On using derivatives and multiple kernel methods for clustering and classifying functional data - Université Clermont Auvergne
Article Dans Une Revue Neurocomputing Année : 2024

On using derivatives and multiple kernel methods for clustering and classifying functional data

Résumé

In this paper, we propose a framework for rich representation of smooth functional data, leveraging a multiview approach that considers functions and their derivatives as complementary sources of information. Additionally, motivated by the non-linear nature of functional data, we advocate for kernel methods as a suitable modeling approach. We extend existing multiple kernel learning techniques for multivariate data to handle functional data. In particular, we introduce a general procedure for linearly combining different kernel functions. We apply this framework to both clustering and classification tasks, extending multiple kernel k-means and multiple kernel SVM methods to Sobolev functions in H q . Our experiments involve both simulated and real-world data, demonstrating the effectiveness of our proposed methods.
Fichier principal
Vignette du fichier
draft-mult_kernel_fdc-revised_2.pdf (4.59 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04851987 , version 1 (20-12-2024)

Licence

Identifiants

  • HAL Id : hal-04851987 , version 1

Citer

Julien Ah-Pine, Anne-Françoise Yao. On using derivatives and multiple kernel methods for clustering and classifying functional data. Neurocomputing, In press. ⟨hal-04851987⟩
0 Consultations
0 Téléchargements

Partager

More