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Alain Puisieux2,3,4,5,6,8, Francesco Salvatore1,7,9* and Stéphane Ansieau2,3,4,5,6

Abstract

Introduction: Tumor-initiating cells (TICs), aka “cancer stem cells”, are believed to fuel tumors and to sustain therapy
resistance and systemic metastasis. Breast cancer is the first human carcinoma in which a subpopulation of cells
displaying a specific CD44+/CD24-/low/ESA+ antigenic phenotype was found to have TIC properties. However,
CD44+/CD24-/low/ESA+ is not a universal marker phenotype of TICs in all breast cancer subtypes. The aim of this study
was to identify novel antigens with which to isolate the TIC population of the basal-A/basal-like breast cancer cell lines.

Methods: We used polychromatic flow-cytometry to characterize the cell surface of several breast cancer cell lines that
may represent different tumor molecular subtypes. We next used fluorescence-activated cell sorting to isolate the cell
subpopulations of interest from the cell lines. Finally, we explored the stem-like and tumorigenic properties of the
sorted cell subpopulations using complementary in vitro and in vivo approaches: mammosphere formation assays,
soft-agar colony assays, and tumorigenic assays in NOD/SCID mice.

Results: The CD44+/CD24+ subpopulation of the BRCA1-mutated basal-A/basal-like cell line HCC1937 is enriched in
several stemness markers, including the ABCG2 transporter (i.e., the CD338 antigen). Consistently, CD338-expressing
cells were also enriched in CD24 expression, suggesting that coexpression of these two antigenic markers may
segregate TICs in this cell line. In support of ABCG2 expression in TICs, culturing of HCC1937 cells in ultra-low
adherent conditions to enrich them in precursor/stem-cells resulted in an increase in CD338-expressing cells.
Furthermore, CD338-expressing cells, unlike their CD338-negative counterparts, displayed stemness and transformation
potential, as assessed in mammosphere and colony formation assays. Lastly, CD338-expressing cells cultured in ultra-low
adherent conditions maintained the expression of CD326/EpCAM and CD49f/α6-integrin, which is a combination of
antigens previously assigned to luminal progenitors.

Conclusion: Collectively, our data suggest that CD338 expression is specific to the tumor-initiating luminal progenitor
subpopulation of BRCA1-mutated cells and is a novel antigen with which to sort this subpopulation.

Keywords: Basal-like breast cancer (BLBC), Tumor-initiating cells (TICs), CD338/ABGG2, Antigenic phenotype

Introduction
Breast cancer is a very heterogeneous disease, with a high

degree of diversity between and within tumors. The inter-

tumoral heterogeneity is exemplified by the identification

of five molecular subtypes, namely HER2+, normal-like, lu-

minal (subtypes A and B), basal A/basal-like and basal B/

claudin-low – a classification based on gene expression

profile analysis [1-5]. This heterogeneity stems from the

fact that the tumor phenotype varies based on the cell of

origin [6]. Indeed, basal A/basal-like and basal B/claudin-

low breast cancer subtypes were reported to result from

the transformation of luminal progenitors and basal/myoe-

pithelial cells, respectively [5,7-10]. This hypothesis has re-

cently been challenged by the finding that a combination of

several genetic events in luminal-committed cells leads to

the development of breast cancers of the claudin-low sub-

type in murine models [11,12]. These genetic events pro-

mote an embryonic transdifferentiation program, namely,
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the epithelial-mesenchymal transition (EMT), a reversible

mechanism sensitive to microenvironmental changes [13].

Therefore, genetic events and the microenvironment prob-

ably constitute additional determinants of tumor etiology

[14]. Intratumoral heterogeneity results from the selection

of genetically distinct cell populations during tumor pro-

gression, the exacerbated plasticity of cancer cells with con-

sequent phenotypic modifications induced by changes in

the microenvironment, and the differentiation rate of the

progeny of tumor-initiating cells (TICs).

Many attempts have been made to identify and characterize

TICs because these cells are believed to constitute a unique

sub-population with unlimited self-renewing potential

that constantly fuels the tumor and sustains therapy re-

sistance and systemic metastasis. Clarke and colleagues

isolated TICs from metastatic human breast cancers

based on their specific CD44+/CD24-/low/ESA+ anti-

genic phenotype [15]. However, CD44+/CD24-/low/ESA+

does not constitute a universal antigenic phenotype of

TICs in all breast cancer subtypes [16-18]. Rather, it

marks a heterogeneous mix of cells in normal mammary

gland [19] and is a profile associated with cell commit-

ment to an EMT program [20]. It is necessary to better

define this antigenic phenotype by combining CD44

and CD24 with additional as yet unidentified markers

or activity, as previously shown with aldehyde dehydro-

genase [21]. In this context, the similar distribution of

the gene expression profiles of breast cancer cell lines

and primary tumors in the five subtypes identified

[2,22] suggests that the cell line diversity reflects the

tumor heterogeneity. Consequently, breast cancer cell

lines are considered tools with which to identify and

characterize TICs. The aim of this study was to identify

novel antigens that are able to isolate the TIC popula-

tion of basal-A/basal-like breast cancer cell lines.

Both normal and cancer stem cells express transmem-

brane transporters, including ABCG2. This protein ex-

cludes the fluorescent Hoechst 33342 dye from the cells

and as such, behaves as one of the major mediators of

side population (SP). The SP technique has long been

used to isolate both normal and cancer stem cells from

different organs and species [23-28]. ABCG2 expression

was found to be higher in SP cells isolated from mam-

moplasties of healthy patients than in non-SP cells [29].

Moreover, a specific ABCG2 inhibitor (Ko143) reduced

SP formation, suggesting that ABCG2 confers the SP

phenotype in mammary epithelial cells. Interestingly, SP

cells, unlike their non-SP counterparts, express neither

luminal nor myoepithelial markers [30], suggesting that

they are dedifferentiated. In line with this observation,

we demonstrate that CD338/ABCG2 is a reliable anti-

gen with which to sort out the tumor-initiating luminal

progenitor population of BRCA1-mutated breast cancer

cells.

Results
CD338 is differentially expressed in CD24+ and CD24-/low

subpopulations in the BRCA1- mutated HCC1937 cell line

To identify novel antigens that can improve the power

of the CD44/CD24 antigenic phenotype in order to

isolate TICs, we measured the expression of 28 surface

antigens reported to be essential for cell adhesion, mi-

gration, apoptosis, cell signaling or stemness (Table 1

and Additional file 1: Table S1) in two basal A/basal-like

cell lines, namely BT20 and HCC1937 (BRCA1−/−) and

the basal B/claudin-low Hs578T cell line. Figure 1 shows

the expression of these antigens, as assessed by flow-

cytometry, in the CD44+/CD24+ and CD44+/CD24-/low

cell subpopulations. Particularly, we determined the ratio

between the percentage of cells positive for each antigen

in the two cell subpopulations of each cell line (Figure 1b).

No significant differences were observed in the expression

of the examined antigens between the CD44+/CD24+ and

CD44+/CD24-/low cell subpopulations in the BT20 and

Hs578T cell lines (ratio ± 1), while several of them were

significantly enriched in the CD44+/CD24+ population of

HCC1937, including the stemness markers CD10, CD133

and CD338/ABCG2 [25,31,32]. Evaluation of the mean

fluorescence intensity (MFI) of each surface marker in the

CD44+/CD24+ and CD44+/CD24-/low cell subpopulations

of the HCC1937 cell line, demonstrated that CD338 is

expressed at a higher level in the CD24+ than in CD24−

cell subpopulation (Additional file 2: Figure S1).

Given the high differential of CD338 (ratio >3, Figure 1),

we explored the link between CD24 and CD338 expres-

sion. To this aim, we gated the HCC1937 CD338high and

CD338− cell subpopulations, and measured CD24 expres-

sion. As shown in Figure 2, the MFI was 7-fold higher in

CD338high cells (panel a, red events) than in CD338− cells

(panel a, blue events; mean ± SEM: 5,200.0 ± 916.5 and

1,100.0 ± 404.1, p < 0.05). This finding is consistent with a

overlap between CD24+ and CD338high cells.

Enrichment in stem cells parallels an increase in CD338

expression

If CD338 is a reliable marker of TICs, culture condi-

tions reported to induce enrichment of stem cells and

progenitors should be associated with an increase in

CD338 expression. To address this issue, we performed

mammosphere formation assays in which we ran three

successive culture/dissociation passages in ultra-low ad-

herent conditions, and measured the percentage of

CD338-expressing cells. The percentage of CD338high

cells in mammospheres was 4.9-fold higher than that in

the whole cell line when cultured in adherent condi-

tions (mean ± SEM: 8.3% ± 0.5 and 1.7% ± 0.1 respect-

ively, p < 0.0001). Furthermore, the MFI of CD338 cells,

which indicates its expression level, was 3.8-fold higher

in mammosphere-derived cells than in adherent cells.
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This observation supports the assumption that CD338-

positive cells display some stem cell-like properties (Figure 3).

Strikingly, CD338-positive cells in ultra-low adherent con-

ditions were the only cell subpopulation to retain CD326/

EpCAM and CD49f/α6-integrin expression (Figure 3f ),

which is an antigenic phenotype assigned to luminal

progenitors.

CD338-expressing cells display stemness properties and

transformation potential

If CD338 is an antigenic marker of TICs in the

HCC1937 cell line, the CD338high cellular subpopulation

would be expected to generate mammospheres when

cultured in ultra-low adherent conditions, whereas

CD338− cells should be devoid of stemness properties.

To test this hypothesis, we sorted by flow-cytometry

(Additional file 3: Figure S2) three distinct populations

that differ in the expression of CD338: a CD338high

population expressing CD338 at high level (1% of cells), a

CD338low population expressing CD338 at low level (79%

of cells), and a CD338− population negative for CD338

(20% of cells). The three sorted populations were grown

for two days in standard adherent conditions to allow

them to recover from the sorting procedure before testing

their stemness properties in a mammosphere formation

assay. As expected, after two serial passages, only CD338-

expressing cells gave rise to mammospheres (Figure 4a).

We next assessed the transformation potential of the

three subpopulations in a soft-agar colony assay. As

shown in Figure 4b, CD338-positive cells, CD338high and

CD338low, displayed a significantly higher transformation

potential than CD338− cells. The few colonies observed

Table 1 Molecular identity and functions of the antigens analyzed by flow-cytometry

CD Molecule Function References

CD9 P24 Cell adhesion and migration [42]

CD10 CALLA Antigen overexpressed in many tumors [43]

CD24 HSA Adhesion and metastatic tumors [15]

CD26 DPPIV Exopeptidase, tissue restructuring [44]

CD29 β1 integrin Adhesion to matrix proteins [29]

CD44 H-CAM Cell polarity, suppression of apoptosis, metastasis [15]

CD47 Rh-associated protein Cell activation, apoptosis, cell spreading [45]

CD49b α2 integrin Cell adhesion to collagen and laminin [46]

CD49f α6 integrin Cell adhesion, migration, cell surface signaling [47]

CD54 ICAM Cell adhesion, immune reactions [48]

CD55 DAF Protection against complement [49]

CD59 MIRL Protection from complement-mediated lysis [50]

CD61 β3 integrin Cell adhesion, cell signaling [29]

CD66b CEACAM8 Cell adhesion, cell signaling [51]

CD66c CEACAM6 Cell adhesion, cell signaling [51]

CD81 TAPA-1 Response to antigens [52]

CD90 Thy-1 Cell adhesion and differentiation [53]

CD105 ENG (Endoglin) Angiogenesis, vessel wall integrity [54]

CD133 Prominin 1 Unknown [32]

CD151 PETA-3 Cell adhesion [55]

CD164 MGC-24 Adhesion and homing [56]

CD165 AD2 Unknown [57]

CD166 ALCAM Adhesion, organ development [58]

CD184 CXCR4 Increased expression in mammospheres [59]

CD200 OX2 Immunosuppression [60]

CD227 MUC1 Response to hormones and cytokines [31]

CD324 E-Cadherin Cell adhesion, tumor suppression [61]

CD326 EpCAM Cell adhesion [31]

CD338 ABCG2 Pumping cytotoxic drugs out of cells [62]

CD340 Her2/neu Cell growth and differentiation [63]
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in CD338− cells probably reflect contamination of the

cell population with CD338low cells during the cell sort-

ing (Additional file 4: Figure S3). There were no signi-

ficant differences between CD338high and CD338low

populations in either the mammosphere or the and col-

ony formation assay. Assays were invariably performed

shortly after reseeding sorted cells. Notably, after several

days in culture, CD338high cells gave rise to a heterogenous

CD338high and CD338low population, which suggests par-

enting between these cells (Figure 5). Both CD338high and

CD338low cells, but not CD338− cells, displayed stemness

properties and transformation potential.

To strengthen our conclusions, we next assessed the con-

sequences of ABCG2 depletion on stemness properties of

HCC1937 breast cancer cells by performing mammospheres

formation assays. In line with our expectations, the knock-

down of ABCG2, achieved through RNA interference, leads

to a significant decrease of stemness potentials (Figure 6).

CD338high cells display a selective advantage in vivo

Because the tumorigenic potential is specific to TICs, we

assumed that, when xenografted into immunocomprom-

ised mice, HCC1937 cell-generated tumors would be

enriched in CD338-expressing cells. To address this point,

Figure 1 Surface expression profile of the CD24+ and CD24-/low cell subpopulations of basal-like cell lines. (a) Expression of CD24 and CD44 in
the basal A/basal-like HCC1937 and BT-20 cell lines, and in the basal B/claudin-low Hs578T cell line. CD44+/CD24+ and CD44+/CD24-/low cell subpopulations
of each cell line were defined as shown by the two gated regions, namely, P4: CD44+/CD24-/low (blue events) and P3: CD44+/CD24+ (orange events).
(b) The expression of 28 surface antigens was analyzed in the CD44+/CD24+ and CD44+/CD24-/low cell subpopulations. The histogram shows the ratio
between the percentage of cells positive for each antigen in the CD24+ and CD24-/low cell subpopulations of each cell line.

Figure 2 Co-segregation of a unique subcellular population with CD338 and CD24. The mean fluorescence intensity of CD24 was 4.7-fold
higher in CD338high cells (panel a, red events) than in CD338− cells (panel a, blue events; mean ± SEM: 5,200.0 ± 916.5 and 1,100.0 ± 404.1,
p < 0.05), as shown by a monoparametric histogram of CD24 expression (panel b) and by CD338 vs CD24 dot plot (panel c).
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2 × 106 and 4 × 105 HCC1937 cells were injected into

the left and right flanks of NOD/SCID mice, respectively

(Figure 7a). Invariably, cells induced tumor formation with

a delay depending on the number of cells injected (100%,

n = 5). Tumors were excised, digested to single cell sus-

pensions and analyzed by flow-cytometry. The percentages

of CD338high cells were determined in viable (SYTOX−),

human (HLA-ABC+), epithelial (EpCAM+)-gated tumor-

derived cells (Figure 7b). The CD338high subpopulation

was significantly enriched in both tumors (38.8% ± 1.1)

compared with the parental cell line (Figure 7a). To com-

pare the tumorigenic potential of the CD24+ and CD24−

cell subpopulations, we sorted the two populations and

immediately xenografted them into mice. The same num-

ber of cells (assays were performed with either 5 × 104 or

5 × 105 cells) were injected into the flanks of five mice. All

injections invariably led to tumor growth and there were

no obvious differences between the CD24+ and CD24− cell

subpopulations. Moreover, no difference in tumor growth

was detected between CD24 sorted cells and the unsorted

HCC1937 cell line (data not shown). While the CD24+

and CD24− cell populations displayed a similar tumo-

rigenic potential, CD24+-derived tumors had a higher

percentage of CD338high cells than CD24−-derived tu-

mors (60.2% ± 3.4 versus 42.5% ± 0.5) (Figure 7c). This

observation strengthens the link between CD24 and CD338

expression.

Discussion
In an attempt to identify novel antigens that may be com-

bined with CD44 and CD24 to specifically sort TICs, we

compared the expression of a panel of surface antigens be-

tween the CD44+/CD24-/low and CD44+/CD24+ cell sub-

populations of three basal A or B breast cancer cell lines.

Neither the stemness-associated CD10 and CD133 anti-

gens nor ABCG2 differed between the CD44+/CD24-/low

and CD44+/CD24+ cell subpopulations of the BT20 and

Hs578T cell lines. This finding questions the reliability of

CD44/CD24 in identifying TICs in these two cell lines.

Conversely, in the BRCA1-mutated HCC1937 cell line,

which was previously reported to include a TIC population

that does not display a CD44+/CD24-/low antigenic pheno-

type [33], the CD44+/CD24+ subpopulation displayed sig-

nificantly increased expression in several stemness markers

particularly the ABCG2 transporter (i.e., the CD338 anti-

gen). The positive correlation between CD24 and CD338 is

confirmed by enrichment of CD338-overexpressing cells in

tumors originating from CD24-positive cells subcutane-

ously injected into mice (Figure 7c).

Figure 3 Culture in ultra-low adherent conditions enriches in CD338-expressing cells. HCC1937 cells were either cultured in adherent
(panel a) or ultra-low adherent conditions (panel b). CD338 expression was assessed on adherent cells (panel c) and in third-generation
mammospheres (panel d). CD326 and CD49f expression in the adherent cell line (panel e) and on mammosphere-derived cells (panel f) was assessed.
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In support of ABCG2 expression in TICs, cell culture

conditions that induced enrichment of stem/progenitor

cells (mammosphere formation assays) were associated

with a significant increase in CD338 level. Since CD338 is

one of the major mediators of SP, the enrichment in

CD338+ cells as observed in mammospheres is in line with

the previously reported enrichment in SP cells in mam-

mopsheres [34]. The latter SP was reported to contain

bipotent progenitors and stemness properties as judged by

their ability to generate mammospheres when cultured in

ultra-low adherent conditions [34]. We thus investigated

the reliability of this antigen in sorting TICs in the context

of this cell line, and found that the stemness and transform-

ation potentials were specifically assigned to the CD338-

expressing cell subpopulation. Furthermore, the CD338+

subpopulation was significantly increased in tumors arising

from HCC1937 cells subcutaneously xenografted into

immunocompromised mice. The transformation poten-

tial was previously assigned to the CD24+ subpopulation

of HCC1937 cells [33]. Given the good correlation be-

tween the expression of the CD338 and CD24 surface

antigens, we conclude that the CD24+/CD338+ cells

likely include HCC1937 TICs.

The enrichment of the CD338high subpopulation in

HCC1937-derived tumors versus the parental cell line

suggests that CD338high cells have an adaptative advantage

in vivo. Notably, by studying the MDA-MD-435 basal A

cell line, Patrawala and colleagues reported that, although

ABCG2 preferentially marks proliferating cells, the

ABCG2+ and ABCG2− cell subpopulations display a simi-

lar tumorigenic potential [35]. This discrepancy either re-

flects different ABCG2 expression profiles in the two cell

lines or the presence in MDA-MB-435 cells of other trans-

porters with redundant functions.

Single markers are not sufficient to identify and isolate

stem cells. This is supported by the observation that

tumorigenic assays that we performed with CD24+ and

CD24− sorted cells did not reveal any significant differences

Figure 4 CD338 expression discriminates cells with stemness properties and transformation potential. (a) Mammosphere formation
assay. CD338high, CD338low and CD338− sorted sub-populations of HCC1937 cells were plated in ultra-low adherent conditions at a low density to
generate mammospheres. Upper (I), central (II) and lower (III) panels show the results of the first-, second- and third-generation mammospheres,
respectively. Results are expressed as mammosphere-forming efficiency (MFE, number of mammospheres/number of wells) ± SD of triplicates.
(b) Soft agar colony formation assay. CD338high, CD338low, and CD338− cells were sorted out from HCC1937 cells and tested for their ability to
generate colonies on soft-agar. The number of colonies observed after 4 weeks are indicated for 5 × 104 plated cells ± SD of triplicates.
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Figure 5 In vitro evolution of CD338high and CD338low sorted populations. CD338high and CD338low cells were sorted out from HCC1937
cells and plated in adherent conditions. After four weeks of culture, the expression of CD338 was analyzed by flow-cytometry.

Figure 6 The knockdown of ABCG2 annihilates the stemness properties of HCC1937 breast cancer cells. ABCG2 expression was turned
down through RNA interference and the stemness properties of the resulting cell lines was examined. (a) Assessement of ABCG2 expression by
q-RT-PCR. Levels expressed relatively to the housekeeping HPRT1 gene transcripts were normalized with respect to uninfected HCC1937 cells.
(b) Mammospheres formation assay. Results of second generation mammospheres are shown and expressed as mammosphere-forming efficiency
(MFE, number of mammospheres/number of wells) ± SD.
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in the tumorigenicity between the two CD24 sorted po-

pulations. Therefore, CD24 alone is not sufficient to specif-

ically sort stem cells. In this context, CD338 is more

stringent and the combination of the two antigens prob-

ably results in a better segregation, since the increase of

CD338high cells in tumor tissues originated from a CD24+

sorted cell population. Moreover, mammosphere formation

assays revealed that, among CD24+ cells, those overex-

pressing CD338 displayed a higher mammosphere forming

efficiency (Additional file 5: Figure S4). The higher specifi-

city of CD338 than CD24 to mark TICs in the HCC1937

cell line is further supported by the fact that CD338 was

enriched in xenograft tumors (Figure 7) whereas CD24

and CD44 expression profiles did not change in vivo (data

not shown).

CD338 expression analysis revealed three distinct cellu-

lar subpopulations. While CD338− cells probably include

non-tumorigenic and differentiated cells, the significance

of the two CD338+ cell populations (CD338high and

CD338low) remains elusive. It is conceivable that CD338low

cells arise from CD338high cells, thereby forming two sep-

arate populations.

Asymmetric division is one of the main properties of

stem cells [36,37]. The analysis of CD338high and CD338low

sorted sub-populations, after culture for several weeks, re-

vealed that the antigenic phenotype of CD388low cells

remained stable and homogeneous, whereas CD338high

cells gave rise to CD388high and CD388low cells which

suggests filiation of CD338low cells from CD338high cells

(Figure 5). Our results are in agreement with the findings

of Patrawala and colleagues who found that, in several

tumor cell lines, 1% of the ABCG2+ dividing cells segre-

gated asymmetrically [35]. This observation suggests

that a small proportion of ABCG2+ cancer cells (likely

corresponding to the CD338high subpopulation in the

HCC1937 cell line) might divide asymmetrically. In sup-

port of Patrawala’s observation, we demonstrate that

CD338+ HCC1937 cells proliferate faster than their

Figure 7 CD338-positive cells display a selective advantage in vivo. (a) HCC1937 cells were injected subcutaneously into the left and right
flanks of five NOD/SCID mice. Dot plots show the percentages of CD338high cells in the cell suspensions obtained from digestion of tumor
tissues. (b) Gating strategy to analyze by flow-cytometry the expression of CD338 cells in the excised tumors. Percentages of the CD338high cell
subpopulation were determined in viable (SYTOX−), human (HLA-ABC+), epithelial (EpCAM+) gated cells. (c) Enrichment of CD338-positive cells in
CD24+-cell derived tumors. HCC1937 CD24+ and CD24− cell subpopulations were xenografted into NOD/SCID mice. CD338high expressions were
assessed in the viable (SYTOX−) human, (HLA-ABC+), epithelial (EpCAM+) gated tumor-derived cells.
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CD338− counterparts (Additional file 6: Figure S5). It is

thus likely that ABCG2 marks proliferating cells and some

of them (very likely the CD338high subpopulation) might

undergo asymmetrical divisions, a feature of stem cells.

Despite some differences in ABCG2 transcript levels

(Additional file 3: Figure S2b), it is also feasible that par-

enting results from the dynamic expression of CD338

[38], through protein internalization.

Cell sorting experiments were performed by using the

monoclonal anti-CD338 antibody 5D3. 5D3 binding to

its extracellular epitope strongly depends on the con-

formation of ABCG2 [39], making the binding particu-

larly unstable. The stability of the binding was further

affected by the very long cell sorting, as the isolation

of the rare CD338high population (1% of the whole

cell line) took between 7 to 9 hours. Attempts to

stabilize the antibody-antigen interaction with a protein

cross-linker (PMPI, p-Maleimidophenyl isocyanate)

successfully increased the purity of CD338high sorted

cell subpopulation (from 50-70% to 90-95%; Additional

file 7: Figure S6a). Unfortunately, the crosslinking of

CD338 down-modulated its activity as demonstrated by

the lack of colonies when unsorted cells were plated on

soft agar (Additional file 7: Figure S6b).

BRCA1-mutated basal-like breast cancers are believed to

arise from a developmental stage of the mammary epithelial

cell, which is different from the primitive stem cell, named

the luminal progenitors [7,8,40,41]. It is noteworthy that

CD338+ cells in mammosphere-derived HCC1937 cells are

the only cell subpopulation that maintained the expression

of CD326/EpCAM and CD49f/ α6-integrin, a combination

of antigens previously assigned to luminal progenitors [7].

Collectively, our data suggest that CD338 is specific to the

luminal progenitor subpopulation of BRCA1-mutated cells

and is a novel antigen with which to sort this important

subpopulation.

Conclusion
Since the CD44+/CD24-/low antigenic phenotype does

not constitute a universal antigenic phenotype of TICs

in all breast cancer subtypes, it is necessary to identify

novel TIC markers in order to better define this pheno-

type. Particularly, BRCA1-mutated basal-like breast can-

cers are believed to arise from the luminal progenitors

[7,8,27,28]. Here, we have identified an additional reli-

able antigen, CD338/ABCG2, that can be used to refine

the sorting of the luminal progenitor subpopulations of

BRCA1-mutated breast cancer cells.

Methods
Cell lines

The human breast cancer cell lines Hs578T and BT-20

were provided by American Type Culture Collection

(Rockville, MD, USA) and cultured in DMEM, 10% FBS.

The HCC1937 cell line was from the American Type

Culture Collection, and was cultured in IMDM medium

(Invitrogen), 20% FBS (Gibco).

Flow cytometry analysis and cell sorting

Antigens and antibodies

Multi-color flow-cytometry was performed with anti-

human monoclonal antibodies (MoAbs) that were conju-

gated with phycoerythrin (PE), fluorescein isothiocyanate

(FITC), phycoerythin-Cy7 (PE-Cy7) or Alexa Fluor 647.

The study was performed with the following antibodies:

PE-conjugated MoAbs against CD10, CD29, CD54, CD55,

CD59, CD61, CD151, CD166, CD200, CD340 and FITC-

conjugated MoAbs against CD9, CD26, CD47, CD49b,

CD49f,CD66b, CD66c, CD81, CD164, CD165, CD227,

and CD326 (BD Biosciences); FITC-conjugated antibody

against CD90 and CD324 (BD Pharmigen); PE-coniugated

MoAb against CD133 (Miltenyi Biotech); AlexaFluor647-

conjugated MoAb against CD24, PE-Cy7-conjugated MoAb

against CD44 and PE conjugated MoAb against CD338

(Biolegend); PE-conjugated MoAb against CD184 (Immu-

notech); PE-conjugated MoAb anti-CD105 (Serotec).

Flow-cytometry panel and sample preparation

We used a four-color flow-cytometry panel to measure

the expression of the 28 surface markers in addition to

CD44 and CD24 [15,29,31,32,42-63]. Cells were stained

with anti-CD24-AlexaFluor 647 and anti-CD44-PECy7

monoclonal antibodies combined with pairs of antibodies,

conjugated with two other different fluorochromes (PE

and FITC), directed against the additional surface antigens

examined (Additional file 1: Table S1). An analysis buffer

(RPMI without red phenol (Invitrogen), 1-2% FBS (Gibco),

10 U/ml DNase (Sigma-Aldrich)) was used to prepare cells

for analysis. Enzymatically individualized cells were

counted, resuspended in the analysis buffer at 5 × 106/ml

and stained by incubation at 4°C for 20 min with the ap-

propriate MoAbs. For FACS analysis, cells were stained in

a 100 μl labelling volume and the concentrations of label-

ling antibodies were: 0.1:10 for CD44, 2:10 for CD338 and

0.5:10 for all other antibodies. Samples were washed twice

with the analysis buffer, centrifuged and resuspended in

0.5 ml of FACS flow sheath fluid (BD Biosciences). Imme-

diately before FACS acquisition, cells were incubated at

room temperature in the dark with SytoxBlue (Invitrogen)

or DAPI (Invitrogen) to exclude dead cells. All experi-

ments included a negative control to exclude the signal

background caused by the cellular auto-fluorescence.

For fluorescence-activated cell sorting, HCC1937 cells

were enzymatically individualized, resuspended at 5 ×

107 cells/ml in sorting buffer (RPMI without red phenol

(Invitrogen), 1-2% FBS (Gibco), 10 U/ml DNase (Sigma-

Alderich), 2.5 mM EDTA) and stained by incubation

with CD338 and/or CD24 MoAbs at 4°C for 1 h. After
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staining, samples were washed twice with sorting buffer,

and resuspended at 2 × 107 cells/ml in SB. Cells were se-

quentially filtered (50 μm, Partech) and incubated for a

few minutes at room temperature in the dark with a vital

dye, SytoxBlue (Invitrogen) or DAPI (Invitrogen).

Cytometers

The samples were analysed on a FACSAria I flow-

cytometer (Becton Dickinson, Franklin Lakes, NJ, USA)

(Figures 1, 2 and 3; Additional file 8: Figure S7). FITC,

PE and PE-Cy7 fluorescence was determined by a

488 nm excitation line and detected by 530/30 nm, 585/

42 nm and 780/60 nm filters, respectively. AlexaFluor-

647 fluorescence was determined by a 633 nm excitation

line and detected by a 660/20 nm filter. For each sample

run, 104 to 2 × 104 events were recorded and analysed.

The expression of CD338 was also analyzed with the

BD LSR II four-laser flow-cytometer (Becton Dickinson,

Franklin Lakes, NJ, USA) (Additional file 3: Figure S2

and Additional file 4: Figure S3) by exciting PE fluoro-

chrome with the 561 nm laser. This laser enabled us to

discriminate three cell subpopulations based on the ex-

pression of CD338: CD338neg, CD338low and CD338high.

Live cell sorting experiments were performed using BD

FACSAria I with 100 μm nozzle. PE fluorescence of CD338

was determined by a 488 nm excitation line and detected

by 585/42 nm filters, whereas Alexa-Fluor 647 fluorescence

of CD24 was determined by a 633 nm excitation line and

detected by 660/20 nm filters. Sorted cells were collected

in RPMI medium without red phenol (Invitrogen), 20%

FBS (Gibco) 10 U/ml DNase (Sigma-Alderich) and 2%

penicillin/streptomycin (Invitrogen) collecting buffer. Cell

sorting of CD338 populations took 7 to 9 hours, whereas

cell sorting of the CD24 populations took 30 to 90 minutes.

Sorted populations were xenografted in mice immediately

after cell sorting. An example of CD24 sort purity is re-

ported in (Additional file 9: Figure S8).

Analysis of cytometric data

The samples were analyzed using the FACSDiva software

(Becton Dickinson). We used a three-gating strategy to de-

fine the target cell population to analyze the expression of

the 28 surface markers (Additional file 8: Figure S7a, b, c).

First, to exclude dead cells and debris, cells were gated on

a two physical parameters dot plot measuring forward

scatter (FSC) versus side scatter (SSC). Second, we ex-

cluded doublets by gating cells on FSC-height versus FSC-

area dot plots. Lastly, to exclude dead cells, we gated

Sytox-Blue- or DAPI-negative cells. The expression of

each surface marker in the different cell lines was reported

as percentage of positive cells in Count versus FITC- or

PE-CD histograms (Additional file 8: Figure S7d). We also

measured the expression level of each antigen in the dif-

ferent CD44/CD24 subpopulations, CD44+/CD24-/low and

CD44+/CD24+, since each FITC-CD or PE-CD antibody

was combined with anti-CD44 and anti-CD24 antibodies

(Additional file 2: Figure S1).

ABCG2 knockdown

shRNA ABCG2 lentiviral particles were generated through

co-transfection of 293 T cells with 4 different shRNA

pLKO.1 (4 different shRNAs GCAACAACTATGACGAAT

CAT, CCTTCTTCGTTATGATGTTTA,GCTGTGGCAT

TAAACAGAGAA,CCTGCCAATTTCAAATGTAAT, Sigma

Aldrich), pCMV R8.91 (gag-pop-Tat-Rev) and phCMVG-

VSVG (env) expression constructs using the calcium

phosphate precipitation technique. Infections were per-

formed as described in [64]. Infected cells were selected

with puromycin (1 μg/ml) before being plated in ultra-low

adherent conditions or plated on soft agar. Inhibition of

ABCG2 expression was confirmed by qRT-PCR.

Mammosphere formation assays

For mammosphere generation, HCC1937 cells were seeded

in 96-well ultra-low attachment plates (Corning, New

York, NY, USA) at the concentration of 1,000 cells/well for

first-generation mammospheres, and at 100 cells/well for

subsequent passages. Cells were grown in a serum-free

mammary epithelial growth medium (MEBM, Lonza,

Verviers, Belgium) supplemented with B27 (Invitrogen,

Carsbal, CA, USA), 20 ng/ml EGF, 20 ng/ml bFGF and

4 μg/ml heparin (Sigma, St. Louis, MO, USA). Mammo-

spheres were collected by gentle centrifugation (1,000 rpm,

5 minutes), and enzymatically (5 min in trypsin/EDTA) and

mechanically (26 Gauge needle) dissociated between each

step and for further analysis.

Soft agar colony formation assay

Plates were coated with 0.75% low-melting agarose

(Lonza) obtained by mixing equal volumes of 1.5% agar

and 2× growth medium (IMDM). Cells were enzymati-

cally dissociated, resuspended in growth medium and

counted. An overlaid suspension of cells in 0.45% low-

melting agarose was obtained by mixing equal volumes

of 0.9% agar and 2 × IMDM with cells (5 × 104 cells/well

in 6-well plates). Plates were incubated for 3–4 weeks at

37°C and colonies were counted under microscope.

In vivo tumorigenicity assays

All animal experiments were conducted in accordance

with accepted standards of animal care and in agreement

with a protocol established with our Ethics Committee.

The study has been approved by the Institutional Review

Board “CEINGE-Biotecnologie Avanzate”. To evaluate

in vivo tumorigenicity, unsorted HCC1937 or sorted cell

subpopulations were resuspended in media and Matrigel

(1:1; BD Biosciences), and injected into the left and right

flanks of 4-week-old NOD/SCID mice (C. River laboratories).
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To evaluate the tumorigenic potential of the unsorted cell

line, 2 × 106 and 4 × 105 of HCC1937 cells were injected

into the left and right flanks of mice respectively (n = 5).

To compare the tumorigenic potentials of the CD24+ and

CD24− cell populations, 5 × 104 or 5 × 105 cells were

injected into the left and right flanks of NOD/SCID mice

respectively (n = 5). Tumor formation was assessed and

measured once a week. Animals were killed when the

tumor reached the size of 1.5 cm. Tumor tissues were

minced into < 1 mm pieces, dissociated in an enzymatic

solution consisting of collagenase type 1 (1.5 mg/ml,

Sigma), penicillin/streptomycin 20%, amphotericin 1% and

DNase (1 mg/ml, Roche), and incubated at 37°C for

60 min with gentle agitation. The single cell suspensions

were analyzed by flow-cytometry after staining with ap-

propriate antibodies.

Additional files

Additional file 1: Table S1. Four-color flow cytometry panel for the
expression analysis of surface markers in BT20, HS578T and HCC1937
breast cancer cell lines.

Additional file 2: Figure S1. Expression of surface antigens in the CD24+

and CD24-/low cell subpopulations of the HCC1937 cell line. The surface
expression of the breast cancer cell lines was evaluated using a four-color
flow-cytometry panel. In particular, we stained cells with monoclonal
antibodies against the two classical breast cancer stem cell markers, CD44
and CD24, combined with pairs of antibodies against molecules explored as
potential novel TICs markers. Hence, we analyzed and compared the
expression of 28 surface markers in the CD44+/CD24-/low and CD44+/CD24+

cell subpopulations of each cell line. This figure shows the ratio of the mean
fluorescence intensity (MFI) of each antigen evaluated in the two cell
subpopulations, CD24+ and CD24−, present in the HCC1937 cell line. Most
CDs displayed a ratio near to 1, which indicated an equal or very similar
expression in the two cell subpopulations, whereas CD338/ABCG2 and
CD10/CALLA, which are two known stem cell markers, displayed a ratio
greater than 2, which indicated that they are expressed at a higher level in
the CD24+ than in CD24− cell subpopulation.

Additional file 3: Figure S2. Expression of CD338 in the HCC1937 cell
line and cell sorting of three cell subsets. (a) Using the LSR II cytometer,
we identified three distinct CD338 subpopulations: 1) CD338+/high (red
events) expressing CD338 at high level and consisting just in 1% of the
total cell line; 2) CD338neg (yellow events) not expressing CD338 and
constituting about 20% of the total cell line; and 3) CD338+/low (blue
events) expressing CD338 at an intermediate level and constituting about
79% of the total cell line. We used the FACSAria I cell sorter to sort the
three CD338 cell subsets to explore and compare their stem-like and
tumorigenic properties. The figure shows an example of cell sorting of
the three subsets based on the image produced by the LSR II analyser.
Left panel: surface expression of CD338 in the HCC1937 cell line before
cell sorting. Right panels: surface expression analysis of CD338 in the
three sorted cell substs. (b) Relative mRNA expression levels of ABCG2 in
CD338high, CD338low and CD338neg sorted cell populations as assessed by
q-RT-PCR. Levels expressed relative to the housekeeping HPRT1 gene
transcript were normalized with respect to the unsorted parental
cells ± SD of triplicates.

Additional file 4: Figure S3. Cross-contamination between CD338low

and CD338neg sorted cell subsets. Cytometry analysis of the expression of
CD338 in the CD338low and CD338neg sorted cell subsets. The rectangle
shows the overlap between the two cell populations.

Additional file 5: Figure S4. Comparison of the mammosphere
formation efficiency of CD24+ versus CD24− and of CD24+/CD338+ versus
CD24+/CD338− sorted cell subpopulations. (a) CD24+ and CD24− cells

were separated through cell sorting and plated in non-adherent conditions at
low density to assess their mammosphere formation efficiency. CD24+ cells
(upper panels) were able to form mammospheres with a higher efficiency
than the CD24− ones (lower panels, mean ± SEM: 5.8 ± 1.0 and 0.5 ± 0.3
respectively; p < 0.005). (b) CD24+/CD338+ and CD24+/CD338− cells were
separated through double color cell sorting and plated in non-adherent
conditions at low density to assess their mammosphere formation efficiency.
Among the CD24+ cells, those overexpressing the stem cell marker CD338
(upper panels) were able to form mammospheres with higher efficiency than
their CD338- counterparts (lower panels, mean ± SEM: 13.0 ± 1.1 and 1.5 ± 1.2
respectively; p < 0.005). d2, d3 and d6 indicate days after cell sorting and
plating in ultra-low adherent conditions.

Additional file 6: Figure S5. Link between ABCG2 expression and
proliferative activity. CD338high and CD338-/low populations have been
sorted as described. The same number of cells from the two sorted cell
subpopulations was plated and rate of cell growth was evaluated by
counting cells every four days for three weeks.

Additional file 7: Figure S6. Stabilization of the CD338 antigen-
antibody interaction by using the protein cross-linker PMPI (a) Effect of
cross-linker treatment on cell sorting purity. Analysis of CD338 expression
after cell sorting performed without (upper panels) or with (lower panels)
the protein cross-linker. (b) Effect of cross-linker treatment on colony
forming ability of HCC1937 cells. Unsorted cells were either incubated or
not with the cross-linker before CD338 staining and their transformation
potential was assessed in a colony formation assay. Colonies were
counted after three weeks. Number of colonies are indicated for 5 ×
104 cells ± SD of triplicates.

Additional file 8: Figure S7. Surface expression analysis of HCC1937
cell line. (a, b, c) Gating strategy used to define the cell population
subsequently analyzed for the expression of surface markers. To exclude
dead cells and debris, cells were gated on a two-physical parameters dot
plot measuring forward scatter (FSC) vs side scatter (SSC) (a). Doublets
were excluded by gating cells on FSC-Height vs FSC-Area dot plots
(b). To exclude dead cells, Sytox Blue negative cells were gated (c).
(d) Surface marker expression analysis on cells gated as described.
The expression of each antigen is represented on a frequency distribution
histogram (count vs FITC or PE signal). The vertical marker on each
histogram used to detect the antibody-positive cells was established
using the appropriate negative controls.

Additional file 9: Figure S8. Cell sorting purity of the different CD24 cell
subpopulations. Cells were stained with an anti-CD24 antibody. CD24+

and CD24− cell populations were sorted out as described. The left panel
shows the cell sorting purity of CD24+ subset, the right panel shows the
cell sorting purity of CD24−.
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