid
G with support on the unit space, and note that E ′r(G)(0) is isomorphic, as
an algebra, to the universal enveloping algebra of the Lie algebroid AG,
see [NWX99, vEY]. This isomorphism sends the homogeneous section X =
�(X) ∈ Γ∞(tH M) from Lemma 2.4.2 to a homogeneous r-fibred distribution
in E ′r(TH M)(0). This proves that the Schwartz kernels of vector fields extend
to homogeneous elements of E ′r(TH M). The result extends to DO•H(M) by
multiplicativity.

Conversely, note that the only orbits of α on TH M which are r-proper are
the orbits contained in the unit space. Therefore, if p is r-properly supported
and homogeneous of weight m, we must have supp(p) ⊂ G(0). The result
follows.

We likewise see that the singular support of an essentially homogeneous
r-fibred distribution on TH M is invariant for the R×+-action, and so contained
in TH M(0).

Proposition 2.6.5. If p ∈ E ′r(TH M) is essentially homogeneous of weight r, then
sing-supp(p) ⊆ TH M(0). Therefore, H-pseudodifferential operators are pseudolocal.

We have thus obtained the first two of the five desirable properties (Def-
inition 1.2.2) for an algebra of pseudodifferential operators. The other three
require some more serious analysis, which we will outline in Section 2.8.

But let us pre-empt this by stating the relation of our H-pseudodifferential
calculus with the classical calculus in the case of an unfiltered manifold. The
proof depends upon the machinery to follow.

Theorem 2.6.6. Let M be a manifold with the trivial filtration. Then Ψm
H(M) is the

space of Schwartz kernels of properly supported classical (polyhomogeneous step one)
pseudodifferential operators on M of order ≤ m.

2.7 Principal symbols

Definition 2.7.1. We introduce the notation 	m
H(M) for the set of r-fibred dis-

tributions p ∈ E ′r(TH M) that are properly supported and essentially homoge-
neous of weight m. Thus Ψm

H(M) = 	m
H(M)|1.

Next, we consider the restriction 	m
H(M)|0.

Lemma 2.7.2. If p and p′ ∈ 	m
H(M) satisfy p|1 = p′|1, then p|0 − p′|0 ∈

C∞
p (TH M; Ωr).
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Proof. See [vEY].

The suggests the following definition.

Definition 2.7.3. The space of principal cosymbols is defined as

Σm
H(M) := {a ∈ E ′r(TH M)/C∞

p (TH M; Ωr) | δλ∗a = λma ∀λ ∈ R×+}.

To avoid clutter in the notation, we will typically use the same notation
to denote a principal cosymbol class a ∈ Σm

H(M) and an r-fibred distribution
a ∈ E ′r(TH M) which represents it.

Definition 2.7.4. Lemma 2.7.2 shows that we have a well-defined map

σm : Ψm
H(M)→ Σm

H(M); p|1 7→ p|0.

This is called the principal cosymbol map.

Remark 2.7.5. We had previously used the notation σm to denote the principal
part of a differential operator,

σm : DOm
H(M) = Um(TM)→ Um(tH M).

Under the isomorphism U (AG) ∼= E ′r(G)(0) from the proof of Proposition
2.6.4, this becomes a map

σm : E ′r(M×M)(0) → E ′r(TH M)(0).

In this way, one can check that Definition 2.7.4 is consistent with the earlier
notation.

Proposition 2.7.6. For every m ∈ R, we have a short exact sequence

0 −→ Ψm−1
H (M) −→ Ψm

H(M)
σm−→ Σm

H −→ 0. (2.7.1)

Proof. Multiplication by the real parameter t yields a linear map

×t : 	m−1
H (M)→ 	m

H(M).

The restriction of this map to t = 1 yields the inclusion on the left of (2.7.1).
For exactness in the middle, suppose p ∈ Ψm(M) has σm(p) = 0. Then we
can find p ∈ 	m

H(M) with p|1 = p and p|0 = 0. Since p is a smooth family
of distributions on the r-fibres of TH M, t−1p is well-defined and is essentially
homogeneous of weight m − 1, so p ∈ Ψm−1

H (M). Finally, a construction in
groupoid exponential coordinates on TH M shows that any a ∈ Σm

H(M) can be
extended to a ∈ 	m

H(M) with a|0 = a, which proves the surjectivity of σm.

2.8 Algebra structure, conormality, regularity

Let p, q ∈ E ′r(TH M). If p is homogeneous of weight m and q is homogeneous
of weight n, then a simple calculation shows that their convolution product p ∗
q is homogeneous of weight m + n. It is tempting to say the same of essentially
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homogeneous elements, but we are obstructed by the fact that C∞
p (TH M; Ωr)

is only a right ideal in E ′r(TH M), not a two-sided ideal.
For this reason, the following technical lemma is crucially important for

further progress. Its proof, which also serves to give the regularity results to
follow, is one of main pieces of analysis in this work. We won’t give complete
details, but we will sketch the main ideas. For full details, see [vEY].

Lemma 2.8.1. Let p ∈ E ′r(TH M) be properly supported. If p is essentially homoge-
neous of weight m for some m, then p ∈ E ′r,s(TH M).

Sketch of proof. • We first linearize the problem. The groupoid exponen-
tial allows us to identify a neighbourhood of the unit space TH M(0)

with a neighbourhood of the zero section in tH M. By fixing a splitting

tH M = gr(TM)
∼=→ TM, this can in turn be identified with a neigh-

bourhood of the zero section in tH M × R. Under this identification, p
is identified with a smooth family of compactly supported distributions
on the fibres of the vector bundle tH M×R � M×R which is essentially
homogeneous with respect to the R×+-action

αλ : tH M× R→ tH M× R; (x, ξ, t) 7→ (x, δλξ, λ−1t).

• Now apply the fibrewise Fourier transform:

̂ : E ′r(tH M× R)→ C∞(t∗H M× R); p 7→ p̂,

where t∗H M � M is the dual bundle of tH M. Then p̂ is a smooth function
on t∗H M × R with its own essential homogeneity property. Specifically,
let δ′λ denote the canonical dilations on t∗H M with N-grading dual to that
of tH M, and let βλ denote the action on t∗H M× R given by

βλ : t∗H M× R→ t∗H M× R; (x, η, t) 7→ (x, δ′λη, λt).

Then for all λ ∈ R×+ we have

β∗λp̂− λmp̂ ∈ Sr(t
∗
H M× R),

where Sr(t∗H M × R) denotes the smooth functions on t∗H M × R which
are Schwartz-class on each r-fibre (see [vEY] for the precise definition).

• Essential homogeneity of smooth functions near infinity is better be-
haved than essential homogeneity of distributions near 0. Specifically, a
bundle version of [Tay, Lemma 2.2] shows that, outside any neighbour-
hood of the zero section, p̂ is equal to a genuinely homogeneous smooth
function plus a function of rapid decay on the fibres. As a consequence,
we obtain bounds on all derivatives of p̂(x, η, t) in terms of powers of
‖η‖.

• The above bounds on p̂ imply that the wavefront set of p is conormal to
the unit space. This is sufficient to deduce that p is both r- and s-fibred,
thanks to [LMV17, Proposition 7].
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Corollary 2.8.2. Convolution of r-fibred distributions induces an R-filtered algebra
structure on Ψ•H(M).

Proof. We have 	m
H(M) ⊆ E ′r,s(TH M). Since C∞

p (TH M; Ωr) is a two-sided ideal
in E ′r,s(TH M), the convolution product induces maps 	m

H(M) × 	n
H(M) →

	m+n
H (M) for every m, n ∈ R. Restriction to t = 1 gives the product on

Ψ•H(M).

Going further, a careful analysis of the bounds on p̂ allows us to deduce
the degree of regularity of p on the unit space of TH M.

Lemma 2.8.3. Let N be the depth of the filtration on TM, and let dH =

∑N
k=1 k dim(Hk/Hk−1) be the homogeneous dimension of tH M. Then

Ψ−dH−kN−1
H (M) ⊆ Ck

p(M×M; Ωr).

Proof. See [vEY].

Corollary 2.8.4. We have
⋂

m∈R Ψm
H(M) = Ψ∞(M), the algebra of smooth kernels.

This is Property (3) from our list in Definition 1.2.2. We also obtain Prop-
erty (4), the existence of asymptotic limits.

Corollary 2.8.5. Given any sequence (pi)i∈N of H-pseudodifferential kernels, with
pi ∈ Ψm−i

H (M) for each i ∈ N, there exists p ∈ Ψm
H(M) such that for any l ∈ N,

p−
l

∑
i=0

pi ∈ Ψm−l−1
H (M).

Proof. Let pi ∈ 	m−i
H (M) with pi|1 = pi. Lemma 2.8.3 implies that for i suffi-

ciently large we have pi ∈ Ck(i)
p (TH M) for some k(i) with k(i)→ ∞ as i → ∞.

After modifying each pi by an element of C∞
p (TH M; Ωr), we may assume that

pi vanishes on the unit space TH M(0) to order k(i).
Then we have tipi ∈ 	m

H(M), vanishing to order i on TH M|0 and to order
k(i) on TH M(0). An analogue of Borel’s Lemma yields p ∈ E ′r(TH M) such
that p− ∑l

i=0 tipi ∈ tl+1Ck(l+1)
p for all l � 0. Since the finite sum ∑l

i=0 tipi
is homogeneous of weight m modulo C∞

p (TH M; Ωr), it follows that p is ho-
mogeneous of weight m modulo Ck

p(TH M; Ωr) for every k, and hence modulo
C∞

p (TH M; Ωr). That is, p ∈ 	m
H(M). Put p = p|1. Then t−l−1(p−∑l

i=0 tip) ∈
	m−l−1

H (M), so p−∑l
i=1 pi ∈ Ψm−l−1

H . This completes the proof.

2.9 Hypoellipticity

Given the above structure, the following definition is the natural abstract ana-
logue of ellipticity for H-pseudodifferential operators.

Definition 2.9.1. An H-pseudodifferential kernel p ∈ Ψm
H(M) is called H-

elliptic if its principal cosymbol σm(p) admits a convolution inverse in Σ−m
H (M).
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By the surjectivity of the principal cosymbol map, this means that there
exists q ∈ Ψ−m such that

p ∗ q− I ∈ Ψ−1
H (M).

Thus, H-elliptic operators satisfy axiom (5) of Definition 1.2.2. The following
is now an immediate consequence of Theorem 1.2.3.

Theorem 2.9.2. Any H-elliptic operators on a filtered manifold M is hypoelliptic.

The H-ellipticity condition is difficult to verify in practice. The correct
analogue for ellipticity on a filtered manifold should be the Rockland property
[Roc78, HN79, Mel82]. The relationship between these two properties has
been clarified by Dave and Haller [DH17], based on results of Folland-Stein
[FS82] and Ponge [Pon08]. We begin by recalling the definition.

Definition 2.9.3. A differential operator P ∈ DOm
H(M) on a filtered manifold

M is Rockland if, for every x ∈ M and for every non-trivial irreducible unitary
representation π of the osculating group tH Mx on a Hilbert space Hπ , the
operator π(σm(P)) is injective on the space of smooth vectors in Hπ . We will
say P is two-sided Rockland if both P and its transpose Pt are Rockland.

Theorem 2.9.4. [DH17] If P ∈ DO(M) two-sided Rockland then it is H-elliptic.
Therefore, every Rockland operator on a filtered manifold is hypoelliptic.

It is also shown in [DH17] that there is a Sobolev theory adapted to the
pseudodifferential calculus Ψ•H . It follows that if M is compact without bound-
ary, then H-elliptic operators are Fredholm operators between the appropriate
Sobolev spaces [DH17, Corollary 3.28].
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Chapter 3

Pseudodifferential operators
on multifiltered manifolds
and equivariant index theory
for complex semisimple
groups

Flag manifolds of semisimple Lie groups G are important examples of filtered
manifolds. In differential geometry, they are the model spaces of a class of
spaces called parabolic geometries, see e.g. [ČS09], which generalize CR man-
ifolds and play an important role in twistor theory [BE89], amongst others.
Our interest, however, will come from equivariant index theory.

Kasparov and Julg [JK95, Jul02] showed that when G = SU(n, 1) or Sp(n, 1),
one can use natural subelliptic operators on the flag manifold of G to define
a G-equivariant K-homology class which represents the notorious element
γ ∈ KG(C,C) at the heart of the Baum-Connes conjecture. On the other hand,
when G has real rank greater than 1, a result of Puschnigg [Pus11] implies
that any construction based on the filtered calculus of Chapter 2.1 can only
result in multiples of the trivial class.

Nonetheless, at least in the case of G = SL(3,C), it is possible to represent
the γ element as an equivariant K-homology class for the flag manifold by
using the Bernstein-Gelfand-Gelfand complex [Yun10, Yun11]. The Bernstein-
Gelfand-Gelfand (BGG) complex is a G-equivariant differential complex built
from longitudinally elliptic differential operators along the fibres of the nu-
merous canonical fibrations of the flag manifold. The analysis in those articles
was based on Gelfand-Tsetlin theory for the representations of SU(3), but
these methods generalize badly, since analogues of Gelfand-Tsetlin theory for
Lie algebras other than type An are difficult.

Here we shall focus on the article [Yun13], which describes a rudimentary
pseudodifferential theory adapted to the analysis of longitudinal differential
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operators on manifolds with multiple foliations. It is rudimentary in the sense
that it essentially only distinguishes between operators of order 0 and opera-
tors of negative order. Nevertheless, this suffices to distinguish bounded and
compact operators, and their analogues for foliations, which will be enough
for application to index theory.

3.1 Complex flag manifolds

Throughout, G will denote a connected, simply connected complex semisim-
ple Lie group. We will use the following notation:

• g is the Lie algebra of G

• h is a Cartan subalgebra

• ∆, ∆+, Σ denote the sets of roots, positive roots, and simple roots, re-
spectively.

• ρ = 1
2 ∑β∈∆+ β is the half-sum of the positive roots,

• P and Q are the integral weight and root lattices, respectively.

• k, a, n are the components of the Iwasawa decomposition, with n =⊕
α∈∆+ gα the sum of the positive root spaces.

• n̄ =
⊕

α∈∆+ g−α is the opposite nilpotent subgroup.

• b = h⊕ n and b̄ = h⊕ n̄ are the standard upper and lower Borel sub-
groups.

A connected Lie subgroup of G will always be denoted by the same letter as
its Lie algebra, in upper case.

The standard parabolic Lie subalgebras of g are in bijection with subsets
I ⊆ Σ of the simple roots. To make this precise this, we introduce the notation

〈I〉 = {β ∈ ∆+ | β = ∑
α∈I

nαα for some nα ≥ 0}

for the set of positive roots in the span of I. Then we put1

pI = b⊕ ∑
α∈〈I〉

g−α.

In particular, pΣ = g and p∅ = b. The homogeneous spaces

XI = G/PI

are the flag manifolds of G.

1 Unfortunately, our notation here is the opposite of standard one, in that we are writing pI
for what would often be denoted pΣ\I . We choose this convention to be consistent with [Yun11,
Yun13].
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In the case where I = {α} is a singleton, we will write pα, Pα, Xα, etc.
for p{α}, P{α}, X{α}, etc. We will also write X = X∅ = G/B for the full flag
manifold.

The various flag manifolds are connected by smooth G-equivariant fibra-
tions XJ � XI whenever J ⊆ I. In particular we have G-equivariant maps

qI : X � XI .

Thus, for each I ⊆ Σ there is a foliation of the full flag manifold by the fibres
of qI . We will denote the tangent bundle to the fibres by

FI = ker dqI ⊆ TX .

3.2 Motivation: The BGG complex

As mentioned above, this chapter will be dedicated to describing the results
of [Yun13], concerning longitudinal pseudodifferential operators on manifolds
with multiple foliations. But this work was entirely motivated by the equivari-
ant index theory of the differential Bernstein-Gelfand-Gelfand complex, which
consists of longitudinal differential operators along the various fibrations of
the flag manifold just described. For context, therefore, we will start with a
very rapid overview of the Bernstein-Gelfand-Gelfand complex.

Let µ ∈ P be an integral weight of g, and let λ ∈ a∗C = h∗. These exponen-
tiate to a character eµ of the compact torus M = K ∩ H and a character eλ of
A (not generally unitary), via the formulas

eµ(exp(X)) := eµ(X), X ∈ m,

eµ(exp(Y)) := eµ(Y), Y ∈ a.

We obtain a character of the Borel subgroup B = MAN by

χµ,λ(man) = eµ(m)eλ(a).

Definition 3.2.1. We write

Eµ,λ = G×B Cµ,λ+2ρ

for the G-equivariant line bundle over the flag manifold G/B̄ which is induced
from the shifted character χµ,λ+2ρ. This means that smooth sections of Eµ,λ are
defined by

Γ∞(Eµ,λ) = {ξ ∈ C∞(G) | ξ(gb) = χµ,λ+2ρ(b−1)ξ(g) ∀g ∈ G, b ∈ B}.
(3.2.1)

The space of L2-sections of Eµ,λ, which we denote by L2(Eµ,λ), is the com-
pletion of Γ∞(Eµ,λ) with respect to the K-invariant inner product

〈ξ, η〉 =
∫

K
ξ(k)η(k) dk.
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The left regular representation of G on L2(G) restricts to a representation on
L2(Eµ,λ) called the principal series representation of parameter (µ, λ) ∈ P× h∗.
It is unitary when λ ∈ ia∗, see e.g. [Kna01].

The Bernstein-Gelfand-Gelfand complex is a complex of G-equivariant dif-
ferential operators between the section spaces of certain very particular line
bundles Eµ,λ over X . These operators are obtained by the right action of par-
ticular elements of U (g). Such operators, if well-defined, obviously commute
with the principal series actions of G. The details are as follows.

Let W denote the Weyl group of G. We write `(w) for the length of w ∈W,
i.e., the minimal length as a word in the simple reflections. We recall that
the Bruhat graph is a directed graph with vertices W and edges w → w′

whenever `(w′) = `(w) + 1 and w′ = sαw for some simple reflection sα; see,
e.g., [Hum08].

Note that, with the parametrization of Definition 3.2.1, the trivial bundle
is E0,−2ρ. We have an inclusion C ↪→ Γ∞(X0,−2ρ) of the trivial G-module as
constant functions. The Bernstein-Gelfand-Gelfand complex is a resolution of
this inclusion by direct sums of principal series representations.

Theorem 3.2.2. Let w, w′ ∈ W be connected by an edge w → w′ in the Bruhat
graph. There exists X ∈ U (g) such that the right regular action of X defines a
G-equivariant differential operator

X : Γ∞(E−wρ+ρ,−wρ−ρ)→ Γ∞(E−w′ρ+ρ,−w′ρ−ρ). (3.2.2)

In particular, if w′ = sαw where sα is the simple reflection associated to α ∈ Σ, then
X = En

α where Eα ∈ g is the simple root vector of weight α and n ∈ N is determined
by wρ− w′ρ = nα.

With an appropriate choice of signs, these operators X form a resolution of the
trivial G-module

C ↪→ Γ∞(E0,−2ρ)→
⊕

`(w)=1

Γ∞(E−wρ+ρ,−wρ−ρ)→
⊕

`(w)=2

Γ∞(E−wρ+ρ,−wρ−ρ)→ · · ·

(3.2.3)

Remark 3.2.3. With other choices of parameters (µ, λ) ∈ P × h∗, one can ob-
tain more general Bernstein-Gelfand-Gelfand complexes giving resolutions of
other finite dimensional G-modules, see e.g. [BE89].

The key observation for what follows is that the differential operators En
α

corresponding to simple edges in the Bruhat graph are longitudinally elliptic
differential operators along the fibres of the fibration X � Xα. Therefore, in
order to convert the BGG complex into an equivariant KK-cycle, we need some
kind of pseudodifferential theory which simultaneously contains longitudinal
pseudodifferential operators along each of these canonical fibrations. This is
the goal of [Yun13].

Remark 3.2.4. The Dolbeault complex of X is also a G-equivariant resolution
of the trivial module, but being elliptic it cannot easily be converted into a
nontrivial KK-cycle, because of the previously mentioned result of Puschnigg
[Pus11]. The main problem is that the action of G on the spinor bundle of X
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is not isometric, nor even conformal. For the importance of conformality in
equivariant KK-theory, compare [Kas84, JK95, Jul02].

The advantage of the BGG complex is that the induced bundles are di-
rect sums of line bundles, each of which admits a Hermitian metric which
is conformal for the G-action and with explicit formulas for the conformality
constants. This is a key point in [Yun11].

3.3 Longitudinal pseudodifferential operators

Definition 3.3.1. Let E , E ′ be vector bundles over the full flag variety X of G.
For each I ⊆ Σ, we write Ψm

I (E , E ′) for the set of longitudinal pseudodifferen-
tial operators T : Γ∞(E)→ Γ∞(E ′) which are of order ≤ m (polyhomogeneous
step 1) along the leaves of the foliation FI .

If E = E ′ we will simplify the notation to Ψ−m
I (E). But in general, we

will abbreviate all of these by writing Ψm
I , where the bundles involved can be

inferred from the context. In [Yun13] we used the notation Ψm(FI) instead of
Ψm

I .
For each I, the elements of Ψ0

I (X ) extend to bounded operators on L2(X ),
and thus the norm closure Ψ0

I (X ) is a C∗-algebra. The norm closure Ψ−∞
I (X )

of the longitudinal smoothing operators is an ideal in Ψ0
I (X ) which contains

Ψm
I (X ) for all m < 0. It is sometimes denoted C∗(FI).

In particular, if I = Σ then the foliation of X by FΣ consists of a single
leaf, and we have Ψm

σ (X ) = Ψm(X ). Therefore Ψ−∞(FΣ) = K(L2(X )).
If I 6= J, the product of an element of Ψm

I (X ) and one of ΨJ(X ) is typically
not a pseudodifferential operator in any reasonable sense. In this respect, the
C∗-closures are much better behaved.

Theorem 3.3.2 ([Yun13]). For any I, J ⊆ Σ, we have

Ψ−∞
I .Ψ−∞

J ⊆ Ψ−∞
I∪J .

In particular, if I1, . . . , In ⊆ Σ with
⋃n

k=1 Ik = Σ, and if Pk is a longitudinal pseu-
dodifferential operator of negative order along the leaves of FIk for each k = 1, . . . n,
then the product P1 . . . Pn is a compact operator.

This theorem is a key point for the construction of an equivariant K-
homology class from the Bernstein-Gelfand-Gelfand complex, as we shall
show in Section 3.7. But first we will describe the proof of Theorem 3.3.2
in the next three sections.

3.4 Multifiltered manifolds

Let us fix some notation. Fix r ∈ N×, usually signifying the rank of G. We
denote multi-indices by a = (a1, . . . , ar) ∈ Nr. We write a ∨ b and a ∧ b
for the entry-wise maximum and entry-wise minimum, respectively, of two
multi-indices.
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Definition 3.4.1. Let V be a finite dimensional vector space (or a finite di-
mensional vector bundle). An r-multifiltration on V will mean a family of
subspaces (or subbundles) Va ≤ V indexed by a ∈ Nr satisfying

• V0 = 0 and Vm = V for some m ∈ Nr,

• Va ∩Vb = Va∧b for all a, b ∈ Nr.

Definition 3.4.2. An r-multifiltered manifold is a manifold M equipped with a
r-multifiltration of its tangent bundle by subbundles Ha (a ∈ Nr) such that

[Γ∞(Ha), Γ∞(Hb)] ⊆ Γ∞(Ha+b), ∀a, b ∈ Nr.

Example 3.4.3. The Cartesian product of two manifolds, M = M1 × M2 is a
2-multifiltered manifold, with

H(1,0) = pr∗1 TM1, H(0,1) = pr∗2 TM2, H(1,1) = TM,

where pri : M � Mi is the coordinate projection. This multifiltered structure
is relevant to the study of bisingular operators [Rod75, Boh15] and the exterior
product in analytic K-homology.

Example 3.4.4. The full flag manifold X of a complex semisimple Lie group G
is an r-multifiltered manifold, where r is the rank of G. To see this, recall that
the tangent space TX is isomorphic to the induced bundle G ×B g/b, where
g/b is equipped with the adjoint action of B. A G-equivariant multifiltration
on TX can therefore be determined by a multifiltration on the B-module g/b.

Let α1, . . . , αr be an enumeration of the simple roots, and for each a =
(ai, . . . , ar) ∈ Nr put

Va =

(⊕ {
gβ | β =

r

∑
i=1

biαi with bi ≥ −ai ∀i

})/
b

and
Ha = G×BVa.

This makes X into an r-multifiltered manifold.
This multifiltration on X is related to the tangent bundles FI of the canon-

ical fibrations X � XI as follows. Multi-indices a are in bijection with the
positive elements of the root lattice, by associating a to ∑i aiαi. Then FI = Hb,
where b corresponds to the maximal β ∈ ∆+ with support in I.

3.5 Locally homogeneous structures

In the proof of Theorem 3.3.2 we will take advantage of the fact that multi-
filtration of the flag manifold is locally diffeomorphic to a multifiltration of
N̄ induced by a family of nilpotent subgroups N̄I . Let us begin with some
abstract definitions.

We use the notation εi = (0, . . . , 1, . . . , 0) for the multi-index whose only
nonzero coefficient is the ith, which is 1.
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Definition 3.5.1. An r-multigraded nilpotent Lie algebra will mean a finite di-
mensional nilpotent Lie algebra n with an Nr-grading

n =
⊕

a∈Nr

na

that is compatible with the Lie bracket, such that n0 = 0 and n is generated as
a Lie algebra by the subspaces nεi .

The r-multigrading on n• induces an r-multifiltration, denoted n•, by putting

na =
⊕
b≤a

nb.

Let N be the associated simply connected nilpotent Lie group and identify
TN = N × n via left translations. Then TN inherits an r-multifiltration, and
so N is a multifiltered manifold.

Definition 3.5.2. Let n be a multigraded Lie algebra. A multifiltered manifold
M will be called locally homogeneous of type n if there exists an atlas of local
charts ϕ : U → M from open subsets of U ⊆ N satisfying

ϕ∗(Ha) = U × na, ∀a ∈ Nr,

where the Ha are the subbundles defining the multifiltration of M, as in Defi-
nition 3.4.2.

Of course, we are only really interested in this structure because it encap-
sulates the structure of flag manifolds.

Example 3.5.3. Let n̄ be the nilpotent radical of the lower Borel subgroup of
g. Then n̄ is an r-multigraded lie algebra via

n̄a = g−α,

where, α = ∑i aiαi.
We claim that the multifiltration of X in Example 3.5.3 is locally homoge-

neous of type n̄. For each x ∈ G, we can define a chart

ϕx : N̄ → X ; ϕx(n̄) = xn̄B,

which is a diffeomorphism of N̄ onto a left translate of the big Bruhat cell in
X . From Example 3.5.3, we see that ϕ∗x(Ha) = N̄ × n̄a, as desired.

The following definition, which we will not make much use of, allows one
to generalize the foliations FI of the flag manifold to any locally homogeneous
multifiltered manifold.

Definition 3.5.4. Let n be an r-multigraded Lie algebra. For any set I ⊆
{1, . . . , r}, we will denote by nI the Lie subalgebra of n generated by

⊕
i∈I nεi .

The associated Lie subgroup is denoted NI .
If M is any locally homogeneous multifiltered manifold of type n, then the

foliation of N by cosets of NI induces, via the local charts, a foliation of M.
We denote the tangent bundle to the leaves by FI .
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3.6 Products of longitudinally smoothing operators

The point of the above abstract nonsense is merely to show that Theorem
3.3.2 can be reduced to a theorem about smoothing operators along the coset
foliations of a family of subgroups of a nilpotent group. Indeed, by using
a partition of unity subordinate to the charts ϕ of Definition 3.5.2, and by
putting H1 = NI , H2 = NJ and H = NI∪J it suffices to prove the following
result.

Theorem 3.6.1. Let H be a nilpotent Lie group and let H1, H2 be connected sub-
groups of H such that their Lie algebras h1, h2 generate the Lie algebra h of H. Let
A1, A2 : C∞

c (H) → C∞
c (H) be compactly supported longitudinally smoothing oper-

ators along the coset foliations of H by H1 and H2, respectively. Then A1 A2 extends
to a compact operator on L2(H).

Sketch proof. The longitudinally smoothing operators Ai are given by a convo-
lution formula of the following form:

Aiu(x) =
∫

h∈Hi

ai(x, h)u(h−1x) dh, u ∈ C∞
c (H), (3.6.1)

for some ai ∈ C∞
c (H × Hi).

To prove that A1 A2 is compact, it suffices to prove that A∗2 A∗1 A1 A2 is com-
pact, or indeed that (A∗2 A∗1 A1 A2)

n is compact for some n ∈ N. Let us take n
large enough that the space of products

H2H1H2H1H2 . . . H1H2︸ ︷︷ ︸
2n+1 terms

has positive measure in H. Repeated application of Equation (3.6.1) shows
that (A∗2 A∗1 A1 A2)

n has the form

(A∗2 A∗1 A1 A2)
nu(x)

=
∫

H2 × H1 × · · · × H2︸ ︷︷ ︸
2n+1 terms

a(x, h1, h2, . . . , h2n+1)u((h1h2 · · · h2n+1)
−1x)

dh1 dh2 . . . dh2n+1

for some smooth function a ∈ C∞
c (H ×

2n+1 terms︷ ︸︸ ︷
H2 × H1 × · · · × H2).

The product map φ : H2×H1× · · · ×H1 → H is real analytic, so its deriva-
tive is surjective outside a set of measure zero. The proof is then completed
by the following Lemma, which is essentially a consequence of the implicit
function theorem.

Lemma 3.6.2. ([Yun13]) Let M be a smooth manifold, φ : M → H a smooth map
whose derivative is surjective outside a set of zero measure, and let a ∈ C∞

c (M× H).
Then the operator A defined by

Au(x) =
∫

M
a(x, m)u(φ(m)−1x) dx

is a compact operator on L2(H).
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3.7 Application: The KK-class of the BGG complex
of rank-two complex semisimple groups

To conclude this chapter, we return to the motivating application of construct-
ing a G-equivariant K-homology class for the full flag manifold from the
Bernstein-Gelfand-Gelfand complex. At present, this construction has only
been completely carried out for the group G = SL(3,C) (although unpub-
lished work shows that the argument can be extended to the group Sp(4,C)
of type B2 / C2). Since we would like to point out the technical point which
remains to be resolved for the construction in general, we will begin this dis-
cussion in the generality of an arbitrary connected, simply connected, complex
semisimple Lie group G.

Let w → w′ be a an edge in the Bruhat graph with w′ = sαw for some
simple root α ∈ Σ. In this case, we will call it a simple edge. According to
Theorem 3.2.2, we obtain a G-invariant BGG operator

En
α : L2(E−wρ+ρ,−wρ−ρ)→ L2(E−w′ρ+ρ,−w′ρ−ρ)

for some n, and this is a longitudinally elliptic differential operator along the
leaves of Fα. We will replace this operator by its bounded operator phase

Tw→w′ := ph(En
α) : L2(E−wρ+ρ,0)→ L2(E−w′ρ+ρ,0), (3.7.1)

acting between unitary principal series. We call this the normalized BGG opera-
tor. It belongs to Ψ0

α and satisfies

T∗w→w′Tw→w′ − I ∈ Ψ−1
α ,

[a, Tw→w′ ] ∈ Ψ−1
α , ∀a ∈ C∞(X ),

gTw→w′g
−1 − Tw→w′ ∈ Ψ−1

α , ∀g ∈ G,

where a ∈ C∞(X ) is acting on Γ∞(E−wρ+ρ,0) and Γ∞(E−w′ρ+ρ,0) by multiplica-
tion, and g ∈ G is acting by the unitary principal series representations given
in (3.7.1).

For the rank-two complex semisimple groups, the system of normalized
BGG operators are indicated in Figure 3.1. Here α and β are the two simple
roots, with β the longer root in the cases B2 / C2 and G2. The arrows pointing
north-east are ph(En

α) for some n, and those pointing south-east are ph(En
β)

for some n. We have not yet defined the horizontal arrows (associated to the
non-simple edges).

In order to continue we will need to slightly enlarge the C∗-algebras Ψ−∞
I .

Let E =
⊕

w∈W E−wρ+ρ,−wρ−ρ denote sum of the line bundles in the BGG
complex, with Z/2Z-grading according to the parity of `(w). Put also H =
L2(E).
Definition 3.7.1. For each I ⊆ Σ, we define KI to be the hereditary C∗-
subalgebra of L(H) generated by Ψ−∞

I (E). We also define A to be the si-
multaneous multiplier algebra of the KI ,

A = {A ∈ L2(H) | AKI ⊆ KI , ∀I ⊆ Σ}.

Finally, we put JI = KI ∩ A.
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A1 tA1 :

L2(E−α,0)
((⊕L2(E0,0)

77

''
L2(E−α−β,0)

L2(E−β,0)

66

A2 :

L2(E−α,0)

$$

//

⊕
L2(E−2α−β,0)

))⊕L2(E0,0)

77

''
L2(E−2α−2β,0)

L2(E−β,0)

::

// L2(E−α−2β,0)

55

B2/C2 :

L2(E−α,0)

$$

//

⊕
L2(E−3α−β,0)

%%

//

⊕
L2(E−4α−2β,0)

))⊕L2(E0,0)

77

''
L2(E−4α−3β,0)

L2(E−β,0)

::

// L2(E−α−2β,0)

99

// L2(E−3α−3β,0)

55

G2 :

L2(E−α,0)

$$

//

⊕
L2(E−4α−β,0)

%%

//

⊕
L2(E−6α−2β,0)

%%

//

⊕
L2(E−9α−4β,0)

%%

//

⊕
L2(E−10α−5β,0)

))⊕L2(E0,0)

77

''
L2(E−10α−6β,0)

L2(E−β,0)

::

// L2(E−α−2β,0)

99

// L2(E−4α−4β,0)

99

// L2(E−6α−5β,0)

99

// L2(E−9α−6β,0)

55

Figure 3.1: The Bernstein-Gelfand-Gelfand complexes of the rank 2 complex semisim-
ple groups.

One advantage of the algebras KI over Ψ−∞
I is that they are nested: KI ⊆ KJ

whenever J ⊆ I. Therefore, the algebras JI (I ⊆ Σ) form a nested family of
ideals of A.

The construction of the BGG class in K-homology will take place entirely
within the C∗-algebra A. It is easy to check that multiplication operators by
functions on X belong to A, as do the principal series actions of g ∈ G. We
will also need that the normalized BGG operators belong to A. The results of
[Yun11] give this result only for the simply-laced case.

Lemma 3.7.2. Let G be a simply-laced complex semisimple Lie group. For any α, β ∈
Σ we have ph(Eβ).Kα ⊂ Kα. It follows that the normalized BGG operators belong to
A.

Remark 3.7.3. The proof of Lemma 3.7.2 depends only on the relative position
of two roots α and β, and so its proof reduces to the rank 2 groups. For
type A1 tA1 the result is elementary. For A2 it was proven in [Yun11] using
Gelfand-Tsetlin theory. In unpublished work we have also generalized this to
type B2, which shows that the lemma can be extended to all groups other than
G2. For type G2 it remains unproven, although obviously one expects it to be
true as well.

Next we define normalized BGG operators associated to the non-simple
edges.
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Lemma 3.7.4. Suppose G is a group for which Lemma 3.7.2 holds. Then one can
associate to each non-simple edge w→ w′ in the Bruhat graph a bounded operator

Tw→w′ : L2(E−wρ,0)→ L2(E−w′ρ,0) (3.7.2)

such that the operators Tw→w′ form a complex modulo the sum of the ideals ∑α Jα.

Proof. We compare the normalized BGG operators associate to the simple
edges, Equation (3.7.1), with the same operators shifted by −ρ:

Iw→w′ := ph(En
α) : L2(E−wρ,0)→ L2(E−w′ρ,0). (3.7.3)

The operators Iw→w′ are actually intertwiners of irreducible unitary principal
series representations (see, e.g. [Duf75]) so by Schur’s Lemma the diagram of
the operators Iw→w′ will commute on the nose.

Using a partition of unity, we can find sections f1, . . . , fn ∈ Γ∞(E−ρ) such
that ∑n

i=1 fi fi = 1. By considering principal symbols, we see that(
∑

i
fi Iw→w′ fi

)
− Tw→w′ ∈ Ψ−1

α ⊂ Kα (3.7.4)

for every edge w → w′ associated to a simple root α. Let us define the nor-
malized BGG operators associated to non-simple edges w→ w′ by

Tw→w′ := ∑
i

fi Iw→w′ fi.

Note that Iw→w′ can be written as a composition of intertwiners associated to
simple roots (or their inverses). Using Lemma 3.7.2, we infer that the diagram
of normalized BGG operators Tw→w′ commutes modulo ∑α Jα. By introducing
signs, as in [BGG75], we obtain a complex modulo ∑α Jα.

Until this point, the entire construction works for an arbitrary simply laced
G, and using Remark 3.7.3 it can be generalized to any complex semisimple
group with no factor of type G2. The final step, however, is an analogue of
the Kasparov product, and this has only been achieved in rank 2. We must
therefore restrict our attention now to the group SL(3,C). We also consider
the group SL(2,C)× SL(2,C) in order to make a comparison with the classical
Kasparov product.

Theorem 3.3.2 implies that Jα.Jβ ⊆ K(H) for the rank-two groups. The
Kasparov Technical Theorem yields a pair of bounded self-adjoint opera-
tors Nα, Nβ ∈ L(H) that are diagonal with respect to the direct sum H =⊕

w∈W L2(Ew·(0,−2ρ)), that commute modulo compacts with the normalized
BGG operators, the multiplication action of C(X ) and the principal series rep-
resentations of G on each L2(Ew·(0,−2ρ)), and that satisfy

NαJα ⊆ K(H), NβJβ ⊆ K(H) and N2
α + N2

β = 1. (3.7.5)

We multiply each of the normalized BGG operators by a power of Nα and Nβ

as indicated in Figure 3.2 where the symbol T is shorthand for the normalized
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A1 tA1 : L2(E−α,0) Nβ T
))⊕L2(E0,0)

Nα T 66

Nβ T
((

L2(E−α−β,0)

L2(E−β,0)
Nα T
55

A2 : L2(E−α,0)

N2
β T %%

Nα Nβ T
//

⊕
L2(E−2α−β,0) Nβ T

**⊕L2(E0,0)

Nα T 66

Nβ T
((

L2(E−2α−2β,0)

L2(E−β,0)

N2
α T
99

Nα Nβ T
// L2(E−α−2β,0)

Nα T
44

Figure 3.2: Modification of the normalized BGG operators by the Kasparov Technical
Theorem.

BGG operator Tw→w′ associated to the given edge. Finally, we define F to be
the sum of all these operators and their adjoints. A direct check using the
properties of Nα, Nβ and the normalized BGG operators shows that F2 ≡ 1
modulo K(H).

We arrive at the following result.

Theorem 3.7.5. Let G = SL(2,C)× SL(2,C) or SL(3,C) and let X be the full flag
manifold of G. The operator F described above defines a G-equivariant K-homology
class for X , which we denote by [BGG] ∈ KKG(C(X ),C). Its image under the
forgetful map to KKK(C,C) is the class of the trivial representation, and its image in
KKG(C,C) is Kasparov’s γ element.

For the group G = SL(2,C)× SL(2,C), the flag manifold is X = CP1×CP1

and the four induced bundles in Figure 3.2 are isomorphic to

L2(E−iα−jβ) ∼= L2(Λ0,iCP1 ⊗ Λ0,jCP1), i, j ∈ {0, 1}.

In other words, Figure 3.2 for A1 tA1 depicts precisely the exterior Kasparov
product of two copies of the Dolbeault-Dirac class for CP1. Thus the BGG
class for SL(3,C) is literally a generalization of the Kasparov product.

If we allow ourselves to use Lemma 3.7.2 for the group of type B2, as
indicated in Remark 3.7.3, then we can obtain Theorem 3.7.5 also for the group
Sp(4,C) of type B2 / C2 by modifying the normalized BGG complex as in
Figure 3.3.

B2/C2 : L2(E−α,0)

N2
β T %%

Nα Nβ T
//

⊕
L2(E−3α−β,0)

N2
β T &&

Nα Nβ T
//

⊕
L2(E−4α−2β,0) Nβ T

**⊕L2(E0,0)

Nα T 66

Nβ T
((

L2(E−4α−3β,0)

L2(E−β,0)

N2
α T
99

Nα Nβ T
// L2(E−α−2β,0)

N2
α T
88

Nα Nβ T
// L2(E−3α−3β,0)

Nα T
44

Figure 3.3: Modification of the normalized BGG operators in type B2 / C2.
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Chapter 4

Pseudodifferential operators
on quantum flag manifolds

Quantum groups and Connes’ noncommutative geometry arose independently,
but it was soon realized that algebras of functions on quantized Lie groups
and their homogeneous spaces should, morally, be examples of noncommuta-
tive manifolds. Unfortunately, making this precise has turned out to be much
more difficult than expected.

There is no definitive list of axioms of a noncommutative manifold, rather
a list of desirable properties which should be adapted to suit the various
examples. The basic object, however, is always a spectral triple (A, H, D) where
A is a ∗-algebra of bounded operators on the Hilbert space H, and D is an
unbounded self-adjoint operator on H satisfying axioms designed to mimic
the properties of a Dirac-type operator. This needs to be supplemented, at
minimum, with some version of the regularity axiom [Con94, CM95]. See
below for definitions.

In practice, regularity amounts to the existence of a pseudodifferential cal-
culus, in which D is elliptic. This was made into an explicit theorem by Higson
[Hig04] and Uuye [Uuy11]. Not only does regularity imply the existence of
an abstract pseudodifferential calculus, but proving the regularity axiom is
typically achieved by exhibiting that pseudodifferential calculus.

In this chapter, we shall discuss the noncommutative geometry of two
classes of quantum homogeneous spaces by studying analogues of pseudod-
ifferential operators upon them.

We first look at the quantum projective spaces CPn
q , chosen as a case

where things work relatively easily. Quantum projective spaces admit spec-
tral triples which are q-deformations of the classical Dirac-type operators
([Krä04],[DD10]). They fail to be regular, but only very mildly. In the case
of the Podleś sphere CP1

q, Neshveyev and Tuset produced a twisted algebra
of pseudodifferential operators and thus proved a local index formula for the
Dabrowski-Sitarz spectral triple [NT05]. We will present some recent work
with M. Matassa giving the first steps towards a similar result for general CPn

q .
We will generalize the pseudodifferential calculus of Connes and Moscovici to
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twisted spectral triples, in a sense slightly more general than [CM08, Mos10].
With this definition, the q-deformed Dirac operators of [KTS15] yield twisted
regular spectral triples.

In a second example, we consider the quantized full flag manifold Xq of
Kq = SUq(3). Here, the usual axioms of a noncommutative manifold fail more
spectacularly. We don’t even have candidates for Dirac operators on Xq which
are analogous the Dabrowski-Sitarz operator on CP1, and there are good rea-
sons to be pessimistic about the existence of such operators (although see
[NT10] for a very different approach to defining spectral triples on quantum
groups).

On the other hand, there is a q-deformation of the Bernstein-Gelfand-
Gelfand complex on Xq. We shall describe the results of [VY15], which show
that the rudimentary multifiltered pseudodifferential theory of Chapter 3 sur-
vives the quantization process. Once again, this is far from being as powerful
as a full pseudodifferential calculus, but it still suffices to obtain some useful
results. As in the classical case, we can obtain an Gq-equivariant Bernstein-
Gelfand-Gelfand class in KKGq(C(Xq),C), where Gq denotes the Drinfeld dou-
ble Kq ./ K̂q. As a result, following earlier work of Meyer, Nest and Voigt
[MN06, MN07, NV10, Voi11], we obtain equivariant Poincaré duality for Xq
and a proof of the Baum-Connes Conjecture for the discrete quantum dual of
SUq(3).

4.1 Notation and conventions

We continue to use the notation of Section 3.1 for complex semisimple Lie
groups and their Lie algebras. For their quantizations, we follow the conven-
tions of [VY17], which we rapidly recap here. Unless otherwise stated, we
assume 0 < q < 1.

• Uq(g) is the Hopf algebra with

– generators: Eα, Fα (for α ∈ Σ) and Kλ (λ ∈ P),

– algebra relations:

K0 = 1, KλKµ = Kλ+µ,

KλEαK−1
λ = q(λ,α)Eα, KλFαK−1

λ = q−(λ,α)Eα,

[Eα, Fβ] = δα,β
Kα − K−1

α

q− q−1 ,

and the quantum Serre relations, which we shall not write out here,

– coalgebra relations:

∆̂Eα = Eα ⊗ Kα + 1⊗ Eα, ∆̂Fα = Fα ⊗ 1 + K−1
α ⊗ Fα,

∆̂Kλ = Kλ ⊗ Kλ,

ε̂(Eα) = ε̂(Fα) = 0, ε̂(Kλ) = 1,

– antipode: Ŝ(Kλ) = K−λ, Ŝ(Eα) = −EαK−1
α , Ŝ(Fα) = −KαFα.
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• Uq(k) denotes Uq(g) with the ∗-structure

E∗α = KαFα, F∗α = EαK−1
α , K∗α = Kα.

• A(Kq) denotes the algebra of matrix coefficients of finite dimensional
Uq(k)-modules of type 1 (meaning that the Kλ act as positive operators),
with Hopf ∗-algebra structure dual to Uq(k)cop, i.e., for all X, Y ∈ Uq(k),
a, b ∈ A(Kq),

(X, ab) = (X(1), b)(X(2), a), (XY, a) = (X, a(1))(Y, a(2)),

(X, a∗) = (Ŝ−1(X)∗, a).

• The correspondence between leftA(Kq)-comodules and left Uq(k)-modules
(of type 1) is made by equipping a left A(Kq)-comodule V with the left
Uq(k)-action

X.v := (S(X), v(−1))v(0) ∀X ∈ Uq(k), v ∈ V.

• For X ∈ Uq(k), a ∈ A(Kq), we will write

X⇀ a = a(1)(X, a(2)), (4.1.1)

for the right regular representation of U (k) on C∞(K).

• φ denotes the bi-invariant Haar state on A(Kq), L2(Kq) is the corre-
sponding GNS space, and C(Kq) is the C∗-closure of the GNS repre-
sentation of A(Kq).

If Lq is a quantum subgroup of Kq, defined via a surjective morphism
resLq : A(Kq) � A(Lq), then the quantum homogeneous space Kq/Lq is de-
fined by its algebra of polynomial functions,

A(Kq/Lq) = {a ∈ A(Kq) | (id⊗ resLq)∆a = a⊗ 1}.

The closures of A(Kq/Lq) in L2(Kq) and C(Kq) are denoted by L2(Kq/Lq) and
C(Kq/Lq), respectively.

If V is a finite-dimensional unitary left A(Lq)-comodule, with coaction
α : V → A(Lq)⊗ V, then the induced bundle Kq ×Lq V is defined via its space
of polynomial sections:

A(Kq ×Lq V) = {ξ ∈ A(Kq)⊗V | (id⊗ resLq ⊗ id)(∆⊗ id)ξ = (id⊗α)ξ}.

Equivalently, an element ξ = ∑i ai ⊗ vi ∈ A(Kq)⊗ V belongs to A(Kq ×Lq V)
if and only if

∑
i
(X(1)⇀ ai)⊗ (X(2).vi) = ε̂(X)∑

i
ai ⊗ vi ∀X ∈ Uq(l). (4.1.2)

The space A(Kq ×Lq V) is a left A(Kq/Lq)-module by left multiplication on
the first leg, and a left A(Kq)-comodule by comultiplication on the first leg.
It’s closure in L2(Kq)⊗V is denoted L2(Kq ×Lq V).
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4.2 Pseudodifferential calculus and twisted spec-
tral triples

4.2.1 Twisted regularity

In this section and the next, a twisting of an algebra A will mean a linear
automorphism θ : A → A (not necessarily an algebra automorphism). We
will use the notation

[x, y]θ = xy− θ(y)x

for the twisted commutator of x and y.

Definition 4.2.1. ([CM08, Mos10, MY]) A (unital) twisted spectral triple (called
a type III spectral triple in [CM08]) is (A, H, D, θ) where

• H is a Hilbert space,

• A is a unital ∗-algebra, represented as bounded operators on H, with
twisting θ,

• D is an unbounded self-adjoint operator on H,

such that

1. D has compact resolvent,

2. [D, a]θ is densely defined and bounded for all a ∈ A.

It is regular if θ can be extended to a ∗-algebra B ⊆ L(H) of bounded operators
containing both A and [D,A]θ such that the twisted derivation

δθ = [|D|, · ]

preserves B.

Our definition of a twisted spectral triple is weaker than the definitions of
Connes and Moscovici, thanks our allowing θ to be merely a linear isomor-
phism, not an algebra automorphism. This relaxation of the twisting will be
necessary for application to quantum homogeneous spaces.

Our main goal will be to prove a twisted analogue of the results of [Hig04,
Uuy11] which show the equivalence of regularity and the existence of a pseu-
dodifferential calculus.

4.2.2 Differential and pseudodifferential operators

The following definitions are standard.

• ∆ = D2 + 1 is referred to as the Laplace operator,

• H∞ =
⋂

n∈N Dom(∆n), is the space of smooth elements in H,

• The s-Sobolev space Hs (for s ∈ R) is the completion of H∞ with respect
to the norm

‖v‖s = ‖∆
s
2 v‖,
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• Opt (for t ∈ R) is the set of operators T on H∞ which extend to bounded
operators T : Hs+t → Hs for every s ∈ R; these are called the operators of
analytic order t.

Remark 4.2.2. The Laplace operator ∆ is intended as an invertible replacement
of D2. Note that |D| − ∆

1
2 ≤ ∆−

1
2 ∈ Op−

1
2 . This will mean that |D| and

∆
1
2 are essentially interchangeable in the analysis that follows, and we will

occasionally do so without further comment.

Definition 4.2.3. An algebra of differential operators adapted to a twisted spectral
triple (A, H, D, θ) is an N-filtered algebra DO• of operators on H∞ which con-
tains both A and [D,A]θ in DO0, is equipped with an extension of θ, and
satisfies:

1. Elliptic estimates: for every X ∈ DOn, there exists C > 0 such that

‖Xv‖H ≤ C‖∆
n
2 ‖H for all v ∈ H∞,

2. [∆, DOn]θ2 ⊆ DOn+1 for all n.

Definition 4.2.4. An algebra of pseudodifferential operators adapted to (A, H, D, θ)
is an R-filtered subalgebra Ψ• of Op• containing both A and [D,A]θ in Ψ0,
equipped with a 1-parameter group (Θz)z∈C of twistings, and satisfying

1. θ(a)−Θ1(a) ∈ Ψ−1 for all a ∈ A,

2. ∆zΨ• ⊆ Ψ• and Ψ•∆z ⊆ Ψ• for all z ∈ C,

3. [∆
z
2 , Ψs]Θz ⊆ ΨRe(z)+s−1 for all z ∈ C, s ∈ R.

Theorem 4.2.5. ([MY]) Let (A, H, D, θ) be a twisted spectral triple.

1. If (A, H, D, θ) is regular, then there exist algebras of differential operators and
pseudodifferential operators adapted to it.

2. Conversely, if there exists an algebra of differential operators DO adapted to
(A, H, D, θ), with θ diagonalizable—meaning that DO is the direct sum of
its θ-eigenspaces—then (A, H, D, θ) is regular.

Proof. The first statement is straightforward. Using δθ-stability, one can prove
that the algebra B from the definition of regularity lies in Op0. Then we can
define Ψ• as the subalgebra of Op• generated by B and ∆z for all z ∈ C,
equipped with the family of twistings

Θz(X) = ∆zX∆−z, X ∈ Ψ, z ∈ C.

This yields an algebra of pseudodifferential operators adapted to (A, H, D, θ).
For the algebra of differential operators, put DOm = Ψm. We have Θ1(b) −
θ(b) ∈ Ψ−1 for all b ∈ B, and consequently we can extend θ to a perturbation
of Θ1 on DO which satisfies the axioms of an algebra of differential operators.

The second statement is more profound. Suppose DO• is an algebra of dif-
ferential operators adapted to (A, H, D, θ), with θ diagonalizable. It suffices to
define an adapted algebra of pseudodifferential operators, since then we can
use B = Ψ0 to obtain regularity. To define the pseudodifferential operators,
we start with the following definition.
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Definition 4.2.6. Let T be an operator on H∞. We say that T has an asymptotic
expansion T ∼ ∑∞

i=1 Ti, where each Ti ∈ Op•, if for any r ∈ R we have T −
∑N

i=1 Ti ∈ Op−r for all sufficiently large N.

One defines a basic pseudodifferential operator to be an operator T on H∞

that admits an asymptotic expansion of the form

T ∼
N

∑
k=0

Xk∆
z
2−k,

with Xk ∈ DO. We then define Ψ as the space of finite linear combinations of
basic pseudodifferential operators.

It is nontrivial to prove that Ψ is an algebra. The key point is to prove
that if X ∈ DO we have ∆zX ∈ Ψ. The standard trick here is use the Cauchy
Integral Formula to write, when Re(z) < 0,

∆z =
∮

Γ
λz(λ− ∆)−1 dλ,

where Γ is a vertical line separating the spectrum of ∆ from 0. In the untwisted
case, one can then repeatedly apply the commutator formula

[(λ− ∆)−1, Y] = (λ− ∆)−1[∆, Y](λ− ∆)−1, (Y ∈ DO)

to develop the product ∆zX as an asymptotic expansion.
In the twisted case, the commutators with the resolvent are more delicate,

and it’s here we take advantage of the diagonalizability of θ. Let us write
W = Sp(θ) for the set of eigenvalues of θ.

We write ∇(X) = [∆, X]θ2 for the twisted commutator of X ∈ DO. We will
define a decomposition of the iterated twisted commutator ∇n(X) indexed by
sequences µ = (µ0, . . . , µn) ∈ Wn, as follows. If n = 0 then ∇(µ0)(X) denotes
the µ0-eigencomponent of X. If n > 0 we define recursively

∇µ(X) = ∇(∇(µ0,...,µn−1)(X))µn .

Thus
∇n(X) = ∑

µ∈Wn+1

∇µ(X).

Lemma 4.2.7. For any X ∈ DO and z ∈ C, we have the asymptotic expansion

∆zX ∼
∞

∑
n=0

∑
µ∈Wn+1

(
z
n

)
µ

∇µ(X)∆z−k,

where the (z
n)µ

are the quantized binomial coefficients defined in [MY, Appendix A].

The n = 0 term is equal to θz(X)∆z−k.

From this, we obtain that Ψ• is an algebra. We can define a one parameter
family of twistings on Ψ by Θz(T) = ∆z/2T∆−z/2, and it is easy to check that
Ψ• satisfies all the axioms of an algebra of pseudodifferential operators.
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4.2.3 Pseudodifferential calculus on quantum projective spaces

The framework above was designed with the following application in mind.
Let G = SL(n + 1,C) with simple roots {α1, . . . , αn}. Let P̄ = P̄{α1,...,αn−1} be
the lower parabolic subgroup corresponding to I = {α1, . . . , αn−1} ⊆ Σ—see
Section 3.1—so that G/P̄ = CPn. Let K = SU(n + 1) and L = P̄ ∩ K =
S(U(n)×U(1)), and note that K/L = CPn.

We denote the nilpotent radical of p̄ by n̄, and observe that n̄ ∼= (g/p̄)∗,
which is an irreducible L-module via the coadjoint action. The anti-holomorphic
exterior bundle of CP1 is isomorphic to K×L Λ(n̄)

Now let A(Kq), A(Lq), A(CPn
q ) be the algebras of polynomial functions

on Kq, Lq and CPn
q . Equip n̄ with the left Uq(l) representation which cor-

responds to the L-module structure above. Krähmer and Tucker-Simmons
[KTS15] showed that one can define a q-deformation Λq(n̄) of the exterior
algebra of n̄. They use this to define a natural q-deformation of the Dirac-
Dolbeault operator D = ∂̄ + δ̄∗ on the sections of the quantum exterior bundle
Ωq := Kq ⊗Lq Λq(n̄).

Theorem 4.2.8. Let A = A(CPn
q ), H = L2(Ωq) and D be the Dirac-Dolbeault

operator of [KTS15]. The twisted spectral triple (A, H, D, id) is regular.

Remark 4.2.9. The fact that (A, H, D) has compact resolvent was proved in
[DD10].

Note that the twisting is trivial on the algebra A(CPn
q ), but the spectral

triple is not regular in the untwisted sense. The associated algebras of differ-
ential and pseudodifferential operators will be twisted, as seen for instance in
[NT05]. In the rest of this section, we will sketch the proof of Theorem 4.2.8.

We have to define a twisted algebra of differential operators. We begin by
defining the algebra of differential operators on Kq (with polynomial coeffi-
cients) as the smash product

DO(Kq) = A(Kq)#Uq(k).

That is, DO(Kq) = A(Kq)⊗ Uq(k) as a space, with algebra structure given by
the usual products on A(Kq) and Uq(k) and the commutation relation

Xa = (X(2)⇀ a)X(1), ∀X ∈ Uq(k), a ∈ A(Kq).

These relations are defined so that the multiplication action of A(Kq) and the
⇀ action (4.1.1) of Uq(k) define an action of DO(Kq) on A(Kq).

We define an algebra filtration on Uq(k) by declaring

Uq(l) ⊂ U 0
q (k), Eαn , Fαn ∈ U 1

q (k).

This is a Hopf algebra filtration, meaning that ∆̂Um
q (k) ⊆ ∑m

i=0 U i
q(k)⊗Um−i

q (k).
We can therefore extend the filtration to DO(Kq) by putting DOm(Kq) =
A(Kq)#Um

q (k).
Now let V be a finite dimensional Lq-module and let E = Kq ×Lq V be

the associated induced bundle over CPn
q . Define an adjoint action of Uq(l) on
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DO(Kq)⊗ End(V) by

ad(X)(A⊗ T) = X(1)AS(X(4))⊗ X(2)TS(X(3)),

for X ∈ Uq(l), A⊗ T ∈ DO(Kq)⊗ End(V). From Equation (4.1.2) it follows
that the invariant subalgebra

DO(E) := (DO(Kq)⊗ End(V))ad(Uq(l))

= {P ∈ DO(Kq)⊗ End(V) | ad(X)P = ε̂(X)P ∀X ∈ Uq(l)}

preserves the section space A(E) ⊆ A(Kq) ⊗ V. We refer to DO(E) as the
algebra of differential operators on E , with filtration inherited from DO(Kq).

The Dirac-Dolbeault operator D of [KTS15] belongs to DO1(Ωq). D’Andrea-
Dabrowski proved that it satisfies the following Parthasarathy formula.

Proposition 4.2.10. [DD10] There is a central element C ∈ U 2
q (k) such that

D2 − C ⊗ IΛq(n̄) ∈ DO1(Ωq).

The element C is called the (order 2) Casimir element. D’Andrea-Dabrowski
show that, as an unbounded operator on L2(Ωq), C ⊗ I has compact resolvent,
so (A, H, D) is a spectral triple. From these calculations, we also see that
E∗αn Eαn , F∗αn Fαn ≤ C as unbounded operators, from which we can deduce the
elliptic estimates of Definition 4.2.3.

The coproduct of C has the particularly nice form

∆̂(C) = K2
ωn ⊗ C + Q + C ⊗ K−2

ωn

for some Q ∈ U 1
q (k)⊗U 1

q (k), where ωn ∈ P is the fundamental weight satisfy-
ing (ωn, αi) = δin for all i. It follows that, for any a ∈ A(Kq),

Ca− (K−2
ωn ⇀ a)C ∈ DO1(Kq)

and for any X ∈ Uq(k),
CX− XC = 0.

We are led to define the following twisting.

Definition 4.2.11. Define a twisting θ on DO(Kq) ⊗ End(Λq(n̄)) via the for-
mula

θ(aX⊗ T) = (K−2
ωn ⇀ a)X⊗ T

for all a ∈ A(Kq), X ∈ Uq(k), T ∈ End(Λq(n̄)).

Note also that K2
ωn commutes with all elements of Uq(l). We obtain the

following.

Lemma 4.2.12. The twisting θ on DO(Kq) ⊗ End(Λq(n̄)) preserves the subspace
DO(Ωq). With this twisting, DO(Ωq) is a twisted algebra of differential operators
adapted to (A, H, D, id).

This completes the proof of Theorem 4.2.8.
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4.3 Pseudodifferential operators on the full flag
manifold of SUq(n)

We now pass to our final example, the q-deformation of the full flag manifold
of SUq(n). Here we will emulate the algebras of longitudinal pseudodifferen-
tial operators defined in Section 3.

On the full quantum flag manifold of a quantized compact semisimple Lie
group Kq, there are two reasons why the Bernstein-Gelfand-Gelfand complex
seems to be the appropriate point of departure for equivariant index theory.
The first, as already mentioned, is that there is no reasonable candidate for a
Dirac operator analogous to those just discussed for CPn

q .
More profoundly, as Nest and Voigt pointed out in [NV10], the Kasparov

product is not well-defined in Kq-equivariant KK-theory. In order to define a
product of two C(Kq)-comodule algebras, one of them needs to be equipped
with a Yetter-Drinfeld module structure (see also [Vae05]), or equivalently,
a representation of the Drinfeld double Kq ./ K̂q. The Drinfeld double of a
q-deformed complex semisimple Lie group Kq is often referred to as its com-
plexification Gq because it behaves as a q-deformation of the complexification G
of K. Thus in order to have a KK-product, we need to work in Gq-equivariant
KK-theory. In light of the results of Chapter 3, this again suggests the BGG
complex.

In the remaining sections, we will show that the BGG class in the SL(3,C)-
equivariant K-homology of the full flag manifold X does indeed admit a q-
deformation to a SLq(3,C)-equivariant K-homology class for Xq. Again, we
will not define a full pseudodifferential calculus, but merely a family of al-
gebras of "operators of negative order" associated to each of the canonical
fibrations of the quantum flag manifold. This time, we will rely upon har-
monic analysis of the compact quantum subgroups associated to the various
fibrations, rather than the nilpotent subgroups.

4.3.1 Algebras of longitudinal pseudodifferential operators on
quantum flag manifolds

We will continue with the notation from Sections 3.1 and 4.1, although we will
specialize to the case K = SU(n + 1). We introduce the following notation for
quantum flag manifolds. Here, I, J ⊆ Σ are sets of simple roots.

• KI = K ∩ PI denotes the compact part of the parabolic subgroup PI , and
KI,q its q deformation. The latter is a quantum subgroup of Kq via a
surjective morphism resKI,q : A(Kq) � A(KI,q). In particular, KΣ,q = Kq
and K∅,q = T, the classical torus subgroup.

• XI,q = Kq/KI,q is the quantized partial flag manifold of Kq. In particular,
we write Xq = X∅,q = Kq/T for the full quantum flag manifold.

• If µ ∈ P is an integral weight, we write eµ ∈ C(T) for the corresponding
unitary character of T, and Cµ for the associated one-dimensional left
corepresentation of C(T), given by z 7→ eµ ⊗ z for all z ∈ C.
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• Eµ = Kq ×T Cµ is the induced line bundle over Xq, with section space

A(Eµ) = {ξ ∈ A(Xq) | (id⊗ resT)∆ξ = ξ ⊗ eµ}.

The Hilbert completion with respect to the Haar state on A(Kq) is de-
noted L2(Eµ).

To characterize the negative order pseudodifferential operators, we are
obliged to use harmonic analysis with respect to the subgroups KI,q. We in-
troduce further notation:

• Irr(KI,q) is the set of finite dimensional irreducible KI,q-representations,
up to equivalence.

• If σ ∈ Irr(KI,q), Vσ denotes the vector space underlying σ.

• The algebras of functions and compactly supported functions on the
discrete dual of KI,q are, respectively,

A(K̂I,q) = ∏
σ∈Irr(KI,q)

End(Vσ), Ac(K̂I,q) =
⊕

σ∈Irr(KI,q)

End(Vσ).

Note that there are canonical embeddings A(K̂I,q) ↪→ A(K̂q).

• For any I ⊂ Σ and any σ ∈ Irr(KI,q), pσ denotes the central projection in
Ac(K̂I,q), which acts on any unitary Kq-representation as the projection
onto the σ-isotypical subspace.

• In the particular case I = ∅, we identify eµ ∈ Irr(T) with µ ∈ P. Then
pµ acts as the projection onto the µ-weight space of any unitary Kq-
representation.

In particular, we have

L2(Eµ) = pµ ⇀L2(Kq),

where⇀denotes the obvious extension of the right regular representation (4.1.1)
to A(K̂q).

The following lemma is elementary.

Lemma 4.3.1. If I ⊆ J, then for any σ ∈ Irr(Kq,I) and τ ∈ Irr(Kq,J), the projections
pσ and pτ commute. In particular, pσ commutes with pµ for any integral weight
µ ∈ P.

Note that the action ⇀ of A(K̂q) on A(Kq) does not restrict to an action on
the subspace A(Eµ). But Lemma 4.3.1 implies that the projection pσ ⇀ does
restrict to a projection on A(Eµ). In other words, it is still meaningful to talk
of the decomposition of the section space L2(Eµ) into isotypical components
for the right regular action of the subgroup KI,q. This observation will allow
us to define analogues of the algebras KI for the classical groups (Definition
3.7.1) which contain the longitudinal pseudodifferential operators of negative
order along the foliations FI .

In the sequel, we write pσ for the operator pσ ⇀ on L2(Eµ).
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Definition 4.3.2. Fix q ∈ (0, 1], let µ, ν ∈ P and let I ⊆ Σ. We define
KI(L2(Eµ), L2(Eν)) to be the norm-closure of the set of bounded operators
T : L2(Eµ)→ L2(Eν) satisfying

pσT = Tpσ = 0 for all but finitely many σ ∈ Irr(KI,q)

This definition generalizes in an obvious way to operators between finite
direct sums of line bundles E =

⊕
i Eµi . As in Chapter 3, we will often sup-

press the bundles in the notation, when they are clear from the context. As
a technical convenience, we can view the spaces KI(L(E), L2(E ′)) as the mor-
phism spaces of a C∗-category KI with objects L2(E) for any E direct sum of
induced line bundles.

Example 4.3.3. When q = 1, the above definition of KI coincides with the
algebra KI of Definition 3.7.1, that is, the hereditary C∗-algebra generated by
the longitudinal smoothing operators Ψ−∞

I along the fibres of the fibration
X � XI .

The following theorem is a quantum analogue of Theorem 3.3.2 for prod-
ucts of longitudinal pseudodifferential operators on classical flag manifolds.

Theorem 4.3.4 ([VY15]). Let Kq = SUq(n). For any I, J ⊆ Σ, we have KIKJ ⊆
KI∪J . Moreover, KΣ = K, the compact operators.

The proof of this theorem uses explicit calculations in terms of the Gelfand-
Tsetlin bases of simple SUq(n)-modules, see [VY15]. This type of calculation
is not easy to generalize to other semisimple groups. Although, one obviously
expects that Theorem 4.3.4 should hold for all compact semisimple quantum
groups, this remains an open problem.

4.3.2 Principal series representations of SLq(n, C)

As in Chapter 3, the above analysis is motivated by the equivariant index
theory. The Bernstein-Gelfand-Gelfand complex of Theorem 3.2.2 admits a
q-deformation to a complex of unbounded intertwiners between non-unitary
principal series representations of a quantized complex semisimple Lie group,
see [VY17]. In this section, we will describe the normalized BGG complex, for
which we will only need the base of principal series representations, meaning
those principal series with continuous parameter λ = 0.

We begin with some general notation.

Definition 4.3.5. Let W ∈ M(A(Kq)⊗Ac(K̂q)) denote the multiplicative unitary
of Kq, which is characterized by the following property. For f ∈ A(Kq) we
write [ f ] ∈ L2(Kq) for the corresponding element in the GNS space. We equip
L2(Kq) the left actions λ of A(Kq) and λ̂ of Ac(K̂q) defined by

λ(a)[ f ] = [a f ], a, f ∈ A(Kq),

λ̂(x)[ f ] = (Ŝ(x), f(1))[ f(2)], x ∈ Ac(K̂q), f ∈ A(Kq).

Then W satisfies

(λ⊗ λ̂)(W) ([ f ]⊗ [g]) = [S−1(g(1)) f ]⊗ [g(2)], ∀ f , g ∈ A(Kq).
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Definition 4.3.6. The complex semisimple quantum group Gq = SLq(n,C) is
defined as the Drinfeld double of Kq = SUq(n). This means that it has function
algebra

Ac(Gq) = A(Kq) ./ Ac(K̂q),

which is equal to A(Kq)⊗Ac(K̂q) as an algebra, and equipped with the coal-
gebra operations

∆Gq = (id⊗Flip⊗ id)(id⊗ ad(W)⊗ id)(∆⊗ ∆̂),

εGq = ε⊗ ε̂.

Note that Gq is an algebraic quantum group in the sense of van Daele
[VD98]. We write D(Gq) for the dual multiplier Hopf algebra, with operations
dual to Ac(Gq)op.

Definition 4.3.7. Let µ ∈ P. The base of principal series representation with
parameter µ is the representation πµ,0 of D(Gq) on the Hilbert space L2(Eµ)
which corresponds to the following Kq-Yetter-Drinfeld structure:

• coaction of A(Kq) on L2(Eµ) by the left regular corepresentation,

• action of A(Kq) on L2(Eµ) by the twisted adjoint action:

a · ξ = (K2ρ, a(2)) a(1)ξS(a(3))

The resulting representation ofD(Gq) is a ∗-representation, i.e. corresponds
to a unitary representation of Gq. The following theorem summarizes some
key properties of these representations, which are analogues of well-known
results for the unitary principal series of the classical group G.

Theorem 4.3.8.

1. The representations πµ,0 are all irreducible.

2. Two representations πµ,0 and πµ′ ,0 are unitarily equivalent if and only if µ′ =
wµ for some w ∈W.

3. Suppose w → w′ is an edge in the Bruhat graph associated to a simple root α
and µ is a dominant weight. Then the unitary intertwiner between π−wµ,0 and
π−w′µ,0 is given by

Iw→w′ := ph(En
α)⇀ : L2(E−wµ,0)→ L2(E−w′µ,0).

where n is such that wµ− w′µ = nα.

The first two results are essentially due to Joseph and Letzter [JL95, Jos95].
The third is quantum analogue of the formula (3.7.3) when µ = ρ. For proofs
of these, and many other related results, see [VY17].
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4.3.3 Algebras of longitudinal pseudodifferential operators,
cont’d

Morally speaking, the intertwiners of Theorem 4.3.8(3) are longitudinal pseu-
dodifferential operators of order 0 along the fibres of Xq � Xα,q. Let us give a
precise meaning to this. Following Definition 3.7.1, we define A to be simulta-
neous multiplier category of all KI (I ⊆ Σ). In other words, A ∈ AI(L2(E , E ′))
if for any I ⊆ Σ and any direct sum of line bundles E ′′ we have

A.KI ⊆ KI and KI .A ⊆ KI .

We also put
JI = KI ∩ A.

All of the operators we are interested in belong to A.

Lemma 4.3.9 ([VY15]). Let Kq = SUq(n). For any µ ∈ P, the following bounded
operators belong to A:

(i) left or right multiplication by any a ∈ C(Eν), as an operator L2(Eµ) →
L2(Eµ+ν);

(ii) the principal series representation πµ,0( f ) of any f ∈ D(Gq) acting on L2(Eµ);

(iii) the operator phases of the ⇀ action of Eα, Fα for any simple root α ∈ Σ,
viewed as operators ph(Eα) : L2(Eµ) → L2(Eµ+α) and ph(Fα) : L2(Eµ) →
L2(Eµ−α).

Remark 4.3.10. Parts (i) and (ii) of this lemma are straightforward, but the
proof of part (iii) relies on some rather delicate analysis using Gelfand-Tsetlin
bases and q-orthogonal polynomials; see [VY15]. Recall from Lemma 3.7.2
that this was one of the most difficult parts of the classical analysis, as well.

Keeping in mind that the operators ph(En
α) : L2(Eµ) → L2(Eµ+nα) and

ph(Fn
α ) : L2(Eµ) → L2(Eµ−nα) are to be thought of as order 0 longitudinal

pseudodifferential operators along the foliation Fα, the following commutator
relations should not be surprising.

Lemma 4.3.11. Let µ, ν ∈ P, n ∈ N. For any section a ∈ A(Eν) we have

ph(En
α)a− a ph(En

α) ∈ Jα(L2(Eµ), L2(Eµ+ν+nα)),

ph(Fn
α )a− a ph(Fn

α ) ∈ Jα(L2(Eµ), L2(Eµ+ν−nα)).

4.3.4 The BGG class of the quantum flag manifold of SUq(3)

Having obtained the key technical results—Theorem 4.3.4 and Lemma 4.3.9—
we can now translate the construction of the Kasparov module in Section 3.7
almost word-for-word to the quantum context. We will give an extremely brief
summary.

Let α, β and ρ = α + β be the three positive roots of SUq(3).
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Lemma 4.3.12. The diagramme of normalized BGG operators

L2(Eα,0)

ph(F2
β )%%

T1 //

⊕

L2(E2α+β,0)ph(Eβ)
))

⊕L2(E0,0)

ph(Eα) 66

ph(Eβ)
((

L2(E2ρ,0),

L2(Eβ,0)

ph(F2
α )

99

T2

// L2(Eα+2β,0)
ph(Eα)

55

(4.3.1)

with T1 = −ph(E2
α)ph(Eβ)ph(E∗α) and T2 = −ph(E2

β)ph(Eα)ph(E∗β), defines a
complex modulo Jα +Jβ. Moreover, the arrows which are pointed north-east (respec-
tively, south-east, east) are invertible modulo Jα (respectively, Jβ, Jα + Jβ).

Proof. By Hopf-Galois theory, we can find sections f1, . . . , fn ∈ A(E−ρ) such
that ∑n

i=1 f ∗i fi = 1 ∈ A(X ). From Lemma 4.3.11 we obtain that(
∑

i
f ∗i ph(Eα) fi

)
− ph(Eα) ∈ Jα(L2(Eµ), L2(Eµ+α),

for any µ ∈ P. The result then follows, as in the classical case of Lemma
3.7.4, by comparing the diagram of normalized BGG operators (4.3.1) with the
diagram of intertwiners Iw→w′ from Theorem 4.3.8.

We now have all the elements that we used in the construction of the BGG
class for classical SL(3,C). We can repeat the application of the Kasparov
Technical Theorem to obtain operators Nα, Nβ analogous to those in Equation
(3.7.5), and then modify the normalized BGG complex as in Figure 3.2. The
result is an Kasparov K-homology class [BGG] for Xq which is equivariant
with respect to the Drinfeld double SLq(3,C) of SUq(3). The details can be
found in [VY15].

Theorem 4.3.13. ([VY15]) The above construction yields an SLq(3,C)-equivariant
K-homology class for Xq, which we denote by [BGG] ∈ KKSLq(3,C)(C(Xq),C). Its
image under the forgetful map to KKSUq(3)(C,C) is the class of the trivial representa-
tion.

Let us finish with two immediate applications of the BGG class.

The first application is the equivariant Poincaré duality of the flag man-
ifold Xq. The notion of KK-theoretic Poincaré duality was introduced by
Kasparov, but its generalization to quantum group equivariant KK-theory re-
quires some considerable technical refinement. This is due to the observation
of Nest and Voigt [NV10] that the Kasparov product in KKKq requires the use
of the braided tensor product �. Therefore, even if we want to prove only
Kq-equivariant Poincaré duality, we are obliged to define a Poincaré duality
class in KKGq , where Gq is the Drinfeld double of Kq.

Nest and Voigt [NV10] showed how to prove SUq(2)-equivariant Poincaré
duality for the Podleś sphere, using an SLq(2,C)-equivariant duality class.
The same argument goes through for the full flag variety of SUq(3) using the
class [BGG], and yields the following.
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Theorem 4.3.14. The quantum flag manifold Xq is SUq(3)-equivariantly Poincaré
dual to itself. That is, there is a natural isomorphism

KK
SLq(3,C)
∗ (C(Xq)� A, B) ∼= KK

SLq(3,C)
∗ (A, C(Xq)� B)

for all SLq(3,C)-C∗-algebras A and B.

The second application is to the Baum-Connes Conjecture. Once again,
making sense of the Baum-Connes Conjecture for discrete quantum groups
requires some serious technical machinery, this time developed by Meyer and
Nest [MN06, MN07]. The Baum-Connes Conjecture for the discrete dual of
SUq(2) was proven by Voigt in [Voi11]. An analogous argument using the
class [BGG] yields the following.

Theorem 4.3.15. The discrete quantum dual of SUq(3) with q ∈ (0, 1] satisfies the
Baum-Connes Conjecture with trivial coefficients.
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