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Abstract

Exact calculations of the radiative corrections to the single spin asymmetry in
the exclusive pion electroproduction below ∆(1232) resonance are performed by
employing the EXCLURAD code. The analysis of the dependence of the obtained
results on W , θcm and φ shows that absolute values of radiative corrections do not
exceed 1.5 %. The procedure of sampling the radiative corrections with analytical
functions has been developed allowing for flexible and rapid applications of the
corrections in the data analysis.

1 Introduction

Evaluation of radiative corrections (RC) to the observables of the exclusive pion electro-
production

e− + p → e− + p + π◦ (1)

is, as a rule, performed in the framework of the approach developed in Ref. [1]. Practical
calculations, which involve application of the code EXCLURAD [2], take a noticeable
amount of time even in the simple case of several kinematic points. As a result, the
analysis of the data registered in a wide range of kinematic variables may be hindered
considerably. Approximations of the results obtained from EXCLURAD with analytical
functions can substantially decrease time of the data analysis and maintain a high level
of accuracy in the applied corrections. An input for the approximations is obtained by
sampling of the energy and angular dependence of RC and the single spin asymmetries
A and ARC evaluated in the Born approximation and by including all relevant radiative
processes, respectively.

2 Kinematics

The data on single spin asymmetry, which is observed in the reaction (1) in polarized
electron beam has been collected at MAMI microtron of Mainz [3]. The relevant kinematic
region is shown in Fig. 1 as a scatter plot with ten points on the W −Q2 plane. Position
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Figure 1: Location of the mean values of W and Q2 corresponding to different experi-
mental settings in the measurements of the single spin asymmetry at MAMI.

of the points is determined by the incident beam energy E = 883 MeV, and true average
of each experimental bin has been found in the analysis of Ref. [4].

The code EXCLURAD computes RC to the fourfold cross section d4/dWdQ2dcosθhdφh and
to polarization beam asymmetry for the reaction (1). The cm system angles θh and φh

are between the direction of the virtual photon momentum (~q = ~k1 −~k2) and momentum
of the final pion. As long as a pion in reaction (1) is the undetected hadron, the angles θh

and φh are defined with respect to the direction of −~p ′, i.e. opposite to the recoil proton
momentum [1]. In what follows these angles are denoted as θcm and φ.

Calculations of RC, A and ARC have been performed at the fixed value of the virtual
photon transfered momentum — Q2 = 0.335 GeV2, which corresponded to the central
value of the Q2 region represented by the scatter plot in Fig. 1. With the adopted
definition of φ, both A(φ) and ARC(φ) are symmetric with respect to the angle φ = 180◦.
In the experiment, θcm covered the range 2.5◦ ≤ θcm ≤ 37.5◦, and the asymmetries were
sampled in 10 points inside this interval. The sampling of the φ dependence has been
done in 11 points inside in the interval from 0 to 180◦.

As has been demonstrated in Ref. [1], the inclusive asymmetry for the reaction (1) has
a nontrivial dependence on the center of mass energy W around W ≈ 1.3 GeV where it
changes sign. Therefore, for reliable evaluation of RC one has to sample a much wider
range of W than that covered by average values in Fig. 1. The relevant values corresponded
to W = 1.10, 1.15, 1.21, 1.25 and 1.30 GeV.
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3 Analytical expressions approximating evaluated RC

3.1 W dependence

The Bezier curves are used as the basis for approximations of both Born asymmetry
A0(φ, θ, W ) and the asymmetry modified by the radiative effects — ARC(φ, θ, W ). They
proved to yield a simple approximating tool in the entire range of the kinematics under
consideration. In this approach the asymmetry evaluated by the EXCLURAD code in a
number of fixed kinematic points is approximated as

A =
3∑

l=0

PlBl(u) , (2)

where Pl are parameters of the fit and Bl(u) are functions defined on the interval {0, 1}:

B0 = (1 − u)3,

B1 = 3u(1 − u)2,

B2 = 3u2(1 − u), (3)

B3 = u3.

Due to this particular choice of functions Bl, P0 and P3 coincide with the values of A on
the left and right boundary of the interval, respectively. Thus, it is only P1 and P2, which
are to be determined from the fit.

When fitting W dependence of the asymmetry evaluated on the interval {Wmin, Wmax},
the following change was done:

u =
W − Wmin

Wmax − Wmin

.

For the applications in the Mainz experiment, u has been calculated by taking Wmin =
1.10 GeV and Wmax = 1.30 GeV.

3.2 Dependence on the azimuthal angle φ

Similarly to the case of W dependence, one has to change u = φ/180◦ in Eq. (2) in the
fitting of A(φ). On the other hand, one can suggest some simplifications to Eq. (2), which
would better suit conditions of the Mainz experiment, in which the difference between
Born and RC asymmetries is very small everywhere except of W ∼ 1.3 GeV. This is done
by noticing that A(φ) is close to a sine function and by replacing 1st and 4th terms (which
have to disappear in the case of purely sine function) with a sine term:

A(φ) = P0sin(φ) + P1B1(u) + P2B2(u), (4)

where u = φ/180◦. The dependence of parameters Pl on W is obtained by fitting the
results with Eq. (2). The resulting 2D asymmetry is given by

A(φ, W ) =
2∑

l=0

Bφ
l

3∑

m=0

PlmBW
m , (5)

where Bφ
0 = sin(φ), and Bφ

1,2 are usual functions defined in Eq. (3).
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3.3 Dependence on the angle θcm

As it is obtained from calculations of the A(θcm) by the EXCLURAD, both A(θcm) and
ARC(θcm) are small and slowly varying functions in the kinematics covered by the exper-
iment (2.5◦ ≤ θcm ≤ 37.5◦). Therefore, the most economical way of approximating the
asymmetry is the choice of the two-terms functions as follows:

A(θ) = asin(θcm) + bsin2(θcm) . (6)

Correspondingly, approximation of the A(φ, θcm) has been performed for a given value of
W in the following form:

A(φ, θcm) =
1∑

l=0

(sin(θcm))l+1
3∑

m=0

PlmBφ
m , (7)

where functions Bφ
m are defined in Eq. (3). Parameters Plm of the fit performed for the

case with radiative processes are shown in Table 1.

m = 0 m = 1 m = 2 m = 3
l = 0 –0.51822 8.2071 6.8661 –0.51799
l = 1 1.3751 –4.0265 –6.4145 1.3751

Table 1: Parameters Plm that determine ARC(φ, θcm)
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Figure 2: Asymmetry as a function of θcm evaluated for three values of the azimuthal angle
φ — 20◦ (triangles), 90◦ (squares) and 160◦ (circles). Asymmetries calculated in Born
approximation and by accounting for radiative precesses (assuming ∆S = 0.02 GeV2) are
shown with filled and open symbols, respectively.
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Figure 3: Asymmetry ARC(φ, θcm) evaluated at W = 1.21 GeV by assuming ∆S = 0.02
GeV2.

4 Results

It was found that the modification of the asymmetry due to radiative effects in the reaction
under study is the strongest at θcm = 37.5◦. This is demonstrated by the results of
calculations A(θcm) and ARC(θcm) shown in Fig. 2 for three values of the azimuthal angle φ.

Radiative corrections depend on the mass window ∆S around the missing mass peak used
in the event selection procedure if ∆S < νmax, where νmax is introduced in EXCLURAD as
the upper limit of integration in calculating the cross section of the radiative process. The
parameter νmax describes the missing mass of the radiative origin (due to undetected γ).
It is dubbed as “maximum inelasticity” and is defined in Ref. [1] as

νmax = (W − Mp)
2 − m2

π◦ . (8)

Undetected gammas additionally distort the missing mass spectrum, which is of the
hadronic origin (undetected π0 in the considered case). The selection cuts, which are
usually applied to the distribution of the events versus missing mass squared M2

x , are
generally more tight than ∆S = νmax, which is modeled in EXCLURAD by replacing the
upper limit of integration with νcut. Accordingly, the mass window ∆S is related to νcut

as

∆S = νmax − νcut . (9)

The corrections naturally increase as the cuts tighten, corresponding to narrowing of the
mass window ∆S.
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m = 0 m = 1 m = 2 m = 3
l = 0 –1.4506 –4.6186 –1.9493 0.17369
l = 1 5.7645 12.049 7.0872 –2.7053
l = 2 2.4684 6.8852 8.1888 –2.6894

Table 2: Parameters Plm that determine A(φ, W )

The two-dimensional plot for ARC(θcm) corresponding to the case of ∆S = 0.02 GeV2

is obtained analytically by employing Eq. (7). It is displayed in Fig. 3. The difference
between ARC(θcm) and A(θcm) is better seen from Fig. 4, which shows radiative corrections
δA defined in Ref. [1] as

δA =
ARC − A

A
· 100% . (10)

The set of ten curves in Fig. 4 shows the dependence of δA for ten values of θcm on the size
of the ∆S window used in the event selection procedure. The results have been produced
for the azimuthal angle φ = 90◦, where corrections are found to be largest.
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φ = 90
W = 1.21 GeV

Figure 4: Radiative corrections as a function of the ∆S window evaluated in 10 points
of the phase space corresponding to the angle θcm in the range 2.5◦ – 37.5◦ and at the
azimuthal angle φ = 90◦.

In this study, a larger number of results have been produced for the kinematics corre-
sponding to θcm = 37.5◦.

The curves in Fig. 5 represent results of the fits, in which Eq. (5) was employed. The
fitting procedure started from Eq. (4) and three parameters Pl have been obtained in five
points of W , which allowed to conduct a fit of the W dependence for each of them. It is
realized by using Eq. (2), and Fig. 6 shows obtained parameters.

The parameters thus obtained are presented in Tables 2 and 3. They are used in Eq. (5)
for rapid evaluation of A(φ, W ) and ARC(φ, W ) at the angle θcm = 37.5◦ and the ∆S
window of 0.020 GeV2. The result is displayed in Fig. 7.
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Fig. 5 Born-term – A, and RC-
smeared – ARC, asymmetries used
for the evaluation of radiative cor-
rections δA as a function of the az-
imuthal angle φ at five values of the
total c.m. energy W – 1.10, 1.15,
1.21 1.25 and 1.30 GeV. In addition,
θcm = 37.5◦ and the ∆S window is
0.020 GeV2. Full and open points
correspond to exact calculations of
the asymmetries A and ARC, respec-
tively. They are approximated by
full and dashed lines.
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m = 0 m = 1 m = 2 m = 3
l = 0 –1.4544 –4.6810 –2.2870 –0.54204
l = 1 5.7668 12.365 6.2068 0.45351
l = 2 2.4694 7.1451 7.6380 –0.64024

Table 3: Parameters Plm that determine ARC(φ, W )

m = 0 m = 1 m = 2 m = 3
l = 0 –1.4544 –4.6810 –2.2870 –0.54204
l = 1 5.7668 12.365 6.2068 0.45351
l = 2 2.4694 7.1451 7.6380 –0.64024

Table 4: Parameters Plm that determine ARC(φ, W )

Dependence of the additive correction defined as A−ARC on φ and W is shown in Fig. 8
for the same conditions as in Fig. 7. As it is demonstrated by Fig. 2, the asymmetries
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Figure 6: W dependence of parameters Pl of Eq. (3) evaluated for Born asymmetry at
θcm = 37.5◦. Three curves (from top to bottom) correspond to P1, P2 and P0.

A(φ, θcm) and ARC(φ, θcm) are slow varying functions of θcm, which reach maximum at
the end of the considered kinematic interval – θcm = 37.5◦. This feature justifies an
approximate sampling of asymmetries for any given value of θcm by scaling down the
asymmetry found for θcm = 37.5◦. To this end, one can construct a normalizing function
fN(φ, θcm)

fN(φ, θcm) =
A(φ, θcm)

A(φ, θmax
cm )

, (11)

where A(φ, θcm) is defined by Eq. (7), and A(φ, θmax
cm ) corresponds to the results of the fit

at θcm = 37.5◦. The combination of fN(φ, θcm) with the results given by Eq. (5) provides
a simple and precise tool for evaluating A(φ, W, θcm) in the region around W = 1.2 GeV:

A(φ, W, θcm) = A(φ, W )fN(φ, θcm). (12)
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Figure 7: Single spin Born asymmetry A(φ, W ) (left panel) and the asymmetry ARC(φ, W )
modified by radiative effects (right panel), both evaluated for θcm = 37.5◦.
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Figure 8: Additive correction obtained as A − ARC, which corresponds to the difference
between the plots in the left and right panels of Fig. 7.

Two dimensional plots for ARC(φ, W ) evaluated by employing this approximation are
displayed in Fig. 9.
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For practical applications the window size ∆S was varied in RC calculations between
0.005 and 0.020 GeV2. In some plots (e.g. in Fig. 10), for illustration purposes, the
window size has been increased up to 0.078 GeV2. In the kinematics under study (this
time calculations were done at W = 1.25 GeV), the use of such wide window in the event
selection serves an educative purpose: it allows to keep virtually all events and obtain
the asymmetry, which coincides with the Born one. The considered in Fig. 10 case cor-
responds to rather large phase space of emission of a bremsstrahlung photon. The phase
space rapidly contracts when W approaches the lower boundary of the kinematic region.
Therefore, at W = 1.1 GeV all radiatively distorted events can be found inside rather
small window of 0.005 GeV2. On the contrary, as W approaches 1.3 GeV, application of
the event selection procedure within windows from 0.005 to 0.024 GeV2, which is a typical
size in the data analysis, results in a selection of certain parts of the event samples, which
have the following properties that can be traced in Fig. 4:

(1) Large θcm → Large RC → No dependence on window size
(2) Small θcm → Small RC → Certain dependence on window size

Accordingly, when (∆W )2 approaches its maximum value, the corrections vanish, which is
seen from converging of curves in Fig. 4 to a single point δA = 0, and also from convergence
of measured and Born asymmetries displayed in Fig. 10.

5 Summary

In the kinematics of the considered experiment, the radiative effects that manifest them-
selves in the observed single spin asymmetry are largest at W = 1.3 GeV and at the θcm =
37.5◦. But even there they do not change the Born asymmetry by more than 1.0 – 1.5 %
(in absolute value). A monotonous rise of A(θcm) and ARC(θcm) in the angular interval (0,
37.5◦) allows to employ simple analytical approximation of the asymmetries and radia-
tive corrections by evaluating them in the maximum (θmax

cm = 37.5◦) and scaling down to
any value of θcm inside the considered interval. A number of analytical functions, which
approximate numerical results from EXCLURAD, offer flexible tools for fast applications
of radiative corrections as a function of W , θcm and φ.

The dependence of radiative corrections on the ∆S window, if it is chosen as 0.005 < ∆S <
0.024 GeV2, can be neglected in the whole range of W but from the very different grounds:
(1) at W = 1.1 GeV any ∆S window completely covers the phase space of radiative events,
(2) at W = 1.3 GeV any ∆S window is small compared to the phase space of radiative
events, but falls onto the plateau of the dependence of the radiative corrections on the
∆S window size.
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Figure 9: Single spin asymmetry ARC(φ, W ), which includes radiative effects evaluated
for the values of the polar angle θcm = 2.5◦ (upper left), 13.8◦ (upper right), 30◦ (lower
left) and 37.5◦ (lower right).
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7 Appendix

This section explains how the Fortran functions written for the approximation of the
single spin asymmetries and radiative corrections can be used in practical work.

All asymmetries approximated by the functions correspond to the MAID-2000 parameters
used as the input for EXCLURAD.

The arguments of the functions are in units of “GeV” (for the total c.m. energy W ) and
“degree” (for angles θcm and φ).

1. FBORNA(PHI,W)

Returns asymmetry A(φ, W ) (%) in Born approximation at fixed θcm = 37.5◦.
It has been used in producing left-panel plot of Fig. 7.

2. FRC020(PHI,W)

Returns asymmetry ARC(φ, W ) (%), which includes radiative effects, at fixed θcm

= 37.5◦ and corresponds to the event selection in the missing mass window of 0.02
GeV2.
It has been used in producing right-panel plot of Fig. 7 as well as lower-right plot
in Fig. 9.
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3. VRADCOR(PHI,W)

Returns correction obtained by subtracting asymmetry ARC(φ, W ) from Born asym-
metry A(φ, W ). Uses functions FBORNA(PHI,W) and FRC020(PHI,W).
It has been used in producing the plot in Fig. 8.

4. FASYMT(PHI,TH)

Returns ARC(φ, θ) (%) at fixed W = 1.21 GeV and corresponds to the event selection
in the missing mass window of 0.02 GeV2.
It has been used in producing the plot in Fig. 3.

5. FNORM(PHI,TH)

Returns the ratio of ARC(φ, θcm) and ARC(φ, θmax
cm ) for any given θcm in the W region

around the mean value of the considered experiment – W ≈ 1.2 GeV. It has the same
structure and uses the same set of fit parameters as the function FASYMT(PHI,TH).
It has been used in producing the plots in Fig. 9.
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