

Late Ediacaran juvenile magmatism in the Variscan Monts-du-Lyonnais metamorphic complex (Massif Central, France)

Simon Couzinié, Oscar Laurent, Pierre Bouilhol, Cyril Chelle-Michou, Anne-Céline Ganzhorn, Véronique Gardien, Jean-François Moyen

▶ To cite this version:

Simon Couzinié, Oscar Laurent, Pierre Bouilhol, Cyril Chelle-Michou, Anne-Céline Ganzhorn, et al.. Late Ediacaran juvenile magmatism in the Variscan Monts-du-Lyonnais metamorphic complex (Massif Central, France). Bulletin de la Société Géologique de France, In press, 10.1051/bsgf/2024023 . hal-04822267

HAL Id: hal-04822267 https://uca.hal.science/hal-04822267v1

Submitted on 6 Dec 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

1	Late Ediacaran juvenile magmatism in the Variscan Monts-du-Lyonnais
2	metamorphic complex (Massif Central, France)
3	Identification d'un magmatisme juvénile fini-édiacarien dans le complexe
4	métamorphique varisque des Monts-du-Lyonnais (Massif Central, France)
5	Simon Couzinié ^{1,2,3*} , Oscar Laurent ⁴ , Pierre Bouilhol ¹ , Cyril Chelle-Michou ⁵ , Anne-
6	Céline Ganzhorn ^{3**} , Véronique Gardien ³ , Jean-François Moyen ⁶
7	¹ Université de Lorraine, CNRS, CRPG, 54000 Nancy, France
8	² Université Jean Monnet, CNRS, LGL-TPE UMR5276, F-42023 Saint-Etienne, France
9	³ LGL-TPE UMR 5276, CNRS, Université Lyon 1, ENS de Lyon, 69622 Villeurbanne, France
10	⁴ CNRS, Géosciences Environnement Toulouse, Observatoire Midi-Pyrénées, 14 avenue Edouard
11	Belin, 31400 Toulouse, France
12	⁵ Institute of Geochemistry and Petrology, ETH Zürich, CH-8092 Zürich, Switzerland
13	⁶ Université Jean-Monnet, Laboratoire Magmas et Volcans, UCA-CNRS-IRD, Aubière, France
14	*Corresponding author. simon.couzinie@univ-lorraine.fr
15	**Present address: Saint-Gobain Recherche, Aubervilliers, France
16	
17	
18	
19	
20	Keywords: Northern Gondwana margin, Cadomian orogeny, Variscan orogeny,
21	French Massif Central, zircon U–Pb–Hf isotopes
22	Mots clés: marge nord-gondwanienne, orogenèse cadomienne, orogenèse varisque,

23 Massif Central français, isotopie U–Pb–Hf sur zircon

24 Abstract

The identification of oceanic sutures is key to understanding the evolution of the 25 Paleozoic Variscan belt and the structure of the West European lithosphere. In the 26 27 French Massif Central, the suture of the 'Mid-Variscan' ocean would be stamped by 28 distinctive lithological formations known as 'Leptynite-Amphibolite Complexes' (LACs). Cambrian–Ordovician 29 These formations comprise various (meta-)igneous 30 associations, commonly interpreted as representing rifted-margin magmatism, and experienced Devonian (385-360 Ma) high-pressure metamorphism. Our study 31 32 provides geochronological and geochemical data on mafic-felsic rocks from the 33 Riverie LAC in the Monts-du-Lyonnais metamorphic complex. In the Riverie LAC, metaluminous, amphibole-bearing felsic gneisses represent former tonalites closely 34 associated with mafic rocks (now amphibolites). LA-ICP-MS zircon U-Pb dating 35 reveals a latest Ediacaran (c. 545 Ma) crystallization age for the melt that yielded the 36 tonalites. Whole-rock geochemistry (notably pronounced Nb negative anomalies) and 37 38 the highly radiogenic zircon Hf isotope compositions, with ϵ Hf_(545Ma) of c. +11 (within 39 the range expected for the Depleted Mantle reservoir), indicate that the parental melt of the tonalites ultimately originated from a mantle source metasomatized by oceanic 40 41 slab-derived fluids. The (meta-)mafic rocks share a similar 'arc' signature and were possibly generated from the same mantle source. The mafic-felsic association of the 42 Riverie LAC is unrelated to the opening and closure of the Mid-Variscan ocean and 43 does not represent its suture. Instead, it can be correlated to a juvenile Ediacaran 44 45 magmatic event identified throughout the Variscan realm, interpreted as reflecting 46 Cadomian arc/back-arc magmatism.

47

48

49 *Résumé*

Localiser les sutures océaniques est essentiel pour comprendre l'évolution de la 50 51 chaîne varisque et la structure de la lithosphère de l'Europe occidentale. Dans le 52 Massif Central français, la suture d'un océan "Médio-varisque" serait marquée par des 53 formations particulières connues sous le nom de "complexes leptyno-amphiboliques" (CLA). Ceux-ci incluent une diversité de roches méta-ignées datées du Cambrien-54 55 Ordovicien et interprétées comme les témoins d'un magmatisme associé au rifting. Ils préservent également des reliques d'un métamorphisme de haute pression au 56 57 Dévonien (385–360 Ma). Notre étude fournit de nouvelles données géochronologiques 58 et géochimiques sur les roches mafigues et felsigues de la « bande de Riverie », un des trois complexes leptyno-amphiboliques des Monts-du-Lyonnais. Les roches 59 felsiques sont des gneiss amphiboliques métalumineux qui correspondent à 60 d'anciennes tonalites intimement associées à des roches mafigues (représentées 61 aujourd'hui par des amphibolites). La datation U-Pb par LA-ICP-MS de grains de 62 63 zircon magmatique a révélé un âge de cristallisation tardi-édiacarien (autour de 545 64 Ma) pour les (meta)tonalites. La géochimie des roches totales (notamment les anomalies négatives en Nb) et les compositions isotopiques en hafnium très 65 66 radiogéniques mesurées sur les grains de zircon (avec des EHf_(545Ma) d'environ +11) indiquent que les magmas parents des tonalites se sont formés par différentiation d'un 67 liquide issu de la fusion d'un manteau métasomatisé par des fluides dérivés d'une 68 lithosphère océanique. Les amphibolites spatialement associées aux (méta)tonalites 69 70 présentent elles-aussi une signature de type "arc" et leurs protolithes ont pu être 71 générées à partir de la même source mantellique. L'association bimodale de la « bande de Riverie » n'est pas liée au rifting ayant conduit à l'ouverture de l'océan 72 73 Médio-varisque et ne peut representer sa suture. Elle doit être corrélée à un

événement magmatique juvénile identifié dans tout le domaine varisque et relié à la
dynamique d'arc/arrière-arc de l'orogenèse cadomienne.

76

77 **1. Introduction**

78 Within the framework of plate tectonics theory, sutures, i.e. zones along which oceanic lithospheres were subducted, are key to deciphering the evolution of orogens (Dewey, 79 1987). Their identification remains challenging in the case of old and deeply eroded 80 81 collisional orogenic systems such as the European Variscan belt, formed through the 82 convergence of Laurussia and Gondwana during the late Paleozoic (Edel et al., 2018; Matte, 1986; Stampfli et al., 2013). Indeed, the diagnostic suture rock associations 83 (high-pressure metamorphic belts and ophiolite sequences) have been largely 84 85 dismantled by early erosion and intensely reworked by collisional processes, leading 86 to conflicting views on the number of suture zones and their associated oceans (see discussions in Franke et al., 2017; Kroner and Romer, 2013)). Paleomagnetic data and 87 88 paleobiogeography (Domeier, 2016; Paris and Robardet, 1990; Van der Voo et al., 89 1980) suggest that the formation of the Variscan belt followed the closure of a single >1000 km-wide Ordovician oceanic domain called the Rheic Ocean. On the other 90 91 hand, petrological evidence coupled with geophysical data collectively indicate the 92 existence of at least three sutures (Fig. 1a, Schulmann et al., 2022). The subduction Devonian "Mid-Variscan" 93 of an Ordovician-early ocean (Galicia/Southern Brittany/Tepla ocean of Matte, 1986) would have initiated in the mid- to late-Devonian 94 period (390–360 Ma). The narrower Saxothuringian ocean would have closed shortly 95 after in the early Carboniferous (360-340 Ma). Lastly, subduction of the Devonian 96 97 Lizard–Rhenohercynian Ocean would have occurred at 340–330 Ma (Zeh and Gerdes, 2010). 98

99 Delineating the suture zones along the belt is of marked importance to unravel the 100 architecture of the European continental crust and the evolution of the Variscan 101 orogeny. However, accurately correlating their locations and geometries in the eastern 102 French Massif Central (eFMC, Fig. 1a) has proven challenging due to a lack of 103 comprehensive seismic survey and the absence of ophiolite sequences (Schulmann 104 et al., 2022). In the eFMC, it is commonly inferred (Lardeaux et al., 2014; Matte, 1986; 105 Pin, 1990; Vanderhaeghe et al., 2020) that the Mid-Variscan suture is stamped by 106 distinctive heterogeneous lithological formations referred to as "Leptynite-Amphibolite 107 Complexes" (LACs, see review in Santallier et al., 1988). The latter encompass mafic 108 meta-igneous rocks occurring as metric to kilometric boudins embedded in 109 paragneisses and/or are intimately associated with metarhyolites/metagranites of 110 crustal derivation (Briand et al., 1995, 1991; Chelle-Michou et al., 2017; Pin and Marini, 111 1993). The metabasites often bear relics of Devonian (385–360 Ma) high-pressure 112 metamorphism defining a P-T gradient consistent with subduction (Lardeaux, 2023). 113 Ultramafic bodies representing subducted mantle material are also present (Gardien 114 et al., 1990). Early geochronological studies suggested that both mafic and felsic igneous protoliths were emplaced contemporaneously during the Cambrian-115 116 Ordovician period (Pin and Lancelot, 1982). This has led many authors to interpret the 117 wide variety of geochemical signatures displayed by mafic rocks, ranging from MORB-118 type tholeiites to back-arc basalts and OIB (Briand et al., 1995, 1991; Downes et al., 1989; Giraud et al., 1984; Piboule and Briand, 1985; Pin and Marini, 1993) as reflecting 119 120 an emplacement in an attenuated continental lithosphere at the incipient stages of 121 oceanization (Lardeaux et al., 2014 and references therein). In this context, the LACs 122 were proposed to represent fragments of the passive margin to ocean-continent 123 transition zone of the Mid-Variscan ocean, which were subsequently buried through

oceanic subduction and later exhumed as tectonic mélanges along major thrust zones
in the orogenic wedge (Burg and Matte, 1978; Lardeaux et al., 2014, 2001), or possibly
extruded through the upper plate (de Hoÿm de Marien et al., 2023; Keppie et al., 2010;
Maierová et al., 2021).

128 Following the recognition of the main nappe architecture in the eFMC during the mid-1980s, the various LACs were grouped into a single litho-tectonic unit referred to as 129 130 "the LAC" (singular) and were assumed to share the same geodynamic significance 131 (Bouchez and Jover, 1986; Lardeaux et al., 2014; Matte, 1986; Vanderhaeghe et al., 132 2020). This broad correlation was questioned by Santallier et al. (1988), who pointed 133 out the lack of age data on the protoliths and the uncertainty on the respective 134 petrogenesis of individual LACs. This concern is echoed in the adjacent Maures 135 Massif, where three LACs were initially identified, yet only two are currently regarded as delineating a suture zone (Bellot et al., 2010; Briand et al., 2002; Jouffray et al., 136 137 2023; Schneider et al., 2014). Therefore, a reexamination of individual (ultra)mafic-138 felsic rock associations across the eFMC appears necessary to ascertain whether 139 each LAC record the same geodynamic events and collectively represent a single litho-140 tectonic unit. In this context, the increasing versatility of in-situ laser ablation-141 inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating 142 offers new opportunities to unravel the protolith ages of the LAC rocks and clarify their 143 origin (Chelle-Michou et al., 2017; de Hoÿm de Marien et al., 2023; Lotout et al., 2020; 144 Paquette et al., 2017).

This contribution focuses on the Riverie LAC from the Monts-du-Lyonnais metamorphic complex in the eFMC. Novel petrological and geochronological data demonstrate that this mafic–felsic association consists of juvenile arc/back-arc-derived magmatic rocks of late Ediacaran age which are unrelated to the opening and closure

of the Mid-Variscan ocean. These findings highlight the necessity for a reevaluation of
the tectonic history of individual LACs within the eFMC.

151

152 **2. Geological setting**

153 2.1 The eastern French Massif Central

154 The eFMC is part of the internal zone of the Variscan belt (Fig. 1), primarily composed of metamorphic nappes intruded by various Carboniferous granitoids (see review in 155 156 Faure et al., 2009). In the northern part of the eFMC, metamorphic rocks are overlain 157 by Visean sediments and volcanics indicating that the main orogenic phase occurred before 345 Ma. In contrast, compression persisted till the Namurian (corresponding to 158 159 the Serpukhovian and Bashkirian pro parte, c. 325 Ma) in the foreland basin to the 160 south. Upper Carboniferous (Stephanian, i.e. Kasimovian-Gzhelian pro parte) to 161 Permian sediments were unconformably deposited over the metamorphic-plutonic 162 basement in a late to post-orogenic setting. The nappe pile consists of the high-grade "Upper Gneiss Unit" overlying a crustal package of parautochtonous terrains, 163 sometimes divided into the Lower Gneiss Unit and the (lower-grade) Parautochtonous 164 165 Unit (Ledru et al., 1989). Southwards-directed thrusting of the Upper Gneiss Unit was 166 coeval to the development of an inverted Barrovian metamorphic sequence (Burg et 167 al., 1984) at 360-345 Ma (Chelle-Michou et al., 2017; Costa, 1989). The LACs are 168 commonly located at the base of the Upper Gneiss Unit and mark the contact between this unit and the underlying parautochtonous terrains. Within most LACs, mafic meta-169 170 igneous rocks preserve a record of high-pressure subduction-related metamorphism 171 with pressures exceeding 15 kbar at 385–360 Ma (de Hoÿm de Marien et al., 2023; 172 Joanny et al., 1991; Lardeaux et al., 2001; Lotout et al., 2020, 2018). The

173 parautochtonous terrains were locally affected by a low-pressure high-temperature 174 Buchan-type metamorphic event coeval with crust extension and the formation of the Velay and Montagne Noire gneiss domes (Gardien et al., 2022, 1997; Ledru et al., 175 176 2001). The latter hosts mafic eclogites whose origin is disputed: they could either correspond to Upper Gneiss Unit material (and thus be subduction-related, Pitra et al., 177 178 2022) or lower crustal rocks exhumed during doming (Whitney et al., 2020). Lastly, the 179 Brévenne unit is a bimodal volcanic sequence of late Devonian age metamorphosed under greenschist- to lower amphibolite-facies conditions and juxtaposed to the Upper 180 181 Gneiss Unit during the main collisional phase (Feybesse et al., 1995).

182 The protoliths of the Upper Gneiss Unit and parautochtonous terrains consist of 183 Ediacaran to Ordovician detrital (volcano-)sedimentary units, intruded by several generations of plutonic rocks (Couzinié et al., 2022, 2019). No rock older than 184 185 Neoproterozoic has been described so far. Pre-Variscan magmatic rocks include: (i) latest Ediacaran (c. 545 Ma) and Cambro-Ordovician granites and rhyodacites of 186 187 crustal origin, found throughout the nappe pile regardless the metamorphic grade (Chelle-Michou et al., 2017; Couzinié et al., 2022, 2017; Couzinié and Laurent, 2021); 188 189 (ii) mafic (gabbroic and basaltic) rocks, mainly in the LACs of the Upper Gneiss Unit 190 but also in the parautochtonous terrains as lava flows, pyroclastic deposits, and 191 subvolcanic sills (Briand et al., 1995, 1992). Mafic rocks exhibit a large range of geochemical signatures ranging from tholeiitic to alkaline and calc-alkaline (Briand et 192 193 al., 1992; Pouclet et al., 2017). The crust-derived magmas attest to the reworking of 194 Ediacaran sediments (Couzinié et al., 2022, 2017), while mafic magmas would 195 originate from the lithospheric and asthenospheric mantle, with the subordinate involvement of a garnet-bearing source (Pin and Marini, 1993; Pouclet et al., 2017). 196 197 The latest Ediacaran crustal melting was possibly a distal manifestation of the

Cadomian orogenic events (Couzinié et al., 2017), while Cambro-Ordovician crustmantle magmatism should be tied to protracted lithosphere extension that prevailed at that time along the northern Gondwana margin (Chelle-Michou et al., 2017; Couzinié et al., 2022; Pin, 1990; Pin and Marini, 1993).

202 2.2 The Monts-du-Lyonnais metamorphic complex

203 The Monts-du-Lyonnais metamorphic complex (Fig. 2) belongs to the Upper Gneiss 204 Unit. Its litho-tectonic pile consists of a set of amphibolite-(granulite-)facies 205 metamorphic rocks including from bottom to top (Feybesse et al., 1995): (i) a lower 206 metasedimentary unit corresponding to cordierite-bearing migmatites and garnet-207 sillimanite-biotite paragneisses in the northwestern and southeastern part of the 208 complex, respectively, (ii) three (ultra)mafic-felsic rock associations cartographically 209 corresponding to "belts" and assimilated to LACs by Chantraine et al. (2003); (iii) mildly 210 peraluminous, locally anatectic orthogneisses; (iv) an upper metasedimentary unit, 211 also migmatitic, with relics of high-pressure granulite-facies metamorphism. The first, 212 southernmost (ultra)mafic-felsic belt includes 100-3000 m-long amphibolite boudins 213 corresponding to retrogressed eclogites stretched within a paragneiss matrix and 214 associated with garnet-bearing mantle peridotites (Blanc, 1981; Gardien et al., 1990). 215 The second, northernmost Chaussan belt is composed of fine-grained leucogneisses 216 (leptynites) enclosing numerous hecto- to kilometric massifs of meta-igneous mafic 217 and felsic granulites (Dufour, 1985). Finally, the Riverie belt located in-between the 218 previous two features an association of amphibolites and amphibole-bearing gneisses, 219 locally leucocratic (leptynites) (Blanc, 1981).

Metasediments experienced peak metamorphic conditions of 750–800°C at 7–9 kbar coeval to the development of the regional foliation S₁₋₂ (Feybesse et al., 1995; Gardien et al., 1990). Anatexis initiated at that stage and persisted during exhumation down to

223 c. 4 kbar. The age of this anatexis is poorly constrained, as the only published data 224 consist of a whole-rock Rb-Sr isochron date of 384 ± 16 Ma, interpreted as the age of partial melting (Duthou et al., 1994). Relictual kyanite in metasediments suggests an 225 226 early high-pressure evolution at P>10 kbar (Feybesse et al., 1995). Rocks from the LACs record different metamorphic conditions. Eclogites from the southern belt 227 228 experienced peak conditions of P>15 kbar and 750–850°C (Dufour et al., 1985; Joanny 229 et al., 1991). One coesite grain retrieved from an eclogite sample would even suggest P>28 kbar (Lardeaux et al., 2001). Meta-igneous granulites from the Chaussan belt 230 record P of 8–10 kbar and T in the range 800–870°C (Dufour, 1985). Metamorphic 231 232 conditions for the Riverie belt have not been estimated but Feybesse et al. (1995) stressed that these rocks lack any evidence of a high-pressure evolution. 233

234 A late event of ductile deformation thought to have occurred at around 500°C (Feybesse et al., 1995; Gardien et al., 1990) juxtaposed the Monts-du-Lyonnais 235 236 metamorphic complex to the adjacent lower-grade Brévenne Unit (Fig. 2). The last 237 increment of this tectonic phase was marked by the activation of NE-SW trending 238 strike-slip shear zones and the intrusion of several synkinematic granitoids (Feybesse 239 et al., 1995) at 345–335 Ma (Ar-Ar dating on micas and amphibole, Costa et al., 1993). 240 Notably, the Riverie LAC is bounded by such shear zones to the other constituents of the metamorphic complex. Late brittle deformation reworked the original thrust contact 241 242 between the Monts-du-Lyonnais metamorphic complex and the underlying Pilat unit 243 (representing the parautochtonous terrains).

Little is known about the age of the Monts-du-Lyonnais metamorphic complex protoliths. There are no chronological constraints available on the depositional age of the detrital metasediments. The age of the orthogneiss protolith is estimated to be around 470 Ma (based on zircon Pb evaporation and whole-rock Rb–Sr ages, Dufour,

248 1982; Feybesse et al., 1995), although Duthou et al. (1984) report a significantly older 249 whole-rock Rb-Sr isochron date of 502 ± 7 Ma. An identical date of 497 ± 8 Ma was 250 obtained for felsic granulites and interpreted as the emplacement age of their igneous 251 protolith (Duthou et al., 1981). Mafic meta-igneous rocks display a variety of geochemical types, ranging from N-MORB to LREE-rich tholeiites and even 252 253 transitional rocks with alkaline affinities (Briand et al., 1995). They have never been 254 dated, and a Cambro–Ordovician emplacement age has been postulated by analogy 255 with other bimodal meta-igneous associations from the eFMC, notably in the nearby 256 Vivarais area (Chelle-Michou et al., 2017).

257 In the Riverie belt, felsic rocks described as "amphibole-bearing (felsic) gneisses" and 258 closely associated with amphibolites were first reported by Peterlongo (1958) and later 259 studied by Blanc (1981). The relationships between amphibole-bearing felsic gneisses 260 and amphibolites (the constituent rocks of the belt) are well-exposed in the disused 261 "Les Roches" quarry near Riverie (Fig. 2). Amphibole-bearing felsic gneisses known in 262 other eFMC LACs have been variously regarded as former pyroclastic/epiclastic rocks 263 coeval to the amphibolite protoliths (Pin and Lancelot, 1982), metadiorites (Bodinier et 264 al., 1986) or anatectic magmas formed by partial melting of the amphibolites at 265 Variscan times (Benmammar et al., 2020).

266

267 **3. Analytical methods**

Eight samples of amphibole-bearing felsic gneisses and four samples of amphibolites collected from the pit#2 of the "Les Roches" quarry (GPS coordinates: 45.5964N, 4.5879E) were analyzed for major and trace element compositions by the ALS Global firm (details on the procedures, detection limits and accuracy/reproducibility in

272 Supplementary text, full dataset available as Supplementary Table S1). Recalculation 273 and plotting of the whole-rock geochemical data were performed using the GCDkit 274 plugin for R (Janoušek et al., 2006). Mineral major element compositions were 275 obtained using a Zeiss EVO MA15 Scanning Electron Microscope at the Central Analytical Facility of Stellenbosch University, South Africa. Mineral compositions were 276 277 determined by EDX (Energy Dispersive X-ray) analysis using an Oxford Instruments® 278 X-Max 20 mm2 detector and the Oxford INCA software. Beam conditions were 20 kV 279 accelerating voltage, 1.5 nA probe current, a working distance of 8.5 mm and a specimen beam current of 20 nA. Analyses were quantified using natural mineral 280 281 standards and representative mineral compositions are reported in the Supplementary Table S2. Biotite and amphibole structural formulas (including ferric iron contents) were 282 283 calculated using the spreadsheets of Li et al., (2020a, 2020b). Two samples of 284 amphibole-bearing felsic gneisses (RV-1 and RV-2) were selected for zircon U-Pb-Hf 285 determinations to constrain the emplacement age and isotopic signature of their 286 protoliths. Zircon grains were separated from the crushed rock samples at Saint-287 Etienne University using conventional techniques (sieving, panning, magnetic and heavy liquids separation followed by handpicking). Selected grains were subsequently 288 289 cast into epoxy mounts and polished down to a subequatorial grain section. BSE and 290 CL-imaging were performed at the Central Analytical Facility of Stellenbosch University 291 using a Zeiss MERLIN Scanning Electron Microscope. In situ U–Pb dating and zircon 292 Lu-Hf isotope measurements were carried out by LA-ICP-MS at the J.W. Goethe 293 University, Frankfurt-am-Main (Germany). Plotting and calculation of Concordia dates 294 were performed using IsoplotR (Vermeesch, 2018). Information on the analytical 295 methods is presented in the Supplementary Text. The full datasets (standards and 296 samples) are reported in Supplementary Tables S3 to S6.

297

298

4. Sample petrography and geochemistry

The Riverie belt occurs as a tectonic boudin bounded by dextral shear zones and synkinematic (mylonitic) granites (Fig. 2a). In the largest pit (#2) of the disused Les Roches quarry (Fig. 2b), felsic gneisses exhibiting a vertical foliation and wrapping around 1 to 3 m-wide amphibolite bodies (Fig. 3a,b) constitute the main petrographic type. Amphibolites are particularly abundant in the SE part of the pit. Both mafic and felsic rocks are cut across by a network of decimeter-scale discordant or concordant granitic and pegmatitic veins.

306 The felsic gneisses are primarily composed of plagioclase, guartz, green amphibole 307 with low amounts of brown biotite either in the matrix or rimming amphibole (Fig. 308 3c,d,e). The foliation is underlined by alternating layers with varying proportions of 309 mafic minerals (Fig. 3c). The felsic rocks show a high-temperature texture with 310 interlobate grain contacts and preservation of high-energy surfaces (Fig. 3d), with 311 amphibole often being interstitial. Inclusions of plagioclase in amphibole and vice versa 312 are locally observed (Fig. 3e). Amphibole is a magnesio-ferri-hornblende with mg# of 0.63 and Fe^{3+}/Fe^{tot} ratios in the range 0.29–0.37, slightly higher than the value (0.27) 313 314 estimated through wet chemistry by Blanc (1981). Biotite is also magnesian, with mg# 315 of 0.65–0.72, and TiO₂-rich (>3 wt.%). Plagioclase is chemically unzoned and has an 316 oligoclase composition (An₂₄₋₂₆). Accessory minerals are magnetite, apatite, zircon, 317 and sulphides (Fig. 3c,d,e). The edenite-richterite thermometer of Holland and Blundy (1994) and the barometer of Molina et al. (2015) for paired plagioclase-amphibole 318 319 compositions yielded equilibration temperatures of c. 700 °C for upper to mid-crustal 320 pressures of 2-4 kbar.

The amphibole-bearing felsic gneisses do not deviate from the igneous trend in the 321 FMW plot of Ohta and Arai (2007) which points to an igneous and not 322 323 volcanosedimentary origin for their protoliths (Fig. 4a). They show SiO₂ contents 324 ranging from 61 to 69 wt.%, reflecting the varying mineral modes at the scale of the guarry (50 m). They are metaluminous to subaluminous with A/CNK (molar Al₂O₃/[CaO 325 326 + Na₂O + K₂O]) below 1.05, and markedly poor in K₂O (\leq 1 wt.% and mostly below 0.7 327 wt.%, Table S1). Accordingly, they plot in the field of tonalites in the P–Q diagram of Debon and Le Fort (1983) (Fig. 4b). All samples show similar immobile, incompatible 328 trace elements patterns characterized by overall low concentrations. The amphibole-329 330 bearing felsic gneisses are depleted in HREE (by a factor 0.3 to 0.6) and slightly 331 enriched in LREE–Zr (by a factor 2 to 3) and Th (10 times) with respect to N-MORBs 332 (Fig. 4c). Of importance are the pronounced Nb and Ti negative anomalies (with 333 Nb/Nb*: 0.2–0.3; Ti/Ti*: 0.3–0.6), along with a weakly positive Zr anomaly (Zr/Zr*: 1.2– 334 2.1). Th/Nb ratios are high, clustering around 0.6–0.7 (Fig. 4e). The concentrations of 335 LILE such as Ba (100–400 ppm), Sr (200–300 ppm) and Rb (8–20 ppm) are lower than 336 those of the Bulk Continental Crust (Rudnick and Gao, 2003). Chondrite-normalized REE patterns (Boynton, 1984) are moderately fractionated ($La_N/Yb_N = 2.9-7.1$) and 337 338 show a slight depletion in mid-HREE (Dy to Tm, Fig. 4d). A weak Eu negative anomaly 339 is observed (Eu/Eu* = 0.71–0.95). Vanadium contents are low (78–151 ppm) with V/Ti ratios close to 20 (Fig. 4f). Most trace element compositions (except Zr) show a rough 340 decrease with the SiO₂ content. 341

The mafic rocks have a nematoblastic texture and are dominantly composed of an equigranular assemblage of euhedral to subhedral amphibole and plagioclase (Fig. 4f) with apatite and titanite as the main accessory minerals. These amphibolites show mildly alkaline basic compositions (SiO₂: 46.6–51.9 wt.%; Na₂O+K₂O: 4.2–5.1 wt.%,

Fig. 4b). Three samples show primitive compositions (i.e. close to that of primary mantle-derived melts) as indicated by their elevated Mg# (62–63), MgO (7.5–9.0 wt.%) and Cr (270–320 ppm) contents and the lack of Eu anomaly. They are slightly enriched in Th and LREE with respect to N-MORBs, and three samples display a pronounced negative Nb anomaly (with Th/Nb>0.2, Fig. 4c,e). REE patterns are nearly flat (La_N/Yb_N = 1.5-2.0, Fig. 4d). Vanadium contents are moderately elevated (227–362 ppm) with V/Ti ratios between 25 and 40 (Fig. 4f).

Several observations suggest that the igneous protolith of the amphibole-bearing felsic 353 354 gneisses was plutonic and coeval to or younger than that of the amphibolites: (i) the 355 contacts between the two rock types are often intricate, with preserved evidence for 356 intrusive relationships of the former in the latter (see white triangles, Fig. 3a); (ii) pluri-357 centimetric amphibole-rich clusters in the felsic rocks resemble assimilated mafic material (black triangle, Fig. 3a); (iii) the foliation of the gneisses fades in strain 358 359 shadows at the edges of the mafic bodies so that the felsic rock appears isotropic 360 (white triangle, Fig. 3b).

361

362 **5. Zircon data**

363 5.1 Zircon textures

364 Zircon grains extracted from amphibole-bearing felsic gneisses are euhedral to 365 subhedral, ranging in length between 70 and 200 µm, and often show width-to-lengh 366 ratios higher than 1:2 with well-developed pyramidal tips (Fig. 5a). A few grains are 367 stubbier with lower aspect ratios down to 1:1. CL-images reveal concentric oscillatory 368 zoning, locally associated with sector zoning (see for instance zircon 1 of sample RV-369 2, Fig. 5a). The zoning pattern may differ from the inner to outer part of few grains, due

to varying relative growth rate of crystal faces upon crystallization (white triangles on Fig. 5a). However, there is no marked textural break such as a change in CL intensity or clear evidence for resorption. Only very thin (<10 μ m-large) CL-bright overgrowths truncate the zoning pattern of some grains. Local recrystallization is also evidenced (black triangles on Fig. 5a).

375 5.2U–Pb results

376 In gneiss sample RV-1, 40 measurements were performed on 32 grains, all within 377 zones displaying clear oscillatory zoning (Fig. 5a). Seven spots showed moderate common Pb contents (up to 3%) and were markedly discordant. These spots will not 378 379 be discussed further. A total of 16 concordant spots are statistically equivalent, and a 380 Concordia date of 545.9 ± 1.9 Ma (± 6.4 Ma after propagation of systematic uncertainties) can be calculated from them (MSWD of concordance and equivalence 381 = 1.6). Besides, 6 analyses yielded similar ²⁰⁶Pb/²³⁸U dates but were discordant, 382 383 presumably owing to small amounts of common Pb. Eleven analyses showed younger, slightly discordant to concordant ²⁰⁶Pb/²³⁸U dates ranging between 536 ± 10 and 509 384 385 ±9 Ma.

In gneiss sample RV–2, 33 analyses were performed on 25 grains. A Concordia date 386 387 of 543.9 ± 1.5 Ma (± 6.3 after propagation of systematic uncertainties) can be calculated from 19 statistically equivalent concordant analyses (with a MSWD of 388 389 concordance and equivalence equal to 1.4, Fig. 5b). Spot a58 yielded an identical yet discordant ²⁰⁶Pb/²³⁸U date owing to the presence of common Pb. Nine measurements 390 devoid of common Pb yielded concordant to moderately discordant ²⁰⁶Pb/²³⁸U dates 391 392 ranging from 536 \pm 6 down to 520 \pm 6 Ma. Two analyses (a50 and a60) characterized by minor common Pb contents (0.3–0.8%) showed discordant and younger ²⁰⁶Pb/²³⁸U 393 dates of 484 ± 5 and 438 ± 7 Ma respectively. Two measurements performed on a 394

single zircon grain yielded a concordant ${}^{206}Pb/{}^{238}U$ date of 361 ± 4 Ma and a discordant ${}^{206}Pb/{}^{238}U$ date of 354 ± 4 Ma (estimated common Pb content: 0.4%). Both also featured markedly lower Th/U ratios (0.02 and 0.04, respectively) than grains yielding ${}^{206}Pb/{}^{238}U$ dates of c. 545 Ma (always >0.15).

399 5.3 Lu–Hf isotopes

400 Twenty-eight measurements were performed on grain domains analogous to those 401 that previously yielded concordant ²⁰⁶Pb/²³⁸U dates (at ca. 545 Ma) and three on 402 undated grains texturally identical to the main zircon population. Initial Hf isotope 403 compositions were calculated using the intrusion age determined for each sample. The ¹⁷⁶Hf/¹⁷⁷Hf(t) ratios of RV-1 zircons were all identical within uncertainty, ranging from 404 405 0.282709 ± 42 to 0.282752 ± 35 (at 2s), corresponding to ϵ Hf(t) of +9.5 to +11.0 with 406 an average value of +10.5 ± 0.9 (2 S.D. – standard deviation; n = 14; Fig. 6). Zircons 407 from sample RV-2 showed a similar range of 176 Hf/ 177 Hf(t) ratios, from 0.282717 ± 33 408 to 0.282787 ± 44 (2 S.E.) corresponding to ε Hf (t) of +9.7 to +12.2 and yielding an 409 identical average ε Hf (t) at 10.6 ± 1.2 (2 S.D.; n = 18).

410

411 6. Discussion

412 6.1 Interpretation of U–Pb data

Field relationships, petrographic, and geochemical data indicate that the amphibolebearing felsic gneisses represent former tonalites (see section 4). Zircon grains show euhedral shapes and oscillatory zoning, as typically observed in zircon grown from melts (Corfu et al., 2003). Hence, the Concordia dates of 545.9 ± 1.9 (6.4) and 543.9 ± 1.5 (6.3) Ma are interpreted as late Ediacaran crystallization ages of the (meta)tonalites RV-1 and RV-2, respectively. The other, discordant, zircon U-Pb data

for both samples can be explained by a combination of initial Pb incorporation and/or
Pb loss from zircons that originally belonged to the dominant population of concordant,
c. 545 Ma-old grains. This interpretation is consistent with the fact that all zircons show
identical ¹⁷⁶Hf/¹⁷⁷Hf ratios within uncertainties regardless the apparent ²⁰⁶Pb/²³⁸U date,
as disturbance of the U–Pb system does not affect Hf isotopes (Gerdes and Zeh,
2009).

425 Analyses a65 and a66 were both performed close to the rims of the same zircon grain and showed younger ²³⁸U/²⁰⁶Pb dates of c. 360 Ma, concordant for a65. CL images do 426 427 not provide clear evidence for the existence of textural discontinuities associated with 428 new zircon growth or extensive zircon recrystallization. Yet, both analyses show very 429 low Th/U ratios, different from the main c. 545 Ma population. This suggests that upon 430 laser ablation both analyses may have (partly or wholly) sampled narrow CL-bright 431 overgrowths or recrystallized domains visible on a few grains (Fig. 5a). Therefore, it is 432 unclear whether the c. 360 Ma dates correspond to the age of a Variscan metamorphic 433 overprint, which would be in agreement with what is observed in the Upper Gneiss Unit of the eFMC (Chelle-Michou et al., 2017), or represent geologically meaningless, 434 mixed ages. 435

436 6.2 Typology of the mafic–felsic association

At the scale of the quarry outcrop (approximately 50 m), the (meta)tonalites exhibit a range of major element compositions yet very similar mineral assemblages. Since they derive from a plutonic protolith, these characteristics may reflect different proportions between igneous minerals, resulting from variable extents of crystal accumulation versus crystal/melt separation during solidification of a mush at the emplacement site (e.g. Barnes et al., 2016; Cornet et al., 2022; Laurent et al., 2020; Lee and Morton, 2015). By considering a crystallizing low-K dacitic melt with a chemical composition

similar to the average of the (meta)tonalites, the samples can be modeled as a combination of (Fig. 7): (i) residual melts resulting from the separation of 5–20 wt.% plagioclase An_{25} + hornblende ± magnetite from the initial melt (for samples LY25, RV-1, RV-2); (ii) cumulates, corresponding to the initial melt plus 5–25 wt.% accumulated plagioclase An_{25} ± hornblende ± magnetite (for samples LY23, -24, 26, -27, -28). Trace element data are consistent with this interpretation given the relatively gradual decrease in most trace elements with SiO₂ contents.

In general, low-K dacitic melts are known to derive from mantle melting followed by 451 452 fractionation of a primary H₂O-rich basaltic melt or from dehydration melting of 453 amphibolites (Beard, 1995; Stern et al., 1996). Zircon Hf isotope data indicate that the 454 dacitic melt from which the Riverie felsic rocks originated had a composition 455 overlapping with that of the Depleted Mantle (DM) reservoir at c. 545 Ma, ruling out an 456 origin by melting of an old mafic (amphibolitic) crust (Fig. 6). Therefore, we favor the 457 formation of the dacitic melt through crystal fractionation from a primary mantle-derived 458 melt, consistent with its weak depletion in mid-HREE (Dy to Tm) and the Eu negative 459 anomaly, which are indicative of amphibole and plagioclase fractionation (Bédard, 460 2006; Nandedkar et al., 2016). The pronounced Nb-Ti negative anomaly (Fig. 4c) and 461 the radiogenic Hf isotope composition (EHf(545Ma) of c. +11) of the low-K dacitic melt collectively indicate that its depleted mantle source had been metasomatized by fluids 462 derived from an oceanic slab (Fig. 4e; Pearce and Peate, 1995). The presence of 463 464 magnetite, the elevated amphibole Fe³⁺/Fe_{tot} as well as the low bulk-rock V/Ti ratios 465 displayed by the (meta)tonalites are consistent with a parental melt having formed 466 under relatively oxidizing conditions (Fig. 4f), which aligns with a metasomatized 467 mantle source.

The country-rocks of the tonalitic intrusion corresponded to gabbros or basalts (now amphibolites). Those have near-primary mantle melt compositions which entails that their negative Nb anomalies can be regarded as pristine and not related to crustal contamination (Fig. 4e). Therefore, the igneous protolith of the amphibolites originated from a mantle having incorporated a slab-derived component, as for the parental melt of the (meta)tonalites, meaning that both mafic and felsic rocks were possibly generated from the same metasomatized mantle source.

475 476

6.3 Geodynamic setting of the Riverie magmatism

As demonstrated in the previous section, the felsic rocks from the Riverie belt can be 477 478 traced back to a mantle metasomatized by slab-derived fluids shortly prior to melting, 479 namely in the Ediacaran period. At that time, the terrains currently exposed in the 480 eFMC were situated along the northern Gondwana margin, which was significantly 481 influenced by the Avalonian–Cadomian accretionary orogeny (Andonaegui et al., 2016; 482 Collett et al., 2020; Garfunkel, 2015; Linnemann et al., 2014, 2008; Soejono et al., 483 2017). Therefore, it is likely that the Riverie magmatism tapped into a mantle imprinted 484 by Cadomian subduction. In fact, the Riverie rocks share isotopic similarities with the 485 late Cryogenian-early Ediacaran juvenile arc rocks of the Cadomian type-area in 486 northern France (Samson et al., 2003; Fig. 6).

According to full-plate tectonic models, the southwards subduction of the lapetus/Mirovoi oceans was still ongoing at the late Ediacaran/early Cambrian transition (Fig. 8a, Merdith et al., 2021). Consistently, evidence for the existence of 0.55 Ga juvenile arcs along the northern Gondwana margin is provided by the detrital zircon record of the parautochtonous terrains in the eFMC (Couzinié et al., 2019), the Corsica basement (Avigad et al., 2018), the Upper Allochton of the Iberian Massif

493 (Albert et al., 2015), and the Polish Góry Sowie Massif (Tabaud et al., 2021). 494 Additionally, in the Ossa-Morena Zone of the Iberian Massif, juvenile arc-derived 495 magmatism is represented by andesites–dacites interbedded within the late 496 Ediacaran/early Cambrian Malcocinado/San Jerónimo formations and diorites– 497 tonalites from the c. 555 Ma-old Mérida–Montoro igneous complex (Bandres et al., 498 2002; Pin et al., 2002). Both suites exhibit positive ε Nd(t) values along with trace 499 element characteristics that resemble the Riverie (meta)tonalites.

500 In the Maures massif, the Bormes orthogneiss was recently regarded as a remnant of 501 an Ediacaran (590–556 Ma) arc by Tabaud et al. (2023). However, the presence in 502 their samples of 505–460 Ma-old zircon rims together with the major and trace element 503 signature of the peraluminous high-K host rocks rather suggest that they represent 504 Cambrian–Ordovician crust-derived granitoids related to the rifting event that led to the opening of the Variscan oceans (e.g. Couzinié et al., 2022). Arc magmatism in the 505 506 Maures massif is more likely represented by the Arcs-Gassin *leptynites*, which have 507 ϵ Nd(t) values ranging from +1 to +2 and yielded a protolith emplacement age of 548 508 +15/-7 Ma (U–Pb on zircon; Innocent et al., 2003). As this age was obtained by isotope-509 dilution thermal ionization mass spectrometry on multi-grain fractions, it deserves to 510 be confirmed using in situ techniques (Paquette et al., 2017).

511 The Riverie rocks represent modest volumes and their V/Ti systematics suggest a 512 distal position with respect to the Cadomian arc (Fig. 4f). Therefore, we infer that this 513 juvenile magmatism would have occurred within the back-arc domain of the Cadomian 514 orogen and resulted from the convective thinning of the lithospheric mantle (Fig. 8b).

515 6.4 Implications for the architecture of the eFMC

516

517 The Riverie mafic-felsic association represents the first unambiguous record of late 518 Ediacaran magmatism in the Upper Gneiss Unit of the eFMC and is distinctly different 519 from coeval magmatic rocks in the parautochtonous terrains (Fig. 4). In the latter, the 520 c. 550–530 Ma period is marked by voluminous peraluminous felsic magmatism, which 521 corresponds today to the Velay Orthogneiss Formation (Couzinié et al., 2017), the 522 Montredon-Labessonié orthogneiss (Couzinié and Laurent, 2021), the Plaisance-523 Cammazes orthogneiss (Guérangé-Lozes et al., 2013) and the Rivernous and Sériès 524 dacites-rhyolites in the Montagne Noire area (Lescuyer and Cocherie, 1992; Padel et al., 2017). Collectively, the geochemical (major/trace element and isotopic) signatures 525 526 (Fig. 4) and zircon inheritance patterns exhibited by these rocks indicate significant crust reworking through the melting of Neoproterozoic sedimentary sequences (Chelle-527 528 Michou et al., 2017; Couzinié et al., 2017). The absence of evidence for late Ediacaran 529 compressional deformation (Álvaro et al., 2014) suggests that this crustal melting event 530 took place in an extensional environment, presumably in the back-arc of the Cadomian 531 orogen (Couzinié and Laurent, 2021). The very contrasted typology of late Ediacaran 532 magmatism between the Upper Gneiss Unit and the parautochtonous terrains 533 indicates that they represent two distinct crust segments which had different 534 paleogeographic positions within the late Ediacaran Cadomian back-arc.

The age of magmatism observed in the Riverie belt is unusual compared to other eFMC LACs. The compilation of LA-ICP-MS zircon U-Pb dates obtained from LACs' meta-igneous rocks (Fig. 9) indicates that magmatism mostly occurred between 492 and 472 Ma i.e., the Furongian–Lower Ordovician epochs (Chelle-Michou et al., 2017; de Hoÿm de Marien et al., 2023; Lotout et al., 2020, 2018; Paquette et al., 2017; Whitney et al., 2020). However, the rocks from the Riverie belt are at least 50 million years older, dating back to the late Ediacaran period. Furthermore, the meta-igneous

542 felsic rocks of the LACs are generally potassic and display time-integrated 543 unradiogenic Nd-Hf isotope compositions ($\epsilon Nd_{(t)} < -3$; $\epsilon Hf_{(t)} < -1$), which is interpreted as reflecting an origin through melting of the local continental crust (Chelle-Michou et 544 545 al., 2017; Pin and Marini, 1993). In contrast, the felsic rocks in the Riverie belt are sodic, have radiogenic Hf isotope compositions, and ultimately originated from a 546 547 juvenile source. The pressure and temperature of mineral equilibration estimated for 548 the Riverie felsic rocks are close to the tonalite solidus (Schmidt and Thompson, 1996) at relatively low pressures (2–4 kbar), possibly reflecting the crystallization conditions 549 of the parental low-K dacitic melt. These rocks do not record evidence for a high-550 551 pressure metamorphic evolution, and no eclogite has ever been recovered from the Riverie belt (Blanc, 1981; Feybesse et al., 1995). Collectively, petrographic, 552 553 geochemical (including isotopic) and geochronological data obtained on the Riverie 554 belt show that the igneous protoliths of this LAC did not form during the rifting of the northern Gondwana margin that resulted in the opening of the Mid-Variscan ocean and 555 556 were presumably not subducted during the Devonian. These results highlight that all 557 LACs from the Monts-du-Lyonnais, and more generally from the eFMC, are not identical in terms of age, petrogenesis and metamorphic evolution, arguing against 558 559 their grouping as a single litho-tectonic unit.

560

561 6 Conclusion

The amphibole-bearing felsic gneisses from the Riverie LAC in the Monts-du-Lyonnais metamorphic complex represent a former tonalitic intrusion of late Ediacaran age (c. 545 Ma). The parental melt underwent variable amounts (5–25 wt.%) of crystal accumulation versus crystal/melt separation at the emplacement site and formed through fractionation of a mafic melt that originated from a mantle source

567 metasomatized by slab-derived fluids. The (meta)tonalites are intimately associated 568 with mafic (meta-)igneous rocks, which were likely derived from the same source. The Riverie mafic-felsic association is unrelated to the Furongian (late Cambrian)-Lower 569 570 Ordovician rifting that resulted in the opening of the Mid-Variscan ocean and instead represents a newly identified remnant of Cadomian arc/back-arc magmatism along the 571 572 northern Gondwana margin. Overall, our results challenge the assumption that all 573 mafic-felsic associations (LACs) from the high-grade domains of the eFMC can be grouped together as a single litho-tectonic unit ("the" LAC). A detailed reexamination 574 of undated LACs in the eFMC (e.g. the Artense, Sioule, Truyère, Marvejols massifs) 575 576 using modern techniques is essential for clarifying the diversity of these associations and refining their correlations. 577

578

579 Acknowledgements

580 C. Guilbaud made the thin sections. G. Stevens and A. Gerdes granted access to the 581 Stellenbosch CAF and Frankfurt LA–ICP–MS laboratory, respectively. A. Laurie, M. R. 582 Franzenburg and L. Marko assisted during the SEM and LA–ICP–MS sessions. O. 583 Vanderhaeghe provided a template for Fig. 1. L.-S. Doucet drew Fig. 9a. H. Bertrand 584 introduced the quarry to SC in 2011. Thorough reviews were provided by F. Roger and 585 an anonymous reviewer. The manuscript was handled by V. Bosse and L. Jolivet. We 586 extend our gratitude to all of them.

587 This work is dedicated to the memory of J.-L. Paquette, our collaborator for a decade, 588 for all his input on topics related to the eFMC, geochronology and granitoids.

589 **Figure captions**

Figure 1. (a) Sketch map depicting the exposed Variscan domains of western Europe and the location of the inferred suture zones, based on Schulmann et al. (2022). SXT: Saxo-Thuringian suture. (b) Geological map of the eastern French Massif Central showing the main nappe architecture. Are also depicted the locations/names of "Leptynite-Amphibolite Complex" occurrences (in black), adapted from Chantraine et al. (2003).

Figure 1. (a) Carte simplifiée montrant les zones où affleurent les terrains varisques et
les sutures supposées. (b) Carte géologique de l'Est du Massif Central français oriental
localisant les zones où affleure les "complexes leptyno-amphiboliques".

599 Figure 2. (a) Simplified geological map of the Monts-du-Lyonnais metamorphic 600 complex, adapted from Feybesse et al. (1995). (b) Aerial photograph of the Riverie 601 disused quarry, illustrating the location of the studied pit.

Figure 2. (a) Carte géologique simplifiée du complexe métamorphique des Monts-duLyonnais. (b) vue aérienne des anciennes carrières de Riverie.

604 Figure 3: Field observations and petrography of the Riverie felsic gneisses and 605 amphibolites. (a) Amphibole-rich clusters embedded within the felsic gneisses (black 606 triangles) recalling assimilated mafic material. Veins of felsic rocks cutting across the 607 amphibolite (white triangles). (b) Felsic gneisses with plagioclase-quartz leucocratic 608 bands rimmed by coarse amphibole underlining the vertical foliation (black triangles) 609 and isotropic zones between the amphibolite boudins (white triangles). (c) Polarized-610 light thin section scan showing the variation in amphibole mode typically observed in 611 the felsic gneisses. (d,e) Polarized-light photomicrographs of felsic gneisses illustrating 612 the main plagioclase-quartz-amphibole assemblage with biotite rimming amphibole.

613 (f) Polarized-light photomicrograph of a mafic rock showing the equigranular614 plagioclase–amphibole assemblage.

615 Figure 3. Observations de terrain et pétrographie des gneiss et amphibolites de 616 Riverie. (a) Amas riches en amphibole dans les gneiss (triangles noirs) pouvant 617 correspondre à du matériel mafique assimilé et veines de roches felsiques dans les amphibolites (triangles blancs). (b) Gneiss felsiques avec des bandes leucocratiques 618 619 de plagioclase-quartz bordées par de l'amphibole soulignant la foliation verticale 620 (triangles noirs) et des zones isotropes entre les boudins d'amphibolite (triangles 621 blancs). (c) Variation de la proportion d'amphibole dans les gneiss.. (d, e) Assemblage 622 des gneiss à plagioclase-quartz-amphibole-biotite. (f) Assemblage équigranulaire 623 plagioclase-amphibole des amphibolites.

624 Figure 4: Whole-rock geochemical data of the Riverie felsic gneisses and amphibolites. 625 (a) FMW diagram of Ohta and Arai (2007) demonstrating the igneous origin of felsic 626 gneisses. The M and F values characterize mafic and felsic rock sources, respectively. 627 The W value quantifies the degree of weathering. The references of data for 628 (presumably) meta-igneous from "Leptynite-Amphibolite Complexes" are available in 629 the Supplementary Text. (b) P–Q classification diagram of Debon and Le Fort (1983). 630 The dotted lines represent the contour encompassing 75% of the data (n=75) for the 631 Velay orthogneiss formation, a coeval (meta)igneous suite from the parautochtonous 632 terrains (Couzinié et al., 2017). (c) Incompatible, immobile element patterns of the 633 Riverie meta-igneous rocks normalized to the composition of NMORBs (Sun and 634 McDonough, 1989). (d) Chondrite-normalized (Boynton, 1984) Rare Earth Elements patterns. (e) Th/Yb vs. Nb/Yb diagram of Pearce (2008). Oceanic rocks plot within the 635 MORB-OIB array. Magmas contaminated by the continental crust during ascent or 636 637 which mantle source incorporated a slab-derived (SZ) component plot in the volcanic

arc array. (f) V–Ti diagram of Shervais (1982). This diagram highlights the effects of
the change in vanadium redox state when the mantle is metasomatized by slab-derived
fluids. Vanadium becomes more incompatible and resulting magmas exhibit high V/Ti
ratios. The magnetite + amphibole fractionation trend is from Shervais (1982). Data for
the Bulk Continental Crust are from Rudnick and Gao (2003).

643 Figure 4. Données géochimiques des roches totales des gneiss et amphibolites de 644 Riverie. (a) Diagramme FMW démontrant l'origine ignée des gneiss. (b) Diagramme 645 de classification P-Q de Debon et Le Fort (1983). (c) Profils d'éléments incompatibles 646 normalisés à la composition des N-MORB. (d) Profils de terres rares normalisés aux chondrites. (e) Diagramme Th/Yb vs. Nb/Yb de Pearce (2008). Les roches océaniques 647 648 se situent dans le domaine MORB-OIB. Les magmas contaminés par la croûte 649 continentale lors de leur mise en place ou dont la source mantellique a incorporé un 650 composant dérivé de la plaque subduite se situent dans le domaine des arcs 651 volcaniques. (f) Diagramme V-Ti de Shervais (1982).

652 Figure 5: Zircon textural and U–Pb–Hf data for the Riverie amphibole gneisses. (a) 653 Representative cathodoluminescence images with the locations of laser spots (white and yellow circles for U-Pb and Lu-Hf analyses respectively) indicated along with the 654 655 spot name (aXX or YYa/b). The corresponding ²⁰⁶Pb/²³⁸U dates are quoted with 2σ 656 uncertainty, in Ma. All displayed analyses are concordant (except those in italic). Hf isotope data are reported using the εHf calculated at the ²⁰⁶Pb/²³⁸U date obtained on 657 658 the same zircon domain, quoted with 2σ uncertainty. The white and black triangles 659 highlight changes in the zoning pattern and local grain recrystallization, respectively. 660 Laser spot sizes are 30 µm for U–Pb and 40 µm for Lu–Hf. (b) Tera-Wasserburg diagrams (²³⁸U/²⁰⁶Pb vs. ²⁰⁷Pb/²⁰⁶Pb). Error ellipses and ages are displayed at 95% 661

662 level of uncertainty. Green ellipses are those considered for Concordia age663 calculations. The reported MSWDs are those of concordance plus equivalence.

Figure 5. Données texturales et U-Pb-Hf des zircons extraits des gneiss de Riverie. (a)
Images en cathodoluminescence montrant la zonation magmatique des grains et la
localisation de quelques points d'analyse. (b) Diagrammes Tera-Wasserburg. Les
ellipses vertes sont celles considérées pour les calculs d'âge Concordia.

668 Figure 6: Measured EHf(t) on magmatic zircon grains, recalculated and plotted using 669 the ²⁰⁶Pb/²³⁸U date. When such value was not available, the crystallization age determined for the sample was used. The range for the Depleted Mantle reservoir is 670 671 bracketed by the models of Naeraa et al. (2012) and Griffin et al. (2002). The 672 background red shading mimics the contours of the distribution of 223 zircon analyses 673 from crust-derived felsic (meta-)igneous rock from the French Massif Central (Chelle-Michou et al., 2017; Couzinié et al., 2017; Moyen et al., 2017). These data are taken 674 675 as representative of the Hf isotopic composition of the local continental crust. Data for 676 the Armorican Massif Cadomian juvenile arc magmatism are from Samson et al. (2003). An εHf(t)-time crust evolution array calculated with an average ¹⁷⁶Lu/¹⁷⁷Hf ratio 677 of 0.015 (Griffin et al., 2002) is also depicted. 678

Figure 6. Valeurs de εHf des grains de zircon recalculées à l'âge de mise en place.
L'arrière-plan rouge représente la composition isotopique en Hf de la croûte
continentale de l'Est du Massif Central.

Figure 7: Results of mass balance calculations performed by least-square regression considering the average composition of felsic gneisses as representative of the intrusive low-K dacitic melt. Samples LY25-, RV-1 and RV-2 are modelled as residual

685 melts, while the remaining samples are considered cumulates. Σr^2 represents the sum 686 of squared residuals.

Figure 7. Résultats des calculs de bilan de masse réalisés par régression des moindres
carrés en considérant la composition moyenne des gneiss comme représentative du
liquide dacitique initial. Les échantillons LY25-, RV-1 et RV-2 sont modélisés comme
des liquides résiduels alors que les autres sont considérés comme des cumulats.

- Figure 8: (a) Paleogeography at 545 Ma based on the full-plate model of Merdith et al. (2021), drawn using Python 3 with opensource packages pyGMT and pyGplates. The yellow star depicts the putative location of the terrains today exposed in Upper Gneiss Unit (UGU) of the eFMC. (b) Geodynamic sketch of the northern Gondwana margin at 545 Ma highlighting the context and mechanism through which the Riverie rocks formed, inspired from Erdős et al. (2022).
- Figure 8. (a) Paléogéographie à 545 Ma basée sur le modèle de plaque de Merdith et
 al. (2021). L'étoile indique l'emplacement supposé des terrains correspondant
 aujourd'hui à l'Unité Supérieure des Gneiss. (b) Schéma géodynamique de la marge
 nord du Gondwana à 545 Ma, soulignant le contexte et le mécanisme par lesquels les
 roches de Riverie se sont formées.
- Figure 9: Available LA–ICP–MS zircon U–Pb data on meta-igneous rocks from the "Leptynite–Amphibolite Complexes" in the eastern French Massif Central (represented as Kernel Density Estimates of concordant ²⁰⁶Pb/²³⁸U dates (calculated with IsoplotR using an adaptative bandwith). Zircon data are from Whitney et al. (2020) for the Montagne Noire, de Hoÿm de Marien et al. (2023) for the Haut-Allier, Paquette et al. (2017) for the Lot, Lotout et al. (2020, 2018) for the Rouergue, Chelle-Michou et al. (2017) for the Vivarais, and this study for the Monts-du-Lyonnais.

- 709 Figure 9. Données U-Pb sur zircons obtenues pour les roches méta-ignées des
- 710 "complexes leptyno-amphiboliques" de l'Est du Massif Central français.

711 References

712 Albert, R., Arenas, R., Gerdes, A., Sánchez Martínez, S., Fernández-Suárez, J., Fuenlabrada, J.M., 2015. 713 Provenance of the Variscan Upper Allochthon (Cabo Ortegal Complex, NW Iberian Massif). 714 Gondwana Research 28, 1434–1448. https://doi.org/10.1016/j.gr.2014.10.016 715 Álvaro, J.J., Bauluz, B., Clausen, S., Devaere, L., Gil Imaz, A., Monceret, É., Vizcaïno, D., 2014. 716 Stratigraphic review of the Cambrian-Lower Ordovician volcanosedimentary complexes from 717 the northern Montagne Noire, France. Stratigraphy 11, 83–96. 718 Andonaegui, P., Arenas, R., Albert, R., Sánchez Martínez, S., Díez Fernández, R., Gerdes, A., 2016. The 719 last stages of the Avalonian–Cadomian arc in NW Iberian Massif: isotopic and igneous record 720 for a long-lived peri-Gondwanan magmatic arc. Tectonophysics, Tectonic evolution of the 721 Iberian margin of Gondwana and of correlative regions: A celebration of the career of Cecilio 722 Quesada 681, 6–14. https://doi.org/10.1016/j.tecto.2016.02.032 723 Avigad, D., Rossi, Ph., Gerdes, A., Abbo, A., 2018. Cadomian metasediments and Ordovician 724 sandstone from Corsica: detrital zircon U-Pb-Hf constrains on their provenance and 725 paleogeography. Int J Earth Sci (Geol Rundsch) 107, 2803–2818. 726 https://doi.org/10.1007/s00531-018-1629-3 727 Bandres, A., Eguíluz, L., Gil Ibarguchi, J.I., Palacios, T., 2002. Geodynamic evolution of a Cadomian arc 728 region: the northern Ossa-Morena zone, Iberian massif. Tectonophysics, Massifs and 729 Correlations Across the Cadomo-Avalonian Orogens 352, 105–120. 730 https://doi.org/10.1016/S0040-1951(02)00191-9 731 Barnes, C.G., Coint, N., Yoshinobu, A., 2016. Crystal accumulation in a tilted arc batholith. American 732 Mineralogist 101, 1719–1734. https://doi.org/10.2138/am-2016-5404 733 Beard, J.S., 1995. Experimental, geological, and geochemical constraints on the origins of low-K silicic 734 magmas in oceanic arcs. Journal of Geophysical Research: Solid Earth 100, 15593–15600. 735 https://doi.org/10.1029/95JB00861 736 Bédard, J.H., 2006. Trace element partitioning in plagioclase feldspar. Geochimica et Cosmochimica 737 Acta 70, 3717-3742. https://doi.org/10.1016/j.gca.2006.05.003 738 Bellot, J.-P., Laverne, C., Bronner, G., 2010. An early Palaeozoic supra-subduction lithosphere in the 739 Variscides: new evidence from the Maures massif. Int J Earth Sci (Geol Rundsch) 99, 473–504. 740 https://doi.org/10.1007/s00531-009-0416-6 741 Benmammar, A., Berger, J., Triantafyllou, A., Duchene, S., Bendaoud, A., Baele, J.-M., Bruguier, O., 742 Diot, H., 2020. Pressure-temperature conditions and significance of Upper Devonian eclogite 743 and amphibolite facies metamorphisms in southern French Massif central. Bulletin de la 744 Société Géologique de France 191, 28. https://doi.org/10.1051/bsgf/2020033 745 Blanc, D., 1981. Les roches basiques et ultrabasiques des Monts du Lyonnais. Etude pétrographique, 746 minéralogique et géochimique (PhD thesis). 747 Bodinier, J.L., Giraud, A., Dupuy, C., Leyreloup, A., Dostal, J., 1986. Caractérisation géochimique des 748 métabasites associées à la suture méridionale hercynienne : Massif Centra français et 749 Chamrousse (Alpes). Bulletin de la Société Géologique de France 8, 115–123. 750 Bouchez, J.L., Jover, O., 1986. Le Massif Central : un chevauchement de type himalayen vers l'Ouest-751 Nord-Ouest. Comptes Rendus de l'Académie des Sciences, Paris 302, 675–680. 752 Boynton, W.V., 1984. Cosmochemistry of the rare earth elements: meteorite studies, in: Henderson, 753 P. (Ed.), Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp. 63–114. 754 Briand, B., Bouchardon, J.-L., Capiez, P., Piboule, M., 2002. Felsic (A-type)-basic (plume-induced) 755 Early Palaeozoic bimodal magmatism in the Maures Massif (southeastern France). Geological 756 Magazine 139. https://doi.org/10.1017/s0016756802006477

- Briand, B., Bouchardon, J.-L., Ouali, H., Piboule, M., Capiez, P., 1995. Geochemistry of bimodal
 amphibolite-felsic gneiss complexes from eastern Massif Central, France. Geological
 Magazine 132, 321–337.
- Briand, B., Bouchardon, J.-L., Santallier, D., Piboule, M., Ouali, H., Capiez, P., 1992. Alkaline affinity of
 the metabasites in the gneissic series surrounding the Velay migmatitic domain. Géologie de
 la France 2, 9–15.
- Briand, B., Piboule, M., Santallier, D., Bouchardon, J.-L., 1991. Geochemistry and tectonic implications
 of two Ordovician bimodal igneous complexes, southern French Massif Central. Journal of
 the Geological Society, London 148, 959–971.
- Burg, J.-P., Leyreloup, A.F., Marchand, J., Matte, P., 1984. Inverted metamorphic zonation and large
 scale thrusting in the Variscan belt: An example in the French Massif central. Journal of the
 Geological Society, London 14, 47–61.
- Burg, J.-P., Matte, P., 1978. A cross section through the French Massif Central and the scope of its
 Variscan geodynamic evolution. Z. dt. geol. Ges. 129, 429–460.
- 771 Chantraine, J., Autran, A., Cavelier, C., Bureau de recherches g??ologiques et mini??res (France),
 772 2003. Carte géologique de la France à l'échelle du millionième, 6ème édition révisée, BRGM.
 773 ed. Orléans.
- Chelle-Michou, C., Laurent, O., Moyen, J.-F., Block, S., Paquette, J.-L., Couzinié, S., Gardien, V.,
 Vanderhaeghe, O., Villaros, A., Zeh, A., 2017. Pre-Cadomian to late-Variscan odyssey of the
 eastern Massif Central, France: Formation of the West European crust in a nutshell.
 Gondwana Research 46, 170–190. https://doi.org/10.1016/j.gr.2017.02.010
- Collett, S., Schulmann, K., Štípská, P., Míková, J., 2020. Chronological and geochemical constraints on
 the pre-variscan tectonic history of the Erzgebirge, Saxothuringian Zone. Gondwana Research
 79, 27–48. https://doi.org/10.1016/j.gr.2019.09.009
- Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P.D., 2003. Atlas of Zircon Textures. Reviews in
 Mineralogy and Geochemistry 53, 469–500.
- Cornet, J., Bachmann, O., Ganne, J., Fiedrich, A., Huber, C., Deering, C.D., Feng, X., 2022. Assessing
 the effect of melt extraction from mushy reservoirs on compositions of granitoids: From a
 global database to a single batholith. Geosphere 18, 985–999.
 https://doi.org/10.1130/GES02333.1
- Costa, S., 1989. Age radiométrique 39Ar-40Ar dating of the Barrovian metamorphism of the Lot
 Valley series associated with the Marvejols nappe emplacement. Comptes Rendus de
 l'Académie des Sciences, Paris 309, 561–567.
- Costa, S., Maluski, H., Lardeaux, J.M., 1993. ⁴⁰Ar-³⁹Ar chronology of Variscan tectono-metamorphic
 events in an exhumed crustal nappe: the Monts du Lyonnais complex (Massif Central,
 France). Chemical Geology 105, 339–359.
- Couzinié, S., Bouilhol, P., Laurent, O., Grocolas, T., Montel, J.-M., 2022. Cambro–Ordovician
 ferrosilicic magmatism along the northern Gondwana margin: constraints from the
 Cézarenque–Joyeuse gneiss complex (French Massif Central). BSGF Earth Sciences Bulletin
 193.
- 797 Couzinié, S., Laurent, O., 2021. Zircon U–Pb dating of the Montredon-Labessonnié orthogneiss by LA–
 798 ICP–MS: new evidence for late Ediacaran crustal melting in the French Massif Central.
 799 Géologie de la France 1, 24–31.
- Couzinié, S., Laurent, O., Chelle-Michou, C., Bouilhol, P., Paquette, J.-L., Gannoun, A.-M., Moyen, J.-F.,
 2019. Detrital zircon U–Pb–Hf systematics of Ediacaran metasediments from the French
 Massif Central: Consequences for the crustal evolution of the north Gondwana margin.
 Precambrian Research 324, 269–284. https://doi.org/10.1016/j.precamres.2019.01.016
- Couzinié, S., Laurent, O., Poujol, M., Mintrone, M., Chelle-Michou, C., Moyen, J.-F., Bouilhol, P.,
 Vezinet, A., Marko, L., 2017. Cadomian S-type granites as basement rocks of the Variscan belt
 (Massif Central, France): Implications for the crustal evolution of the north Gondwana
 margin. Lithos 286–287, 16–34. https://doi.org/10.1016/j.lithos.2017.06.001

- 808 de Hoÿm de Marien, L., Pitra, P., Poujol, M., Cogné, N., Cagnard, F., Le Bayon, B., 2023. Complex 809 geochronological record of an emblematic Variscan eclogite (Haut-Allier, French Massif 810 Central). Journal of Metamorphic Geology 41, 967–995.
- 811 Debon, F., Le Fort, P., 1983. A chemical-mineralogical classification of common plutonic rocks and 812 associations. Transactions of the Royal Society of Edinburgh 73, 135–149.
- 813 Dewey, J.F., 1987. Suture, in: Structural Geology and Tectonics, Encyclopedia of Earth Science. 814 Springer, Berlin, Heidelberg, pp. 775–784. https://doi.org/10.1007/3-540-31080-0_115
- 815 Domeier, M., 2016. A plate tectonic scenario for the lapetus and Rheic oceans. Gondwana Research 816 36, 275–295. https://doi.org/10.1016/j.gr.2015.08.003
- 817 Downes, H., Bodinier, J.L., Dupuy, C., Leyreloup, A.F., Dostal, J., 1989. Isotope and trace-element 818 heterogeneities in high-grade basic metamorphic rocks of Marvejols: Tectonic implications 819 for the Hercynian suture zone of the French Massif Central. Lithos 24, 37–54.
- 820 Dufour, E., 1985. Granulite facies metamorphism and retrogressive evolution of the Monts du 821 Lyonnais metabasites (Massif Central, France). Lithos 18, 97–113.
- 822 Dufour, E., 1982. Pétrologie et géochimie des formations orthométamorphiques acides des Monts du 823 Lyonnais (Massif central, France) (PhD thesis).
- 824 Dufour, E., Lardeaux, J.M., Coffrant, D., 1985. Eclogites et granulites dans les Monts du Lyonnais : une 825 évolution métamorphique plurifaciale éohercynienne. Comptes Rendus de l'Académie des 826 Sciences, Paris 300, 141–144.
- 827 Duthou, J.-L., Cantagrel, J.-M., Didier, J., Vialette, Y., 1984. Palaeozoic granitoids from te French 828 Massif Central: age and origin studied by ^{87\$}Rb–^{87\$}Sr system. Physics of the Earth and 829 Planetary Interiors 35, 131–144.
- 830 Duthou, J.-L., Chenevoy, M., Gay, M., 1994. Rb-Sr middle Devonian age of cordierite bearing 831 migmatites from Lyonnais area (French Massif Central). Comptes Rendus de l'Académie des 832 Sciences, Paris 319, 791–796.
- 833 Duthou, J.-L., Piboule, M., Gay, M., Dufour, E., 1981. Datations radiométriques Rb-Sr sur les 834 orthogranulites des Monts du Lyonnais (Massif Central français). Comptes Rendus de 835 l'Académie des Sciences, Paris 292, 749–752.
- 836 Edel, J.B., Schulmann, K., Lexa, O., Lardeaux, J.M., 2018. Late Palaeozoic palaeomagnetic and tectonic 837 constraints for amalgamation of Pangea supercontinent in the European Variscan belt. Earth-838 Science Reviews 177, 589-612. https://doi.org/10.1016/j.earscirev.2017.12.007
- 839 Erdős, Z., Huismans, R.S., Faccenna, C., 2022. Wide Versus Narrow Back-Arc Rifting: Control of 840 Subduction Velocity and Convective Back-Arc Thinning. Tectonics 41, e2021TC007086. 841 https://doi.org/10.1029/2021TC007086
- 842 Faure, M., Lardeaux, J.-M., Ledru, P., 2009. A review of the pre-Permian geology of the Variscan 843 French Massif Central. Comptes Rendus Geoscience 341, 202–213. 844 https://doi.org/10.1016/j.crte.2008.12.001
- 845 Feybesse, J.-L., Lardeaux, J.M., Tegyey, M., Peterlongo, J.-M., Kerrien, Y., Lemière, B., Maurin, G., 846 Mercier, F., Thiéblemont, D., 1995. Notice explicative, Carte géol. France (1/50 000), feuille 847 Saint-Symphorien-sur-Coise (721). BRGM, Orléans.
- 848 Franke, W., Cocks, L.R.M., Torsvik, T.H., 2017. The Palaeozoic Variscan oceans revisited. Gondwana 849 Research 48, 257–284. https://doi.org/10.1016/j.gr.2017.03.005
- 850 Gardien, V., Lardeaux, J.M., Ledru, P., Allemand, P., Guillot, S., 1997. Metamorphism during late 851 orogenic extension : insights from the French Variscan belt. Bulletin de la Société Géologique 852 de France 168, 271–286.
- 853 Gardien, V., Martelat, J.-E., Leloup, P.-H., Mahéo, G., Bevillard, B., Allemand, P., Monié, P., Paquette, 854 J.-L., Grosjean, A.-S., Faure, M., Chelle-Michou, C., Fellah, C., 2022. Fast exhumation rate 855 during late orogenic extension: The new timing of the Pilat detachment fault (French Massif 856 Central, Variscan belt). Gondwana Research 103, 260–275. 857
 - https://doi.org/10.1016/j.gr.2021.10.007

- Gardien, V., Teygey, M., Lardeaux, J.M., Misseri, M., Dufour, E., 1990. Crust-mantle relationships in
 the French Variscan chain: the example of the Southern Monts du Lyonnais unit (eastern
 French Massif Central). Journal of Metamorphic Geology 8, 477–492.
- 861 Garfunkel, Z., 2015. The relations between Gondwana and the adjacent peripheral Cadomian
 862 domain—constrains on the origin, history, and paleogeography of the peripheral domain.
 863 Gondwana Research 28, 1257–1281. https://doi.org/10.1016/j.gr.2015.05.011
- Gerdes, A., Zeh, A., 2009. Zircon formation versus zircon alteration New insights from combined
 U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of
 Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology 261, 230–243.
 https://doi.org/10.1016/j.chemgeo.2008.03.005
- Giraud, A., Marchand, J., Dupuy, C., Dostal, J., 1984. Geochemistry of leptyno-amphibolite complex
 from Haut Allier (French Massif Central). Lithos 17, 203–214.
- Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X.-S., Zhou, X., 2002. Zircon
 chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan
 igneous complexes. Lithos 61, 237–269.
- 873 Guérangé-Lozes, J., Demange, M., Mouline, M., 2013. Notice explicative, Carte géol. France (1/50
 874 000), feuille Castres (986). BRGM, Orléans.
- Holland, T., Blundy, J., 1994. Non-ideal interactions in calcic amphiboles and their bearing on
 amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology.
- 877 Innocent, C., Michard, A., Guerrot, C., Hamelin, B., 2003. Datation U-Pb sur zircons à 548 Ma de
 878 leptynites des Maures centrales. Signification géodynamique des complexes leptyno879 amphibolitiques de l'Europe varisque. Bulletin de la Société Géologique de France 174, 585–
 880 594.
- Janoušek, V., Farrow, C.M., Erban, V., 2006. Interpretation of Whole-rock Geochemical Data in
 Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology
 47, 1255–1259. https://doi.org/10.1093/petrology/egl013
- Joanny, V., van Roermund, H., Lardeaux, J.M., 1991. The clinopyroxene/plagioclase symplectite in
 retrograde eclogites: A potential geothermobarometer. Geol Rundsch 80, 303–320.
 https://doi.org/10.1007/BF01829368
- Jouffray, F., Lardeaux, J.-M., Tabaud, A.-S., Corsini, M., Schneider, J., 2023. Deciphering the nature
 and age of the protoliths and peak P–T conditions in retrogressed mafic eclogites from the
 Maures-Tannneron Massif (SE France) and implications for the southern European Variscides.
 BSGF Earth Sci. Bull. 194, 10. https://doi.org/10.1051/bsgf/2023006
- Keppie, J.D., Nance, R.D., Murphy, J.B., Dostal, J., Braid, J.A., 2010. The high-pressure Iberian–Czech
 belt in the Variscan orogen: Extrusion into the upper (Gondwanan) plate? Gondwana
 Research 17, 306–316. https://doi.org/10.1016/j.gr.2009.08.007
- 894Kroner, U., Romer, R.L., 2013. Two plates Many subduction zones: The Variscan orogeny895reconsidered. Gondwana Research 24, 298–329. https://doi.org/10.1016/j.gr.2013.03.001
- Lardeaux, J.-M., 2023. Metamorphism and linked deformation in understanding tectonic processes at
 varied scales. Comptes Rendus. Géoscience 356, 1–25. https://doi.org/10.5802/crgeos.204
- Lardeaux, J.M., Ledru, P., Daniel, I., Duchene, S., 2001. The Variscan French Massif Central a new
 addition ot the ultra-high pressure metamorphic "club": exhumation porcesses and
 geodynamic consequences. Tectonophysics 332, 143–167.
- Bohemian Massif revisited: differences and similarities. Geological Society, London, Special
 Publications 405, 7–44. https://doi.org/10.1144/sp405.14
- Laurent, O., Björnsen, J., Wotzlaw, J.-F., Bretscher, S., Pimenta Silva, M., Moyen, J.-F., Ulmer, P.,
 Bachmann, O., 2020. Earth's earliest granitoids are crystal-rich magma reservoirs tapped by
 silicic eruptions. Nat. Geosci. 13, 163–169. https://doi.org/10.1038/s41561-019-0520-6

- Ledru, P., Courrioux, G., Dallain, C., Lardeaux, J.M., Montel, J.M., Vanderhaeghe, O., Vitel, G., 2001.
 The Velay dome (French Massif Central): melt generation and granite emplacement during
 orogenic evolution. Tectonophysics 342, 207–237.
- 911 Ledru, P., Lardeaux, J.M., Santallier, D., Autran, A., Quenardel, J.-M., Floc'h, J.-P., Lerouge, G., Maillet,
 912 N., Marchand, J., Ploquin, A., 1989. Where are the nappes in the French Massif central?
 913 Bulletin de la Société Géologique de France 8, 605–618.
- Lee, C.-T.A., Morton, D.M., 2015. High silica granites: Terminal porosity and crystal settling in shallow
 magma chambers. Earth and Planetary Science Letters 409, 23–31.
 https://doi.org/10.1016/j.epsl.2014.10.040
- 917 Lescuyer, J.-L., Cocherie, A., 1992. Single-zircon dating of the Sériès meta-dacites: evidence for a Late
 918 Proterozoic age of the "X Schists" from Montagne Noire (Southern French Massif Central).
 919 Comptes Rendus de l'Académie des Sciences, Paris 314, 1071–1077.
- Li, X., Zhang, C., Behrens, H., Holtz, F., 2020a. Calculating amphibole formula from electron
 microprobe analysis data using a machine learning method based on principal components
 regression. Lithos 362–363, 105469. https://doi.org/10.1016/j.lithos.2020.105469
- Li, X., Zhang, C., Behrens, H., Holtz, F., 2020b. Calculating biotite formula from electron microprobe
 analysis data using a machine learning method based on principal components regression.
 Lithos 356–357, 105371. https://doi.org/10.1016/j.lithos.2020.105371
- Linnemann, U., Gerdes, A., Hofmann, M., Marko, L., 2014. The Cadomian Orogen: Neoproterozoic to
 Early Cambrian crustal growth and orogenic zoning along the periphery of the West African
 Craton—Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform,
 Germany). Precambrian Research 244, 236–278.
- 930 https://doi.org/10.1016/j.precamres.2013.08.007
- Linnemann, U., Pereira, F., Jeffries, T.E., Drost, K., Gerdes, A., 2008. The Cadomian Orogeny and the
 opening of the Rheic Ocean: The diacrony of geotectonic processes constrained by LA-ICP-MS
 U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian
 Massifs). Tectonophysics 461, 21–43. https://doi.org/10.1016/j.tecto.2008.05.002
- Lotout, C., Pitra, P., Poujol, M., Anczkiewicz, R., Van Den Driessche, J., 2018. Timing and duration of
 Variscan high-pressure metamorphism in the French Massif Central: A multimethod
 geochronological study from the Najac Massif. Lithos 308–309, 381–394.
 https://doi.org/10.1016/j.lithos.2018.03.022
- Lotout, C., Poujol, M., Pitra, P., Anczkiewicz, R., Van Den Driessche, J., 2020. From Burial to
 Exhumation: Emplacement and Metamorphism of Mafic Eclogitic Terranes Constrained
 Through Multimethod Petrochronology, Case Study from the Lévézou Massif (French Massif
 Central, Variscan Belt). J Petrology 61. https://doi.org/10.1093/petrology/egaa046
- 943 Maierová, P., Štípská, P., Gerya, T., Lexa, O., 2021. Trans-lithospheric diapirism explains the presence
 944 of ultra-high pressure rocks in the European Variscides. Communications Earth &
 945 Environment 2. https://doi.org/10.1038/s43247-021-00122-w
- Matte, P., 1986. Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics
 126, 329–374.
- 948 Merdith, A.S., Williams, S.E., Collins, A.S., Tetley, M.G., Mulder, J.A., Blades, M.L., Young, A.,
 949 Armistead, S.E., Cannon, J., Zahirovic, S., Müller, R.D., 2021. Extending full-plate tectonic
 950 models into deep time: Linking the Neoproterozoic and the Phanerozoic. Earth-Science
 951 Reviews 214, 103477. https://doi.org/10.1016/j.earscirev.2020.103477
- Molina, J.F., Moreno, J.A., Castro, A., Rodríguez, C., Fershtater, G.B., 2015. Calcic amphibole
 thermobarometry in metamorphic and igneous rocks: New calibrations based on
 plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos 232,
 286–305. https://doi.org/10.1016/j.lithos.2015.06.027
- Moyen, J.F., Laurent, O., Chelle-Michou, C., Couzinié, S., Vanderhaeghe, O., Zeh, A., Villaros, A.,
 Gardien, V., 2017. Collision vs. subduction-related magmatism: Two contrasting ways of
 granite formation and implications for crustal growth. Lithos 277, 154–177.
 https://doi.org/10.1016/j.lithos.2016.09.018

960 Naeraa, T., Schersten, A., Rosing, M.T., Kemp, A.I., Hoffmann, J.E., Kokfelt, T.F., Whitehouse, M.J., 961 2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 962 Gyr ago. Nature 485, 627–30. https://doi.org/10.1038/nature11140 963 Nandedkar, R.H., Hürlimann, N., Ulmer, P., Müntener, O., 2016. Amphibole-melt trace element 964 partitioning of fractionating calc-alkaline magmas in the lower crust: an experimental study. 965 Contrib Mineral Petrol 171, 71. https://doi.org/10.1007/s00410-016-1278-0 966 Ohta, T., Arai, H., 2007. Statistical empirical index of chemical weathering in igneous rocks: A new 967 tool for evaluating the degree of weathering. Chemical Geology 240, 280–297. 968 https://doi.org/10.1016/j.chemgeo.2007.02.017 969 Padel, M., Álvaro, J.J., Clausen, S., Guillot, F., Poujol, M., Chichorro, M., Monceret, É., Pereira, M.F., 970 Vizcaïno, D., 2017. U–Pb laser ablation ICP-MS zircon dating across the Ediacaran–Cambrian 971 transition of the Montagne Noire, southern France. Comptes Rendus Geoscience. 972 https://doi.org/10.1016/j.crte.2016.11.002 Paquette, J.-L., Ballèvre, M., Peucat, J.-J., Cornen, G., 2017. From opening to subduction of an oceanic 973 974 domain constrained by LA-ICP-MS U-Pb zircon dating (Variscan belt, Southern Armorican 975 Massif, France). Lithos 294–295, 418–437. https://doi.org/10.1016/j.lithos.2017.10.005 976 Paris, F., Robardet, M., 1990. Early Palaeozoic palaeobiogeography of the Variscan regions. 977 Tectonophysics 177, 193-213. 978 Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite 979 classification and the search for Archean oceanic crust. Lithos 100, 14-48. 980 https://doi.org/10.1016/j.lithos.2007.06.016 Pearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. 981 982 Annual Review of Earth and Planetary Sciences 23, 251–285. 983 Peterlongo, J.-M., 1958. Les terrains cristallins des Monts du Lyonnais (Massif central français), 984 Annales de la Faculté des Sciences de Clermont. 985 Piboule, M., Briand, B., 1985. Geochemistry of eclogites and associated rocks of the southeastern 986 area of the French Massif Central: origin of the protoliths. Chemical Geology 50, 189–199. 987 Pin, C., 1990. Variscan oceans: Ages, origins and geodynamic implications inferred from geochemical 988 and radiometric data. Tectonophysics 177, 215–227. 989 Pin, C., Lancelot, J., 1982. U-Pb Dating of an Early Paleozoic Bimodal Magmatism in the French Massif 990 Central and of Its Further Metamorphic Evolution. Contributions to Mineralogy and Petrology 991 79, 1–12. 992 Pin, C., Liñán, E., Pascual, E., Donaire, T., Valenzuela, A., 2002. Late Neoproterozoic crustal growth in 993 the European Variscides: Nd isotope and geochemical evidence from the Sierra de Córdoba 994 Andesites (Ossa-Morena Zone, Southern Spain). Tectonophysics, Massifs and Correlations 995 Across the Cadomo-Avalonian Orogens 352, 133–151. https://doi.org/10.1016/S0040-996 1951(02)00193-2 997 Pin, C., Marini, F., 1993. Early Ordovician continental break-up in Variscan Europe: Nd-Sr isotope and 998 trace element evidence from bimodal igneous associations of the Southern Massif Central, 999 France. Lithos 29, 177–196. 1000 Pitra, P., Poujol, M., Van Den Driessche, J., Bretagne, E., Lotout, C., Cogné, N., 2022. Late Variscan 1001 (315 Ma) subduction or deceptive zircon REE patterns and U-Pb dates from migmatite-1002 hosted eclogites? (Montagne Noire, France). Journal of Metamorphic Geology 40, 39-65. 1003 https://doi.org/10.1111/jmg.12609 1004 Pouclet, A., Álvaro, J.J., Bardintzeff, J.-M., Imaz, A.G., Monceret, E., Vizcaïno, D., 2017. Cambrian-1005 early Ordovician volcanism across the South Armorican and Occitan domains of the Variscan 1006 Belt in France: Continental break-up and rifting of the northern Gondwana margin. 1007 Geoscience Frontiers 8, 25–64. https://doi.org/10.1016/j.gsf.2016.03.002 1008 Rudnick, R.L., Gao, S., 2003. Composition of the continental crust, in: Rudnick, R.L. (Ed.), The Crust, 1009 Treatise on Geochemistry. Elsevier-Pergamon, Oxford, pp. 1–64. 1010 Samson, S.D., D'Lemos, R.S., Blichert-Toft, J., Vervoort, J., 2003. U-Pb geochronology and Hf-Nd 1011 isotope compositions of the oldest Neoproterozoic crust within the Cadomian orogen: new

- evidence for a unique juvenile terrane. Earth and Planetary Science Letters 208, 165–180.
 https://doi.org/10.1016/s0012-821x(03)00045-1
 Santallier, D., Briand, B., Ménot, R.P., Piboule, M., 1988. Les complexes leptyno-amphioliques
- 1015(C.L.A.) : revue critique et suggestions pour un meilleur emploi de ce terme. Bulletin de la1016Société Géologique de France 8, 3–12.1017C.L.A.) : L. M. M. C.L. Société Géologique de France 8, 3–12.
- Schmidt, M.W., Thompson, A.B., 1996. Epidote in calcalkaline magmas; an experimental study of
 stability, phase relationships, and the role of epidote in magmatic evolution. American
 Mineralogist 81, 462–474. https://doi.org/10.2138/am-1996-3-420
- Schneider, J., Corsini, M., Reverso-Peila, A., Lardeaux, J.M., 2014. Thermal and mechanical evolution
 of an orogenic wedge during Variscan collision: an example in the Maures-Tanneron Massif
 (SE France). Geological Society, London, Special Publications 405, 313–331.
 https://doi.org/10.1144/sp405.4
- Schulmann, K., Edel, J.-B., Martínez Catalán, J.R., Mazur, S., Guy, A., Lardeaux, J.-M., Ayarza, P.,
 Palomeras, I., 2022. Tectonic evolution and global crustal architecture of the European
 Variscan belt constrained by geophysical data. Earth-Science Reviews 234, 104195.
 https://doi.org/10.1016/j.earscirev.2022.104195
- 1028Shervais, J.W., 1982. Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth and1029Planetary Science Letters 59, 101–118.
- Soejono, I., Janoušek, V., Žáčková, E., Sláma, J., Konopásek, J., Machek, M., Hanžl, P., 2017. Long lasting Cadomian magmatic activity along an active northern Gondwana margin: U–Pb zircon
 and Sr–Nd isotopic evidence from the Brunovistulian Domain, eastern Bohemian Massif. Int J
 Earth Sci (Geol Rundsch) 106, 2109–2129. https://doi.org/10.1007/s00531-016-1416-y
- Stampfli, G.M., Hochard, C., Vérard, C., Wilhem, C., vonRaumer, J., 2013. The formation of Pangea.
 Tectonophysics 593, 1–19. https://doi.org/10.1016/j.tecto.2013.02.037
- Stern, R.J., Bloomer, S.H., Martinez, F., Yamazaki, T., Harrison, T.M., 1996. The composition of backarc basin lower crust and upper mantle in the Mariana Trough: A first report. Island Arc 5,
 354–372. https://doi.org/10.1111/j.1440-1738.1996.tb00036.x
- Sun, S. s, McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications
 for mantle composition and processes. Geological Society, London, Special Publications 42,
 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
- Tabaud, A.S., Lardeaux, J.M., Corsini, M., 2023. A vestige of an Ediacaran magmatic arc in southeast
 France and its significance for the northern Gondwana margin. Int J Earth Sci (Geol Rundsch)
 112, 925–950. https://doi.org/10.1007/s00531-022-02277-z
- Tabaud, A.S., Štípská, P., Mazur, S., Schulmann, K., Míková, J., Wong, J., Sun, M., 2021. Evolution of a
 Cambro-Ordovician active margin in northern Gondwana: Geochemical and zircon
 geochronological evidence from the Góry Sowie metasedimentary rocks, Poland. Gondwana
 Research 90, 1–26. https://doi.org/10.1016/j.gr.2020.10.011
- 1049 Van der Voo, R., Briden, J.C., Duff, A., 1980. Late Precambrian and Palaeozoic palaeomagnetism of
 1050 the Atlantic-bordering continents, in: Géologie de l'Europe, Mémoires Du BRGM. pp. 203–
 1051 212.
- 1052 Vanderhaeghe, O., Laurent, O., Gardien, V., Moyen, J.-F., Gébelin, A., Chelle-Michou, C., Couzinié, S.,
 1053 Villaros, A., Bellanger, M., 2020. Flow of partially molten crust controlling construction,
 1054 growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif
 1055 Central. BSGF. https://doi.org/10.1051/bsgf/2020013
- 1056Vermeesch, P., 2018. IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers 9,10571479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
- Whitney, D.L., Hamelin, C., Teyssier, C., Raia, N.H., Korchinski, M.S., Seaton, N.C.A., Bagley, B.C., von
 der Handt, A., Roger, F., Rey, P.F., 2020. Deep crustal source of gneiss dome revealed by
 eclogite in migmatite (Montagne Noire, French Massif Central). Journal of Metamorphic
 Geology 38, 297–327. https://doi.org/10.1111/jmg.12523

Zeh, A., Gerdes, A., 2010. Baltica- and Gondwana-derived sediments in the Mid-German Crystalline
 Rise (Central Europe): Implications for the closure of the Rheic ocean. Gondwana Research
 17, 254–263. https://doi.org/10.1016/j.gr.2009.08.004

- A-- Reworked thrust

Late Carboniferous (Stephanian) sedimentary rocks Visean synkinematic granitoids (345–335 Ma)

Monts-du-Lyonnais metamorphic complex (Upper Gneiss Unit)

Paragneisses, locally with high-pressure granulite-facies relics a. lower unit, b. upper unit

Peraluminous orthogneisses (500–470 Ma)

Units referred to as «Leptynite–Amphibolite Complexes» (LACs)

Amphibolites associated with (retrograde) eclogites and garnet-bearing peridotites in a paragneiss matrix

Chaussan leucogneisses with numerous boudins of mafic and felsic meta-igneous granulites, also found in the adjacent orthogneiss Riverie belt: amphibolites and amphibole-bearing gneisses, devoid of high-pressure metamorphic relics

Pilat unit (parautochtonous terrains)

Micaschists and orthogneisses

Supplementary text of the manuscript:

Late Ediacaran juvenile magmatism in the Variscan Monts-du-Lyonnais metamorphic complex (Massif Central, France)

Identification d'un magmatisme juvénile fini-édiacarien dans le complexe métamorphique varisque des Monts-du-Lyonnais (Massif Central, France)

Simon Couzinié^{1,2,3*}, Oscar Laurent⁴, Pierre Bouilhol¹, Cyril Chelle-Michou⁵, Anne-Céline Ganzhorn^{3**}, Véronique Gardien³, Jean-François Moyen⁶

¹Université de Lorraine, CNRS, CRPG, 54000 Nancy, France

²Université Jean Monnet, CNRS, LGL-TPE UMR5276, F-42023 Saint-Etienne, France

³LGL-TPE UMR 5276, CNRS, Université Lyon 1, ENS de Lyon, 69622 Villeurbanne, France

⁴CNRS, Géosciences Environnement Toulouse, Observatoire Midi-Pyrénées, 14 avenue Edouard

Belin, 31400 Toulouse, France

⁵Institute of Geochemistry and Petrology, ETH Zürich, CH-8092 Zürich, Switzerland

⁶Université Jean-Monnet, Laboratoire Magmas et Volcans, UCA-CNRS-IRD, Aubière, France

*Corresponding author. simon.couzinie@univ-lorraine.fr

**Present address: Saint-Gobain Recherche, Aubervilliers, France

1. Analytical procedures

A. Whole-rock major and trace element compositions

Samples were sawed at Saint-Etienne University and a c. 500 g fragment of each sample was sent to ALS Global for whole-rock chemical composition measurements. We chose the "Complete Characterization Package" which combines ICP–AES and ICP–MS analyses for major and trace elements, respectively. More information about analytical routines used by this company can be found at http://www.alsglobal.com/. Repeated analyses of standards SY-4, GRE-3, OREAS-121 and AMIS0304 were realized during the analytical session. Analyses of the standards were reproducible to <1.7% for most major elements except K₂O (2.4%), MgO (6.4%) and P₂O₅ (4.6%); <7.9% for trace elements except Cr (25%), V (12.5%) and Ba (10.9%); and consistent within uncertainty with the expected values. Duplicate measurements of four samples show external reproducibility better than 1.1% (RSD) for major elements except P₂O5 at 4.6%) and generally better than 5.4% (RSD) for trace elements except for TI, Tm, Lu, Hf and V. Fifteen blanks display measured values typically under detection limits for all major and trace elements.

B. Zircon U–Pb dating

Zircon U–Pb isotopic analyses were carried out at Goethe Universität Frankfrut (GUF) by laser ablation using a Resolution M-50 (Resonetics) 193 nm ArF excimer laser system attached to ThermoFinnigan Element 2 sector field ICP-MS. We applied the same methods as in Zeh and Gerdes (2012). We used a repetition rate of 5.5 Hz, and a laser spot-size of 30 µm for measurements of unknowns and zircon reference materials GJ-1, Plešovice and BB-16. The on-sample fluence was ~2.5 to 3 J.cm⁻². Sample surface was cleaned directly before each analysis by three pre-ablation pulses. Ablation was performed in a two-volume ablation cell (Laurin Technic, Australia) characterized by a very quick response time (<1 s until maximum signal strength is reached) and wash-out delay (<3 s to get <1% of maximum signal intensity). It was fluxed during ablation with carrier gas consisting of a ~ 0.6 L.min⁻¹ He stream, mixed directly after the ablation cell with make-up gas consisting of ~0.07 L.min⁻¹ N_2 and 0.68 L.min⁻¹ Ar prior introduction into the plasma of the sector field ICP-MS. All gases had a purity of 99.999% and no homogenizer was used while mixing the gases, to prevent smoothing of the signal and thus to be able to detect significant variations of the ²⁰⁷Pb/²⁰⁶Pb and ²³⁸U/²⁰⁶Pb ratios during measurements, possibly revealing the sequential sampling of different age domains within single zircon grains. Signal was tuned for maximum sensitivity for Pb and U while keeping low the production of oxides $(^{254}\text{UO}/^{238}\text{U} \le 0.5\%)$. The obtained sensitivity on zircon standard GJ-1 for ^{238}U and a 30 µm spot size is close to 10000 cps.ppm⁻¹ at 5.5 Hz and 3 J.cm⁻². Data were acquired using time resolved-peak jumping, the detector being set to analogue mode for ²³²Th and ²³⁸U and counting mode for ²⁰⁴(Hg+Pb), ²⁰⁶Pb, ²⁰⁷Pb and ²⁰⁸Pb. A total of 356 mass scans were acquired over ~41 s measurement (20 s of background measurement followed by 21 s of sample ablation) and integrated to 89 ratios (4 mass scans per

integration, time resolution = 0.46 s). Those ratios were subsequently corrected offline for background signal, common Pb, instrumental mass discrimination and Pb/U fractionation (both laser-induced during individual measurements, and over the day) using an in-house MS Excel® spreadsheet. No common Pb correction was performed. The inter-elemental fractionation ²⁰⁶Pb/²³⁸U during the 21 s of sample ablation was corrected for each analysis by applying a linear regression through all measured ratios, excluding the outliers ($\pm 2\sigma$), and considering that the intercept with the v-axis represents the "true" ratio. Elemental fractionation over the analytical session, as well as instrumental mass discrimination, were corrected by normalization to the ²⁰⁶Pb/²³⁸U (0.0982) and ²⁰⁷Pb/²⁰⁶Pb (0.061) ratios of reference zircon GJ-1 (Jackson et al., 2004) using standard bracketing. Elemental concentrations in U and Pb were calculated using raw signal (in cps) of ²³⁸U and ²⁰⁶Pb for each spot, corrected from the analytical drift over the session (monitored using GJ-1) and normalized to the recommended values of the GJ-1 zircon standard (U = 280.1 ppm; Pb = 25.5 ppm). Th/U ratio was determined for each spot using the mass fractionation-corrected ²³²Th/²³⁸U ratio, normalized to the recommended value of the GJ-1 zircon standard (Th/U = 0.0296).

The quoted uncertainties for each individual analysis are (i) for the ²⁰⁶Pb/²³⁸U ratio, the quadratic addition of the within-run precision (2σ) with the external reproducibility of standard zircon GJ-1 during the corresponding analytical session (0.5 to 1.5%, 2σ); and (ii) for the ²⁰⁷Pb/²⁰⁶Pb ratio, a ²⁰⁷Pb signal-dependent uncertainty propagation, as described by Gerdes and Zeh (2009). The ²⁰⁷Pb/²³⁵U ratio was calculated using the ²⁰⁶Pb/²³⁸U and ²⁰⁷Pb/²⁰⁶Pb ratios and assuming a natural ²³⁸U/²³⁵U of 137.818, and its uncertainty was obtained by quadratic addition of propagated errors on both ratios. Age calculations and data plotting were performed using IsoplotR (Vermeesch, 2018).

Data from secondary standards were processed as unknowns to check the accuracy of the corrections (Fig. S1) and the results reported Supplementary Table S3. Calculated pooled dates are within error of the recommended TIMS values for Plešovice and BB-16, i.e. 337.13 ± 0.37 Ma and 560 ± 0.8 Ma, respectively (Santos et al., 2017; Sláma et al., 2008). The dataset for the Riverie samples is presented in Supplementary Table S4.

Additional systematic errors were propagated to every U–Pb Concordia date calculated out of several individual analyses following the scheme of Horstwood et al., (2016). Those include the uncertainties on: (i) the decay constants for ²³⁸U and ²³⁵U, set at 0.107% and 0.136% for ²³⁸U and ²³⁵U, respectively (Jaffey et al., 1971); (ii) the isotope ratios of the primary standard (GJ–1), set at 0.5%; (iii) the overall reproducibility of the method, estimated based on the long-term excess scatter of secondary zircon reference materials, i.e. 1% relative. Error propagation involved the quadratic addition of the "internal" error calculated by IsoplotR and the other systematic errors listed above.

A summary of analytical operating conditions is provided in Supplementary Table ST0 (see below).

Figure S1: Wetherill diagrams ($^{206}Pb/^{238}U$ vs. $^{207}Pb/^{235}U$) for secondary zircon standards Plešovice and BB-16 analysed during the two analytical sessions at GUF. Error ellipses are displayed at 2σ level of uncertainty. Green ellipses are those considered for pooled date calculations.

Sample Preparation	
Laboratory name	University of Saint-Etienne (FR) and University of Stellenbosch (RSA)
Sample type/mineral	Zircon
Sample preparation	Conventional techniques (sieving, panning, magnetic and heavy liquids separation
	followed by handpicking). Grains cast into epoxy mounts.
Imaging	BSE and CL-imaging performed at the Central Analytical Facility of Stellenbosch
	University using a Zeiss MERLIN Scanning Electron Microscope
Laser ablation system	
Laboratory name	Goethe Universität Frankfurt, Germany
Make, Model & type	RESOlution M-50 (Resonetics) ArF-excimer
Ablation cell	Two-volume ablation cell (Laurin Technic, Australia)
Laser wavelength	193 nm
Pulse width	~ 25 ns
Fluence	$2.5 - 3 \text{ J/cm}^2$
Repetition rate	5.5 Hz
Spot diameter	30 µm
Ablation duration	21 seconds
Sampling mode	Static single spot
Carrier gas	100% He mixed directly after the ablation cell with make-up gas consisting of
Carrier gas flow (He)	0.6 L/min
ICP-MS Instrument	
Make, Model & type	ThermoFinnigan Element 2 sector field ICP-MS
Sample introduction	Ablation aerosol
Make-up gas flow	~0.07 L.min ⁻¹ N ₂ and 0.68 L.min ⁻¹ Ar
Detection system	Secondary Electron Multiplier with dual detector mode (pulse counting and analog, cross
	calibrated daily with ²³⁸ U measured on analog mode only)
Masses measured	$^{204}(\text{Hg} + \text{Pb}), ^{206}\text{Pb}, ^{207}\text{Pb}, ^{208}\text{Pb}, ^{232}\text{Th}, ^{238}\text{U}$
Integration time per peak	10 ms except at amu 206 and 207 (20 ms)
Total integration time per	108 ms
output data point (s)	
Sensitivity/Efficiency	10000 cps.ppm ⁻¹ for ²³⁸ U on GJ-1
Data processing	
Gas blank	20 seconds on-peak
Calibration strategy	GJ-1 zircon standard used as primary reference material, Plešovice and BB-16 used as
	secondary reference material (quality control)
Common-Pb correction,	No common-Pb correction
composition and	
Defense Metanial infe	C_{11} (Letron et al. 2004) Distances (Clime et al. 2002) DD 1((Contract al. 2017)
Dete processing polyage	GJ1 (Jackson et al., 2004), Plesovice (Stama et al., 2008), BB-10 (Samos et al., 2017)
Lineartainty level and	A case are quoted at 0.50/ configuration and quote and the support in the support
propagation	Ages are quoted at 95% confi. level; propagation of systematic uncertainties by quadratic addition according to Horstwood et al. (2016)
Quality control/validation	addition according to HOIStwood et al. (2010) Plačovice: Concording age: 227.6 \pm 4.4 Mg (n = 14/14 \pm MSW/D = 2.1) and 227.9 \pm 4.2 Mg
Quanty control/validation	$(n = 13/13 \mid MSWD = 2.7)$, accented value: 337.1 ± 0.4 Ma (Sláma et al. 2008)
	BR_{-16} : Concordia age: 562 0 + 6.7 Ma (n = 11/13 MSWD = 1.1) and 361 0 + 6.5 Ma (n =
	$13/13 \mid MSWD = 1.1$): accented value: 560.0 ± 0.8 Ma (Santos et al. 2017)
	$1.5, 15$ [mo tr D = 1.1], accepted value. 500.0 ± 0.0 [via (ballos et al., 2017)

Supplementary Table ST0: Summary of operating conditions for zircon LA–ICP–MS dating.

C. Zircon Lu–Hf isotope measurements

Measurements were performed at GUF using a Thermo-Finnigan Neptune multicollector ICP–MS attached to a Resolution M-50193 nm Ar–F excimer laser ablation system, equipped with a two-volume Laurin Technic ablation cell. Laser spots with diameters of 40 or 60 µm were drilled "on top" of the existing spots already analyzed for U–Pb dating or in the same domain as identified based on CL images, with repetition rates of 4 Hz and an energy density of 5 to 6 J·cm⁻². He was used as a carrier gas (~0.6 L·min⁻¹) and make-up gas consisting of high-purity Ar (~0.75 L·min⁻¹)

and N₂ (~0.07 L min⁻¹) was admixed to the carrier gas to improve sensitivity. Postablation homogenization is performed by fluxing the gases through a Resolution Instruments Squid® tubing. Data were acquired using multi-collector static mode, during 58 s of measurement characterized by 1.052 s integration time (55 baselinecorrected ratios). ¹⁷²Yb, ¹⁷³Yb and ¹⁷⁵Lu masses were monitored to allow the correction of isobaric interferences (176Yb and 176Lu on 176Hf). Instrumental mass bias for Yb isotopes (calculation of β^{Yb}) was monitored for each measurement using an exponential law and corrected to the natural ratio ¹⁷²Yb/¹⁷³Yb=1.35351. Mass fractionation of Lu isotopes was assumed identical to that of Yb isotopes ($\beta_{Lu}=\beta_{Yb}$). The isobaric interferences were subsequently corrected to mass bias-corrected ¹⁷⁶Yb/¹⁷³Yb = 0.79502 and ¹⁷⁶Lu/¹⁷⁵Lu = 0.02656 (see Gerdes and Zeh, 2006). Mass bias for Hf isotopes (β_{Hf}) was determined using an exponential law and normalized to ¹⁷⁹Hf/¹⁷⁷Hf= 0.7325. Accuracy and external reproducibility of the method were controlled by repeated analyses of reference zircon standards GJ-1 (Jackson et al., 2004; Morel et al., 2008), Plešovice (Sláma et al., 2008), and Temora (Woodhead et al., 2004). Results for standards are presented in the Supplementary Table S5 and for samples in the Supplementary Table S6.

The quoted uncertainties on 176 Hf/ 177 Hf ratios and ϵ Hf(t) are quadratic additions of within-run precision of each measurement with the external reproducibility (2 S.D.) of the reference zircon standard GJ-1 (~70 ppm). Data reduction was carried out using an in-house MS Excel© spreadsheet (Gerdes and Zeh, 2009, 2006).

Calculation of initial ¹⁷⁶Hf/¹⁷⁷Hf ratios was performed using the individual ¹⁷⁶Lu/¹⁷⁷Hf ratio of each measurement, a decay constant of $\lambda_{176Lu} = 1.867 \times 10^{-11}$ (Scherer et al., 2001; Söderlund et al., 2004) and the emplacement age obtained by U–Pb zircon dating. For the calculation of the ϵ Hf(t), parameters of the chondritic uniform reservoir (CHUR) recommended by Bouvier et al. (2008) were used (¹⁷⁶Lu/¹⁷⁷Hf = 0.0336; ¹⁷⁶Hf/¹⁷⁷Hf = 0.282785).

2. Data compilation

The data used in Figure 4 were compiled from Blanc, 1981; Bodinier, 1983; Briand et al., 1991, 1988; Brousse et al., 1990; Brousse and Varet, 1972; Cabanis et al., 1983; Chelle-Michou et al., 2017; Chenevoy et al., 1998; Coffrant and Piboule, 1971; Collomb, 1970; Davoine, 1969; Demange, 1985; Downes et al., 1989; Downes and Duthou, 1988; Dufour, 1982; Forestier, 1961; Giraud et al., 1984; Lasnier, 1977; Ouali, 1993; Paquette et al., 1995; Piboule, 1977; Piboule and Briand, 1985; Pin and Marini, 1993; Ravier and Chenevoy, 1979; Thiéblemont, 1990; Whitney et al., 2020.

<u>References</u>

- Blanc, D., 1981. Les roches basiques et ultrabasiques des Monts du Lyonnais. Etude pétrographique, minéralogique et géochimique (PhD thesis).
- Bodinier, J.L., 1983. Etude géochimique du massif basique et ultrabasique de Najac (Aveyron). Conséquences géotectoniques. Bulletin de la Société Géologique de France 25, 185–193.
- Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273, 48–57. https://doi.org/10.1016/j.epsl.2008.06.010
- Briand, B., Piboule, M., Bouchardon, J.-L., 1988. Diversité géochimique des métabasites des groupes leptyno-amphiboliques du Rouergue et de Marvejols (Massif central). Origine et implications. Bulletin de la Société Géologique de France 4, 489–498.
- Briand, B., Piboule, M., Santallier, D., Bouchardon, J.-L., 1991. Geochemistry and tectonic implications of two Ordovician bimodal igneous complexes, southern French Massif Central. Journal of the Geological Society, London 148, 959–971.
- Brousse, P., Rançon, J.P., Le Garrec, M.J., Tempier, P., Suire, J., BVeyret-Mekdjian, Y., D'Arcy, D., Périchaud, J.J., 1990. Notice explicative, Carte géol. France (1/50 000), feuille La Tour-d'Auvergne (740). BRGM, Orléans, p. 68.
- Brousse, R., Varet, J., 1972. Notice explicative, Carte géol. France (1/50 000), feuille Riomès-Montagnes (764). BRGM, Orléans, p. 42.
- Cabanis, B., Guillot, P.-L., Santallier, D., Jaffrezic, H., Meyer, G., Treuil, M., 1983. Traceelements in the basic rocks within the metamorphic series of the South-Limousin (French Central Massif, France). Bulletin de la Société Géologique de France 25, 563–574.
- Chelle-Michou, C., Laurent, O., Moyen, J.-F., Block, S., Paquette, J.-L., Couzinié, S., Gardien, V., Vanderhaeghe, O., Villaros, A., Zeh, A., 2017. Pre-Cadomian to late-Variscan odyssey of the eastern Massif Central, France: Formation of the West European crust in a nutshell. Gondwana Research 46, 170–190. https://doi.org/10.1016/j.gr.2017.02.010
- Chenevoy, M., Ledru, P., Feybesse, J.-L., Jauffret, D., Etlicher, B., 1998. Notice explicative, Carte géol. France (1/50 000), feuille Annonay (769). BRGM, Orléans, p. 83.
- Coffrant, D., Piboule, M., 1971. Les éclogites et roches associées des massifs basiques de Saint-Joseph (monts du Lyonnais, Massif central français). Bulletin de la Société Géologique de France 13, 283–291.
- Collomb, P., 1970. Etude géologique du Rouergue cristallin.
- Davoine, P., 1969. La distinction géochimique ortho-para des leptynites. Bulletin de la Société Française de Minéralogie et de Cristallographie 92, 59–75.
- Demange, M., 1985. The eclogite-facies rocks of the Montagne Noire, France. Chemical Geology 50, 173–188.
- Downes, H., Bodinier, J.L., Dupuy, C., Leyreloup, A.F., Dostal, J., 1989. Isotope and traceelement heterogeneities in high-grade basic metamorphic rocks of Marvejols: Tectonic implications for the Hercynian suture zone of the French Massif Central. Lithos 24, 37–54.
- Downes, H., Duthou, J.-L., 1988. Isotopic and trace-element arguments for the lower-crustal origin of hercynien granitoids and pre-hercynian orthogneisses, Massif Central (France). Chemical Geology 68, 291–308.
- Dufour, E., 1982. Pétrologie et géochimie des formations orthométamorphiques acides des Monts du Lyonnais (Massif central, France) (PhD thesis).
- Forestier, F.-H., 1961. Métamorphisme hercynien et antéhercynien dans le bassin du haut-Allier (Massif Central français). Bulletin du service de la carte géologique de France 271.
- Gerdes, A., Zeh, A., 2009. Zircon formation versus zircon alteration New insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the

interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology 261, 230–243. https://doi.org/10.1016/j.chemgeo.2008.03.005

- Gerdes, A., Zeh, A., 2006. Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters 249, 47–61. https://doi.org/10.1016/j.epsl.2006.06.039
- Giraud, A., Marchand, J., Dupuy, C., Dostal, J., 1984. Geochemistry of leptyno-amphibolite complex from Haut Allier (French Massif Central). Lithos 17, 203–214.
- Horstwood, M.S.A., Košler, J., Gehrels, G., Jackson, S.E., McLean, N.M., Paton, C., Pearson, N.J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J.F., Condon, D.J., Schoene, B., 2016. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology - Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research 40, 311–332. https://doi.org/10.1111/j.1751-908X.2016.00379.x
- Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
- Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M., 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C. 4, 1889–1906. https://doi.org/10.1103/PhysRevC.4.1889
- Lasnier, B., 1977. Persistance d'une série granulitique au coeur du Massif Central français, Haut-Allier : les termes basiques, ultrabasiques et carbonatés (Thesis).
- Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroon, P.Z., 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology 255, 231–235. https://doi.org/10.1016/j.chemgeo.2008.06.040
- Ouali, H., 1993. Caractérisation géochimique des paléomagmatites de quelques unités lithotectoniques du Massif Central français : Implications géodynamiques (PhD thesis).
- Paquette, J.L., Monchoux, P., Couturier, M., 1995. Geochemical and isotopic study of a norite-eclogite transition in the European Variscan belt: Implications for U-Pb zircon systematics in metabasic rocks. Geochimica et Cosmochimica Acta 59, 1611–1622.
- Piboule, M., 1977. Utilisation de l'analyse factorielle discriminante pour la reconnaissance de la nature des magmas parents des amphibolites. Application à quelques métabasites du Rouergue et du Limousin (Massif Central français). Bulletin de la Société Géologique de France 19, 1133–1143.
- Piboule, M., Briand, B., 1985. Geochemistry of eclogites and associated rocks of the southeastern area of the French Massif Central: origin of the protoliths. Chemical Geology 50, 189–199.
- Pin, C., Marini, F., 1993. Early Ordovician continental break-up in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. Lithos 29, 177–196.
- Ravier, J., Chenevoy, M., 1979. Présence de formations granulitiques jalonnant un linéament crustal dans la série cristallophylienne de la Sioule (Massif Central français). Comptes Rendus de l'Académie des Sciences, Paris 288, 1703–1706.
- Santos, M., Lana, C., Scholz, R., Buick, I., Schmitz, M., Kamo, S., Gerdes, A., Corfu, F., Tapster, S., Lancaster, P., Storey, C., Basei, M., Tohver, E., Alkmim, A., Nalini Jr, H., Krambrock, K., Fantini, C., Wiedenbeck, M., 2017. A New Appraisal of Sri Lankan BB Zircon as a Reference Material for LA-ICP-MS U-Pb Geochronology and Lu-Hf Isotope Tracing. Geostandards and Geoanalytical Research 41, 335. https://doi.org/10.1111/ggr.12167
- Scherer, E.E., Münker, C., Mezger, K., 2001. Calibration of te Lutetium-Hafnium Clock. Science 293, 683–687.

- Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
- Söderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., 2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311–324. https://doi.org/10.1016/s0012-821x(04)00012-3
- Thiéblemont, D., 1990. Géochimie des formations paléomagmatiques du segment lyonnais de la chaîne Varisque (socle et série de la Brévenne) (Report).
- Vermeesch, P., 2018. IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers 9, 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
- Whitney, D.L., Hamelin, C., Teyssier, C., Raia, N.H., Korchinski, M.S., Seaton, N.C.A., Bagley, B.C., von der Handt, A., Roger, F., Rey, P.F., 2020. Deep crustal source of gneiss dome revealed by eclogite in migmatite (Montagne Noire, French Massif Central). Journal of Metamorphic Geology 38, 297–327. https://doi.org/10.1111/jmg.12523
- Woodhead, J., Hergt, J., Shelley, M., Eggins, S., Kemp, R., 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology 209, 121–135. https://doi.org/10.1016/j.chemgeo.2004.04.026
- Zeh, A., Gerdes, A., 2012. U–Pb and Hf isotope record of detrital zircons from gold-bearing sediments of the Pietersburg Greenstone Belt (South Africa)—Is there a common provenance with the Witwatersrand Basin? Precambrian Research 204–205, 46–56. https://doi.org/10.1016/j.precamres.2012.02.013

Table S1: Whole-rock major and trace element compositions of samples from the Riverie belt

Analyses performed by ALS Global

Sample	RV-1	RV-2	LY23	LY24	LY25	LY26	LY27	LY28	LY21	LY22	MG05	MG06
Туре	felsic gneiss	amphibolite	amphibolite	amphibolite	amphibolite							
Major eler	ments (wt.%	%), measure	d by ICP–A	ES								
SiO ₂	68.40	65.50	64.00	64.00	67.70	63.00	62.60	64.80	48.00	46.60	51.90	51.40
	15.20	15.55	15.45	15.10	14.40	16.05	16.40	16.15	15.95	17.05	15.65	14.95
Fe ₂ O ₃	4.33	5.47	6.15	5.77	4.62	5.71	5.82	5.01	10.60	10.60	8.86	12.20
CaO	4.50	3.77	5.51	4.88	4.47	5.41	5.31	3.93	9.42	8.01	8.64	7.39
MaO	2.13	2.84	3.36	2.98	2.01	2.66	2.83	2.65	8.61	9.04	7.50	4.97
Na ₂ O	5.08	4.96	4.57	4.41	4.31	4.68	4.73	4.66	3.46	3.22	4.04	4.32
<u>-</u> K₂O	0.40	0.57	0.46	0.49	0.33	0.51	0.67	0.59	0.70	0.96	0.87	0.81
Cr ₂ O ₃	0.01	< 0.01	-	-	-	-	-	-	-	-	0.04	< 0.01
TiO ₂	0.37	0.40	0.57	0.51	0.40	0.41	0.41	0.40	1.42	1.35	1.30	2.36
MnO	0.08	0.07	0.10	0.09	0.06	0.09	0.10	0.07	0.20	0.17	0.17	0.21
P ₂ O ₅	0.04	0.06	0.08	0.10	0.07	0.07	0.08	0.08	0.14	0.19	0.13	0.28
S	0.11	< 0.01	0.11	0.02	0.25	0.01	0.01	0.03	0.01	0.01	< 0.01	0.07
LOI	0.51	2 25	0.61	0.61	0.20	0.37	0.53	2 07	1 24	2.82	1.01	1.23
Total	101.09	101.50	100.86	98.94	99.16	98.96	99.48	100 41	99.74	100.01	100 11	100.12
Ma#	49	51	52	51	46	48	49	51	62	63	63	45
A/CNK	0.90	0.99	0.86	0.91	0.92	0.89	0.90	1.05	0.68	0.82	0.67	0.70
AUNIN	0.00	0.00	0.00	0.01	0.02	0.00	0.00	1.00	0.00	0.02	0.01	0.70
Trace eler	nents (ppm	n), measure	d by ICP-M	s								
Ва	222	244	217	260	203	284	398	371	235	214	323	198
Ce	19.9	16.8	22.0	19.8	14.6	20.4	21.6	17.2	15.2	17.0	14.7	23.9
Cr	20	10	40	60	30	20	20	10	320	300	270	30
Cs	0.26	1.18	0.35	0.54	0.40	0.39	0.49	1.06	0.93	1.90	0.76	1.12
Dy Er	2.33	1.62	2.56	2.72	1.65	2.06	2.40	1.88	3.99	4.47	4.30	7.04
Er Fu	0.66	0.57	0.72	0.76	0.91	0.57	0.64	0.62	2.30	2.00	2.94	4.17
Ga	14.5	15.9	15.9	16.5	15.0	17.6	17.6	15.9	16.9	22.2	17.1	23.6
Gd	2.44	1.69	3.09	3.09	1.62	2.46	2.93	2.33	4.31	4.64	4.47	7.14
Hf	3.5	3.5	3.3	4.0	3.2	2.9	3.0	3.1	2.9	2.7	2.6	4.0
Но	0.50	0.33	0.56	0.60	0.32	0.44	0.56	0.38	0.97	1.02	0.97	1.41
La	8.3	8.0	9.7	9.4	7.8	10.0	10.0	8.6	6.4	7.9	6.4	9.8
Lu	0.27	0.20	0.29	0.34	0.14	0.22	0.29	0.21	0.41	0.44	0.37	0.59
ND	2.3	1.9	3.4	3.3	1.9	2.4	2.0	2.0	4.0	4.9	3.8	4.4
Pr	2 4 1	9.2 2.06	3.03	2.85	1.7	2.86	2 94	9.0 2.44	2 14	2 76	2 23	3.85
Rb	7.9	13.9	7.0	10.8	5.3	8.9	14.1	14.2	12.0	28.8	16.4	17.6
Sm	2.71	1.99	2.67	3.10	1.62	2.25	2.56	2.26	3.00	3.88	3.40	5.28
Sr	250.0	287.0	298.0	292.0	288.0	308.0	319.0	331.0	167.5	267.0	192.0	249.0
Та	0.3	0.4	0.4	0.6	0.1	-	-	-	0.2	0.6	0.2	0.1
Tb	0.36	0.23	0.45	0.48	0.25	0.40	0.35	0.33	0.72	0.79	0.74	1.11
Th	0.74	1.14	1.15	1.32	1.43	1.62	1.23	1.37	0.96	0.35	0.84	1.21
1 m	0.24	0.16	0.29	0.20	0.13	0.22	0.24	0.19	0.41	0.40	0.39	0.65
v	78	113	151	132	99	130	135	110	257	316	227	362
Y	14.9	9.9	16.6	17.5	9.1	14.2	15.5	11	22.4	26.1	24.2	40.6
Yb	1.66	1.18	2.09	2.15	1.03	1.71	1.92	1.45	2.63	2.65	2.51	4.37
Zr	134	107	126	143	105	98	97	110	96	107	99	193
Ni	13	10	18	19	18	11	12	10	55	97	53	5
Pb	2	<2	-	3	-	5	3	3	2	2	<2	<2
Sc	10	14	16	15	10	14	14	13	33	21	35	31
∠n	33	46	52	50	38	48	50	52	90	86	81	/3
ND/ND*	0.3	0.2	0.3	0.3	0.2	0.2	0.2	0.2	0.5	1.0	0.0	0.4
	0.3	0.5	0.5	0.4	0.6	0.4	0.4	0.4	0.9	0.8	0.8	0.9
Eu/Eu* ⁴	0.78	0.95	0.77	0.75	0.83	0.74	0.71	0.83	1.05	1.07	0.91	0.90

¹ Nb* defined as NbN/sqrt(ThN*LaN) where N stands for normalized to N-MORB values

 2 Zr* defined as ZrN/sqrt(SmN*NdN) where N stands for normalized to N-MORB values

 3 Ti* defined as TiN/sqrt(SmN*GdN) where N stands for normalized to N-MORB values

 4 Eu* defined as EuN'/sqrt(SmN'*GdN') where N' stands for normalized to chrondrite values

Table S2: Representative mineral analyses of the amphibole-bearing felsic gneisses RV-1 & RV-2

SiO₂

TiO₂

Al₂O₃

FeOt

MnO

MgO CaO

Na₂O

 K_2O

Total T. Si

T.AI

T.Fe³

M.Al M.Mg

M.Fe²⁺ M.Fe³⁺

M.Ti

M.Mn

sum oct A.K

A.Na

sum inter

W.OH

W.O²⁻

Fe³⁺/Fe_{tot}

mg#

biotite	e (A ₁ M ₃ T ₄ O	9 ₁₀ W ₂)			а	Imphibole	$(A_{0-1}B_2C)$	5T8O22W	2)	
RV1-b13	RV1-b14	RV1-b18		RV1-a1	RV1-a2	RV1-a11	RV1-a6	RV1-a7	RV2-a14	RV2-a2
36.91	37.06	37.21	SiO ₂	46.43	46.12	47.48	46.62	46.41	46.62	46.04
3.27	3.42	3.41	TiO ₂	0.86	0.94	0.97	0.85	0.86	0.90	0.76
14.52	14.18	14.74	Al ₂ O ₃	8.51	8.67	7.58	8.79	8.39	8.23	9.49
17.50	17.96	17.51	FeOt	15.15	14.76	13.85	14.71	14.81	15.31	16.35
0.15	0.20	0.23	MnO	0.55	0.58	0.53	0.53	0.58	0.56	0.50
12.84	12.99	12.94	MgO	13.33	13.44	13.71	13.09	13.32	13.77	12.04
0.00	0.00	0.00	CaO	10.80	11.30	11.55	10.94	11.22	10.35	11.39
0.24	0.27	0.29	Na ₂ O	1.58	1.39	1.24	1.58	1.46	1.35	1.34
9.30	9.16	8.99	K ₂ O	0.38	0.28	0.34	0.31	0.33	0.37	0.38
94.74	95.25	95.32	Total	97.59	97.50	97.24	97.41	97.37	97.44	98.29
2.83	2.83	2.83	T.Si	6.78	6.74	6.92	6.80	6.79	6.80	6.73
1.03	1.01	1.04	T.AI	1.24	1.29	1.10	1.22	1.24	1.22	1.30
0.15	15 0.16 0.13 28 0.26 0.28		T.sum	8.02	8.03	8.02	8.02	8.03	8.03	8.02
0.28	28 0.26 0.28		C.AI	0.22	0.20	0.20	0.29	0.20	0.19	0.34
1.46	1.47	1.45	C.Ti	0.12	0.14	0.13	0.12	0.13	0.14	0.11
0.87	0.86	0.84	C.Fe ³⁺	0.64	0.62	0.51	0.57	0.61	0.70	0.57
0.10	0.13	0.14	C.Mn ²⁺	0.04	0.05	0.04	0.04	0.05	0.04	0.04
0.19	0.20	0.19	C.Mg	2.83	2.86	2.94	2.79	2.84	2.89	2.57
0.0	0.0	0.0	C.Fe ²⁺	1.11	1.09	1.14	1.15	1.13	1.01	1.35
2.91	2.93	2.92	C.sum	4.96	4.96	4.96	4.97	4.96	4.96	4.98
0.91	0.89	0.88	B.Mn ²⁺	0.02	0.02	0.02	0.02	0.02	0.03	0.02
0.04	0.04	0.04	B.Fe ²⁺	0.10	0.09	0.03	0.07	0.07	0.16	0.08
0.95	0.93	0.92	B.Mg	0.08	0.07	0.04	0.06	0.06	0.11	0.05
1.55	1.52	1.51	B.Ca	1.70	1.78	1.81	1.72	1.77	1.63	1.79
0.45	0.48	0.49	B.Na	0.08	0.02	0.08	0.11	0.06	0.04	0.04
0.22	0.25	0.25	B.sum	1.98	1.98	1.99	1.98	1.98	1.97	1.98
0.63	0.63	0.63	A.Na	0.37	0.37	0.27	0.34	0.35	0.34	0.34
		_	A.K	0.07	0.06	0.06	0.06	0.07	0.07	0.07
			A.sum	0.44	0.43	0.33	0.40	0.42	0.41	0.41
			W.OH	1.80	1.80	1.88	1.84	1.84	1.73	1.82
			W.O ²⁻	0.20	0.20	0.12	0.16	0.16	0.27	0.18
			Fe ³⁺ /Fe _{tot}	0.34	0.35	0.30	0.32	0.34	0.37	0.29
			mg#	0.70	0.71	0.72	0.70	0.71	0.72	0.65

				plagioclase	Э		
	RV1-p2	RV1-p6	RV1-p8	RV1-p13	RV2-p1	RV2-p3	RV2-p8
SiO ₂	62.43	62.18	62.12	62.24	62.12	62.02	62.12
AI_2O_3	23.75	23.54	23.71	23.78	23.23	23.60	23.63
FeOt	0.00	0.00	0.14	0.00	0.00	0.17	0.00
CaO	5.38	5.07	5.18	5.57	5.28	5.78	5.54
Na ₂ O	8.44	8.64	8.78	8.40	8.80	8.60	8.78
K ₂ O	0.23	0.22	0.19	0.22	0.15	0.24	0.11
Total	100.23	99.65	100.13	100.22	99.58	100.42	100.17
Si	2.76	2.76	2.75	2.75	2.77	2.75	2.75
Al	1.24	1.23	1.24	1.24	1.22	1.23	1.23
Fe ²⁺	0.00	0.00	0.01	0.00	0.00	0.01	0.00
Ca	0.25	0.24	0.25	0.26	0.25	0.27	0.26
Na	0.72	0.75	0.75	0.72	0.76	0.74	0.75
K	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Sum	4.99	5.00	5.01	4.99	5.01	5.01	5.01
An	25.7	24.2	24.3	26.5	24.7	26.7	25.7
Ab	73.0	74.6	74.6	72.3	74.5	71.9	73.7
Or	1.3	1.2	1.1	1.3	0.8	1.3	0.6

Table S3: Results of LA-ICP-MS U–Pb analyses of zircon standards performed during the sessions at GUF

grain	²⁰⁷ Pb ^a	Πp	Pb⁵	<u>Th</u> [⊳]	²⁰⁶ Pbc ^c	²⁰⁶ Pb ^d	±2σ	²⁰⁷ Pb ^d	±2σ	²⁰⁷ Pb ^d	±2σ	rho ^e	²⁰⁶ Pb	$\pm 2\sigma$	²⁰⁷ Pb	±2σ	²⁰⁷ Pb	±2σ (conc. [†]
	(cps)	(ppm)	(ppm)	U	(%)	²³⁸ U	(%)	²³⁵ U	(%)	²⁰⁶ Pb	(%)		²³⁸ U	(Ma)	²³⁵ U	(Ma)	²⁰⁶ Pb	(Ma)	(%)
Seq.1																			
Pleso-01	35868	16433	854	0.18	0.07	0.05462	1.4	0.4004	1.9	0.05317	1.3	0.74	343	5	342	6	336	30	102
Pleso-02	36752	17580	922	0.18	0.01	0.05516	1.4	0.4077	1.5	0.05360	0.6	0.91	346	5	347	5	354	15	98
Pleso-03	32918	16568	864	0.18	0.00	0.05488	1.4	0.4017	1.6	0.05309	0.7	0.89	344	5	343	5	333	16	104
Pleso-04	32844	17053	867	0.18	b.d.	0.05344	1.4	0.3922	1.6	0.05323	0.7	0.90	336	5	336	5	339	16	99
Pleso-05	32105	17287	884	0.18	b.d.	0.05380	1.4	0.3919	1.5	0.05284	0.7	0.89	338	4	336	4	322	16	105
Pleso-06	29247	15678	818	0.19	b.d.	0.05468	1.4	0.4055	1.6	0.05378	0.8	0.87	343	5	346	5	362	18	95
Pleso-07	28914	16278	834	0.19	0.00	0.05377	1.4	0.3955	1.5	0.05335	0.6	0.91	338	5	338	4	344	15	98
Pleso-08	27534	16446	835	0.18	0.00	0.05338	1.4	0.3873	1.6	0.05263	0.9	0.84	335	4	332	5	313	20	107
Pleso-09	27940	16927	856	0.18	0.00	0.05311	1.4	0.3878	1.6	0.05295	0.8	0.87	334	5	333	5	327	18	102
Pleso-10	28760	17792	897	0.18	b.d.	0.05295	1.4	0.3891	1.6	0.05330	0.7	0.90	333	5	334	4	342	15	97
Pleso-11	27316	17250	875	0.18	0.00	0.05326	1.4	0.3928	1.6	0.05350	0.8	0.87	334	5	336	5	350	18	96
Pleso-12	27316	17248	878	0.18	0.00	0.05346	1.4	0.3943	1.6	0.05350	0.8	0.87	336	5	338	5	350	18	96
Pleso-13	24378	15912	806	0.18	b.d.	0.05319	1.4	0.3921	1.6	0.05347	0.7	0.89	334	5	336	5	349	16	96
Pleso-14	27660	17529	891	0.18	0.00	0.05337	1.4	0.3938	1.5	0.05352	0.7	0.88	335	4	337	4	351	16	96
BB16-1	21488	5433	486	0.31	b.d.	0.09059	1.4	0.7415	1.7	0.05937	0.8	0.86	559	8	563	7	581	18	96
BB16-2	18605	5106	450	0.32	0.02	0.08926	1.4	0.7370	1.6	0.05988	0.8	0.86	551	7	561	7	599	18	92
BB16-3	15540	5166	464	0.31	0.00	0.09142	1.4	0.7390	1.7	0.05863	1.0	0.81	564	7	562	7	553	21	102
BB16-4	14731	5471	491	0.28	0.01	0 09167	14	0 7492	17	0.05927	0.9	0.82	565	7	568	7	577	21	98
BB16-5	19335	5004	447	0.32	0.10	0.09059	14	0 7341	17	0.05877	0.9	0.83	559	7	559	7	559	20	100
BB16-6	19147	5239	457	0.31	0.02	0.08847	14	0 7204	1.6	0.05905	0.8	0.86	546	7	551	7	569	18	96
BB16-7	17506	5087	454	0.32	0.02	0.09050	14	0 7368	17	0.05905	0.9	0.83	558	8	561	7	569	20	98
BB16-8	18202	5608	502	0.30	0.11	0.09112	14	0 7394	1.6	0.05885	0.8	0.88	562	8	562	7	562	17	100
BB16-9	17249	5210	465	0.32	0.00	0.09052	14	0 7416	1.6	0.05942	0.9	0.85	559	7	563	7	583	19	96
BB16-10	16662	5166	465	0.32	0.00	0.00119	1.1	0 7498	1.0	0.05963	1.0	0.81	563	8	568	7	590	22	95
BB16-11	15400	5189	464	0.31	0.00	0.09074	1.1	0 7422	1.7	0.05932	1.0	0.79	560	7	564	8	579	23	97
BB16-12	15617	5202	466	0.32	b.00	0.09082	1.1	0 7404	1.0	0.05913	0.9	0.83	560	7	563	7	572	20	98
BB16-13	12574	4289	385	0.31	b.d.	0.00112	1.1	0 7380	1.7	0.05874	0.0	0.83	562	7	561	7	557	20	101
	12071	1200	000	0.01	D.	0.00112		0.1000	1.0	0.0007 1	0.0	0.00	002		001	,	001	20	101
Seq.2																			
, Pleso-01	41966	21077	1096	0.18	0.14	0.05471	1.0	0.4036	1.2	0.05351	0.6	0.85	343	3	344	4	350	15	98
Pleso-02	40803	18094	947	0.20	0.71	0.05426	1.1	0.3968	2.3	0.05304	2.0	0.47	341	4	339	7	330	46	103
Pleso-03	36733	19273	985	0.19	0.10	0.05373	1.1	0.3919	1.2	0.05290	0.6	0.88	337	4	336	3	325	13	104
Pleso-04	37351	19504	1010	0.20	0.14	0.05448	1.1	0.4005	1.3	0.05332	0.8	0.82	342	4	342	4	342	17	100
Pleso-05	35210	18668	954	0.20	b.d.	0.05364	1.1	0.3928	1.3	0.05311	0.8	0.82	337	4	336	4	333	17	101
Pleso-06	34759	18762	977	0.20	0.19	0.05471	1.1	0.4036	1.4	0.05351	0.8	0.79	343	4	344	4	350	19	98
Pleso-07	34602	19160	982	0.20	b.d.	0.05386	1.1	0.3961	1.3	0.05334	0.6	0.86	338	4	339	4	343	15	99
Pleso-08	32719	18352	930	0.20	b.d.	0.05319	1.2	0.3892	1.4	0.05307	0.7	0.85	334	4	334	4	332	17	101
Pleso-09	33495	18896	953	0.20	b.d.	0.05298	1.1	0.3898	1.3	0.05336	0.7	0.85	333	4	334	4	344	15	97
Pleso-10	30845	17070	874	0.21	b.d.	0.05365	1.1	0.3967	1.3	0.05363	0.8	0.81	337	3	339	4	356	17	95
Pleso-11	27316	17055	801	0.20	0.00	0.04931	1.1	0.3640	1.4	0.05354	0.8	0.82	310	3	315	4	352	18	88
Pleso-12	29334	16937	867	0.21	0.26	0.05367	1.2	0.3952	1.5	0.05340	0.9	0.79	337	4	338	4	346	21	97
Pleso-13	35935	17731	911	0.20	1.65	0.05294	1.1	0.3901	3.2	0.05345	3.0	0.35	333	4	334	9	348	67	96
Pleso-14	33275	19651	1001	0.20	b.d.	0.05348	1.2	0.3951	1.3	0.05358	0.7	0.86	336	4	338	4	353	15	95
BB16-1	22924	5769	524	0.34	0.07	0.09208	1.1	0.7480	2.6	0.05892	2.3	0.43	568	6	567	11	564	50	101
BB16-2	19468	5318	478	0.35	0.29	0.09116	1.1	0.7375	3.1	0.05868	2.9	0.36	562	6	561	13	555	63	101
BB16-3	17271	5089	455	0.35	0.18	0.09055	1.1	0.7347	1.5	0.05884	1.1	0.72	559	6	559	7	561	23	100
BB16-4	18041	5421	492	0.45	b.d.	0.09039	1.1	0.7411	2.3	0.05947	2.0	0.49	558	6	563	10	584	43	95

Table S3 (cont.): Results of LA-ICP-MS U–Pb analyses of zircon standards performed during the sessions at GUF

grain	²⁰⁷ Pb ^a	U ^Ϸ	Pb [⊳]	Th⁵	²⁰⁶ Pbc ^c	²⁰⁶ Pb ^d	±2σ	²⁰⁷ Pb ^d	±2σ	²⁰⁷ Pb ^d	±2σ	rho ^e	²⁰⁶ Pb	±2σ	²⁰⁷ Pb	±2σ	²⁰⁷ Pb	±2σ (conc. [†]
-	(cps)	(ppm)	(ppm)	U	(%)	²³⁸ U	(%)	²³⁵ U	(%)	²⁰⁶ Pb	(%)		²³⁸ U	(Ma)	²³⁵ U	(Ma)	²⁰⁶ Pb	(Ma)	(%)
BB16-5	20108	5355	485	0.35	b.d.	0.09172	1.1	0.7477	1.5	0.05912	1.1	0.72	566	6	567	7	572	23	99
BB16-6	20313	5574	501	0.34	b.d.	0.09116	1.1	0.7434	1.4	0.05914	0.8	0.79	562	6	564	6	572	18	98
BB16-7	20668	5886	523	0.35	0.15	0.09008	1.1	0.7315	1.4	0.05890	0.8	0.80	556	6	557	6	563	18	99
BB16-8	19610	5637	506	0.35	0.01	0.09101	1.1	0.7401	1.3	0.05898	0.8	0.83	561	6	562	6	566	16	99
BB16-9	19025	5573	494	0.35	0.18	0.08977	1.1	0.7295	1.4	0.05894	0.9	0.78	554	6	556	6	565	19	98
BB16-10	19577	5695	510	0.36	0.40	0.09086	1.1	0.7336	3.4	0.05856	3.2	0.32	561	6	559	15	551	70	102
BB16-11	18476	5593	498	0.35	b.d.	0.09040	1.1	0.7377	1.4	0.05918	0.9	0.77	558	6	561	6	574	20	97
BB16-12	18840	5670	506	0.36	0.16	0.09037	1.1	0.7356	1.5	0.05903	0.9	0.76	558	6	560	6	568	21	98
BB16-13	18033	5700	515	0.35	b.d.	0.09165	1.1	0.7445	1.4	0.05891	0.9	0.79	565	6	565	6	564	19	100

Spot size = 30µm; depth of crater ~20µm. ²⁰⁶Pb/²³⁸U error is the quadratic additions of the within run precision (2 SE) and the external reproducibility (2 SD) of the reference zircon.

²⁰⁷Pb/²⁰⁶Pb error propagation (²⁰⁷Pb signal dependent) following Gerdes & Zeh (2009).²⁰⁷Pb/²³⁵U error is the quadratic addition of the ²⁰⁷Pb/²⁰⁶Pb and ²⁰⁶Pb/²³⁸U uncertainty.

^aWithin run background-corrected mean ²⁰⁷Pb signal in cps (counts per second).

^b U and Pb content and Th/U ratio were calculated relative to GJ-1 reference zircon.

^c percentage of the common Pb on the ²⁰⁶Pb. b.d. = below dectection limit.

^d corrected for background, within-run Pb/U fractionation (in case of²⁰⁶Pb/²³⁸U) and subsequently normalised to GJ-1 (ID-TIMS value/measured value);

²⁰⁷Pb/²³⁵U calculated using ²⁰⁷Pb/²⁰⁶Pb/(²³⁸U/²⁰⁶Pb*1/137.88)

^e rho is the ²⁰⁶Pb/²³⁸U/²⁰⁷Pb/²³⁵U error correlation coefficient.

^fdegree of concordance = ²⁰⁶Pb/²³⁸U age / ²⁰⁷Pb/²⁰⁶Pb age x 100

grain	²⁰⁷ Pb ^a	U^{b}	Pb ^b	<u>Th</u> ^b	²⁰⁶ Pbc ^c	²⁰⁶ Pb ^d	±2s	²⁰⁷ Pb ^d	±2s	²⁰⁷ Pb ^d	±2s	rho ^e	²⁰⁶ Pb	±2s	²⁰⁷ Pb	±2s	²⁰⁷ Pb	±2s c	onc. ^f
-	(cps)	(ppm)	(ppm)	U	(%)	²³⁸ U	(%)	²³⁵ U	(%)	²⁰⁶ Pb	(%)		²³⁸ U	(Ma)	²³⁵ U	(Ma)	²⁰⁶ Pb	(Ma)	(%)
Seq.1																			
RV-1 Rive	rie tonalit	е																	
a585	8430	2826	204	0.19	0.51	0.07213	1.7	0.6911	2.1	0.06949	1.3	0.80	449	7	533	9	913	26	49
a586	10989	3594	309	0.33	0.52	0.08485	1.4	0.7847	1.8	0.06707	1.2	0.78	525	7	588	8	840	24	63
a587	5431	1877	158	0.24	0.80	0.08644	1.8	0.7115	2.2	0.05969	1.3	0.80	534	9	546	9	593	29	90
a588	5922	2264	182	0.27	0.42	0.08220	1.9	0.6633	2.3	0.05852	1.2	0.85	509	9	517	9	549	26	93
a589	9900	4484	281	0.11	0.83	0.06550	1.6	0.5542	1.9	0.06136	1.1	0.83	409	6	448	7	652	23	63
a590	6832	2423	201	0.17	0.25	0.08686	1.6	0.7028	2.4	0.05869	1.7	0.68	537	8	540	10	556	38	97
a595	6912	1986	171	0.26	b.d.	0.08865	1.8	0.7287	2.2	0.05962	1.3	0.80	548	9	556	9	590	29	93
a596	4811	1127	95	0.18	b.d.	0.08795	2.2	0.7001	2.7	0.05774	1.6	0.81	543	11	539	11	520	35	105
a598	9600	3426	288	0.17	0.31	0.08827	1.5	0.7162	1.9	0.05885	1.2	0.78	545	8	548	8	562	26	97
Seq.2																			
RV-1 Rive	rie tonalit	е																	
a06	9688	2655	222	0.18	b.d.	0.08766	1.1	0.7075	1.8	0.05854	1.4	0.63	542	6	543	8	550	31	99
a08	18090	4995	426	0.25	b.d.	0.08814	1.2	0.7159	1.7	0.05891	1.3	0.68	545	6	548	7	564	28	97
a09	6981	1930	166	0.29	b.d.	0.08847	1.3	0.7186	1.9	0.05891	1.4	0.67	547	7	550	8	564	31	97
a10	25713	7190	622	0.45	0.12	0.08625	1.1	0.7012	1.3	0.05896	0.7	0.83	533	6	539	5	566	16	94
a11	20421	6176	496	0.20	0.60	0.08348	1.1	0.6864	1.7	0.05963	1.3	0.67	517	6	531	7	590	27	88
a12	24433	6250	491	0.14	0.30	0.08257	1.4	0.6855	1.9	0.06021	1.2	0.75	511	7	530	8	611	26	84
a13	13206	3800	323	0.26	0.22	0.08766	1.3	0.7219	1.9	0.05973	1.3	0.72	542	7	552	8	594	28	91
a14	53651	14479	901	0.16	3.07	0.05980	1.6	0.6609	7.8	0.08015	7.7	0.20	374	6	515	32	1201	151	31
a15	14078	3741	330	0.38	0.11	0.08869	1.1	0.7250	1.5	0.05929	1.0	0.73	548	6	554	6	578	22	95
a16	23141	6227	388	0.14	2.51	0.06080	1.4	0.6388	3.4	0.07619	3.1	0.40	381	5	502	14	1100	62	35
a17	5766	1552	133	0.24	b.d.	0.08882	1.2	0.7193	1.9	0.05874	1.5	0.60	549	6	550	8	557	34	98
a18	11666	3173	268	0.16	0.37	0.08893	1.1	0.7145	1.6	0.05827	1.2	0.67	549	6	547	7	540	26	102
a19	26879	7211	636	0.43	0.34	0.08793	1.1	0.7199	1.5	0.05938	1.0	0.76	543	6	551	6	581	21	93
a20	8492	2252	193	0.34	b.d.	0.08675	1.9	0.6913	2.3	0.05780	1.4	0.80	536	10	534	10	522	31	103
a21	15679	4029	342	0.18	b.d.	0.08871	1.2	0.7193	1.5	0.05881	0.9	0.81	548	6	550	6	560	19	98
a22	18932	4363	397	0.33	0.73	0.08880	1.3	0.8837	2.8	0.07218	2.5	0.45	548	7	643	14	991	51	55
a23	12437	3210	271	0.20	0.13	0.08753	1.2	0.7460	2.1	0.06181	1.7	0.57	541	6	566	9	668	37	81
a24	13707	3788	320	0.18	D.d.	0.08846	1.4	0.7163	2.2	0.05873	1.8	0.61	546	1	548	9	557	39	98
a25	10735	3021	255	0.21	0.20	0.08822	1.1	0.7120	1.5	0.05853	1.0	0.73	545	6	546	6	550	23	99
a26	20787	0000	425	0.52	1.34	0.06922	1.4	0.6544	2.5	0.06857	2.1	0.55	431	6	511	10	880	43	49
a30	7549	2271	180	0.17	0.19	0.08321	1.2	0.6680	1.9	0.05822	1.5	0.62	515	0	519	8	538	32	96
a31	12129	3529	300	0.23	0.08	0.08827	1.3	0.7193	1.9	0.05910	1.3	0.70	545	1	550	8	5/1	29	96
a39	9017	2542	219	0.35	0.56	0.08744	1.2	0.7084	1.9	0.05876	1.5	0.60	540	6	544	8	558	34	97
a40	10520	5210	270	0.30	0.05	0.00004	1.1	0.7132	1.0	0.05675	1.2	0.09	544	0	547	1	550	20	97
a4 I	19000	2403	449	0.20	0.14	0.00474	1.1	0.0079	1.5	0.00000	1.0	0.75	524	0	53Z	0	502	21	93
a42	16093	1940	201	0.24	0.17	0.00771	1.1	0.7109	1.9	0.00920	1.5	0.02	04Z	0 E	040 575	0 7	5/4 552	১∠ ১৮	94
a43	15084	4000	370	0.22	0.37 b.d	0.00/91	1.1	0.7172	1.0	0.00009	1.2	0.07	535	0	540	í Q	552 607	20 21	90
a44 045	10901	440J 3444	284	0.20	D.u.	0.00001	1.1	0.6917	1.0	0.00011	1.4	0.01	519	6	528	0	570	30	00
a40 a16	12941 22220	6172	204 520	0.00	0.02	0.00007	1.2	0.0017	∠.1 15	0.00909	1.0	0.00	520	6	520 5/7	9	583	10	03
a40 a47	12283	3383	296	0.24	0.37	0.08575	1.1	0.7361	1.8	0.06226	1.5	0.62	530	6	560	8	683	31	53 78

Table S4: Results of LA-ICP-MS zircon U–Pb analyses performed during the sessions at GUF

Table S4 (cont.): Results of LA-ICP-MS zircon U-Pb analyses performed during the sessions at GUF

grain	²⁰⁷ Pb ^a	U ^b	Pb⁵	<u>Th</u> ^b	²⁰⁶ Pbc ^c	²⁰⁶ Pb ^d	±2s	²⁰⁷ Pb ^d	±2s	²⁰⁷ Pb ^d	±2s	rho ^e	²⁰⁶ Pb	±2s	²⁰⁷ Pb	±2s	²⁰⁷ Pb	±2s (conc. ^f
	(cps)	(ppm)	(ppm)	U	(%)	²³⁸ U	(%)	²³⁵ U	(%)	²⁰⁶ Pb	(%)		²³⁸ U	(Ma)	²³⁵ U	(Ma)	²⁰⁶ Pb	(Ma)	(%)
RV-2 Rive	rie tonalit	e																	
a48	25583	6386	548	0.35	b.d.	0.08671	1.2	0.7024	1.4	0.05875	0.8	0.83	536	6	540	6	558	17	96
a49	23129	6639	560	0.30	0.13	0.08650	1.0	0.7019	1.3	0.05885	0.8	0.80	535	5	540	5	561	17	95
a50	20688	6456	491	0.23	0.82	0.07800	1.1	0.7203	2.4	0.06697	2.1	0.48	484	5	551	10	837	43	58
a52	9945	2884	242	0.15	b.d.	0.08845	1.3	0.7166	1.7	0.05876	1.2	0.74	546	7	549	7	558	25	98
a53	12588	3570	296	0.16	b.d.	0.08760	1.3	0.7100	1.6	0.05878	1.1	0.76	541	7	545	7	559	23	97
a54	14985	6119	503	0.17	0.10	0.08675	1.1	0.6978	1.6	0.05834	1.2	0.68	536	6	537	7	543	25	99
a55	8856	2546	213	0.15	b.d.	0.08831	1.3	0.7163	1.9	0.05882	1.3	0.72	546	7	548	8	561	29	97
a56	9125	1713	143	0.35	b.d.	0.08398	1.3	0.6815	1.8	0.05885	1.3	0.72	520	6	528	7	562	27	93
a57	9625	2758	235	0.20	0.15	0.08902	1.4	0.7256	2.0	0.05912	1.5	0.68	550	7	554	9	571	32	96
a58	28610	7910	688	0.31	0.15	0.08861	1.2	0.7425	1.5	0.06078	0.8	0.82	547	6	564	6	631	18	87
a59	21735	6533	537	0.25	b.d.	0.08519	1.2	0.6896	1.9	0.05871	1.4	0.67	527	6	533	8	556	30	95
a60	17491	5636	392	0.37	0.31	0.07033	1.6	0.5948	2.1	0.06134	1.4	0.74	438	7	474	8	651	31	67
a61	20187	5762	488	0.29	b.d.	0.08716	1.1	0.7050	1.4	0.05867	0.9	0.78	539	6	542	6	555	19	97
a62	7942	2271	194	0.25	0.82	0.08874	1.4	0.7105	2.2	0.05807	1.7	0.64	548	7	545	9	532	36	103
a63	16612	4685	399	0.22	0.03	0.08877	1.2	0.7183	1.5	0.05869	0.8	0.83	548	6	550	6	556	18	99
a64	7247	2086	178	0.29	0.27	0.08795	1.2	0.7041	2.3	0.05806	1.9	0.53	543	6	541	10	532	42	102
a65	41973	18749	990	0.02	0.11	0.05764	1.2	0.4285	1.4	0.05392	0.7	0.85	361	4	362	4	368	17	98
a66	48222	14744	771	0.04	0.38	0.05638	1.3	0.4369	1.6	0.05620	1.0	0.78	354	4	368	5	460	22	77
a72	17516	5068	435	0.25	b.d.	0.08880	1.2	0.7124	1.6	0.05819	1.1	0.74	548	6	546	7	537	23	102
a73	18478	5346	442	0.20	b.d.	0.08649	1.1	0.6985	1.4	0.05857	0.9	0.77	535	5	538	6	551	19	97
a74	10193	2954	245	0.17	0.48	0.08726	1.3	0.7060	2.0	0.05869	1.6	0.64	539	7	542	9	555	34	97
a75	20755	6060	513	0.23	0.18	0.08812	1.2	0.7119	1.5	0.05859	0.9	0.79	544	6	546	6	552	19	99
a76	17379	5120	440	0.34	0.19	0.08738	1.1	0.7001	1.5	0.05811	0.9	0.76	540	6	539	6	534	21	101
a79	8186	2395	202	0.21	b.d.	0.08814	1.2	0.7185	1.9	0.05912	1.4	0.65	545	6	550	8	571	31	95
a80	25436	7531	634	0.26	b.d.	0.08716	1.2	0.6972	1.4	0.05802	0.7	0.85	539	6	537	6	531	16	102
a81	17242	4824	399	0.25	b.d.	0.08547	1.1	0.6878	1.3	0.05837	0.8	0.79	529	5	531	6	543	18	97
a82	16995	5061	425	0.21	0.01	0.08761	1.2	0.7054	1.5	0.05840	1.0	0.77	541	6	542	6	545	21	99
a83	11907	3319	284	0.30	0.34	0.08768	1.4	0.7059	1.9	0.05840	1.2	0.76	542	7	542	8	545	26	99
a84	12669	3718	305	0.16	b.d.	0.08638	1.2	0.7084	1.5	0.05949	1.0	0.76	534	6	544	6	585	22	91
a85	17119	4992	419	0.24	b.d.	0.08704	1.2	0.6986	1.5	0.05821	1.0	0.76	538	6	538	6	538	22	100
a86	17862	4978	425	0.24	0.07	0.08812	1.3	0.7175	1.6	0.05905	0.9	0.81	544	7	549	7	569	20	96
a88	15424	2921	249	0.20	0.48	0.08903	1.3	0.7186	1.8	0.05854	1.3	0.70	550	7	550	8	550	28	100
a89	13516	5457	438	0.13	b.d.	0.08513	1.3	0.6858	1.8	0.05843	1.2	0.74	527	7	530	8	546	27	96

Spot size = $30\mu m$; depth of crater ~ $20\mu m$. ²⁰⁶Pb/²³⁸U error is the quadratic additions of the within run precision (2 SE)

and the external reproducibility (2 SD) of the reference zircon.

²⁰⁷Pb/²⁰⁶Pb error propagation (²⁰⁷Pb signal dependent) following Gerdes & Zeh (2009). ²⁰⁷Pb/²³⁵U error is the quadratic addition of the ²⁰⁷Pb/²⁰⁶Pb and ²⁰⁶Pb/²³⁸U uncertainty. ^aWithin run background-corrected mean ²⁰⁷Pb signal in cps (counts per second).

^b U and Pb content and Th/U ratio were calculated relative to GJ-1 reference zircon.

 $^{\circ}$ percentage of the common Pb on the 206 Pb. b.d. = below dectection limit.

^d corrected for background, within-run Pb/U fractionation (in case of ²⁰⁶Pb/²³⁸U), common Pb using Stacy and Kramers (1975) model Pb composition (specified by a *,

see text for discussion) and subsequently normalised to GJ-1 (ID-TIMS value/measured value); ²⁰⁷Pb/²³⁵U calculated using ²⁰⁷Pb/²⁰⁶Pb/(²³⁸U/²⁰⁶Pb*1/137.88)

 e rho is the $^{206}\text{Pb}/^{238}\text{U}/^{207}\text{Pb}/^{235}\text{U}$ error correlation coefficient.

 $^{\rm f}$ degree of concordance = $~^{206}{\rm Pb}/^{238}{\rm U}$ age / $^{207}{\rm Pb}/^{206}{\rm Pb}$ age x 100

Table S5: Results of LA-MC-ICP-MS Lu–Hf anal	vses of zircon standards	performed during	the session at GUF

	Spot size	¹⁷⁶ Yb ^a	±2σ	¹⁷⁶ Lu ^a	±2σ	¹⁷⁸ Hf	±2σ	¹⁸⁰ Hf	±2σ	Sig _{Hf} ^b	¹⁷⁶ Hf	±2σ	¹⁷⁶ Hf ^c	εHf _(t) ^c	±2σ
	(µm)	¹⁷⁷ Hf	(abs.)	¹⁷⁷ Hf	(abs.)	¹⁷⁷ Hf	(abs.)	¹⁷⁷ Hf	(abs.)	(V)	¹⁷⁷ Hf	(abs.)	¹⁷⁷ Hf _(t)		(abs.)
GJ-1															
GJ1-40-12Jcm_1	40	0.0084	0.0007	0.00025	0.00003	1.46720	0.00005	1.88668	0.00010	11	0.281977	0.000033	0.281974	-15.3	1.2
GJ1-40-12Jcm_2	40	0.0080	0.0006	0.00027	0.00002	1.46725	0.00004	1.88639	0.00015	8	0.282005	0.000031	0.282002	-14.3	1.1
GJ1-40-12Jcm_3	40	0.0080	0.0006	0.00026	0.00002	1.46723	0.00007	1.88633	0.00016	8	0.282014	0.000029	0.282011	-14.0	1.0
GJ1-40-12Jcm_4	40	0.0080	0.0006	0.00027	0.00002	1.46722	0.00006	1.88630	0.00012	9	0.282027	0.000033	0.282024	-13.5	1.2
GJ1-40-12Jcm_5	40	0.0076	0.0006	0.00026	0.00002	1.46727	0.00006	1.88650	0.00019	7	0.282001	0.000034	0.281998	-14.4	1.2
GJ1-40-12Jcm_6	40	0.0076	0.0006	0.00026	0.00002	1.46725	0.00006	1.88663	0.00017	8	0.282016	0.000033	0.282013	-13.9	1.2
GJ1-40-12Jcm_7	40	0.0078	0.0006	0.00026	0.00002	1.46724	0.00007	1.88635	0.00014	7	0.282020	0.000030	0.282017	-13.8	1.0
GJ1-40-12Jcm_8	40	0.0078	0.0006	0.00025	0.00002	1.46727	0.00004	1.88626	0.00013	8	0.282026	0.000029	0.282023	-13.6	1.0
GJ1-40-12Jcm_9	40	0.0078	0.0006	0.00025	0.00001	1.46729	0.00006	1.88630	0.00014	8	0.282021	0.000033	0.282018	-13.7	1.2
GJ1-40-12Jcm_10	40	0.0078	0.0006	0.00025	0.00002	1.46734	0.00006	1.88652	0.00014	8	0.282021	0.000032	0.282018	-13.7	1.1
GJ1-40-12Jcm_11	40	0.0078	0.0006	0.00025	0.00002	1.46729	0.00005	1.88632	0.00012	8	0.282013	0.000036	0.282010	-14.0	1.3
GJ1-40-12Jcm_12	40	0.0076	0.0006	0.00025	0.00002	1.46718	0.00006	1.88642	0.00011	8	0.282005	0.000040	0.282002	-14.3	1.4
GJ1-40-12Jcm_13	40	0.0077	0.0006	0.00025	0.00001	1.46727	0.00005	1.88655	0.00015	7	0.282023	0.000034	0.282020	-13.7	1.2
GJ1-40-12Jcm_14	40	0.0074	0.0006	0.00025	0.00001	1.46729	0.00006	1.88618	0.00011	8	0.282027	0.000030	0.282024	-13.5	1.1
GJ1-40-12Jcm_15	40	0.0072	0.0006	0.00025	0.00001	1.46729	0.00005	1.88626	0.00013	8	0.282021	0.000033	0.282018	-13.7	1.2
GJ1-40-12Jcm_16	40	0.0074	0.0006	0.00025	0.00001	1.46720	0.00005	1.88627	0.00014	7	0.282013	0.000031	0.282010	-14.0	1.1
GJ1-40-12Jcm_17	40	0.0073	0.0006	0.00025	0.00001	1.46729	0.00006	1.88623	0.00012	7	0.282016	0.000036	0.282014	-13.9	1.3
GJ1-40-12Jcm_18	40	0.0073	0.0006	0.00024	0.00001	1.46723	0.00005	1.88613	0.00015	7	0.282029	0.000037	0.282026	-13.5	1.3
GJ1-40-12Jcm_19	40	0.0073	0.0006	0.00024	0.00001	1.46732	0.00006	1.88638	0.00013	6	0.282027	0.000033	0.282025	-13.5	1.2
GJ1-40-12Jcm_20	40	0.0072	0.0006	0.00024	0.00001	1.46722	0.00006	1.88643	0.00014	6	0.281989	0.000034	0.281987	-14.8	1.2
GJ1-60-12Jcm_1	60	0.0074	0.0006	0.00024	0.00001	1.46724	0.00004	1.88649	0.00010	14	0.282020	0.000027	0.282017	-13.8	0.9
GJ1-60-12Jcm_2	60	0.0074	0.0006	0.00024	0.00001	1.46721	0.00004	1.88661	0.00008	15	0.282005	0.000026	0.282003	-14.3	0.9
Average		0.0076		0.00025		1.46725		1.88639			0.282014		0.282012	-14.0	
2 S.E. (abs.)		0.0006		0.00002		0.00008		0.00030			0.000026		0.000026	0.9	
2 S.E. (%)		8		7		0.006		0.02			0.0093		0.0093		
Reference value													0.282000	± 23	
Plešovice															
Pleso-40-12Jcm 1	40	0.0066	0.0005	0.00014	0.00001	1.46722	0.00006	1.88643	0.00012	10	0.282472	0.000031	0.282471	-3.6	1.1
Pleso-40-12Jcm 2	40	0.0071	0.0006	0.00015	0.00001	1.46723	0.00004	1.88653	0.00011	11	0.282483	0.000031	0.282482	-3.2	1.1
Pleso-40-12Jcm 3	40	0.0072	0.0006	0.00015	0.00001	1.46728	0.00006	1.88646	0.00012	11	0.282474	0.000032	0.282473	-3.5	1.1
Pleso-40-12Jcm 4	40	0.0071	0.0006	0.00014	0.00001	1.46727	0.00004	1.88662	0.00009	12	0.282470	0.000029	0.282469	-3.7	1.0
Pleso-40-12Jcm 5	40	0.0070	0.0006	0.00014	0.00001	1.46726	0.00004	1.88652	0.00011	12	0.282484	0.000028	0.282483	-3.2	1.0
Pleso-40-12Jcm 6	40	0.0070	0.0006	0.00014	0.00001	1.46727	0.00005	1.88655	0.00011	12	0.282480	0.000030	0.282479	-3.3	1.0
Pleso-40-12Jcm 7	40	0.0068	0.0005	0.00014	0.00001	1.46724	0.00005	1.88644	0.00013	11	0.282478	0.000029	0.282477	-3.4	1.0
Pleso-40-12Jcm_8	40	0.0069	0.0006	0.00014	0.00001	1.46721	0.00005	1.88652	0.00012	11	0.282485	0.000028	0.282484	-3.1	1.0

Table S5 (cont.): Results of LA-MC-ICP-MS Lu–Hf analyses of zircon standards performed during the session at GUF

	Spot size	¹⁷⁶ Yb ^a	±2σ	¹⁷⁶ Lu ^a	±2σ	¹⁷⁸ Hf	±2σ	¹⁸⁰ Hf	±2σ	Sig _{Hf} ^b	¹⁷⁶ Hf	±2σ	<u>¹⁷⁶Hf</u> ^c	εHf _(t) ^c	±2σ
	(µm)	¹⁷⁷ Hf	(abs.)	¹⁷⁷ Hf	(abs.)	¹⁷⁷ Hf	(abs.)	¹⁷⁷ Hf	(abs.)	(V)	¹⁷⁷ Hf	(abs.)	$^{177}Hf_{(t)}$		(abs.)
Pleso-40-12Jcm_9	40	0.0063	0.0005	0.00013	0.00001	1.46721	0.00005	1.88632	0.00011	10	0.282486	0.000032	0.282485	-3.1	1.1
Pleso-40-12Jcm_10	40	0.0064	0.0005	0.00012	0.00002	1.46722	0.00005	1.88652	0.00009	10	0.282472	0.000028	0.282471	-3.6	1.0
Pleso-40-12Jcm_11	40	0.0069	0.0005	0.00014	0.00001	1.46722	0.00004	1.88625	0.00010	10	0.282478	0.000028	0.282477	-3.4	1.0
Pleso-40-12Jcm_12	40	0.0067	0.0006	0.00014	0.00001	1.46728	0.00005	1.88643	0.00012	10	0.282483	0.000030	0.282482	-3.2	1.1
Pleso-40-12Jcm_13	40	0.0067	0.0005	0.00014	0.00001	1.46725	0.00006	1.88637	0.00012	10	0.282473	0.000027	0.282472	-3.5	1.0
Pleso-40-12Jcm_14	40	0.0063	0.0005	0.00013	0.00001	1.46726	0.00004	1.88640	0.00010	11	0.282487	0.000031	0.282486	-3.1	1.1
Average		0.0068		0.00014		1.46724		1.88645			0.282479		0.282478	-3.3	
2 S.E. (abs.)		0.0006		0.00002		0.00005		0.00020			0.000012		0.000012	0.4	
2 S.E. (%)		9		12		0.004		0.01			0.0041		0.0041		
Reference value													0.282482	± 13	
Temora															
TM-40-12Jcm_1	40	0.0190	0.0027	0.00066	0.00008	1.46746	0.00013	1.88586	0.00043	9	0.282710	0.000046	0.282705	6.5	1.6
TM-40-12Jcm_2	40	0.0391	0.0033	0.00130	0.00008	1.46717	0.00004	1.88639	0.00012	9	0.282692	0.000034	0.282682	5.7	1.2
TM-40-12Jcm_3	40	0.0408	0.0034	0.00130	0.00008	1.46726	0.00005	1.88636	0.00014	9	0.282688	0.000031	0.282678	5.5	1.1
TM-40-12Jcm_4	40	0.0416	0.0041	0.00128	0.00010	1.46719	0.00004	1.88649	0.00013	9	0.282695	0.000030	0.282685	5.8	1.1
TM-40-12Jcm_5	40	0.0282	0.0025	0.00093	0.00006	1.46727	0.00007	1.88642	0.00016	9	0.282684	0.000030	0.282677	5.5	1.0
TM-40-12Jcm_6	40	0.0240	0.0019	0.00078	0.00005	1.46733	0.00008	1.88626	0.00024	9	0.282715	0.000040	0.282709	6.6	1.4
TM-40-12Jcm_7	40	0.0190	0.0015	0.00066	0.00004	1.46727	0.00007	1.88633	0.00013	7	0.282702	0.000034	0.282697	6.2	1.2
TM-40-12Jcm_8	40	0.0196	0.0017	0.00061	0.00004	1.46731	0.00006	1.88632	0.00014	8	0.282695	0.000031	0.282690	6.0	1.1
TM-40-12Jcm_9	40	0.0190	0.0015	0.00066	0.00004	1.46725	0.00007	1.88631	0.00012	7	0.282696	0.000030	0.282691	6.0	1.1
TM-40-12Jcm_10	40	0.0152	0.0013	0.00053	0.00004	1.46723	0.00004	1.88623	0.00011	8	0.282682	0.000033	0.282678	5.6	1.2
TM-40-12Jcm_11	40	0.0161	0.0014	0.00055	0.00004	1.46728	0.00007	1.88632	0.00016	7	0.282682	0.000036	0.282678	5.5	1.3
TM-40-12Jcm_12	40	0.0249	0.0021	0.00090	0.00006	1.46738	0.00010	1.88620	0.00027	8	0.282701	0.000041	0.282694	6.1	1.4
Average		0.0255		0.00085		1.46728		1.88629			0.282695		0.282689	5.9	
2 S.E. (abs.)		0.0195		0.00059		0.00016		0.00031			0.000021		0.000022	0.8	
2 S.E. (%)		76		70		0.011		0.02			0.0075		0.0078		
Reference value													0.282686	± 8	

(a) 176 Yb/ 177 Hf = $({}^{176}$ Yb/ 173 Yb)_{true} x $({}^{173}$ Yb/ 177 Hf)_{meas} x $(M_{173(Yb)}/M_{177(Hf)})^{b(Hf)}$, b(Hf) = ln(179 Hf/ 177 Hf $_{true}$ / 179 Hf/ 177 Hf $_{measured}$)/ ln $(M_{179(Hf)})/M_{177(Hf)}$), M=mass of respective isotope. The 176 Lu/ 177 Hf were calculated in a similar way by using the 175 Lu/ 177 Hf and b(Yb). (b) Mean Hf signal in volt.

(c) Initial ¹⁷⁶Hf/¹⁷⁷Hf and eHf calculated using the reference age for each zircon standard, and the CHUR

parameters: ${}^{176}Lu/{}^{177}Hf = 0.0336$, and ${}^{176}Hf/{}^{177}Hf = 0.282785$ (Bouvier *et al*., 2008).

The spots are labelled as RVX-N(-U) with "RVX" the sample name, "N" the Lu-Hf analysis number, "U" the U-Pb analytical spot closest to the domain analysed.

		mou uc	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(0) mit			inple file	1110, T T		a in ana	yolo han	1001,	0 1		o analy					inani anc	ilyoou.	
	¹⁷⁶ Yb ^a	±2σ	¹⁷⁶ Lu ^a	±2σ	¹⁷⁸ Hf	±2σ	¹⁸⁰ Hf	±2σ	Sig _{Hf} ^b	¹⁷⁶ Hf	±2σ	Date	±2σ	Conc.	¹⁷⁶ Hf ^c	εHf _(app) ^c	±2σ	Int. age	±2σ	¹⁷⁶ Hf ^d	εHf _(t) d	±2σ
	¹⁷⁷ Hf	(abs.)	¹⁷⁷ Hf	(abs.)	¹⁷⁷ Hf	(abs.)	¹⁷⁷ Hf	(abs.)	(V)	¹⁷⁷ Hf	(abs.)	(Ma)	(Ma)	(%)	¹⁷⁷ Hf _{App}		(abs.)	(Ma)	(Ma)	¹⁷⁷ Hf _(t int)		(abs.)
														λ =	1.87E-11							
RV1-12a-a09	0.0271	0.0023	0.00092	0.00006	1.46719	0.00007	1.88641	0.00019	6	0.282759	0.000041	547	7	97	0.282749	11.0	1.5	546	5	0.282749	10.9	1.5
RV1-16a-a18	0.0145	0.0013	0.00053	0.00003	1.46716	0.00006	1.88662	0.00017	6	0.282757	0.000035	549	6	102	0.282752	11.1	1.2	546	5	0.282752	11.0	1.2
RV1-20a-a24	0.0201	0.0023	0.00076	0.00008	1.46737	0.00014	1.88620	0.00051	6	0.282748	0.000056	546	7	98	0.282740	10.6	2.0	546	5	0.282740	10.6	2.0
RV1-23a-a25	0.0287	0.0024	0.00100	0.00006	1.46717	0.00007	1.88623	0.00021	6	0.282755	0.000045	545	6	99	0.282744	10.7	1.6	546	5	0.282744	10.7	1.6
RV1-28a-a31	0.0232	0.0020	0.00089	0.00006	1.46716	0.00005	1.88674	0.00014	7	0.282750	0.000035	547	7	96	0.282741	10.6	1.2	546	5	0.282741	10.6	1.2
RV1-28b-a39	0.0343	0.0032	0.00117	0.00009	1.46723	0.00007	1.88682	0.00015	7	0.282761	0.000036	540	6	97	0.282749	10.8	1.3	546	5	0.282749	10.9	1.3
RV1-30a-a40	0.0237	0.0019	0.00092	0.00006	1.46705	0.00007	1.88675	0.00018	5	0.282749	0.000046	544	6	97	0.282740	10.6	1.6	546	5	0.282740	10.6	1.6
RV1-30b-a42	0.0231	0.0019	0.00085	0.00005	1.46724	0.00012	1.88677	0.00034	6	0.282742	0.000041	542	6	94	0.282733	10.3	1.5	546	5	0.282733	10.4	1.5
RV1-33a-a43	0.0282	0.0026	0.00104	0.00007	1.46712	0.00011	1.88693	0.00024	6	0.282719	0.000042	543	6	98	0.282709	9.4	1.5	546	5	0.282709	9.5	1.5
RV1-3a	0.0230	0.0022	0.00089	0.00007	1.46748	0.00016	1.88524	0.00061	6	0.282740	0.000049	546	5		0.282731	10.3	1.7	546	5	0.282731	10.3	1.7
RV1-46a	0.0148	0.0012	0.00055	0.00003	1.46724	0.00006	1.88646	0.00018	5	0.282736	0.000045	546	5		0.282730	10.2	1.6	546	5	0.282730	10.2	1.6
RV1-46b	0.0366	0.0032	0.00126	0.00009	1.46723	0.00007	1.88644	0.00011	7	0.282760	0.000040	546	5		0.282748	10.9	1.4	546	5	0.282748	10.9	1.4
RV1-47a-a6	0.0156	0.0013	0.00062	0.00004	1.46726	0.00004	1.88673	0.00013	9	0.282721	0.000032	542	6	99	0.282715	9.6	1.1	546	5	0.282715	9.7	1.1
RV1-8a-a08	0.0203	0.0016	0.00078	0.00005	1.46712	0.00009	1.88664	0.00024	7	0.282737	0.000038	545	6	97	0.282729	10.2	1.3	546	5	0.282729	10.2	1.3
Sample RV-1																			Avg	0.282736	10.5	
																			2 SE	0.000026	0.9	
R\/2-49a-a48	0 0285	0 0025	0 00115	0 00008	1 46732	0 00007	1 88505	0 00017	6	0 282775	0 000041	536	6	96	0 282764	11 2	14	544	5	0 282763	11 /	14
R\/2-49b-a49	0.0200	0.0020	0.00110	0.00000	1 46722	0.00007	1.88659	0.00013	q	0.202775	0.000041	535	5	95	0.202704	10.8	1.4	544	5	0.202703	11.4	1.7
RV2-50a-a52	0.0002	0.0020	0.00121	0.00000	1.46704	0.00006	1.88662	0.00010	7	0.202700	0.0000000	546	7	98	0.202702	9.8	1.2	544	5	0.282717	9.7	1.2
RV2-50a-a52	0.0010	0.0000	0.00121	0.00011	1 46713	0.00000	1.88693	0.00012	8	0.282732	0.000035	541	7	97	0.282723	9.9	1.2	544	5	0.282723	99	1.2
RV2-52a-a55	0.0201	0.0015	0.00071	0.00005	1 46729	0.00006	1.88631	0.00018	8	0 282745	0.000036	546	7	98	0.282738	10.5	1.3	544	5	0.282738	10.5	1.2
RV2-53a-a56	0.0265	0.0022	0.00101	0.00006	1 46712	0.00009	1 88715	0.00018	9	0 282742	0.000040	520	6	93	0 282732	97	14	544	5	0 282732	10.3	14
RV2-54a-a57	0.0139	0.0012	0.00053	0.00003	1.46718	0.00012	1.88658	0.00045	8	0.282760	0.000051	550	7	96	0.282755	11.2	1.8	544	5	0.282755	11.1	1.8
RV2-58a-a63	0.0264	0.0022	0.00105	0.00007	1.46717	0.00006	1.88634	0.00014	7	0.282756	0.000032	548	6	99	0.282745	10.8	1.1	544	5	0.282745	10.7	1.1
RV2-58b-a61	0.0398	0.0045	0.00141	0.00013	1.46723	0.00007	1.88642	0.00016	8	0.282764	0.000038	539	6	97	0.282749	10.8	1.3	544	5	0.282749	10.9	1.3
RV2-59a-a64	0.0307	0.0027	0.00107	0.00007	1.46717	0.00006	1.88628	0.00012	6	0.282751	0.000034	543	6	98	0.282744	10.7	1.2	544	5	0.282740	10.5	1.2
RV2-60a-a72	0.0332	0.0033	0.00131	0.00010	1.46725	0.00007	1.88673	0.00013	7	0.282747	0.000031	548	6	102	0.282733	10.4	1.1	544	5	0.282733	10.3	1.1
RV2-60b-a73	0.0270	0.0033	0.00103	0.00010	1.46734	0.00007	1.88630	0.00020	7	0.282798	0.000044	535	5	97	0.282788	12.0	1.5	544	5	0.282787	12.2	1.5
RV2-61a-a74	0.0209	0.0017	0.00084	0.00005	1.46713	0.00006	1.88672	0.00020	7	0.282738	0.000032	539	7	97	0.282730	10.1	1.1	544	5	0.282730	10.2	1.1
RV2-63a-a88	0.0188	0.0016	0.00074	0.00005	1.46723	0.00005	1.88654	0.00014	8	0.282759	0.000032	550	7	100	0.282751	11.1	1.1	544	5	0.282751	10.9	1.1
RV2-66a-a82	0.0264	0.0023	0.00093	0.00012	1.46717	0.00009	1.88638	0.00018	8	0.282737	0.000049	541	6	99	0.282728	10.1	1.7	544	5	0.282728	10.1	1.7
RV2-72a-a75	0.0376	0.0031	0.00144	0.00009	1.46723	0.00007	1.88660	0.00015	8	0.282748	0.000034	544	6	99	0.282734	10.3	1.2	544	5	0.282734	10.3	1.2
RV2-75a-a89	0.0249	0.0025	0.00098	0.00008	1.46720	0.00008	1.88663	0.00019	8	0.282761	0.000037	544	6	99	0.282751	10.9	1.3	544	5	0.282751	10.9	1.3
RV2-59a-a65	0.0307	0.0027	0.00107	0.00007	1.46717	0.00006	1.88628	0.00012	6	0.282751	0.000034	361	4	98	0.282744	6.6	1.2	544	5	0.282744	10.7	1.2
Sample RV-2																			Avg	0.282743	10.6	
-																			2 SE	0.000034	1.2	

Table S6 (cont.): Results of LA-MC-ICP-MS Lu-Hf analyses of zircon performed during the session at GUF

(a) 176 Yb/ 177 Hf = $({}^{176}$ Yb/ 173 Yb)_{true} x $({}^{173}$ Yb/ 177 Hf)_{meas} x $(M_{173(Yb)}/M_{177(Hf)})^{b(Hf)}$, b(Hf) = In(179 Hf/ 177 Hf true / 179 Hf/ 177 Hf_{measured})/ In $(M_{179(Hf)}/M_{177(Hf)})$, M=mass of respective isotope. The 176 Lu/ 177 Hf were calculated in a similar way by using the 175 Lu/ 177 Hf and b(Yb).

(b) Mean Hf signal in volt.

(c) Initial ¹⁷⁶Hf/¹⁷⁷Hf and eHf calculated using the apparent age of each zircon and the CHUR parameters:

 176 Lu/ 177 Hf = 0.0336, and 176 Hf/ 177 Hf = 0.282785 (Bouvier *et al*., 2008).

(d) Initial ¹⁷⁶Hf/¹⁷⁷Hf and eHf calculated using the emplacement age of each sample and the CHUR parameters:

 176 Lu/ 177 Hf = 0.0336, and 176 Hf/ 177 Hf = 0.282785 (Bouvier *et al*., 2008).