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Valiron-like results on the growth of entire functions in a p-adic field.
He examined the transcendence type in Cp and gave a new proof of
the Hermite–Lindemann theorem in an ultrametric field, including
the case of a field of residue characteristic 0. All these studies are
detailed in this book.
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Introduction

Value distribution for complex meromorphic functions is a topic that
knew an impressive development during the 20th century and the
early 2000, particularly from the eighties until now. The Nevanlinna
theory has been very fruitful and has many applications, for instance,
in algebraic geometry, problems of uniqueness, and value sharing
values and small functions. On the other hand, during the second
part of the 20th century and later on, ultrametric analysis became
a new domain of research in value distribution and many problems
once considered on the complex field were similarly considered on
an ultrametric field. That needed the use of a complete algebraically
closed field. That was done with the field Cp which is the completion
of the algebraic closure of Qp, the completion of Q with respect to the
p-adic absolute value. Thus, Cp is a field having certain properties
similar to those of C but many other properties are much different,
particularly, it has no connected subset except singletons. However,
there exist other complete ultrametric fields, particularly the Levi-
Civita field R [88] and its algebraic closure that is complete.

A field is said to be spherically complete when every decreas-
ing sequence of disks has a not empty intersection. A field may be
complete for an ultrametric absolute value but not spherically com-
plete. For instance, Cp is not spherically complete and several seri-
ous problems happen because of that, particularly the well-known
Lazard’s problem. However, following, for example, a method pro-
posed by Bertin Diarra, we show how to construct a spherically com-
plete extension of a field. This technique enables us to solve certain
problems when a spherically complete field is necessary.

xi
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This book is aimed at gathering classical results on analytic
elements and meromorphic functions known for almost 70 or 80 years
but also many recent works in p-adic value distribution and also some
results in number theory, concerning problems of transcendence and
exponential polynomials. Overall, it is aimed at giving correct proofs
for all properties of the functions we consider, while several times we
can find in the literature approximative citations or proofs putting
in doubt certain statements. Particularly, here as in [44] and [53] and
in [48] and [49], the role of circular filters is emphasized because it is
the best way to obtain rigorous explanations. Concerning the famous
Corona problem, here we give a description of all maximal ideals and
of most of continuous multiplicative semi-norms, even though it is
not known whether there exist continuous multiplicative semi-norms
other than those we describe.

Most of the results presented in [49] are also presented here
with sometimes some small corrections but several new results are
given, particularly on p-adic transcendence, exponential polynomials,
growth order of analytic functions, Picard’s values of meromorphic
functions, meromorphic functions sharing small functions, and every
application of the Nevanlinna theory.

In the first chapters, we define affinely rigid sets, a basic notion
indispensable in problems of uniqueness [22], and we present the main
properties of p-adic fields, defining fields such as Qp, Cp and exam-
ining some classical properties. Thanks to the help of Bertin Diarra,
finite extensions of Qp are examined, particularly normal extensions
and ramification index, in order to study the notion of transcendence
order over Qp: this transcendence order is stable through an algebraic
extension and we construct p-adic numbers of order ≤ 1 + ε ∀ε > 0.
The help of Bertin Diarra was very useful again. Similar to the tran-
scendence type of complex numbers, the transcendence type of a
p-adic transcendental number over Q is also defined and examined:
we show that it is also stable through an algebraic extension and
I am very grateful to Michel Waldschmidt for his help in that study
[55]. The numbers of zeros of exponential polynomials have a good
estimation through a computation that is not too complicated [57].
The ultrametric versions of the Hermite–Lindemann theorem, the
Gelfond–Schneider theorem, and the exponentials theorem are given
in residue characteristic p and 0. The case of residue characteristic 0
may apply to Levi-Civita fields [88].
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Explaining correctly proofs requires to know perfectly all
properties of analytic elements because all analytic or meromorphic
functions are at least locally, analytic elements, as defined by Marc
Krasner [69]. This is why we first recall them in order to make an
autocontained book. Particularly, any student in master of math-
ematics, having a knowledge in general topology, can understand
definitions and proofs.

Defining holomorphic functions in a p-adic field was not easy,
except if we restrict ourselves to disks or sets with finitely many
holes. The foundation of a veritable theory of holomorphic functions
is due to Marc Krasner who defined analytic elements as limits of
sequences of rational functions with respect to the topology of uni-
form convergence. Since the only connected sets are singletons, this
requires the use of sets enjoying a property that can replace con-
nexity. Marc Krasner defined quasi-connected sets [69]. But most of
the useful properties of quasi-connected sets actually hold in a larger
class of sets: the infraconnected sets [36], [44], and [45].

Thus, we must place our study in an algebraically closed field K,
complete with respect to an ultrametric absolute value. For a study
of Krasner’s analytic functions or the generalization of that theory
to infraconnected analytic sets made by Philippe Robba, readers can
refer [83]. On the other hand, another theory of analytic functions was
made by John Tate with the use of a sheaf, considering Banach alge-
bras, usually called affinoid algebras [89]. The comparison between
the two theories through their algebras of functions is made in [37]
and [45]. Here, these theories won’t be developed again because they
are not necessary to examine properties of meromorphic functions
and problems of value distribution in p-adic analysis.

Mittag-Leffler’s theorem due to Marc Krasner is another impor-
tant tool to describe the behavior of analytic elements. The derivative
of an analytic element f is examined with its Mittag-Leffler series rel-
atively to those of f . Overall, the maximum principle satisfied by an
analytic element comes from its behavior on circular filters.

A key problem for analytic elements is whether it can vanish along
a circular filter. This was thoroughly explained in [44] and [53]. Since
it is a quite substantial problem involving the characterization of
T -filters [38], [53], we do not describe that in this book, but one
can find it in [44] and [53]: here, we only recall sufficient conditions,
on infraconnected sets, to avoid that any analytic element vanishes
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along a large circular filter, which is sufficient for our further studies.
However, the description of that problem of filters is essential to
understand the behavior of analytic and meromorphic functions in
any context. Moreover, we give a very simple example of T -filter
which is indispensable for the solution of the Corona problem.

An important particularity of the theory of analytic functions
on K holds in the role played by multiplicative semi-norms, char-
acterized by circular filters on K. Their role in ultrametric Banach
algebras was discovered by Bernard Guennebaud in the seventies [62]
and they particularly apply to all kinds of analytic functions. Several
properties of the spectral semi-norms are examined in [40], [45], and
[53] with the use of multiplicative semi-norms and circular filters.
On the other hand, Berkovich’s theory [9], made in the late eight-
ies, is entirely based on continuous multiplicative semi-norms. Here
we recall their description and their intervention to determine, for
instance, what we denote by |f |(r), a kind of “maximum modulus
principle”.

We characterize the continuous multiplicative norms on the
algebra A of bounded analytic functions inside an “open” disk.
A major problem posed in ultrametric analysis is the Corona prob-
lem, through a kind of analogy with the well-known Kakutani prob-
lem in C, solved by L. Carlesson [28]. Concerning the algebra A, we
explain why it cannot be considered in a similar way. However, by
considering continuous multiplicative semi-norms, we can define an
almost similar problem and show that the set of continuous multi-
plicative semi-norms whose kernel is a maximal ideal of codimension
1 is dense inside the whole set of all continuous multiplicative semi-
norms whose kernel is a maximal ideal. That result, first proved when
K is spherically complete [48], is generalized here. The characteriza-
tion of all continuous multiplicative semi-norms of that algebra is
far from over, but we present examples of continuous multiplicative
semi-norms called Araujo’s semi-norms, whose kernel is neither a
maximal ideal nor the null ideal, and I have been grateful to Jesus
Araujo for communicating me his results.

The Shilov boundary of an algebra of analytic elements is
described with the help of circular filters, in connection with the
maximum principle [15]. Mappings between the multiplicative spec-
tra of such algebras are studied by using the hyperbolic distance
in order to characterize injective analytic elements, a property also
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stated by J. Rivera-Letelier in [82] in connection with previous works
[42] and [44]. The idea consists of showing that an injective meromor-
phic function has an absolute value that looks like this of a Moebius
function (also called a linear fractional function). A correct proof
requires first to show that an analytic element f maps the Shilov
boundary of a set D into that of f(D).

The divisor of an analytic function is introduced and Lazard’s
problem for analytic functions inside an “open” disk is described. The
very complicated construction made by Michel Lazard in a spheri-
cally complete field is explained in a way that is more comprehensi-
ble [72]. In a field that is not spherically complete, a counter-example
due to Michel Lazard shows that the theorem may not be generalized
and this is a gap for certain problems. However, we can provide a
result that is less accurate but sufficient for certain problems. Yet,
sometimes we can place ourselves in a spherically complete exten-
sion. All closed ideals of algebras of entire functions or algebras of
analytic functions inside an open disk are principal, we show that
the algebra of entire functions is a Bezout ring, and when K is
spherically complete, so is the algebra of analytic functions inside an
open disk.

Similar to definitions well known in complex analysis, we have
notions of order of growth and type of growth for an entire function
in K. But here, another notion appears essential: the cotype of growth
[16]. Thus, we can obtain similar formulas for the growth order and
the growth type. Let f be an entire function in K whose order of
growth is finite. We give bounds for the cotype of growth and also
for the lower cotype of growth. We show that the type of growth
of f is equal to its lower type if and only if its cotype is equal to
its lower cotype, and when these are realized, then the cotype is the
product of the type by the order of growth. Such entire functions
are called clean functions. But we construct an example of non-clean
entire function f where the cotype is strictly superior to the product
of the type by the order, which answers negatively a question asked
long ago.

Suppose that K is of characteristic 0. Given a meromorphic func-
tion f = g

h , if the type or the cotype of h is finite, then f assumes
all values infinitely many times. A counter-example is constructed
showing that if the lower order of growth is equal to the order, that
does not imply that the lower type of growth is equal to the type of
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growth, although such a claim was made for complex meromorphic
functions [32] and we contest the proof.

Next, we examine notions of order of growth and type of growth
for analytic functions inside an open disk [19].

Meromorphic functions in K and inside a disk are introduced
and their basic properties are examined. Next, we examine mero-
morphic functions out of a hole, using Motzkin products. A mero-
morphic function admits primitives if and only if all residues are null.
This property seems obvious but actually requires the use a form of
Mittag-Leffler theorem to be correctly proved and does not seem to
appear in other work. We study exceptional values of a function or
its derivative, particularly we recall why a meromorphic function in
K or an “unbounded” meromorphic function in an open disk admits
at most one exceptional value, which suggests a conjecture.

In a field such as K, the first fundamental theorem is almost
trivial, but the p-adic Nevanlinna theory entirely holds in the so-
called second fundamental theorem that we call here the main fun-
damental theorem. It was completely established in [21] by Abdelbaki
Boutabaa for meromorphic functions in the whole field K, after the
first study by Ha Huy Khoai [63]. The generalization for meromor-
phic functions in an open disk was made further [23], taking into
account Lazard’s problem: this theorem is useful when it applies to
functions which are not a quotient of two bounded analytic functions
in that disk. Next, a similar statement was established for meromor-
phic functions out of a hole [54] which lets us obtain applications for
these functions.

This is the beginning of many applications to the behaviour of
meromorphic functions. Using the main fundamental theorem, we
can show that many functional equations have no solution, particu-
larly, elliptic and hyperelliptic curves admit no parametrization by
meromorphic functions (more generally, Berkovich theory shows that
no curve of genus ≥ 1 admits any parametrization by non-constant
meromorphic functions). Similarly, equations of the form fm+gn = 1
admit no non-constant meromorphic solutions in the whole field, pro-
vided min(m,n) ≥ 2, max(m,n) ≥ 3 (results inside a disk are also
given).

As it was done for complex functions, we define small functions.
Generalizing Picard’s values for meromorphic functions, given a
meromorphic function f in K or an unbounded meromorphic function
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inside an open disk, there exists at most one small function w such
that f − w has finitely many zeros. One can easily obtain the main
fundamental theorem on three small functions, as in C, which was
first noticed by Peichu Hu and C.C. Yang [67]. This is a useful tool in
certain problems of uniqueness. Unfortunately, contrary to complex
analysis, we know no main fundamental theorem on n small functions
(n > 3) as it was made in C by K. Yamanoi [94]. However, a result
has just been obtained by Ta Thi Hoai An and An-Nguyen Phuong,
which we explain here.

When two meromorphic functions share (ignoring multiplicity)
seven small functions, in a work with C.C. Yang, we showed that
they are equal [56]. As corollary, if two entire functions share three
small functions, then they are equal. But a much better result has
been obtained by Ta Thi Hoai An and An-Nguyen Phuong, showing,
through big computations, that it is sufficient to assume the two
meromorphic functions to share five small ones [5]. All results in
that domain hold in K like in an open disk and out of a hole.

As in complex analysis [29], we can also define and study per-
fectly and totally branched values, showing that in a p-adic field, a
meromorphic function in K has at most three totally branched val-
ues and four perfectly branched values. But we can also prove that
a meromorphic function having finitely many poles has at most one
perfectly branched value, which is obtained without the use of the
Nevanlinna main theorem but with just the use of square roots of
certain analytic functions [17]. This last result has a generalization
to branched rational functions.

Concerning functions inside a disk, we obtain results that look
like those obtained for complex functions in the whole field [33].
We can also show that a meromorphic function whose numera-
tor and denominator have different growth order admits at most
two perfectly branched values. Moreover, a meromorphic function
whose numerator and denominator have same finite growth order
but different growth type admits at most three perfectly branched
values [17].

We examine the Hayman conjecture in the p-adic context: given
f ∈ M(K), can we state that f ′fn takes every value b �= 0 infinitely
many times? We first give the proof by Jacqueline Ojeda obtained for
every n ≥ 3 [80]. Next we give the proof for n = 2 [52]. Moreover, all
results given for n ≥ 3 also apply to meromorphic functions inside
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an open disk and to meromorphic functions out of a hole. Many
particular cases are also examined around such problems.

Concerning entire functions, a link then appears between growth
order and small functions. Let f, h ∈ A(K) be such that 0 < ρ(f) <
+∞ and ρ(h) < ρ̃(f). Then, h is a small function with respect to f .
Let f, h ∈ A(K) be such that ρ(h) = ρ(f) and such that 0 < ρ(f) <
+∞. If f is clean and if σ(h) = 0 < σ((f), then h is a small function
with respect to f .

Let f, g ∈ A(K) be transcendental, regular and share three dis-
tinct functions, ignoring multiplicity, ωj ∈ A(K), j = 1, 2, 3, such
that max1≤j≤3 ρ(ωj) < min(ρ(f), ρ(g)). Then, f = g.

Let f, g ∈ A(K) be clean and share h1, h2, h3 ∈ A(K), ignoring
multiplicity, such that ρ(hj) = ρ(f) = ρ(g), j = 1, 2, 3, σ(hj) = 0,
j = 1, 2, 3, and 0 < min(σ(f), σ(g)). Then, f = g.

We show that a meromorphic function admitting finitely many
poles of order ≥ 3 and admitting primitives must have infinitely
many zeros. That suggests the conjecture: a meromorphic function
admitting primitives must have infinitely many zeros. Thanks to an
idea due to J.P. Bézivin [10], the conjecture is proved for all mero-
morphic functions f having a total number of poles t(r, f) in the disk
of center 0 and radius r satisfying: Log(t(r, f)) ≤ O(Log(r), which
makes the conjecture much likely. That suggests an interpretation by
using type and cotype of the denominator of a meromorphic function:
given a meromorphic function f = g

h admitting primitives, if the type
of growth of h is finite, then f should have infinitely many zeros.

We examine functions of uniqueness and unique range sets, count-
ing or ignoring multiplicity, for p-adic analytic and meromorphic
functions in the whole field and inside a disk. The Nevanlinna theory
is the main tool for most of the results. Unique range sets count-
ing multiplicity for entire functions in K and for polynomials are
characterized as the affinely rigid subsets of K [22] and [45] (such a
characterization has no equivalent for complex functions). The result,
first proved for polynomials and for entire functions and sets of three
points [22], was generalized to entire functions on K by W. Cherry
and C.C. Yang [31].

It is shown that the situation is much more complicated concern-
ing meromorphic functions. Examples of sets which are or are not
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unique range sets counting multiplicity for meromorphic function
are presented. The situation is examined in the whole field and inside
a disk.

The problem of unique range sets counting multiplicity for entire
functions in K is closely linked to this of polynomials of uniqueness.
That suggests a more general study of meromorphic functions of
uniqueness for various kinds of functions (in the whole field and inside
a disk) [47], in connection with zeros of the derivative, a notion first
defined by H. Fujimoto [60].

A Nevanlinna theory in characteristic p �= 0 is made and appli-
cations are given to problems of the form P (f) = Q(g), with P, Q
polynomials [25] and [26]. Finally, the Malmquist–Yoshida equation
is studied in characteristic p ≥ 0 and all solutions in the whole field
are characterized [24]. The problem is finally examined in character-
istic 0 for functions in an open disk following a work by Abdelbaki
Boutabaa [27].

I would also like to thank many colleagues for many exchanges,
particularly Ta Thi Hoai An, Kamal Boussaf, Jesus Araujo, J.P.
Bézivin, and C.C. Yang. Abdelbaki Boutabaa passed away in 2022.
He made the p-adic Nevanlinna theory and took part in most of our
work, then.
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Chapter 1

Affinely Rigid Sets

Affinely rigid sets have proven to play a crucial role in studying
problems of uniqueness. They were introduced in [22] and were first
called affinely rigid sets. Next, fearing a confusion with rigid geometry
and affinoid sets, they were called stiff sets in [22]. However, the term
affinely rigid was already known and popular. This is why it has
become the one currently used in all further papers [3], [4], and [93].
It is a very basic notion that requires to be thoroughly examined.

Definition. In this chapter, we denote by F an algebraically closed
field. We call centered similarity in the field F a similarity in F of the
form φ(x) = a+ α(x− a), and if φ is not the identity, the point a is
called the center of φ.

We call translation a similarity of the form φ(x) = x + b with
b �= 0.

A subset S of F is said to be affinely rigid if there exists no affine
mapping φ from F to F, other than the identity, such that φ(S) = S.

Let S be a non-affinely rigid set. S is said to be a centered non-
affinely rigid set (respectively non-centered non-affinely rigid set)
with respect to a centered similarity φ if it is preserved by a cen-
tered similarity φ and if the center of φ belongs to S (respectively
does not belong to S).

Propositions 1.1 and 1.2 are immediate:

Proposition 1.1. A similarity φ is not centered if and only if it is
a translation.

1
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Proposition 1.2. If a finite subset S of F is preserved by a similar-
ity φ, that φ is a centered similarity.

Proof. Let φ be a non-centered similarity preserving a finite set S.
Then, φn also preserves S. By Proposition 1.1, φ(x) is of the form
x+ b with b �= 0. Then, φn(x) = x+nb. Since F is of characteristic 0,
the sequence (x+ nb)n∈N is injective. Particularly, taking u ∈ S, we
have u + nb ∈ S ∀n ∈ N, hence S has infinitely many elements,
a contradiction. �

Lemma 1.3 is immediate:

Lemma 1.3. Let φ be a similarity and let S be a non-affinely rigid
set. Then φ(S) is a non-affinely rigid set. Moreover, if S is centered
(respectively non-centered), so is φ(S).

Theorem 1.4. Let P ∈ F[x] be of degree n and have all its zeros of
order 1 and let S be the set of zeros of P . Then, S is not affinely
rigid if and only if there exists a centered similarity of center a:
φ(x) = a+α(x− a) such that P (φ(x)) = αnP (x), with α �= 1. Let S
be non-affinely rigid and let φ be such a centered similarity φ(x) =
a+α(x− a) preserving S. Then putting u = x− a, Q(u) = P (x), Q
is of one of the following two forms:

(i) Q(u) =
∑q

k=0 akdu
kd, with αd = 1 and d ≥ 2 and then S is

non-centered.
(ii) Q(u) =

∑q
k=0 akd+1u

kd+1, with αd = 1 and d ≥ 2 and then S is
centered.

Moreover, if two centered similarities preserve S, they have the
same center. Further, S is never both centered and non-centered.

Proof. Considering the coefficients of degree n, it is obvious that
S is not affinely rigid if and only if there exists a centered similarity
of center a: φ(x) = a+ α(x − a) such that P (φ(x)) = αnP (x), with
α �= 1.

If (i) or (ii) is satisfied, it is obviously seen that S is preserved by
the centered similarity φ of center a. Moreover, in Case (i), a does
not lie in S, hence S is non-centered. In Case (ii), a lies in S, hence
S is centered.

Now, suppose S is not affinely rigid and let φ(x) = a+ α(x − a)
be a centered similarity preserving S. Then, P (φ(x)) = P (a +
αu) = Q(αu) and αnP (x) = αnQ(u), hence Q(αu) = αnQ(u).
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Let Q(u) =
∑n

j=0 aju
j. We have αjaj = αnaj ∀j = 0, . . . , n. Conse-

quently, (1) aj(α
n−j − 1) = 0 ∀j = 0, . . . , n.

Suppose first a0 �= 0. Clearly, we have αn = 1. Let d be the
order of α as a nth root of 1. Since φ is not the identity, α is �= 1.
Consequently, by (1), we note that d ≥ 2 because αn−1 �= 1. Then,
n is of the form qd (q ∈ N∗), and then, by (1), we have aj = 0 for
every j which is not multiple of d. Consequently, we have obtained
Q(u) =

∑q
k=0 akdu

kd, with αd = 1 and d ≥ 2.
Suppose now a0 = 0. Since the zeros of P are not multiple, nei-

ther are those of Q. Consequently, a1 �= 0, hence, by (1), we have
αn−1 = 1. Let d be the order of α as an (n − 1)th root of 1. Since
α �= 1, by (1), we have d ≥ 2 because αn−2 �= 1. Then, n is of the form
qd+1 (q ∈ N∗), and by (1), we have aj = 0 for every j which is not of
the form kd+1. Consequently, we obtain Q(u) =

∑q
k=0 akd+1u

kd+1,

with αd = 1 and d ≥ 2.

Suppose S is non-centered with respect to φ and consider another
centered similarity ψ preserving S. Let Q be a polynomial defined as
in (i) with respects to φ, admitting S for set of zeros, all of order 1.
Then, we have ψ(u) = λu+μ and Q(ψ(u)) = λnQ(u). Consequently,

q
∑

k=0

akd+1(λu+ μ)kd+1 = (λ)qd+1
q
∑

k=0

akd+1u
kd+1.

Examining terms of degree qd, we can check that aqd+1(qd + 1)λqd

μ = 0 because d ≥ 2. Consequently, μ = 0. Therefore, Q(ψ(u)) =
∑q

k=0 akd(λu)
kd and then, the polynomial associated with Q with

respect to ψ, as defined in (i), is Q itself. Consequently, there exists
no centered similarity ψ preserving S such that the polynomial asso-
ciated with Q with respect to ψ is of the form (ii). This proves
that S is non-centered with respect to ψ. That ends the proof of
Theorem 1.4. �

Theorem 1.5. Let S be a finite centered (respectively non-centered)
non-affinely rigid set of n elements and let φ(x) = a+α(x− a) be a
similarity that preserves S. The order of φ divides n−1 (respectively
divides n) and α is some (n − 1)th root of n − 1 (respectively α is
some (n− 1)th root of n).

Proof. Let φ(x) = a+α(x−a). Without loss of generality, we can
assume that a = 0 and hence φ(x) = αx.
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We first note that the restriction φ of φ to S is a bijection from
S to S and hence is a permutation of S.

Suppose first that S is centered. So, 0 is the center of φ. Then, φ
preserves S\{0} and hence its order divides n − 1. Consequently, α
is an (n− 1)th root of 1.

Suppose now that S is non-centered. Then, φ preserves S but does
not preserve any point of S. Consequently, its order divides n and
hence α is an nth root of 1. �

Corollary 1.6. Let S be a finite centered non-affinely rigid set of n
elements. If n− 1 is prime, then S is of the form {a, a+ ukh | k =
0, . . . , n − 2} with a, h ∈ F and u some (n− 1)th root of 1.

Let S be a finite non-centered non-affinely rigid set of n elements.
If n is prime, then S is of the form {a+ukh | k = 0, . . . , n− 1} with
a, h ∈ F and u is some nth root of 1.

Corollary 1.7. Let S be a finite centered non-affinely rigid set of
three elements. Then, S is of the form {a, a−h , a+h} with a, h ∈ F.

Let S be a finite non-centered non-affinely rigid set of three ele-
ments. Then, S is of the form {a+ukh | k = 0, 1, 2} with a, h ∈ F

and u is a primitive third root of 1.

Theorem 1.8. Let S be a subset of F of four elements. The following
two conditions are equivalent. Then:

(1) S is a centered non-affinely rigid set if and only if it is of the
form {a, a + h, a+ uh, a + u2h}, with h ∈ F and u3 = 1, u �= 1.

(2) S is a non-centered non-affinely rigid set if and only if it is of
the form {a− h, a+ h, a− k, a+ k}, with h, k ∈ F∗.

Proof. If S is of the form {a, a+h, a+uh, a+u2h}, with h ∈ F and
u3 = 1, u �= 1, it is obvious that the similarity φ(x) = a+ u(x − a)
preserves S. Conversely, suppose that S is a centered non-affinely
rigid set and let φ be a similarity of center a preserving S\{a} and
different from the identity. Then, u is a third- root of 1 different
from 1.

If S is of the form {a − h, a + h, a − k, a + k}, with h, k ∈ F∗,
then the similarity φ(x) = a − (x − a) preserves S and does not
preserve any point of S, hence S is a non-centered non-affinely rigid
set. Conversely, suppose that S is a non-centered non-affinely rigid
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set and let φ(x) = a + u(x − a). For convenience, suppose a = 0.
Then, u is a root of 1 of order 2 or 4. Suppose first u is a root of
1 of order 2 i.e. u = −1. Then, φ(x) = −x. Let S = {b1, b2, b3, b4}.
Then, up to a reordering, we have φ(b1) = b3, φ(b2) = b4, hence
b3 = −b1, b4 = −b2 which proves the claim.

Suppose now that u is root of 1 of order 4. Then, up to a reorder-
ing, we must have φ(bj) = bj+1 ∀j = 1, 2, 3 and of course, φ(b4) = b1.
But then we note that b3 = −b1, b4 = −b2 again, which finishes
proving the claim. �

The following condition (F) was introduced by C.C. Yang and
Hirotaka Fujimoto.

Definition. A polynomial P ∈ F[x] is said to satisfy Condition (F)
[60] if for any two distinct zeros a, b of P ′, we have P (a) �= P (b) (i.e.
the restriction of P to the set of zeros of P ′ is injective).

Lemma 1.9. Let P ∈ F[x] be of degree 4 and assume it does not
satisfy Condition (F). Then, P ′ admits three distinct zeros.

Proof. Of course, P ′ can’t have a unique triple zero. Suppose P ′
only has two distinct zeros. Up to an affine change of variable, P ′ is
of the form λ(x3 − bx2). Since P does not satisfy Condition (F), we
can conclude b = 0, hence P ′ has a triple zero, a contradiction. �

Theorem 1.10. Let P ∈ F[x] be monic of degree 4. The following
three statements are equivalent:

(i) P does not satisfy Condition (F).
(ii) P is of the form [(x−a+ l)(x−a− l)]2 +B with B ∈ F, l ∈ F∗.
(iii) There exists an affine change of variable transforming P into an

even function.

Moreover, if those conditions are satisfied, assuming P (c1) =

P (c2), then we have P (c3) = −P (c1) if and only if B = − l4

2 .

Proof. By putting t = x−a, it is obvious that (ii) implies (iii) and
that (iii) implies (i). Suppose that (i) is satisfied. By Lemma 1.9, P ′
has three distinct zeros. Suppose first P (c3) = P (c2) = P (c1). Then,
P − P (c1) has three distinct zeros of order ≥ 2, which contradicts
the hypothesis deg(P ) = 4. Hence, we can assume P (c3) �= P (c1).
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Let a = c1+c2
2 , c1 = a + l, c2 = a − l. Thus, P is of the form

[(x− a+ l)(x− a− l)]2 + P (c1), with P (c1) �= 0. Moreover, since P ′
has three distinct zeros, we see that l �= 0, which also proves that (ii)
is satisfied.

Now, suppose that the above three conditions are satisfied. By
(ii), we have P (c1) = P (c2) = B and P ′(x) = 4(x− a)[(x− a)2 − l2].
So the zeros of P ′ are a, a + l, a − l. Since P (c1) = P (c2), the
pair {c1, c2} is {a − l, a + l}. Therefore, c3 = a and hence P (c3) =
l4+B = l4+P (c1). Consequently, P (c3) = −P (c1) holds if and only
if l4 = −2P (c1) = −2B, which ends the proof. �

Corollary 1.11. Let P ∈ F[x] be of degree 4 such that its set of zeros
is affinely rigid. Then, P satisfies Condition (F).

Proof. Indeed, suppose that P does not satisfy Condition (F). By
Theorem 1.10, through a change of variable, P is an even function,
hence for each zero, h and −h are other zeros. Consequently, the set
of zeros is not affinely rigid. �

Theorem 1.12. Let P (x) =
∑q

k=0 akd+1x
kd+1, with a1 �= 0, d ≥ 2,

and let Z be the set of the zeros of P ′. For all c ∈ F∗\P (Z), P − c
admits qd+ 1 distinct zeros and its set of zeros is affinely rigid.

Proof. Let c ∈ F∗\P (Z), let G(x) = P (x) − c, and let T
be the set of zeros of G. Suppose that T is not affinely rigid.
By Theorem 1.3, there exists a centered similarity φ defined
as φ(x) = λx + μ such that G(φ(x)) = λnG(x). So, we
have

∑q
k=0 akd+1(λx+ μ)kd+1 − c = (λ)qd+1(

∑q
k=0 akd+1x

kd+1 − c)
with d ≥ 2. Examining terms of degree qd, we can check that
aqd+1(qd+1)λqdμ = 0 because d ≥ 2. Consequently, μ = 0. Therefore,
φ has center 0. Next, examining terms of degree 0 shows that λn = 1
because c �= 0. Hence, G(x) =

∑q
k=0 akd+1x

kd+1 − c. But since the
center of φ is 0, by Theorem 1.3, G(x) is either of the form

∑s
j=0 bjtx

jt

or of the form
∑s

j=0 bjt+1x
jt+1 with t ≥ 2. Now, since c �= 0, the sec-

ond case is excluded. Consequently, we have G(x) =
∑s

j=0 bjtx
jt and

therefore
∑s

j=0 bjtx
jt =

∑q
k=0 akd+1x

kd+1 − c.
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In particular, since t ≥ 2, we note that the coefficient of x on
the right-hand side is null, a contradiction to a1 �= 0. Therefore, the
assumption “T is not affinely rigid” is not true, which ends the proof.

�

Theorem 1.13. P ∈ F[x] be such that P ′ admits exactly two dis-
tinct zeros c1, c2. Then, P (c1) �= P (c2). Assume that all zeros of
P are distinct, of order 1. If the set of zeros S of P is not affinely
rigid, then P ′ is of the form B((x − c1)(x − c2))

m, B ∈ F, and the
unique similarity preserving S, other than the identity, is the map-
ping φ(x) = −x+ c1 + c2.

Proof. Let P ′(x) = B(x − c1)
m1(x − c2)

m2 . Of course, deg(P ) =
m1 +m2 + 1. Without loss of generality, we may obviously assume
B = 1. Suppose first that P (c1) = P (c2). Then, P − P (c1) admits
each cj as a zero of order mj + 1 (j = 1, 2) and therefore deg(P ) =
m1 +m2 + 2, a contradiction. Hence, P (c1) �= P (c2).

Suppose that S is not affinely rigid and let φ(x) = ax+b preserve
S, φ being different from the identity. Since φ preserves S and since
all zeros of P are of order 1, P ◦ φ is a polynomial of same degree
as P , admitting the same zeros, all of order 1 and therefore P ◦ φ
is of the form λP with λ ∈ F∗. Consequently, P ′(x) = λa(ax + b −
c1)

m1(ax+ b− c2)
m2 .

Suppose first that m1 �= m2. Then, we can identify c1 with
c1−b
a and c2 with c2−b

a . Consequently, b = 0, a = 1, a contradic-
tion since φ is not the identity. Thus we are led to assume that
m1 = m2. Put m = m1 = m2. Thus, P

′(x) = [(x − c1)(x − c2)]
m.

We may now write P ′(x) = a[(ax + b − c1)(ax + b − c2)]
m and

we see that either c1−b
a = c1,

c2−b
a = c2 which yields a = 1, b = 0

again or c1−b
a = c2,

c2−b
a = c1. And since φ is not the identity,

the second conclusion is the only possible. Then a = −1 and
b = c1 + c2. �
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Chapter 2

Properties of Ultrametric Fields

In this chapter, we recall basic definitions and properties on ultra-
metric fields: ultrametric absolute values, valuation rings, and residue
fields. We must define holes of a subset and infraconnected sub-
sets that are essential for the behavior of analytic functions (certain
authors improperly call such sets “connected sets” which makes no
sense in topology since there are no connected sets except singletons
in an ultrametric field). A major interest of the class of infraconnected
sets is that it is the biggest class of sets in an ultrametric complete
algebraically closed field where the famous Krasner Mittag-Leffler
theorem applies.

Definition and notation. Throughout this book, we denote by N
the set of integers ≥ 0, by Z the ring of relative integers, by Q the
field of rational numbers, by R the field of real numbers, and by C
the field of complex numbers.

Given a topological space T and a subset S of T , we denote by S

its closure (also called adherence) and by
◦
S its interior (also called

opening).
Let E be a field provided with an absolute value | . | and let

log be a real logarithm function of basis θ > 1. We call valua-
tion associated with that absolute value the mapping v from E to
R defined as v(x) = − log |x| and here, we set Ψ(x) = log |x| and
|E| = {|x| | x ∈ E}. If a set F contains the zero of a ring, we
denote by F ∗ the set F\{0}. An absolute value is said to be trivial
if |x| = 1 ∀x ∈ E\{0}.

9
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Throughout this chapter, we denote by IL a field complete with
respect to a non-trivial ultrametric absolute value, and throughout
this book, we denote by K an algebraically closed field complete
with respect to a non-trivial ultrametric absolute value. We denote
by | . |∞ the archimedean absolute value defined on R.

Lemma 2.1. Let E be a field provided with an ultrametric absolute
value | . |. The completion of E with respect to that absolute value is
provided with an ultrametric absolute value which continues that of E.
The set {|x| | x ∈ E∗} is a subgroup of the multiplicative group R∗

+.

Definition. Given a field E provided with an ultrametric absolute
value | . |, the multiplicative group {|x| | x ∈ E∗} is called the value
group of E and the additive group {v(x) | x ∈ E} is called valuation
group of E.

Similarly, the set {Ψ(x) | x ∈ E∗} is a subgroup of R called valu-
ation group of E.

The field E is said to have discrete valuation or to have discrete
absolute value if its valuation group is a discrete subgroup of R and
hence is isomorphic to Z. Else, the valuation group is dense in R and
E is said to have dense valuation or to have a dense absolute value.

Lemma 2.2 is classical and proven in the same way no matter
what the absolute value of E.

Lemma 2.2. Let E be a field provided with two absolute values whose
associated valuations are v and w, respectively. They are equivalent
if and only if there exists r > 0 such that w(x) = rv(x) whenever
x ∈ E.

Proof. If such an r exists, the two absolute values are seen to be
equivalent. Reciprocally, we assume them to be equivalent and take
a ∈ E such that v(a) ≥ 0. It is seen that w(a) ≥ 0. On the other
hand, for all x ∈ E and for all m,n ∈ N, we have v(x

m

an ) > 0 if and

only if w(x
m

an ) > 0. Therefore, we see that v(x)
v(a) >

n
m is equivalent to

w(x)
w(a) >

n
m . Then, since Q is dense in R, we have v(x)

v(a) = w(x)
w(a) whenever

x ∈ E, and therefore, w(x)
v(x) = w(a)

v(a) . �

Notation. The set of the x ∈ E such that |x| ≤ 1 will be denoted
by UE and the set of the x ∈ E such that |x| < 1 will be denoted by
ME .



November 12, 2024 15:6 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch02 FA2 page 11

Properties of Ultrametric Fields 11

Then Lemma 2.3 is immediate:

Lemma 2.3. UE is a local subring of E whose maximal ideal is ME.

Definition and notation. Henceforth, UE is called the valuation
ring of E. The maximal ideal ME of UE is called the valuation ideal
and the field E = UE

ME
is called the residue class field of E. For any

a ∈ E, the residue class of a is denoted by a.
The characteristic of E is named the residue characteristic of E and
is denoted by p.

Lemma 2.4. Let F be a subfield of E, let E (respectively F) be the
residue class field of E (respectively of F ). Then, F is a subfield of
E. If E is algebraically closed and if its valuation is not trivial, it is
dense.

Proof. The first statement is immediate. Next, given α ∈ E such
that 0 < |α| < 1 and β ∈ E such that βq = αs, we have v(β) = q

sv(α)
whenever s ∈ N∗ and q ∈ Z. �

Lemma 2.5. Let V be an IL-vector space of finite dimension provided
with two norms. Then the two norms are equivalent.

Proof. Let ‖ . ‖ and ‖ . ‖′ be the two norms on V . We proceed
by induction on the dimension of V and assume the equivalence true
for subspaces of dimension n < q. Let V have dimension q. Let
e1, . . . , eq be a base of V . Let us suppose that the two norms are not
equivalent on V . Then there exists a sequence (un)n∈N of the form
un =

∑q
j=1 aj,nej , with ‖un‖ ≥ 1, such that limn→∞ ‖un‖′ = 0. Let

S be the subspace of V generated by {e1, . . . , eq−1}. For every n ∈ N,
we put vn =

∑q−1
j=1 aj,nej .

First, we suppose that
(1) limn→∞ |aq,n| = 0.

Since limn→∞ ‖un‖′ = 0, we have limn→∞ ‖vn‖′ = 0. By hypothe-
sis, the restrictions of the two norms to S are equivalent, hence
we have limn→∞ ‖vn‖ = 0. But since ‖un‖ ≥ 1 for all n ∈ N, this
contradicts (1).

Now, since (1) is not true, there exists a subsequence of the
sequence (|aq,n|)n∈N that admits a strictly positive lower bound and
therefore, without loss of generality, we can clearly assume that there
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exists r > 0 such that |aq,n| ≥ r for all n ∈ N. Let (xn)n∈N be the
sequence defined as xn = un

aq,n
. It is seen that

(2) limn→∞ ‖xn‖′ = 0.
The two norms ‖ . ‖ and ‖ . ‖′ are equivalent on S and
they both are equivalent to the product norm ‖ . ‖′′ defined as

‖∑q−1
j=1 bjej‖′′ = max1≤j≤q−1 |bj|. Since IL is complete, S is complete

with respect to ‖ . ‖′′, hence S is closed in V with respect to the two
norms ‖ . ‖ and ‖ . ‖′. Hence, by (2), eq belongs to S, which is absurd
and finishes the proof. �

Theorem 2.6. Let F be an algebraic extension of IL, provided with
two absolute values extending the one IL. These absolute values are
equal.

Proof. Let v, w be the valuations associated with these absolute
values. Let a ∈ F . By Lemma 2.5, the two absolute values are equiv-
alent on IL[a]. Hence, by Lemma 2.2, there exists r > 0 such that
w(x) = rv(x) whenever x ∈ IL[a]. But since v(x) = w(x) whenever
x ∈ IL and since there exists u ∈ IL such that v(u) �= 0, we have
r = 1. �

Lemma 2.7. Let A be an IL-algebra. Let φ be a semi-norm of
IL-algebra satisfying φ(xn) = (φ(x))n ∀x ∈ A. Then, φ is ultrametric.

Proof. Let a, b ∈ A satisfy φ(a) ≥ φ(b). We just
have to show that φ(a + b) ≤ φ(a). Obviously, we have
φ((a+ b)n) = φ

(∑n
k=0C

k
na

kbn−k
)

. For each k = 0, . . . , n, we have

φ(Ck
na

kbn−k) = |Ck
n|φ(akbn−k) ≤ φ(a)kφ(b)n−k ≤ φ(a)n, hence

φ((a + b)n) ≤ (n + 1)φ(a)n, and therefore, φ(a + b) ≤ n
√
n+ 1 φ(a)

for all n ∈ N∗. Finally, we obtain φ(a+ b) ≤ φ(a). �
The most classical example of an ultrametric complete alge-

braically closed field is the field Cp that is described later.

Definition and notation. Consider the field E provided with an
ultrametric absolute value. Let a ∈ E and let r ∈ R+. We denote
by d(a, r) the disk {x ∈ E| |x − a| ≤ r}, by d(a, r−) the disk {x ∈
E| |x − a| < r}, and we call circle of center a, of radius r the set
C(a, r) = d(a, r)\d(a, r−).

Given r1 and r2 such that 0 < r1 < r2, we denote by Γ(a, r1, r2)
the annulus {x ∈ E| r1 < |x − a| < r2} and by Δ(a, r1, r2) the
annulus {x ∈ E| r1 ≤ |x− a| ≤ r2}.
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We know that if b ∈ d(a, r), then d(b, r) = d(a, r). In the same
way, if b ∈ d(a, r−), then d(b, r−) = d(a, r−). Moreover, given two
disks T and T ′ such that T ∩ T ′ �= ∅, then either T ⊂ T ′ or T ′ ⊂ T .

We denote by δ the distance defined on E by δ(a, b) = |a−b|. Given
a ∈ E and a subset D of E, we set δ(a,D) = inf{|x−a| | x ∈ D}, and
given two subsets D, F of E, we set δ(D,F ) = inf{|x − y| | x ∈ D,
y ∈ F}.

We set diam(D) = sup{|x − y| | |x ∈ D, y ∈ D} and diam(D) is
named the diameter of D.

Similarly, we set codiam(D) = sup{|x − y| |x ∈ D, y /∈ D} and
codiam(D) is named the codiameter of D.

Of course, the following three statements are seen to be equivalent:

(i) d(a, r) = d(a, r−).
(ii) C(a, r) = ∅.
(iii) r /∈ | E |.

Further, the disks d(b, r−) included in C(a, r) (respectively in
d(a, r)) are the disks d(b, r−) such that b ∈ C(a, r) (respectively in
d(a, r)). They are called the classes of C(a, r) (respectively of d(a, r)).

Henceforth, D will denote a subset of the field IL.
The closure of D (also called adherence of D) is denoted by D

and the interior of D (also called opening of D) is denoted by
◦
D.

Given a point a ∈ L, we put δ(a,D) = inf{|x− a| |x ∈ D}. Then,
δ(a,D) is named the distance of a to D.

Given two subsets D, D′ of IL, we put δ(D,D′) = inf{|x − y| |
x ∈ D, u ∈ D′}. Then, δ(D,D′) is called the distance between D
and D′.

Given a bounded subset D of IL of diameter R, we denote by ˜D
the disk d(a,R), whenever a ∈ D. Given an unbounded subset D of

IL, we put ˜D = IL.
We denote by ̂IL an extension of IL provided with an absolute value

that extends that of IL. Given a ∈ ̂IL, r > 0, ̂d(a, r) (respectively
̂d(a, r−)) denotes the disk {x ∈ ̂IL| |x−a| ≤ r} (respectively {x ∈ ̂IL|
|x− a| < r}).
Lemma 2.8. Let d(a, r), d(b, s) be disks such that d(a, r)∩d(b, s) �= ∅
with r ≤ s. Then, d(a, r) ⊂ d(b, s).
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Let us also note the following basic lemma:

Lemma 2.9. Suppose that the residue class field E of the field E
is finite, of cardinal q. Then, for every disk d(a, r) with a ∈ E and
r ∈ |E| admits only q classes.

Lemma 2.10. ˜D\D admits a unique partition of the form (Ti)i∈I ,
whereas each Ti is a disk of the form d(ai, r

−
i ) with ri = δ(ai,D).

Proof. For every a ∈ ˜D\D, let r(a) = δ(a,D). Let α and β be two

points in ˜D\D such that | β − α | < r(α). It is easily seen that for
every x ∈ D, we have |x − β| = |x − α |, and then the family of

the disks T (α) = d(α, r(α)−) (α ∈ ˜D\D) makes a partition of ˜D\D
because given α and β ∈ ˜D\D, either |α − β| < r(α) and then
T (α) = T (β), or |α − β| ≥ r(α) and then |α − β| ≥ r(β), hence
T (α) ∩ T (β) = ∅. �
Definition and notation. Such disks d(ai, r

−
i ) are called the holes

of D.

Example 1. The holes of a disk d(a, r−), with r ∈ | IL |, are the
classes of C(a, r).

Example 2. The only one hole of IL\d(0, 1−) is d(0, 1−).
Example 3. The holes of IL\d(0, 1) are the disks d(a, 1−) with a ∈
d(0, 1).

Definition. D is said to be infraconnected [35], [36], [44], [49] if for
every a ∈ D, the mapping Ia from D to R+ defined by Ia(x) =
|x − a| has an image whose closure in R+ is an interval. In other
words, D is not infraconnected if and only if there exist a and b ∈ D
and an annulus Γ(a, r1, r2) with 0 < r1 < r2 < |a − b| such that
Γ(a, r1, r2) ∩D = ∅.
Lemma 2.11 is immediate:

Lemma 2.11. If D is infraconnected of diameter R ∈ R (respectively

+∞), then Ia(D) = [0, R] (respectively Ia(D) = [0,+∞[).

Lemma 2.12 gives a point of view from a hole of D.

Lemma 2.12. Let D be infraconnected and let α belong to a hole T
of diameter ρ. The closure of the set {|x− α| |x ∈ D} is an interval
whose lower bound is ρ.
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Proof. We just have to show that for every r and r′ such that
ρ < r < r′ < diam(D), there exists β ∈ D such that r < |β−α| < r′.
By definition of the holes, there exists b ∈ D such that |α − b| < r
and then, since D is infraconnected, there exists β ∈ D such that
r < |b− β| < r′. But it is seen that |β − α| = |b− β|. �

Given two infraconnected sets A and B, we may prove A∪B to be
infraconnected in the following two hypothesis (Theorems 2.13 and
2.15).

Theorem 2.13. Let A and B be two infraconnected sets such that
A ∩B �= ∅. Then, A ∪B is infraconnected.

Proof. If A and B are not bounded, the statement is obvious
because for every a ∈ A, Ia(A) = R+ and for every a ∈ B, we have

Ia(B) = R+. Now, we may assume A to be bounded, of diameter R,
while B has diameter R′ ≥ R (respectively is not bounded). Then,
A∪B has diameter R′ (respectively is not bounded). Let c ∈ A∩B, let

a ∈ A ∪B, and let us show that Ia(A ∪B) = [0, R′] (resp. [0,+∞[).
For convenience, we first assume B to be bounded. Since c ∈

A ∩ B, we see that |x − a| ≤ max(|x − c|, |c − a|) ≤ R′ whenever
x ∈ A ∪ B, hence Ia(A ∪B) ⊂ [0, R′]. Hence, we just have to show

that Ia(A ∪B) ⊃ [0, R′]. Obviously, Ia(A ∪B) = Ia(A) ∪ Ia(B) =

[0, R]∪Ia(B). Hence, we have to show that Ia(B) ⊃ [R,R′]. But when
x ∈ B with |x−a| > R, we see that |x−a| = |x−c| (because |c−a| ≤
R), hence Ia(B)∩]R,R′] = Ic(B)∩]R,R′], and finally, Ia(B) ⊃ [R,R′]
because Ic(B) ⊃ [R,R′].

When B is not bounded, in the same way it is seen that
Ia(A ∪B) = [0,+∞[. This finishes showing that A ∪ B is infracon-
nected. �

Corollary 2.14. The relation R defined by xRy if there exists an
infraconnected subset of D that contains x and y is an equivalence
relation.

Proof. R is obviously reflexive and symmetric. It is transitive by
Theorem 2.13. �

Definition. The equivalence classes with respect to this relation are
called the infraconnected components.
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Examples.

(1) d(0, 1−) ∪ d(1, 1−) is infraconnected. Its holes are the disks
d(α, 1−) with |α| = |α− 1| = 1.

(2) Let r ∈]0, 1[ and let D = d(0, 1−) ∪ d(1, r). Then, D is not
infraconnected; its infraconnected components are d(0, 1−) and
d(1, r). The holes of D are the disks d(α, 1−) with |α| = |α−1| =
1 and the disks d(α, |α − 1|−) with r < |α− 1| < 1.

Theorem 2.15. Let A and B be infraconnected sets such that
˜A = ˜B. Then, A ∪B is infraconnected.

Proof. Obviously, Ã ∪B = ˜A. If A is bounded, let ˜A = d(α,R),

and otherwise, let ˜A = L. First, let us assume A to be bounded. For
a ∈ A, the set {|x − a| | x ∈ A} is dense in [0, R], hence so is the
set {|x − a | | x ∈ A ∪ B}. In the same way, B plays the same role,
hence this still holds for a ∈ B. Finally, if A is not bounded, we just
replace [0, R] with [0,+∞[. That finishes proving Theorem 2.15. �

Definition. An infraconnected subset D of IL is said to be affinoid
if it is of the form d(a,R)\⋃q

k=1 d(bk, r
−
k ) with R and rk ∈ |IL| ∀k.

A subset D of IL is said to be affinoid if it is a finite union of infra-
connected affinoid subsets.

Proposition 2.16. Let D1, D2 be two infraconnected affinoid sub-
sets of IL such that D1 ∩ D2 �= ∅ and set D = D1 ∪ D2 and
E = D1∩D2. Then both D and E are infraconnected affinoid. More-

over, ˜D is either ˜D1 or ˜D2 and each hole of D is either a hole of D1

or a hole of D2.

Proof. By Theorem 2.13, D is infraconnected. Consider now
D1 of the form d(a, r)\(∪m

i=1d(ai, r
−
i )) and D2 of the form

d(b, s)\(∪n
i=1d(bi, s

−
i )). Suppose, for instance, r ≤ s and let c ∈

D1 ∩D2. Then, we can check that

E = d(c, r)\
(

( ∪d
i=1 (ai, r

−
i )) ∪ (∪n

i=1d(bi, s
−
i )
)

)

,

which is an infraconnected affinoid again. Since D1 ∩ D2 �= ∅, we
have ˜D1∩˜D2 �= ∅, hence ˜D is either ˜D1 or ˜D2, hence diam(D) ∈ |IL|.
Next, since the holes of both sets are in finite number, each hole of
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D is either a hole of D1 or a hole of D2, so each hole of D has a
diameter in |IL| and of course they are in finite number. �

Definition. We call empty annulus of D an annulus Γ(a, r1, r2) such
that

(i) r1 = sup{|x− a| |x ∈ D, |x− a| ≤ r2},
(ii) r2 = inf{ |x− a| |x ∈ D, |x− a| ≥ r1}.
The set d(a, r1) ∩ D is denoted by ID(Γ(a, r1, r2)), while the set
(IL\d(a, r−2 )) ∩ D is denoted by ED(Γ(a, r1, r2)). When there is no
risk of confusion about the set D, we just write I(Γ(a, r1, r2))
(respectively E(Γ(a, r1, r2))) instead of ID(Γ(a, r1, r2)) (respectively
ED(Γ(a, r1, r2))).
Remark 1. By definition, D is not infraconnected if and only if it
admits an empty annulus.

Remark 2. By definition, {I(Γ(a, r1, r2)), E(Γ(a, r1, r2))} is a parti-
tion of D.

Example. Let r ∈]0, 1[, let D = d(0, r) ∪ d(1, 1−), and let D′ =
d(0, r−) ∪ d(1, r). Then, Γ(0, r, 1) is an empty annulus of D and also
of D′. In the same way, Γ(1, r, 1) is also an empty annulus of D′.

Notation. Let X (D) be the set of the empty annuli of D. Given Λ1

and Λ2 ∈ X (D), it is easily seen that I(Λ1) ⊂ I(Λ2) is equivalent
to E(Λ1) ⊃ E(Λ2). We denote by ≤ the relation defined on X (D)
by Λ1 ≤ Λ2 if I(Λ1) ⊂ I(Λ2) and we set Λ1 < Λ2 if Λ1 ≤ Λ2 and
Λ1 �= Λ2.

Lemmas 2.17 and 2.18 are easily seen.

Lemma 2.17. The relation ≤ is a relation of order on X (D). Let
Λ1 and Λ2 be two empty annuli of D. The following assertions are
equivalent:

(i) Λ1 and Λ2 are not comparable with respect to the order ≤.
(ii) I(Λ1) ⊂ E(Λ2).
(iii) I(Λ2) ⊂ E(Λ1).
(iv) I(Λ1) ∩ I(Λ2) = ∅.
Lemma 2.18. Let Λ ∈ X (D) and let x ∈ I(Λ) (respectively
x ∈ E(Λ)). The infraconnected component of x is included in I(Λ)
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(respectively in E(Λ)). If Λ′ ∈ X (D) is such that Λ < Λ′, then
I(Λ′) ∩ E(Λ) �= ∅.

Lemma 2.19 is a direct consequence of Lemmas 2.17 and 2.18.

Lemma 2.19. Let Θ be an empty annulus of D. The family of the
empty annuli Λ ≥ Θ is totally ordered.

Proof. Let Λ1 and Λ2 ∈ X (D) satisfy Λ1 ≥ Θ,Λ2 ≥ Θ. Then,
I(Λ1) ∩ I(Λ2) ⊃ I(Θ) �= ∅, hence I(Λ1) is not included in E(Λ2),
hence Λ1 and Λ2 are comparable. �

Lemma 2.20. Let Θ be a minimal element of X (D) for the order
≤. Then, I(Θ) is an infraconnected component of D.

Proof. Suppose that I(Θ) is not infraconnected. By definition,
I(Θ) is of the form d(a,R)∩D, hence there exists an empty annulus
Λ = Γ(α, r1, r2) of I(Θ) with α ∈ d(a,R), r1 < r2 ≤ R and some
β ∈ I(Θ) such that r2 ≤ |α− β| ≤ R. Since Λ ⊂ d(a,R), we see that
Λ∩D = ∅, hence Λ is an empty annulus of D, and therefore, Λ < Θ.
This ends the proof of Lemma 2.20. �

Theorem 2.21. D has finitely many infraconnected components if
and only if it has finitely many empty annuli. Moreover, if so does D,
then one of the infraconnected components is A0 =

⋂

Θ∈X (D)E(Θ),

while the others are of the form Ai = I(Λi)
⋂

(

⋂

Θ<Λi
E(Θ)

)

, with

Λi ∈ X (D).

Proof. We first assume X (D) to be finite and we prove that the
infraconnected components are in the form Ai, above, so that there
will be finitely many ones.

Let Λ1, . . . ,Λn be these empty annuli of D, and for every i =
0, . . . , n, let Ai be the subsets of D defined from Λ1, . . . ,Λn as above.
For every x ∈ D, for every i = 1, . . . , n, either x ∈ I(Λi) or x ∈
E(Λi), hence it is easily seen that x belongs to one of the Ai, hence
D =

⋃n
i=0Ai. We check that Ai ∩ Aj = ∅ whenever i �= j. First, we

assume i = 0, j > 0. Hence, A0 ⊂ E(Λj), while Aj ⊂ I(Λj), hence
A0 ∩ Aj = ∅. Now, we suppose i > 0, j > 0. If Λi < Λj , then aj ⊂
E(Λi), while Ai ⊂ I(Λi) and then Ai∩Aj = ∅. Hence, we may assume
that Λ1 and Λ2 are not comparable, and then, by Lemma 2.17, we
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have I(Λi)∩I(Λj) = ∅, hence Ai∩Aj = ∅. Consequently, the family
(Ai)0≤i≤n makes a partition of D.

Now, we show that each Ai is infraconnected. Suppose that a
certain Ah is not infraconnected for some h > 0 (respectively h = 0).
Then, it admits an empty annulus Λ = Γ(a, r1, r2). First, we note
that if h = 0, then Λh > Λ because both a, b are centers of Λh.
Now, if h = 0 (respectively h > 0), let Θ ∈ X (D) (respectively let
Θ ∈ X (D) be such that Θ < Λh). Since both a, b belong to E(Θ),
it is seen that all Λ is included in E(Θ) and therefore is included in
Ah. This contradicts the hypothesis and finishes proving that Ah is
infraconnected.

Next, we check that each Aj is maximal in the set of the infracon-
nected subsets of D. Indeed, let B be a subset of D that strictly con-
tains a certain Ah and let a ∈ B\Ah. If h = 0, there exists Θ ∈ X (D)
such that a ∈ I(Θ), but Ah ⊂ E(Θ), and therefore, Θ is included in
an empty annulus of B. If h > 0, either a belongs to E(Λh) whereas
Ah ⊂ I(Λh) and then Λh is included in an empty annulus of B, or
there exists Θ ∈ X (D) satisfying Θ < Λh and a ∈ I(Θ), but then
Ah ⊂ I(Θ) and therefore Θ is included in an empty annulus of B.
Thus, in each case, B is not infraconnected and this finishes showing
that each Ai is maximal in the set of the infraconnected subsets of D.
As a consequence, the infraconnected components of D are the Ai.

Now, conversely, we assume D to have infinitely many empty
annuli. First, let us suppose that D has a sequence of empty annuli
(Λn)n∈N such that Λn < Λn+1 (respectively Λn > Λn+1) for all
n ∈ N. By Theorem 2.15, for every n ∈ N, there exists xn ∈
E(Λn) ∩ I(Λn+1) (respectively xn ∈ I(Λn) ∩ E(Λn+1)) and then the
infraconnected component Xn of xn satisfies Xn ⊂ E(Λn) ∩ I(Λn+1)
(respectively Xn ⊂ I(Λn) ∩ E(Λn+1)), hence Xn ∩ Xm = ∅ for all
n �= m, hence D has infinitely many infraconnected components.

Finally, we may assume that every totally ordered set of empty
annuli is finite. Hence, there exists a sequence of empty annuli
Λn that are minimal elements for the order ≤ on X (D) and then
I(Λn) ∩ I(Λm) = ∅ whenever n �= m. By Lemma 2.19, I(Λn) is an
infraconnected component Dn of D such that Dn∩Dm = ∅ whenever
n �= m. This finishes proving that D has infinitely many infracon-
nected components and this ends the proof. �
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Chapter 3

Monotonous and Circular Filters

Monotonous and circular filters are essential on an ultrametric field,
mainly because for any rational function, its absolute value admits
a limit along each circular filter [36], [44], [45], [49], [53] and circular
filters are the least thin filters having this property. Most of properties
of analytic functions of all kinds are derived from that property of
circular filters. Certain authors call “generic disk” a notion which is
not clearly defined but actually represents a circular filter. We see
that, given a bounded sequence, there exists a subsequence thinner
than a circular filter.

For certain problems, we can reduce ourselves to consider
monotonous filters instead of circular filters. Monotonous filters are
linked to sequences (an) such that |an+1−an| is strictly monotonous.
Moreover, decreasing filters let us define spherically complete fields.

Definition. Let J be set. A filter F on J is said to be thinner than
a filter G if every element of G belongs to F . In such a case, G is said
to be less thin than F . Two filters F , G are said to be secant if for
all A ∈ F , B ∈ G we have A ∩B �= ∅.

A filter F is said to be secant to a subset B ⊂ J if {F ∩B | F ∈ F}
is a filter.

A sequence (un)n∈N in J is said to be thinner than a filter G if so
is the filter defined by the sets Aq = {un|n ≥ q} (q ∈ N). In such a
case, G is said to be less thin than the sequence (un)n∈N.

A sequence (un)n∈N in IL will be said to be an increasing dis-
tances sequence (respectively a decreasing distances sequence) if the

21
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sequence |un+1 − un| is strictly increasing (respectively decreasing)
and has a limit � ∈ R∗

+.
The sequence (un)n∈N will be said to be a monotonous distances

sequence if it is either an increasing distances sequence or a decreasing
distances sequence.

A sequence (un)n∈N in IL will be said to be an equal distances
sequence if |un − um| = |um − uq| whenever n,m, q ∈ N such that
n �= m �= q.

Theorem 3.1. Let E be a field provided with an ultrametric absolute
value. Let (un)n∈N be a bounded sequence in E. Either we may extract
a Cauchy subsequence or we may extract a monotonous distances
subsequence or we may extract an equal distances subsequence from
the sequence (un)n∈N. Further, if the absolute value of E is discrete,
there is no monotonous distances sequence in E. And if the residue
class field of E is finite, there is no equal distances sequence in E.

Proof. Suppose Theorem 3.1 to be false. For every q ∈ N, the set
of the circles C(uq, r) that contain some un is then finite.

Suppose that we have already defined integers nq for q ≤ t
satisfying
(1) |unq − unq−1 | < |unq−1 − unq−2 | for 2 ≤ q ≤ t and such that
d(unq , |unq −unq−1 |− ) contains infinitely many terms of the sequence
(un). For every q = 2, . . . , t, let rq = |unq −nnq−1 |. Obviously, at least
one of the circles C(unt , r), with r < rt, contains infinitely many
terms of the sequence (un)n∈N. Let C(unt, rt+1) be such a circle. It is
seen that at least one class Λ of this circle contains infinitely many
terms of the sequence because otherwise we would have a sequence
of classes (Λj) each one containing at least one term uτ(j) and then

they should satisfy |uτ(j) − uτ(i)| = rt+1 whenever i �= j. Hence, the
sequence (un)n∈N should admit an equal distances subsequence. Then
we may pick up one term unt+1 in Λ and we have constructed the finite
subsequence up to the rank t+1, satisfying the properties mentioned
above. In the same way, we may initiate the induction by defining
n2 from arbitrary n0, n1. The sequence (unt)t∈N is then defined for
every t ∈ N and satisfies (1) for t > 1. Let � = limt→∞|unt − unt+1 |.
If � = 0, the subsequence (unt)t∈N is a Cauchy subsequence. If � > 0,
this is a decreasing distances subsequence. Thus, we have proven that
we can extract a sequence which is either a convergent sequence, or
a monotonous distances sequence, or an equal distances sequence.
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Now, suppose that the absolute value is discrete and suppose that
we have extracted monotonous distances sequences (bm)m∈N from the
sequence (un). Then the strictly monotonous sequence |bm+1 − bm|
must tend to 0, a contradiction. Finally, suppose that the residue
class field E of E is finite and suppose that we have extracted an equal
distances sequences (bm)m∈N. So, |b0 − bm| = |b0 − bn| = |bm − bn|
∀m �= n, m �= 0, n �= 0. Let q be the cardinal of E . Then, by Lemma
2.9, the set of terms bm is at most q, a contradiction. �

Henceforth, throughout this chapter, the field IL is supposed to
have a dense valuation and D is an infraconnected subset of IL.

Definition and notation. Let a ∈ ˜D and R ∈ R∗
+ be such that

Γ(a, r,R)∩D �= ∅ whenever r ∈]0, R[ (respectively Γ(a,R, r)∩D �= ∅
whenever r > R). We call an increasing (respectively a decreasing)
filter of center a and diameter R, on D the filter F on D that admits
for basis the family of sets Γ(a, r,R)∩D (respectively Γ(a,R, r)∩D).
For every sequence (rn)n∈N such that rn < rn+1 (respectively rn >
rn+1) and limn→∞ rn = R, it is seen that the sequence Γ(a, rn, R)∩D
(respectively Γ(a,R, rn) ∩ D) is a basis of F , and such a basis is
called a canonical basis. We call a decreasing filter with no center of
canonical basis (Dn)n∈N and diameter R > 0, on D a filter F on
D that admits for basis a sequence (Dn)n ∈ N in the form Dn =
d(an, rn) ∩ D with Dn+1 ⊂ Dn, rn+1 < rn, limn→∞ rn = R, and
⋂

n∈Nd(an, rn) = ∅.
Given an increasing (respectively a decreasing) filter F on D of

center a and diameter r, we denote by BD(F) the set {x ∈ D| |x−
a| ≥ r} (respectively the set {x ∈ D| |x− a| ≤ r} and by CD(F) the
set {x ∈ D| |x− a| < r} (respectively the set {x ∈ D| |x− a| > r}.
When there is no risk of confusion, we only write B(F) instead of
BD(F) and C(F) instead of CD(F). Next, CD(F) is named the body
of F and BD(F) is named the beach of F .

We call a monotonous filter on D a filter which is either an
increasing filter or a decreasing filter (with or without a center).
Given a monotonous filter F , we denote by diam(F) its diameter.

The field IL is said to be spherically complete if every decreasing
filter on IL has a center in IL. The field Cp, for example, is not spher-
ically complete (see Chapter 6). However, every algebraically closed
complete ultrametric field admits a spherically complete algebraically
closed extension and this is recalled in Chapter 8.
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Lemma 3.2. Let (an)n ∈ N be an increasing distances (respectively
a decreasing distances) sequence in D. There exists a unique increas-
ing (respectively decreasing) filter F on D such that the sequence
(an)n ∈ N is thinner than F .

Proof. Let rn = |an+1 − an| and let R = limn→∞rn.
We first suppose (an)n∈N to be an increasing distances sequence.

The increasing filter F of center a0, of diameter R is obviously less
thin than the sequence (an)n∈N. We show that F is unique. Let G
be an increasing filter of center a, of diameter R′, less thin than
the sequence (an)n∈N. For every r < R′, there exists q ∈ N such that
an ∈ Γ(a, r,R′) whenever n ≥ q. If a ∈ d(a0, R

−), this clearly requires
that R = R′ and then G = F . Let us suppose that a /∈ d(a0, R

−).
Then we have |a− an| = |an − am| = C whenever n �= m so R′ > R
and then Γ(a, r,R′) does not contain the an whenever r > R. Finally,
G = F .

We now suppose the sequence (an)n∈N to be a decreasing dis-
tances sequence with a point a such that |a − an| = |an+1 − an|
whenever n ∈ N. Then the decreasing filter of center a, of diam-
eter R is a decreasing filter less thin than the sequence (an)n∈N.
We show it to be the only decreasing filter less thin than the
sequence (an)n∈N. Indeed, given a decreasing filter G less thin than
the sequence (an)n∈N, it must have a center because if it had no cen-
ter, the sequence d(an+1, |an+1 − an|) would be one of its canonical
basis, but by definition, it has an intersection that contains a. Then,
symmetrical to the case when F is increasing, it is easily seen that
F is unique.

Now, we suppose that the sequence (an)n∈N is a decreasing dis-
tances sequence and that there does not exist a ∈ L such that
|a − an| = |an+1 − an| whenever n ∈ N. We put |an+1 − an| = rn.
Hence, the sequence of disks d(an+1, rn) has empty intersection and
then the filter F , a basis of which is the sequence (Dn)n∈N with
Dn = d(an+1, rn)∩D, is a decreasing filter with no center, of diame-
ter R. There is no decreasing filter with center a ∈ IL, less thin than
the sequence (an) because we should have |a − an| = rn whenever
n ∈ N. Hence, it just remains to show that F is the only decreasing
filter with no center less thin than the sequence (an). Let us sup-
pose that there exists another decreasing filter G of diameter R′ with
no center, of canonical basis (D′

m)m∈N less thin than the sequence
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(an). If R
′ > R, since every D′

m contains points an, it is seen that
all the an lie in D ∩ d(a0, R) ⊂ D′

m whenever m ∈ N and this con-
tradicts that G has no center. Hence, we have R′ ≤ R. But sym-
metrically, we have R ≤ R′. Hence, R = R′. We show that G = F .
For every m ∈ N, let ρm be the diameter of D′

m and let aq ∈ D′
m

be such that rq ≤ ρm. Clearly, an ∈ D′
m whenever n ≥ q, hence

Dn ⊂ D′
m whenever n > q. In the same way, let n ∈ N and t ∈ N

be such that ρm < rn whenever m ≥ t. Then, D′
m contains some as

which belongs to d(an+1, rn) ∩ D = Dn, hence D
′
m ⊂ Dn whenever

m ≥ t. That finishes showing that G = F and that ends the proof of
Lemma 3.2. �

Lemma 3.3. Let F be an increasing filter (respectively a decreasing

filter) on IL, of center a ∈ ˜D and diameter R ≤ diam(D) (respectively
R < diam(D)) such that a does not belong to a hole of diameter
ρ ≥ R (respectively ρ > R). Then, F is secant with D and induces
on D an increasing filter (respectively a decreasing filter) of center a
and diameter R, on D.

Proof. We just have to check that Γ(a, r,R) ∩ D �= ∅ whenever
r ∈]0, R[ (respectively Γ(a,R, r)∩D �= ∅ whenever r > R) and this is
obvious when a ∈ D because D is infraconnected and R ≤ diam(D)
(respectively R < diam(D)). Now, let us assume a to belong to a
hole T of diameter ρ < R (respectively ρ ≤ R). Since |IL| is dense in
[0,+∞[, for every r < R (respectively r > R), D has points α such
that r < |a − α| < R (respectively R < |a − α| < r) and this ends
the proof. �

Definition. Let F be an increasing (respectively a decreasing) filter
of center a and diameter R on D. F is said to be pierced if for every
r ∈]0, R[ (respectively r > R), Γ(a, r,R) (respectively Γ(a,R, r))
contains some hole Tm of D.

A decreasing filter with no center F of canonical basis (Dm)m∈N
on D is said to be pierced if for every m ∈ N, ˜Dm\ ˜Dm+1 contains
some hole Tm of D.

Remarks. The definition of a pierced filter with no center also
applies to a decreasing filter with a center and then is equivalent
to that given just above for such a filter.
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If F is an increasing (respectively a decreasing) filter of center
a, of diameter R, F is pierced if and only if there exists a sequence
of holes (Tn)n∈N of D such that δ(a, Tn) < δ(a, Tt+1) (respectively
δ(a, Tn) > δ(a, Tn+1)), limn→∞δ(a, Tn) = R.

Given a Cauchy filter F on D, of limit a in |L, we call a canonical
basis of F a sequence Dm in the form d(a, rm) ∩ D with 0 < rm <
rm+1 and limm→∞rm = 0. The filter F is said to be pierced if for

every m ∈ N, ˜Dm contains some hole of D.

Let a ∈ ˜D. Let (Tm,i)1≤i≤s(m)
m∈N

be a sequence of holes of D which

satisfies δ(a, Tm,i) = dm (1 ≤ i ≤ hm), dm < dm+1 (respectively
dm > dm+1), limm→∞ dm = S > 0.

The sequence (Tm,i)1≤i≤s(m)
m∈N

is called an increasing (respectively a

decreasing) distances holes sequence that runs the increasing (respec-
tively decreasing) filter of center a, of diameter R.

Now, let (Tm,i)1≤i≤s(m)
m∈N

be a sequence of holes of D that satisfies

δ(am, Tm,i) = dm (1 ≤ i ≤ s(m)), dm > dm+1, limm→∞ dm = R > 0,
where the filter F of basis Dm = d(am, dm)∩D is a decreasing filter
with no center. The sequence (Tm,i)1≤i≤s(m)

m∈N
is called a decreasing

distances holes sequence that runs F .

Summarizing these definitions, an increasing (respectively
decreasing) distances holes sequence that runs an increasing (respec-
tively decreasing) filter F is just named an increasing (respectively
decreasing) distances holes sequence and the filter F is named the
increasing (respectively decreasing) filter associated with the sequence
(Tm,i)1≤i≤s(m)

m∈N
. The diameter of F is called the diameter of the

sequence (Tm,i)1≤i≤s(m)
m∈N

. If F has a center a, a is named the cen-

ter of the sequence (Tm,i)1≤i≤s(m)
m∈N

. If F has no center, the sequence

(Tm,i) is called a decreasing distances holes sequence with no center.
Finally, an increasing (respectively decreasing) distances holes

sequence is called a monotonous distances holes sequence and the
sequence (dm)m∈N is called the monotony of the monotonous dis-
tances holes sequence.



November 5, 2024 15:40 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch03 FA1 page 27

Monotonous and Circular Filters 27

Let (Tm,i)1≤i≤s(m)
m∈N

be a monotonous distances holes sequence

and for every (m, i)1≤i≤s(m)
m∈N

let ρm,i = diam(Tm,i). The number

inf 1≤i≤s(m)
m∈N

ρm,i is called piercing of the sequence (Tm,i)1≤i≤s(m)
m∈N

.

If a monotonous holes sequence has a piercing ρ > 0, it is said
to be well pierced. If a monotonous filter F is run by a well-pierced
monotonous holes sequence, F is said to be well pierced.

In each case, the sequence of circles C(a, dm) when F has center
a (respectively C(am+1, dm) when F has no center) is said to run
the filter F and to carry the monotonous distances holes sequence
(Tm,i)1≤i≤s(m)

m∈N
.

A monotonous distances holes sequence (Tm,i)1≤i≤s(m)
m∈N

is said to

be simple if s(m) = 1 for all m ∈ N.
Next, a sequence of holes (Tm)m∈N of D is called a Cauchy

sequence of holes of limit a ∈ IL if limm→∞ δ(a, Tm) = 0. Such a
sequence is said to run the Cauchy filter of basis {d(a, r)∩D|r > 0}.
Notation. In all the propositions, theorems, corollaries, and Lemmas
3.4–3.10, γ is the Moebius function b+ 1

x−a with a, b ∈ IL.

Proposition 3.4. Let α ∈ D, r > 0 be such that |a− α| < t. Then,
γ(C(α, r)) = C(b, 1r ).

Proof. We may assume b = 0 and then the proof is immediate. �

Corollary 3.5. Let α ∈ IL, r1, r2 ∈]0,+∞[ with |a − α| < r1 < r2.

Then, γ(Γ(α, r1, r2)) = Γ
(

b, 1
r2
, 1
r1

)

.

Corollary 3.6. Let F be the increasing (respectively decreasing) fil-
ter of center α and diameter R > |a−α|, on IL\{a}. Then, γ(F) is the
decreasing (respectively increasing) filter of center b and diameter 1

R .

Lemma 3.7. Let α ∈ IL be such that |α− a| �= r. Then,

γ(C(α, r)) = C
(

γ(α),
r

|a− α|2
)

.
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Proof. When x belongs to C(α, r), we have

γ(x)− γ(α) =

∣

∣

∣

∣

α− x

(x− α)(a− α)

∣

∣

∣

∣

=
r

|a− α|2 ,

hence γ(C(α, r)) ⊂ C
(

γ(α), r
|a−α|2

)

. Now, let ξ(u) = γ−1(u) =

a + 1
u−b . We see that C

(

(γ(α), r
|a−α|2

)

⊂ C(α, r). Since γ and

ξ are injective, we see that γ must be a surjection onto

C
(

γ(α), r
|a−α|2

)

. �

Corollary 3.8. Let α ∈ IL and r, r′ ∈]0,+∞[ be such that

0 < r < r′ < |a − α|. Then, we have γ
(

Γ(α, r, r′)
)

=

Γ
(

γ(α), r
|a−α|2 ,

r′
|a−α|2

)

, γ(d(α, r)) = d
(

γ(α), r
|a−α|2

)

,

γ(d(α, r−)) = d
(

γ(α),
(

r
|a−α|2

)−)
.

Corollary 3.9. Let F be the increasing (respectively decreasing) fil-
ter of center α and diameter R on IL\{a} with |a − α| > R. Then,
γ(F) is an increasing (respectively a decreasing) filter of center γ(α),
of diameter R

|a−α|2 on IL\{b}.

Corollary 3.10. Let F be a decreasing filter with no center, of basis
(Dn)n∈N on IL\{a} such that a /∈ D0. Then, γ(F) is a decreasing

filter with no center, of canonical basis
(

γ(Dn)
)

n∈N
on IL\{b}.

Theorem 3.11. We suppose a ∈ D. Let D′ = γ(D). Let F be a
filter on D which is either a monotonous filter or a Cauchy filter.
Then, F is pierced if and only if γ(F) is a pierced filter on D′.

Proof. For example, we suppose first F to be a monotonous fil-
ter. By definition, F is the intersection with D of a monotonous
filter G of IL\{a}. Hence, F is pierced if and only if G is secant
with (IL\{a})\D. Since γ is bicontinuous in IL\{a}, we see that
γ(G) is secant with (IL\{b})\D′ if and only if G is secant with
(IL\{a})\D because γ(D)\{a} = D′\{b}. Hence, the conclusion is
clear. In the same way if F is a Cauchy filter of limit α ∈ IL, we
consider the filter G′ of the neighborhoods of γ(α) in IL\{b} and we
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see that G is secant with (L\{a})\D if and only if G′ is secant with
(IL\{b})\D′. �

We are now going to define circular filters, which roughly charac-
terize the absolute values on IL(x) when IL is algebraically closed.

Definition. Let a ∈ IL and let R ∈]0,+∞[. We call circular fil-
ter of center a and diameter R on L the filter F which admits
as a generating system the family of sets Γ(α, r′, r′′) ∩ D with
α ∈ d(a,R), r′ < R < r′′, i.e. F is the filter which admits for basis the
family of sets of the form

(⋂q
i=1Γ(αi, r

′
i, r

′′
i )
)

with αi ∈ d(a,R), r′i <
R < r′′i (1 ≤ i ≤ q , q ∈ N).

For reasons that appear when characterizing the absolute values
of IL(x) when IL is algebraically closed, a decreasing filter with no
center on IL, of canonical basis (Dn)n∈N is also called circular filter
on IL with no center, of canonical basis (Dn)n∈N.

Finally, the filter of the neighborhoods of a point a ∈ IL is called
circular filter of the neighborhoods of a on IL. It is also named circular
filter of center a and diameter 0. A circular filter on IL is said to be
large if it has a diameter different from 0.

A circular filter on IL secant with D is called circular filter on D.
Given a circular filter F on IL, its diameter is denoted by diam(F)
and we call F-affinoid any infraconnected affinoid subset of IL lying
in F .

Lemma 3.12 lets us describe circular filters on an infraconnected
subset of IL.

Lemma 3.12. Let a ∈ ˜D, let ρ be the distance from a to D, and let R
be such that ρ ≤ R ≤ diam(D). For j = 1, . . . , q, let αj ∈ d(a,R) and
let r′j, r

′′
j ∈ R+ be such that r′j < R < r′′j . Then,

⋂q
j=0(Γ(αj , r

′
j , r

′′
j ) ∩

D) �= ∅.
Proof. If ρ < R, we put r′ = max1≤j≤q r′j and we see that

Γ(a, r′, R) ∩ D is not empty (because D is infraconnected) and is
included in every set Γ(αj , r

′
j , r

′′
j ) ∩ D. If R < diam(D), we put

r′′ = min1≤j≤q r′′j , and in the same way, Γ(a,R, r′′)∩D is not empty

and is included in every set Γ(αj , r
′
j , r

′′
j ) ∩D.

Now, if ρ = R = diam(D), let b ∈ D and let r′ = max1≤ j≤ q r
′
j.

Then, Γ(b, r′, R) ∩ D is not empty and is included in every set
Γ(αj , r

′
j , r

′′
j ) ∩D. �
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Corollary 3.13. Let a ∈ ˜D, let ρ be the distance from a to D, and
let R be such that ρ ≤ R ≤ diam(D). The circular filter on IL of
center a and diameter R is secant with D.

Proposition 3.14 is immediate according to definitions:

Proposition 3.14. Let F be an increasing filter (respectively a
decreasing filter) of center a and diameter R, on D. Then, the cir-
cular filter of center a and diameter R on IL is secant with D and is
the only circular filter on D less thin than F .

Conversely, let F be a circular filter of center a and diameter
R, on D secant with d(a,R−) (respectively IL\d(a,R)). Then, the
increasing filter (respectively decreasing filter) of center a and diam-
eter R on IL is secant with D and thinner than F .

Lemma 3.15. Let F be a circular filter. Then, F admits a basis
consisting of the family of all F-affinoids. If F does not admit a
countable basis, it has a center and its diameter belongs to |IL|. If
F has no center and is secant with an infraconnected affinoid subset
B of IL, then B lies in F . If F has center a and diameter r, then
an infraconnected affinoid set B lies in F if and only if satisfy E ∩
(IL\d(a, r)) �= ∅, B ∩ d(b, r−) �= ∅ ∀b ∈ d(a, r).

Proof. By definition, a circular filter with no center has a countable
basis and of course so does a Cauchy circular filter. In both cases,
it admits a basis consisting of a family of disks which are F-affinoid
sets.

Now, consider a circular filter of center a and diameter
r > 0. Then, F admits for basis the family of sets of the form
d(a, r + 1

n)\(
⋃q
i=1 d(ai, (r − 1

n)
−), where the ai are centers of F sat-

isfying |ai − aj| = r. In particular, if r /∈ |L|, we have q = 1 and we
obtain a basis of the form Γ(a, r − 1

n , r +
1
n) which is countable.

Now, suppose that F is secant with an infraconnected affinoid
subset B of IL. Suppose first that F has no center. Let (An)n∈N be a
canonical basis of F . Since each An admits common points with B,
each is included in ˜B, and therefore, it is included in B if and only
if it contains no hole of B. But since F has no center,

⋂∞
n=0An = ∅,

hence there exists q ∈ N such that An ⊂ B ∀n ≥ q, and therefore,
B ∈ F .
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Now, suppose that F has center a and diameter r. If B ∈ F , it
obviously satisfies B ∩ (IL\d(a, r)) �= ∅, B ∩ d(b, r−) �= ∅ ∀b ∈ d(a, r).
Since B has finitely many holes, on one hand, there exists s > r
such that Γ(a, r, s) ⊂ E, and on the other hand, all classes of d(a, r)
are included in B, except finitely many: d(bj , r

−), 1 ≤ j ≤ n. And
for each j = 1, . . . , n, there exists rj < r such that Γ(bj , rj , r) ⊂
B. Finally, B contains the set d(a, s)\⋃n

j=1 d(bj , rj) which obviously
lies in F . �

Corollary 3.16. Let F be a circular filter of diameter r. For every
s ∈]0, r[, the family of F-affinoid of codiameter ρ > s is a basis of F .
If two disks d(a, r) and d(b, s) have no common points and if F is
secant with d(a, r), it is not secant with d(b, s).

Proposition 3.17. Let a ∈ ˜D and let S be the closure of {|x − a|
|x ∈ D} in R. For every r ∈ S, the circular filter F of center a and
diameter r is secant with D.

Proof. Let a ∈ ˜D. We first suppose that C(a, r) ∩ D = ∅. Then,
either there exists a sequence (xn)n∈N inD such that r < |xn+1−a| <
|xn − a|, limn→∞|xn − a| = r, or there exists a sequence (xn)n∈N in
D such that |xn − a| < |xn+1 − a| < r, limn→∞|xn − a| = r. In both
cases, the circular filter F of center a and diameter r is clearly secant
with D.

Now, we may suppose that C(a, r) ∩D �= ∅. Let b ∈ C(a, r) ∩D.
We see that b is also a center of F . Since D is infraconnected and
since |a− b| = r ≤ diam(D), there does exist a sequence (xn)n∈N in
D such that limn→∞|xn − b| = r. Hence, F (that has center b and
diameter r) is secant with D. �

Proposition 3.18. Let (an)n∈N be a sequence in D that is either
a monotonous distances sequence or a constant distances sequence.
Then, there exists a unique circular filter on D less thin than the
sequence (an).

Proof. First, we suppose that the sequence (an)n∈N is an increasing
(respectively a decreasing) distances sequence. By Lemma 3.2, there
exists a unique increasing (respectively decreasing) filter F on D less
thin than the sequence (an)n∈N. If F has center a and diameter R,
by Proposition 3.14, F is less thin than the circular filter of center a,
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of diameter R on D. If F is decreasing with no center, F is a circular
filter.

Now, we suppose that (an)n∈N is a constant distances sequence.
We put R = |an− am| for n �= m and a = a0. The circular filter F of
center a of diameter R on IL is clearly secant with D because each set
Λn = Γ(an, r

′, r′′) with r′ < R < r′′ belongs to a generating system
of F and contains am for every m > n, hence its intersection with D
is a circular filter C on D less thin than the sequence (an)n∈N. That
ends the proof. �

Corollary 3.19. Let F and G be two circular filters that are secant.
Then, they are equal.

Proof. We can find a monotonous sequence thinner than F . Then,
the sequence is thinner than G and hence G = F . �

Notation. Let IL′ be an extension of IL provided with an absolute
value that extends the one of IL. Let D be a set in IL, let F be a
monotonous filter on D, and let D′ be a set in IL′ that contains D.
Let (an)n∈N be a monotonous distances sequence that runs F . In
̂D, there is a unique monotonous filter less thin than the sequence
(an)n∈N. This filter is denoted by ̂F .

In the same way, let G be a circular filter of center a and diam-
eter r on D. We denote by ̂G the filter of center a and diameter r
on D′. Finally, let G be a circular filter with no center. Then, it is a
decreasing filter, hence we have already previously defined ̂G.
Corollary 3.20. Let (an)n∈N be a bounded sequence in IL. Then,
there exists a subsequence (ant)t∈N and a unique circular filter F on
IL less thin than the subsequence (ant)t∈N.

Proof. Since the sequence (an)n∈N is bounded, by Theorem 3.1, we
can extract either a monotonous distances subsequence, or a constant
distances subsequence, or a converging subsequence. In all cases, once
such a subsequence is chosen, there exists a unique circular filter F
on IL less thin than the subsequence. �

Theorem 3.21. Let (an)n∈N, (bn)n∈N be two sequences such that
|an − bn| ≤ t < r ∀n ∈ N. Suppose that the sequence (an)n∈N is
thinner than a circular filter F of diameter r. Then, the sequence
(bn)n∈N also is thinner than F .
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Proof. By Corollary 3.16, F admits a basis consisting of
F-affinoids S of codiameter ρ > t. Consider such a F-affinoid S.
Then, if an belongs to S, so does bn. Now, when n is big enough, all
an belong to S and hence so do all bn. And since F admits a basis
of F-affinoids with a codiameter s > t, we see that the sequence
(bn)n∈N is thinner than F . �
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Chapter 4

Ultrametric Absolute Values for
Rational Functions

Notation. As mentioned in Chapter 1, log denotes a real logarithm
function of basis θ > 1 (eventually, we can take for θ an integer p
that is the residue characteristic of K). When a function f from an
interval I to R admits a right side (respectively a left side) derivative
at a point a ∈ I, we denote it by f ′r(a) (respectively f ′l(a)). If the
variable is μ, we also denote it by drf

dμ (respectively dlf
dμ ).

Moreover, though out this chapter, we denote by IL be a field
provided with an ultrametric absolute value | . |.

The set of circular filters on K secant with a subset D of K is
denoted by Φ(D) and the subset of large circular filters on K secant
with D is denoted by Φ◦(D). We show the absolute values on the
field K(x) of rational functions to be characterized by the circular
filters on K. Actually, the most important property of such absolute
values comes from the fact that the logarithm of an absolute value is
a piecewise affine function of the logarithm of the absolute value of
the variable. And next, a valuation function is then defined for any
h ∈ K(x) in the following way: let r ∈]0,+∞[ be such that μ = − log r
and let F be the circular filter of center 0 and diameter r. Following
classical notations [1], [14], one sets

v(h, μ) = − log(lim
F

|h(x)|).

35
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This function v(h, μ), called the valuation function of h, is conve-
nient mainly because it is piecewise affine. However, in order to avoid
many changes of sign, here we consider Ψ(h, log r) = log(limF |h(x)|)
and we show that when drΨ(h,μ)

dμ �= dlΨ(h,μ)
dμ then drΨ(h,μ)

dμ − dlΨ(h,μ)
dμ is

equal to the difference between the number of zeros and the number
of poles of h (taking multiplicity into account) on the circle C(0, r)
such that log r = μ. This translates properties of |h(x)| into terms of
piecewise affine functions.

However, this kind of definition presents the inconvenient of
changing the sense of monotony for both |x| and |h(x)|. Moreover,
its sign is opposite to this of the counting function of zeros for
entire functions in the Nevanlinna theory. This is why, here we adopt
another set of notation and put Ψ(x) = log |x| ∀x ∈ K. First, we
have to state several basic properties that work not only in an alge-
braically closed field such as K but more generally in a field E that
is just provided with an ultrametric absolute value.

Let IL[x1, . . . , xq] be an algebra of polynomials in q inde-
terminates, with coefficients in IL. For each P (x1, . . . , xq) =
∑

j1+···+jq≤t ai1,...,iqx
j1
1 .....x

jq
q we set

P (x1, . . . , xq) :=
∑

j1+···+jq≤t ai1,...,iqx
j1
1 .....x

jq
q .

On IL[x1, . . . , xq], we put ‖P‖ := supj1+···+jq≤t |ai1,...,iq |0.
However, when there is no risk of confusion, we just write ‖ . ‖

instead of ‖ . ‖0.

Lemma 4.1. ‖ . ‖ is a multiplicative norm of IL-algebra.

Proof. Let B = IL[x1, . . . , xq]. Clearly, ‖ . ‖ is an ultrametric norm
of IL-vector space on B. We check that ‖PQ‖ = ‖P‖‖Q‖ whenever
P,Q ∈ B. Both ‖P‖, ‖Q‖ belong to |IL|. Hence, without loss of
generality, we may clearly assume ‖P‖ = ‖Q‖ = 1. Thus, we have
P = Q = 1. Let L be the residue field of IL. Since L[x1, . . . , xq] is
a ring without divisors of zeros, we have PQ �= 0, and therefore,
‖PQ‖ = 1. This ends the proof. �

Definition and notation. The norm ‖ . ‖ on IL[x1, . . . , xq]0 is called
the Gauss norm. Given a polynomial P (x) =

∑q
j=1 ajx

j ∈ IL[x], for

any r > 0, we set |P |(r) = max0≤j≤q(|aj |rj).
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By ultrametricity, Lemma 4.2 is then immediate:

Lemma 4.2. Let P (x) ∈ IL[x]. For all x ∈ IL, one has |P (x)| ≤
|P |(|x|).

Lemma 4.3. Suppose IL is algebraically closed. Let P (x) =
∑n

j=0ajx
j ∈ IL[x]\{0} and let r ∈ R+. Then, |P (x)| admits a limit

equal to |P |(r) when |x| approaches r but remains different from r.
Let x ∈ d(0, r). Then, |P (x)| ≤ |P |(r). If P has no zero in the class
of x in d(0, r), then |P (x)| = |P |(r). If P has at least one zero in
that class, then |P (x)| < |P |(r).

Proof. Let r′ < r and r′′ > r be such that P has no zero in
Γ(0, r′, r)∪Γ(0, r, r′′). We may obviously assume P to be monic. Let
P (x) =

∏n
i=1(x−αi) be the factorization of P in an algebraic closure

of IL, with
|αi| < r′ for i ≤ h,
|αi| > r′′ for i ≥ �,
|αi| = r for i = h, . . . , �.

Now, let x ∈ Γ(0, r′, r). Clearly, |x− αi| = |x| whenever i ≤ h, while
|x−αi| = |αi| whenever i > h, hence |P (x)| = |x|h∏n

i=h+1|αi|, hence
lim|x|→r−|P (x)| = rh

∏n
i=h+1|αi|.

Symmetrically, we show that lim|x|→r+|P (x)| = r�−1
∏n
i=�|αi| =

rh
∏n
i=h+1|αi|. But the terms |ajxj| are all different for every |x|

except for finitely many values so that there exist ρ′ ∈ [r′, r[
and ρ′′ ∈]r, r′′] such that the |ajxj | are all different when x ∈
Γ(0, ρ′, r)

⋃

Γ(0, r, ρ′′). Then, we have |P (x)| = max0≤j≤n|aj ||x|j and
hence lim |x|→r

|x|�=r
|P (x)| = max0≤j≤n|aj|rj .

Now, let x ∈ d(0, r) and let us assume P to have no zero in
the class Λ of x in d(0, r). This means that |x − αi| = r whenever
i = 0, . . . , � − 1 and |x − αi| = |αi| whenever i ≥ �. Thus, |P (x)| =
r�−1

∏n
i=�|αi|. If P has at least one zero αh+1 in the class of x, we see

that |x− αh+1| < r, while |x− αi| ≤ r for every i = h+ 2, . . . , �− 1,
hence |P (x)| < r�−1

∏n
i=�|αi|, and finally, |P (x)| < |P |(r). �

Theorem 4.4. Let P ∈ IL[X] and let U be the unit disk
{x ∈ | |x| ≤ 1} of K. Then, ‖P‖ = supx∈U(|P (x)).
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Proof. On one hand, |P (x)| ≤ ‖P‖ ∀x ∈ U . On the other hand, by
Theorem 4.3, lim |x|→1, x∈U,

|x|�=1

|P (x)| = ‖P‖. Consequently, the equality

holds. �

Corollary 4.5. Let P ∈ IL[X] and let t ∈ IL be such that |t| ≤ 1.
Let Q(X) = P (X + t). Then, ‖P‖ = ‖Q‖. If ‖P‖ ≤ 1, then P is
1-Lipschitzian.

Theorem 4.6. For every r > 0, the mapping from IL[x] to R+

defined by P → |P |(r) is an absolute value on IL[x] such that
|P (a)| ≤ |P |(|a|) ∀a ∈ IL.

Proof. Due to the definition of |P |(r), it is easily checked that
|P |(r) = 0 if and only if P = 0 and that

|P +Q|(r) ≤ max(|P |(r), |Q|(r)).

We can also check that |P (a)| ≤ |P |(|a|) ∀a ∈ IL. Now, set
P (x) =

∑m
j=1 ajx

j, Q(x) =
∑n

j=1 bjx
j , and let P (x)Q(x) =

∑m+n
j=1 cjx

j. Let s (respectively t) be the biggest of the integers

such that |P |(r) = |as|rs (respectively |Q|(r) = |bt|rt). Then,
|P |(r)|Q|(r) = |asbt|rs+t. On the one hand, we can check that,
obviously, |cj |rj ≤ |asbt|rs+t ∀j = 0, . . . ,m + n, hence |PQ|(r) ≤
|P |(r)|Q|(r). On the other hand, since |aj |rj < |as|rs ∀j > s and
|bj |rj < |bt|rt ∀j > t, we have |cs+t|rs+t = |asbt|rs+t, which proves
that |PQ|(r) ≥ |P |(r)|Q|(r) and hence ends the proof. �

Now, Lemma 4.7 shows that we can change the origin, inside the
disk d(0, r).

Lemma 4.7. Suppose IL is algebraically closed. Let r ∈ R+ and let
a ∈ IL be such that |a| ≤ r. Then, |P (x)| has a limit when |x − a|
approaches r but remains different from r. Further, that limit does
not depend on a ∈ d(0, r) and it belongs to |IL| if and only if so
does r.

Proof. We set x = a + u and Pa(u) = P (a + u). For every
P ∈ IL[x], we have lim |u|→r

|u|�=r
|Pa(u)| = |Pa|(r). In particular, |Pa|(r) =

lim |u|→r+

|u|<r

|Pa(u)|. But for every ρ > r,C(0, ρ) = C(a, ρ), hence
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lim|x|→r+|P (x)| = lim|u|→r+|P (a+u)| = lim|u|→r+|Pa(u)|. That ends
the proof of Lemma 4.7. �

Theorem 4.8. Suppose IL is algebraically closed. Let P (x) =
∑q

j=0 ajx
j ∈ IL[x] be a monic polynomial such that aj ∈ d(0, 1) when-

ever j = 0, . . . , q. Then, the q zeros of P belong to d(0, 1).

Proof. Let ψ be the absolute value defined on IL[x] by ψ(P ) =
lim|u|→1,|u|�=1|P (u)| and let P (x) =

∏q
j=1(x− cj). By Lemma 4.3, for

each j = 1, . . . , q, it is seen that ψ(x − cj) ≥ 1, while ψ(P ) = 1.
Hence, ψ(x−cj) = 1 for every j = 1, . . . , q, and therefore, by Lemma
4.3 again, we have cj ≤ 1 whenever j = 1, . . . , q. �

Notation. These ultrametric absolute values defined on IL[x] are

immediately extended to rational functions by
∣

∣

∣

P
Q

∣

∣

∣(r) :=
|P |(r)
|Q|(r) .

Then, Lemma 4.9 is immediate:

Lemma 4.9. Suppose IL is algebraically closed. Let h ∈ IL(x) and
let r ∈ R+. For every a ∈ d(0, r), we have lim |x−a|→r

|x−a|�=0

|h(x)| = |h|(r).
Let x ∈ C(0, r). If h has no zero and no pole in the class of x in
C(0, r), then |h(x)| = |h|(r). Further, |h|(r) belongs to |K| if and
only if so does r.

Circular filters characterize the multiplicative norms defined on
K(x) [61], [36], [49].

Theorem 4.10 (B. Guennebaud). For every circular filter F on
K, for every polynomial P (x) ∈ K[x], |P (x)| has a limit ϕF (P ) along
the filter F . The mapping F → ϕF from Φ(K) into the set of the
multiplicative semi-norms on K[x] is a bijection. Moreover, for every
large circular filter on K, ϕF has continuation to K(x) and the map-
ping F → ϕF from Φ◦(K) into the set of the multiplicative norms on
K(x) is a bijection.

If F has center 0 and diameter r, then ϕF (h) = |h|(r).

Proof. We first suppose that F has center a ∈ K and diameter
r > 0. With no loss of generality, we may obviously assume a = 0
by means of the change of variable x = a+ u. Then, by Lemma 4.3,
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|h(x)| = |h|(r) holds in every class of C(0, r) but finitely many ones
Λ1, . . . ,Λq. For every j = 1, . . . , q, we take αj ∈ Λj and set α0 = 0.
Let ε be > 0. By Lemma 4.3, there exist ρ′ ∈]0, r[ and ρ′′ > r
such that | |h(x)| − |h|(r) |∞ ≤ ε for every x ∈ ⋂qj=0Γ(αj , ρ

′, ρ′′), so
limF |h(x)| = |h|(r).

Now, we suppose that F has no center in K. It admits a canonical
basis (Dn)n∈N, and then given h ∈ K(x), there exists q ∈ N such that
h has neither any zero nor any pole inside Dq. Hence, |h(x)| is equal
to a constant l in Dq, and therefore, we have limF |h(x)| = l. By the
same kind of reasoning as in Theorem 4.6, it is easily seen that ϕF
is an absolute value on K(x).

Now, we check that the mapping F → ϕF is injective. Indeed,
let F1,F2 be two different circular filters and let r1 (respectively
r2 ≥ r1) be the diameter of F1 (respectively F2). We first suppose
that we may find disks Λ1 = d(a1, ρ1) and Λ2 = d(a2, ρ2) such that
Λ1 ∩ Λ2 = ∅ and such that F1 (respectively F2) is secant with Λ1

(respectively Λ2). Then, it is seen that |a1 − a2| > ρ1 ≥ r1, hence
ϕF1(x− a1) ≤ r1, while ϕF2(x− a1) = |a1 − a2| > r1, and therefore,
ϕF1 �= ϕF2 .

We now suppose that we cannot find disks Λ1,Λ2 defined as above.
Since r1 ≤ r2, any disk Λ which belongs to F1 is included in any disk
that belongs to F2, and therefore, any point of Λ1 is a center of F2.
Thus, F2 admits a center a ∈ Λ, and then, F1 is secant with d(a, r2).
Hence, we have r1 < r2 because otherwise F1 would be equal to F2.
In particular, F2 is secant with one class d(α, r−2 ) of d(a, r2). Then,
we have ϕF1(x−α) ≤ r1, while ϕF2(x−α) = r2. This finishes showing
that the mapping F → ϕF is injective.

Now, we show that this mapping defined on Φ◦(K) is also surjec-
tive onto the set of multiplicative norms i.e. the absolute values on
K[x] continuing these of K. Indeed, let ψ be such an absolute value
on K[x] and let r = infλ∈Kψ(x− λ).

We first suppose that there exists a ∈ K such that ψ(x− a) = r.
Since ψ is an absolute value, we check that r > 0 because if r = 0, we
have ψ(h) = h(a) for every h ∈ K[x] and then ψ is not an absolute
value. Hence, we can assume r > 0. Let F be the circular filter of
center a, of diameter r. By Lemma 2.7, we know that ψ is ultrametric,
and then, for every b ∈ K, we have ψ(x−b) ≤max (ψ(x−a), |a−b|) =
max(|a − b|, r). But, by definition, we have ψ(x − b) ≥ r, hence
(1) r ≤ ψ(x− b) ≤ max(r, |a − b|).
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If |a− b| > r, then both ψ(x− b), ϕF (x− b) are equal to |a− b|. If
|a − b| ≤ r, then b is another center of F and we have ϕF (x − a) =
ϕF (x − b) = r. But, by (1), we see that ψ(x − b) = r. So, we have
shown that ϕF (x − b) = ψ(x − b) for all b ∈ K, and since K is
algebraically closed, this finishes proving that ψ = ϕF .

We now suppose that there does not exist a ∈ K such that r =
ψ(x− a). There exists αn ∈ K such that r < ψ(x−αn) < r+ 1

n . Let
ρn = ψ(x− αn). For b ∈ K\d(αn, ρn), clearly we have

(2) ψ(x− b) = |b− αn| > ρn

because ψ(x − αn) < |αn − b|. Further, if Fn is the circular filter of
center αn and diameter ρn, we have

(3) ψ(x− b) = |b− αn| = ϕFn(x− b).
However, there exists αn+1 ∈ K such that r < ψ(x − αn+1) <
min(ρn, r +

1
n+1). Hence, by (2), we see that αn+1 ∈ d(αn, ρn). That

way, we may define a decreasing sequence of disks Dn = d(αn, ρn)
such that r < ρn < r+ 1

n and ψ(x−αn) = ρn. Let D
′
n = Dn∩D. Then

the decreasing filter F of basis (D′
n)n∈N satisfies limF ψ(x−αn) = r.

It is easily seen that F has no center because if α is a center of F then
ψ(x − α) ≤ max (|ψ − αn|, |αn − α|) hence ψ(x − α) = r. We show
that ψ = ϕF . Let b ∈ K and let q ∈ N be such that b /∈ Dq. Then, by
(3), for n ≥ q, we have ψ(x− b) = ϕFn(x− b). On the other hand, it
is easily seen that ϕFn(x−b) = ϕF (x−b). Thus, ψ(x−b) = ϕF (x−b)
whenever b ∈ K and then ψ = ϕF .

Finally, let ψ be a multiplicative semi-norm that is not a norm:
there exists a polynomial P such that ψ(P ) = 0, and hence, there
exists a ∈ K such that ψ(x − a) = 0. Let b ∈ K. Then, ψ(x − b) =
ψ((x − a) + (a − b)) ≤ maxψ(x − a), ψ(a − b)). But since ψ(t) =
|t| ∀t ∈ K, we have ψ(x − b) = |a− b|, hence, putting h(x) = x− b,
we have ψ(h) = |h(a)|, which shows that the equality ψ(h) = |h(a)|
holds for every polynomial of degree 1, and therefore, it holds in all
K[x]. This ends the proof of Theorem 4.10. �

Theorem 4.11. Let H be a filter on K and let F , G ∈ Φ(K) be less
thin than H. Then, F = G.
Proof. Since H is thinner than F and G, we have limH |P (x)| =
ϕF (P ) = ϕG(P ) ∀P ∈ K[x], hence ϕF = ϕG . But, by Theorem
4.10, the mapping that associates with each circular filter F the
multiplicative semi-norm ϕF is injective and hence F = G. �
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Notation. When F is the circular filter of center a, of diameter r,
we also denote by ϕa,r the absolute value ϕF . Hence, by definition,
we have ϕa,r(h) = lim |x−a|→r

|x−a|�=a
|h(x)|. In particular, we note that

ϕ0,r(h) = |h|(r).
Finally, we denote by ϕa the multiplicative semi-norm defined on

rational functions with no pole at a as ϕa(h) = |h(a)|.
Now, let us go back to the field IL. For μ ∈ R, we set Ψ(h, μ) =

log(|h|(θμ)), for simplicity, we set Ψ(h) = Ψ(h, 0). Thus, comparative
to the valuation function v(h, μ) defined and used in previous works
[1], [14], [49], we have Ψ(h, μ) = −v(h,−μ). The advantage of the
function Ψ is to respect the sense of variation of |h|(r).

The translation of statements 4.1, 4.2, 4.3, 4.6, 4.7, 4.8, and 4.9
into terms of valuation allows us to obtain Lemmas 4.12 and 4.13.

Lemma 4.12. Let P (x) =
∑n

j=0ajx
j ∈ K[x]\{0}. For every μ ∈

R, we have Ψ(P, μ) = max0≤j≤nΨ(aj) + jμ. Moreover, Ψ(P (a)) ≤
Ψ(P,Ψ(a)) ∀a ∈ L.

Suppose P ∈ K[x]. The equality Ψ(P (x)) = Ψ(P,Ψ(x)) holds if
and only if P has no zero α such that Ψ(x− α) < Ψ(x).

Lemma 4.13. Let h ∈ K(x)\{0}. We have Ψ(h(x)) = Ψ(h,Ψ(x))
for every x ∈ K such that h has no zero α satisfying Ψ(x−α) < Ψ(x)
and no pole β satisfying Ψ(x− β) < Ψ(x).

Lemma 4.14. Let h1, h2 ∈ K(x)\{0}. Then, we have

Ψ(h1 + h2, μ) ≤ max
(

Ψ(h1, μ),Ψ(h2, μ)
)

.

When Ψ(h1, μ) > Ψ(h2, μ), then we have Ψ(h1 + h2, μ) = Ψ(h1, μ).
Moreover, Ψ(h1.h2, μ) = Ψ(h1, μ) + Ψ(h2, μ).

Notation. In order to perform easily any change of origin, for every
a ∈ K and h ∈ K(x)\{0}, we put Ψa(h, μ) = Ψ(ha, μ) with ha(u) =
h(a+u). Thus, if F denotes the circular filter of center a and diameter
θμ, then Ψa(h, μ) = log(ϕF (h)).

We now consider again a polynomial P (x) =
∑n

j=0ajx
j �= 0. We

denote by ν+(P, μ) (respectively ν−(P, μ)) the biggest (respectively
the smallest) index j such that Ψ(aj) + jμ = Ψ(P, μ).
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Lemma 4.15 is a consequence of Lemma 4.9:

Lemma 4.15. Let h ∈ K(x)\{0} and let a, b ∈ K. For every μ ≥
Ψ(a− b), we have Ψa(h, μ) = Ψb(h, μ).

Theorem 4.16. Let P (x) =
∑n

j=0 ajx
j ∈ K[x]. For every μ ∈ R,

ν+(P, μ) − ν−(P, μ) is equal to the number of zeros admitted by
P in the circle C(0, θμ) in K. The function ν+(P, .) (respectively
ν−(P, .)) is increasing and continuous on the right (respectively on
the left). Moreover, given Q ∈ K[x], then ν+, ν− satisfy ν+(PQ,μ) =
ν+(P, μ) + ν+(Q,μ), ν−(PQ,μ) = ν−(P, μ) + ν−(Q,μ). Further, if
ν+(P, μ) = ν−(P, μ), then both are constant in a neighborhood of μ.

The function Ψ(P, .) is continuous, piecewise affine, increasing,
and convex and has a right-side derivative (respectively a left-side
derivative) equal to ν+(P, μ) (respectively ν−(P, μ)).

Proof. It is easily seen that the equality (1) ν+(P, μ) = ν−(P, μ)
holds for every μ but finitely many values, at most n. It is also
clear that the functions ν+(P, .) and ν−(P, .) are increasing. By
continuity, we see that the function ν+(P, μ) is continuous on the
right at each point, while ν−(P, μ) is continuous on the left at each
point. Finally, if (1) holds in an interval ]μ′, μ′′[, then the func-
tions ν+(P, .) and ν−(P, .) are constant and equal. Consider an
interval ]μ′, μ′′[ such that ν+(P, μ) = ν−(P, μ) for all μ ∈]μ′, μ′′[
and let j = ν+(P, μ) whenever μ ∈]μ′, μ′′[. Then, Ψ(P, μ) =
Ψ(aj) + jμ so that the function Ψ(P, .) is in the form A+ iμ in this
interval.

Now, let μ be such that ν+(P, μ) < ν−(P, μ). We see that Ψ(P, .) is
still continuous at μ and has a left-side derivative equal to ν−(P, μ)
and a right-side derivative equal to ν+(P, μ). Finally, the function
Ψ(P, .) is continuous, piecewise affine, convex, and largely increasing.

If P and Q ∈ K(x)\{0}, then ν+(PQ,μ) is the right-side deriva-
tive of the function Ψ(PQ, .). But Ψ(PQ, .) = Ψ(P, .)+Ψ(Q, .), hence
its right-side derivative at μ is just ν+(P, μ)+ ν+(Q,μ). In the same
way, we have ν−(PQ,μ) = ν−(P, μ) + ν−(Q,μ) by considering left-
side derivatives.

Then, to prove that ν+(P, μ) − ν−(P, μ) is the number of zeros
of P in C(0, θμ), it is sufficient to show this when P is a binomial
x − a. But then, this is obvious because ν+(P, μ) = ν−(P, μ) = 0
whenever μ < Ψ(α), ν+(P, μ) = ν−(P, μ) = 1 whenever μ > Ψ(α),
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while ν+(P,Ψ(α)) = 1, ν−(P,Ψ(α)) = 0. So all the statements of
Theorem 4.16 have been proven. �

Applying Lemma 4.12 and Theorem 4.16 to the numerator and
the denominator of a rational function, we obtain Corollary 4.17.

Corollary 4.17. Let P (x) =
∑n

j=0 ajx
j ∈ K[x]. For every μ ∈ R,

ν+(P, log(r)) is equal to the number of zeros admitted by P in d(0, r).

Corollary 4.18. Let h ∈ K(x)\{0}. The function in μ Ψ(h, μ) is
continuous and piecewise affine.

If μ is such that d(0, θμ) contains s zeros and t poles of h (tak-
ing multiplicity into account), but neither any zero nor any pole in
C(0, θμ), then Ψ(h, .) has a derivative equal to s− t at μ.

If μ is such that C(0, θμ) contains s zeros and t poles of h

(taking multiplicity into account), then we have dlΨ
dμ (h, μ) − drΨ

dμ

(h, μ) = s − t. Further, if the function Ψ(f, μ) is not derivable at
μ, then μ lies in Ψ(K).

Corollary 4.19. Let h ∈ K(x)\{0} have no pole (respectively no
zero) in an annulus Γ(0, r′, r′′). Then, Ψ(h, μ) is convex (respectively
concave) in [log r′, log r′′].

Corollary 4.20. Let h ∈ K(x)\{0} have s zeros and t poles in
d(0, r′) and have neither any zero nor any pole in an annulus
Γ(0, r′, r′′). Then in Γ(0, r′, r′′), Ψ(h, log |x|) is of the form A+ (s−
t) log |x|. Moreover, ν+(h, μ)−ν−(h, μ) = s−t ∀μ ∈] log r′, log r′′[ and
ν+(h, μ) (respectively ν−(h, μ)) is continuous on the right (respec-
tively on the left). Finally, given g ∈ K(x), we have ν+(gh, μ) =
ν+(g, μ) + ν+(h, μ), ν−(gh, μ) = ν−(g, μ) + ν−(h, μ).

Theorem 4.21. Let G ∈ Φ(K). Let f ∈ K(x) and take ε > 0. There
exists a G-affinoid E such that | |f(x)| − ϕG(f)|∞ ≤ ε, ∀x ∈ E.

Proof. Let r = diam(G) and let l > r. If G has no center, there
exists a disk d(a, l) ∈ G, with r ∈ |K|, containing neither zeros
nor poles of f , therefore, by Lemma 4.9, |f(x)| is a constant equal
to ϕF (f) in d(a, r), so our claim is obvious. Now, suppose that
G = Fa,r. Let Λ1, . . . ,Λq be the classes of d(a, r) containing at
least one zero or one pole of f . By Lemma 4.9, |f(x)| is a constant

equal to ϕG(f) in d(a, r)\
(

⋃q
j=1Λj

)

. Consider a class Λj = d(aj , r
−)
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and let sj (respectively tj) be the number of zeros (respectively
poles) of f inside Λj and let s0 (respectively t0) be the number of
zeros (respectively poles) of f in all d(a, r). Let ρ ∈]0, r[∩|K| be

such that
∣

∣

(

r
ρ

)sj−tj − 1
∣

∣ϕG(f) ≤ ε ∀j = 0, . . . , q. Let l = r2

ρ and let

E = d(a, l)\⋃qj=1 d(aj , ρ
−). By Corollary 4.19, we can check that the

inequality | |f(x)| − ϕG(f)|∞ ≤ ε holds in all E. Since ρ < r, E
is an infraconnected affinoid set which belongs to G. Moreover, by
definition, l > r. �

Theorem 4.22. Let F be a filter on K such that for every h ∈ K(x),
|h(x)| admits a limit along F . Then there exists a circular filter H
less thin than F .

Proof. For every h ∈ K(x), set φ(h) = limF |h(x)|. Then, φ belongs
to Mult(|K(x)), and hence, by Theorem 4.10, there exists a unique
circular filter H such that φ = ϕH. Suppose that F is not thinner
thanH. There exists a subsetB of K such that F is secant with B but
H is not. Since H admits a basis consisting of affinoid subsets, there
exists an H-affinoid D such that D ∩ B = ∅. Since D is affinoid,

it is of the form d(a,R)\
(

⋃q
k=1 d(ai, r

−
i )
)

and H also admits an

H-affinoid E of the form d(a, S)\
(

⋃q
k=1 d(ai, s

−
i )
)

with S < R and

ri < si ∀i = 1, . . . , q. Let b ∈ Γ(a, S,R) and let h(x) =
∏q

i=1(x−ai)mi

(x−b)n .

Then with integers mi and n big enough, we can get

inf{|h(x)| | x ∈ E} > sup{|h(x)| | x ∈ B},
a contradiction to the hypothesis: |h(x)| admits a limit along F . �
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Chapter 5

Hensel Lemma

The Hensel lemma is a classical tool for studying the factorization
of analytic functions on a circle [1], [44] and is indispensable in
Chapter 6. It is a strong result that roughly says, “In a complete
field IL, if P splits in the form γη with (γ, η) = 1, then P also splits
in IL[x] in the form gh with g = γ, h = h,deg(g) = deg(γ)”. The
proof is not very easy and requires a serious preparation. Here, we
roughly follow the same process as in [1], [44].

Notation. According to Chapter 2, we denote by UIL the unit ball
of IL and by MIL its maximal ideal. We denote by L the residue class

field of IL: UIL[x]
MIL[x]

.

Given g, h ∈ IL[x], here (g, h) denotes the monic greatest common
divisor of g and h. Given Q(x) =

∑n
j=0 bjx

j ∈ UIL[x], as in Chapter 2,

we denote by Q the polynomial
∑q

j=0 aj x
j ∈ L[x]. In this chapter,

P (x) =
∑q

j=0 ajx
j ∈ IL[x] denotes a polynomial of degree q.

Lemma 5.1. For all α ∈ IL, we have Ψ(P (α)) ≤ Ψ(P, 0) +
max(0, qΨ(α)).

Proof. By Lemma 4.12, we have Ψ(P (α)) ≤ max0≤j≤q(Ψ(aj) +
jΨ(α)) ≤ max0≤j≤q Ψ(aj)+max0≤j≤q jΨ(α). But max0≤j≤q Ψ(aj) =
Ψ(P, 0) and max0≤j≤q jΨ(α) = max(0, qΨ(α)). �

Definition. A polynomial
∑q

j=0 ajx
j ∈ L[x] is said to be quasi-

monic if |aq| = 1.

47
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Lemma 5.2. Let F,D ∈ UIL[x] with D quasi-monic. Let Q,R ∈
UIL[x] satisfy F = DQ + R and deg(R) < deg(D). Then, we have
Ψ(Q, 0) ≤ Ψ(F, 0) and Ψ(R, 0) ≤ Ψ(F, 0).

Proof. We can clearly assume F �= 0. Then, by multiplying F by a
suitable constant λ, we can also assume Ψ(F, 0) = 0. SinceD is quasi-
monic, the Euclidean division of F by D is clearly possible in UIL[x],
and therefore, Q is the quotient and R is the rest of this division,
due to the fact that deg(R) < deg(D). So we have Ψ(Q, 0) ≤ 0,
Ψ(R, 0) ≤ 0 because both Q, R belong to UIL[x]. �

Corollary 5.3. Let F,D ∈ K[x] with D having all its zeros in d(0, 1).
Let Q,R ∈ UK[x] satisfy F = DQ+R and deg(R) < deg(D). Then we
have Ψ(Q, 0) ≤ Ψ(F, 0)−Ψ(D, 0) and Ψ(R, 0) ≤ Ψ(F, 0). Moreover,
if F has all its zeros in d(0, 1), then Ψ(Q, 0) = Ψ(F, 0) −Ψ(D, 0).

Proof. The first statement is just an application of Lemma 5.2.
Next, if F has all its zeros in d(0, 1), we can assume that both F, D
are monic and satisfy ‖F‖ = ‖D‖ = 1. Consequently, Q also must
be monic and hence ‖Q‖ = 1, which ends the proof. �

Lemma 5.4. Let g, h ∈ UIL[x] be quasi-monic such that (g, h) = 1
and deg(P ) < deg(g) + deg(h). There exist V,W ∈ IL[x] satisfy-
ing Ψ(V g + Wh − P, 0) < Ψ(P, 0),Ψ(V, 0) ≤ Ψ(P, 0), Ψ(W, 0) ≤
Ψ(P, 0), deg(V ) < deg(h), deg(W ) < deg(g).

Proof. Since (g, h) = 1, by Bezout’s theorem, there exists υ and
τ ∈ L[x] such that υg + τh = 1, deg(υ) < deg(h), deg(τ) < deg(g).
Let S, T ∈ U IL[x] satisfy S = υ, T = τ,deg (S) = deg (υ),deg (T ) =
deg (τ). Thus, we have Sg + Th− 1 = 0 i.e.
(1) Ψ(Sg + Th− 1) < 0.

We now consider the Euclidean division of SP by h and TP by g,
respectively. We obtain SP = S0h+V and TP = T0g+W . By Lemma
5.1, it is seen that max(Ψ(V, 0),Ψ(S0, 0)) ≤ Ψ(SP, 0) ≤ Ψ(P, 0).
Moreover, by hypothesis, we have

(1) deg(V ) < deg(h) and
(2) deg(W ) < deg(g).

Let M = Sg + Th − 1. Then, we have MP = (S0 + T0)gh + V g +
Wh−P . Since deg(P ) < deg(g)+deg(h), by (1) and (2), we see that
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deg(V g+Wh−P ) < deg(g)+deg(h), and therefore, V g+Wh−P is
just the remainder of the Euclidean division of BP by gh. But then,
by Lemma 5.2, we have Ψ(V g+Wh−P, 0) ≤ Ψ(MP, 0) = Ψ(M, 0)+
Ψ(P, 0), and therefore, by (1) and by definition of M, it is seen that
Ψ(M, 0) < 0. This finishes proving that Ψ(V g+Wh−P, 0) < Ψ(P, 0)
and this ends the proof of Lemma 5.4. �

Notation. Let g, h ∈ UIL[x] be monic and satisfy (g, h) = 1. We
denote by B(f, g) the set of constants c ∈ R+ such that, for every
polynomial Q ∈ IL[x] satisfying deg(Q) < deg(g)+deg(h), there exist
V,W ∈ IL[x] satisfying Ψ(V g+Wh−Q, 0) ≤ Ψ(Q, 0) + c, Ψ(V, 0) ≤
Ψ(Q, 0),Ψ(W, 0) ≤ Ψ(Q, 0), deg(V ) < deg(h), deg(W ) < deg(g).

Lemma 5.5. Let g, h ∈ UIL[x] be quasi-monic and satisfy (g, h) = 1
and let d = deg(g) + deg(h). Then, B(f, g) is a not empty interval
whose lower bound is 0. Moreover, given λ ∈ B(f, g) and monic
polynomials s, t ∈ UIL[x] such that Ψ(g − s, 0) ≤ λ, Ψ(h− t, 0) ≤ λ,
then B(s, t) = B(g, h).

Proof. Let d = deg(g) + deg(h). We can apply Lemma 5.4 to each
polynomial Qn = xn for every n = 0, . . . , d− 1. Thus, we have poly-
nomials Vn,Wn satisfying Ψ(Vng + Wnh − xn, 0) < 0, Ψ(Vn, 0) ≤
0, Ψ(Wn, 0) ≤ 0, deg(Vn) < deg(h), deg(Wn) < deg(g). We
put λn = Ψ(Vng + Wnh − xn, 0), (0 ≤ n ≤ d − 1). Now, let

Q =
∑d−1

n=0 anx
n, let V =

∑d−1
n=0 anVn, Wn =

∑d−1
n=0 anWn, and let

λ(g, h) = max0≤n≤d−1 λn. Clearly, we have Ψ(V g + Wh − Q, 0) ≤
max0≤n≤d−1(Ψ(an) + λn) ≤ max0≤n≤d−1 Ψ(an) + max0≤n≤d−1 λn =
Ψ(Q, 0) + λ(g, h).
But trivially,

Ψ(V, 0) ≤ max
0≤n≤d−1

Ψ(an), Ψ(W, 0) ≤ Ψ(Q, 0),

deg(V ) ≤ max
0≤n≤d−1

(deg(Vn))

< deg(h), deg(W ) ≤ max
0≤n≤d−1

(deg(Wn)) < deg(h).

So, λ(g, h) lies in B(f, g), and hence, it is obviously seen that B(f, g)
is a not empty interval and that its lower bound is 0.

Now, let c ∈ B(f, g) and let s, t ∈ UIL[x] be monic and satisfy
Ψ(g− s, 0) < c, Ψ(h− t, 0) < c. Since Ψ(V, 0) ≤ Ψ(Q, 0), Ψ(W, 0) ≤
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Ψ(Q, 0), it is easily seen that Ψ(V (g−s)+W (h−t), 0) < c+Ψ(Q, 0),
and therefore, Ψ(V s +Wt − Q, 0) < c + Ψ(Q, 0). This shows that
λ(s, t) ≤ c, and therefore, B(f, g) ⊂ B(s, t). But similarly we have
B(s, t) ⊂ B(g, h) and this ends the proof of Lemma 5.5. �

Lemma 5.6. Let Q ∈ L[x] and let g, h ∈ UIL[x] be quasi-monic and
satisfy (g, h) = 1. Let c ∈ B(g, h). There exist monic polynomials
V, W ∈ L[x] satisfying
Ψ(V g +Wh−Q, 0) ≤ c+Ψ(Q, 0),
deg(W ) < deg(g), deg(V ) ≤ max(deg(h),deg(Q)− deg(g)),
Ψ(V, 0) ≤ Ψ(Q, 0), Ψ(W, 0) ≤ Ψ(Q, 0).

Proof. We consider the Euclidean division of Q by gh : Q = �gh+
Q1. Hence, deg(Q1) < deg(g) + deg(h). By Lemma 5.2, we have

(1) Ψ(Q1, 0) ≤ Ψ(Q, 0),
(2) Ψ(�, 0) ≤ Ψ(Q, 0).

By Lemma 5.5, there exist V1,W1 ∈ IL[x] satisfying

(3) Ψ(V1g +W1h−Q1, 0) ≤ Ψ(Q1, 0) + c,
(4) Ψ(V1, 0) ≤ Ψ(Q1, 0),
(5) Ψ(W1, 0) ≤ Ψ(Q1, 0),
(6) deg(V1) < deg(h),
(7) deg(W1) < deg(g),

Now, we put V = V1 + �h, W = W1. So, we have V g + Wh −
Q = V1 + �gh +W1h − �gh − Q1, and therefore, by (3), we obtain
Ψ(V g +Wh−Q, 0) ≤ Ψ(Q1, 0) + c. Hence, by (1), we obtain

(8) v(V g +Wh−Q) ≥ v(Q) + c.
Now, by (1), (5), it is seen that

(9) Ψ(W, 0) ≤ Ψ(Q, 0).

We check

(10) Ψ(V, 0) ≤ Ψ(Q, 0).

Indeed, we have Ψ(h, 0) = 0, hence, by (2), we see

(11) Ψ(�h, 0) ≤ Ψ(Q, 0).
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But, by (4), we have Ψ(V1, 0) ≤ Ψ(Q, 0), and therefore, by (11),
we obtain (10). Finally, by definition, we have deg(�) = deg(Q) −
deg(gh), and therefore,

(12) deg(V ) ≤ max(deg(V1),deg(�h)) ≤ max(deg(h),deg(Q) −
deg(g)). Thanks to (7), (8), (9), (10), and (12), Lemma 5.6 is
now proven. �

Theorem 5.7 (Hensel Lemma). IL is supposed to be complete.
Let P ∈ UIL[x] be such that P splits in L[x] in the form γη with γ,
η relatively prime. There exists g, h ∈ UIL[x] such that P = gh, g =
γ, h = η,deg(g) = deg(γ).

Proof. We can obviously take quasi-monic polynomials g0, h0 ∈
UIL[x] such that g0 = γ, h0 = η. We put ξ = Ψ(P − g0h0, 0)
and take ζ ∈ B(g0, h0) satisfying ζ ≤ ξ. We construct sequences
(gn)n∈N, (hn)n∈N in IL[x] satisfying for all n ≥ 0:

(in) Ψ(P − gnhn, 0) ≤ (n+ 1)ζ,
(iin) Ψ(gn − gn−1, 0) ≤ nζ, Ψ(hn − hn−1, 0) ≤ nζ,
(iiin) deg(hn) ≤ deg(P )− deg(g0), deg(gn) = deg(g0),
(ivn) gn = γ, hn = η,
(vn) ζ ∈ B(gn, hn).

First, we put P1 = P −g0h0. We note that deg(P1) = deg(P ). We
now apply Lemma 5.6 to the case when (Q, g, h) = (P1, g0, h0): there
exist V1,W1 ∈ IL[x] satisfying (1) deg(W1) < deg(g0), (2) deg(V1) <
deg(P )− deg(g0), (3) Ψ(V1, 0) ≤ ζ, (4) Ψ(W1, 0) ≤ ζ, (5) Ψ(V1g0 +
W1h0−P1, 0) ≤ ζ+Ψ(P1, 0). Next, we put g1 = g0+W1, h1 = h0+V1.
We check that (i1), (ii1), (iii1), and (iv1) are satisfied. Moreover, by
(3) and (4) and by Lemma 5.5, ζ lies in B(g1, h1), hence v1 is satisfied.

Now, we suppose we have already constructed the pairs (gm, hm)
satisfying (im), (iim), (iiim), (ivm), and (vm) for every m = 0, . . . , n.
Then, we put Pn+1 = P − gnhn.

We can apply Lemma 5.6 to the case when (Q, g, h) is equal to
(Pn+1, gn, hn). So, we can obtain Vn+1,Wn+1 ∈ L[x] satisfying
(6) Ψ(Wn+1gn+Vn+1hn−Pn+1, 0) ≤ ζ+Ψ(Pn+1, 0), (7) deg(Wn+1)
< deg(gn), (8) deg(Vn+1) ≤ max(deg(hn),deg(Pn+1) − deg(gn)),
(9) Ψ(Vn+1, 0) ≤ Ψ(Pn+1, 0), Ψ(Wn+1, 0) ≤ Ψ(Pn+1, 0). By (6) and
by (vn), we obtain (10) Ψ(Wn+1gn + Vn+1hn −Pn+1, 0) ≤ (n+2)ζ.
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Now we put gn+1 = gn +Wn+1, hn+1 = hn +Wn+1. We check that
P − gn+1hn+1 = (Pn+1 − hnWn+1 − gnVn+1)− Vn+1Wn+1 = Pn+1 −
hWn+1−gn+1Vn+1+(hn+1−hn)Wn+1+(gn+1−gn)Vn+1+Vn+1Wn+1.
By (iim) true for m ≤ n, we note that (11)Ψ(gn−gn+1, 0) ≤ (n+1)ζ,
Ψ(hn − hn+1, 0) ≤ (n + 1)ζ, and then, by (9) and (10), we obtain
(i)n+1 Ψ(P − gn+1hn+1, 0) ≤ (n+ 2)ζ.

Relation (in+1) is true by definition and (iiin+1) and (ivn+1) are
easily checked. By (11) and by Lemma 5.5, Relation (vn+1) is also
clear.

Therefore, the sequences (gn)n∈N, (hn)n∈N satisfying (in), (iin),
(iiin), (ivn), and (vn) are now constructed. Since IL is complete, the
vector space ILq[x] of polynomial of degree m ≤ q is obviously com-
plete with respect to the Gauss norm ‖ · ‖ which is characterized by
log ‖Q‖ = Ψ(Q, 0).

Then, by Relation (iin), the sequences (gn)n∈N, (hn)n∈N converge
in ILq[x]. We put g = limn→∞ gn, h = limn→∞ hn. By (iiin), we have
deg(g) = deg(g0) = deg(γ). By (ivn), we have g = γ, h = η, and
finally, by (in), we have Ψ(P − gh, 0) = +∞, hence P = gh. That
ends the proof of Theorem 5.7. �
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Chapter 6

Extensions of Ultrametric Fields:
The Field CCCp

All considerations on analytic and meromorphic functions require
considering a complete ultrametric algebraically closed field K. Here
we construct the field Cp and study finite extensions of Qp [70]. And
we show that Cp is not spherically complete.

Notation. As in the previous chapters, IL denotes a complete ultra-
metric field whose absolute value is not trivial and whose residue
class field is L. We denote by F an algebraically closed ultrametric
field whose absolute value is not trivial.

Let E be a field, let IB be a finite algebraic extension of E, and let
q = [IB : E]. We denote by N the algebraic norm of IB over E. Given
a ∈ IB, we denote by irr(a,E) the minimal polynomial of a over E.

Lemma 6.1 is classical in algebra:

Lemma 6.1. Let q = [IB : E], and let N be the norm of IB over E.
Let a ∈ IB, let Pa = irr(a,E), and let d = deg(Pa). Then N satisfies

N (a) =
(

(−1)dPa(0)
)

q
d and N (ab) = N (a)N (b), ∀b ∈ IB.

Theorem 6.2. Let E be an algebraic extension of IL, let a ∈ E, and
let P = irr(a, IL). Then a is integral over UIL if and only if |P (0)| ≤ 1.
Moreover, if |P (0)| ≤ 1, then ‖P‖ = 1. Finally, if |P (0)| = 1, then
irr(a,L) = P.

Proof. First, we assume a to be integral over UIL. Then there exists
a monic polynomial Q ∈ UIL[x] such that Q(a) = 0. Therefore,

53
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P divides Q in IL[x]. Let Q(x) = P (x)T (x). Since both P, Q are
monic, so is T . Therefore, Ψ(P (, 0) ≥ 0, Ψ(T (, 0) ≥ 0. But since
Ψ(Q, 0) = 0 and since Ψ(Q, 0) = Ψ(P, 0) + Ψ(T, 0), P, T must
satisfy Ψ(P, 0) = Ψ(T, 0) = 0, and therefore, |P (0)| ≤ 1.

Now, we assume |P (0)| ≤ 1. Suppose Ψ(P, 0) > 0. There exists
b ∈ MIL such that Ψ(bP, 0) = 0 and then |bP (0)| < 1, hence 0 is a
zero of bP . Further, we note
(1) deg(bP ) < deg(P ).

Let bP = xdφ with φ(0) �= 0. Then, xd and φ are relatively prime
in L[x]. Therefore, by Theorem 5.7, there exist g, h ∈ UIL[x] such
that g = xd, h = φ, deg(g) = d, and P = gh. But since P is irre-
ducible in IL[x] and since d > 0, h must be a constant, and therefore,
deg(P ) = d, a contradiction to (1). Consequently, Ψ(P, 0) = 0. Now,
suppose |P (0)| = 1. Since P is irreducible in IL[X], by Theorem 5.7,
so is P in L[X], hence irr(a,L) = P. �

Corollary 6.3. Let E be an algebraic extension of IL equipped with
the unique extension of the absolute value of IL. Let a ∈ E be such
that |a| = 1, of degree l over IL. Then the residue class a of a in the
residue class field of E is algebraic, of degree l over L.
Proof. Let P (x) =

∑m
j=0 ajx

j = irr(a, IL). Since |a| = 1, we have

|a0| = 1, hence, by Theorem 6.2, we have ‖P‖ = 1 and a satisfies
irr(a,L) = P, which ends the proof. �

Theorem 6.4. Let E be an algebraic extension of IL. There exists
a unique absolute value ϕ on E that extends the one of IL. Further,
this absolute value is ultrametric and defined as follows: given a ∈ E,
Q = irr(a, IL), and t = deg(Q), then ϕ(a) = t

√|Q(0)|.
Proof. We first note that ϕ(a) = |a| whenever a ∈ IL. We show
that ϕ is an ultrametric absolute value on E. Clearly, we have
ϕ(a) �= 0 whenever a ∈ E. By Lemma 6.1, it is easily seen that
we have ϕ(ab) = ϕ(a)ϕ(b) whenever a, b ∈ E, and therefore,
ϕ(a)−1 = ϕ(a−1). So it remains to show the ultrametric inequal-
ity. For this, we show ϕ(1 + z) ≤ 1 for every z ∈ UE. For conve-
nience, we put again Pz = irr(z,E) whenever z ∈ E. Let z ∈ UE.
So, we have |Pz(0)| ≤ 1, and then by Theorem 6.2, z is inte-
gral over UIL, hence so is 1 + z. Hence, by Theorem 6.2, we have
|P1+z(0)| ≤ 1, and therefore, ϕ(1 + z) ≤ 1. Now, the ultrametric
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inequality is easily derived. Let a, b ∈ E satisfy 0 < |a| ≤ |b|. We
have ϕ(a+ b) = ϕ

(

b(1+ a
b )
)

= ϕ(b)ϕ(1+ a
b ). But ϕ(1+

a
b ) ≤ 1, hence

finally, ϕ(a+ b) ≤ ϕ(b). Thus, we have now proven ϕ to be an ultra-
metric absolute value that extends that of IL. Then, by Theorem 2.6,
this absolute value on E is unique, which ends the proof. �

Corollary 6.5. Let Ω be an algebraic closure of IL. There exists a
unique absolute value ϕ on Ω that extends the one of IL. Further,
this absolute value is ultrametric and defined as follows: given a ∈ Ω,
Q = irr(a, IL) and t = deg(Q), then ϕ(a) = t

√|Q(0)|.

Corollary 6.6. Let P (x) ∈ IL[x] be irreducible over IL, let Ω be an
algebraic closure of IL provided with the absolute value extending that
of IL, and let b1, . . . , bq be the zeros of P in Ω. Then, |bi| = |bj | ∀i,
j ≤ q.

Corollary 6.7. Let Ω be an algebraic closure of IL provided with the
unique absolute value | . | that extends the one of IL. Then, UΩ is equal
to the integral closure of UIL. Moreover |Ω| = { n

√
r | r ∈ |IL|, n ∈ N∗}.

Corollary 6.8. Suppose that the value group of IL is Z. Let E be a
finite algebraic extension of IL of degree t provided with the unique
absolute value | . | that extends the one of IL. There exists a rational
r of the form s

t such that the value group of E is rZ.

Lemma 6.9. Let IB be an algebraic extension of E provided with an
absolute value extending that of E. Then the residue class field of IB
is algebraic over the residue class field of E.

Proof. Let t ∈ UIB and let ̂E be the completion of E with respect
to the absolute value of E. Since t is algebraic over E, so much the
more it is algebraic over ̂E. Then, by Corollary 6.5, the residue class t
of t is algebraic over the residue class field of ̂E. But ̂E obviously has
the same residue class field as E. �

Corollary 6.10. Let IB be an algebraic extension of IL provided with
the unique absolute value that extends the one of IL. Then the residue
class field of IB is an algebraic extension of the residue class field
of IL. Moreover, if IB is finite over IL, then residue class field of IB
is finite over the residue class field of IL.
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Proof. Suppose first that IB is of the form IL[u]. Without loss of
generality, we may assume that |u| = 1. Then the residue class field
of IB is L[u]. Next, we can generalize by induction. �

Theorem 6.11. Let Ω be an algebraic closure of IL provided with
the unique absolute value extending the one of IL. Then the residue
class field of Ω is an algebraic closure of L.
Proof. Let T be the residue class field of Ω. Let u ∈ UΩ and let
P = irr(u, IL). By Corollary 6.7, P belongs to UIL[x] and obviously
satisfies P (u) = 0, hence u is algebraic over L. So, T is an alge-
braic extension of L. Now, let q ∈ L[x], and let Q ∈ UIL[x] be a
polynomial such that Q = q. Then, Q factorizes in Ω[x] in the form
∏s
j=1(x− aj) with |aj | ≤ 1 ∀j = 1, . . . , s, hence aj belongs to T and

q(x) = aj =
∏s
j=1(x− aj). So, T contains the algebraic closure of L.

And since it is an algebraic extension of L, then it is the algebraic
closure of L. �

Corollary 6.12. The residue class field K of K is algebraically
closed.

Lemma 6.13. Let P (x) =
∑t

j=0 ajx
j , Q(x) =

∑t
j=0 bjx

j be monic,

belong to IB[x] and satisfy ‖P‖‖Q‖ = 1. For each zero α of P , Q
admits at least one zero β such that |α− β|t ≤ max0≤j≤t |aj − bj|.
Proof. Let s = max0≤j≤t |aj − bj| and let α be a zero of P . By
Theorem 4.6, we have |(P −Q)(x)| ≤ s whenever x ∈ d(0, 1), hence,
in particular, |Q(α)| ≤ s. Let β1, . . . , βt be the zeros of Q (taking
multiplicities into account). So, we have

∏t
j=1 |βj − α| ≤ s and then

that at least one of the βj satisfies |βj − α| ≤ s
1
t . �

Theorem 6.14. Let IB be an algebraically closed extension of IL
provided with the unique absolute value that extends the one of IL.
The completion of IB also is algebraically closed.

Proof. Let ˜IB be the completion of IB and let P (x) =
∑t

j=0 ajx
j ∈

˜IB[x] be monic. Let Ω be an algebraic closure of ˜IB, provided with

the unique absolute value extending that of ˜IB and let α1, . . . , αt be
the zeros of P in Ω. Up to a change of variable, we may assume that
|αj | ≤ 1 ∀j = 1, . . . , t. Let ε ∈]0, 1[ and let Q(x) =

∑t
j=0 bjx

j ∈
IB[x] be such that max0≤j≤t |aj − bj | ≤ εt. For each j = 1, . . . , t,
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by Lemma 6.13, Q admits a zero β such that |αj − β|t ≤ ε. Since
Q ∈ IB[x], obviously β belongs to IB, and therefore, we see that αj
belongs to ˜IB. That ends the proof. �

The following theorem is due to Marc Krasner [70].

Theorem 6.15 (M. Krasner). Let IL have characteristic zero. Let
Ω be an algebraic closure of IL provided with the unique absolute value
extending the one of IL. Let a ∈ Ω, let a2, . . . , an be the conjugates of
a in Ω, and let b ∈ Ω satisfy |b− a| < |b− aj| for every j = 2, . . . , n.
Then, we have IL[a] ⊂ IL[b].

Proof. Let a1 = a and let P (x) = irr(a, IL). In Ω[x], the polynomial
P splits in the form

∏n
j=1(x− aj). Let Q(x) = irr(a, IL[b]). Then, Q

divides P . Let t = deg(Q) and suppose the aj ranged in such a

way that Q(x) =
∏t
j=1(x− aj). Let R(y) = Q(b + y). Then R(y)

is seen to be irreducible in IL[b][y] like Q(x) in IL[b][x]. Moreover,
the zeros of R are just the aj − b, with 1 ≤ j ≤ t. Thus, we have
R = irr(a − b, IL[b]). But since IL is complete, by Corollary 6.5, we
have |aj − b| = q

√|R(0)| for every j = 1, . . . , t. In particular, for
j = 2, . . . , t, we have |aj − b| = |a − b| and this contradicts the
hypothesis. Finally, we have t = 1, and therefore, a lies in IL[b]. �

Corollary 6.16. Let IL have characteristic zero. Let Ω be an alge-
braic closure of IL provided with the unique absolute value extending
the one of IL. Let a ∈ Ω, let a2, . . . , an be the conjugates of a in Ω,
and let b ∈ Ω satisfy |b − a| < |b − aj | for every j = 2, . . . , n and
[IL[b] : IL] ≤ n. Then, we have IL[a] = IL[b].

We can now recall the construction of p-adic fields.

Definition and notation. Let p be a prime number. On Z, the
p-adic absolute value is defined as follows: given n ∈ Z∗, it factorizes
in a unique way in the form psq, with q ∈ Z∗, prime to p. So, here
we take θ = p and set |n|p = p−s.

Lemma 6.17 is immediate.

Lemma 6.17. | . |p is an ultrametric absolute value on Z that has
continuation to Q and defines an ultrametric absolute value on Q
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and N is dense in Z. Then, |n| ≥ 1
n , ∀n ∈ N∗,

UQ = {pn
(a

b

)

|n ∈ N, a ∈ Z, b ∈ Z∗, g.c.d.(a, p) = g.c.d.(b, p) = 1},

MQ = {pn
(a

b

)

|n ∈ N∗, a ∈ Z, b ∈ Z∗, g.c.d.(a, p) = g.c.d.(b, p) = 1},

and the residue characteristic of Q is p. The residue class field of Q
is the field of p elements Fp. The valuation group of Q is isomorphic
to the additive group Z.

Remark and notation. Now, Q admits a completion with respect
to the p-adic absolute value and its completion is denoted by Qp.
The closure of Z in Qp is denoted by Zp.

On Qp, we extend the valuation and the absolute value | . |p
defined on Q and we set again Ψp(x) = −vp(x).

An algebraic closure Ωp of Qp is equipped with the unique exten-
sion of the p-adic absolute value defined on Qp and we again denote
it by | . |p. The valuation group of Qp is obviously equal to the one
of Q. Next, the valuation group of Ωp is easily seen to be isomorphic
to (Q,+). In Chapter 8, we see that Ωp is not complete.

By Theorem 6.14, Ωp has a completion denoted by Cp that is
algebraically closed. The valuation group of Cp is then isomorphic
to ( Q,+) like the one of Ωp. Moreover, by Theorem 6.11, the residue
class field of Ωp is an algebraic closure of lFp and the one of Cp is
seen to be the same. The absolute value | . |p defined on Ωp has a
natural extension to Cp and the associated valuation is denoted by
vp again, and we set again Ψp(x) = −vp(x), ∀x ∈ Cp. However, when
there is no risk of confusion, we just write Ψ instead of Ψp.

Theorem 6.18. Let a be integral over Z and let a2, . . . , aq be the
conjugates of a over Q. Then, |a| ≤ 1 and aj | ≤ 1, ∀j = 2, . . . , q.

Proof. Since a is integral over Z, it is integral over Zp. Let P (X) =
irr(a,Q) and let B(X) = irr(a,Qp). Let a1, . . . , ah be the conjugates
of a over Qp (with a1 = a). Then, P (0) =

∏q
j=1 aj. Then, B divides

P in Qp[X]. Moreover, ‖P‖ = 1 and ‖B‖ = 1. Next, B(0) =
∏h
j=1 aj .

By Corollary 6.6, we have |a1| =, . . . ,= |ah|, while |B(0)| ≤ 1, hence
|aj | ≤ 1, i.e. |a| ≤ 1. Next, what is true for a1 also holds for every
aj , . . . , j = 2, . . . , q, hence |aj | ≤ 1. �
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In the future, we use Lemma 6.19:

Lemma 6.19. Let a ∈ Cp be algebraic over Qp such that logp(|a|) is
of the form λ

t , with λ ∈ Z and t in N∗. Take m, n ∈ N and b ∈ Cp
such that logp(|b|) is of the form u

w with u ∈ N and w ∈ N prime,
prime with u and such that w > max(m,n, t).

Let f, g ∈ Qp[a] be such that |fbm|p = |gbn|p. Then, m = n.

Proof. We note that for every x ∈ Qp[a], Ψp(|x|) is of the form �
t

with 	 ∈ Z. Consequently, Ψp(|f |) is of the form h
t and logp(|g|) is

of the form k
t with h and k ∈ Z. Consequently, Ψp(|fbm|) = h

t +
mu
w

and Ψp(|gbn|) = k
t +

nu
w , and therefore, due to the equality |fbm|p =

|gbn|p, we have (h − k)w = ut(n −m). But since w > t, it is prime
with ut, hence it must divide n − m, which is impossible because
max(m,n) < w, except if m = n. �

Lemma 6.20. Let | . | be an ultrametric absolute value on Q. If
this absolute value is trivial, the residue characteristic is zero. If the
absolute value is not trivial, there exists a prime number q such that
| . | is equivalent to | . |q.

Proof. If this absolute value is trivial, it is clear that the residue
characteristic is zero. So, we suppose that the absolute value is not
trivial. For every n ∈ N∗, we have |n| ≤ 1. Since | . | is not trivial,
there certainly exists s ∈ N∗ such that |s| < 1. Let q be the smallest
s ∈ N∗ such that |s| < 1. It is easily checked that q is prime. Since
MQ is a principal ideal of Z, we have MQ = qZ.

Let t =
∣

∣
1
q

∣

∣. It is easily checked that givenm ∈ Z∗, of the form qsn,

with n ∈ Z∗, prime to q, we have |m| = t−s. Let w be the valuation
associated with this absolute value. Then, w is clearly proportional
to vq and by Lemma 2.2 is equivalent to vq. This ends the proof. �

Lemma 6.21 is easily seen.

Lemma 6.21. N is dense in Zp, the invertible elements in Zp are
the ones whose absolute value is 1, Zp is compact, equal to UQp, and
pZp is equal to MQp . Qp is locally compact. The residue class field
of Qp is equal to the field of p elements lFp. Finally, Up is the union
of p disks d(u, 1p).
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Proof. All statements are immediate except the compacity of Zp.
Consider a sequence (an) in Zp. Since it is bounded, by Theorem 3.1,
we can extract either a monotonous distances sequence or an equal
distances sequence, or a converging sequence. But since each circle
d(a, r) with r ∈ |Qp| only has p classes, there are no equal distances
sequences in Qp. And since the absolute value is discrete, there is
no monotonous distances sequence in Qp. Hence, we can extract a
converging sequence from the sequence (an). �

Corollary 6.22. For each m ∈ N, Up is the union of pm distinct
disks d(u, 1

pm ). Let E be a finite algebraic extension of Qp. There
exists a constant B > 0 such that for all m ∈ N the number of
distinct d(u, 1

pm ) is inferior or equal to Bpm.

By definition and construction of Cp, we have this corollary:

Corollary 6.23. The field of algebraic numbers is dense in Cp.
Hence, Cp contains a dense countable subset.

In Theorem 6.24, we follow the method of [84].

Theorem 6.24. Cp is not spherically complete.

Proof. Let (rn)n∈N be a real sequence such that 0 < r < rn+1 <
rn < 1, ∀n ∈ N. Let S be the set of sequences of the set {0, 1}.
Suppose that for each n = 0, . . . , q we have defined 2n disks
d(an,k, rn), k = 0, 1, such that for each n = 1, . . . , q and for each
k = 0, 1 the disks d(an,0, rn) and d(an,1, rn) are included in some
d(an−1,k, rn−1) (with k = 0 or k = 1) and have an empty intersec-
tion. It is then immediate to define in each disk d(aq,krq) two disks
d(aq+1,0, rq+1) and d(aq+1,1, rq+1) having an empty intersection. So,
the family is defined for every n ∈ N.

Now, let (un) ∈ S and let (Vn) be a decreasing sequence of disks
defined as follows: suppose defined (Vn) for n ≤ q. If uq+1 = 0, we set
Vq+1 = d(aq+1,0, rq+1), and if uq+1 = 1, we set Vq+1 = d(aq+1,1, rq+1).
That mapping which associates with each sequence (un) the decreas-
ing sequence of disks (Vn) is clearly injective. Now, consider two
distinct such sequences (un) and (u′n). Let q be the smallest integer
such that uq �= u′q. The distance from Vq to V

′
q is at least rq. Conse-

quently, for every n ≥ q, the distance between Vn and V ′
n is at least

rq ≥ r.
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Suppose now that Cp is spherically complete. For each sequence
(un) the intersection of the decreasing sequence of disks (Vn) contains
a point α((un)) and hence, by the last conclusion, if (un) and (u′n)
are two different sequences, we have |α((un)) − α((u′n))| ≥ r. But
we know that the set of sequences (un) is not countable and hence
the set of the α((un)), ((un) ∈ S) is not countable. Consequently,
Cp contains an uncountable subset Σ such that |x − y| ≥ r, ∀x �=
y, x, y ∈ Σ. This contradicts the fact that Cp contains a dense
countable subset. �
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Chapter 7

Normal Extensions of QQQp Inside CCCp

Notation. Recall that IL is a complete field with respect to an ultra-
metric absolute value. For every s ∈ N∗, we put us =

1
ps−1(p−1) and

rs = p−us . We study the psth roots of 1 and we show that they lie
in circles of center 1 and radius rs. We examine normal extensions
of Qp and totally ramified extensions and show the role of Eisenstein
polynomials.

We need certain technical lemmas.

Lemma 7.1. Let s ∈ N∗. For every n ∈ N∗ such that n < ps, we

have
∣

∣

∣

(

ps

n

)

∣

∣

∣

p
= 1

ps|n|p .

Proof. We note that for any n ∈ N∗ such that n < ps, n is a
multiple of ph for some h < s, if and only if so is ps − n. Now, let B
be the bijection from {1, . . . , n − 1} onto {(ps − n + 1), . . . , ps − 1},
defined as B(j) = ps − j. Thus, for every j = 1, . . . , n − 1, we have

|j|p = |B(j)|p. Now, obviously,
∣

∣

∣

(

ps

n

)

∣

∣

∣

p
=
∣

∣

∣

ps

n

∣

∣

∣

p
.
∣

∣

∣

∏n−1
j=1

B(j)
j

∣

∣

∣

p
. But as

we just saw, each factor
∣

∣

∣

B(j)
j

∣

∣

∣

p
is equal to 1, and therefore, the

conclusion is clear. �

Notation. Let s ∈ N. We denote by Ws the group of the psth roots
of 1 in Cp i.e. the ζ ∈ Cp such that ζp

s
= 1 and we denote by Bs the

set Ws\Ws−1 and we set W =
⋃

s∈NWs.

63
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Fs denotes the polynomial
∑p−1

j=0 x
jps−1

and we put Gs(x) =

Fs(1 + x).

Definition. A monic polynomial P (x) =
∑q

j=0 ajx
j ∈ IL[x] is

called an Eisenstein polynomial if it satisfies aj ∈ MIL whenever
j = 0, . . . , q − 1 and a0 /∈ (MIL)

2.

Theorem 7.2 (Eisenstein). Let IL have a discrete valuation. Let
P (x) =

∑q
j=0 ajx

j ∈ IL[x] be an Eisenstein polynomial. Then, P is

irreducible in IL[x].

Proof. We suppose P not irreducible. Then, P splits in IL[x] in
the form S(x)T (x) with S(x) =

∑m
j=0 αjx

j , T (x) =
∑n

j=0 βjx
j , and

αm = βn = 1. Since S, T are monic, we have ‖S‖ ≥ 1, ‖T‖ ≥ 1,
and since ‖S‖‖T‖ = ‖ST‖ = ‖P‖ = 1, we have ‖S‖ = ‖T‖ = 1.
Hence, both S, T belong to UIL[x]. First, we note that if α0 belongs
toMIL, then β0 does not because a0 /∈ (MIL)

2. Hence, we may assume
α0 ∈ MIL and β0 /∈ MIL. Further, we have αj ∈ MIL for every j =
0, . . . ,m− 1. Indeed, let � be the smallest of the integers h such that
|αh| = 1. Then we have |al| = |β0α� +

∑�
j=1 βjα�−j| = 1 because

|β0α�| = 1 and
∑�

j=1 βjα�−j ∈MIL. Consequently, � = q, therefore P
is irreducible. �

The following lemmas are useful in the sequel.

Lemma 7.3. Let G be a subgroup of the multiplicative group (K∗, ·)
included in C(0, 1) and let u ∈ G. The bijection γ from G onto G
defined as γ(x) = ux is isometric.

Lemma 7.4. Let (j, n) ∈ N×N∗ be such that j < n. Then, we have

(

n
j + 1

)

=
n−1
∑

h=j

(

h
j

)

.

Lemma 7.5. For every s ∈ N, Gs is an Eisenstein polynomial.

Proof. First, we suppose s = 1. We have

G1(x) =

p−1
∑

h=0

(
h
∑

j=0

(

h
j

)

xj
)

=

p−1
∑

j=0

(

p−1
∑

h=j

(

h
j

)

)

xj.
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Hence, by Lemma 7.4, we have G1(x) =
∑p−1

j=0

(

p
j + 1

)

xj . Moreover,

by Lemma 7.1, we have
∣

∣

∣

(

p
j + 1

)

∣

∣

∣

p
= 1

p for every j = 0, . . . , p − 2,

and therefore, G1 is an Eisenstein polynomial.
Now we consider the general case s ∈ N∗. First, we put Ts(x) =

(1 + x)p
s
. By Lemma 7.1, it is seen that T1(x) is of the form 1 +

xp + γ1(x) with γ1(x) ∈ pxZp[x] and deg(γ1) = p − 1. Then by an
immediate induction, we see that Ts(x) is of the form 1+xp

s
+ γs(x)

with γs(x) ∈ pxZp[x] and deg(γs) = ps − 1.
As a consequence, it is easily seen that Gs is an Eisenstein poly-

nomial if and only if so is the polynomial gs(x) =
∑p−1

j=0(1 + xp
s
)j .

But we have gs(x) = G1(x
ps). Since G1 is an Eisenstein polynomial,

so is gs. This ends the proof. �

Theorem 7.6. For each s ∈ N∗, Bs consists of ps − ps−1 roots of 1
of order ps that lie in C(1, rs). For every t ∈ Bs, irr(t,Qp) is equal
to Fs and Bs ∩ d(t, r−s ) is equal to tWs−1.

Proof. Let t ∈ Bs and let F (x) = irr(t,Qp). Then, F divides

xp
s − 1 and has a degree d > ps−1. Since xp

s − 1 = (xp
s−1 − 1)Fs, F

divides Fs. But by Lemma 7.5 and Theorem 6.1, Gs is irreducible
over Qp, hence so is Fs, and therefore, F = Fs. Then, by Corollary

6.5, we have Ψp(t − 1) =
Ψp(Gs(0))
ps−ps−1 = −us. Hence, Bs is included in

C(1, rs) and obviously consists of ps − ps−1 different points in this
circle. Let φ be the mapping defined in Ws−1 as φ(ξ) = tξ. Since t is
of order ps and any element of Ws−1 is of order < ps, one sees that φ
is an injection from Ws−1 into Bs, and then, by Lemma 7.3, we have
φ(Ws−1) ⊂ Bs ∩ d(t, rs−). Conversely, given u ∈ Bs ∩ d(t, rs−), then
t−1u lies in Ws−1 which shows that φ is a bijection from Ws−1 onto
Bs ∩ d(t, rs−). �

Corollary 7.7. For every ξ, ζ ∈W1 of ξ �= ζ, we have Ψp(ξ − ζ) =
− 1
p−1 .

Theorem 7.8. Let n ∈ N∗ and let ζ be an nth root of 1 of order n.
Then ζ belongs to d(1, 1−) if and only if n is of the form ps(s ∈ N).

Proof. By Theorem 7.6, we know that if n is of the form ps, then
ζ belongs to d(1, 1−). Now we suppose ζ ∈ d(1, 1−) and put n = q ps
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with q prime to p. Let ξ = ζ(p
s). It is seen that ξ also belongs to

d(1, 1−) because |ξ− 1|p = |ζ − 1|p
∣

∣

∣

∑ps−1
j=0 ζj

∣

∣

∣

p
. Let P (x) = xq− 1. If

ξ �= 1, then P (x) admits 1 as a zero of order t ≥ 2. But P
′
(1) = q �= 0,

hence ξ = 1. Therefore, we have q = 1 and this ends the proof. �

Definition. Let E be a finite extension of Qp. Recall that the residue
class field of Qp is Fp. Let E be the residue class field of E. Since E

is finite over Qp, it is locally compact, hence sup{|x| |x ∈ E |x|
< 1} < 1. So, we can choose an element s ∈ E such that |s| < 1 and
such that |s| = sup{|x| |x ∈ E |x| < 1}. Such an element s is called a
uniformizer of E. Since s is algebraic over Qp, |p| is of the form |s|c
with c ∈ N∗. The number c is called ramification index of E.

Next, by Corollary 6.3, we know that if a ∈ E is algebraic over Qp

of degree q and such that |a| = 1, then its residue class a is algebraic
over Fp, of degree ≤ q. Consequently, if E is finite over Qp, then E is
finite over Fp. The number [E : Fp] is called residual degree of E and
is denoted by f .

The extension E is said to be ramified if c > 1 and unramified if
c = 1.

Lemma 7.9 is just a remark:

Lemma 7.9. Let T be an unramified extension of Qp and let E be
an extension of Qp such that E ⊂ T . Then, E is unramified.

Theorem 7.10. Let n ∈ N∗ be prime to p and let u, w be two distinct
roots of 1 in Ωp of order n. Then, in Ωp, we have |u− w| = 1.

Proof. Let h = u
w . Then, hn = 1. Suppose |h − 1| < 1. By

Theorem 7.8, n is of the form ps, a contradiction. �
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Chapter 8

Spherically Complete Extensions

Several problems on p-adic analytic functions require one to consider
an ultrametric algebraically closed extension of K which is spherically
complete, in order to give every circular filter a center. Others require
to have a complete algebraically closed extension which admits a non-
countable residue class field. Proving the existence of a spherically
complete algebraically closed extension of the ground field K isn’t
easy, most of the ways involving basic considerations in logic. Here
we follow the method proposed by Bertin Diarra that is only based
on the notion of ultraproducts [33].

Definition and notation. Here we denote by (Ei)i∈I an infinite
family of field extensions of IL, provided each with an ultrametric
absolute value | . |i extending that of IL. Next, U denotes an ultrafilter
on I. We remember that U is said to be principal if there exists α ∈ I
such that U is the set of the subsets of I that contain α. Then, U is
said to be incomplete if there exists a decreasing sequence (Xn)n∈N of
elements of U such that

⋂

n∈NXn = ∅. Since I is infinite, there obvi-
ously exist incomplete ultrafilters on I. In particular, any incomplete
ultrafilter is not principal. R denotes the subring of

∏

i∈I Ei that
consists of the set (ai)i∈I ∈ ∏

i∈I Ei such that supi∈I |ai|i < +∞.
Of course, R is an IL-algebra.

We denote by ϕ the mapping from R into R+ defined as
ϕ((ai)i∈I) = limU |ai|i. Then, ϕ is seen to be a multiplicative semi-
norm of the IL-algebra R.

67
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We put J = Ker(ϕ) and S = R
J and we denote by ψ the canonical

surjection from R onto S. Then, S is obviously provided with an
absolute value | . | defined as |ψ(a)| = ϕ(a), (a ∈ R).

On the other hand, R is seen to be provided with a norm of
IL-algebra ‖ . ‖ defined as ‖(ai)i∈I‖ = supi∈I |ai|. Next, we denote by
||| . ||| the semi-norm quotient of the norm of IL-algebra by the ideal
J , defined on R as |||a||| = inft∈J ‖a− t‖.
Theorem 8.1 (B. Diarra). S is a field extension of IL and its
absolute value | . | extends the one of IL. Moreover, if U is non-
principal and if each Ei has a dense valuation group, then S has a
valuation group equal to (R,+). Further, if each Ei is algebraically
closed, then so is S.
Proof. Let α ∈ S\{0} and let a = (ai)i∈I ∈ R be such that
ψ(a) = α. By definition, we have limU |ai|i �= 0. Hence, there exists

J ∈ U such that for every i ∈ J we have ϕ(a)
2 < |ai|i < 3ϕ(a)

2 , hence
ai �= 0, and therefore,

(1) 2
3ϕ(a) < |a−1

i |i < 2
ϕ(a) whenever i ∈ J .

Now, let b = (bi)i∈I ∈
∏

i∈I Ei be defined as bi = a−1
i whenever i ∈ J

and bi = 1 whenever i ∈ I\J . By (1), it is seen that b does belong
to R. But now, ab− 1 is an element (ci)i∈I of R that satisfies ci = 0
whenever i ∈ J , hence limU |ci| = 0. Therefore, ab− 1 belongs to J ,
and finally, in S we have ψ(a)ψ(b) = 1. This shows S to be a field.

Next, we suppose that for each i ∈ I the valuation group of Ei
is dense. Let r ∈]0,+∞[. We can obviously find a family (εi)i∈I in
]0,+∞[ such that limU εi = 0. For every i ∈ I, let ai ∈ Ei satisfy
r − εi < |ai| < r and let a = (ai)i∈I . Of course, a belongs to R and
satisfies limU |ai|i = r, hence r belongs to |S|. This shows that the
valuation group of S is equal to R.

Finally, we suppose that each field Ei is algebraically closed. Let

P (x) =

q
∑

n=0

λnx
n ∈ S[x]

with λq = 1, and q > 0. We show that P admits at least one zero in S.
For every n = 0, 1, . . . , q−1, let (ai,n)i∈I ∈ R satisfy ψ((ai,n)i∈I) = λn
and let ai,q = 1 whenever i ∈ I. So, we have ψ((ai,n)i∈I) = λn
whenever n = 0, . . . , q. For every i ∈ I, we put Ti(x) =

∑q
n=0 ai,nx

n.
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Since Ei is algebraically closed, and since ai,q = 1 for every i ∈ I,
at least one of the zeros αi of Ti in Ei satisfies |αi|q ≤ |ai,0|. But by
hypothesis, (ai,0)i∈I belongs to R, hence so does (αi)i∈I . Hence, we
can put α = ψ((αi)i∈I) and then we have P (α) = 0. This finishes
showing that S is algebraically closed and this ends the proof of
Theorem 8.1. �

Lemma 8.2 (B. Diarra). Let a = (ai)i∈I ∈ R. Then we have
|||a||| = ϕ(a).

Proof. Let J ∈ U and let e = (ei)i∈I ∈ R be defined as
ei = 0 whenever i ∈ J and ei = 1 whenever i /∈ J . For con-
venience, we put b = ae. Clearly, b belongs to J , hence, we have
|||a||| = inft∈J ‖a− t‖ ≤ ‖a− b‖. But now, we check that ‖a − b‖ =
supi∈J |ai|i. Further, this is true for every J ∈ U . Hence, we obtain
|||a||| ≤ infJ∈U

(

supi∈J |ai|i
)

= limU |ai|i = ϕ(a). On the other hand,
for all t ∈ J , we have ϕ(a− t) = ϕ(a) ≤ ‖a− t‖, hence ϕ(a) ≤ |||a|||.
This ends the proof of Lemma 8.2. �

Theorem 8.3 (B. Diarra). If U is incomplete, then S is spheri-
cally complete.

Proof. Let (αn)n∈N be a decreasing distances sequence in S and
for every n ∈ N, let an ∈ R be such that ψ(an) = αn. By induction,
we can easily construct another sequence (bn)n∈N in R satisfying

(Vn) ψ(bn) = αn for every n ∈ N,
(Wn) ‖bn − bn−1‖ < rn−2 whenever n > 1.

Indeed, let q ∈ N∗ suppose that we have defined b0, . . . , bq satisfying
(Vn) for every n = 0, . . . , q. Of course, we have

(1) ϕ(bq − aq+1) = ϕ(aq − aq+1) = rq < rq−1.
By Lemma 8.2, we have ϕ(bq − aq+1) = |||bq − aq+1|||, hence by (1),
there exists c ∈ J such that ‖bq − aq+1 − c‖ < rq−1. So, we put
bq+1 = aq+1 + c and then (Vq+1), (Wq+1) are satisfied. In order to
begin the induction, we put b0 = a0, b1 = a1 and then, we can
define the sequence (bn)n∈N for every n ∈ N, satisfying (Vn) and
(Wn).
Now, for each n ∈ N, we put bn = (bi,n)i∈I . Since U is incomplete,
we can take a decreasing sequence (Xn)n∈N of elements of U such
that

⋂

n∈NXn = ∅. We put I0 = I\X0 and for each n ∈ N∗, In+1 =
Xn\Xn+1. Thus, the family (In)n∈N makes a partition of I. Further,
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for each q ∈ N, (In)n≥q makes a partition of Xq. Hence, we can define
a surjective mapping g from I onto N as g(i) = n whenever i ∈ In.
Now, for every i ∈ I, we put hi = bi,g(i). By (Wn), we have ‖bn‖ ≤ r0
whenever n ∈ N, hence |hi|i ≤ r0 for each i ∈ I, and therefore, (hi)i∈I
belongs to R. We put h = (hi)i∈I and w = ψ(h). We show

(2) |w − αn| ≤ rn−1 whenever n ∈ N∗.
Let n ∈ N∗ be fixed. It is seen that for every m > n, we have
‖bn − bm‖ < rn−1, hence for every i ∈ I, we have |bi,n − bi,m|i <
rn−1. Moreover, since (Im)m>n makes a partition of Xn+1, for every
i ∈ Xn+1, there exists m > n such that i ∈ Im and then we have
|bi,n−hi|i = |bi,n− bi,g(i)|i = |bi,n− bi,m|i < rn−1 whenever i ∈ Xn+1.
But Xn+1 belongs to U , and therefore, in S we have |bn − h| =
limU |bi,n− hi|i ≤ rn−1. This is true for every n ∈ N∗ and finally this
shows (2). Hence, w belongs to

⋂

n∈N dS(αn+1, rn) and this finishes
proving that S is spherically complete. �

Theorem 8.4. K admits a spherically complete algebraically closed
extension whose residue class field is not countable and whose valu-
ation group is equal to R.

Proof. First, we construct a complete algebraically closed exten-
sion of K whose residue class field is not countable. Let T be a
transcendental extension of the form K((xj)j∈R) provided with the
absolute value | . | defined on K[(xj)j∈R] by

∣

∣

∑

j1,...,jq≤N
aj1,...,jqx

t1
j1
· · · xtqjq

∣

∣= max
j1,...,jq≤N

|aj1,...,jq |.

It is seen that |xj − xh| = 1 whenever j, h ∈ R such that j �= h, and
therefore, the residue class field of T is not countable. Let T ′ be the
completion of T and let E be an algebraic closure of T ′, provided
with the unique absolute value that extends the one of T ′. Let E′
be the completion of E. By Theorem 6.14, E′ is algebraically closed.
Obviously, its residue class field contains one of T and therefore is
not countable.

Now, we can construct S by taking I = N and Ei = E′ for every
i ∈ N. Since E′ is algebraically closed, by Theorem 8.1, so is S.
Moreover, the valuation group of E′ obviously is dense and there-
fore, by Theorem 7.1, S has a valuation group equal to R. Finally,
by Theorem 8.3, S is spherically complete. That ends the proof of
Theorem 8.4. �
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Thanks to Theorem 8.3, we can generalize Corollary 5.3:

Theorem 8.5. Let P,F ∈ K[x] with F having all its zeros in
d(0, r). Let Q,R ∈ K[x] satisfy P = FQ + R and deg(R) <
deg(F ). Then we have Ψ(Q, log r) ≤ Ψ(P, log r) − Ψ(F, log r) and
Ψ(R, log r) ≤ Ψ(P, log r). Moreover, if P has all its zeros in d(0, r),
then Ψ(Q, log r) = Ψ(P, log r)−Ψ(F, log r).

Proof. Without loss of generality, we can assume that the valua-
tion group of K is R. Consequently, up to a change of variable, we
can suppose that r = 1. We can also assume that F is monic. Now,
since F has all zeros in d(0, r), this means that Ψ(F, 0) = 0 and hence
Theorem 8.5 is reduced to Corollary 5.3. �

Notation. Henceforth, ̂K denotes an algebraically closed spherically
complete extension of K.

For every disk d(a, r−) (respectively d(a, r)) in K, we denote by
̂d(a, r−) (respectively ̂d(a, r)) the disk of same center and diameter

in ̂K. Similarly, we denote by ̂C(a, r) the circle {x ∈ ̂K | |x−a| = r}.
Remark. There exists another way to construct a spherically com-
plete extension, due to Irving Kaplansky [68].

Definition. Let E be an extension of IL provided with an ultrametric
absolute value that extends that of IL. The extension E is said to be
immediate if its residue class field is identical to that of IL and its
value group also is identical to that of IL.
The following theorem is due to I. Kaplansky [68]:

Theorem 8.6. IL admits an immediate extension that is maximal
with respect to the inclusion.

An immediate extension of IL is spherically complete if and only
if it is maximal with respect to the inclusion.

A maximal immediate extension of IL is unique up to an
IL-isomorphism.

The proof of this theorem represents a very big work. In what
follows, we do not need that theorem.
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Chapter 9

Transcendence Order and
Transcendence Type

In Cp, we can define a notion of transcendence order stating that if
a is transcendental over Qp and has a transcendence order ≤ t and
if b is transcendental over Qp but algebraic over Qp[a], then b also
has a transcendence order ≤ t. We show the existence of numbers of
order less than 1 + ε for every ε > 0 [41], [55].

Definition. Let τ ∈]0,+∞[. Let F be a transcendental extension of
Qp provided with an absolute value | . | extending that of Qp. An
element a ∈ F is said to have transcendence order ≤ τ or order ≤ τ
in brief if there exists a constant Ca ∈]0,+∞[ such that every poly-
nomial P ∈ Qp[x] satisfies logp(|P (a)|) ≥ log(‖P‖) − Ca(deg(P ))

τ .
Moreover, a is said to have weak transcendence order ≤ τ+ or weak
order ≤ τ+ in brief if a has transcendence order ≤ τ + ε for every
ε > 0.

Notation. We denote by S(τ) the set of numbers x ∈ Cp having
transcendence order ≤ τ and by S(τ+) the set of numbers x ∈ Cp
having weak transcendence order ≤ τ+.

Finally, we say that a number x ∈ Cp is of infinite order if it does
not belong to S(τ) for all τ ∈ R∗

+.

Remark. By definition, an element a ∈ Cp having transcendence
order ≤ τ or weak transcendence order ≤ τ+ is transcendental
over Qp.

73
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Theorem 9.1. Let τ ∈]0,+∞[. If S(τ) �= ∅ then τ ≥ 1.

Proof. Let a ∈ Cp, a �= 0 be transcendental over Qp and have
transcendence order ≤ τ . We can find b ∈ Ωp (b �= 0) such that
|a − b|p < 1. Consider the minimal polynomial Q of b over Qp. Let
b2, . . . , bq be the conjugates of b over Qp and set b1 = b. We note that
by Corollary 6.6 all conjugates bj of b over Qp satisfy |bj|p = |b|p.

Suppose first that |a|p ≤ 1. Since |bj|p = |b|p = |a|p ≤ 1,
all coefficients of Q belong to Zp. Obviously, Q is monic, hence
‖Q‖ = 1. By hypothesis, there exists Ca ∈]0,+∞[ such that
Ψp(P (a)) ≥ logp(‖P‖) − Ca(deg(P ))

τ , ∀P ∈ Qp[x]. Consequently,
−nΨp(Q(a)) = −Ψp((Q(a))n) ≤ Ca(n deg(Q))τ , ∀n ∈ N∗. Since
Q(b) = 0 and since, by Corollary 4.5, Q is 1-Lipschitzian in U ,
we have −Ψp(Q(a)) > 0, and therefore, if τ < 1, the inequality
−nΨp(Q(a)) ≤ Ca(n deg(Q))τ ∀n ∈ N∗ is impossible when n tends
to +∞.

Suppose now |a|p > 1. Set Q(X) =
∑q

k=0 ckX
k. Since the bj

satisfy |bj |p = |a|p (1 ≤ j ≤ q), we have |ck|p ≤ (|a|p)q−k and partic-
ularly |c0|p =

∏q
j=1 |bj |p = (|a|p)q. Consequently, ‖Q‖ = (|a|p)q, and

therefore, considering the sequence (Qn)n∈N, for every n ∈ N∗, we
have

(1) −nΨp(Q(a)) ≤ −nqΨp(a) + Ca(nq)
τ .

On the other hand, Q(a) = Q(a) − Q(b) = (a − b)
∑q

k=1

ck
∑k

j=0 ajb
k−j−1 and hence |Q(a)|p ≤ |a−b|p(|a|p)q−1. Consequently,

we obtain −nΨp(a − b) − n(q − 1)Ψp(a) ≤ Ψp(Q(a), and hence, by
(1), −nΨp(a − b) − n(q − 1)Ψp(a) ≤ −nqΨp(a) + Ca(nq)

τ . Finally,
n(Ψp(a)−Ψp(a− b)) ≤ Ca(nq)

τ . Since |a|p > 1 and |a− b|p < 1, this
inequality is impossible again when n tends to +∞, which ends the
proof. �

Theorem 9.2. There exists b ∈ Cp transcendental over Qp, of order
≤ 1 + ε, for every ε > 0.

Proof. Consider first a strictly decreasing sequence (εn)n∈ such
that limn→+∞ εn = 0 and limn→+∞ εn log(n) = +∞.

We can always divide any polynomial P ∈ Qp[x] by some λ ∈
Qp such that |λ|p = ‖P‖ and hence we go back to the hypothesis
‖P‖ = 1. So, if we can find some b ∈ Cp and, for every ω > 0, a
constant C(ω) > 0 and show that for every P ∈ Q[X] such that
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‖P‖ = 1, we have − log(|P (b)|p) ≤ C(ω)(deg(P ))1+ω , Theorem 9.2
will be proven.

By induction, we can define a strictly increasing sequence (rn)n∈N
of Q and a sequence (an)n∈N of Cp with rn = un

vn
, irreducible and

(vn)n∈N a strictly increasing sequence of prime numbers satisfying
further the following properties:

(i) limn→+∞ rn = +∞,
(ii) for every n ∈ N, nεn < rn < (n+ 1)εn ,
(iii) vn >

∏n−1
j=1 vj,

(iv) (an)
vn = pun .

By construction, the sequence (|an|p)n∈N is strictly decreasing and
tends to 0 and all terms belong to U . Set b =

∑∞
n=1 an. Now, let

us fix ε > 0. We show that b is transcendental over Qp and has a
transcendence order ≤ 1 + ε.

Since the sequence (εn) tends to 0, we can find an integer t(ε) such
that εm < ε ∀m ≥ t(ε). Thus, as the first step, let us take q ≥ t(ε)
and let us find a constant C(ε) > 0, not depending on b, such that
for every P ∈ Q[X] satisfying ‖P‖ = 1 and deg(P ) = q, we have
− logp(|P (b)|p) ≤ C(ε)q1+ε.

For each n ∈ N∗, set bn =
∑n

m=1 am. Since the sequence
(|am|p)m∈N is strictly decreasing, we have |b − bn|p = |an+1|p,
and since P is obviously 1-Lipschitzian in the disk U , we have
|P (b)− P (bn)|p ≤ |an+1|p, hence
(1) logp(|P (b)− P (bn)|p) ≤ logp(|an+1|p) = −rn+1.

Now, since the sequence εn logp(n) tends to +∞, we can choose

n(q) such that (n(q) + 1)εn(q)+1 > (q + 1)1+ε. Then, by (1), we have

(2) logp(|P (b) − P (bn(q))|p) < logp(|an(q)+1|p) = −(rn(q)+1) <

−(n(q) + 1)εn(q)+1 < −(q + 1)1+ε.

We show the following inequality:

(3) − logp(|P (bn(q))|p) ≤ (q + 1)1+ε.

Thus, suppose (3) is wrong. Set hq =
∑n(q)

m=q am. Then, bn(q) =
bq−1 + hq. Now, developing P at the point bq−1, we have

(4)

logp(|P (bn(q))|p) = logp

(∣

∣

∣

∑q
m=0

P (m)(bq−1)
m! (hq)

m
∣

∣

∣

p

)

< −(q + 1)1+ε.
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Consider now the sum
∑q

m=0
P (m)(bq−1)

m! (hq)
m. Since the seq-

uence |am|p is strictly decreasing, we have |hq|p = |aq|p, hence
logp(|hq|p) = −rq. We note that Qp[a1, . . . , aq1 ] is an algebraic exten-

sion of Qp of degree at most
∏q−1
j=1 vj . Consequently, by Corollary 6.8,

the extension Qp[a1, . . . , aq1 ] has a value group of the form s
tZ with

t ≤ ∏q−1
j=1 vj . On the other hand, due to the hypothesis rq =

uq
vq
, it

appears that vq is a prime integer, prime to uq and bigger than q and
∏q−1
j=1 vj. Consequently, we can apply Lemma 6.19 with hq in the role

of c and bq−1 in the role of a. Therefore, for each m = 0, . . . , q−1, all

the
∣

∣

∣

P (m)(bq−1)
m! (hq)

m
∣

∣

∣

p
are pairwise distinct. Consequently, we have

(5)
∣

∣

∣

∑q
m=0

P (m)(bq−1)
m! (hq)

m
∣

∣

∣

p
= max1≤m≤q

∣

∣

∣

P (m)(bq−1)
m! (hq)

m
∣

∣

∣

p
.

Next, since−Ψp(hq) = rq < (q+1)ω, for each integerm = 1, . . . , q,
we have Ψp(hq)

m) = −mrq > −m(q + 1)ω ≥ −q(q + 1)ω , hence

(6) Ψp((hq)
m) ≥ −q(q + 1)ω > −(q + 1)1+ω ∀m ≤ q.

Consequently, by (4), (5), and (6), the polynomial Q(X) =
∑q

m=0
P (m)(bq−1)

m! (X)m has all coefficients in d(0, 1−) and hence we
have ‖Q‖ < 1. But since |bq−1|p < 1, by Theorem 4.5, we have
‖P‖ = ‖Q‖ < 1, a contradiction to the hypothesis ‖P‖ = 1.
Therefore, Relation (3) is proven for every polynomial P ∈ Qp[X]
of degree q ≥ t(ω) such that ‖P‖ = 1. Consequently, by (3),
we obviously have a constant C > 0, not depending on b, such
that −Ψp(P (b)) ≤ C(deg(P ))1+ω for every P ∈ Qp[X] such that
deg(P ) ≥ t(ω) and ‖P‖ = 1.

Particularly, b is transcendental over Qp because if it were alge-
braic, the degrees of polynomial P ∈ Qp[X] such that P (b) = 0
wouldn’t be bounded. Finally, it is easily seen that there exists a con-
stant m > 0 such that |Q(b)|p ≥ m for every polynomial Q ∈ Qp[X]
of degree q ≤ t(ω) and ‖Q‖ = 1. Therefore, b is clearly of order
≤ 1 + ω. �

Corollary 9.3. Ωp is not complete.

The transcendence type is defined in Cp in the same way as in
C [41].
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Definition and notation. Given a complex number z, we denote
by |z|∞ its modulus. Throughout this chapter, a number a ∈ Cp is
just said to be algebraic (respectively transcendental) if it is alge-
braic (respectively transcendental) over Q. When a is algebraic or
transcendental over Qp, we precise this. Throughout this chapter,
we denote by Ω the field of algebraic numbers and by AΛ the ring of
algebraic integers.

Let a ∈ Ω. We call denominator of a any strictly positive integer
n such that na and we denote by den(a) the smallest denominator of
a. Let a2, . . . , an be the conjugates of a over Q in C and put a1 = a.
For convenience, we use the logarithm of base p denoted by logp. We

set |a| = maxj=1,...,n(|aj |∞) and s(a) = max(logp(|a|, log(den(a))).
The following relations are classical and immediate:

Lemma 9.4. Let a, b ∈ Ω and let m ∈ N. Then, den(ab) ≤ den(a)
den(b), den(a+ b) ≤ den(a)den(b), den(ma) ≤ mden(a),den(am) ≤
(den(a))m and |ab| ≤ |a|.|b|, |a + b| ≤ |a| + |b|, |ma| ≤ m|a|,
|am| = (|a|)m.
Definition and notation. Let

P (X1, . . . ,Xn) =
∑

i1,...,in

ai1,...,in(X1)
i1 · · · (Xn)

in ∈ C[X1, . . . ,Xn].

We put H(P ) = maxi1,...,in |ai1,...,in |∞ and t(P ) = max(logp(H(P ),
deg(P ) + 1).

A number a ∈ Cp is said to have transcendence type less than
α if there exists a constant Ca > 0 such that, for every Q ∈ Z[X],
we have either Q(a) = 0 or −Ψp(Q(a)) ≤ Ca(t(Q))α. We denote by
T (α) the set of numbers a ∈ Cp having a transcendence type less
than or equal to α.

If a number a ∈ Cp does not belong to T (α) for all α > 0, we say
that a is of infinite type.

By Lemma 6.17, Lemmas 9.5, 9.6, and 9.7 are immediate:

Lemma 9.5. Let P ∈ Z[X]. Then, −Ψp(P, 0) ≤ logp(H(P )).

Lemma 9.6. Let P ∈ Z[X] be of degree k and let a ∈ Ω. Then,

|P (a)| ≤ H(P )(k + 1)
(

max(|a|, 1))k.



November 12, 2024 15:8 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch09 FA2 page 78

78 Value Distribution in Ultrametric Analysis and Application

Lemma 9.7. Let α1, α2 ∈]0,+∞[ satisfy α1 ≤ α2. Then, T (α1) ⊂
T (α2).

There exists a link between transcendence order over Qp and tran-
scendence type over Q [41], [50].

Theorem 9.8. Let α ∈ [1,+∞[. Then, S(α) ⊂ T (α).

Proof. Let a ∈ S(α). By hypothesis, there exists C > 0 such that

−Ψp(Q(a)) ≤ −Ψp(Q, 0) + C
(

deg(Q)
)α ∀Q ∈ Qp[X].

Hence, by Lemma 9.5, we have −Ψp(Q(a)) ≤ logp(H(Q)) +

C
(

deg(Q)
)α

∀Q ∈ Q[X]. Then, taking C ≥ 1, we can derive

−Ψp(Q(a)) ≤ C
(

logp(H(Q))+
(

deg(Q)
)α
)

≤ 2C(t(Q))α ∀Q ∈ Q[X],

which proves that a ∈ T (α). �

By Theorem 9.2, we can now state the following corollary
[41], [49]:

Corollary 9.9. There exists b ∈ Cp, transcendental over Qp, such
that b ∈ T (1 + ε) for every ε > 0.

Proof. Indeed, in Theorem 9.2, we saw that there exists b ∈ Cp
that belongs to S(1 + ε) for all ε > 0. �

By Lemma 6.17, we can immediately derive the following
inequality:

Theorem 9.10. Let a ∈ Ω∗ be integral of degree q, over Z. Then,
|a|p ≥ 1

(

|a|
)q .

Proof. Let Q(X) = irr(a,Q) and let a1, . . . , aq be the conjugates
of a over Z, with a1 = a. Then,

∏q
j=1 aj belongs to Z∗, hence, by
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Lemma 6.18, we have |aj | ≤ 1 ∀j = 2, . . . , q:

(1)
∣

∣

q
∏

j=1

aj
∣

∣

p
≥ 1

|∏q
j=1 aj|∞

.

Consequently,

(2) |a|p ≥ |
q
∏

j=1

aj |p ≥ 1
∏q
j=1

∣

∣aj
∣

∣

∞
.

Now, |∏q
j=1 aj|∞ =

∏q
j=1 |aj |∞ ≤ (|a|)q. Thus, by (2), we obtain

|a|p ≥ 1
(|a|)q .

�

Corollary 9.11. Let a ∈ Ω∗ be of degree q over Q and let t = den(a).
Then, |a|p ≥ 1

tq
(

|a|
)q .

Corollary 9.12. Let a ∈ Ω∗ be of degree q over Q and let t = den(a).
Then, log(|a|p) ≥ −2q(s(a)).
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Chapter 10

Algebras R(D)

The idea of considering rational functions with no pole inside a
domain D, in order to define analytic functions in D, is due to Marc
Krasner [69]. The behavior of rational functions in K is determined by
circular filters which characterize all multiplicative norms on rational
functions. We make a general study of the set of multiplicative semi-
norms of a normed algebra which is locally compact with respect to
the topology of pointwise convergence. Results are first due to B.
Guennebaud and G. Garandel [61], [62]. Henceforth, the idea of con-
sidering the topologic space of multiplicative semi-norms continuous
with respect to the topology of a normed algebra was used in many
works on Banach algebra.

Notation. In this chapter, we denote by D an infinite subset of K
and then KD is provided with the topology UD of uniform conver-
gence on D.

We denote by R(D) the K-algebra of rational functions h(x) ∈
K(x) with no pole in D. Since D is infinite, R(D) is clearly a
K-subalgebra of KD and is provided with the topology induced by UD
that makes it a topological subgroup of KD. Algebraically, R(D) is a
K-subalgebra of K(x) and more precisely is of the form S(D)−1K[x]
with S(D) the multiplicative set of polynomials whose zeros do not
belong to D.

We denote by Rb(D) the K-subalgebra of R(D) consisting of the
f ∈ R(D) which are bounded in D. Finally, if D is not bounded,
we denote by R0(D) the K-subalgebra of R(D) that consists of the
f ∈ R(D) such that lim|x|→+∞, x∈D f(x) = 0.

81
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For every f ∈ KD, we set ‖f‖D = supx∈D|f(x)| ∈ [0,+∞].
Recall that an algebra-semi-norm ψ of a K-algebra A is said to

be semi-multiplicative or power multiplicative if it satisfies ψ(xn) =
(ψ(x))n ∀x ∈ A and is said to be multiplicative if ψ(xy) =
ψ(x)ψ(y) ∀x, y ∈ A.

Lemma 10.1 is then immediate.

Lemma 10.1. R(D) is a principal ideal ring. Every ideal is of the
form P (x)R(D) with P a polynomial whose zeros belong to D.

Lemma 10.2 is an immediate application of general properties of
the supremum, once the set [0,+∞] is provided with the classical
extensions of the addition and the multiplication:
a+ (+∞) = +∞ for every a ∈ [0,+∞],
a . (+∞) = +∞ for every a ∈]0,+∞].

Lemma 10.2. For every g, h ∈ R(D), we have

(i) ‖h‖D = 0 if and only if h = 0,
(ii) ‖λh‖D = |λ| ‖h‖D for every λ ∈ K∗,
(iii) ‖h+ g‖D ≤ max(‖h‖D, ‖g‖D),
(iv) If (‖f‖D, ‖g‖D) is different from (0,+∞) and from (+∞, 0),

then ‖hg‖D ≤ ‖h‖D .‖g‖D ,
(v) ‖hn‖D = (‖h‖D)n whenever n ∈ N.

Theorem 10.3. Rb(D) = R(D) if and only if D is closed and
bounded. Moreover, if D is closed and bounded, then ‖ . ‖D is a
semi-multiplicative ultrametric norm of K-algebra.

Proof. We first supposeD to be bounded. By Lemma 10.2, we just
have to show that ‖h‖D < +∞ for every h ∈ R(D) in order to show
that ‖ . ‖D is a norm of K-algebra such that ‖hn‖D = ‖h‖nD. Since
D is bounded, obviously every polynomial P satisfies ‖P‖D < +∞,

hence, by Lemma 10.2 (iv), we just have to check that
∥

∥

∥

1
Q

∥

∥

∥

D
< +∞.

To show this, it is sufficient to prove that
∥

∥

∥

1
x−a
∥

∥

∥

D
< +∞ for every

a ∈ K\D. Since D is closed, the distance r from a to D is not zero,

hence
∥

∥

∥

1
x−a
∥

∥

∥

D
≤ 1

r .

Now, if D is not bounded, obviously ‖x‖D = +∞. If D is not
closed, there exists at least one point a ∈ K\D with a sequence
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(an)n∈N in D which converges to a, hence
∥

∥

∥

1
x−a
∥

∥

∥

D
= +∞. That ends

the proof of Theorem 10.3. �

Theorem 10.4. (G. Garandel, B. Guennebaud) [61], [62]: Let
F be a large circular filter on K of diameter s > 0. The following
three assertions are equivalent:

(i) ϕF (h) ≤ ‖h‖D whenever h ∈ R(D).
(ii) ϕF is a continuous ultrametric multiplicative norm on R(D)

with respect to the topology of uniform convergence.
(iii) F is secant with D.

Proof. First, (i) and (ii) are obviously equivalent. Next, (iii)
clearly implies (i) because if F is secant with D, then limF |h(x)| =
limF∩D|h(x)| ≤ ‖h‖D .

Hence, we just have to show that (i) implies (iii). For this, we
assume (iii) to be false and prove that (i) is false. We first assume
F to have center a. There exist annuli Γ(ai, r

′
i, r

′′
i ) (1 ≤ i ≤ q) with

|ai − aj | = s whenever i �= j and r′i < s < r′′i such that the set
B =

⋂q
i=1Γ(ai, r

′
i, r

′′
i ) belongs to F and satisfies B ∩D = ∅. We put

r′ = max1≤i≤qr′i and r
′′ = min1≤i≤qr′′i . Let ρ

′ ∈]r′, s[, let ρ′′ ∈]s, r′′[,
and for every i = 1, . . . , q set bi ∈ Γ(ai, ρ

′, s) and set b ∈ Γ(a, s, ρ′′).
We put h(x) =

(
∏q
i=1

(

x−ai
x−bi

))(

λ
x−b
)

with |λ| = b. We first note

that ϕF (h) = 1 because ϕF
(

x−ai
x−bi

)

= 1 whenever i = 1, . . . , q and

ϕF
(

λ
x−b
)

= 1. Next, it is easily seen that ‖h‖D ≤ max
(

r′
ρ′ ,

ρ′′
r′′
)

.

Indeed, |h(x)| = | xbi | ≤ r′
ρ′ when |x− ai| ≤ r′ and |h(x)| = | λ

x−b | ≤ ρ′′
r′′

when |x − a| ≥ r′′. Hence, we have ‖h‖D < 1 while ϕF (h) = 1 and
that contradicts the assertion (i).

We now suppose that F has no center. Let d(a, r) belong to F
such that d(a, r) ∩ D = ∅ and let ρ ∈]s, r[. There still exists a disk
d(α, ρ) ∈ F such that d(α, ρ) ⊂ d(a, r). Let us take b ∈ Γ(α, ρ, r)
and λ ∈ K such that |λ| = |b|. We just put h(x) = λ

x−b and we
have ϕF (h) = 1 because |h(x)| = 1 whenever x ∈ d(α, ρ), while

|h(x)| ≤ |b−α|
r < 1 whenever |x − α| ≥ r, hence finally ‖h‖D < 1.

That ends the proof of Theorem 10.4. �
In order to describe properties of the multiplicative semi-norms on

R(D) and next on analytic elements, we must recall a classical result
on continuous multiplicative semi-norms on a normed K-algebra A.
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Notation. We denote by Mult(A) the set of K-algebra multiplicative
semi-norms of a K-algebra A. Given ψ ∈ Mult(A), we denote by
Ker(ψ) the set of x ∈ A such that ψ(x) = 0 and Ker(ψ) is called
the kernel of ψ.

Suppose now A is a normed K-algebra whose norm is denoted by
‖ . ‖. We denote by Mult(A, ‖ . ‖) the set of K-algebra multiplicative
semi-norms of A that are continuous functions on A with respect to
the norm ‖ . ‖ of A. Similarly, we denote by Multm(A, ‖ . ‖) the set of
K-algebra multiplicative semi-norms of A whose kernel is a maximal
ideal that are continuous functions on A and by Mult1(A, ‖ . ‖) the
set of K-algebra multiplicative semi-norms of A whose kernel is a
maximal ideal of codimension 1 that are continuous functions on A.

Lemma 10.5. Let A be a K-algebra provided with a K-algebra norm
‖ . ‖ and let ϕ ∈ Mult(A). Then, ϕ belongs to Mult(A, ‖ . ‖) if and
only if ϕ(x) ≤ ‖ x ‖ whenever x ∈ A. Moreover, if A has a unity
u and if ϕ is not identically 0, then ϕ(λu) = |λ| whenever λ ∈ K.
Further, if ϕ belongs to Mult(A), Ker(ϕ) is a prime ideal, and if
Mult(A, ‖ . ‖), then Ker(ϕ) is a closed prime ideal.

Proof. Suppose that for some x ∈ A we have ϕ(x) > ‖ x ‖. Since
the valuation group of K is dense, it contains a subgroup of the form
aZ, with a > 0. Let q ∈ N be such that q(log(ϕ(x)) − log(‖x‖)) > a.
Then there clearly exists λ ∈ K satisfying ‖ x ‖q < |λ| < ϕ(x)q. So,
much the more, we have ‖ xq ‖ < |λ| < ϕ(xq). Let t = xq. Then,

limn→∞
(

t
λ

)n
= 0 but limn→∞ ϕ

((

t
λ

)n)

= +∞, and then ϕ is not

continuous.
Now, let u be a unity in A. Either ϕ(u) = 0 and then ϕ(x) = 0

whenever x ∈ A, or ϕ(u) = 1 and then we have ϕ(λu) = |λ|ϕ(u) = |λ|
whenever λ ∈ L. The last statement is immediate. This ends the
proof of Lemma 10.5. �

Theorem 10.6 is well known and may be found in [62] and in
Theorems 6.9 and 6.19 of [45] (see also [53]).

Theorem 10.6. Let A be a K-algebra provided with a K-algebra

norm ‖ . ‖. For every x ∈ A, the sequence
(‖ xn ‖ 1

n

)

n∈N has a limit

denoted by ‖ x ‖si, satisfying ‖x‖si ≤ ‖x‖ ∀x ∈ A and ‖x‖si =
sup{φ(x) | φ ∈ Mult(A, ‖. .‖). Moreover, ‖xn‖si = (‖x‖si)n ∀f ∈ A,
∀n ∈ N.
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Theorem 10.7. Let A be a K-algebra provided with a K-algebra
norm ‖ . ‖. Then, Mult(A,‖ . ‖) is compact with respect to the topol-
ogy of pointwise convergence.

Proof. Let B be the unit ball of A. By Lemma 10.5, each ϕ ∈
Mult(A, ‖ . ‖) has a restriction ϕ̂ to B which satisfies ϕ̂(B) ⊂ [0, 1].
Hence, Mult(B, ‖ . ‖) is a closed subset of [0, 1]B provided with the
topology of pointwise convergence on B. But by Tykhonov’s theorem,
[0, 1] is compact for this topology and then so is Mult(B, ‖ . ‖).
Moreover, the mapping ϕ→ ϕ̂ from Mult(A, ‖ . ‖) into Mult(B, ‖ . ‖)
is a bijection. Indeed, it is clearly injective and it is surjective because
given ψ ∈ Mult(B, ‖ . ‖), we may extend ψ to A by putting ψ(x) =
|λ|ψ(xλ ) with λ ∈ K, |λ| ≥ ‖x‖. Finally, this bijection is bicontinuous
with respect to the pointwise convergence on both Mult(A, ‖ . ‖) and
Mult(B, ‖ . ‖) and this ends the proof of Theorem 10.7. �

Theorem 10.8 is given in several works. This proof mainly is given
in [53].

Theorem 10.8. Let IB be a field extension of K provided with a
non-zero semi-norm of K-algebra ‖ . ‖. Then, ‖ . ‖ is a norm of
K-algebra, and there exists an absolute value ϕ on IB extending that
of K such that ϕ(x) ≤ ‖x‖ whenever x ∈ A.

Proof. Let SM(A, ‖ . ‖) denote the set of continuous semi-norms
φ of A satisfying φ(fn) = (φ(f))n ∀f ∈ A, ∀n ∈ N. It is seen that
‖ . ‖ is a norm because Ker‖ . ‖ = {0}. In the same way, so is the
spectral semi-norm ‖ . ‖si associated with ‖ . ‖. Now, SM(A, ‖ . ‖si)
is easily checked to be inductive with respect to the order ≥, i.e. given
a totally ordered subset W of SM(A, ‖ . ‖si), the mapping ψ defined
in A by ψ(x) = inf{θ(x)|θ ∈W} belongs to SM(A, ‖ . ‖si). Then by
Zorn’s lemma, SM(A, ‖ . ‖si) admits a minimal element ϕ. As we just
saw, ϕ is a norm of K-algebra and we have ϕ(x) ≤ ‖x‖si whenever
x ∈ A. We will prove that ϕ(ab) = ϕ(a)ϕ(b) whenever a, b ∈ A. Let

a ∈ A\{0}. For every x ∈ A, we put un(x) =
ϕ(anx)
ϕ(a)n . The sequence

(un(x))n∈N is seen to be decreasing. We put σ(x) = limn→+∞
ϕ(anx)
ϕ(a)n

whenever x ∈ A.
First, we check that σ is a norm of K-algebra. Obviously, it is seen

that for every n ∈ N, un is a norm of K-vector space, hence so is σ.
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Next, we have

un(x)un(y) =
φ(anx)φ(any),

φ(an)φ(an)
=
φ(anx)φ(any)

φ(a2n)
≥ φ(a2nxy)

φ(a2n)
≥ σ(xy),

whenever x, y ∈ A, hence σ(x)σ(y) ≥ σ(xy). So, σ is a norm of
K-algebra. Now, we check that σ is semi-multiplicative, because

lim
n→+∞

(ϕ(anxq)

ϕ(an)

)

= lim
n→+∞

(ϕ(aqnxq)

ϕ(aqn)

)

= lim
n→+∞

(ϕ(anx)

ϕ(an)

)q
= σ(x)q.

Then, since σ satisfies σ(x) ≤ ϕ(x) ≤ ‖x‖si whenever x ∈ A, it clearly
belongs to SM(A, ‖ . ‖si). But since ϕ is minimal in SM(A, ‖ . ‖si),
actually ϕ is equal to σ.

Now, as the sequence (un)n∈N is decreasing, we have σ(x) ≤ ϕ(ax)
ϕ(a) ,

hence ϕ(x)ϕ(a) ≤ ϕ(ax)
ϕ(a) and hence ϕ(a)ϕ(x) ≤ ϕ(ax). But since ϕ

is a norm of K-algebra, ϕ(ax) ≤ ϕ(a)ϕ(x), which proves that ϕ is a
multiplicative norm. �

Theorem 10.9 is immediate.

Theorem 10.9. Let A be a Banach K-algebra. For every maximal
ideal M of A, there exists ϕ ∈Mult(A, ‖ . ‖) such that Ker(ϕ) = M.
If M is of codimension 1, the mapping τ from A onto K admitting
M for kernel satisfies |τ(f)| ≤ ‖f‖ ∀f ∈ A.

Proof. Let M be a maximal ideal of A and let IB be the field
A
M . Since A is complete, M is closed, therefore IB is provided with
the quotient norm. By Theorem 10.9, IB admits an absolute value
| . | which extends that of K. Let ψ be the canonical surjection from
A to IB. On A we put ϕ(x) = |ψ(x)|. Then, ϕ is an element of
Mult(A, ‖ . ‖) such that Ker(ϕ) = M.

Suppose now M is of codimension 1 and suppose |τ(f)| > ‖f‖.
Then the series

∑+∞
n=0

(

f
τ(f)

)n
converges and shows that f − τ(f) is

invertible in A, a contradiction since τ(f − τ(f)) = 0. �

Corollary 10.10. Let A be a Banach K-algebra. Every K-algebra
homomorphism from A to K is continuous.

The characterization of the continuous multiplicative norms of
(R(D), ‖ . ‖D) by means of the large circular filters secant with D
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suggests us extending this characterization to the multiplicative semi-
norms of R(D).

Theorem 10.11. Let D be a closed bounded subset of K. The
mapping Ξ from Φ(D) into Mult(R(D)) defined as Ξ(F) = ϕF is
a bijection from Φ(D) onto Mult(R(D),UD). Moreover, ϕF is an
absolute value if and only if F does not converge in D. Further,
Mult(R(D, ‖ . ‖D)) is provided with the topology of pointwise con-
vergence for which it is compact.

Proof. On the one hand, by Theorems 4.10 and 10.4, it is clearly
seen that the mapping defined on Φ◦(D) by F −→ ϕF is a bijec-
tion from this set onto the set of continuous multiplicative norms on
R(D).

On the other hand, every a ∈ D defines a multiplicative semi-
norm ψ by ψ(h) = |h(a)|, the kernel of which is the maximal ideal
(x − a)R(D). Thus, we have a mapping from the set of convergent
circular filters on D into the set of multiplicative semi-norms which
are not norms: this mapping is obviously injective.

Finally, let ψ be a multiplicative semi-norm whose kernel is not
zero. Then, Ker(ψ) is a prime ideal hence a maximal ideal of R(D),
and therefore, it is of the form (x − a)R(D) with a ∈ D. Then,
ψ(x−a) = 0, hence ψ(x−b) = |a−b| whenever b ∈ K, and therefore,
ψ is of the form ϕFa with Fa the filter of the neighborhoods of a

in D. Thus, Ξ is a bijection from Φ(D) onto Mult(R(D),UD) and
ϕF is a norm if and only if F is not convergent. Finally, by Theorem
10.7, Mult(R(D, ‖ . ‖D)) is compact with respect to the topology of
pointwise convergence. That ends the proof of Theorem 10.11. �

Corollary 10.12. Mult(K[X]) is provided with the topology of point-
wise convergence for which it is locally compact.
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Chapter 11

Analytic Elements

Due to the fact that any disk d(a, r) is exactly the same as d(b, r) for
every b ∈ d(a, r), it is easily seen that a power series

∑∞
n=0 an(x− a)n

which admits the disk d(a, r) for disk of convergence may not be
extended outside its convergence disk as it is done in complex anal-
ysis, by means of a change of origin.

However, by Runge’s theorem, we remember that a holomorphic
function in a compact subsetD of C is equal to the limit of a sequence
of rational functions with respect to the uniform convergence on D.
This is why Marc Krasner introduced analytic elements on a subsetD
of K directly by considering limits of sequences of rational functions
with respect to the uniform convergence on D [69].

Actually, Marc Krasner constructed a theory of analytic functions
f defined on a quasi-connected set D equal to the union of a chained
family of quasi-connected sets (Di)i∈I such that the restriction of f
to each Di is an analytic element on Di [69] (this construction was
widen to the analytic infraconnected sets by Philippe Robba) [83].

Another theory was defined by John Tate, consisting (in one vari-
able) of using infraconnected affinoid sets. Here, we only describe
some basic properties of analytic elements on infraconnected sets in
order to apply them to power series and various Laurent series that
are used for studying meromorphic functions. A comparison between
Krasner’s theory and Tate’s theory was made in [37]. Here, we aim
at studying meromorphic functions in the field K and applications
to problems of value distribution. This is why we do not repeat the
study of Krasner–Tate algebras [37]. However, interesting properties

89
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of injective analytic elements can be proved with the use of Krasner–
Tate algebra. In Chapter 42, we recall these properties letting us
prove the famous relation satisfied by many kind of injective ana-
lytic functions in K.

We examine algebras of analytic elements, particularly Banach
algebras of bounded analytic elements. We see the characterization
of setsD such that the space of analytic elements onD is a K-algebra.
We examine some basic properties of analytic elements such as poles
when the set D is not closed and we see that analytic elements on a
closed bounded set D are uniformly continuous. If D has finitely
many infraconnected components, for each one, its characteristic
function is an analytic element on D.

Definition and notation. Let D be an infinite subset of K. We
denote by H(D) the completion of R(D) for the topology UD of
uniform convergence on D. The elements of H(D) are called the
analytic elements on D [35], [44], [69].

The set H(D) is then provided with the topology of uniform con-
vergence on D for which it is complete and every f ∈ H(D) defines a
function onD which is the uniform limit (onD) of a sequence (hn)n∈N
in R(D). Thus, given two infinite sets D, D′ such that D ⊂ D′, the
restriction to D of elements of H(D′) enables us to consider that
H(D′) is included in H(D).

Next, H(D) is a K-vectorial space and a complete topological
group with respect to the topology UD. The question of whether the
product of two analytic elements on D is an analytic element on D
is studied later. However, it is easily seen that given f ∈ H(D), the
function fn also belongs to H(D).

Lemma 11.1. For every f, g ∈ H(D), we have

(i) ‖f‖D = 0 if and only if f = 0,
(ii) ‖λf‖D = |λ| ‖f‖D whenever λ ∈ K∗,
(iii) ‖f + g‖D ≤ max(‖f‖D, ‖g‖D),
(iv) if (‖f‖D, ‖g‖D) is different from (0,+∞) and from (+∞, 0),

then the function fg satisfies ‖fg‖D ≤ ‖f‖D ‖g‖D,
(v) ‖fn‖D = ‖f‖nD whenever n ∈ N∗.

Notation. We denote by Hb(D) the set of elements f ∈ H(D)
bounded on D. Then, Hb(D) is clearly a K-vectorial subspace of
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H(D) and is closed in H(D). Moreover, ‖ . ‖D is a norm on Hb(D)
that makes it a Banach K-algebra. If D is unbounded, we denote by
H0(D) the set of the f ∈ H(D) such that lim |x|→+∞

x∈D
f(x) = 0.

Theorem 11.2 is an immediate consequence of Theorem 10.3.

Theorem 11.2. Hb(D) is a Banach K-subalgebra of KD. The fol-
lowing three conditions are equivalent:

(i) Hb(D) = H(D),
(ii) H(D) is topological K-vector space,
(iii) (H(D), ‖ . ‖D) is a Banach K-algebra,
(iv) D is closed and bounded.

If these conditions are satisfied, then ‖ . ‖D is a semi-multiplicative
norm.

Definition. Let f ∈ H(D) have no zero in D. The element f is
said to be invertible in H(D) if the function 1

f (also denoted by f−1)

belongs to H(D). This definition holds even if H(D) is not a ring.

The following lemma is classical.

Lemma 11.3. Let f ∈ H(D) be such that infx∈D |f(x)| > 0. Then,
f−1 belongs to H(D). Moreover, if D is closed and bounded, f−1

belongs to H(D) if and only if infx∈D |f(x)| > 0.
Let g ∈ H(D) satisfy |g(x)| = 1 for all x ∈ D and ‖f − 1‖D >

‖g − 1‖D. Then, we have ‖fg − 1‖D = ‖f − 1‖D.
Proof. We suppose infx∈D |f(x)| = λ > 0. Let (hn)n∈N be a
sequence in R(D) such that limn→∞ ‖hn − f‖D = 0. For n big
enough, we have |hn(x)| ≥ λ whenever x ∈ D, hence

∣

∣
1

hn(x)
− 1

f(x)

∣

∣=
∣

∣

f(x)−hn(x)
hn(x)f(x)

∣

∣≤ ‖f−hn‖D
λ2 , hence the sequence 1

hn
converges to 1

f .

Conversely, if D is closed and bounded and if 1
f ∈ H(D), 1f has to

be bounded by some M ∈ R+, hence |f(x)| ≥ 1
M whenever x ∈ D.

Now, let g ∈ H(D) satisfy |g(x)| = 1 for all x ∈ D and ‖f−1‖D >
‖g− 1‖D. For every x ∈ D, we have |f(x)− 1||g(x)| > |g(x)− 1|, and
therefore, |f(x)g(x)− 1| = |f(x)− 1||g(x)| = |f(x)− 1|. This finishes
proving Lemma 11.3. �

Theorem 11.4. Let f ∈ H(D) and let h ∈ Rb(D). Then, fh belongs
to H(D).
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Proof. Let ε be > 0 and let g ∈ R(D) satisfy ‖f − g‖D < ε. Then,
we have ‖hf−hg‖D < ε‖h‖D and this clearly shows that fh ∈ H(D).

�

When D is not closed or is not bounded, we show how to split an
element f ∈ H(D).

Theorem 11.5. The vector space H(D) is equal to the direct sum
R0(K\(D\D)) ⊕H(D). Moreover, if D is not bounded, then H(D)
is equal to the direct sum K[x]⊕H0(D).

Proof. Let (fn)n∈N be a sequence in R(D) such that limn→∞ ‖fn−
f‖D = 0. In particular, there exists N ∈ N such that fn − fN is
bounded when n ≥ N . We put gn := fn − fN . The sequence gn
converges in H(D) to f − fN . Let g := f − fN . On the other hand,
since each fn − fN belongs to R(D) and is bounded in D, fn −
fN belongs to R(D). Obviously, ‖fn − fN‖D = ‖fn − fN‖D, hence
finally, g belongs to Hb(D). Now, we may obviously split fN in the
form E(x) + h1(x) + h2(x) with E(x) ∈ K[x], h1 ∈ R0(D), h2 ∈
R0(K\(D\D)). We put f∗ = h2 and f = E+h1+ g. We have clearly
split f in the form f∗ + f with f∗ ∈ R0(K\(D\D)), f ∈ H(D).
Hence, we have proven that H(D) = R0(K\(D\D)) +H(D).

This sum is easily seen to be direct. Indeed, suppose that we
have h ∈ R0(K\(D\D)) and g ∈ H(D) such that h + g = 0, with

h 	= 0. Then, h has a pole α ∈ D\D and it may be written in
the form

∑q
i=1

λi
(x−α)i + hα with λi 	= 0 (1 ≤ i ≤ q) and hα ∈

R0(K\(D\(D ∪ {α}))). But g is obviously bounded around α, hence
h has to be bounded when x approaches α, hence finally α does not
exist. This shows that the sum is direct.

Now, we suppose D is unbounded. First, we prove that every
element f ∈ Hb(D) admits a limit when |x| tends to +∞. Let ε ∈ R∗

+

and let h ∈ R(D) satisfy ‖f − h‖D < ε. Since f is bounded in D,
so is h. But then h is of the form P

Q , with deg(P ) = deg(Q), and

therefore, h has a limit λ when |x| tends to +∞. Let ε > 0 be
such that |h(x) − λ| < ε whenever x ∈ D\d(0, r). Clearly, we have
|f(x) − λ| < ε whenever x ∈ D\d(0, r). This proves that f does
converge along the filter F which admits as a basis the family of sets
D\d(0, r) (r > 0).

Let f ∈ H(D) be unbounded. Let (xn)n∈N be a sequence such that
limn→∞ |f(xn)| = +∞. Suppose the sequence (xn)n∈N does not tend
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to +∞. Then there exists a bounded subsequence (xnq )q∈N such that
limq→∞ |f(xnq)| = +∞, but this is impossible due to Theorem 11.2
because such a sequence lies in a closed bounded set D′ included in
D. Now, there exists h ∈ R(D) such that f − h is bounded, and
therefore, we have limn→∞ |h(xn)| = +∞. Let h(x) = P (x) + u(x)
with P ∈ K[x] and u ∈ R0(D). Since f −h is bounded, clearly, f −P
belongs to Hb(D), hence we have proven that H(D) = K[x]+Hb(D).
Moreover, since u has a limit when |x| tends to +∞ in D, we have
Hb(D) = H0(D) +K, and therefore, H(D) = K[x] +H0(D). Finally,
by considering elements when |x| tends to +∞, this sum is easily
seen to be direct and this ends the proof. �
Definition. Let α ∈ D\D and f ∈ H(D), and let f = f∗ + f , with
f∗ ∈ R0(K\(D\D)) and f ∈ H(D). Let α ∈ D\D be a pole of f∗

and let f∗(x) =
∑q

j=1
λj

(x−α)j +u(x), with u ∈ R0(K\(D\(D∪{α}))).
The pole α of order q of f∗ is called a pole of order q of f and λ1 is
called the residue of f at α and is denoted by res(f, α).

Let ai, 1 ≤ i ≤ n, be the poles of f and for each i let qi be the
order of ai. The polynomial

∏n
i=1(x− ai)

qi is named the polynomial
of poles of f in D\D.

Corollary 11.6. Let α ∈ D\D and f ∈ H(D) be such that |f(x)| is
bounded in d(α, r) ∩D with r > 0. Then f ∈ H(D ∪ {α}).
Proof. Indeed, as f is obviously bounded in D ∩ d(α, r), so is f∗,
and therefore, f∗ has no pole at α. �

Corollary 11.7. H(D) = Hb(D) + R(K\(D\D)), Hb(D) =
Hb(D) ⊂ H(D) and Hb(D) = Hb(D). If D is bounded, then
Hb(D) = H(D). If D is not bounded, for every unbounded f ∈ H(D),
there exists a unique q ∈ N∗ such that x−qf(x) has a finite non-zero
limit when |x| tends to +∞, x ∈ D. Let d(a, r−) be a hole of D. If
f belongs to H(D) and if x−qf(x) has a finite non-zero limit, then
f(x)

(x−a)q belongs to Hb(D).

Corollary 11.8. If D = K, then H(D) = R(D).

Corollary 11.9 comes from the definition of the poles and from
Theorem 11.5.

Corollary 11.9. Let f ∈ H(D) and let α ∈ D\D. Then α is a pole
of order n > 0 for f if and only if (x−α)nf(x) has a finite non-zero
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limit at α. If there exists no r ∈ R∗
+ such that |f(x)| is bounded in

d(α, r)\{α}, then α is a pole of order n ≥ 1 for f and (x− α)nf(x)
has a finite non-zero limit at α.

Theorem 11.10. Let f ∈ H(D) and let α ∈ D\D. Either f belongs
to H(D ∪ {α}) or α is a pole for f .

Proof. If f does not belong to H(D∪{α}), by Corollary 11.6, f is
unbounded in any disk d(α, r) whenever r > 0. Hence, by means of
the notation of Theorem 11.5, α is clearly a pole of f∗ and therefore
is a pole of f . �

We must note Theorem 11.11:

Theorem 11.11. Let D be closed and bounded and let f ∈ H(D).
Then, f is uniformly continuous in D.

Proof. The claim is immediate when f is a polynomial. Suppose

now that f(x) = P (x)
Q(x) ∈ R(D). Since D is closed and bounded, there

exists m > 0 such that |Q(x)| ≥ m, ∀x ∈ D. Consequently, P (x)
Q(x) also

is uniformly continuous. Then, when f ∈ H(D), since f is a uniform
limit of rational functions, f is also uniformly continuous. �

Notation. We denote by Alg the family of sets E such that H(E)
is a K-subalgebra of KE .

Theorem 11.12. Let f ∈ H(D). There exists W ∈ Rb(D), whose
zeros lie in D\D and h ∈ H(D) such that f = h

W . Further, if D is

bounded or if D ∈ Alg, then there exists g ∈ H(D) such that f = g
Q

with Q the polynomial of poles of f in D\D.

Proof. We may summarize Theorem 11.5 in this way: f is of the
form ˜f(x) + ̂f(x) with ˜f ∈ R(K\(D\D)) and ̂f ∈ Hb(D). Indeed,

if D is bounded, we just take ̂f = f , and if D is not bounded, ̂f is
the one defined in Theorem 11.5. Thus, ˜f(x) can be written in the

form P (x)
Q(x) with Q(x) =

∏n
i=1(x−ai)qi i.e. the polynomial of the poles

of f in D\D, and P (x) ∈ K[x]. Let q =
∑n

i=1 qi. Theorem 11.12 is
obviously trivial if D has no hole, hence we may assume D to have

at least one hole T = d(a, r−). Let W (x) = Q(x)
(x−a)q . We know that

W ∈ Rb(D) hence W ̂f ∈ Hb(D). On the other hand, we see that
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W ˜f ∈ R(D), hence Wf ∈ H(D). We just put h =Wf and have the
factorization f = h

W .
If D is bounded, we see that both Q, h are bounded in D, hence

Q ̂f belongs to Hb(D) and then Qf belongs to H(D). In the same

way, if H(D) is supposed to be a ring, then Q ̂f belongs to H(D) and

then Qf = P +Q ̂f belongs to H(D). This ends the proof. �

Corollary 11.13. Let S(D) be the set of polynomials whose zeros
belong to D\D. If D ∈ Alg, then H(D) = S(D)−1H(D).

Theorem 11.14. Let D be closed. Let g ∈ H(D) and let P ∈ K[x]
be such that Pg belongs to H(D). For every Q ∈ K[x] such that
deg(Q) ≤ deg(P ), Qg also belongs to H(D).

Proof. Theorem 11.14 is clearly trivial when D belongs to Alg.
Now, suppose that D does not belong to Alg, hence D is unbounded.
If D has no hole, then D = K, hence by Corollary 11.8, H(D) is
equal to K[x]. Thus, we may assume that D admits at least one hole
and then, without loss of generality, we can assume that this hole is

d(0, r−). Let q = deg(P ). Let Pq = P and let Pq−1 =
P (x)−P (0)

x . Then,
Pq−1 is a polynomial of degree q− 1. We see that (P (x)−P (a))g(x)

belongs to H(D). But
∥

∥

∥

1
x

∥

∥

∥

D

is bounded and then by Theorem 11.4,

Pq−1(x)g(x) belongs to H(D). Hence, by induction, it is seen that
for each j = 1, . . . , q there exists a polynomial Pj of degree j such
that Pjg belongs to H(D) and this clearly completes the proof. �

Now, when D is not infraconnected, we have to note an easy result
on characteristic functions that shows how rich the algebra H(D) is.

Proposition 11.15. Let D have an empty annulus Λ. Let w1, w2 be
the functions defined on D by w1(x) = 1, w2(x) = 0 if x ∈ I(Λ) and
w1(x) = 0, w2(x) = 1 if x ∈ E(Λ). Then, w1 and w2 belong to H(D).

Proof. Let Λ = Γ(a, r1, r2), with a ∈ D. With no loss of gen-
erality, we may obviously assume a = 0. Let α ∈ Λ be such that
r1 < |α| < r2 and for each n ∈ N∗, let un = 1

1−
(

x
α

)n . Then,
∥

∥1− ( xα
)n − 1

∥

∥

I(Λ) ≤
(

r1
|α|
)n
, while

∣

∣1 − (

x
α

)n∣
∣ ≥ (

r2
|α|
)n

for every

x ∈ E(Λ), hence finally, ‖un − w1‖D
≤ max

((

r1
|α|
)n
,
( |α|
r2

)n)
. Thus,

we see that w1 = limn→∞ un ∈ H(D) and w2 = 1− w1 ∈ H(D). �



November 12, 2024 15:51 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch11 FA2 page 96

96 Value Distribution in Ultrametric Analysis and Application

Theorem 11.16. Let E have finitely many infraconnected compo-
nents E1, . . . , Eq. For each i = 1, . . . , q, the characteristic function
of Ei belongs to H(E).

Proof. Let A be one of the infraconnected components of E. By
Theorem 2.21, there exist empty annuli (Λj)0≤j≤n such that A is
either of the form

(α) IE(Λ0)
⋂

⎛

⎝

n
⋂

j=1

EE(Λj)
⎞

⎠ or of the form (β)
n
⋂

j=1

EE(Λj).

But by Proposition 11.15, the characteristic function uj of EE(Λj)
belongs to Hb(E) (1 ≤ j ≤ n) and so does the characteristic function
u0 of IE(Λ0). Since all the uj belong to Hb(E), we see that the
products u =

∏n
j=0 uj and w =

∏n
j=1 uj belong toH(E). Then, when

A is of the form (α) (respectively (β)), its characteristic function is
equal to u (respectively w) and therefore belongs to H(E). �
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Composition of Analytic Elements

Given A and B ⊂ K, f ∈ H(A) such that f(A) ⊂ B and g ∈ H(B),
a basic question is whether g ◦ f ∈ H(A). There is an immediate
application to the study of homomorphisms from an algebra H(D)
to another H(D′).

Lemma 12.1. Let A and B be subsets of K and let f ∈ H(A) be
such that f(A) ⊂ B. For every λ ∈ K\B, f − λ is invertible in
H(A). Moreover, if for every h ∈ R(B), h ◦ f belongs to H(A), then
for every g ∈ H(B), g ◦ f belongs to H(A) and for every λ ∈ B\B,
f − λ is invertible in H(A).

Proof. Let r = δ(λ,B). If λ /∈ B, we have r > 0 and then
|f(x)− λ| ≥ r whenever x ∈ A. Hence, by Lemma 11.3, f − λ is
invertible in H(A).

Now, we assume that for every h ∈ R(B), h ◦ f belongs to H(A).
Let g ∈ H(B), let ε be > 0, and let h ∈ R(B) satisfy ‖g − h‖B ≤ ε.
It is seen that ‖g ◦f −h◦f‖A ≤ ε. Since h◦f belongs to H(A), then
so does g ◦ f .

Finally, let λ ∈ B\B and let h(u) = 1
u−λ . Since h ◦ f belongs to

H(A), f − λ is invertible in H(A). �

Theorem 12.2. Let A, B be subsets of K and let f ∈ H(A) satisfy
f(A) ⊂ B:

(i) If f ∈ R(A), then g ◦ f ∈ H(A) whenever g ∈ H(B).
(ii) If A ∈ Alg, then g ◦ f ∈ H(A) for all g ∈ H(B) if and only if

f − λ is invertible in H(A) for all λ ∈ B\B.

97
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Proof. By Lemma 12.1, we just have to show that for every g ∈
R(B), g ◦ f belongs to H(A) in each one of these two hypotheses:

(H1) f ∈ R(A).
(H2) f − λ is invertible in H(A) for all λ ∈ B\B.

So, we take g(u) = P (u)
Q(u) ∈ R(B) and show that g ◦ f ∈ H(A) in each

hypothesis. Let λ1, . . . , λq be the poles of g in K\B.

(H1) For every j = 1, . . . , q, f − λj is invertible in R(A) because
f − λj has no zero in A. Hence, Q ◦ f is invertible in R(A) and
then g ◦ f belongs to R(A).

(H2) For each j = 1, . . . , q, either λj belongs to B\B or it belongs to
K\B. In both cases, by Lemma 12.1, each f − λj is invertible
in H(A). Since A belongs to Alg, Q ◦ f is clearly invertible in
H(A) and P ◦ f belongs to H(A). Hence, so does g ◦ f . �

Corollary 12.3. Let A ∈ Alg and let B be a closed subset of K. Let
f ∈ H(A) satisfy f(A) ⊂ B and let g ∈ H(B). Then, g ◦ f belongs
to H(A).

Example. Let r, s ∈ R∗
+, let f ∈ H(d(0, r)) be such that f(d(0, r)) ⊂

d(0, s), and let g ∈ H(d(0, s)). Then, g ◦ f belongs to H(d(0, r)).

Lemma 12.4. Let h ∈ R(D) and let D′ = h(D). Let f ∈ H(D′).
If f is invertible in H(D′), then f ◦ h is invertible in H(D). If h is
a Moebius function, f is invertible in H(D′) if and only if f ◦ h is
invertible in H(D).

Proof. First, we suppose f invertible in H(D′). Let g = 1
f . Then,

by Theorem 12.2, g ◦ h belongs to H(D) and is clearly equal to 1
f◦h .

Now, we assume that h is a Moebius function and we put � = h−1.
If f ◦ h is invertible in H(D), (f ◦ h) ◦ � is invertible in H(D′) and
this ends the proof of Lemma 12.4. �

We are now going to study the K-algebra homomorphisms from
H(D) into H(D′). First, we consider homomorphisms from R(D)
into R(D′).

Proposition 12.5. Let D, D′ be subsets of K and let γ ∈ R(D′)
satisfy γ(D′) ⊂ D. Let φγ be the mapping from R(D) into R(D′)
defined as φγ(f) = f ◦ γ (f ∈ R(D)). Then φγ is a homomorphism
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from R(D) into R(D′) and this homomorphism is injective if and
only if γ is not a constant. Every K-algebra homomorphism is of this
form and the mapping γ → φγ is a bijection from the set of γ ∈ R(D′)
such that γ(D′) ⊂ D onto the set of K-algebra homomorphisms from
R(D) into R(D′).

Proof. Let γ ∈ R(D′) satisfy γ(D′) ⊂ D. Then it is seen that φγ
takes values inR(D′), is aK-algebra homomorphism, and is obviously
injective if and only if γ is not a constant.

Conversely, let ψ be a K-algebra homomorphism from R(D) into
R(D′) and let γ = ψ(ID′) with ID′ the identical mapping in D′.
Then, we have ψ(P ) = P ◦ γ for every polynomial P . On the
other hand, if α /∈ D, then (x − α) is invertible in R(D) and
ψ
(

1
x−α

)

= (ψ(x− α))−1 = (γ − α)−1. Therefore, ψ(h) = h ◦ γ when-
ever h ∈ R(D). The mapping γ → φγ is obviously injective and hence
is a bijection. �

Proposition 12.6. Let D, D′ be sets in K and let γ ∈ H(D′) satisfy
γ(D′) ⊂ D and f ◦ γ ∈ H(D′) for all f ∈ H(D). Let φγ be the
mapping from H(D) into H(D′) defined as φγ(f) = f ◦ γ. Then φγ
is a linear mapping from H(D) into H(D′) continuous with respect
to the topology of uniform convergence on D for H(D) and on D′ for
H(D′). Moreover, given f, g ∈ H(D) such that fg ∈ H(D) we have
φγ(fg) = φγ(f)φγ(g). The restriction of φγ to Hb(D) is a Banach
K-algebra homomorphism from Hb(D) into Hb(D

′).
If γ is a bijection from D′ onto D and if γ−1 ∈ H(D), then

φγ is a K-vector space isomorphism from H(D) onto H(D′) bicon-
tinuous with respect to the topology of uniform convergence on D

for H(D) and on H(D′) for H(D′), satisfying
(

φγ
)−1

= φγ−1 and
the restriction of φγ to Hb(D) is a Banach K-algebra isomorphism
from Hb(D) onto Hb(D

′). Further, if γ(D′) = D, then the equality
‖φγ(f)‖D′ = ‖f‖D is true for every f ∈ H(D) and the restriction
of φγ to Hb(D) is an isometric Banach K-algebra isomorphism from
Hb(D) onto Hb(D

′).

Proof. It is easily seen that φγ is linear and satisfies φγ(fg) =
φγ(f)φγ(g) when fg ∈ H(D). Next, φγ is clearly continuous because
‖φγ(f)‖D′ = ‖f ◦ γ‖D = supx∈D′ |f(γ(x))| ≤ supu∈D |f(u)| = ‖f‖D .
In particular, we note that if γ(D′) = D, we have ‖φγ(f)‖D′ =
‖f ◦ γ‖

D
= supx∈D′ |f(γ(x))| = supu∈D |f(u)| = ‖f‖

D
.
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If f ∈ Hb(D), obviously, f ◦γ ∈ Hb(D
′). Now, let γ be a bijection

from D′ onto D such that γ−1 ∈ H(D). It is seen that (φγ−1) ◦ φγ =
IH(D) while φγ ◦ (φγ−1) = IH(D′), hence φγ is an isomorphism such

that φγ−1 = (φγ)
−1. �

We study the K-algebra homomorphisms from H(D) into H(D′).

Notation. Given subsets D and D′ of K, we denote by Ξ(D′,D) the
set of the γ ∈ H(D′) such that γ(D′) ⊂ D and such that for every
λ ∈ D\D, γ − λ is invertible in H(D′).

Given two K-algebras A and B, we denote by Hom(A,B) the set
of K-algebra homomorphisms from A into B.

Remark. In particular, Ξ(D′,D) contains the set of the h ∈ R(D′)
such that h(D′) ⊂ D.

Theorem 12.7. Let D,D′ ∈ Alg and let γ ∈ Ξ(D′,D). The map-
ping φγ defined in H(D) by φγ(f) = f ◦ γ has values in H(D′) and
is a K-algebra homomorphism from H(D) into H(D′). Conversely,
every K-algebra homomorphism from H(D) into H(D′) is continu-
ous and of this form. Further, the mapping γ → φγ from Ξ(D′,D)
onto Hom(H(D),H(D′)) is a bijection.

Let D′′ ∈ Alg and let τ ∈ Ξ(D′′,D′). Then, γ ◦ τ ∈ Ξ(D′′,D) and
φγ◦τ = φγ ◦ φτ .

Further, a homomorphism φγ from H(D) into H(D′) is an iso-
morphism if and only if γ is a bijection from D′ onto D such that
γ−1 ∈ H(D) and then, when it is satisfied, we have (φγ)

−1 = φγ−1 .

Proof. By Corollary 12.3, f ◦ γ belongs to H(D′) whenever f ∈
H(D), and then by Proposition 12.6, φγ is a K-algebra homo-
morphism from H(D) into H(D′). Let ψ ∈ Hom(H(D),H(D′))
and first let us show that ψ satisfies ‖ψ(f)‖

D′ ≤ ‖f‖
D

whenever
f ∈ H(D). Indeed, suppose that for some f ∈ H(D) we have
‖ψ(f)‖

D′ > ‖f‖
D′ . Let g = ψ(f). There exists α ∈ D′ such that

|g(α)| > ‖f‖
D′ . Let λ = g(α). The series f

λ

∑∞
n=0

(f
λ

)n
does converge

in H(D) to (λ − f)−1. Thus, λ − f is invertible in H(D) and then
λ−g = ψ(λ−f) is invertible in H(D′). But by hypothesis, α is a zero
for λ− g, hence λ− g is not invertible in H(D′) and this shows that
‖ψ(f)‖

D′ ≤ ‖f‖D . Now, let γ = ψ(ID) ∈ H(D′) and let us show that
γ ∈ Ξ(D′,D). Let α ∈ K\D. Since ψ ∈ Hom(H(D),H(D′)), ψ must
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satisfy ψ
(

1
x−α

)

= 1
ψ(x)−α = 1

γ−α , hence γ − α has to be invertible in

H(D′) for every α ∈ K\D. But this just means that γ ∈ Ξ(D′,D).
In the same way, we see that for every h ∈ R(D), we have ψ(h) =

h(ψ(x)) = h ◦ γ. Finally, since ψ is continuous, the equality ψ(f) =
f ◦γ holds in all H(D). Obviously, given γ, τ ∈ Ξ(D′,D), if φγ = φτ ,
then φγ(ID) = φτ (ID), hence γ = τ . The mapping γ → φγ is then a
bijection from Ξ(D′,D) onto Hom(H(D),H(D′)).

Now, let D′′ ∈ Alg and τ ∈ Ξ(D′′,D′). It is seen that γ ◦ τ ∈
Ξ(D′′,D) and φγ◦τ (ID) = γ ◦τ = φτ (γ) = φτ (φγ(ID)) = φτ ◦φγ(ID),
hence φγ◦τ = φτ ◦ φγ .

By Proposition 12.6, if γ is a bijection from D′ onto D and such
that γ−1 ∈ H(D), then φγ is an isomorphism of K-vector space, hence
it is an isomorphism of K-algebra, and then, by Proposition 12.6,

we have
(

φγ
)−1

= φγ−1 . Conversely, if φγ is an isomorphism, then
(

φγ
)−1

is in the form φτ , with τ ∈ Ξ(D,D′) and φτ ◦ φγ(ID) =
γ ◦ τ(ID) = ID and φγ ◦ φτ (ID′) = τ ◦ γ(ID′) = ID′ . Hence, γ is a
bijection from D′ onto D such that γ−1 = τ ∈ H(D). That finishes
showing Theorem 12.7. �
Definition. Let A, B be subsets of K. If there exists a bijection
f ∈ H(A) from A onto B such that f−1 belongs to H(B), then f is
named a bianalytic element from A onto B.

Propositions 12.8 and 12.9 are often useful to transform
unbounded domains into bounded domains.

Proposition 12.8. Let D ∈ Alg and let h ∈ R(D) be a Moebius
function. Let D′ = h(D). Then, D′ belongs to Alg and H(D′) is
isomorphic to H(D) with respect to the mapping ψ defined in H(D′)
as ψ(f) = f ◦ h.
Proof. By Theorem 12.2, for every f ∈ H(D′), f ◦ h belongs to
H(D), and by Proposition 12.6, this mapping is a K-vector space iso-
morphism which satisfies ψ(fg) = ψ(f)ψ(g) whenever f, g ∈ H(D′).
Hence, the space H(D′) = ψ−1(H(D)) is a K-algebra isomorphic
to H(D). In particular, D′ belongs to Alg and ψ is a K-algebra
isomorphism. �

Proposition 12.9. Let D be a set with a hole T = d(a, r−), let
γ(x) = 1

x−a , and let D′ = γ(D). Then, D′ ∈ Alg and H(D′) is
isomorphic to Hb(D).
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Proof. Without loss of generality, we may clearly assume D to be
closed because by Corollary 11.7, Hb(D) is equal to Hb(D). For every
f ∈ H(D), let ψ(f) = f ◦γ ∈ H(D′). Then, ψ(Hb(D)) is a K-algebra
included in H(D′). If D is bounded, D′ is bounded and closed like D,
hence by Proposition 12.8, ψ is an isomorphism from H(D) onto
H(D′). Now, we suppose D unbounded. Then, D′ is bounded and
ψ(Hb(D)) is obviously included in Hb(D

′) which, by Corollary 11.7,
is just equal to H(D′). On the other hand, γ clearly maps Rb(D)
onto R(D′), hence ψ(Hb(D)) = H(D′). �

Theorem 12.10. Let T = d(a, r−) be a hole of D and let γ(x) =
1

x−a . Let D
′ = γ(D). The mapping ψ from Hb(D

′) into Hb(D) defined
as ψ(f) = f ◦ γ is a K-algebra isomorphism.

Proof. D′ is bounded, hence by Corollary 11.7, Hb(D
′) is equal

to the Banach K-algebra H(D′). Now, by Theorem 12.2, we see
that γ ∈ Ξ(D,D′) and γ−1 ∈ Ξ(D′,D). Hence, ψ is clearly a
K-Banach space isomorphism fromHb(D

′) ontoHb(D). Now, ψ satis-
fies ψ(fg) = ψ(f) ψ(g) whenever f, g ∈ H(D) such that fg ∈ H(D′).
But bothHb(D), Hb(D

′) are Banach K-algebras, hence ψ is a Banach
K-algebra isomorphism. �

Theorem 12.11. Let a be a point in D which is not isolated. Let
γ(x) = 1

x−a and let D′ = γ(D\{a}). Then given f ∈ H(D′), f ◦ γ
belongs to H(D) if and only if f(x) has a limit when |x| tends to +∞.

Proof. If f ◦ γ belongs to H(D), then we just have

lim
|x|→+∞

f(x) = lim
x→a

f ◦ γ(x) = f ◦ γ(a).

Conversely, if f has a limit l when |x| tends to +∞, then f ◦ γ is
bounded in certain disks d(a, r)\{a}. Therefore, by Corollary 11.6,
f ◦ γ belongs to H(D). �

Corollary 12.12. Let D ∈ Alg, and let a be a point in D which
is not isolated such that (D\{a}) belongs to Alg. Let γ(x) = 1

x−a
and let D′ = γ(D\{a}). Then, H(D) is isomorphic to the subalgebra
of H(D′) which consists of f such that |f(x)| is bounded when |x|
approaches +∞.
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Chapter 13

Multiplicative Spectrum of H(D)

In Chapter 10, we studied and characterized the multiplicative semi-
norms on a K-algebra R(D) of rational functions. We apply these
properties to the completion H(D) of R(D) by considering multi-
plicative semi-norms that are continuous with respect to the topology
of H(D). On H(D) as on R(D), the role of circular filters is obvi-
ously crucial: each continuous multiplicative semi-norm of H(D) is
defined by a circular filter secant with D exactly as it was explained
for rational functions. However, circular filters that are not secant
with D play no role with regards to H(D).

Notation. Throughout this chapter, D is an infraconnected subset
of K. We denote by Mult(H(D),UD) the set of continuous mul-
tiplicative semi-norms ψ of the K-vector space H(D) that satisfy
ψ(fg) = ψ(f)ψ(g) whenever f, g ∈ H(D) such that fg ∈ H(D).

Remark. This notation does not require H(D) to be a K-algebra,
though it coincides with the notation already introduced for any
topological algebra when H(D) is a normed K-algebra. Multiplica-
tive semi-norms appeared to be the main tool for studying analytic
elements [36], [44], [61]. They also are at the basis of Berkovich
theory [9].

Theorem 13.1 ((G. Garandel) [61]). For every F ∈ Φ(D), the
multiplicative semi-norm ϕF defined on R(D) extends by continuity
to H(D) to a continuous semi-norm of K-vector space DϕF of H(D)
that satisfies

D
ϕF (f.g) =

D
ϕF (f) D

ϕF (g) whenever f, g ∈ H(D)

103
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such that fg ∈ H(D). Moreover, the mapping: F → DϕF , from
Φ(D) into Mult(H(D),UD), is a bijection.

Proof. We may obviously extend ϕF by continuity to
D
ϕF satis-

fying
D
ϕF (fg) =

D
ϕF (f) D

ϕF (g) whenever f, g ∈ H(D) such that
fg ∈ H(D). We now check that the mapping F →

D
ϕF from Φ(D)

into Mult(H(D),UD) is a bijection. It is obviously injective because
if DϕF1

= DϕF2
, then ϕF1

= ϕF2
, hence by Corollary 10.10, F1 = F2.

Now, let ψ ∈ Mult(H(D),UD). The restriction of ψ to R(D) is an
element ψ0 of Mult(R(D),UD), hence by Corollary 10.10, ψ0 is of the
form ϕF and then, by continuity, we have ψ =

D
ϕF . �

From Theorem 10.4, the following theorem is immediate concern-
ing a space H(D).

Corollary 13.2. Let F be a large circular filter on K of diameter
s > 0. The following three assertions are equivalent:

(i) ϕF (h) ≤ ‖h‖D whenever h ∈ H(D).
(ii) ϕF is a continuous ultrametric multiplicative norm on H(D)

with respect to the topology of uniform convergence.
(iii) F is secant with D.

By Corollary 10.10, we have Corollary 13.3:

Corollary 13.3. Let D be a closed bounded subset of K. Then,
Mult(H(D), ‖ . ‖D) is compact with respect to the topology of point-
wise convergence.

Remark. If F is a large circular filter, we know that ϕF is a norm
on R(D). But we don’t know whether

D
ϕF is a norm on H(D). This

not trivial question is linked to the problem of T -filters which is a so
big question that it would require another book [38], [44], [53].

Definition and notation. For convenience, for every a ∈ D, we put
ϕa(f) = |f(a)| whenever f ∈ H(D) and so we define the semi-norms
ϕa ∈ Mult(H(D),UD).

An element ψ ∈ Mult(H(D),UD) is said to be punctual if it is of
the form ϕa with a ∈ D, i.e. if its circular filter is punctual.

Let F be a monotonous filter on D. By Proposition 3.14, there
exists a unique circular filter G on D less thin than F . Then, we put

D
ϕF (f) = D

ϕG (f) for all f ∈ H(D).
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For simplicity, when G has center 0 and diameter r, we set |f |(r) =
DϕG (f). So, when f belongs to R(D), this is the definition already
given in Chapter 4.

Now, let D be infraconnected. Let a ∈ ˜D and let r satisfy
δ(a,D) ≤ r ≤ diam(D). The circular filter F of center a and diam-
eter r is then secant with D. We put

D
ϕa,r =

D
ϕF . Let A be a

bounded subset of ˜D and let ˜A = d(a, r). If δ(a,D) ≤ r ≤ diam(D),
we put DϕA = Dϕa,r. In particular, this notation applies to holes of
an infraconnected set D.

Let F be a circular filter or a monotonous filter on D. We denote
by J (F) the set of the f ∈ H(D) such that limF f(x) = 0. Hence,
J (F) is equal to Ker(

D
ϕF ), and therefore, if D ∈ Alg, Ker(

D
ϕF ) is

a closed prime ideal of H(D).
If F is a monotonous filter on D, we denote by J0(F) the set of

the f ∈ H(D) such that f(x) = 0 whenever x ∈ B(F).
Finally, given a ∈ D, we denote by J (a) the set of the f ∈ H(D)

such that f(a) = 0. Then, if D ∈ Alg, J0(F) and J (a) are closed
prime ideals of H(D).

Among many ultrametric properties, we note the following.

Lemma 13.4. Let F be a circular filter or a monotonous filter on
D and let f ∈ H(D). There exists A ∈ F such that |f(x)| is bounded
in A. Moreover, for every sequence (an)n∈N thinner than F , we have
limn∈N ϕan = ϕF . Given a, b ∈ D and r ∈ ]0,diam(D)[ such that
|a− b| ≤ r, we have

D
ϕa,r = D

ϕb,r.

Proof. Indeed, there does exist A ∈ F such that |f(x)| ≤
D
ϕF (f) + 1 for all x ∈ A. The last statements come from proper-

ties seen on R(D). �

Lemma 13.5. Let f ∈ H(D) be invertible in H(D). Then for every
ψ ∈ Mult(H(D),UD), we have ψ(f) �= 0.

Proof. Indeed, we have ψ(f)ψ( 1f ) = 1. �

Lemma 13.6. Let
D
ϕF ∈ Mult(H(D),UD), let f ∈ H(D), and let

g ∈ H(D) be such that ‖f−g‖
D
<

D
ϕF (f). Then, D

ϕF (f) = D
ϕF (g).

Proof. Indeed, we know that DϕF (f − g) ≤ ‖f − g‖D , hence

D
ϕF (f − g) <

D
ϕF (f), and therefore,

D
ϕF (g) = D

ϕF (f). �



November 5, 2024 15:40 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch13 FA1 page 106

106 Value Distribution in Ultrametric Analysis and Application

Lemma 13.7. Let D be unbounded and let f ∈ Hb(D). Then, |f(x)|
has a limit DϕD(f) when |x| tends to +∞, while x lies in D and DϕD

belongs to Mult(Hb(D), ‖ . ‖D).
Proof. By Corollary 11.7, f(x) admits a limit λ when |x| tends
to +∞ (x ∈ D). Hence, lim|x|→+∞, x∈D |f(x)| = |λ|. Thus, the
mapping ϕ∞, defined as ϕ∞(f) = lim|x|→+∞ |f(x)|, belongs to
Mult(Rb(D), ‖ . ‖D) and obviously has continuation by continuity
to an element

D
ϕ

D
∈ Mult(Hb(D), ‖ . ‖D) which satisfies

D
ϕ

D
(f) =

lim|x|→+∞, x∈D |f(x)|. �

Notation. When there is no risk of confusion about the set D,
we just write ϕF (respectively ϕa,r, respectively ϕD, and respec-
tively ϕA), instead of

D
ϕF (respectively

D
ϕa,r, respectively D

ϕ
D
, and

respectively
D
ϕ

A
). Next, when D is unbounded,

D
ϕ

D
is also denoted

by
D
ϕ∞ .

Theorem 13.8. Let ψ ∈ Mult(Hb(D), ‖ . ‖D)\Mult(H(D),UD). If
D is bounded, ψ is of the form ϕa with a ∈ D\D. If D is not bounded,
ψ is either of the form ϕa, with a ∈ D\D or of the form

D
ϕ∞ .

Proof. First, we suppose D bounded. By Corollary 11.7, we have
Hb(D) = H(D). Hence, ψ is equal to some

D
ϕF , with F a circular

filter on D. If F is large, it is a large circular filter secant with D
and then ψ belongs to Mult(H(D),UD). If F is not large, it is the
filter of neighborhoods of a point a ∈ D . But if a ∈ D, obviously ϕa
belongs to Mult(H(D),UD). Hence, a ∈ D\D.

Now, we suppose D unbounded. If D has no hole, we just
have Hb(D) = Rb(D) = K, hence Mult(Hb(D), ‖ . ‖D) =
Mult(H(D),UD). Thus, we may assume D to have a hole T =
d(a, r−). Without loss of generality, we may assume a = 0. Let
γ(x) = 1

x and let D′ = γ(D). Then, D′ is bounded and, by Proposi-
tion 12.9, we know that the algebra Hb(D) is isomorphic to H(D′).
By Proposition 12.8, the mapping f → f ◦ γ defines a K-vector
space isomorphism from H(D) onto H(D′) and a K-algebra isomor-
phism from Hb(D) onto Hb(D

′) = H(D′). Hence, we may define
ψ′ ∈ Mult(H(D′)) by ψ′(f ◦ γ) = ψ(f) whenever f ∈ Hb(D). If ψ′
belonged to Mult(H(D′),UD′), then we would have ψ(f) = ψ′(f ◦ γ)
whenever f ∈ H(D), and therefore, ψ ∈ Mult(H(D),UD). Hence,
ψ′ does not belong to Mult(H(D′),UD′) and then ψ′ is of the form
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ϕb with b ∈ D′\D. If b �= 0, then ψ = ϕ 1
b
. If b = 0, then ψ =

D
ϕ

D

and this ends the proof. �

Theorem 13.9. Let (αn)n∈N be a bounded sequence in D such that
no subsequence converges to any point of D\D. There exists a sub-
sequence (αns)s∈N such that the sequence (ϕαns

)s∈N converges in
Mult(H(D),UD).
Proof. By Theorem 3.1, we may extract either a convergent sub-
sequence, or a monotonous distances subsequence, or an equal dis-
tances subsequence from the sequence (αn)n∈N. Let (αns)s∈N be such
a subsequence. If this subsequence converges to a point α ∈ K, then
by hypothesis, α lies in D, hence lims→+∞ ϕαns

= ϕα. If this subse-
quence is a monotonous distances subsequence, or an equal distances
subsequence, then by Proposition 3.18, on D there exists a large
circular filter F less thin than the sequence (αns) and then we see
that for every f ∈ H(D) we have lims→+∞ |f(αns)| = D

ϕF (f), hence
lims→+∞ ϕαns

(f) = ϕF (f). Thus, in every case, we have proven that
the subsequence ϕαns

converges in Mult(H(D),UD). �
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Chapter 14

Power and Laurent Series

A power series on a p-adic field admits a disk of convergence whose
radius is defined in the same way as on C. The difference in behavior
between power series in C and in a field such as K concerns what
happens when |x| is equal to the radius of convergence. We show
that the norm of uniform convergence in a disk d(a, s) ⊂ d(0, R−) is
multiplicative and satisfies ‖∑+∞

n=0 anx
n‖d(0,s) = supn∈N |an|sn. As a

consequence, the product of two power series converging in d(0, R−)
is bounded if and only if both are bounded. We show that the algebra
of power series with a radius of convergence equal to R is equal
to the intersection of algebras of analytic elements H(d(0, s)) when
s < R. We show that all analytic elements in d(0, R−) are power
series converging in d(0, R−). The converse is false. However, we see
that the analytic elements in d(0, R) are exactly the power series
converging in this disk.

Definitions. Let f(x) =
∑∞

n=0 anx
n be a power series with coeffi-

cients in K.
As usual, when lim supn→∞ n

√|an| �= 0, we call radius of con-
vergence of f the number r = 1

limsupn→∞ n
√

|an|
(with r = 0 when

lim supn→∞ n
√|an| = +∞).

When lim supn→∞ n
√|an| = 0, we define the radius of convergence

of f as +∞.

Example. Let f(x) =
∑∞

n=1 nx
n. The radius of convergence of this

series is 1. This function obviously defines the rational function x
(1−x)2

in d(1, 1−).

109
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Remark. If a sequence of positive numbers (un)n∈N is such that
the sequence

(un+1

un

)

n∈N converges to a limit l ≥ 0, then so does the

sequence ( n
√
un)n∈N. On the field K, as in Archimedean analysis, it

is a way to compute easily many radii of convergence.

Lemma 14.1 is immediate.

Lemma 14.1. Let f =
∑∞

n=0 anx
n be a power series with coefficients

in K. The series converges if and only if limn→∞ |anxn| = 0. Let r
be its radius of convergence. If |x| < r, then the series converges. If
|x| > r, then the series diverges.

Definition and notation. Power series whose radius of convergence
is ∞ are called entire functions on K and the set of entire functions
is denoted by A(K).

For every a ∈ K, r ∈ R∗
+, similarly we denote by A(d(a, r−)) the

set of power series in x−a whose radius of convergence is superior or
equal to r and by Ab(d(a, r

−)) the set of functions f ∈ A(d(a, r−))
that are bounded in d(a, r−). The set A(d(a, r−))\Ab(d(a, r

−)) is
denoted by Au(d(a, r

−)).
Similarly, we denote by A(K\d(a, r)) the set of Laurent series

converging whenever |x−a| > r, by Ab(K\d(a, r)) the set of bounded
Laurent series converging whenever |x−a| > r, and by Au(K\d(a, r))
the set of unbounded Laurent series converging whenever |x−a| > r.

Finally, given r′, r′′ such that 0 < r′ < r′′, we denote by
A(Γ(a, r′, r′′)) the set of Laurent series converging whenever r′ <
|x − a| < r′′. And we denote by Ab(Γ(a, r

′, r′′)) the set of functions
f ∈ A(Γ(a, r′, r′′)) that are bounded in Γ(a, r′, r′′).

From Lemma 14.1, we can derive Corollary 14.2:

Corollary 14.2. Let
∑+∞

−∞ anx
n be a Laurent series with coeffi-

cients in K, let r′′ = 1

limsupn→∞ n
√

|an|
with r′′ = 0 whenever

lim supn→∞ n
√|an| = +∞, and let r′ = 1

lim supn→−∞
−n
√

|an|
with

r′ = 0 whenever lim supn→−∞ −n
√|an| = +∞. If r′ < |x| < r′′,

the series converges. If |x| > r′′ or if |x| < r′, the series diverges.

Corollary 14.3. Let r′, r′′ ∈ R+ satisfy 0 < r′ < r′′. Then,
A(Γ(0, r′, r′′)) is the set of Laurent series

∑+∞
−∞ anx

n such that

r′ ≤ 1

lim supn→−∞ n
√

|an|
≤ r′′.
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Corollary 14.4. Let r′, r′′ ∈ R+ be such that r′ < r′′ and let f(x) =
∑+∞

−∞ anx
n ∈ A(Γ(a, r′, r′′)). For each r ∈]r′, r′′[, one has

lim
n→+∞ |an|rn = lim

n→−∞ |an|rn = 0.

Lemma 14.5 is useful in certain further problems:

Lemma 14.5. Let q ∈ N∗ and let IL be a complete algebraically closed
extension of K. Let f ∈ A(d(a,R−)) and suppose that there exists a
power series g with coefficients in IL, with radius of convergence ≥ R
such that (g(x))q = f(x), ∀x ∈ d(a,R−). Then g has all coefficients
in K and belongs to A(d(a,R−)).

Proof. Without loss of generality, we can obviously suppose a = 0.
Let f(x) =

∑+∞
n=0 bnx

n (with bn ∈ K) and let g(x) =
∑+∞

n=0 anx
n.

Then, (a0)
q = b0, hence a0 ∈ K because K is algebraically closed.

Now, suppose we have proven that an ∈ K, ∀n ≤ t − 1. We can
see that bt is of the form at(a0)

q−t + h, where h is a polynomial in
a0, a1, . . . , at−1. Therefore, at also belongs to K. Consequently, g has
all coefficients in K, which ends the proof. �

Notation. Let r ∈ R∗
+ and let

∑+∞
−∞ anx

n ∈ H(C(0, r)). By
hypothesis, we have limn→+∞ |an|rn = limn→−∞ |an|rn = 0. Gen-
eralizing the notation already introduced for rational functions, we
denote by ν+(f, log r) the highest of the integers m ∈ Z such
that |am|rm = supn∈Z |an|rn and by ν−(f, log r) the lowest of the
integers m ∈ Z such that |am|rm = supn∈Z |an|rn. Next, when
ν+(f, log r) = ν−(f, log r), we just set ν(f, log r).

Recall that we have, given a circular filter F of center 0 and
diameter r, for every element of H(d(0, r)) and particularly for every
analytic function f ∈ A(K), put |f |(r) = limF |f(x)|.
Theorem 14.6. Let r ∈ R∗

+, let F be the circular filter of center 0
and diameter r on K, and let E = d(0, r). Then, H(E) is the set of
power series f(x) =

∑∞
n=0 anx

n such that limn→∞ |an|rn = 0 and we
have ‖f‖

E
= |f |(r) = maxn∈N |an|rn =

E
ϕF (f) = ‖f‖C(0,r).

For every α ∈ E, H(E) is also equal to the set of series f(x) =
∑∞

n=0 bn(x− α)n such that limn→∞ |bn|rn = 0.
Let B = K\d(0, r−). Then, H(B) is the set of Laurent series

f(x) =
∑∞

n=0
an
xn such that limn→∞ |an|r−n = 0 and we have ‖f‖B =

maxn∈N |an|r−n = BϕF (f) = ‖f‖C(0,r).
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For every α ∈ d(0, r−), H(B) is also equal to the set of series
f(x) =

∑∞
n=0

bn
(x−α)n such that limn→∞ |bn|r−n = 0.

Let r′ ≥ r and let D = Δ(0, r, r′)). Then H(D)
is the set of Laurent series f(x) =

∑∞
−∞ anx

n such that
limn→−∞ |an|rn = 0 and limn→+∞ |an|(r′)n = 0 and we have
‖f‖D = max(maxn<0 |an|rn,maxn≥0 |an|(r′)n). Moreover, for every
α ∈ d(0, r−), H(D) is also equal to the set of power series
f(x) =

∑∞
−∞ bn(x− α)n such that limn→−∞ |bn|rn = 0 and

limn→+∞ |bn|(r′)n = 0.

Proof. Let S(r) be the set of power series f(x) =
∑∞

n=0 anx
n such

that limn→∞ |an|rn = 0. Such a power series obviously is a uniform
limit of polynomials because |f(x) −∑n=0q anx

n| ≤ supn≥q |an|rn
and hence it belongs to H(E). Moreover, E is closed and bounded,
hence by Theorem 11.2, H(E) is a K-Banach algebra with respect
to the norm of uniform convergence on E. By Lemma 4.7, on K[x]
the norm ‖ . ‖E is ϕF , and by Theorem 13.1, that equality has
continuation to H(E).

Now, for a polynomial P (x) =
∑q

n=0 anx
n, by Lemma 4.7, we have

‖P‖E = sup0≤n≤q |an|rn, hence this equality also has continuation
to f . Consequently, ‖f‖E = limF |f(x)| = ϕF (f). Particularly, S(r)
is a subset of H(E).

In order to show that S(r) = H(E), we first show that S(r) is
closed in H(E). Since F is secant with C(0, r), we have ‖f‖

C(0,r)
=

E
ϕF (f). But we know that ϕF (Pn) ≤ max0≤i≤n |ai|ri. Since ϕF

extends continuously to
E
ϕF ∈ Mult(H(E), ‖ . ‖

E
), for n big enough,

we have
E
ϕF (f) =E

ϕF (Pn) = |aj|rj with j < n and |an|rm < |aj |rj
whenever m < j, hence finally

E
ϕF (f) = |aj |rj = maxn∈N |an|rn.

Consequently, we have ‖f‖
C(0,r)

= ‖f‖E ≤ |aj|rj = max0≤n |an|rn,
and therefore, ‖f‖

C(0,r)
= ‖f‖E = max0≤n |an|rn. This finishes show-

ing that S(r) is a closed subset of H(E).
Now, we show that R(E) is included in S(r). For this, we just

have to show that, given any β ∈ K\E, ( 1
x−β

)q
=
(− 1

β

∑∞
n=0

(

x
β

)n)q

belongs to F . When developing
(∑∞

n=0

(

x
β

)n)q
, we see that for every

fixed q ∈ N, the coefficient Aq of x
q is a sum of terms of the form s

βq ,

with s ∈ N, hence finally, |Aq| ≤ 1
|β|q , and therefore, |Aq|rq ≤

(

r
|β|
)q
.

Since |β| > r, this shows that
(

1
x−β

)q ∈ S(r). So, we have proven
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the inclusion R(E) ⊂ S(r) ⊂ H(E). Since S(r) is closed, we have
S(r) = H(E).

Now, let α ∈ E. Since d(α, r) = d(0, r), after the change of vari-
able x = α + u, the same reasoning shows that a series f(x) =
∑∞

n=0 an x
n ∈ H(E) is also of the form

∑∞
n=0 bn(α)(x − α)n with

limn→∞ |bn(α)|rn = 0. Conversely, H(E) is clearly equal to the set
of series

∑∞
n=0 bn(x + α)n such that limn→∞ |bn|rn = 0 because any

series g of the form
∑∞

n=0 bn un, with limn→∞ |bn|rn = 0, can be
written as

∑∞
n=0 an(u+ α)n.

The statements about H(B) are an obvious consequence of those
about H(E) after the change of variable y = 1

x and more generally,

y = 1
x−α . So, are the statements about H(D). �

We can easily check the following corollaries:

Corollary 14.7. Let f ∈ A(K). The following three statements are
equivalent:

(i) limr→+∞
|f |(r)
rq = +∞, ∀q ∈ N.

(ii) There exists no q ∈ N such that limr→+∞
|f |(r)
rq = 0.

(iii) f is not a polynomial.

Corollary 14.8. Let f, g ∈ AK). Then f.g is a polynomial if and
only if both f, g are polynomials.

Corollary 14.9. Let r ∈ R∗
+ and let D = d(0, r). Then, H(D) is the

set of power series f(x) =
∑∞

n=0 anx
n such that lim|n|∞→∞ |an|rn=0

and we have

‖f‖
D
= max

n∈N
|an|rn =

D
ϕF (f).

Moreover, the norms ‖ . ‖C(0,r), | . |(r) and ‖ . ‖d(0,r) are equal and
are multiplicative.

Corollary 14.10. Let r ∈ R∗
+ and let D = d(0, r) (respectively D =

d(0, r−)). Then the norm ‖ . ‖D on H(D) is multiplicative.

Corollary 14.11. Let α ∈ D and r ∈ R∗
+ be such that d(α, r) ⊂ D.

Let f ∈ H(D). In d(α, r), f(x) is equal to a power series of the
form

∑∞
n=0 an(x−α)n such that limn→∞ |an|rn = 0. If f(α) = 0 and

if f(x) is not identically zero in d(α, r), then there exists a unique
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integer q ∈ N∗ such that an = 0 for every n < q and aq �= 0 and α is
an isolated zero of f in d(α, r).

Proposition 14.12. Let r ∈ R∗
+ and let f(x) =

∑∞
n=0 anx

n. The
following statements are equivalent:

(a) f ∈ A(d(0, r−)).
(b) f ∈ ⋂s<rH(d(0, s)).
(c) The series f is convergent in all of d(0, r−).

Proof. (b) and (c) are clearly equivalent to the condition
limn→∞ |an|sn = 0 whenever s < r and, in the same way as in
archimedean analysis, it is shortly checked that this is also equiva-
lent to lim supn→∞ n

√|an| ≤ 1
r . �

Remark. If f is convergent for some α ∈ C(0, r), then
limn→∞ |an|rn = 0, hence f belongs to H(d(0, r)).

Corollary 14.13. Let r ∈ R∗
+ and let f(x) =

∑0
−∞ anx

n. The
following statements are equivalent:

(a) f ∈ A(K\d(0, r)).
(b) f ∈ ⋂s>rHb(K\d(0, s)).
(c) The series f is convergent in all of K\d(0, r).
Corollary 14.14. Let r1, r2 ∈ R∗

+ with r1 < r2 and let f(x) =
∑+∞

−∞ anx
n. The following statements are equivalent:

(a) f ∈ A(Γ(0, r1, r2)).
(b) f ∈ ⋂r1<s1<s2<r2

H(Δ(0, s1, s2)).
(c) The series f is convergent in all of Γ(0, r1, r2).

Corollary 14.15. Let f ∈ A(d(0, r−)) be not identically zero.
For every α ∈ d(0, r−), f(x) is equal to a power series
∑∞

n=0 bn(α)(x−α)n. If f is not identically zero and if α is a zero
of f in d(0, r−), α is an isolated zero and f factorizes in A(d(0, r−))
in the form (x− α)qg(x), with g ∈ A(d(0, r−)), q ∈ N∗ g(α) �= 0.

Definition. Let f ∈ H(D) and let α ∈
◦
D, let r > 0 be such

that d(α, r) ⊂ D and suppose f(x) =
∑∞

n=q bn(x − α)n whenever

x ∈ d(α, r), with bq(α) �= 0 and q > 0. Then, α is called a zero of
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multiplicity order q, or more simply, a zero of order q. In the same
way, q is named the multiplicity order of α.

Remark. In particular, these definitions apply to functions f ∈
A(d(a, r−)), at any point α ∈ d(a, r−).

Corollary 14.16. Let a ∈ K, R ∈ R∗
+ and let f ∈ A(d(a,R−))

(respectively f ∈ A(K)). Let a1, . . . , aq be zeros of f of respective
order sj and let P (x) =

∏q
j=1(x − aj)sj . Then, f factorizes in the

form P (x)u(x) with u ∈ A(d(a,R−)) (respectively u ∈ A(K).

Corollary 14.17. Let a ∈ K, R, R′ ∈ R∗
+ with R < R′ and let Λ =

d(a,R−) (respectively Λ = K\d(a,R), respectively Λ = Γ(a,R,R′)))
and let C(b, r) be a circle included in Λ. Then, Λϕb,r applies to A(Λ).

Corollary 14.18. Let f(x) =
∑∞

n=0 anx
n ∈ A(K). If f is not a con-

stant, then limr→+∞ |f |(r) = +∞.

Notation. Let R ∈ R∗
+ and let f ∈ A(d(a,R−)). Given r ∈]0, R[, by

Proposition 14.12, f belongs to H(d(a, r)), hence for every circular
filter F secant with d(a, r), ϕF (f) is defined. Particularly, if a = 0,
|f |(r) is defined.
Theorem 14.19. Let R ∈ R∗

+ and let f ∈ A(d(a,R−)). Then, f is
invertible in A(d(a,R−)) if and only if f has no zero in d(a,R−).

Proof. Suppose that f has no zero in d(a,R−). For each r ∈]0, R[,
f belongs to H(d(a, r)), and hence by Lemma 11.3, it is invertible
in H(d(a, r)). Consequently, the function defined in d(a, r) as g(x) =
1

f(x) belongs to H(d(a, r)). This is true for all r ∈]0, R[ and shows

that f−1 belongs to A(d(a,R−)). The converse is obvious. �

Theorem 14.20. Let R ∈ R∗
+. The K-subalgebra Ab(d(0, R

−))
of A(d(0, R−)) is a Banach K-algebra with respect to the norm
‖ . ‖d(0,R−). Further, this norm is multiplicative and satisfies
‖f‖d(0,R−) = limr→R |f |(r) = supn∈N |an|Rn.

Let f(x) =
∑∞

n=0 anx
n ∈ A(d(0, R−)). Then, f is bounded in

d(0, R−) if and only if so is the sequence (|an|Rn)n∈N. Moreover, if
f is bounded, then ‖f‖d(0,R−) = supn∈N |an|Rn.
Proof. Let f(x) =

∑∞
n=0 anx

n ∈ Ab(d(0, R
−)). By Theorem 14.6,

we have ‖f‖d(0,R−) = supn∈N |an|Rn. The norm ‖ . ‖d(0,R−) is a norm
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of K-algebra, hence ‖f g‖d(0,R−) ≤ ‖f‖d(0,R−) ‖g‖d(0,R−). On the
other hand, by Theorem 14.6, the norm ‖ . ‖d(0,s) is multiplicative
on H(d(0, s)) for every s < R, hence ‖fg‖d(0,R−) ≥ ‖fg‖d(0,s) =
‖f‖d(0,s) ‖g‖d(0,s) whenever s < R, and therefore, ‖ . ‖d(0,R−) is mul-

tiplicative on Ab(d(0, R
−)). Now, let (fm)m∈N be a Cauchy sequence

in Ab(d(0, R
−)). We put fm(x) =

∑∞
n=0 an,mx

n. By hypothesis, for
every ε > 0, we have an integer N(ε) such that |an,m − an,q|Rn ≤ ε
for every n ∈ N, whenever m, q ≥ N(ε). Thus, it is easily seen that
each sequence (an,m)m∈N converges in K to a limit an that satis-
fies |an − an,m|Rn ≤ ε whenever m ≥ N(ε) and then the series
f(x) =

∑∞
n=0 anx

n satisfies ‖f−fm‖d(0,R−) ≤ ε. Obviously, f belongs
to H(d(0, s)) for all s < R and then the sequence (fm) is proven to
converge in Ab(d(0, R

−)).
For every s ∈]0, R[, we have

|f |(s) = ‖f‖d(0,s) = sup
n∈N

|an|sn ≤ sup
n∈N

|an|Rn = ‖f‖d(0,R−),

and hence we can check that the real increasing bounded function h
defined in ]0, R[ as h(s) = supn∈N |an|sn is obviously continuous at R.
Consequently, ‖f‖d(0,R−) = limr→R |f |(r) = supn |an|Rn. Therefore,
obviously, f is bounded in d(0, R−) if and only if so is the sequence
(|an|Rn)n∈N. �

Corollary 14.21. Let R ∈ R∗
+ and let f, g ∈ A(d(a,R−)). Then

fg belongs to Ab(d(a,R
−)) if and only if so do both f, g and

Ab(d(a,R
−)) is K-subalgebra of A(d(a,R−)).

Theorem 14.22. Suppose that K has characteristic different from 2.
Let f, g ∈ A(K)\K (respectively f, g ∈ Au(d(0, r

−))) be dis-
tinct. Then, f2 − g2 belongs to A(K)\K (respectively f2 − g2 ∈
Au(d(0, r

−))).

Proof. Indeed, f2 − g2 = (f − g)(f + g). Suppose that |f + g|(r)
is bounded when r tends to +∞ (respectively to R). Since the char-
acteristic of K is different from 2, |f − g|(r) is obviously unbounded
when r tends to +∞ (respectively to R). Consequently, since the
norm | . |(r) is multiplicative, |f2 − g2|(r) cannot be bounded when
r tends to +∞ (respectively to R). Therefore, f2 − g2 belongs to
A(K)\K (respectively to Au(d(0, r

−))). Similarly, if |f − g|(r) is
bounded when r tends to +∞ (respectively to R), we have the sym-
metric proof. �
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Theorem 14.23. For every r ∈ R∗
+, H(d(0, r−)) is included in

Ab(d(0, r
−)).

Proof. Since Ab(d(0, r
−)) is complete with respect to the norm

‖ . ‖d(0,r−), we just have to show that R(d(0, r−)) ⊂ Ab(d(0, r
−)),

hence finally, we just have to show that given α ∈ K\d(0, r−) , 1
x−α ∈

Ab(d(0, r
−)). But we have 1

x−α = − 1
α(1− x

α
) = − 1

α

∑∞
n=0

(

x
α

)n
for all

x ∈ d(0, r−) because
∣

∣
x
α

∣

∣ < 1, hence 1
x−α ∈ Ab(d(0, r

−)) and that
finishes proving Theorem 14.23. �

Remarks. We see later that H(d(0, r−)) is much smaller than
Ab(d(0, r

−)). In particular, we see that q
√
1 + x belongs toAb(d(0, 1

−)
but does not belong to H(d(0, 1−)).

Let
∑+∞

0 anx
n be a power series whose radius of convergence

is r. Suppose first that r ∈ |K|. If there is at least one point
α ∈ C(0, r) such that the series converges at α, then this implies
that limn→+∞ |an|rn = 0 and hence the series converges in all C(0, r)
and defines an element of H(d(0, r)). If r does not belong to |K|, the
power series converging in d(0, r) are just the power series converging
in d(0, r−). This is why we don’t have to consider analytic functions
inside a disk d(a, r).

Theorem 14.24. Let f(x) =
∑∞

n=0 anx
n ∈ A(d(0, R−)) and sup-

pose that an ∈ Qp, ∀n ∈ N. Then, for every x ∈ d(0, R−), if x is
algebraic over Qp, so is f(x).

Proof. Suppose x is algebraic, of degree q over Qp and let
E = Qp[x]. For every m ∈ N,

∑m
n=0 anx

n belongs to E. But
since E is a finite extension of Qp, it is complete, hence f(x) also
belongs to E. �
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Chapter 15

Krasner Mittag-Leffler Theorem

The wonderful Mittag-Leffler theorem for analytic elements is due
to Marc Krasner who showed it on quasi-connected sets [69]. The
same proof holds on infraconnected sets as it was shown by Philippe
Robba [83]. The theorem shows that a Banach spaceHb(D) is a direct
topological sum of elementary subspaces and is indispensable to have
a clear image of the space H(D). Further, it appears necessary when
studying meromorphic functions as we see later.

Throughout this chapter, D is supposed to be infraconnected.

We remember that if D is unbounded, H0(D) denotes the set of
the f ∈ H(D) such that lim |x|→+∞

x∈D
f(x) = 0.

Theorem 15.1 ((M. Krasner) [69], [83]). Let D be closed and
bounded (respectively unbounded) and let f ∈ Hb(D). There exists
a unique sequence of holes (Tn)n∈N∗ of D and a unique sequence

(fn)n∈N in H(D) such that f0 ∈ H( ˜D) (respectively f0 ∈ K), fn ∈
H0(K\Tn) (n > 0), limn→∞ fn = 0 satisfying further:

(1) f =
∞
∑

n=0

fn and ‖f‖
D
= supn∈N ‖fn‖D

.

For every hole Tn = d(an, r
−
n ), we have

(2) ‖fn‖D
= ‖fn‖K\Tn =

D
ϕan,rn(fn) ≤ D

ϕan,rn(f) ≤ ‖f‖
D
.

119
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If D is bounded and if ˜D = d(a, r), we have

(3) ‖f0‖D
= ‖f0‖

˜D
=

D
ϕa,r(f0) ≤

D
ϕa,r(f) ≤ ‖f‖

D
.

If D is not bounded, then |f0| = lim |x|→∞
x∈D

|f(x)| ≤ ‖f‖
D
.

Let D′ = ˜D\(⋃∞
n=1 Tn). Then, f belongs to H(D′) (respectively

Hb(D
′)) and its decomposition in H(D′) is given again by (1) and f

satisfies ‖f‖
D′ = ‖f‖

D
.

Proof. Since f ∈ Hb(D), by Corollary 11.7, we know that f ∈
H(D). Hence, without loss of generality, we may assume that D is

closed. Obviously, we may also assume 0 ∈ ˜D.
First, we suppose f ∈ R(D). Then, f has decomposition in the

form E(x) +
∑t

j=1
λj

(x−αj)
qj with E(x) ∈ K[x] and αj ∈ K\D. Now,

for each j, either αj belongs to a hole T or αj belongs to K\ ˜D. Let

T1, . . . , Ts be the holes that contain some αj . Then,
∑t

j=1
λj

(x−αj)
qj

is of the form
∑s

n=1 fn + h0 with fi ∈ H0(K\Ti) and h0 ∈ Hb( ˜D).
Finally, we put f0 = E(x) + h0 and we have the announced decom-

position: f =
∑s

n=0 fi with fi ∈ H0(K\Ti) and f0 ∈ Hb( ˜D). In the
case when D is unbounded, f0 is just a constant.

For each i = 1, . . . , s, f − fi clearly belongs to Hb(D ∪ Ti) and

obviously f belongs to Hb

(

˜D\(⋃s
i=1 Ti

))

.
First, we show that for any n ∈ N∗, we have ‖fn‖D

= ‖fn‖K\Tn .
Let Fn be the circular filter on K of center αn and diameter rn. By
Theorem 14.6, we have

(4) ‖fn‖K\Tn = limFn∩(K\Tn) |fn(x)|.
But by Proposition 3.17, Fn is secant with D, hence

(5) limFn∩(K\Tn) |fn(x)| = limFn∩D |fn(x)|
and obviously,

(6) limFn∩D |fn(x)| ≤ ‖fn‖D
≤ ‖fn‖K\Tn .

Finally, by (4), (5), and (6), we obtain

(7) ‖fn‖K\Tn = ‖fn‖D
=

D
ϕFn

(fn).
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In the same way, whenD is bounded, say ˜D = d(0, r), we consider
the circular filter F0 of center 0 and diameter r, in order to prove
that

(8) ‖f0‖D
= ‖f0‖

˜D
=

D
ϕF0

(f).

Now, let us show that ‖f‖
D

≥ ‖fn‖D
for any n ∈ N∗. Since

f ∈ R(D), there exists an annulus Γ(an, rn, r
′
n) such that f has

neither any zero nor any pole inside Γ(an, rn, r
′
n). We put I =

] log(rn), log(r
′
n)[. By hypothesis, fn has no pole in K\d(0, rn).

Hence, since lim|x|→∞ fn(x) = 0, by Corollary 3.17, we see that
dΨan
dμ (fn, μ) < 0 whenever μ ∈ I. Let gn = f − fn ∈ R(D ∪ Tn).

Since gn has no pole inside Tn, by Corollary 4.17, we see that
drΨan
dμ (gn, μ) ≥ 0 whenever μ < log(rn).

Therefore, the equation Ψan(fn, μ) = Ψan(gn, μ) has at
most one solution in I and then Ψan(f, μ) is equal to
max(Ψan(fn, μ),Ψan(gn, μ)) whenever μ ∈ I, hence Ψan(f, μ) ≥
Ψan(fn, μ) whenever μ ∈ I. It follows that the multiplica-
tive semi-norm ϕFn

defined on R(D) satisfies log(ϕFn
(fn)) =

Ψan(fn, log(rn)) ≤ Ψan(f, log(rn)) = log(ϕFn
)(f), hence

(9) ϕFn
(fn) ≤ ϕFn

(f).

But ϕFn
(fn) = ‖fn‖D

and ϕFn
(f) ≤ ‖f‖

D
, hence by (9), we have

‖f‖
D
≥ ‖fn‖D

. Finally, by (7), we see that (2) is clearly proven.

When D is bounded, we put ˜D = d(0, r) and we prove (3) in
the same way as above when proving (2) by considering an annu-
lus Γ(0, r, r′) such that f has neither any zero nor any pole inside
Γ(0, r, r′). Then the element g0 = f − f0 is of the form P

Q with

P,Q ∈ K[x], all the zeros of Q in ˜D and deg(P ) < deg(Q) because

g0 ∈ R0(K\ ˜D). Hence, we have d Ψ
dμ (g0, μ) < 0, while dΨ

dμ (f0, μ) ≥ 0

whenever μ ∈] log r, log r′[, so we have DϕF0
(f0) ≤ DϕF0

(f), and
hence, by (8), we obtain (3).

When D is not bounded, the inequality |f0| ≤ ‖f‖
D

is obvious
because lim |x|→∞

x∈D

f(x) − f0 = 0. This finishes proving the Mittag-

Leffler theorem when f ∈ R(D).
Now, let f ∈ H(D) and let (hm)m∈N be a sequence in R(D)

that converges to f in H(D). The set of holes of D that contain
at least one pole of some hm is clearly countable. Hence, there
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exists a sequence of holes (Tn)n∈N∗ such that, denoting by D′ the
set ˜D\(⋃∞

n∈N∗ Tn
)

, then hm belongs to H(D′) whenever m ∈ N.
For each m ∈ N, hm splits in H(D′) in the form hm =

∑∞
n=0 hm,n

with hm,0 ∈ H( ˜D), hm,n ∈ H0(K\Tn). In particular, for each fixed
n ∈ N, we have ‖hm,n − hq,n‖D ≤ ‖hm− hq‖D . Thus, we see that the
sequence (hm,n)m∈N converges in H(K\Tn) for n > 0 (respectively

in H( ˜D) for n = 0) to a limit fn and then we have f =
∑∞

n=0 fn in
H(D′). Obviously, ‖f‖

D
= supn∈N ‖fn‖D

, whereas ‖fn‖D
= ‖fn‖D′

whenever n ∈ N and so, ‖f‖
D

= ‖f‖
D′ . This ends the proof of

Theorem 15.1. �

Corollary 15.2. Let (Ti)i∈I be the family of holes of D. Let J be
a subset of I and let S = I\J. Let E = D

⋃(⋃

i∈J Ti
)

and let F =

D
⋃(⋃

i∈S Ti
)

. Then we have H(D) = H0(E) ⊕ H(F ) and for each
g ∈ H0(E), h ∈ H(F ), we have ‖g + h‖D = max(‖g‖E , ‖h‖F ).

The Mittag-Leffler theorem suggests some new definitions.

Definition and notation. Let f ∈ Hb(D). We consider the series
∑∞

n=0 fn obtained in Theorem 15.1, whose sum is equal to f inH(D),

with f0 ∈ H( ˜D), fn ∈ H(K\Tn)\{0} and with the Tn holes of D.
Each Tn is called an f -hole and fn is called the Mittag-Leffler term
of f associated with Tn, whereas f0 is called the principal term of f .
For each f -hole T of D, the Mittag-Leffler term of f associated with

T is denoted by fT , whereas the principal term of f is denoted by

f0. The series
∑∞

n=0 fn is called the Mittag-Leffler series of f on the
infraconnected set D. More generally, let E be an infraconnected set
and let f ∈ H(E). According to Theorem 11.5, f is of the form g+h
with g ∈ R(K\(E\E)) and h ∈ Hb(E) whereas such a decomposition
is unique, up to an additive constant. For every hole T of E, we

denote by fT the Mittag-Leffler term of h associated with T and fT
is still named the Mittag-Leffler term of f associated with T .

Corollary 15.3. Let f ∈ Hb(D), let (Tn)n∈N∗ be the sequence of

the f -holes, with Tn = d(an, ρ
−
n ), and let f0 = f0 and fn = fTn for

every n ∈ N∗. Let ˜D = d(a, s) (respectively ˜D = K). There exists
q ∈ N such that ‖f‖D = ‖fq‖D . If q ≥ 1, then ‖f‖D = Dϕaq ,rq(f) =

D
ϕaq ,rq(fq). If q = 0 and if D is bounded (respectively is not bounded),
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then ‖f‖D = Dϕa,s(f) = Dϕa,s(f0) (respectively ‖f‖D = |f0|). Fur-
ther, given a hole T of D, if f belongs to Hb(D) and if g belongs to

H0(K\T ) and satisfies f − g ∈ H(D ∪ T ), then fT is equal to g.

Definition. LetD be bounded, of center α and diameter r. A circular
filter F on D is called the specific filter of a hole T = d(a, r−) if
it is the circular filter on D of diameter r. If D is bounded and
˜D = d(a,R), the circular filter of center a and diameter R is called

the specific filter of ˜D. In general, a specific filter of a hole of D or
of ˜D is called a specific filter of D.

Corollary 15.4. Let f ∈ Hb(D). There exists a large circular filter

F with center α ∈ ˜D secant with D such that
D
ϕF (f) = ‖f‖

D
.

If D is bounded, there exists a specific filter F of D such that

D
ϕF (f) = ‖f‖D.

Corollary 15.5. Let f ∈ H(d(0, 1−)) and let (d(αm, 1
−))m∈N∗ be

the family of the f-holes. Then f is of the form

(1)

∞
∑

n=0

an,0x
n +

∑

m,n∈N∗

an,m
(x− αm)n

with limn→∞ an = 0, limn→∞ |an,m| = 0 whenever m ∈ N∗ and
limm→∞

(

supn∈N∗ |an,m|
)

= 0. On the other hand, f satisfies
‖f‖d(0,1−) = supm,n∈N∗ |an,m|.

Conversely, every function of the form (1), with the αm satisfying
|αm| = |αj − αm| = 1 whenever m �= j, belongs to H(d(0, 1−)). The
norm ‖ . ‖d(0,1−) is multiplicative and equal to d(0,1−)ϕ0,1.

Corollary 15.6. Let r1, r2 ∈ R+ satisfy 0 < r1 < r2.
Then, H(Δ(0, r1, r2)) is equal to the set of the Laurent series
∑+∞

−∞ anx
n with limn→−∞ |an|rn1 = limn→∞ |an|rn2 = 0 and we have

‖∑+∞
−∞ anx

n‖Δ(0,r1,r2) = max
(

supn≥0 |an|rn1 , supn<0 |an|rn2
)

.

Proof. On Theorem 14.6, we saw that H(Δ(0, r1, r2)) is equal to
the set of the Laurent series

∑+∞
−∞ anx

n with limn→−∞ |an|rn1 =
limn→∞ |an|rn2 = 0. Then, the conclusions on the norm come from
Theorem 15.1. �

Theorem 15.7. Let r ∈ R+. Then, H(C(0, r)) is equal to the set of
the Laurent series

∑+∞
−∞ anx

n with lim|n|∞→∞ |an|rn = 0 and we have
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‖∑ anx
n‖C(0,r) = supn∈Z |an|rn. Next, the norm ‖ . ‖C(0,r) is multi-

plicative and equal to C(0,r)ϕ0,r.

Proof. We put Λ = C(0, r). We may apply Theorem 14.6 by taking
r1 = r2 = r and we obtain all the conclusions but the fact that ‖ . ‖

Λ

is multiplicative. Let us show this. Let h ∈ R(Λ). Hence, h is of
the form P

Q , with P,Q ∈ K[x] and Q(x) has no zero in Λ. Let Θ

be a class of Λ. By Lemma 4.9, we have |Q(x)| = ϕ0,r(Q) whenever
x ∈ Θ and |P (x)| ≤ ϕ0,r(P ) whenever x ∈ Θ. Hence, we see that
∥

∥
P
Q

∥

∥

Λ
≤ ϕ0,r

(

P
Q

)

, and therefore, ‖h‖Λ = ϕ0,r(h) whenever h ∈ R(Λ).
Consequently, we have ‖f‖

Λ
=

Λ
ϕ0,r(f) whenever f ∈ H(Λ). �

Proposition 15.8. Let r1, r2 ∈ R∗
+, with r1 < r2:

(i) A(Γ(0, r1, r2)) = A(d(0, r−2 )) ⊕ A0(K\d(0, r1)) and
Ab(Γ(0, r1, r2)) = Ab(d(0, r

−
2 ))⊕A0,b(K\d(0, r1)).

(ii) Let f(x) =
∑+∞

−∞ anx
n ∈ A(Γ(0, r1, r2)). Then, f ∈ Ab

(Γ(0, r1, r2)) if and only if max
(

supn≥0 |an|rn2 , supn<0 |an|rn1
)

<
+∞. Moreover, if f ∈ Ab(Γ(0, r1, r2)), then

‖f‖Γ(0,r1,r2) = max

(

sup
n≥0

|an|rn2 , sup
n<0

|an|rn1
)

.

(iii) Ab(Γ(0, r1, r2)) is a Banach K-algebra that contains
H(Γ(0, r1, r2)).

Proof. (i) is obvious. We show (ii). Let f ∈ Ab(Γ(0, r1, r2)) and
let f = f1 + f2 with f2 ∈ Ab(d(0, r

−
2 )) and f1 ∈ A0,b(K\d(0, r1)).

We put Λ = Γ(0, r1, r2). It is obviously seen that ‖f‖Λ ≤
max

(‖f1‖Λ , ‖f2‖Λ

) ≤ max
(

supn≥0 |an|rn2 , supn<0 |an|rn1
)

. Now, for
every s1, s2 such that r1 < s1 < s2 < r2, we know that f belongs to
H(Δ(0, s1, s2)) because so do both f1, f2. Then, by Theorem 15.1,
we have

‖f‖Δ(0,s1,s2) = max
(‖f2‖d(0,s2), ‖f1‖K\d(0,s−1 )

)

.

Finally, ‖f2‖d(0,s2) = supn∈N |an|sn2 , while ‖f1‖K\d(0,s−1 ) =

supn<0 |an|sn1 . Thus, we see that ‖f‖Γ(0,r1,r2) ≥ ‖f‖Δ(0,s1,s2) =

max
(

supn≥0 |an|sn2 , supn<0 |an|sn1
)

. This is true for every s1, s2 ∈
]r1, r2[, hence finally, ‖f‖Λ = max

(

supn≥0 |an|rn2 , supn<0 |an|rn1
)

. All
statements in (ii) are then proven.
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We now prove (iii). By (ii), Ab(Λ) is just the Banach K-algebra

Ab(d(0, r
−
2 ))⊕A0,b(K\d(0, r1))

provided with the norm ‖f1+f2‖Λ = max
(‖f2‖d(0,r−2 ), ‖f1‖K\d(0,r1)

)

.

We saw that R(d(0, r−2 )) ⊂ Ab(d(0, r
−
2 )), hence R(d(0, r

−
2 )) ⊂ Ab(Λ).

In the same way, we have R(K\d(0, r1)) ⊂ Ab(K\d(0, r1)) and
then Ab(K\d(0, r1)) is obviously included in Ab(Λ). Since R(Λ) =
R(d(0, r−2 ))+R(K\d(0, r1)), R(Λ) is included in Ab(Λ) which is com-
plete for the norm ‖ . ‖

Λ
, hence H(Λ) ⊂ Ab(Λ). This finishes proving

Proposition 15.8. �

Notation. Given a subset A of ̂K, we denote by ̂H(A) the set of the

analytic elements on A, taking ̂K as a ground field.
E∗

Now, we apply the Mittag-Leffler theorem to the analytic exten-
sion of analytic elements.

Theorem 15.9. For all f ∈ H(D), f has continuation to a unique

element ̂f ∈ ̂H( ̂D). Further, if f ∈ Hb(D), the Mittag-Leffler series

of ̂f in ̂D is the same as this of f in D.

Proof. By Theorem 11.5, we may easily assume that f belongs to
Hb(D). The Mittag-Leffler series of f on D obviously converges on
̂D, to an element of ̂H( ̂D). This is unique because so is the Mittag-
Leffler series of f on D. �

Theorem 15.10. Let E be an infraconnected set such that D∩E is
infraconnected and such that every hole of D∩E is either a hole of D
or a hole of E. Let F ∈ H(D), G ∈ H(E), satisfying F (x) = G(x)
whenever x ∈ D ∩ E. Then there exists h ∈ H(D ∪ E) such that
h(x) = F (x) whenever x ∈ D, h(x) = G(x) whenever x ∈ E, such

that for every h-hole V of D ∪E, hV is either of the form FS, when

V is a F -hole S of D, or of the form GT when V is a G-hole T of E.

Proof. By Theorem 11.5, it is easily seen that we may assume
F ∈ Hb(D), G ∈ Hb(E) without loss of generality. Let A = D ∪ E,
B = D ∩E. Let h be the restriction of F and G to B. Let (Vn)n∈N∗

be the sequence of h-holes that are holes of D and let (Wn)n∈N∗ be
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the sequence of h-holes that are holes of E but not of D. For each

q ∈ N∗, as h(x) is equal to F (x) in B, hWq is an element of H0(D) of

the form
∑∞

m=1FSq
m

with Sqm some F -holes of D included in Wq. We

put fq,m = FSq
m

for every (q,m) ∈ (N∗2). In the same way, for each

q ∈ N∗, hVq is an element of H0(E) of the form
∑∞

m=1GT q
m

with

T qm the G-holes of E included in Vq. We put gq,m = GT q
m

for every

(q,m) ∈ (N∗2). Without loss of generality, we may obviously assume
˜D ⊂ ˜E; we put h0(x) = G0(x). We note that A is clearly included in

the set A′ = ˜E\((⋃(q,m)∈(N∗2) S
q
m

)⋃(⋃

(q,m)∈(N∗2) T
q
m

))

. Then, it is

easily seen that the series h0(x) +
∑

(m,q)∈N∗2 fq,m +
∑

(m,q)∈N∗2 gq,m
converges in H(A′) because by Corollary 15.2 we have ‖fq,m‖A′ =

‖FSq
m
‖D and ‖gq,m‖A′ = ‖GT q

m
‖E , whereas limq+m→+∞ ‖FSq

m
‖E =

limq+m→+∞ ‖GT q
m
‖E = 0. Further, by construction, h(x) is equal to

F (x) and G(x) in B and is such that for every h-hole V of D ∪ E,

hV is either of the form FS , when V is a F -hole S of D, or of the

form GT when V is a G-hole T of E. This clearly ends the proof of
Theorem 15.10. �

Corollary 15.11. Let E be an infraconnected set such that D ⊂ E
and such that each hole of D contains a unique hole of E. Let

f ∈ H(E) and let f = f0 +
∑+∞

n=1 fTn be the Mittag-Leffler series
of f on the infraconnected E. For every n ∈ N∗, let Vn be the hole
of D containing Tn. Then the Mittag-Leffler series of f on the infra-

connected D is of the form f0 +
∑+∞

n=1 fVn with fVn = fTn , ∀n ∈ N∗.

In the particular case of affinoid subsets, we can be more accurate
for Theorem 15.10:

Theorem 15.12. Let D1, D2 be infraconnected affinoid subsets of
K such that D1 ∩D2 �= ∅ and let fj ∈ H(Dj), j = 1, 2 be such that
f1(x) = f2(x), ∀x ∈ D1∩D2. Then the function f defined in D1∪D2

as f(x) = fj(x) ∀x ∈ Dj , j = 1, 2, belongs to H(D1 ∪D2).

Proof. Let D = D1∪D2. Without loss of generality, we can assume
that ˜D1 contains ˜D2 and hence ˜D = ˜D1. We can also assume that
0 ∈ D1∩D2. Set A = D1\D2. Then A is included in a finite union of
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holes of D1. Consider such a hole T = d(a, r−) of D1 (with r ∈ |K|)
such that T ∩D2 �= ∅. Since D1 ∩D2 �= ∅, both D1, D2 have points
on C(a, r). Moreover, since both are affinoid, D1 contains all classes
of C(a, r) except maybe finitely many because T is a hole of D1. On
the other hand, D2 also contains all classes of C(a, r) except maybe
finitely many because it has points on C(a, r) and inside d(a, r−).
Consequently, f1(x) and f2(x) coincide in all classes of C(a, r) except
maybe in finitely many Λ1, . . . ,Λq.

Let g be the Mittag-Leffler term of f1 relative to T . Let Sk, 1 ≤
k ≤ t, be the holes of D2 included in T, and for each k = 1, . . . , t, let
hk be the Mittag-Leffler term of f2 relative to the hole Sk. Consider
now the restrictions f1 of f1 and f2 of f2 on the set D′ = D1 ∩D2.

The two functions are equal in D′ and of course have the same
Mittag-Leffler term relative to the hole d(a, r−). Concerning h2, this
term is

∑t
k=1 hk. Consequently, g =

∑t
k=1 hk. Since g and the hk

are Laurent series converging in K\d(a, r−), g and
∑t

k=1 hk coincide
in all this set. Consequently, in the Mittag-Leffler series of f1, we
can replace g by

∑t
k=1 hk. Thus, f1 becomes an element of D1 ∪

(

(d(a, r−)∩D2

)

. We can do the same with each hole of D1 containing
points of D2, and hence, after finitely many similar change, we obtain
an element f of H(D) such that f(x) = fj(x) ∀x ∈ Dj , j = 1, 2. �

Notation. Let E be a K-Banach space. We denote by E◦∗ the
K-Banach space of continuous linear forms of E provided with its
usual norm. The dual of a Banach space H(D) was thoroughly stud-
ied by Yvette Amice [2].

Theorem 15.13 (Y. Amice). Let r ∈ R+. Given h(t) =
∑∞

n=0
bn
tn ∈ Ab(K\d(0, r)), there exists a unique φh ∈ H(d(0, r))◦∗ sat-

isfying φh(x
q) = bq, (q ∈ N). Moreover, on the space Ab(K\d(0, r))

provided with the norm ‖ . ‖K\d(0,r), the mapping h → φh is an iso-
metric isomorphism from Ab(K\d(0, r)) onto H(d(0, r))◦∗.

Proof. Let F = K\d(0, r). First, let h(t) =
∑∞

n=0
bn
tn ∈ Ab(F )

and let f(x) =
∑∞

n=0 anx
n ∈ H(d(0, r)). Since the sequence |bn|

rn

is bounded and limn→∞ |an|rn = 0, it is seen that limn→∞ anbn = 0
and then the series

∑∞
n=0 anbn is convergent. Hence, we may put

φh(f) =
∑∞

n=0 anbn. Thus, we define a linear form φh of H(d(0, r))
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that satisfies

|φh(f)| ≤ sup
n∈N

|anbn| ≤
(

sup
n∈N

|an|rn
)(

sup
n∈N

|bn|
rn

)

= ‖f‖d(0,r)‖h‖F
.

Therefore, with respect to the norm ‖ . ‖ of H((d(0, r))◦∗, we have
‖φh‖ ≤ ‖h‖

F
. Now, we check that the equality is satisfied. Indeed,

let q ∈ N. We have

|φh(xq)|
‖xq‖d(0,r)

=
|φh(xq)|
rq

=
|bq|
rq

≤ sup
f 
=0

|φh(f)|
‖f‖d(0,r)

for all q ≥ 0. Hence, we have ‖h‖F = supq∈N
|bq |
rq ≤ ‖φh‖. So we obtain

the announced equality. Thus, we have defined an isometric homo-
morphism from Ab(F ) into H(d(0, r))◦∗.

Now, we check that this mapping is surjective. Indeed, let ψ ∈
H(d(0, r))◦∗, and for each n ∈ N, let bn = ψ(xn). Obviously, we

have ‖ψ‖ ≥ |bn|
rn for every n ∈ N, hence the sequence (|bn|r−n)n∈N is

bounded and therefore defines a function f(t) =
∑∞

n=0
bn
tn ∈ Ab(F ).

Thus, ψ is equal to φh, and therefore, the mapping h→ φh is surjec-
tive. This ends the proof of Theorem 15.13. �

Remark. There obviously exists an isometric homomorphism from
H(d(0, 1)) into H(d(0, 1))◦∗ defined as follows: let f =

∑+∞
n=0 anx

n ∈
H(d(0, 1−)) and let f(x) = f( 1x) ∈ Ab(K\d(0, 1)). Then we have an
element f∗ ∈ H(d(0, 1))∗ equal to φf . The question of whether this
homomorphism is surjective depends on the ground field K. If K is
spherically complete, this homomorphism is not surjective. If K is
not spherically complete, this homomorphism is surjective [86].

Corollary 15.14. Let r ∈ R+. For each h(t) =
∑∞

n=0 bnt
n ∈

Ab(d(0, r
−)), there exists a unique φh ∈ H(K\d(0, r−))◦∗ satisfying

φh(x
−q) = bq (q ∈ N). Moreover, the space Ab(d(0, r

−)) being pro-
vided with the norm ‖ . ‖d(0,r−), the mapping h→ φh is an isometric

isomorphism from Ab(d(0, r
−)) onto H(K\d(0, r−))◦∗.

Corollary 15.15. Let r ∈ R+. For each h(t) =
∑∞

n=0 bnt
n ∈

Ab(d(0, r
−)) such that h(0) = 0, there exists a unique φh ∈

H0(K\d(0, r−))◦∗ satisfying φh(x
−q) = bq (q ∈ N∗). Moreover, this

mapping h→ φh from the subspace of the h ∈ Ab(d(0, r
−)) such that

h(0) = 0 into H0(K\d(0, r−))◦∗ is an isometric isomorphism.
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Now, applying Theorem 15.13 to H( ˜D) and Corollary 15.15 to
the spaces H0(K\Ti) for each hole Ti of an infraconnected set D, we
obtain Corollary 15.16.

Corollary 15.16 (Y. Amice). Let D be closed bounded infracon-
nected. Let (Ti)i∈J be the family of its holes and for every i ∈ J , let

ai ∈ Ti. Let M ∈ R∗
+. Let h0 ∈ Ab(K\ ˜D) and let (hi)i∈J be a family

such that for each i ∈ J , hi belongs to Ab(Ti) and satisfies

(1) hi(ai) = 0

and

(2) ‖hi‖Ti ≤M for all i ∈ J .

There exists a unique ψ ∈ H(D)◦∗ satisfying

ψ(f) = φh0(f) for every f ∈ H( ˜D),
ψ(f) = φhi(f) for every f ∈ H0(K\Ti), whenever i ∈ J .

Further, for every element ψ of H(D)◦∗, there exists a unique h0 ∈
Ab(K\d(0, r)) and a unique family (hi)i∈J satisfying (1) and (2) for
some M ∈ R∗

+ such that ψ is defined as above.

Now, we use the continuous linear forms to define the residue of
an element on a hole.

Theorem 15.17. Let f ∈ Hb(K\d(a, r−)), and for each α ∈
d(a, r−), let f(x) =

∑∞
n=0

bn(α)
(x−α)n . Then, b1(α) does not depend on

α in d(a, r−).

Proof. Let E = K\d(a, r−)). We know that |b1(α)|
r ≤ ‖f‖E , and

therefore, fixing α in d(a, r−), the linear form ψα on Hb(E) defined as
ψα(f) = b1(α) is obviously continuous. We show that ψα(f) = ψa(f).
First, for every q ∈ N, we put fq(x) = 1

(x−α)q . We have fq(x) =

1
(x−a)q

(∑∞
j=0

(

α−a
x−a

)j)q
. Therefore, for every q ≥ 2, we have ψa(fq) =

0 and that ψa(f1) = 1. Hence, ψα(fq) = ψa(fq) for every q ∈ N. This
shows that ψα(f) = ψa(f) for every f ∈ Hb(E). �

Definition and notation. Let f ∈ Hb(D), let T be a hole of D,

and let a ∈ T . Let fT (x) =
∑∞

n=1
bn(a)
(x−a)n . By Theorem 15.17, b1(a)
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actually does not depend on a in T . We set res(f, T ) = b1(a) and
this number res(f, T ) is called the residue of f on the hole T .

By Theorem 15.1, Theorem 15.18 is obvious:

Theorem 15.18. Let f ∈ H(D) and let T be a hole of D of diame-
ter r. Then,

|res(f, T )| ≤ r‖fT‖K\T ≤ r‖f‖D.

We can now characterize K-algebra homomorphisms among the
continuous linear forms.

Theorem 15.19. Let D be a closed bounded infraconnected, let a ∈
˜D, let (Ti)i∈J be the family of holes of D and for every i ∈ J , and

let ai ∈ Ti. Let M ∈ R∗
+. Let h0 ∈ Ab(K\ ˜D) and let (hi)i∈J be

a family such that for each i ∈ J , hi belong to Ab(Ti) and satisfy
Conditions (1) and (2):

(1) hi(ai) = 0

and

(2) ‖hi‖Ti ≤M for all i ∈ J .

Let ψ ∈ H(D)∗ satisfy

ψ(f) = φh0(f) for every f ∈ H( ˜D),
ψ(f) = φhi(f) for every f ∈ H0(K\Ti), whenever i ∈ J .

Then, ψ is a homomorphism of K-algebra from H(D) onto K if and
only if there exists α ∈ D such that

(3) h0(t) =
t−a
t−α ,

and for every i ∈ J ,

(4) hi(t) =
t−ai
α−t .

Moreover, every K-algebra homomorphism from H(D) to K is
continuous and is of this form.

Proof. First, we suppose that ψ is a K-algebra homomorphism
from H(D) onto K and we put ψ(x) = a. As h0 is of the form
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h0(t) =
∑∞

n=0
bn

(t−a)n , here for every n ∈ N, we have bn = ψ((x −
a)n) = (α − a)n, and therefore, h0(t) =

∑∞
n=0

(

α−a
t−a
)n

= t−a
t−α . Next,

we fix i ∈ J . Then, hi is of the form hi(t) =
∑∞

n=1 bi,n(t− ai)
n.

Hence, for every n ∈ N∗, we have bi,n = ψ
(

1
(x−ai)n

)

=
(

1
α−ai

)n
, and

therefore, hi(t) =
∑∞

n=1

(

t−ai
α−ai

)n
= t−ai

α−t .
Conversely, we suppose (3) and (4) are satisfied. Then, it is easily

checked that h0(t) =
∑∞

n=0

(

α−a
t−a
)n
, and therefore, for every n ∈ N,

we have ψ((x−a)n) = (α−a)n. Hence, for every f ∈ H( ˜D), we have
ψ(f) = f(α).

In the same way, we check that, fixing i ∈ J , we have
ψ
(

1
(x−ai)n

)

=
(

1
α−ai

)n
, hence ψ(f) = f(α) for every f ∈ H0(K\Ti).

This clearly finishes proving that ψ(f) = f(α) for every f ∈ H(D).
Now, let ψ be a K-algebra homomorphism from H(D) to K. By

Corollary 10.10, ψ is continuous and hence belongs to H(D)∗. Con-
sequently, it is of the form defined by the theorem. �
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Chapter 16

Factorization of Analytic Elements

In C, it is well known that when a (not identically zero) holomorphic
function admits a zero at a point α, this zero has a finite order of
multiplicity. Actually, this is a generalization of a property of ratio-
nal functions. In the non-Archimedean context, we find again that
property among analytic elements and it is essential. In this chapter,
D is just a subset of K.

Lemma 16.1. Let α ∈
◦
D. Let q ∈ N∗ and let (gn) be a sequence of

H(D) such that the sequence (x − α)qgn converges in H(D). Then
the sequence (gn)n∈N also converges in H(D).

Proof. Without loss of generality, we can assume α = 0. Set

fn = xqgn, n ∈ N. Since 0 lies in
◦
D, there exists a disk d(0, r) ⊂ D.

Let E = D\d(0, r). Clearly, we have ‖fs− fn‖d(0,r) = ‖xq‖d(0,r)‖gs −
gn‖d(0,r) = rq‖gs − gn‖d(0,r) and hence ‖gs − gn‖E ≤ ‖fs−fn‖

rq . Conse-

quently, ‖gs − gn‖D ≤ ‖fs−fn‖
rq , and therefore, the sequence (gn) is a

Cauchy sequence, which ends the proof. �

Theorem 16.2. Let α belong to D ∩
◦
D and let f ∈ H(D) be such

that f(α) = 0. Then, f has factorization in H(D) in the form
(x− α)g with g ∈ H(D). If there is no neighborhood V of α such
that f(x) = 0 whenever x ∈ V , then there exists a unique integer
q ∈ N and h ∈ H(D) such that f(x) = (x − α)q h(x) and h(α) �= 0
and then α is a zero of order q of f .

133
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Proof. First, we prove the main factorization in the form (x−α)g.
We may obviously assume α = 0. By hypothesis, there exists a disk
d(0, s) included in D. And then, by Theorem 11.5, there exists a
disk d(0, r) included in d(0, s) such that f has no pole in d(0, r).
Consequently, f belongs to H(D ∪ d(0, r)). So, we can assume that
0 is interior to D and that d(0, r) ⊂ D without loss of generality.
By Corollary 14.11, the restriction of f to d(0, r) is equal to a power
series

∑∞
n=1 anx

n for all x ∈ d(0, r).
Now, let tn be a sequence in R(D) such that limn→∞ tn = f .

Clearly, |tn(0)| ≤ ‖tn − f‖
D

because f(0) = 0, so we have ‖tn −
tn(0) − fn‖D

≤ ‖tn − f‖
D
. We put hn = tn − tn(0) (n ∈ N). The

sequence (hn) of R(D) approaches f in H(D) and satisfies hn(0) = 0
whenever n ∈ N, hence hn has factorization in R(D) in the form
xgn. By Lemma 16.1, the sequence (gn)n∈N converges in H(D). Let
g be its limit. We show that limq→∞‖xgq − xg‖D = 0. Let ε > 0
and let N ∈ N be such that ‖hn − f‖D ≤ ε whenever n ≥ N . We
fix q ≥ N . Then, ‖hn − hq‖D

≤ ε, hence |xgn(x) − xgq(x)| ≤ ε
whenever x ∈ D. So, when n tends to +∞, we see that |xg(x) −
xgq(x)| ≤ ε whenever x in D. Thus, we have ‖xg − xgq‖D

≤ ε, and
therefore, limq→∞ ‖xgq − xg‖

D
= 0. But, by hypothesis, we have

limq→∞ ‖f − xgq‖D
= 0 and then f = xg.

Now, we suppose that f is not identically zero in d(0, r). Then
at least one of the coefficients an of its power series is not zero.
By Corollary 14.11, f admits 0 as a zero of order q and then
q is the smallest integer such that aq �= 0. In d(0, r), we have
f(x) =

∑∞
n=q anx

n = xg(x), hence g(x) =
∑∞

n=q anx
n−q whenever

x ∈ d(0, r). Suppose that f has been proven to be factorized in the
form xsgs with s < q and gs ∈ H(D). Clearly, gs(x) =

∑∞
n=q anx

n−s

whenever x ∈ d(0, r), hence gs(0) = 0, and therefore, gs has fac-
torization in the form xgs+1 with gs+1 ∈ H(D). Thus, by induc-
tion, we obtain f = xqgq(x) with gq(x) =

∑∞
n=q anx

n−q and then

gq(0) = aq �= 0. That finishes proving Theorem 16.2. �

Notation. Let a ∈
◦
D and let f ∈ H(D) be such that f(a) = 0,

f(x) �= 0 in a disk d(a, r). The order of the zero a of f is denoted by
ωa(f).

Corollary 16.3. Let D be open, let f ∈ H(D), and let α be a zero
of f in D. Either there exists a disk d(α, r) such that f(x) �= 0
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whenever x ∈ d(α, r)\{α} or there exists a disk d(α, r) such that
f(x) = 0 whenever x ∈ d(α, r).

Corollary 16.4. Let f ∈ H(D) have a zero of order q at a point α ∈
◦
D. Then for every s = 1, . . . , q, f factorizes in the form (x− α)sgs,
with gs ∈ H(D) having a zero of order q − s at α.

Corollary 16.5. Let α ∈
◦
D and let f ∈ H(D). Let

∑∞
n=0 an(x− α)n

be its power series in a disk d(α, r) ⊂ D. Let P (x) =
∑q

n=0 an(x− α)n and let g(x) = f(x) − P (x). Then g factorizes in
the form (x− α)qh(x), with h ∈ H(D).

Definition. Let A ⊂ D be an open subset of K and let f ∈ H(D)
have finitely many zeros a1, . . . , an in A of multiplicity order of
q1, . . . , qn, respectively. The polynomial

∏n
i=1(x− ai)

qi is named the
polynomial of zeros of f in A.

We are now able to give the following corollary.

Corollary 16.6. Let A be a subset of D open in K, let f ∈ H(D)
have finitely many zeros in A, and let P be the polynomial of its zeros
in A. Then f has a factorization in the form f = Pg, with g ∈ H(D)
and g(x) �= 0 whenever x ∈ A.

Definitions. An element f ∈ H(D) is said to be semi-invertible
(respectively quasi-invertible) if it factorizes in the form P (x) g(x),
with g invertible in H(D) and with P a polynomial whose zeros

belong to D (respectively to D ∩
◦
D).

An element f ∈ H(D) is said to be quasi-minorated if for every
bounded sequence (an)n∈N of D such that limn→∞ f(an) = 0 we can
extract a subsequence that converges in K.

Remarks. (1) If a semi-invertible element of H(D) has no zero in D,
it is invertible in H(D). (2) Let D belong to Alg. If f1, f2 are semi-
invertible (respectively quasi-invertible) elements of H(D), then f1f2
is also semi-invertible (respectively quasi-invertible). However, when
D does not belong to Alg, counter-examples show that the product
of two semi-invertible (respectively quasi-invertible) elements is not
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always semi-invertible (respectively quasi-invertible). Such counter-
examples are given in a further remark.

Lemma 16.7. Let D ∈ Alg, let f ∈ H(D) be quasi-invertible
(respectively quasi-minorated), and let h ∈ R(D) be a Moebius func-
tion. Let D′ = h(D) and let g = f ◦h−1. Then, g is a quasi-invertible
(respectively quasi-minorated) element of H(D′).

Proof. Suppose first f is quasi-invertible in H(D). Let u = h(x).
So, f is of the form P (x)φ(x) with P a polynomial whose zeros are
interior to D and φ is an invertible element of H(D). Then, φ ◦ h−1

is invertible in H(D′) and P ◦ h−1 belongs to R(D′) and is of the

form Q(u)
(u−b)s , where b is the unique pole of h−1. Consequently, g is of

the form Q(u) φ(u)
(u−b)s . Thus,

φ(u)
(u−b)s is invertible in H(D′) and hence

g is quasi-invertible.
Now, suppose f quasi-minorated. Let (an)n∈N be a sequence in

D′ such that limn→∞g(an) = 0 and let bn = h−1(an), (n ∈ N).
Then, limn→∞f(bn) = 0. Since f is quasi-minorated, one can
extract a subsequence (bq(m))m∈N that either converges or satisfies
limm→∞|bq(m)| = ∞. But then, the sequence (aq(m)) either converges
or satisfies limm→∞|aq(m)| = ∞. Hence, f is quasi-minorated. �

Theorem 16.8. Let D be bounded, open, closed and let f ∈ H(D).
If f is quasi-minorated, then it is quasi-invertible.

Proof. We suppose f is not quasi-invertible and we prove that f
is not quasi-minorated either.

First, we suppose f to have finitely many zeros. Since D is open,
by Corollary 16.6, f has factorization in the form P (x) g(x), with P
a polynomial whose zeros are interior to D and g an element of H(D)
which has no zero in D but is not invertible in H(D) since f is not
quasi-invertible. Hence, there exists a bounded sequence (αn)n∈N in
D such that limn→∞ g(αn) = 0. If f were quasi-minorated, we could
extract a convergent subsequence from the sequence (αn)n∈N whose
limit would belong to D and would be a zero of g. Hence, f is not
quasi-minorated when it has finitely many zeros in D.

Now, we suppose that f has a sequence of (distinct) zeros (αn) in
D and that f is quasi-minorated. Hence, we may extract a convergent
subsequence of limit α. Obviously, α is another zero of f , hence, by
Corollary 16.3, f(x) is equal to zero inside a disk d(α, r) and then
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f is not quasi-minorated, a contradiction. That ends the proof of
Theorem 16.8. �

Theorem 16.9. Let D be closed and bounded. Let f ∈ H(D) be
quasi-minorated and have no zero in D. Then, f is invertible in H(D).

Proof. Assume that infx∈D|f(x)| = 0 and let (an)n∈N be a
sequence in D such that limn→∞ f(an) = 0. Since D is bounded
and since f is quasi-minorated, we can extract a subsequence (an)
which converges in K to a point a ∈ D. Since D is closed, a belongs
to D and satisfies f(a) = 0, which contradicts the hypothesis. Thus,
there exists λ > 0 such that |f(x)| ≥ λ whenever x ∈ D and then by
Lemma 11.3, f is invertible in H(D). �
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Chapter 17

Algebras H(D)

We have seen that H(D) is a Banach K-algebra if and only if D is
closed and bounded. But studying analytic elements, analytic func-
tions require to know algebras of analytic elements which are not
necessarily bounded. Thus, we have to examine the class Alg of sub-
sets D of K such that H(D) is a K-algebra with respect to usual laws
[35], [37], [44], [50].

Notation. Throughout this chapter, D denotes a subset of K. Let
f ∈ H(D). According to Theorem 11.5, f is of the form f∗ + f ,

with f∗ ∈ R0(K\( ˜D\D)) and f ∈ H(D). We keep that notation
throughout this chapter.

Proposition 17.1. Let α belong to
◦
D and let f ∈ H(D\{α}). For

every q ∈ N, f
(x−α)q belongs to H(D\{α}).

Proof. Since α belongs to
◦
D, there exists a disk d(α, s) included

in D. On the other hand, there exists r ∈ ]0, s[ such that f∗ has no
pole in d(α, r)\{α}. Hence, by Theorem 11.10, f is of the form g

(x−α)t
with g ∈ H(D ∪ d(α, r)) and t ∈ N. Then, f

(x−α)q = g
(x−α)q+t . Thus,

without loss of generality, we may assume that α belongs to D and
that f belongs to H(D ∪ d(α, r)).

By Corollary 14.11, in d(α, r), f(x) is equal to a power series
∑∞

n=0 an(x − α)n. Let P (x) =
∑q

n=0 an(x − α)n. By Theorem 16.2,
f(x) − P (x) factorizes in the form (x − α)qh with h ∈ H(D).

139
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Hence, we see that f(x)
(x−α)q = P (x)

(x−α)q + h. Since P
(x−α)q ∈ R(D), it is

clear that f
(x−α)q belongs to H(D). �

Corollary 17.2. Let f ∈ H(D) and let P be a polynomial whose

zeros are interior to D. Let a1, . . . , an be the zeros of P . Then, f
P

belongs to H(D\{a1, . . . , an}).

Proposition 17.3. If D is bounded and satisfies D\D ⊂
( ◦
D
)

, then

D ∈ Alg.

Proof. Let f, g ∈ H(D) and let us show that fg ∈ H(D). By
Theorem 11.5, we have f = f∗ + f, g = g∗ + g with f∗, g∗ ∈
R0(K\(D\D)) and f , g ∈ H(D). Since D is bounded, by Corollary
11.7, we have H(D) = Hb(D) and then fg obviously belongs toH(D)
while f∗g∗ ∈ R0(K\(D\D)). Finally, by Corollary 17.2, both f∗g and
g∗f belong to H(D) and therefore so does fg. �

Definition. Let F be a filter in D. An element f ∈ H(D) is said
to be vanishing along F if limF f(x) = 0. Further, f is said to be
properly vanishing along F if limF f(x) = 0 and if ‖f‖

A
�= 0 whenever

A ∈ F .

Proposition 17.4 is a polyvalent result which helps us characterize
the sets D ∈ Alg but also find conditions for H(D) not to be a
Noetherian algebra.

Proposition 17.4. Let F be a pierced filter on D, let (Tn)n∈N be a
sequence of holes of D that runs F , and let E = K\(⋃∞

n=0 Tn). Let
g1, . . . , gq ∈ Hb(E) be vanishing along F , with g1 properly vanish-
ing. For every x ∈ E let S(x) = sup1≤i≤q |gi(x)|, let J be the ideal

generated by g1, . . . , gq in Hb(E) and let J be its closure in Hb(D).
There exists a sequence (zn)n∈N in D, thinner than F , such that

g1(zn) �= 0 and an element G ∈ J such that limn→∞
|G(zn)|
S(zn)

= +∞.

Proof. Without loss of generality, we may assume F to be a
decreasing filter or a Cauchy filter. Indeed, if F is an increasing
filter of center α and diameter R, consider a hole of D T (b, ρ)
included in d(α,R−), take γ(x) = 1

x−b , and set D′ = γ(D). Then, by

Theorem 3.11, D′ admits a decreasing pierced filter F ′, the image of
F by γ. Next, D′ is clearly bounded. By Theorem 12.7, the mapping



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch17 FA1 page 141

Algebras H(D) 141

φ from D onto D′ defined by φ(f) = f ◦ γ−1 is an isomorphism from
H(D′) onto Hb(D). Hence, J is isomorphic to the ideal generated
by {gj ◦ γ−1|1 ≤ j ≤ q} in H(D′). Hence, we assume F to be a
decreasing pierced filter or a Cauchy pierced filter.

Without loss of generality, we may now clearly assume D = E.
Since gj are bounded, we may obviously assume ‖gj‖D

≤ 1 whenever
j = 1, . . . , q. Let R = diam(F) and let (xm)m∈N be a sequence in
D thinner than F , such that g1(xm) �= 0 whenever m ∈ N, with
|xm+2 − xm+1| < |xm+1 − xm|. Since F is pierced, there exists a
subsequence (xmq )q∈N of the sequence (xm) together with a sequence
of holes (Tq)q∈N of D such that

Tq ⊂ d(xmq+1 , dmq )\d(xmq+2 , dmq+1).

Hence, without loss of generality, we may assume that we have
a sequence of holes (Tm)m∈N of D such that Tm ⊂ d(xm+1, dm)\
d(xm+2, dm+1).

We put Dm = d(xm+1, dm) ∩ D and An = D2n+1\D2n+3. For
each n, let un ∈ An be such that |g1(un)| ≥ ‖g1‖An

(

n
n+1

)

. For each

j = 1, . . . , t, let M j
n = ‖gj‖An and let Mn = max1≤j≤tM

j
n. Since

g1(xm) �= 0, we have Mn > 0 whenever n ∈ N, and since ‖gj‖D ≤ 1
for all j, we have Mn ≤ 1 whenever n ∈ N.

We construct a sequence (Un) in Hb(D) satisfying

(1) |Un(x)| ≤ 1

n+ 1
whenever x ∈ D\An,

(2)
√

Mn

(n+ 1

n

)

> ‖g1Un‖An
>
√

Mn.

For every n ∈ N, set Tn = d(βn, ρ
−
n ), un = x2n+2, an =

βn+1, bn = βn+2, cn = β2n+3, and εn ∈ d(0, 1n). Let us fix n ∈ N. It
is seen that |un−an| > |un− bn|, hence there exists qn ∈ N such that

(3) |εn|
∣

∣

∣

un − an
un − bn

∣

∣

∣

qn
g(un) >

√

Mn

and of course there exists q′n such that

(4)
(d2n+1

d2n+2

)qn (d2n+3

d2n+2

)q′n
< 1.

We put hn(x) = εn
(

x−an
x−bn

)qn (x−cn
x−bn

)q′n .
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Then, by (4), we see that

when |x− cn| > d2n+1, we have |hn(x)| = |εn| < 1
n ,

when |x − cn| ≤ d2n+3, we have |x − an| = |an − cn| = d2n+1

and |x − bn| = |bn − cn| = d2n+2, hence |hn(x)| ≤ |εn|
(d2n+1

d2n+2

)qn

(d2n+3

d2n+2

)q′n < 1
n .

But now we note that x belongs to D\An if and only if it satisfies:
either |x − cn| > d2n+1 or |x − cn| ≤ d2n+3, hence we have proven
that |hn(x)| < 1

n whenever x ∈ D\An. This shows hn satisfies (1).
When x ∈ An i.e. when d2n+3 < |x − cn| < d2n+1, we

see that ‖g1hn‖An
≥ |g1(un)hn(un)|, hence, by (3), we have

‖g1hn‖An
≥ √

Mn. Hence, there trivially exists λn ∈ d(0, 1) such

that
(

n+1
n

)√
Mn > |λng1hn|An

>
√
Mn.

Now, we put Un = λnhn and we see that Un satisfies (1) and (2).

In particular, we have ‖g1Un‖D
≤ max

(√
Mn

(

n+1
n

)

,
‖g1‖D
n+1

)

, hence

limn→∞ ‖g1Un‖D
= 0. Let T =

∑∞
n=0 g1Un. By definition, T belongs

to F because for every t ∈ N, g
∑t

n=0 Un belongs to F .
By (2), there exists a sequence (zn)n∈N in D satisfying zn ∈ An

and

(5)
√

Mn < |g1(zn)U(zn)| < Mn

(n+ 1

n

)

,

hence we have

(6) |Un(zn)| >
√
Mn

|g1(zn)| ≥
1√
Mn

because |g1(zn)| ≤Mn.

When j �= n, zn belongs to D\Aj , hence by (1) and (6), we have
|Uj(zn)| < 1

j+1 <
1√
Mn

< |Un(zn)| whenever j �= n. Hence, we see

that |T (zn)| = |g1(zn)Un(zn)| whenever n ∈ N. But then, by (5),

we see that |T (zn)|
S(zn)

= |T (zn)|
Mn

> 1√
Mn

. Consequently, limn→∞
|T (zn)|
S(zn)

=

+∞ and this finishes the proof of Lemma 17.4. �

Corollary 17.5. Let a ∈ D\
◦
D and let F be the pierced filter of

the neighborhoods of a. There exists a sequence (zn)n∈N in D of
limit a and an element G ∈ Hb(D) vanishing along F such that

lim supn→∞
|G(zn)|
|zn−a| = +∞.
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Lemma 17.6. Let D have a hole T = d(a, r−). Let γ(x) = b + λ
x−a

with λ ∈ K and let D′ = γ(D). For every α ∈ D,α belongs to
( ◦
D
)

if and only if γ(α) belongs to
( ◦
D′
)

. Moreover, if D is not bounded,

then K\D is bounded if and only if b belongs to
( ◦
D′
)

.

Proof. γ is obviously a bicontinuous bijection from K\{a} onto

K\{b}. Let α ∈
( ◦
D
)

. There exists a disk d(α, r) included in D. Since

a /∈ d(α, r), γ is bounded in d(α, r). Since γ is bicontinuous, γ(d(α, r))
is open in K\{a}, hence it is clearly open in K. So, γ(α) belongs to

γ
( ◦
D
)

. But γ(D) ⊂ γ(D), hence γ(α) ∈
( ◦
D′
)

. Let ξ = γ−1. Then,

ξ(u) = a+ λ
u−b and then what is true for γ is also true for ξ. Hence,

conversely, if γ(α) ∈
( ◦
D′
)

, we see that α = ξ(γ(α)) ∈
◦
D′ because

D = ξ(D′).
We now suppose D unbounded. If K\D is bounded, then D con-

tains a set E of the form {|x| |x − a| ≥ s} with s > |a − b| whose
image E′ is d

(

a, |λ|s
)\{a}, hence D′ contains d

(

a, |λ|s
)

and so does
◦
D′.

Finally, we suppose that K\D is not bounded. Then,
γ((K\{a})\D) is an open set E in K whose closure contains b. Since
b ∈ D′\D′, it is easily seen that there is a sequence of holes of
D′, (Tn)n∈N, that approaches b (each one is obviously included in

E), hence b /∈
( ◦
D′
)

. This ends the proof of Lemma 17.6. �

Corollary 17.7. Let D have a hole T = d(a, r−), satisfy D\D ⊂
( ◦
D
)

, and be such that K\D is bounded. Let γ = 1
x−a and let D′ =

γ(D). Then, D′\D′ ⊂
( ◦
D′
)

.

Lemma 17.8. The following two conditions are equivalent:

(A) ˜D\D is bounded.
(A′) Either D is bounded or K\D is bounded.

Proof. If D is bounded, (A) and (A′) are clearly satisfied, hence
we have nothing to show. Now, we suppose D to be unbounded.
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Hence, ˜D = K and then ˜D\D = K\D, so ˜D\D is bounded if and
only if K\D is bounded. Finally, (A) and (A′) are equivalent. �

Theorem 17.9. D belongs to Alg if and only if it satisfies the fol-
lowing two conditions:

(A) ˜D\D is bounded.

(B) D\D ⊂
( ◦
D
)

.

Proof. Suppose first that D satisfies A and B. By Lemma 17.8, it
satisfies A′ and B. Suppose first that D is bounded. Since D satisfies
B, by Proposition 17.3, D ∈ Alg. Suppose now that K\D is bounded.
We may obviously assume D to have a hole T = d(a, r−) because if
D has no hole, then, by Corollary 11.8, we have H(D) = R(D).
Let γ = 1

x−a and let D′ = γ(D). The set D′ is then bounded, and,

by Corollary 17.7, D′ satisfies D′\D′ ⊂
( ◦
D′
)

and hence D′ ∈ Alg,

therefore by Proposition 17.3, D belongs to Alg.
We now suppose that (B) is not satisfied and prove that D /∈ Alg.

Indeed, let α ∈ (D\D)\
( ◦
D
)

. By definitions, D has a Cauchy pierced

filter F that converges in K to α. Let T = d(a, r−) be a hole of D
and let f = x−α

x−a . Then, f ∈ Rb(D). By Proposition 17.4, there exists
S ∈ Hb(D) such that S(α) = 0 together with a sequence (zn)n∈N in

D such that limn→∞ zn = α, while limn→∞
∣

∣

S(zn)
f(zn)

∣

∣ = +∞.

Let us assume D ∈ Alg. Then, S(x)f(x) ∈ H(D) because x−a
x−α ∈ R(D).

Since
∣

∣

S(x)
f(x)

∣

∣ is not bounded in any neighbourhood of α, by Theorem

11.10 and Corollary 11.9, there exists an integer n ≥ 1 such that

(x− α)n S(x)f(x) has a non-zero limit 
 at α. But when x∈D∩ d(α, |a|),
we have

∣

∣(x − α)n
(S(x)
f(x)

)∣

∣ =
∣

∣(x − α)n−1(x − a)S(x)
∣

∣ = |a| |x −
α|n−1 |S(x)|, hence 
 = 0, a contradiction. Consequently, D /∈ Alg.

Suppose now that D satisfies (B) but does not satisfy (A). Both
D and K\D are unbounded. Since K\D is unbounded, D has a hole
T = d(α, r−), and then by Lemma 17.6, the inversion γ(x) = 1

x−α

maps D onto a bounded set D′ such that α ∈ (D′\D′) ⊂
( ◦
D′
)

.

Hence, D′ does not belong to Alg and neither does D. This ends the
proof of Theorem 17.9. �
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Corollary 17.10. If D is bounded and if D is open, then D belongs
to Alg.

Notation. Throughout this book, Conditions (A) and (B) are those
given in Theorem 17.9.

Theorem 17.11. Let D belong to Alg and have a hole T = d(a, r−).
Let h(x) = 1

x−a and let D′ = h(D). Then, D′ is bounded and belongs
to Alg.

Proof. Since D ∈ Alg, by Theorem 17.10, D satisfies Condi-
tions (A) and (B) and hence we can we can check that D′, being
obviously bounded, satisfies (A) and (B) too. If D is bounded, this
is immediate. If D is not bounded, then 0 is the unique point that

might not belong to D
′\D′ ⊂

(
◦
D

′)
. But if 0 is the limit of a sequence

of holes of D′, then ˜D\D is not bounded, which contradicts Condi-
tion (A).

�

Lemma 17.12. Let D be open. Then, D satisfies Condition (B) if
and only if D is open.

Proof. SinceD is open,D is open if and only if for every α ∈ D\D,
α is interior to D. This is just equivalent to Condition (B). �

Notation. Let D ∈ Alg and let a ∈ D. We denote by J (a) the ideal
of the f ∈ H(D) such that f(a) = 0.

Theorem 17.13. Let D ∈ Alg and let a ∈ D. If a belongs to
◦
D,

then I(a) = (x− a)H(D). Else, J (a) is not of finite type.

Proof. Suppose first a ∈
◦
D. By Theorem 16.2, it is clearly seen

that J (a) = (x − a)H(D). Now, let a /∈
◦
D. Then the filter of the

neighborhoods of a is a Cauchy pierced filter. We denote it by F .
Suppose that J (a) is of finite type and let {g1, . . . , gq} be a system
of generators. For each j = 1, . . . s, q, let Qj be the polynomial of
poles of gj in D\D. Now, let d(b, r−) be a hole of D. By Corollary
11.7, for each j = 1, . . . , q, there exists a rational function of the form

1
(x−b)tj such that the function hj =

gj

Qj(x−b)tj belongs to Hb(D).
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Of course, at least one of gj is properly vanishing along F , other-
wise all the elements of J (a) would be equal to 0 inside a neighbor-
hood of a and then J (a) couldn’t contain x−a. Consequently, we can
assume that g1 is properly vanishing and so is h1. For every x ∈ D, we
put S(x) = max1≤j≤q |hj(x)|. We note that J (a) is obviously closed
in H(D), hence by Proposition 17.4, there exists f ∈ J (a) together
with a sequence (zn)n∈N in D, of limit a, such that S(zn) �= 0 when-

ever n ∈ N and that limn→∞
|f(zn)|
S(zn)

= +∞. This obviously contra-

dicts the fact that f should be of the form
∑q

j=1 fjgj with the fj in

H(D). Thus we have shown that J (a) is not of finite type and this
ends the proof of Theorem 17.13. �

Corollary 17.14. Let D ∈ Alg. If D\
◦
D �= ∅ then H(D) is not

noetherian.
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Chapter 18

Derivative of Analytic Elements

Given an infraconnected set, the main question we consider here is
whether an element f of H(D) has a derivative that belongs to H(D)
and when it does, whether its Mittag-Leffler series is obtained by
deriving that of f . Another question is whether an analytic element
onD whose derivative is identically zero is a constant. Both questions
are answered on an infraconnected closed set.

Throughout this chapter, D is a subset of K and is supposed to be
open and infraconnected and we fix R > 0.

Theorem 18.1. Let f(x) =
∑+∞

n=0 anx
n ∈ H(d(0, R)). Then, f has a

derivative f ′(α) at each point α ∈ d(0, R) and f ′(0) = a1. Moreover,
the function f ′ also belongs to H(d(0, R)), is equal to

∑+∞
n=0 nanx

n−1,
and satisfies

|f ′|(r) ≤ |f |(r)
r

∀r ∈]0, R].

Further, f is indefinitely derivable in d(0, R) and

fk)(x) =
∞
∑

n=k

n(n− 1) · · · (n− k + 1)anx
n−k.

Proof. Without loss of generality, we can suppose that R ≤ 1.

Obviously, limx→0
f(x)−a0

x = a1, hence f
′(0) exists and is equal to a1.

147
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More generally, take α ∈ d(0, R)\{0} and consider

f(x)− f(α)

x− α
=

∑∞
n=1 an(x

n − αn)

x− α

=

∞
∑

n=1

an(x
n−1 + αxn−2 + · · ·+ αn−1).

Then, |(xn−1 + αxn−2 + · · · + αn−1) − nαn−1| ≤ |x − α|
(

max(|α|, |x|))n−1
. Particularly, when x is close enough to α, since

α �= 0, we have |x| = |α|, hence
|an||(xn−1 + αxn−2 + · · · + αn−1)− nαn−1| ≤ |an||α|n−1|x− α|.

That proves that (an(x
n−1 + αxn−2 + · · · + αn−1)) − nanα

n−1

converges to 0 uniformly with respect to n and uniformly
with respect to x inside a disk of center α. Consequently,
f ′(α) =

∑∞
n=1 nan(x− α)n ∀α ∈ d(0, R). Then,

|f ′|(r) = sup
n∈N

(|nan|rn−1) ≤ sup
n∈N

(|an|rn−1) =
1

r
|f |(r).

The last statement concerning f (k) is then immediate. �
More generally, we can derive the following:

Theorem 18.2. Let f ∈ H(Δ(0, R,R′)). Then, f (k) also belongs to

H(Δ(0, R,R′)) for every k ∈ N∗ and satisfies |f ′|(r) ≤ |f |(r)
r ∀r ∈

]R,R′[. Moreover, if the residue characteristic does not divide

ν+(f, log r) or ν−(f, log r), then |f ′|(r) = |f |(r)
r .

Proof. f(x) is equal to a Laurent series
∑+∞

−∞ anx
n with

limn→+∞ |an|R′n = 0 and limn→−∞ |an|Rn = 0, hence obviously,
limn→−∞ |nan|Rn−1 = 0 and limn→+∞ |nan|R′n−1 = 0. Conse-
quently, f ′(x) belongs to H(Δ(0, R,R′)). Then,

|f ′|(r) = sup
n∈Z

(|nan|rn−1) ≤ sup
n∈Z

(|an|rn−1) =
1

r
|f |(r).

Suppose now that the residue characteristic p does not divide
ν+(f, log r) or ν−(f, log r). If ν+(f, log r) = ν−(f, log r) is an inte-
ger q, it is obvious that |f |(r) = |aq|rq and |qaq| = |aq|, hence

|f ′|(r) = |f |(r)
r , provided q �= 0. Next, the property has continua-

tion by continuity to the points μ such that ν+(f, μ) �= ν−(f, μ). �
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Corollary 18.3. Let R, R′ ∈]0,+∞[ (R < R′) and let
f ∈ A(d(0, R−)) (respectively f ∈ A(Γ((0, R,R′). Then,

|f ′|(r) ≤ |f |(r)
r ∀r ∈]0, R[ (respectively ∀r ∈]R,R′[).

Corollary 18.4. Suppose K has characteristic zero and f belongs to

H(d(0, R)). Then, an = f(n)(0)
n! for every n ∈ N, and if α is a zero of

multiplicity order q of f , then we have f (j)(α) = 0 for every j < q
and f (q)(α) �= 0.

Corollary 18.5. Let h ∈ K(x). Then, for all r > 0, we have |h′|(r) ≤
|h|(r)
r .

Theorem 18.6. Let f(x) =
∑∞

n=0 anx
n ∈ A(d(0, r−)). The power

series
∑∞

n=1 nanx
n−1 also belongs to A(d(0, r−)) and is equal to the

derivative of f in d(0, r−). The radius of convergence of f ′ is superior
or equal to the one of f . Further, if K has characteristic 0, the radius
of convergence of f ′ is the same as that of f .

Proof. By Theorem 18.1, the first statement is clear. Now, we
suppose that K has characteristic zero. If K has residue charac-
teristic zero, then |n| = 1 for all n ∈ N∗, and therefore, the
last statement is clear. Now, we assume that K has residue char-
acteristic p �= 0. By Lemma 6.17, we have 1

n ≤ |n| ≤ 1 for

every n ∈ N∗, and therefore, limn→+∞ n
√|n| = 1. Consequently,

lim supn→+∞ n
√|an| = lim supn→+∞ n−1

√|nan|, and finally, f ′ has the
same radius of convergence as f . �

Corollary 18.7. Suppose K has characteristic 0. Let f(x) =
∑∞

n=0 anx
n ∈ A(d(0, r−)). The power series

∑∞
n=0

an
n+1x

n+1 also

belongs to A(d(0, r−)) and has the same radius of convergence as
that of f and is a primitive of f in d(a, r−).

Remark. Unlike in Archimedean analysis, when the characteristic
p of K is not zero, there do exist power series f whose derivatives
have a radius of convergence bigger than that of f . For example, let
f(x) =

∑∞
n=0 x

pn : the radius of convergence of f is 1, while this of
f ′ is +∞.

Theorem 18.8. Let a ∈ K and let R ∈ R+. Let (fm)m∈N∗ be a
sequence of H(d(a,R)) converging uniformly to a function f . Then
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the sequence (f ′m)m∈N∗ converges uniformly to f ′ in H(d(a,R)) and

we have ‖f ′m − f ′‖d(a,R) ≤ ‖fm−f‖d(a,R)

R ∀m ∈ N.

Proof. For each m ∈ N, set fm(x) =
∑∞

n=0 an,mx
n and let f(x) =

∑∞
n=0 bnx

n. Then for each m ∈ N, we have limn→+∞ |an,m|Rn = 0,
limn→+∞ |bn|Rn = 0. Now, the Banach norm of fm− f tends to zero
when m goes to ∞, hence limm→+∞

(

supn∈N(|an,m − bn|Rn)
)

= 0.
Consequently, considering the respective derivatives, we have

lim
m→+∞

(

sup
n∈N

(|nan,m − nbn|Rn)
)

= 0,

and therefore, by Theorem 18.1, we have ‖f ′m − f ′‖d(a,R) ≤
‖fm−f‖d(a,R)

R . We are done. �

Corollary 18.9. Let a ∈ K and let R ∈ R+. Let (fm)m∈N∗

be a sequence of H(K\d(a,R−)) converging uniformly to a func-
tion f . Then the sequence (f ′m)m∈N∗ converges uniformly to f ′ in
H(K\d(a,R−)) and we have ‖f ′m−f ′‖K\d(a,R−) ≤ R‖fm−f‖K\d(a,R−)

∀m ∈ N.

Theorem 18.10. Suppose K has characteristic 0. Let a ∈ K and
let R ∈ R+. Let (fm)m∈N∗ be a sequence of A(d(a,R−)) such
that the sequence (f ′m)m∈N∗ converges uniformly to a function h
in H(d(a, r)) ∀r ∈]0, R[ and such that the sequence fm(a) con-
verges in K. Then the sequence (fm)m∈N∗ converges to a function
f ∈ A(d(a,R−)) such that f ′ = h and the convergence is uniform in
d(a, r) for every r ∈]0, R[.
Proof. Without loss of generality, we can assume a = 0. Let us
fix r ∈]0, R[ and let us show that the sequence (fm)m∈N∗ converges
uniformly to a function f ∈ H(d(a, r)) such that f ′ = h. For every
m ∈ N, let f ′m =

∑+∞
n=0 bn,mx

n and let h(x) =
∑+∞

n=0 bnx
n. Take

s ∈]r,R[. By hypothesis, we have

(1) lim
m→+∞ sup

n∈N
|bn,m − bn|sn = 0.

But since |n| ≥ 1
n , we have limn→+∞ ρn+1

|n+1| = 0 ∀ρ < 1, there-

fore, by (1), we have limm→+∞
(

supn∈N
∣

∣

bn,m−bn
n+1

∣

∣rn+1
)

= 0. Conse-
quently, the sequence (fm − fm(0))m∈N converges uniformly to the
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function g(x) =
∑+∞

n=0
bn
n+1x

n+1. Set limm→+∞ fm(0) = b0. Then the
sequence (fm)m∈N converges to g(x) + b0 uniformly in d(0, r) for
every r < R. �

Corollary 18.11. Suppose K has characteristic 0. Let α ∈ K and
let R ∈ R+ and let a ∈ K\d(α,R). Let (fm)m∈N∗ be a sequence of
A(K\d(α,R)) such that the sequence (f ′m)m∈N∗ converges uniformly
to a function h in H(K\d(α, r−)) ∀r > R and that the sequence
(fm(a))m∈N converges in K. Then the sequence (fm)m∈N∗ converges
to a function f ∈ A(K\d(α,R)) such that f ′ = h and the convergence
is uniform in K\d(α, r−) for every r > R.

Theorem 18.12. Let r > 0. If K has characteristic 0, then an ele-
ment f ∈ H(d(0, r)) has a derivative identically equal to 0 if and
only if it is equal to a constant.

If K has a characteristic p �= 0, then an element f ∈ H(d(0, r))
has a derivative identically equal to 0 if and only if there exists g ∈
H(d(0, r)) such that f(x) = (g(x))p.

Proof. By Theorem 14.6, each element of H(d(0, r) is a conver-
gent power series, hence the statement about the case when K has
characteristic zero is obvious. Now, suppose that K has a character-
istic p �= 0. If there exists g ∈ H(d(0, r)) such that f(x) = (g(x))p,
obviously we have f ′(x) identically equal to 0.

Now, we suppose f ′(x) identically equal to 0. Hence, f(x) is of
the form

∑∞
j=0 bjx

jp, with limj→∞ |bj|rjp = 0. For each j ∈ N,
we can take cj ∈ K such that (cj)

p = bj . Then, it is seen that
limj→∞ |cj |rj = 0. Now, we can put g(x) =

∑∞
n=0 cnx

n, and there-
fore, g belongs to H(d(0, r)). Since K has characteristic p, we have
(g(x))p = f(x). This ends the proof. �

Corollary 18.13. Let r > 0. If K has characteristic 0, then an
element f ∈ H(K\d(0, r−)) (respectively f ∈ H0(K\d(0, r−))) has a
derivative identically equal to 0 if and only if it is equal to a constant
(respectively to 0).

If K has a characteristic p �= 0, then an element f ∈
H(K\d(0, r−)) (respectively f ∈ H0(K\d(0, r−))) has a derivative
identically equal to 0 if and only if there exists g ∈ H(K\d(0, r−))
(respectively g ∈ H0(K\d(0, r−))) such that f(x) = (g(x))p.
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Corollary 18.14. Let r > 0. If K has characteristic 0, then a power
series f(x) ∈ A(d(0, r−)) has a derivative identically equal to 0 if and
only if it is equal to a constant.

If K has a characteristic p �= 0, then a power series f(x) ∈
A(d(0, r−)) has a derivative identically equal to 0 if and only if there
exists g ∈ A(d(0, r−)) such that f(x) = (g(x))p.

Theorem 18.15 improves Theorems 18.1 and 18.2 concerning
derivatives of order k > 1.

Theorem 18.15. Let a ∈ K, let R,R′, R′′ ∈ R∗
+ with R′ < R′′, and

let f ∈ H(d(0, r)) (respectively let f ∈ H(K\d(0, R−)), respectively
let f ∈ H(Γ(0, R′, R′′))). Then, for every k ∈ N∗, for every r < R
(respectively r > R, respectively r ∈]R′, R′′[), we have

|f (k)|(r) ≤ |k!| |f |(r)
rk

.

Proof. Let f(x) =
∑∞

n=0 anx
n ∈ H(d(0, R−)). By Theorem 14.6,

we have |f |(r) = supn∈N |an|rn and |f (k)|(r) = supn≥k
| (n!)
((n−k)!)an|rn−1. But (n!)

((n−k)!) is an integer multiple of k! because

the combination ( nk ) belongs to N. Consequently,
∣

∣

(n!)
((n−k)!)

∣

∣ ≤ |k!|,
and therefore, we obtain |f (k)|(r) ≤ supn≥k |k!||an|rn−k. The proof is
similar when f belongs to H(K\d(0, r)) or to H(Γ(0, r′, r′′)). �

Corollary 18.16. Let a ∈ K, let r ∈ R∗
+ and let f ∈ H(d(a, r)).

Then,

‖fk‖d(a,r) ≤ |k!|‖f‖d(a,r)
rk

.

Theorem 18.17. Let f ∈ Hb(D) and let ρ = δ(D, (K\D)). If ρ > 0,
then f ′ belongs to Hb(D) and satisfies ‖f ′‖D ≤ 1

ρ‖f‖D .

Proof. Let (Tn)n∈S be the sequence of the f -holes and let D′ =
˜D\(⋃n∈S Tn

)

. By Theorem 15.1, we know that f ∈ Hb(D
′) and that

(1) ‖f‖
D′ = ‖f‖D .

By Theorem 18.1, f has a derivative f ′ in D′ and we first check that
the function f ′ satisfies ‖f ′‖

D′ ≤ 1
ρ ‖f‖. Let a ∈ D′. The disk d(a, ρ−)
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is obviously included in D because if a point b ∈ d(a, ρ−) belonged to
K\D′, since D is closed, there would be a disk d(b, r−) ⊂ K\D′ with
r < ρ. Thus, when x ∈ d(a, ρ−), f(x) is of the form

∑∞
n=0 an(x−a)n

and hence the conclusion comes from Theorem 18.1. �

Corollary 18.18. Let f ∈ H(D) be such that the set of diameters
of the f -holes has a strictly positive lower bound. Then, f ′ ∈ H(D).

Proof. By Theorem 11.5, we know that f is in the form g+h with
h ∈ R(D) and g ∈ Hb(D). Obviously, h′ belongs to R(D), and by
Theorem 18.17, we have g′ ∈ Hb(D). �

Theorem 18.19. Let D ∈ Alg be closed and open. Let f ∈ Hb(D),
let (Vn)n∈N∗ be the set of f -holes, and let

∑∞
n=0 fn be its Mittag-

Leffler series on D defined as f0 = f0 and for every n ∈ N∗, fn =

fVn . The following three conditions are equivalent:

(a) f ′ belongs to H(D).

(b) The series
∑∞

n=0 f
′
n converges in H(D).

(c) The series
∑∞

n=0 f
′
n converges to f ′ in Hb(D).

Proof. We first prove the equivalence between (b) and (c). For
each q ∈ N, the sum

∑q
n=0 f

′
n clearly belongs to Hb(D). Thus, we

assume that this series
∑∞

n=0 f
′
n converges to an element h ∈ H(D)

and we prove that h = f ′ ∈ Hb(D). Let α ∈ D. There exists a disk

d(α, r) ⊂ D. We show that h(α) = f ′(α). For every ψ ∈ H(D), ˜ψ

denotes the restriction of ψ to d(α, r). Since the sequence
(

˜∑n
j=0 fj

)

converges to ˜f , by Theorem 18.17, the sequence of the derivatives
(

˜∑n
j=0 f

′
j

)

does converge to ˜f ′, hence it is clearly seen that f ′(α) =
h(α), and therefore, f ′ = h. We check that f ′ is bounded in D. The
sequence ‖f ′n‖D

has limit 0 hence is obviously bounded and therefore
its sum f ′ is bounded in D. Thus, (b) and (c) are equivalent.

Since (c) trivially implies (a), we just have to prove that (a)
implies (b). Thus, we suppose (a) to be true and prove (b).

First, we suppose D bounded. For each hole T of D that is either

an f -hole or an f ′-hole, we denote by fT (respectively gT ) the
Mittag-Leffler term of f (respectively f ′). Let S be the set of holes
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T such that (fT )′ �= gT and let T be the set of f -holes such that

(fT )′ = gT . If we can show that S = ∅, then (b) is clearly proven.
Hence, we suppose S �= ∅. All the gT are equal to zero except

maybe a countable family of them. The series
∑

T∈T gT and
∑

T∈S gT
obviously converge in H(D), and then we have f ′ =

∑

T∈T (fT )′ +
∑

T∈S gT . Since (b) implies (c), the series
∑

T∈T (fT )′ is clearly equal

to the derivative of
∑

T∈T fT . Let h =
∑

T∈S fT = f −∑T∈T fT .

Then, h′ = f ′ −∑T∈T (fT )′ =
∑

T∈S gT . Let D be the family of
diameters of the holes T that belong to S and let λ be its lower

bound. Suppose λ > 0. By Theorem 18.17, the series
∑

T∈S(fT )′

converges to h′, hence
∑

T∈S(fT )′ is the Mittag-Leffler series of h′ on

D, hence (fT )′ = gT for all T ∈ S and that contradicts the definition
of S. Hence, λ = 0.

Now, we prove that there exists a hole V = d(a, r−) ∈ S with an
annulus Γ(a, r, s) such that the set U of the diameters ρ of the f -holes
included in Γ(a, r, s) has a strictly positive lower bound. Indeed, sup-
pose such a hole V does not exist. Then, we can easily construct a
sequence of f -holes (Tn)n∈N∗ of the form Tn = d(an, r

−
n ) with (1)

rn ≤ 1
n and

(2) |an+1 − an| ≤ 2

n
.

For example, assume the sequence has just been constructed up to
the rank q, satisfying (1) and (2) for n ≤ q. Since V does not exist,
then in Γ(aq, rq,

2
q ), we can find an f -hole Tq+1 = d(aq+1, r

−
q+1) with

rq+1 <
2
q+1 and then the sequence is clearly constructed by induc-

tion by taking any first f -hole T1 = d(a1, r
−
1 ). The sequence (Tn)n∈N∗

clearly converges to a point w ∈ D and that contradicts the hypothe-
sis “D is closed and open”. Hence, we have now proven the existence
of the f -hole V with an annulus Γ(a, r, s) and a number ξ > 0 such
that every f -hole T ⊂ Γ(a, r, s, ) satisfies

(3) diam (T ) ≥ ξ.

Let L be this family of f -holes included in Γ(a, r, s). Let l =
∑

T∈L fT . By Theorem 18.17, the series
∑

T∈L(fT )′ converges to l
′ in
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H(D). Now, let ψ = h− l − fV . Clearly, ψ belongs to H(D) and no
hole T (of D) included in d(a, s) is a ψ-hole. Hence, ψ extends to an
element of H(D ∪ d(a, s)). In d(a, s), ψ(x) is equal to a power series
φ(x) ∈ H(d(a, s)), hence φ′ ∈ H(d(a, s)). Thus, in D ∩ d(a, s), ψ′(x)
is equal to the series φ′(x), and then for every hole T of D included in
d(a, s), the Mittag-Leffler term of ψ associated with T (with respect
to D) is zero.

On the other hand, we have ψ′ = h′ − l′ − (fV )′ =
∑

T∈S gT −
∑

T∈L(fT )′− (fV )′ and then the Mittag-Leffler term of ψ′ associated

with V (with respect to D) is gV − (fV )′ �= 0. Hence, we have a
contradiction with ψ ∈ H(d(a, s)). This finishes proving that (b) is
true when D is bounded.

Now, we suppose D unbounded. Since D ∈ Alg, there exists a
disk d(0, S) such that all holes of D are included in this disk. Then
for every element h ∈ H(D), its Mittag-Leffler series in H(D) is the
same as in H(D′). This is true for both f, f ′, and therefore (b),
which is true in H(D′), is obviously true in H(D). That ends the
proof of Theorem 18.19. �

When K has characteristic zero, in most of the cases, we are now
able to answer the question “does f ′ = 0 implies f = ct?”. When D
is not infraconnected, it admits an empty annulus Λ = Γ(a, r′, r′′),
and hence by Proposition 11.15, we know that there exists w ∈ H(D)
such that w(x) = 1 whenever x ∈ I(Λ), while w(x) = 0 whenever
x ∈ E(Λ). Thus, the condition “D is infraconnected” is certainly
necessary to be able to answer “yes” to the question above.

The two theorems that follow show this condition to be sufficient
too, provided D satisfies a little extra condition like to be closed or
to belong to Alg.

By Theorems 15.1, 18.19, and 18.8 and Corollary 18.9, we can
derive the following:

Corollary 18.20. Let D be an open closed bounded infraconnected
subset of K and let (fn)n∈N be a sequence of H(D) converging uni-
formly to a function f . Then, the sequence (f ′n)n∈N converges uni-
formly to f ′.

Remark. Let D be an open closed infraconnected bounded sub-
set of K, let α ∈ D, and let (fn)n∈N be a sequence of H(D)
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such that the sequence fn(α) converges in K and that the sequence
(f ′n)n∈N converges in H(D) to a function h ∈ H(D). Comparatively
to the Archimedean context, we could expect that the sequence
(fn)n∈N converges in H(D) to a function f such that f ′ = h.
Actually, that’s wrong. For example, define the sequence (fn)n∈N
as fn(x) =

∑n
k=0

xp
2k

pk
. Then, f ′n(x) = 1 +

∑n
k=1 p

kxp
2k−1

, and

hence, the sequence (f ′n)n∈N converges in H(d(0, 1)) to the function

1 +
∑+∞

k=1 p
kxp

2k−1
, whereas fn(0) = 1 ∀n ∈ N. However, the func-

tion
∑+∞

k=0
xp

2k

pk
is unbounded in d(0, 1) and hence does not belong to

H(d(0, 1)). That remark does not contradict Theorem 18.10 which
only concerned analytic functions in an “open” disk d(0, r−).

Theorem 18.21. K is supposed to have characteristic zero. Let E
be an open subset of K such that E also is open. Then, E is infra-
connected if and only if for every f ∈ H(E) such that f ′(x) = 0
whenever x ∈ E, we have f = ct.

Proof. If E is not infraconnected, it admits at least an empty
annulus Λ, and then, by Proposition 11.15, the characteristic func-
tion u of I(Λ) belongs to H(E). Hence, there do exist non-constant
elements f ∈ H(E) whose derivative is identically 0. Now, let E be
infraconnected and let f ∈ H(E) satisfy f ′(x) = 0 whenever x ∈ E.
We just have to prove that f is a constant.

Suppose first that E is bounded. By Theorem 11.5, f is in
the form f∗ + f with f∗ ∈ R0(K\(E\E)) and f ∈ H(E), so

f∗′(x)+ f ′(x) = 0 whenever x ∈ E, and therefore, f∗′ = −f ′. Hence,
f
′ ∈ R0(K\(E\E)) ∩H(E). Thus, f∗ is a rational function that has

no pole in K and then it is a polynomial. Now, as an element of
R0(K\(E\E)), it tends to 0 when |x| goes to +∞, hence f∗ = 0
and therefore, f∗′ is identically 0. Since f∗ belongs to R0(K\(E\E))
clearly, f∗ = 0, and therefore, f belongs to H(E).

Let a ∈ E and let
∑

n∈S hn be the Mittag-Leffler series of f in E,

with h0 = f0, and for each n ∈ S, set hn = fTn , for any f -hole Tn.
Since E is open, we can apply Theorem 18.19 to E and then we have
(hn)

′ = 0 for every n ∈ N. Since E is bounded of diameter r, then
by Theorem 16.8, we know that h0 is a constant. In the same way,
by Corollary 18.13, for each q ∈ N, we know that hq = 0. Hence, f
is a constant.
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Finally, let E be unbounded. Then, for all r > 0, the set Er =
E ∩ d(0, r) is such that Er is open, hence f is constant in Er and
therefore in all of E. �

Remark. In particular, Theorem 18.21 applies to open closed sets.

Corollary 18.22. K is supposed to have characteristic zero. Let E
be open and belong to Alg. Then E is infraconnected if and only if
for every f ∈ H(E) such that f ′(x) = 0 whenever x ∈ E, f is a
constant in E.

Proof. Indeed, since E belongs to Alg, it satisfies Condition (B)

in Theorem 17.9: D\D ⊂
( ◦
D
)

. But then, as it is also open, we check

that E is open. �

We now study thoroughly the question of whether all analytic
elements in a set D have derivative in H(D).

Definition. We call piercing of D the number δ(D,K\D) > 0 and
D is said to be well pierced if δ(D,K\D) > 0.

Theorem 18.23. Let D be open. Then, D is well pierced if and only
if for every f ∈ H(D), f ′ also belongs to H(D).

Proof. If D is well pierced, by Corollary 18.18, we know that for
every f ∈ H(D), f ′ belongs to H(D). Now let us suppose D has
piercing zero and let (Tn)n∈N be a sequence of holes Tn = d(αn, ρ

−
n )

such that limn→∞ ρn = 0. Let λn be a sequence in K such that

limn→∞
|λn|
ρn

= 0, while limn→∞
|λn|
ρ2n

= +∞. It is seen that the series
∑∞

n=1
λn

x−αn
converges in H(D) to an element f , while the series

∑∞
n=1

λn
(x−αn)2

does not. On the other hand,
∑∞

n=1
λn

x−αn
obviously

is the Mittag-Leffler series of f . If f ′ belongs to H(D), by Theo-
rem 18.19, its Mittag-Leffler series must be

∑∞
n=1

λn
(x−αn)2

. Since this

series does not converge, this is just impossible. �

Before closing this chapter, we note the following result that may
be sometimes helpful in differential equations.

Theorem 18.24. Let D be open. We suppose that both f and f ′
belong to H(D). For every ε > 0, there exists h ∈ R(D) such that
‖f − h‖D ≤ ε together with ‖f ′ − h′‖D ≤ ε.



October 24, 2024 19:15 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch18 FA1 page 158

158 Value Distribution in Ultrametric Analysis and Application

Proof. First, we suppose that f belongs to Hb(D). We have to

introduce a notation. Let g ∈ Hb( ˜D). If D is bounded, ˜D is a disk
d(a, r) and g is of the form

∑∞
m=0 λm(x−a)m. Then, for every q ∈ N,

we put (g)q =
∑q

m=0 λm(x − a)m. If D is unbounded, then g is a
constant λ◦, and we put (g)q = g whenever q ∈ N. Let T = d(b, r−)
be a hole of D and let l(x) =

∑∞
m=1

μm
(x−b)m . For each q ∈ N∗, we put

(l)q =
∑q

m=1
μm

(x−b)m . Now, let
∑∞

n=0 fn be the Mittag-Leffler series

of f , with f0 = f0 and for each n ∈ N∗, fn = fTn , for any f -hole Tn.
By Theorem 18.19, the Mittag-Leffler series of f ′ is

∑∞
n=0 f

′
n, and

therefore, there exists an integer N(ε) such that

(1)

∥

∥

∥

∥

∥

∥

N(ε)
∑

n=0

fn − f

∥

∥

∥

∥

∥

∥

D

≤ ε

and

(2)

∥

∥

∥

∥

∥

∥

N(ε)
∑

n=0

f ′n − f ′

∥

∥

∥

∥

∥

∥

D

≤ ε.

Obviously, we have an integer Q(ε) such that ‖fn − (fn)Q(ε)‖D ≤ ε
whenever n = 0, . . . , N(ε), and then by (1) and (2), it is easily seen

that ‖∑N(ε)
n=0 (fn)Q(ε) − f‖

D
≤ ε and ‖∑∞

n=0(f
′
n)Q(ε) − f ′‖

D
≤ ε.

By putting h =
∑N(ε)

n=0 (fn)Q(ε), we obtain the h ∈ R(D) we want.
Now, we can consider the general case. By Corollary 11.7, f is of

the form l + ψ, with l ∈ Hb(D) and ψ ∈ R(D). Hence, f ′ = l′ + ψ′.
Since f ′ belongs to H(D), so does ψ′. Hence, by Theorem 18.21, ψ′
belongs to Hb(D). We have just proven that there exists t ∈ Hb(D)
such that ‖l − t‖

D
≤ ε and ‖l′ − t′‖

D
≤ ε. Hence, we just have to

consider h = t+ ψ, and this ends the proof. �

Theorem 18.25. Let D be open. Suppose 0 ∈ D. Let f ∈ H(D) and

let r ∈ [δ(0,D),diam(D)]. Then, |f ′|(r) ≤ |f |(r)
r .

Proof. Suppose first that |f |(r) �= 0. Let ε > 0 and let η > 0

be such that |f |+η
r + η < |f |

r + ε. Now, by Theorem 18.24, we can
find h ∈ R(D) such that |h′|(r) ≤ |f ′| + η and |h|(r) ≤ |f | + η.
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By Corollary 18.3, we have |h′|(r) ≤ |h|(r)
r , hence

|f ′|(r) ≤ |h′|(r) + η ≤ |h|(r)
r

+ η ≤ |f |(r) + η

r
+ η ≤ |f |(r)

r
+ ε.

Now, suppose |f |(r) = 0. Then, by Theorem 18.24, we can find
h ∈ R(D) such that max(|h′|(r), |h|(r)) ≤ ε, hence we have again

|f ′| ≤ |f |(r)
r . This is true for all ε > 0 and hence the claim is proven.

�

In the case when K has a characteristic p �= 0, we have
Theorem 18.26.

Theorem 18.26. Let K have characteristic p �= 0, let D be closed,
and let f ∈ Hb(D). Then, f ′(x) is identically 0 if and only if there
exists g ∈ Hb(D) such that f = gp.

Proof. Indeed, if there exists g ∈ Hb(D) such that f = gp, of
course, we have f ′ = 0. Now, suppose that f ′(x) is identically 0.
Let a ∈ D and let

∑

n∈S hn be the Mittag-Leffler series of f in D,

with h0 = f0 and for each n ∈ S, hn = fTn , for any f -hole Tn. By
Theorem 18.19, we have (hn)

′ = 0 for every n ∈ N.
If D is unbounded, h0 is a constant, and then we can find g0 ∈ K

such that (g0)
p = h0. IfD is bounded of diameter r, then by Corollary

18.13, we can find g0 ∈ H(d(a, r)) such that (g0)
p = h0. In the same

way, for each q ∈ N, by Corollary 18.13, we can find gq ∈ H0(K\Tq)
such that (gq)

p = hq and then, it is seen that limn→∞ ‖gn‖D
= 0

because for each n ∈ N∗, we have (‖gn‖D
)p = ‖hn‖D

. So, the series
(
∑∞

n=0 gn
)

converges in Hb(D) to an element g which clearly satisfies
gp = f . This ends the proof of Theorem 18.26. �
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Chapter 19

Properties of the Function Ψ
for Analytic Elements

Throughout this chapter, D is infraconnected.

The function Ψ(f, μ) was defined for rational functions in
Chapter 4. Here, we generalize that function to analytic elements.
Its interest is to transform the multiplicative property of the norm
| . | into an additive property. Overall, Ψ is piecewise affine. Long
ago, such a function was first defined in classical works such as the
valuation function of an analytic element [1], [35], [44] denoted by
v(f, μ). However, the function v(f, μ) has the inconvenient of being
contravariant: μ = − log(|x|) and v(f,− log(|x|)) = − log(|f |(r)).
Here, we change both senses of variation: Ψ(f, μ) = −v(f,−μ) [49],
[50].

Among applications, we can show that a set E is infraconnected
if and only if for all f ∈ H(E), f(E) is infraconnected and that an
analytic element converges along a monotonous filter F if and only
if f ′ is vanishing along F .

Notations. For every a ∈ ˜D, we put λ(a) = log(δ(a,D)) if
δ(a,D)> 0 and λ(a) = −∞ if δ(a,D) = 0. We denote by S the
diameter of D, with S = +∞ if D is not bounded.

Let a ∈ ˜D and let F be a circular filter of center a and diameter
r ∈ [δ(a,D), S] ∩ R. By Proposition 3.17, F is secant with D and
then defines an element DϕF of Mult(H(D),UD).

For every f ∈ H(D) such that DϕF (f) �= 0, we put Ψa(f, log r) =
log(DϕF (f)). Next, for an f ∈ H(D) such that DϕF (f) = 0, we put
Ψa(f, log r) = −∞.

161
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When a = 0, for simplicity, we just put Ψ(f, μ) = Ψ0(f, μ). Then,
by definition, we have Ψ(f, log r) = log(|f |(r)).

In the same way, consider an annulus Γ(0, r, t) and f ∈
A(Γ(0, r, t)). Then, for any s ∈]r, t[, f belongs toH(C(0, s), so we can
put consider Ψ(f, log(s)) = log(|f |(s)). If we consider f ∈ A(a, r−),
so much the more, we can consider Ψa(f, �) for each � < log(r)[.

Remark. Let f(x) =
∑+∞

−∞ anx
n ∈ H(C(0, r)) for some r > 0.

By Theorem 15.7, we have Ψ(f, log r) = log
(

C(0,r)ϕ0,r(f)
)

=
log ‖f‖C(0,r) = supn∈ZΨ(an) + n log r.

Proposition 19.1. Let a ∈ ˜D, let μ ∈ [λ(a), log(S)] ∩ R, and let
f, g ∈ H(D). Then, Ψa(f + g, μ) ≤ max(Ψa(f, μ),Ψa(g, μ)), and
when Ψa(f, μ) > Ψa(g, μ), then Ψa(f + g, μ) = Ψa(f, μ). Moreover,
Ψa(fg, μ) = Ψa(f, μ) + Ψa(g, μ).

Let r, t ∈]0, +∞[ be such that r ≤ t. Let f ∈ H(D) be such that
Ψa(f, μ) is bounded in [log(r), log(t)]. Then, Ψa(f, μ) is continuous
and piecewise affine in [log(r), log(t)]. Further, there exists h ∈ R(D)
such that Ψa(f, μ) = Ψa(h, μ) ∀μ ∈ [log(r), log(t)].

Inside D∩Γ(a, r, t), the relation Ψ(f(x)) = Ψa(f,Ψ(x−a)) holds
in all classes of all circles C(a, s), except maybe in finitely many
classes of finitely many circles C(a, s).

Moreover, if Γ(a, r, t) ⊂ D, the function Ψa(f, μ) is convex in
[log r, log t].

Proof. Without loss of generality, we can assume a = 0. The first
statements concerning operations and inequalities come directly from
those of multiplicative semi-norms Dϕ. Now, suppose that Ψ(f, μ)
is bounded in [log(r), log(t)], hence there exists ε > 0 such that
Ψ(f, μ) > log ε ∀μ ∈ [log r, log t].

Let h ∈ R(D) satisfy ‖f−h‖D < ε. Particularly, for every circular
filter F secant with D, we have DϕF (f − h) < ε, and particularly,

Dϕa,ρ(f − h) < ε ∀ρ ∈ [r, t] i.e. Ψ(f − h, μ) < log(ε) < Ψ(f, μ) ∀μ ∈
[log r, log t]. Consequently, Ψ(f, μ) = Ψ(h, μ) ∀μ ∈ [log r, log t]. Now,
by Corollary 4.18, the function Ψ(h, μ) is continuous, piecewise in
[log r, log t] and so is Ψ(f, μ). Moreover, if Γ(a, r, t) ⊂ D, the function
Ψ(h, μ) is convex in [log r, log t], hence so is Ψ(f, μ).

By Lemma 4.13, the relation Ψ(h(x)) = Ψa(h,Ψ(x− a)) holds in
all classes of all circles C(a, s), except maybe in finitely many classes
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of finitely many circles C(a, s). Therefore, the same relation holds
for f . �

Proposition 19.2. Let a ∈ D and let f ∈ H(D) satisfy f(a) �= 0.
There exists μ◦ ∈ R such that Ψa(f, μ) = Ψ(f(a)) whenever μ ≤ μ◦.
Let r ∈ R∗

+, let Λ = C(0, r), and let f and g ∈ H(Λ) sat-
isfy ‖f − g‖

Λ
< ‖f‖

Λ
. Then, we have ν+(f, log r) = ν+(g, log r),

ν−(f, log r) = ν−(g, log r).

Proof. Indeed, let us take r > 0 such that |f(x) − f(a)| <
|f(a)| whenever x ∈ d(a, r) ∩ D, hence |f(x)| = |f(a)| whenever
x ∈ d(a, r) ∩D, and therefore, Ψa(f, μ) = Ψ(f(a)) whenever μ ≤
log(r).

Let f(x) =
∑+∞

−∞ anx
n and let g(x) =

∑+∞
−∞ bnx

n. From the
hypothesis, we see that ‖f‖

Λ
= ‖g‖

Λ
. By Corollary 14.9, we have

(1) sup
n∈Z

|an|rn = ‖f‖
Λ
= sup

n∈Z
|bn|rn

and ‖f − g‖
Λ
= sup

n∈Z
|an − bn|rn.

Let s = ν−(f, log r) and let t = ν+(f, log r). We see that
|as − bs|rs ≤ ‖f − g‖

Λ
< ‖f‖

Λ
= |as|rs, hence

(2) |bs| = |as|.
In the same way, we have

(3) |at| = |bt|.
Now, for every n < s and for every n > t, we have |an|rn < |as|rs =
‖f‖

Λ
, hence |bn|rn < ‖f‖

Λ
. Finally, by (1), (2), and (3), we see that

ν−(g, log r) = s, ν+(g, log r) = t. �

By Propositions 19.1, 19.2, and 4.19, we can derive Corollary 19.3.

Corollary 19.3. Let f(x) ∈ H(Γ(0, r1, r2)) (respectively f(x) ∈
H(Δ(0, r1, r2))) (with 0 < r1 < r2) and let

∑+∞
−∞ anx

n be its
Laurent series. The function μ→ Ψ(f, μ) is bounded in ] log r1, log r2[
(respectively in [log(r1), log(r2)]) and equal to supn∈Z(Ψ(an) + nμ).
Next, we have Ψ(f(x)) ≤ Ψ(f,Ψ(x)) whenever x ∈ Γ(0, r1, r2)
(respectively whenever x ∈ Δ(0, r1, r2)) and the equality holds
in all of Γ(0, r1, r2) (respectively un all of Δ(0, r1, r2)) except in
finitely many classes of finitely many circles C(0, r) (r1 < r < r2)
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(respectively r1 ≤ r <≤ r2). The right-side derivative (respectively
the left side derivative) of the function Ψ(f, .) at μ is equal to ν+(f, μ)
(respectively to ν−(f, μ)). Moreover, if the function in μ Ψ(f, μ) is
not derivable at μ, then μ lies in Ψ(K).

Further, the function Ψ(f, .) is convex in ] log r1, log r2[
(respectively in [log r1, log r2]). Next, given another g ∈ H(Γ(0, r1, r2))
(respectively g ∈ H(Δ(0, r1, r2))), the functions ν+ and ν− satisfy
ν+(fg, μ) = ν+(f, μ) + ν+(g, μ), ν−(fg, μ) = ν−(f, μ) + ν−(g, μ).
Further, the function ν+(f, .) is continuous on the right and the func-
tion ν−(f, .) is continuous on the left at each point μ. They are con-
tinuous at μ if and only if they are equal.

Proposition 19.4. Let a ∈ ˜D and let f ∈ H(D). If f(a) �= 0, there
exists s > 0 such that Ψ(f, μ) = Ψ(f(a)) ∀μ ≤ s. Let b ∈ D be
such that |a − b| = r and d(b, r−) ⊂ D. Then we have Ψb(f, μ) =
Ψa(f, μ) ∀μ ≤ Ψ(b− a).

Proof. Since f(a) �= 0, the first statement is immediate since |f(x)|
is a constant inside a disk of center a. Next, by Lemma 4.14, the
relation Ψa(f, μ) = Ψb(f, μ) when Ψ(a − b) ≤ μ is true for every
f ∈ R(D), hence by (2), is obviously generalized to every f ∈ H(D).

�

Proposition 19.5. Let μ ∈ R and let f(x) =
∑+∞

−∞ anx
n ∈

H(C(0, θμ)). Then, Ψ(f, μ) is equal to supn∈ZΨ(an) + nμ and we
have Ψ(f(x)) ≤ Ψ(f, μ) for all x ∈ C(0, θμ). Moreover, the equality
holds in every class except in finitely many classes where f admits
zeros. Further, if ν+(f, μ) = ν−(f, μ), then Ψ(f(x)) = Ψ(f, μ) when-
ever x ∈ C(0, θμ).

If h ∈ H(C(0, θμ)) satisfies Ψ(f−h, μ) < Ψ(f, μ), then ν+(f, μ) =
ν+(h, μ) and ν−(f, μ) = ν−(h, μ).

Proof. Let Λ = C(0, θμ), let s = ν−(f, μ), and let t = ν+(f, μ). By
the remark above, Ψ(f, μ) is obviously equal to supn∈Z(Ψ(an)+nμ).
Let x ∈ C(0, θμ). The inequality Ψ(f(x)) ≤ Ψ(f, μ) is true because
Ψ(f, μ) = log ‖f‖

Λ
≥ Ψ(f(x)). Finally, by Proposition 19.1, the

equality holds in all the classes except in finitely many. If ν+(f, μ) =
ν−(f, μ), then Ψ(asx

s) = Ψ(as) + sμ > Ψ(anx
n) whenever n �= s,

hence Ψ(f(x)) = Ψ(f, μ).
Now, let h ∈ H(Λ) satisfy Ψ(f − h, μ) < Ψ(f, μ) and let

h(x) =
∑+∞

−∞ bnx
n. We have Ψ(an−bn)+nμ < Ψ(as)+sμ whenever
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n ∈ Z, hence Ψ(bs) = Ψ(as), Ψ(bt) = Ψ(at), Ψ(bn)+nμ < Ψ(as)+sμ
whenever n < s and n > t and Ψ(bn) + nμ ≤ Ψ(as) + sμ whenever
n ∈ [s, t], hence finally, ν+(h, μ) = ν+(f, μ) and ν−(h, μ) = ν−(f, μ).

�

Corollary 19.6. Let f(x) =
∑+∞

−∞ anx
n ∈ A(Γ(0, r1, r2)) (with

0 < r1 < r2). The function μ → Ψ(f, μ) defined in ] log r1, log r2[
is equal to supn∈Z(Ψ(an)+nμ). Next, we have Ψ(f(x)) ≤ Ψ(f,Ψ(x))
whenever x ∈ Γ(0, r1, r2) and the equality holds in all of Γ(0, r1, r2)
except in finitely many classes of each circle C(0, r) (r1 < r < r2).
The right-side derivative (respectively the left-side derivative) of the
function Ψ(f, .) at μ is equal to ν+(f, μ) (respectively to ν−(f, μ)).
Moreover, if the function in μ Ψ(f, μ) is not derivable at μ, then μ
lies in Ψ(K).

Further, the function Ψ(f, .) is convex in ] log r1, log r2[. Next,
given another g ∈ A(Γ(0, r1, r2)), the functions ν+ and ν− satisfy

ν+(fg, μ) = ν+(f, μ) + ν+(g, μ), ν−(fg, μ) = ν−(f, μ) + ν−(g, μ).

Moreover, the function ν+(f, .) is continuous on the right and the
function ν−(f, .) is continuous on the left at each point μ. They are
continuous at μ if and only if they are equal.

Proof. All statements hold in all annuli Γ(0, r′, r′′) with r1 <
r′ < r′′ < r2 because the restriction of f to Γ(0, r′, r′′) belongs to
H(Γ(0, r′, r′′)). �

Proposition 19.7. Let μ ∈ R and let f, g ∈ H(C(0, θμ)). Then,
ν+(fg, μ) = ν+(f, μ)+ν+(g, μ) and ν−(fg, μ) = ν−(f, μ)+ν−(g, μ).

Proof. By Proposition 19.2, the relations are obvious when f and
g ∈ R(C(0, θμ)) because there is an annulus Γ(0, r1, r2) ⊃ C(0, θμ)
such that f, g ∈ R(Γ(0, r1, r2)). Now, by Corollary 19.6, we may
extend them to H(C(0, θμ)) by taking h and � ∈ R(C(0, θμ)) such
that Ψ(f − h, μ) < Ψ(f, μ) and Ψ(g − �, μ) < Ψ(g, μ). �

Proposition 19.8. Let r1, r2 ∈ R and let f, g ∈ A(Γ(0, r1, r2))
having no zero in Γ(0, r1, r2) and satisfying ν(f, μ) �= ν(g, μ), ∀μ ∈
] log r1, log r2[. Then, both ν+(f + g, μ) and ν−(f + g, μ) are equal
either to ν(f, μ) or to ν(g, μ).
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Proof. Let μj = log(rj), j = 1, 2. Since both f, g have no zero
in Γ(0, r1, r2), ν(f, μ) is a constant integer s and ν(g, μ) is a con-
stant integer t �= s. Consequently, Ψ(f, μ) is of the form a+ sμ and
Ψ(g, μ) is of the form b + tμ, therefore the two functions in μ can
coincide at most at one point in [μ1, μ2]. So, by Proposition 19.1, we
have Ψ(f + g, μ) = max(Ψ(f, μ),Ψ(g, μ)) for all μ ∈ [log(r1), log(r2)]
except maybe at all point. But then, by continuity, the equality holds
in all [log(r1), log(r2)].

Let us fix μ0 ∈]μ1, μ2[. Suppose Ψ(f + g, μ) = Ψ(f, μ) in a neigh-
borhood ]μ1, μ2[ of μ0. Then, of course, ν(f + g, μ0) = ν(f, μ0). Sup-
pose now that Ψ(f + g, μ) = Ψ(f, μ) in a left neighborhood ]μ1, μ0]
of μ0 and Ψ(f + g, μ) = Ψ(g, μ) in a right neighborhood [μ0, μ2[
of μ0, which implies Ψ(f, μ) > Ψ(g, μ) ∀μ ∈]μ1, μ0[ and Ψ(f, μ) <
Ψ(g, μ) ∀μ ∈]μ0, μ2[. Then, we have ν(f + g, μ) = ν(f, μ)∀μ ∈]μ1, μ0[
and ν(f + g, μ) = ν(g, μ)∀μ ∈]μ0, μ2[. Consequently, since ν+ is con-
tinuous on the left and ν− is continuous on the right, we can check
that both ν+(f + g, μ0) and ν

−(f + g, μ0) are equal either to ν(fμ0)
or to ν(g, μ0). �

Theorem 19.9. Let f ∈ A(K\d(0, R)). There exists q ∈ N such that

lim
r→+∞ |f |(r)rq = +∞.

Proof. Let s ∈]R,+∞[ be such that ν+(f, log s) = ν−(f, log s) and
let τ = ν+(f, log s). Thus, Ψ(f, μ) has a derivative at log s equal to
τ . Consequently, since by Proposition 19.1 Ψ(f, μ) is convex, we have
Ψ(f, μ)−Ψ(f, log s) ≥ τ(μ− log s). Therefore,

lim
μ→+∞[Ψ(f, μ) + (1− τ)μ] = +∞

i.e. limr→+∞ |f |(r)r(1−τ) = +∞. Finally, we can take q =
max(0, 1− τ). �
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Chapter 20

Vanishing Along
a Monotonous Filter

Throughout this chapter, the set D is supposed to be infraconnected.
From Chapter 7, we know that there exists a spherically complete

algebraically closed extension ̂K of K whose residue class field is not
countable and whose valuation group is equal to R. Given a subset
D of K, we denote by ̂D the subset

D ∪

⎧

⎪

⎨

⎪

⎩

⋃

a∈
◦
D

̂d(a, δ(a, (K\D))

⎫

⎪

⎬

⎪

⎭

.

The question of whether an analytic element can tend to zero
along a monotonous filter is known to be one of the main problems
which happen with p-adic analytic functions [35], [36], [44], [50]. Here,
we do not describe T -filters. However, we describe sufficient condi-
tions to prevent analytic elements to vanish along a monotonous fil-
ter, which is sufficient to study analytic and meromorphic functions
inside disks or annuli.

We apply the results to characteristic functions and to the image
of an infraconnected set.

Definitions. Let f ∈ H(D) and let F be a monotonous filter on D.
When F is decreasing (respectively increasing) of center a and diam-
eter S, f is said to be strictly vanishing along F if limF f(x) = 0,

167
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and if there exists S′ > S (respectively S′ < S) such that for every
r ∈]S, S′] (respectively r ∈ [S′, S[), we have

D
ϕa,r(f) �= 0.

When F is decreasing with no center in K, it admits a canonical
basis (Dn)n∈N with Dn = d(an, rn) ∩D and then f is be said to be
strictly vanishing along F if limF f(x) = 0 and if there exists S′ > S
such that

D
ϕan+1,r(f) �= 0 whenever r ∈ [rn, S

′], whenever n ∈ N.

Actually, F admits a center α in ̂K and then the definition given
for decreasing filters with a center in K also applies and is obviously
equivalent.

Lemma 20.1 just translates these definitions by using the func-
tion Ψ.

Lemma 20.1. Let f ∈ H(D) and let F be a decreasing (respectively
an increasing) filter of center a and diameter S on D. Then, f is
strictly vanishing along F if and only if there exists S′ > S (respec-
tively S′ ∈]0, S[) such that Ψa(f, log S) = −∞,Ψa(f, μ) > −∞ when-
ever μ ∈] logS, log S′] (respectively [logS′, log S[).

Let G be a decreasing filter with no center, of diameter S, and
canonical basis (Dn)n∈N, with Dn = d(an, rn) ∩ D. Then, f is
strictly vanishing along G if and only if there exists S′ > S such
that limn→∞Ψan(f, log rn) = −∞ and Ψan(f, log r) > −∞ for
rn ≤ r < S′, ∀n ∈ N.

Lemma 20.2. Let f ∈ H(D) and let F be a monotonous filter such
that f is strictly vanishing along F . Then, f is properly vanishing
along F .

Proof. Let S = diam(F). Let (Dn) be a canonical basis of F and
suppose that f is not properly vanishing along F . Since f is van-
ishing along F , there exists q ∈ N such that f(x) = 0 whenever
x ∈ Dq. But then, we can check that f does not satisfy the defini-
tion of an analytic element strictly vanishing along F because for
every multiplicative semi-norm

D
ϕa,r whose circular filter is secant

to Dq, we have
D
ϕa,r(f) = 0. In particular, this applies to

D
ϕa,r, for

rq < r < S (respectively S < r < rq), when F is increasing (respec-
tively decreasing) of center a, and Dq = D ∩Γ(a, rq, S) (respectively
Dq = D ∩ Γ(a, S, rq)), and this applies to ϕaq+1,rq , when F has no
center, whereas Dq = D ∩ d(aq+1, rq). �
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Proposition 20.3. Let a ∈ ˜D and b ∈ D and let f ∈ H(D) satisfy
f(b) �= 0 and

D
ϕa,r(f) = 0 for some r ∈]0, |a−b|]. If

D
ϕa,|a−b|(f) = 0,

then f is strictly vanishing along an increasing filter of center b and
diameter S ≤ |a− b|. If

D
ϕa,|a−b|(f) �= 0, then f is strictly vanishing

along a decreasing filter of center a and diameter S ∈ [r, |a − b| [.
Proof. First, suppose

D
ϕa,|a−b|(f) = 0, hence we have

Ψb(f, log |a− b|) = Ψa(f, log |a− b|) = −∞.

Since f(b) �= 0, by Proposition 19.4, we know that limμ→−∞
Ψb(f, μ) = Ψ(f(b)), hence there exists a unique γ ≤ log |a − b| such
that Ψb(f, γ) = −∞ and Ψb(f, μ) > −∞ whenever μ ∈]γ, log |a− b|[.
Therefore, f is strictly vanishing along the increasing filter of center
b and diameter S = θγ.

Now, suppose
D
ϕa,|a−b|(f) �= 0. Since

D
ϕa,r(f) = 0, we have

Ψa(f, log r) = −∞ and Ψa(f, log |a − b|) > −∞, hence there exists
a unique γ ∈ [log r, log |a − b|[ such that Ψa(f, γ) = −∞ and
Ψa(f, μ) > −∞ whenever μ ∈]γ, log |a− b|], so f is strictly vanishing
along the decreasing filter of center a and diameter S = θγ . �

Proposition 20.4. Let a ∈ ˜D and b ∈ D and let f ∈ H(D) satisfy
f(b) �= 0 and

D
ϕa,r(f) = 0 for some r ∈ R+. Then f is strictly

vanishing along a monotonous filter with a center.

Proof. If r ≤ |a−b|, the statement comes directly from Proposition
20.3. If r > |a − b|, then we have Ψb(f, log r) = Ψa(f, log r) = −∞,
whereas limμ→−∞Ψb(f, μ) = Ψ(f(b)), hence there exists a unique
γ ≤ log r such that Ψb(f, γ) = −∞ and Ψb(f, μ) > −∞ whenever
μ < γ. Thus, f is strictly vanishing along the increasing filter of
center b and diameter S = θγ . �

Proposition 20.5. Let F be a monotonous filter on D and let f ∈
H(D) be strictly vanishing along F . Then, F is pierced.

Proof. Suppose that F is increasing (respectively decreasing)
of center a and diameter S and is not pierced. There exists
an annulus Γ(a, S, S′) (respectively Γ(a, S′, S)) included in D
such that Ψa(f, logS) = −∞ and Ψa(f, μ) > −∞ whenever
μ ∈ [log S′, log S[ (respectively μ ∈] logS, log S′]). Hence, by
Corollary 19.3, we know that Ψa(f, μ) is bounded in ] log S′, log S[
(respectively ] log S, log S′[), a contradiction to the hypothesis.
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When F has no center, we consider a center a of F in ̂K and we
consider f as an element of ̂H( ̂D). Then, the disks ̂d(an, rn) contain

no hole of ̂D when n is big enough. Therefore, the restriction of ̂f to
d(an, rn) is a power series and therefore we have the same conclusion.

�

Corollary 20.6. Let a, b ∈ D and let f ∈ H(D) satisfy f(b) �= 0 and

D
ϕa,r(f) = 0 for some r ∈ R+. Then, f is strictly vanishing along a

pierced monotonous filter with a center.

Proposition 20.7. Let a ∈ ˜D. Let r, r′ ∈ ] log(δ(a,D)),
log(diam(D))[, with r < r′. Let f ∈ H(D) be such that the func-
tion Ψa(f, μ) is neither bounded nor identically equal to −∞ in
[log r, log r′]. Then there exists a monotonous filter F of center a
and diameter s ∈ [r, r′] such that f is strictly vanishing along F .

Proof. For convenience we assume a = 0. By compacity of
[log r, log r′], there exists μ ∈ [log r, log r′] such that Ψ(f, μ) = −∞.
Since the function Ψ(f, μ) is not identically −∞ in [log r, log r′], by
continuity, either there exists ξ, ζ ∈ [log r, log r′] with ξ < ζ such
that Ψ(f, ξ) = −∞, Ψ(f, μ) > −∞ whenever μ ∈]ξ, ζ] and then f is
strictly vanishing along a decreasing filter of center 0 and diameter θξ,
or there exist ξ, ζ ∈ [log r, log r′] with ξ < ζ such that Ψ(f, ζ) = −∞,
Ψ(f, μ) > −∞ whenever μ ∈ [ξ, ζ[ and then f is strictly vanishing
along an increasing filter of center 0 and diameter θζ . This ends the
proof. �

Proposition 20.8. Let f ∈ H(D) be vanishing along an increasing
(respectively a decreasing) filter F of diameter s. Let a be a center

of F in ̂K and let E = ̂D ∪ (̂K\̂d(a, s−)) (respectively E = ̂D ∪
̂d(a, s)). Then, f has continuation to an element F of ̂H(E) such

that F (x) = 0 whenever x ∈ ̂K\̂d(a, s−) (respectively x ∈ ̂d(a, s)).
Proof. We supposeF increasing. By Theorem 15.9, f has an exten-
sion ̂f to ̂D. For every r > 0, the set of classes of C(a, r) which

contain ̂f -holes is countable. Since the residue class field of ̂K is not
countable, in ̂C(a, r), there exist classes Λ = d(b, r−) which contain

no ̂f -holes. Thereby, ̂f has continuation to an infraconnected set D′

which contains ̂D and satisfies ˜D′ = ̂K such that every hole is of the
form ̂d(α, ρ−), with d(α, ρ−) a hole of D. In this set, we have
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(1)
D′ϕa,s( ̂f) = DϕF (f) = 0.

First, we suppose that F is increasing. Let V = d(a, s−) and let
D′′ = D′\V . Clearly, V is a hole of D′′. Then, as an element of
̂H(D′′), by Theorem 15.1, (1) implies

(2) ( ̂f)V = 0.

Now, by Theorem 15.1, ̂f has a decomposition of the form g+h with
g ∈ H0(D

′∪(̂K\̂d(a, s−))) and h ∈ H(D′∪ ̂d(a, s−)). By (2), it is seen

that
D′ϕa,s(h) = 0, hence h = 0 because h belongs to ̂H(̂d(a, s)). As

a consequence, ̂f belongs to H0(D
′ ∪ (̂K\̂d(a, s−))), and therefore,

in K, f belongs to H(D ∪ (K\d(a, s−))). Moreover, by (2), we have
̂f(x) = 0 whenever x ∈ D′′, hence ̂f(x) = 0 whenever x ∈ K\d(a, s−).

If F is decreasing, we can easily perform a symmetric proof. �
Theorem 20.9. Let f ∈ H(D) be vanishing along an increasing
(respectively a decreasing) filter F of center a and diameter s. Let
E = D ∪ (K\d(a, s−)) (respectively E = D ∪ d(a, s)). Then, f has
continuation to an element of H(E) such that f(x) = 0 whenever
x ∈ K\d(a, s−) (respectively whenever x ∈ d(a, s)).

Proof. By Proposition 20.8, f has continuation to an element
̂f ∈ ̂H( ̂D ∪ (̂K\̂d(a, s−))) (respectively to H( ̂D ∪ ̂d(a, s))). There-
fore, in K, f belongs to H(D ∪ (K\d(a, s−))). Moreover, we have
̂f(x) = 0 whenever x ∈ ̂K\̂d(a, S−) (respectively x ∈ ̂d(a, s)), hence
f(x) = 0 whenever x ∈ K\d(a, s−) (respectively f(x) = 0 whenever
x ∈ d(a, s)). �

Definition. Let F be a monotonous filter on D and let f ∈ H(D).
Then, f is said to be collapsing along F if there exists b ∈ K such
that f − b is vanishing along F .
Theorem 20.10. Let D be open and closed and let F be a
monotonous filter on D. Let f ∈ H(D) be such that f ′ ∈ H(D).
Then, f is collapsing along F if and only if f ′ is vanishing along F .

Proof. Without loss of generality, we can suppose that D is
bounded because F is obviously secant with a bounded subset of K.

Suppose first that F is decreasing, of center a and diameter R.
Without loss of generality, we can obviously assume a = 0. Sup-

pose f is collapsing along F , of limit 
. Since limr→R
|f−�|(r)

r = 0,
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by Theorem 18.25, we have limr→R |f ′|(r) = 0, hence f ′ is vanishing
along F .

Conversely, suppose that f ′ is vanishing along F . Let (Ti)i∈I be
the family of holes of D included in K\d(0, R) and let (Ti)i∈J be the
family of holes of D included in d(0, R). Then, the pair (I, J) makes
a partition of the set of holes of D. Let D1 = D∪d(0, R) and let D2 =
D∪(K\d(0, R)). By Corollary 15.2, we have H(D) = H(D1)⊕H(D2).
For every g ∈ H(D), we set g = g1 + g2 with gk ∈ H(Dk), k = 1, 2.
Then, ‖g‖D = max(‖g1‖D1 , ‖g2‖D2). By Theorem 18.19, we can check
that the decomposition of f ′ in the form f ′ = (f ′)1+(f ′)2 is such that
(f ′)k = (fk)

′, k = 1, 2. When we take numbers S′ > R and S′′ <
R, we have limS′→R+ ‖f ′‖D∩d(0,S′) = 0 = limS′′→R− ‖f ′‖D\d(0,S′′),
hence limS′→R− ‖f ′1‖D∩d(0,S′) = 0 = limS′′→R+ ‖f ′1‖D\d(0,S′′) and
limS′→R− ‖f ′2‖D∩d(0,S′) = 0 = limS′′→R+ ‖f ′2‖D\d(0,S′′). Consequently,
passing to the limit, we get ϕ0,R(f

′
1) = ϕ0,R(f

′
2) = 0. Therefore,

by Corollary 20.6, f ′2, which belongs to H(K\d(0, R)) and satis-
fies ϕ0,R(f

′
2) = 0, is identically zero in K\d(0, R). Consequently,

f ′(x) = f ′1(x) ∀x ∈ D ∩ (K\d(0, R)). On the other hand, since f ′1
belongs to H(d(0, R)) and satisfies ϕ0,R(f

′
1) = 0, it is identically

zero in d(0, R) and hence f1(x) is a constant C in d(0, R). There-
fore, ϕ(f1 − C) = 0, hence f1 − C is vanishing along F . But since
f2(x) = 0 ∀x ∈ D\d(0, R), actually, f −C is vanishing along F . This
finishes showing that f is collapsing along F when F is a decreasing
filter with a center.

Now, suppose that F has no center. We can place ourselves in an
algebraically closed spherically complete extension of K and prove
the same property for the expansion of f , hence it holds for f .
Finally, if F is increasing, we can make an inversion and prove
the same. �

Thanks to monotonous filters, we are now able to complete the
study of the characteristic functions.

Theorem 20.11. Let E be a subset of K whose interior is not empty.
Then, E is not infraconnected if and only if there exists a proper
subset B of E whose characteristic function belongs to H(E).

Proof. If E is not infraconnected, it admits an empty annulus
Γ(a, r′, r′′), and then by Proposition 11.15, the characteristic func-
tions of IE(Γ(a, r′, r′′)) and EE(Γ(a, r′, r′′)) belong to H(E).
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Now, we suppose E to be infraconnected and assume that there
is a subset B of E, B �= E and B �= ∅, whose characteristic func-
tion u belongs to H(E). Since u, by definition, belongs to Hb(E), it
belongs to Hb(E). And of course, E has an interior that is not empty.
Hence, without loss of generality, we can assume that E is closed. Let
A = E\B. Suppose A and B are different from ∅. Since u is locally
constant in all E, at least one of the two subsets A and B has an
interior that is not empty. Without loss of generality, we can assume
that the interior of A is not empty and hence there exists a ∈ A
and r > 0 such that d(a, r) ⊂ A and u(x) = 0 whenever x ∈ d(a, r)
and then we have

D
ϕa,r(u) = 0. By Proposition 20.3, there exists a

monotonous filter F with center α ∈ E such that u is strictly van-
ishing along F , hence by Lemma 20.2, f is properly vanishing along
F . But this contradicts the hypothesis “f(x) = 0 or 1 for all x ∈ E”.
This finishes proving Theorem 20.11. �

Corollary 20.12. Let E ∈ Alg. The algebra H(E) has non-trivial
idempotents if and only if E is not infraconnected.

Theorem 20.13. Let f ∈ H(D). Then, f(D) is infraconnected.

Proof. Let D′ = f(D) and let us suppose that D′ admits an empty
annulus Γ(a, r′, r′′). Let D′′ = D′. It is seen that Γ(a, r′, r′′) also is
an empty annulus of D′′.

Let A′′ = ID′′(Γ(a, r′, r′′)) and let B′′ = ED′′(Γ(a, r′, r′′)). Let u
be the characteristic function of A′′. By Proposition 11.15, we know
that u belongs to H(D′′). Since D′′ is closed and contains f(D),
by Corollary 12.3, u ◦ f belongs to H(D). Let A = f−1(A′′) and
B = f−1(B′′). Obviously, we have A ∩ B = ∅ and A ∪ B = D.
Now, u ◦ f(x) = 1 ∀x ∈ A, u ◦ f(x) = 0 ∀x ∈ B. But since
D is infraconnected, by Theorem 20.11, H(D) contains no char-
acteristic function of any proper subset. This ends the proof of
Theorem 20.13. �
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Chapter 21

Quasi-Minorated Elements

Throughout this chapter, the set D is supposed to be infraconnected.
The main results given here were published in [35], [44], and [50].

According to the definition of quasi-minorated elements, Theorem
21.1 is easy:

Theorem 21.1. Let f ∈ H(D). Then, f is not quasi-minorated if
and only if there exists a large circular filter F secant with D such
that DϕF (f) = 0.

Proof. By Lemmas 16.7 and 17.12, without loss of generality, we
can assume that D is bounded.

Suppose first that there exists a large circular filter F secant
with D such that DϕF (f) = 0. Let (an) be a monotonous distances
sequence thinner than F such that limn→+∞ f(an) = 0. Then, f is
not quasi-minorated.

Conversely, suppose that f is not quasi-minorated. Then there
exists a bounded sequence (an) of D such that limn→+∞ f(an) = 0
and such that one can’t extract a sequence converging in K. By
Theorem 3.1, we can extract from the sequence (an) either a
monotonous distances sequence or a constant distances sequence. In
both cases, there exists a circular filter F less thin than this subse-
quence, and hence, we have limF f(x) = 0. �

Theorem 21.2. Let f be a non-identically zero element of H(D).
Then, f is not quasi-minorated if and only if there exists a pierced
monotonous filter F on D such that f is strictly vanishing along F .

175
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Proof. By Theorem 21.1, if f is vanishing along a monotonous
filter; it is not quasi-minorated. Now suppose that f is not quasi-
minorated. Since f is not identically zero, we can find a bounded
sequence (an)n∈N in D such that limn→∞ f(an) = 0 such that no
subsequence converges in K.

Suppose first we can extract form the sequence (an)n∈N a constant
distances sequence (aq(m))m ∈ N, let c = aq(1), let r = |aq(1) − aq(2)|,
and let φ = ϕb,r. Since limm→+∞ f(aq(m)) = 0, we have ϕc,r(f) = 0.
Since f is not identically zero in D, there exists b ∈ D such that
f(b) �= 0. If b ∈ d(0, r), then by Proposition 20.3, f is strictly van-
ishing along an increasing filter of center c, of diameter ρ ∈]0, r].
If b /∈ d(c, r), by Proposition 20.3, if ϕc,|b−c|(f) �= 0, then f is
strictly vanishing along a decreasing filter of center c, of diameter
ρ ∈ d(c, |b− c|). Finally, if ϕc,|b−c|(f) = 0, then f is strictly vanishing
along an increasing filter of center b, of diameter ρ ∈ d(0, |b−c|), and
by Proposition 20.5, that filter is pierced.

Suppose now we can’t extract from the sequence (an)n∈N a con-
stant distances sequence. Then we can extract from the sequence
(an)n∈N a monotonous distances sequence (aq(m))m∈N. There exists
a unique monotonous filter F less thin than the subsequence
(aq(m))m∈N. Suppose first that F has a center c and let r = diam(F).
Then, we have ϕc,r(f) = 0, and hence, the same reasoning shows that
f is strictly vanishing along a monotonous filter which by Proposi-
tion 20.5 is pierced. Finally, suppose F is decreasing, with no center.
We can find a center in a spherically closed extension and make the
same reasoning again. �

Corollary 21.3. If D has no monotonous pierced filter, every ele-
ment of H(D) different from zero is quasi-minorated and takes every
value finitely many times.

Definition. A subset D of K is said to be analytic if for every disk
d(a, r) included in D and for every f ∈ H(D), the property f(x) =
0 ∀x ∈ d(a, r) implies that f is identically zero in D.

Corollary 21.4. If D has no monotonous pierced filter, D is ana-
lytic. Particularly, if D has finitely many holes, D is analytic. Par-
ticularly, if D is infraconnected affinoid, it is analytic.

Theorem 21.5. Let f1, f2 be quasi-minorated elements of H(D). If
f1f2 belongs to H(D), then it is also quasi-minorated.
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Proof. Indeed, suppose that f1f2 is not quasi-minorated. By The-
orem 21.2, there exists a pierced monotonous filter F on D such that

D
ϕF (f1f2) = 0. Hence, either

D
ϕF (f1) = 0 or

D
ϕF (f2) = 0. But, by

Theorem 21.1, both options are impossible because both f1, f2 are
quasi-minorated. Hence, so is f1f2. �

Theorem 21.6. Let f ∈ H(D). If f is semi-invertible, then it is
quasi-minorated.

Proof. Let f be semi-invertible, of the form P (x)g(x) with g invert-
ible inH(D), and P a polynomial whose zeros a1, . . . , aq belong toD.
We then suppose f not quasi-minorated. By Theorem 21.5, g is not
quasi-minorated either. Hence, there exists a pierced monotonous
filter F on D such that DϕF (g) = 0. But, by Lemma 11.3, that
contradicts the hypothesis “g invertible in H(D)”. Hence, f is quasi-
minorated. �

Theorem 21.7. Suppose that D is open. Then, an element of H(D)
is quasi-minorated if and only if it is quasi-invertible.

Proof. If f is quasi-invertible, it is semi-invertible, and then, by
Theorem 21.6, it is quasi-minorated. Now, assume f to be quasi-
minorated. We prove it to be quasi-invertible. As in Theorem 21.1,
by Lemmas 16.7 and 17.12, without loss of generality, we can assume
that D is bounded. Let S(D) be the set of polynomials whose zeros
belong to D\D. If D ∈ Alg, then H(D) = S(D)−1H(D). By Corol-
lary 11.13, there existsQ ∈ S(D) and h ∈ H(D) such that f = h

Q . If h
is not quasi-minorated, there exists a monotonous filter F on D such
that DϕF (h) = 0 and then we have DϕF (f) = 0: this contradicts the
hypothesis “f quasi-minorated” and therefore h is quasi-minorated.
Then, by Theorem 16.8, h is quasi-invertible, in the form Pg with P
a polynomial whose zeros are interior to D and g an element invert-
ible in H(D). Since D is bounded and open, by Corollary 17.10,
D belongs to Alg, hence g

Q is invertible in H(D). Let P = P1P2

with P1 (respectively P2) the polynomial of the zeros of P in
◦
D ∩D

(respectively in D\D). Then, P2g
Q is invertible in H(D), and then, f

is quasi-invertible. �

Theorem 21.8. If D belongs to Alg and has no pierced filter, every
element of H(D) different from zero is quasi-invertible.
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Proof. As in Theorem 21.1, by Lemmas 17.12 and 16.7, without
loss of generality, we can assume that D is bounded. Now, since D
has no pierced filter, by Corollary 21.3, every element of H(D) is
quasi-minorated. But since D has no pierced filter, D is open, hence
by Theorem 21.7, every element of H(D) is quasi-invertible. �

Corollary 21.9. Let D be closed and let T be the set of holes of D.
If { ˜T |T ∈ T } is finite, then every element of H(D) different from
zero is quasi-invertible.

Corollary 21.10. If D is closed and has finitely many holes, then
every element of H(D) different from zero is quasi-invertible.

Corollary 21.11. If D is a disk d(a, r) or d(a, r−), or if D is
an annulus Γ(a, r1, r2) (with 0 < r1 < r2) or Δ(a, r1, r2) (with
0 < r1 < r2) or a circle C(a, r), then every element of H(D) dif-
ferent from zero is quasi-invertible.

Proof. (Corollaries 21.9, 21.10, and 21.11) Indeed, D has no
pierced filter, hence the elements different from zero are quasi-
minorated and are quasi-invertible because D is open. �

We see that when D belongs to Alg, a quasi-minorated element
that has no zero in D actually is invertible in H(D).

Lemma 21.12. Let f ∈ H(D) be quasi-minorated in H(D). Then,
f is quasi-minorated in H(D).

Proof. Indeed, let (an)n∈N be a bounded sequence in D such
that limn→∞ f(an) = 0. There obviously exists a sequence (bn)n∈N
in D such that limn→∞ an − bn = 0 and limn→∞ f(bn) = 0. So,
the sequence (bn) is bounded as the sequence (an). Since f is
quasi-minorated in H(D), then we can extract a Cauchy sequence
(bq(m))m∈N from the sequence (bn)n∈N and then the sequence
(aq(m))m∈N is a Cauchy subsequence of the sequence (an)n∈N. Thus,
we have proven that f is quasi-minorated in H(D). �

Theorem 21.13. Let D ∈ Alg. Let f ∈ H(D) be quasi-minorated
and have no zero in D. Then, f is invertible in H(D).



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch21 FA1 page 179

Quasi-Minorated Elements 179

Proof. If D is closed, the statement is given by Theorem 16.9.
Consider now the general case. As in Theorem 21.1, by Lemmas
16.7 and 17.12, without loss of generality, we can assume that D is
bounded. Let Q be the polynomial of the poles of f in D\D and let
h(x) = Q(x)f(x). By Theorem 21.5, h is quasi-minorated in H(D).
But, by Corollary 21.11, h belongs toH(D), and therefore, by Lemma
21.12, it is quasi-minorated in H(D). We prove that h has finitely
many zeros in D. Indeed, we assume that h admits infinitely many
zeros in D. So, we can find a sequence (an)n∈N in D\D such that
h(an) = 0 whenever n �= m, n,m ∈ N. Since h is quasi-minorated in
H(D) and since D is bounded, we can extract a Cauchy subsequence
from the sequence (an)n∈N. This Cauchy subsequence obviously con-
verges to a point a ∈ D and therefore we have h(a) = 0. But, as h
has no zero in D, a belongs to D\D. And now, since D belongs to

Alg, then a belongs to
◦
D. But, by Corollary 16.3, a zero of h which is

interior to D is isolated in D and this contradicts the definition of a.
Thus, we have proven that h has finitely many zeros (bj)1≤j≤q in D,

all of them in the set D\D which is included in
◦
D. Then, each zero

bj has a multiplicity order nj (1 ≤ j ≤ q). Let P (x) =
∏q

j=1(x−bj)nj

be the polynomial of the zeros of h in
◦
D. By Corollary 16.6, the func-

tion g(x) = h(x)
P (x) belongs to H(D) and obviously has no zero in D.

As we have already seen when D is closed, g is invertible in H(D).
Now, since both P, Q have all their zeros in D\D, they are invert-
ible in R(D) and so is P

Q . But then f = P
Qg and hence f is invertible

in H(D). �

Theorem 21.14. Let D be closed, bounded, having finitely many
holes and let f ∈ H(D). Then, f(D) is an infraconnected closed and
bounded subset of K.

Proof. Since D has finitely many holes, by Corollary 21.10, f is
quasi-minorated. By Theorem 20.13, f(D) is infraconnected. Since
f is bounded on a closed bounded subset, f(D) is bounded. Let b
belong to the closure of f(D) and let (an)n∈N be a sequence of D such
that limn→+∞ f(an) = b. Since the sequence (an) is bounded, there
exists a subsequence thinner than a circular filter F secant with D.



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch21 FA1 page 180

180 Value Distribution in Ultrametric Analysis and Application

If F is large, then we have DϕF (f) = 0, and hence, by Proposition
21.1, f is not quasi-minorated, a contradiction. Consequently, F con-
verges to a point a. Since D is closed, a belongs to D. Consequently,
f(a) = b and hence b belongs to f(D). Therefore, f(D) is closed. �

Theorem 21.15 shows an example of very simple increasing
T -filter, without describing the general theory of T -filters [38],
[44], [53].

Theorem 21.15. Let (rn)n∈N be a sequence in |K| such that 0 <
rn < rn+1 and limn→+∞ rn = R, and let (qn)n∈N be a sequence
of N prime to the characteristic of K such that qn ≤ qn+1

and limn→+∞
(

rn
rn+1

)qn = 0. Let l ∈]0, R[ and for each n ∈ N,

let bn ∈ C(0, (rn)
qn), let an,1, . . . , an,qn be the qnth roots of bn,

and let E = d(0, R−)\(⋃n∈N(∪qn
j=1d(an,j , l−))

)

. Set fn(x) =
∏n

k=1

∏qk
j=1

(

1

1−
(

x
ak,j

)

)

. Then each fn belongs to R(E) and the

sequence (fn)n∈N converges in H(E) to an element strictly vanishing
along the pierced increasing filter of center 0 and diameter R.

Proof. Let us first show that the sequence (fn)n∈N converges in
H(E). We note that each pole ak,j of fn lies in a hole of diame-
ter l and is unique in that hole and in the class. Moreover, since
each qn is prime to the residue characteristic of K, each pole ak,j
of fn is unique in the class d(ak,j, r

−
k ). Consequently, we have

|fn(x)| ≤ |x||fn|(|x|)
l ∀x ∈ E and hence

(1) |fn(x)| ≤ R|fn|(|x|)
l

∀x ∈ E.

Let us now show that the sequence (fn)n∈N converges in H(E). We

first note that each factor Qk =
∏qk

j=1

(

1

1−
(

x
ak,j

)

)

satisfies |Qk|(r) ≤ 1

∀r < R because |Qk|(r) = 1 ∀r ≤ rk and |Qk|(r) < r ∀r ∈]rk, R[.
Consequently, we have

(2) |fn|(r) ≤
n
∏

k=0

qk
∏

j=1

(rk
r

)qk ≤
(rn−1

rn

)qn−1 ∀r ≥ rn.
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On the other hand, when r < rn, we have

|1−Qn+1|(r) =
∣

∣

∣1− 1

1− ( x
bn+1

)qn+1

∣

∣

∣(r) ≤
( rn
rn+1

)qn+1

,

hence

(3)

|fn+1 − fn|(r) = |fn|(r)|1−Qn+1|(r) ≤ |fn|(r)
( rn
rn+1

)qn+1 ∀r < rn.

By (2) and (3), we can see that limn→+∞
(

supr<R |fn+1(r) −
fn(r)|

)

= 0, and hence by (1), we have limn→+∞ ‖fn+1 − fn‖E = 0,
hence the sequence fn converges to an element f ∈ H(E). More-
over, by (1) and (2), we can see that lim|x|→R−, x∈E f(x) = 0, so f is
vanishing along the increasing pierced filter F of center 0 and diam-
eter R. Further, we may note that |Qn|(r) = 1 ∀r ≤ rn, hence,
when r ≤ rn, we have |f |(r) = |fs|(r) ∀s ≥ n. Consequently,
|f |(r) �= 0 ∀r < R and hence f is strictly vanishing along F . �



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch21 FA1 page 182



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch22 FA1 page 183

Chapter 22

Zeros of Power Series

Most of classical results on zeros of polynomials are now extended
to power series. In particular, power series converging inside a disk
satisfy a Schwarz lemma that is even simpler than in C.

Throughout this chapter, r is a strictly positive real number
and r′, r′′ are strictly positive real numbers satisfying r′ < r′′.

Theorem 22.1. Let f ∈ H(C(0, r)). The number of zeros of f in
C(0, r) is equal to ν+(f, log r)− ν−(f, log r) (taking multiplicity into
account).

Proof. This equality was given for a polynomial in The-
orem 4.16. First, we prove it when f is an element of
H(C(0, r)) invertible in H(C(0, r)). By Proposition 19.7, we have
ν+( 1f , log r) = −ν+(f, log r) and ν−( 1f , log r) = −ν−(f, log r). Since
any h ∈ H(C(0, r)) satisfies ν+(h, log r) ≥ ν−(h, log r), we see that
ν+(f, log r) = ν−(f, log r).

We now consider the general case. By Corollary 21.11, f has
a factorization of the form Pg with P a polynomial whose zeros
belong to C(0, r) and g invertible in H(C(0, r)). Then, ν+(f, log r)−
ν−(f, log r) = ν+(P, log r)−ν−(P, log r) = deg(P ), and this just ends
the proof of Theorem 22.1. �

Corollary 22.2. Let a ∈ K and r > 0. Let f(x) ∈ H(C(a, r−)). Let
̂K be a complete algebraically closed extension of K and let ̂C(a, r) =

{x ∈ ̂K | |x − a| = r}. Then, the zeros of f in ̂C(a, r) are exactly

183
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those of f in C(a, r) (taking multiplicity into account). Similarly,

the zeros of f in ̂d(a, r) = {x ∈ ̂K | |x − a| ≤ r} (respectively in
̂d(a, r−) = {x ∈ ̂K | |x − a| < r}) are exactly those of f in d(a, r)
(respectively in d(a, r−)) (taking multiplicity into account).

Corollary 22.3. Let f ∈ H(C(0, r)) have t zeros in C(0, r).

Let q = ν+(f, log r)− ν−(f, log r). Then, r = q

√

∣

∣

∣

at
aq+t

∣

∣

∣.

Theorem 22.4. Let Λ = C(0, r) and let f(x) =
∑+∞

−∞ anx
n be a

convergent Laurent series in Λ, having no zero in Λ. Let μ = log r.
Then, ν+(f, μ) = ν−(f, μ) = q ∈ Z and |f(x)| = |aqxq| whenever
x ∈ Λ. Moreover, if q �= 0, then f(Λ) = C(0, |aq|rq).

Proof. By Proposition 19.7, we see that ν+(f, μ) = ν−(f, μ). Thus,
we have Ψ(f, μ) = Ψ(aq) + qμ whenever μ ∈ I. Consequently,
f(C(0, r)) ⊂ C(0, |aq|rq). Now, suppose q �= 0 and let s = |aq|rq.
Let b ∈ C(0, s) and let g = f − b. So, by definition, g(x) =
∑−1

−∞ anx
n+ (a0 − b)+

∑+∞
1 anx

n, and by hypothesis, |a0| < |aq|rq,
hence |a0 − b| = |aq|rq. Consequently, ν−(g, μ) < ν+(g, μ), therefore,
by Theorem 22.1, g admits at least one zero in C(0, r) and hence b
lies in f(C(0, r)). This proves that f(C(0, r)) = C(0, |aq|rq). �

Corollary 22.5. Let f(x) =
∑+∞

−∞ anx
n be a convergent Laurent

series in Λ = Γ(a,R′, R′′) (respectively in Λ = Δ(a,R′, R′′)), having
no zero in Γ(a,R′, R′′). Then we have ν+(f, μ) = ν−(f, μ) = q ∈
Z whenever μ ∈] log r′, log r′′[ (respectively μ ∈ [log r′, log r′′]) and
|f(x)| = |aqxq| whenever x ∈ Λ. Moreover, if q > 0, putting s′ =
|aq|r′q, s′′ = |aq|r′′q, we have f(Λ) = Γ(0, s′, s′′) (respectively f(Λ) =
Δ(0, s′, s′′)), and if q < 0, putting s′ = |aq|r′′q, s′′ = |aq|r′q, we have
f(Λ) = Γ(0, s′, s′′) (respectively f(Λ) = Δ(0, s′, s′′)).

Corollary 22.6. Let Λ = Γ(0, r′, r′′) and let f(x), g(x) be conver-
gent Laurent series in Λ, having no zero in Λ such that |f |(r) =
|g|(r) ∀r ∈]r′, r′′[. Then, ν(f, log r) = ν(g, log r) ∀r ∈]r′, r′′[.

Proof. By hypothesis, we have Ψ(f, μ) = Ψ(g, μ) ∀μ ∈
] log r′, log r′′[. But ν(f, log r) = dΨ(f)

dμ (log r) and ν(g, log r) =
dΨ(g)
dμ (log r), hence ν(f, log r) = ν(g, log r). �



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch22 FA1 page 185

Zeros of Power Series 185

Theorem 22.7. Let f ∈ H(d(0, r)). The number of zeros of f in
d(0, r) is equal to ν+(f, log r) (taking multiplicity into account).

Proof. This equality was given for a polynomial in Corollary 4.17.
First, we prove it when f is an invertible element of H(d(0, r)). By
Theorem 22.1, we have ν+(f, μ) = ν−(f, μ) = 0 ∀μ ≤ log(r). Con-
sequently, ν+(f, log r) = 0. Consider now the general case. Since,
by Theorem 21.11, f is quasi-invertible, it has a factorization of the
form P (x)h(x) with P a polynomial whose zeros lie in d(0, r) and
h is an invertible element of H(d(0, r)). Then, by Corollary 4.17,
ν+(P, log(r)) is the number of zeros of P (hence of f), and by Propo-
sition 19.7, we have ν+(f, log(r)) = ν+(P, log(r)) + ν+(h, log(r)) =
ν+(P, μ) which ends the proof. �

Corollary 22.8. Let Λ = Γ(0, r′, r′′) and let f(x), g(x) be conver-
gent Laurent series in Λ such that |f |(r) = |g|(r) ∀r ∈]r′, r′′[. Then
for each r ∈]r′, r′′[, f and g have the same number of zeros in C(0, r)
(taking multiplicity into account).

Theorem 22.9. Let f(x) =
∑∞

n=0 an(x − a)n ∈ H(d(a, r)) and let
s = supn≥1 |an|rn. Then, f(d(a, r)) = d(a0, s) and Ψa(f−a0, log r) =
log s.

Proof. Without loss of generality, we can suppose that a = 0. Let
b ∈ d(a0, s) and consider f(x)− b = a0− b+

∑+∞
n=1 anx

n. By hypoth-
esis, |a0−b| ≤ s, hence ν+(f −b, log(r) = ν+(f −a0, log(r)) ≥ 1, and
hence f − b has at least one zero in d(0, r). Consequently, d(0, s) ⊂
f(d(0, r)). Conversely, when x ∈ d(0, r), we have |f(x) − a0| ≤ s,
hence d(0, s) = f(d(0, r)). As a consequence, Ψa(f−a0, log r) = log s.

�

Corollary 22.10. Let f(x) =
∑∞

n=0 an(x− a)n ∈ Ab(d(a, r
−)) (not

identically zero) and let s = supn≥1 |an|rn. Then, f(d(a, r−)) =
d(a0, s

−).

Proof. On the one hand, f(d(a, r−)) is obviously included in
d(a0, s

−). On the other hand, given b ∈ d(a0, s
−) and ρ ∈]0, r[ such

that supn≥1 |an|ρn ≥ |b−a0|, by Theorem 22.9, b belongs to f(d(a, ρ))
because f ∈ H(d(a, ρ)). �

Corollary 22.11. Let f(x) =
∑∞

n=0 an(x − a)n ∈ H(d(a, r−)) (not
identically zero) and let s = supn≥1 |an|rn. Then, f(d(a, r−)) =
d(a0, s

−).
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Lemma 22.12. Let f ∈ H(d(0, r)) satisfy ν+(f, log r) ≥ 1, let b ∈
f(d(0, r)), and let g(x) = f(x) − b. Then, we have ν+(g, log r) =
ν+(f, log r).

Proof. Let f(x) =
∑∞

n=0 anx
n and let t = ν+(f, log r). By hypoth-

esis, we have |at|rt ≥ |an|rn whenever n < t and |at|rt > |an|rn when-
ever n > t. Now let g(x) =

∑∞
n=0 bnx

n. Hence, b0 = a0 − b, bn = an
whenever n ≥ 1. By hypothesis, we have |b0| ≤ supn≥1 |an|rn, hence
|b0| ≤ |bt|rt, and finally, ν+(g, log r) = t. �

Lemma 22.13. Let f ∈ H(d(a, r)) have t zeros in d(a, r) with t ≥ 1
(taking multiplicity into account) and let b ∈ f(d(a, r)). Then, f − b
also admits t zeros in d(a, r) (taking multiplicity into account).

Proof. We assume a = 0. By Lemma 22.12, we know that
ν+(f, log r) = t. Hence, we have ν+(f, log r) = t and Ψ(f, log r) =
Ψ(at) + t log r. Next, Ψ(f(x)) ≤ Ψ(f, log r) for all x ∈ d(0, r), hence
Ψ(b) ≤ Ψ(f, log r), and therefore, Ψ(b) ≤ Ψ(at) + t log r. Hence,
ν+(f − b, log r) = t. That ends the proof. �

Theorem 22.14. If an entire function f ∈ A(K) is bounded or has
no zero, it is a constant.

Proof. Let f(x) =
∑∞

j=0 ajx
j. By Lemma 22.12, the number of

zeros of f in any disk d(0, r) is equal to the biggest of the inte-
gers l such that |al|rl = supj∈N |aj |rj and this is also equal to
lim|x|→r,|x|�=r |f(x)|. Hence, if f is bounded, or has no zero in K,
obviously we have an = 0 ∀n > 0. �

Theorem 22.15. Let f(x) ∈ A(K)\K. Then f admits at least one
zero in K. Moreover, if f is not a polynomial, then f has infinitely
many zeros in K and the zeros make a sequence (αn)n∈N such that
limn→+∞ |αn| = +∞.

Proof. Suppose first that f has finitely many zeros in K. Then, by
Theorem 14.16, there exists a polynomial P such that f factorizes
in the form Pg with g ∈ A(K) and g(x) �= 0∀x ∈ K. Hence, by
Theorem 22.14, g is a constant, hence f is a polynomial. Next, by
Theorem 22.7, f has finitely many zeros in each disk, hence the
sequence (αn)n∈N tends to +∞. �
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Theorem 22.16. Let Λ be a disk of the form d(a, r) (respectively
d(a, r−)) and let f ∈ H(Λ) have no zero in Λ. Then, |f(x)| is equal
to a constant in Λ and f is invertible in H(Λ).

Proof. By Corollary 21.11 and Theorems 21.13, f is invertible
in H(Λ). We may obviously assume a = 0. By Lemma 22.12, we
have ν+(f, μ) = ν−(f, μ) = 0 whenever μ ≤ log r (respectively
μ < log r), hence by Proposition 19.7, Ψ(f, μ) has a derivative equal
to 0 and therefore is equal to a constant in ]−∞, log r[. Then, by
Corollary 19.6, we have Ψ(f(x)) = Ψ(f,Ψ(x)), hence Ψ(f(x)) is
equal to a constant in Λ. �

Theorem 22.17. Let Λ be a set in one of the following forms:

(i) Λ = d(0, r).
(ii) Λ = d(0, r−).
(iii) Λ = C(0, r).

Let f ∈ H(Λ) (f not identically 0) and let h ∈ H(Λ) satisfy ‖f−h‖
Λ
<

‖f‖
Λ
. Then f and h have the same number of zeros in Λ (taking

multiplicity into account).

Proof. Regardless of the cases (i), (ii), and (iii), we know that
‖f‖Λ =

Λ
ϕ0,r(f) and then we have log ‖f‖

Λ
= Ψ(f, log r). Since

‖f − h‖
Λ
< ‖f‖

Λ
, then Ψ((f − h, log r) < Ψ(f, log r). Hence,

by Proposition 19.5, we know that ν+(f, log r) = ν+(h, log s) and
ν−(f, log r) = ν−(h, log r). Consequently, f has as many zeros as
h in Λ, by Theorem 22.7 if Λ = d(0, r) and by Theorem 22.1 if
Λ = C(0, r).

We now suppose Λ = d(0, r−). By Corollary 21.11, both f, h are
quasi-invertible in H(Λ). Let ρ ∈]0, r] be such that d(0, ρ) contains
all zeros of h in Λ. According to the statements (i) and (ii) already
proven, we see that f has as many zeros as h in d(0, ρ) (taking mul-
tiplicity into account) and has no zero in C(0, s) whenever s ∈]ρ, r[.
This ends the proof. �

Theorem 22.18. If f ∈ H(C(a, r)), it satisfies |f(x)| ≤
Dϕa,r(f) ∀x ∈ C(a, r) and the equality |f(x)| = Dϕa,r(f) holds in
all classes except finitely many that are the classes, where f has at
least one zero.



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch22 FA1 page 188

188 Value Distribution in Ultrametric Analysis and Application

Proof. Let f ∈ H(C(a, r)) and Λ = C(a, r). We can find h ∈ R(Λ)
such that ‖f − h‖λ < ‖f‖Λ, hence by Theorem 22.17, f has the
same number of zeros as h in each class of Λ (taking multiplicity
into account). So, in each class of Ξ = d(b, r−) where f has no zero,
|f(x)| is equal to Dϕb,r(f). But by Lemma 13.4, we have Dϕb,r(f) =

Dϕa,r(f), which ends the proof. �

Corollary 22.19. Let f(x) ∈ A(d(0, r−)) have infinitely many zeros
in d(0, r−). Then the set of zeros of f in d(0, r−) is a sequence
(αn)n∈N such that limn→+∞ |αn| = r.

Proof. Indeed, by Proposition 14.12, for each ρ ∈]0, r[, f belongs
to H(d(0, ρ)) and hence has finitely many zeros in d(0, ρ). �

Theorem 22.20. Let f(x) =
∑∞

n=0 anx
n ∈ A(d(0, r−)). Then f has

finitely many zeros in d(0, r−) if and only if there exists q ∈ N such
that |aq|rq ≥ supn∈N |an|rn. Moreover, if t is the smallest of the inte-
gers q such that |aq|rq ≥ supn∈N |an|rn, then f has exactly t zeros in
d(0, r−). Further, the three following statements are equivalent:

(i) f has no zero in d(0, r−).
(ii) f is invertible in A(d(0, r−)).
(iii) |f(x)| is a non-zero constant.

Proof. First, we suppose that there exists q ∈ N such that
|aq|rq ≥ supn∈N |an|rn. Let t ∈ N be the smallest of the integers
q such that |aq|rq ≥ supn∈N |an|rn. There exists a unique s ∈]0, r[
such that |at|st ≥ |an|sn for every n < t. Then, for all ρ ∈]s, r[, in
H(d(0, ρ)), we have ν+(f, log ρ) = ν−(f, log ρ) = t, hence f admits
exactly t zeros in d(0, ρ), whenever ρ ∈]s, r[.

Conversely, suppose that f admits exactly t zeros in d(0, r−).
There then there exists s ∈]0, r[ such that f admits exactly t zeros in
d(0, s) and of course in each disk d(0, ρ) for every ρ ∈]s, r[. Hence, we
have ν+(f, log ρ) = ν−(f, log ρ) = t for every ρ ∈]s, r[. Therefore, we
have |at|ρt > |an|ρn for every n �= t and for every ρ ∈]s, r[. Finally,
we see that |at|rt ≥ sup |an|rn.

Further, the equivalence between (i) and (ii) is shown at Theorem
14.19. The equivalence of (i) with (iii) comes from the fact that f
has no zero if and only if |a0| > |an|sn ∀n ∈ N, ∀s ∈]0, r[. �
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Theorem 22.21. Let f(x) =
∑+∞

−∞ anx
n ∈ A(K\d(0, R)) be not

identically zero, let R′ > R, and let q = ν+(f, log(R′)). The family
of zeros of f in K\d(0, R′−) either is finite or is a sequence (αn)n∈N
such that limn→+∞ |αn| = +∞.

Proof. By definition, f is of the form g + h with g(x) =
∑−1

−∞ anx
n ∈ A(K\d(0, R)) and h(x) =

∑+∞
0 anx

n ∈ A(K). Partic-
ularly, by Theorem 14.6, for every R′, R′′ ∈]R,+∞[ (with R′ < R′′),
both g, h belong to H(Δ(0, R′, R′′)). Then, so does f . Therefore, by
Corollary 22.3, f has finitely many zeros in Δ(0, R′, R′′) which are
on the circles C(0, r) such that ν+(f, log r) > ν−(f, log r). Thus, the
family of zeros of f in K\d(0, R′−) either is finite or is a sequence
(αn)n∈N such that limn→+∞ |αn| = +∞. �

Theorem 22.22. Let R, S ∈]0,+∞[, R < S, and let

f(x) =

+∞
∑

−∞
anx

n ∈ A(K\d(0, R))

have infinitely many zeros in K\d(0, S)). Then, for every fixed t ∈ N,

we have limr→+∞
|f |(r)
rt = +∞.

Proof. By Theorem 22.21, the sequence of zeros (αn)n∈N is such
that limn→+∞ |αn| = +∞. Set rn = |αn|. The sequence ν+(f, log(rn)
is strictly increasing and hence there exists q ∈ N such that
ν+(f, log(rq) > t, therefore ν+(f, μ) ≥ 1 ∀μ > log(rq). Set g(x) =
f(x)
xt . Then clearly |g|(r) = |f |(r)

rt and hence ν+(g, μ) ≥ 1 ∀μ ≥ log(rq).
Thus, the function (in μ) Ψ(f, μ) is a convex function, piecewise
affine, whose derivative, when it is derivable, is grater than 1 when-
ever μ ≥ log(rq). Consequently, limr→+∞ |g|(r) = +∞, and there-

fore, limr→+∞
|f |(r)
rt = +∞. �

Corollary 22.23. Let f(x) ∈ A(K)\K[x]. Then, for every fixed

t ∈ N, we have limr→+∞
|f |(r)
rt = +∞.

Theorem 22.24. Let r ∈ R+, let r1, r2 ∈]0, R[) satisfy r1 < r2, and
let f ∈ A(d(0, R−)). If f admits exactly q zeros in d(0, r1) (taking
multiplicity into account) and has no zeros in Γ(0, r1, r2), then f
satisfies

Ψ(f, log r2)−Ψ(f, log r1) = q(log r2 − log r1).
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Proof. By Lemma 22.13, we have ν+(f, log r1) = q, and by Theo-
rem 22.4, we have Ψ(f, μ) − Ψ(f, log r1) = q(μ − log r1) for every
μ ∈ [log r1, log r2[, hence by continuity, we have Ψ(f, log r2) −
Ψ(f, log r1) = q(log r2 − log r1). �

Theorem 22.25. Let f(x) ∈ A(d(a, r−)). If f is not bounded, then
f has infinitely many zeros in d(a, r−).

Proof. Without loss of generality, we can suppose a = 0. Suppose
f has t zeros in d(0, r−). Let d(0, s) be a disk containing all zeros
of f , with s < r. Then, by Theorem 22.22, for all ρ ∈ [s, r[, we
have Ψ(f, log(ρ)) ≤ Ψ(f, log(s)) + t(log(ρ)− log(s)) ≤ Ψ(f, log(s)) +
t(log(r) − log(s)). So, ψ(f, μ) is bounded, hence by Theorem 14.20,
f is bounded in d(0, r−), a contradiction. �

Theorem 22.26. Let f ∈ A(d(0, R−)) and let r1, r2 ∈]0, R[ satisfy
r1 < r2. If f admits exactly q zeros in d(0, r1) (taking multiplicity
into account) and t different zeros αj , of respective multiplicity order
mj (1 ≤ j ≤ t) in Γ(0, r1, r2), then f satisfies

Ψ(f, log r2)−Ψ(f, log r1) =

t
∑

j=1

mj(log(r2)−Ψ(αj))

+ q(log r2 − log r1).

Proof. Let C(0, ρh) 1 ≤ h ≤ s be the circles containing at least
one zero of f . For each h = 1, . . . , s, let αn(h), . . . , αn(h+1)−1 be the

zeros of f in C(0, ρh). Let u =
∑t

j=1mj.
First, by Theorem 22.24, we note that

(1) Ψ(f, log(ρ1))−Ψ(f, log(r1)) = q(log(ρ1)− log(r1))

and similarly

(2) Ψ(f, log(r2))−Ψ(f, log(ρs)) = (q + u)(log(r2)− log(ρs)).

Next, for each h = 1, . . . , s − 1, set lh = q +
∑n(h+1)−1

j=1 mj. Then, f

has no zero in Γ(0, ρh, ρh+1) and has lh zeros in d(0, ρh), hence by
Theorem 22.24, we have

(3) Ψ(f, log(ρh+1))−Ψ(f, log(ρh)) = lh(log(ρh+1)− log(ρh)).

Then, by (1), (2), and (3), we can check the conclusion. �
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Corollary 22.27. Let f(x) ∈ A(d(0, R−)) be such that f(0) �= 0,
let r ∈]0, R[ and let aj, 1 ≤ j ≤ q be the zeros of f in d(0, r), of
respective multiplicity mj. Then,

Ψ(f, log r) = Ψ(f(0)) +

q
∑

j=1

mj(log r −Ψ(aj)).

Corollary 22.28. Let f(x) =
∑∞

n=0 anx
n ∈ A(d(0, r−)) have a

set of zeros in d(0, r−) that consists of a sequence (αn)n∈N such
that αn �=0 ∀n ∈ N and where each αn is of order un. Then,
f is unbounded if and only if the sequence (αn)n∈N satisfies
∏∞
n=0

( |αn|
r

)un = 0.

Corollary 22.29. Let f(x) =
∑∞

n=0 anx
n ∈ A(d(0, r−)) have a set

of zeros in d(0, r−) that consists of a sequence (αn)n∈N such that
αn �= 0 ∀n ∈ N and where each αn is of order un. Then, ‖f‖D =
|f(0)|∏∞

n=0

(

r
|αn|
)un .

Corollary 22.30 (Schwarz Lemma). Let D = d(a, s) and let
f ∈ H(D) have at least (respectively at most) q zeros in d(a, r) with

q > 0 and 0 < r < s. Then, we have
ϕa,s(f)
ϕa,r(f)

≥ ( sr
)q (

respectively
ϕa,s(f)
ϕa,r(f)

≤ ( sr
)q)

.

Corollary 22.31. Let f ∈ A(K). The following two statements are
equivalent:

(i) f is a polynomial of degree q.

(ii) There exists q ∈ N such that |f |(r)
rq has a finite limit when r tends

to +∞.

Corollary 22.32. Let r, s, R ∈]0,+∞[ satisfy 0 < r < s < R and
let f ∈ H((0, R)). Then,

Ψ(f, log(s))−Ψ(f, log(r))

≤ (Ψ(f, log(R))−Ψ(f, log(s)))

(

log(s)− log(r)

log(R)− log(s)

)

.

Proof. Let q be the total number of zeros of f in d(0, s), each
counted with its multiplicity. Then, by Theorem 22.30, we have
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Ψ(f, log(s)) − Ψ(f, log(r)) ≤ q(log(s) − log(r)). On the other hand,
Ψ(f, log(R))−Ψ(f, log(s)) ≥ q(log(R)− log(s)). Consequently,

q ≤ Ψ(f, log(R))−Ψ(f, log(s))

log(R)− log(s)
,

and hence the proof is over. �

Theorem 22.33. Let f(x) =
∑∞

n=0 anx
n ∈ A(K) (respectively

f(x) =
∑∞

n=0 anx
n ∈ A(d(0, r−))). All zeros of f are of order one

and the set of zeros of f is a sequence (αn)n∈N such that |αn| <
|αn+1| if and only if the sequence

∣

∣

an
an+1

∣

∣ is strictly increasing. More-

over, if these properties are satisfied, then the sequence of zeros
of f in K (respectively in d(0, r−)) is a sequence (αn)n∈N∗ such
that limn→+∞ |αn| = +∞ (respectively limn→+∞ |αn| = r) and
|αn| =

∣

∣

an
an+1

∣

∣.

Proof. Suppose first that f ∈ A(d(0, r−)). First, we suppose that
the set of zeros of f in d(0, r−) is an increasing distances sequence
(αn)n∈N∗ . Then by Corollary 22.19, we know that limn→+∞ |αn|= r.
By Corollary 22.3, for each q ∈ N∗, we have ν+(f,Ψ(αq)) −
ν−(f,Ψ(αq)) = 1 and |α0| =

∣

∣

a0
a1

∣

∣. Then by an immediate induc-

tion, we deduce that |αn| =
∣

∣

∣

an
an+1

∣

∣

∣ for every n ∈ N∗ and therefore

the sequence
∣

∣

an
an+1

∣

∣ is strictly increasing.

Conversely, we suppose that
∣

∣

an
an+1

∣

∣ is a strictly increasing

sequence. Hence, we have
∣

∣

an
an+1

∣

∣<
∣

∣

an+1

an+2

∣

∣ for every n ∈ N. For

each m ∈ N∗, we put sm = Ψ(am) − Ψ(am−1) and rm = θsm .
Clearly, we have ν+(f, sm) − ν−(f, sm) = 1 for every m ∈ N∗ and
ν+(f, μ) = ν−(f, μ) for every μ ∈ (

] − ∞, log r[\{sm| m ∈ N∗}).
Hence, by Theorem 22.1, f admits exactly one zero in each circle
C(0, rm) and no other zero in d(0, r−).

Suppose now that f ∈ A(K). The same proof applies with
limn→+∞ |αn| = +∞. �

Corollary 22.34. Let f(x) =
∑∞

n=0 anx
n and suppose that the

sequence
( |an|
|an+1|

)

n∈N is strictly increasing, of limit +∞ (respectively

of limit R). Then, f belongs to A(K) (respectively A(d(0, R−))).
Moreover, putting rn = |an|

|an+1| , n ∈ N, f admits a unique zero on each

circle C(0, rn) and has no other zero in K (respectively in d(0, R)).
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Proof. Indeed, thanks to the remark at the beginning of Chapter
13, the radius of convergence of f is +∞ (respectively R). Then, the
conclusion comes from Theorem 22.33. �

Remark. We can easily construct a sequence (rn)n∈N satisfying the
hypothesis of Corollary 22.34 and thereby the function h.

It is often uneasy to determine whether a function defined in an
infraconnected set is an analytic element. The following example may
be useful.

Theorem 22.35. Let R > 0 and let (an)n∈N be a sequence of

d(a,R−) such that |an| < |an+1, limn→+∞ |an| = R,
∏+∞
k=0

|an|
R = 0

and set rn = |an|, n ∈ N. Let f ∈ A(d(a,R−)) admit each
an as a zero of order 1 and no other zero in d(a, rn). Let
E = d(a,R−)\(⋃n∈NC(a, rn)

)

. Then the function 1
f defined in E

belongs to H(E).

Proof. Without loss of generality, we can obviously suppose a = 0
and f(0) = 1. By Corollary 22.28, f belongs to Au(d(0, R

−)). For
each n ∈ N, set rn = |an|. Let r ∈]0, R[. If r �= rn ∀n ∈ N, then
|f(x)| = |f |(r) ∀x ∈ C(0, r). Now, let x ∈ C(0, rn). If |x− an| = rn,
we have |f(x)| = rn. And if x belongs to E so that |x − an| < rn,
then |f(x)| ≥ |f |(rn) rns . Consequently,

(1) |f(x)| = |f |(|x|) ∀x ∈ E.

Let f(x) =
∑+∞

n=0 cnx
n and for each k ∈ N, let Pk(x) =

∑k
n=0 cnx

n. Of course, the sequence (Pk)k∈N converges to f uniformly
in every disk d(0, r) with r ∈]0, R[. Moreover, by Theorem 22.34,

each zero ak of f satisfies |ak| = |ck−1|
|ck| . Consequently, for n > k,

Pn also admits a unique zero an,k in C(0, rn) and has no other zero
in E. Therefore, we have |Pn|(r) = |f |(r) ∀r ≤ rn. We show that the
sequence ( 1

Pn
)n∈N converges to 1

f in H(E). Indeed, let us fix ε > 0

and let us choose q ∈ N such that |f |(rq) > 1
ε . Consider now integers

n > q such that |f(x)− Pn(x)| < ε ∀x ∈ d(0, rq). Then obviously,

1

f(x)
− 1

Pn(x)
| < ε ∀x ∈ E ∩ d(0, rq).
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On the other hand, given x ∈ E\d(0, rq), we have |Pn|(r) ≥
|Pn|(rq) > 1

ε , hence
∣

∣
1

Pn(x)
− 1
f(x)

∣

∣ < ε. Therefore,
∥

∥
1

Pn(x)
− 1
f(x)

∥

∥

E
≤ ε.

This finishes proving that 1
f(x) belongs to H(E). �

Notation. Let f ∈ A(K) and let n ∈ N∗. We denote by f<n> the
function f ◦ f ◦ f ◦ · · · ◦ f , n times.

Theorem 22.36. Suppose the residue characteristic p is different
from 0. There exists functions A(K) and points a ∈ K such that
limn→+∞ |f<n>(a)| = +∞.

Proof. Let t(n) = n2, n ∈ N. Let f(x) =
∑+∞

n=0 p
2t(n)x2n+1. For

each n ∈ N, put rn = pt(n−1)

pt(n) . Then, we can check that f admits

exactly two zeros (taking multiplicity into account) in the circle
C(0, rn) and has no zeros outside

⋃∞
n=1 C(0, rn), except {0}.

Consider now a number s ∈]rn, rn+1[ of the form q
√
p,

with q ∈ Q. Inside the disk d(0, s), f admits 2n + 1
zeros (taking multiplicity into account). Consequently, |f |(s) =

|p2t(n)|s2n+1 = p−2t(n)|q|2n+1p−2n
√
p = p−2t(n)−2n|q|2n+1

√
p . Thus, we can see

that |f |(s) is of the form q′√p with q′ ∈ Q. Moreover, since q belongs

to Q, f has no zero in C(0, s), hence |f(x)| = |f |(s) = |q′|√
p ∀x ∈

C(0, s). Now consider |f |(s)
s = |p2t(n)|s2n+1

s = p−2t(n)s2n.

On the other hand, by (1), rn = pt(n)−t(n−1). Since rn < s, we can
derive

p−2t(n)s2n > p−2t(n)p2n(t(n)−t(n−1).

Now, −2t(n)+ 2n(t(n)− t(n− 1) = 2
(− t(n)+n(t(n)− t(n− 1))

)

=
2(−n2 +n(2n− 1)) = 4n2 − 2n. Consequently, when s > rn, we have
|f |(s)
s > p4n

2−2n. Now, let us take s2 > r2, and for each n ∈ N, n ≥ 2,
let us define by induction sn+1 = |f |(sn). So, we have sn+1

sn
≥ p8,

hence limn→+∞ sn = +∞. But by construction, for all x ∈ C(0, sn),
we have |f(x)| = |f |(sn). Consequently, taking a ∈ C(0, s2), we have
|f<k>(a)| = sk, and hence, limn→+∞ |f<n>(a)| = +∞. �
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Image of a Disk

In this chapter, D is just an open subset of K.

Theorem 23.1. Let f(x) =
∑∞

n=0 an(x− a)n ∈ H(d(a, r)). Then
the following statements (a), (b), (c), (d), and (e) are equivalent:

(a) |a0| > |an|rn for all n > 1.
(b) ‖f − f(a)‖d(a,r) < |f(a)|.
(c) f has no zero in d(a, r).
(d) |f(x)| is constant and different from 0 in d(a, r).
(e) f is invertible in H(d(a, r)).

Proof. First, (a) and (b) are equivalent by Theorem 14.6. Second,
(a), (c), and (d) are equivalent by Theorems 22.7 and 22.16. Third,
by Lemma 11.3, (d) implies (e), and finally, (e) obviously implies (c).

�
Corollary 23.2. Let f(x) =

∑∞
n=0 an(x− a)n ∈ A(d(a, r−))

(respectively let f(x) =
∑∞

n=0 an(x−a)n ∈ H((d(a, r−))). Then state-
ments (a), (b), (c), (d), and (e) are equivalent:

(a) |a0| ≥ |an|rn for all n > 1.
(b) |f − f(a)| < |f(a)| ∀x ∈ d(a, r−).
(c) f has no zero in d(a, r−).
(d) |f(x)| is constant and different from 0 in d(a, r−).
(e) f is invertible in A(d(a, r−)) (respectively f is invertible in

H(d(a, r−))).

Proof. Concerning A(d(a, r−)), we just have to apply Theorem
23.1 to f in H(d(a, ρ)) for every ρ ∈]0, r[. Concerning H(d(a, r−)),

195
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we can use Lemma 11.3 to check that an element of H(d(0, r−))
having no zero is invertible. �

Theorem 23.3. Let a, b ∈ K and r, s ∈ R∗
+, and let f ∈ A(d(a, r−)),

g ∈ A(d(b, s−)) be such that f(d(a, r−)) ⊂ d(b, s−). Then, g ◦ f
belongs to A(d(a, r−)).

Proof. Without loss of generality, we can clearly assume a = b = 0.
First, suppose that f has no zero in d(0, r−). Then, |f(x)| is equal to
a constant c in d(0, r−), with c < s. Hence, of course, f(d(0, r−))
is included in d(0, c). Now, let ρ ∈]0, r[. The restriction of f to
d(0, ρ) belongs to H(d(0, ρ−)) and the restriction of g to d(0, c)
belongs to H(d(0, c)). Hence, the restriction of g◦f to d(0, ρ) belongs
to H(d(0, ρ)). Consequently, by Corollary 12.3, g ◦ f belongs to
H(d(0, ρ)). This is true for every ρ ∈]0, r[, and therefore, this shows
that g ◦ f belongs to A(d(0, r−)).

Now, we suppose that f admits at least one zero in d(0, r−).
Hence, there exists r′ ∈]0, r[ such that f has at least one zero in
d(0, r′). Therefore, by Corollary 22.30, ‖f‖d(0,ρ) is strictly increasing
in ρ in the interval [r′, r[. Now, let ρ ∈]0, r[ and let σ = ‖f‖d(0,ρ).
The restriction of f to d(0, ρ) belongs to H(d(0, ρ)), and further,
f(d(0, ρ)) is included in d(0, σ). Since g belongs to H(d(0, σ)), g ◦ f
belongs to H(d(0, ρ)). As previously, this is true for every ρ ∈]0, r[,
hence g ◦ f belongs to A(d(0, r−)). �

Theorem 23.4 (Dieudonné–Dwork). Let f ∈ A(d(0, R−)) sat-
isfy f(0) = 1 and have no zero in d(0, R−). There exists a sequence
(uk)k∈N∗ in d(0, R) such that f(x) =

∏∞
k=1(1 − ukx

k) whenever
x ∈ d(0, R−).

Proof. Since f(0) = 1, we can write f(x) in the form 1 +
∑∞

n=1 bnx
n. Since f has no zero in d(0, R−), by Corollary 23.2, we

have |bn|Rn ≤ 1 for every n ∈ N∗. Now, suppose that we have already
found u1, . . . , uk such that f(x) factorizes in the form

(Rk)
k
∏

j=1

(1− ujx
j)

(

1 + xk+1
∞
∑

n=0

βn,k+1x
n

)

with |βn,k+1| ≤ 1

R
for every n ∈ N.



October 24, 2024 19:17 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch23 FA1 page 197

Image of a Disk 197

Actually, we have (1 + β0,k+1x
k+1)

(

1 +
∑∞

n=1(−β0,k+1x
k+1)n

)

= 1,

and therefore, we can factorize
(

1+xk+1
∑∞

n=0 βn,k+1x
n
)

in the form

(1+β0,k+1x
k+1)

(

1 +
∞
∑

n=1

(−β0,k+1x
k+1)n

)(

1 + xk+1
∞
∑

n=0

βn,k+1x
n

)

.

Now, consider the function gk+1 defined as

gk+1(x) =

(

1 +
∞
∑

n=1

(−β0,k+1x
k+1)n

)(

1 + xk+1
∞
∑

n=0

βn,k+1x
n

)

.

In gk+1, it is seen that the term in xk+1 is equal to 0, so gk+1 is of
the form

(

1 + xk+2
∞
∑

n=0

βn,k+2x
n

)

, with |βn,k+2| ≤ 1

R
, for every n ∈ N.

Now, we just put uk+1 = β0,k+1 and then we have proven (Rk+1).
Since (R0) is trivially satisfied, by induction, we can construct a
sequence (uk)k∈N∗ in d(0, R−) and a sequence (gk)k∈N∗ inA(d(0, R−))
such that for each k ∈ N, gk is of the form 1 + xk+1

∑∞
n=0 βn,k+1x

n

and satisfies f(x) =
∏k
j=1(1− ujx

j)gk(x). For each k ∈ N∗, let

fk(x) =
∏k
j=1(1− ujx

j).

It is seen that for each r ∈]0, R[, we have ‖gk−1‖d(0,r) ≤ rk+1. As
a consequence, for every r ∈]0, R[, the sequence (fk)k∈N∗ converges
to f in H(d(0, r)), and therefore, we have f(x) =

∏∞
k=1(1− ukx

k)
for all x ∈ d(0, R−). That ends the proof. �

Proposition 23.5. Let D be a set of the form
⋃

i∈I d(αi, r
−) with

|αi−αj| = r whenever i 	= j. Let � be fixed in I, let f ∈ H(D) be such
that f(x) =

∑∞
n=0 an(x− α�)

n ∈ H(D) whenever x ∈ d(α�, r
−), and

let s = supn≥1 |an|rn. For every i ∈ I, let βi = f(αi). Then, we have
f(d(αi, r

−)) = d(βi, s
−) for every i ∈ I and |βi − βj | ≤ s whenever

i, j ∈ I. Moreover, if I is not finite, the equality |βi − β�| = s holds
for every i ∈ I but finitely many.
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Proof. We set a = α� and g = f − β�. By Theorem 22.9, for every
ρ ∈]0, r[, we have Ψa(g, log ρ) = supn≥1Ψ(an) + n log ρ, hence by
continuity,

Ψa(g, log r) = sup
n≥1

Ψ(an) + n log r = log s.

Now, let j ∈ I, j 	= � and set b = αj . Since |b − a| = r,
by Proposition 19.4, we have Ψa(g, log r) = Ψb(g, log r), hence
Ψ(g(x)) ≤ Ψa(g, log r) = log s for all x ∈ d(b, r−). Thus, we see
that |f(x) − β�| ≤ s for all x ∈ d(b, r−). Hence, by Corollary 22.11,
f(d(b, r−)) is a disk d(βj , t

−) with t ≤ s. Since α� and αj play the
same role, in the same way, we show that s ≤ t, and therefore, s = t.
Thus, we have proven that f(d(αi, r

−)) = d(βi, s
−) for every i ∈ I

and |βi − βj | ≤ s whenever i, j ∈ I.
Now, we suppose that I is infinite. By Proposition 19.1, the equal-

ity Ψ(g(x)) = Ψa(g, log r) = log s holds in all the classes of C(a, r)
but finitely many ones, hence we have |βj − β�| = s for every j ∈ I
but finitely many and this ends the proof of Proposition 23.5. �

Theorem 23.6. Let D be an open analytic subset of K, let
f ∈ H(D), and let D′ = f(D). Then, D′ is open and satisfies
codiam(D′) ≥ codiam(D) infx∈D |f ′(x)|.
Proof. Let b ∈ f(D) and let a ∈ D be such that f(a) = b.
Since D is open, there exists a disk d(a, r) included in D. Let
f(x) =

∑∞
j=0 an(x− a)n ∀x ∈ d(a, r). Since D is an analytic set, f

is not identically zero in any disk included in D, hence by Theorem
22.9, ||f − b||d(a,r) is a number s = supn≥1 |an|rn. Then, by Theorem
22.9, f(d(a, r)) is the disk d(b, s), hence d(b, s) ⊂ D, which proves
that f(D) is open. Particularly, |f ′(a)| = |a1|, hence ||f − b||d(a,r) ≥
r|f ′(a)|, therefore, δ(D′, (K\D′)) ≥ δ(D, (K\D)) infx∈D |f ′(x)|. �

Theorem 23.7. Let f ∈ H(d(0, r)), let t = ν+(f, log r), and assume
t ≥ 1. Suppose that f ′ is not identically zero and let α1, . . . , αq be the
zeros of f ′ in d(0, r). For every b ∈ f(d(0, r))\f({α1, . . . , αq}), f − b
admits exactly t zeros of order 1 in d(0, r).

Proof. Let b ∈ f(d(0, r))\f({α1, . . . , αq}). By Theorem 22.7, f − b
admits t zeros in d(0, r) (taking multiplicity into account). But for
each zero α of f − b (as α 	= αj whenever j = 1, . . . , q), we have
f ′(α) 	= 0, hence the t zeros of f − b are of order one. �
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Definition. Let f ∈ H(D). Then, f is said to be strictly injective in
D if f is injective and if f ′(x) 	= 0 whenever x ∈ D.

In the same way, given a ∈ K and r > 0, an analytic function
f(x) ∈ A(d(a, r−)) is said to be strictly injective in d(a, r−) if f is
injective and if f ′(x) 	= 0 whenever x ∈ D.

Theorem 23.8. Let K have characteristic zero and let f ∈ H(D) be
injective in D. Then, f is strictly injective.

Proof. Suppose that f is not strictly injective and let α ∈ D be
a zero of f ′. Let d(α, r) be a disk included in D. Without loss of
generality, we may assume α = 0. Hence, in d(0, r), f(x) is equal
to a series of the form a0 +

∑∞
n=q anx

n with q ≥ 2 and aq 	= 0.

Therefore, we have ν+(f, log r) ≥ q ≥ 2. Let t = ν+(f, log r). Since
K has characteristic zero, f ′ is not identically zero and therefore
admits finitely many zeros α1 = 0, α2, . . . , αs in d(0, r). Let b ∈
f(d(0, r))\f({α1, . . . , αs}). By Theorem 23.7, f − b admits t simple
zeros in d(0, r) and this contradicts the hypothesis “f injective in
d(0, r)”. �

Theorem 23.9. Let a ∈ K, r ∈ R+, let f(x) =
∑∞

n=0 an(x− a)n ∈
H(d(a, r)), and let s = supn≥1 |an|rn be > 0. Then the following
statements are equivalent:

(α) |a1| > |an|rn−1 whenever n > 1.
(β) |f(x)− f(y)| = |x− y||a1| whenever x, y ∈ d(a, r).
(γ) f is strictly injective in d(a, r).

Moreover, when conditions (α), (β), and (γ) are satisfied, then we
have s = |a1|r and |f ′(x)| = |a1| whenever x ∈ d(a, r).

Proof. Without loss of generality, we may obviously assume a = 0.
First, we suppose (α) is satisfied and consider

f(x)− f(y) = (x− y)

⎛

⎝a1 +
∞
∑

n=2

an

⎛

⎝

n−1
∑

j=0

xjyn−1−j

⎞

⎠

⎞

⎠.

For every n ≥ 2, it is seen that |xjyn−1−j| ≤ rn−1. Hence, we
have |a1| >

∣

∣

∑∞
n=2 an

(∑n−1
j=0 x

jyn−1−j)∣
∣ and thereby |f(x)−f(y)| =

|a1| |x− y|. At the same time, we note that (α) implies |f ′(x)| = |a1|
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whenever x ∈ d(a, r), while, by Theorem 22.9, we have s = |a1|r. So
(α) implies (β).

Second, we suppose (β) is satisfied. Since s > 0, by Corollary
22.10, f is not a constant, hence a1 	= 0. Then, by (β), we have
f(x) 	= f(y) whenever x 	= y. Moreover, |f ′(x)| = |a1| 	= 0, hence
(γ) is satisfied.

Third, we suppose (γ) is satisfied. Let b ∈ f(d(a, r)), let g = f−b,
and let t = ν+(g, log r). If t ≥ 2, either g admits several different zeros
or g admits a zero α of order t. In both cases, we see that g is not
strictly injective, hence neither is f . Finally, we have t = 1 and hence
(α) is satisfied. This ends the proof of Theorem 23.9. �

Theorem 23.9 is easily applied to analytic functions inside a disk.

Corollary 23.10. Let f(x) =
∑∞

n=0 an(x − a)n ∈ Ab(d(a, r
−)) and

suppose that the number s = supn≥1 |an|rn is strictly positive. Then
conditions (α), (β), (γ), and (δ) are equivalent:

(α) |a1| ≥ |an|rn−1 whenever n > 1.
(β) |f(x)− f(y)| = |x− y| |a1| whenever x, y ∈ d(a, r−).
(γ) f is strictly injective in d(a, r−).
(δ) s = |a1|r.

Moreover, when conditions (α), (β), (γ), and (δ) are satisfied, we have
|f ′(x)| = |a1| whenever x ∈ d(a, r−).

Proof. For every ρ ∈]0, r[, we apply Theorem 23.9 to f ∈
H(d(a, ρ)). �

Lemma 23.11. Let f ∈ A(d(α, r−)) be injective and such that f ′ is
not identically zero. Then, f is strictly injective.

Proof. We may obviously assume that f ′(α) 	= 0 and α = 0. Hence,
f is of the form

∑∞
n=0 anx

n with a1 	= 0. If f ′ has a zero β, there
exists an integer q > 1 such that

(1) |qaq| |β|q−1 = |a1|.
Let g(x) = f(x) − f(0). Then, g is also injective and has a sim-
ple zero at 0. But by (1), we have |aq| |β|q ≥ |a1| |β|, hence we
have ν+(g, μ) ≥ q when μ is close enough to log(r). Then, by
Theorem 22.7, we know that g has at least q zeros in d(0, r−) and
then admits another zero γ 	= 0, which contradicts the fact that it
is injective. Consequently, f ′ has no zero in d(α, r−) i.e. f is strictly
injective. �
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We are now able to study the inverse functions of an analytic
element inside a disk d(a, r).

Theorem 23.12. Let a ∈ K, r ∈ R+, let f(x) ∈ H(d(a, r)) be
strictly injective in d(a, r), let s = |f ′(a)|r, and let b = f(a). The
homomorphism Θ from H(d(b, s)) into H(d(a, r)) defined as Θ(h) =
h ◦ f is an isometric isomorphism from H(d(b, s)) onto H(d(a, r)).

Proof. Without loss of generality, we may obviously suppose a =
b = f(a) = 0 and f ′(0) = 1. We put E = d(0, r). Hence, by Theorem
23.9, in d(0, r), f(x) is equal to a series of the form x+

∑∞
j=2 ajx

j

with supj≥2 |aj |rj < r. Next, by Theorem 22.9, r is equal to s. It is
obviously seen that ‖Θ(h)‖E = ‖h‖E for every h ∈ H(E). So, we only
have to prove that Θ is surjective. Let λ = infP∈K[x] ‖Θ(P )− x‖E
and suppose λ > 0.

Set λ =
infP∈K[x](‖P (f)−x)‖)

r and suppose that λ > 0. By definition,
λ < 1 because ‖f −x‖ < r. Let P ∈ K[x] be such that ‖P (f)− x‖ <
rλ

2
3 . Then, we can write x = P (f) + h(x) with h ∈ H(d(0, r)) and

h(x) =
∑∞

k=0 ckx
k with |cn| < rλ

2
3 ∀n ∈ N and limn→+∞ cn = 0.

Let q ∈ N be such that |cn < rλ2 ∀n > q and let ω(x) =
∑q

n=0 cnx
n. We first note that for all n ∈ N, we have

(1) ‖(P (f) + h(x))n − (P (f) + ω(x))n‖ ≤ ‖h− ω‖ ≤ rλ
2
3 .

Now, for each n ∈ N, set (P (f) + h(x))n = (P (f) + ω(x))n + ωn(x).
Then by (1), we have

(2) ‖ωn‖ ≤ rλ2 ∀n ∈ N.

On the other hand, ‖(P (f) + ω(x))n − (P (f))n| ≤ ‖ω‖ ≤ rλ
2
3

∀n ∈ N. Consequently, we can write

(3) ‖(P (f) + ω(x))n = (P (f))n + �n(x) with ‖�n‖ ≤ rλ
2
3 ∀n ∈ N.

Now, we have

x− P (f) =

q
∑

n=0

cn
(

(P (f) + ω(x))n + ωn(x)
)

+

∞
∑

n=q+1

cn
(

(P (f) + ω(x))n + ωn(x)
)

,
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therefore by (2) and (3), we can write

(4) x− P (f) =

q
∑

n=0

cn(P (f))
n +

q
∑

n=0

cn
(

�n(x) + ωn(x)
)

+
∞
∑

n=q+1

cn
(

(P (f) + ω(x))n + ωn(x)
)

with ‖cn
(

(P (f) + ω(x))n + ωn(x)
)‖ < rλ2 ∀n ≥ q and ‖�n +

ωn‖ < rλ
2
3 ∀n = 0, . . . , q, hence ‖∑q

n=0 cn(�n(x) + ωn(x))‖ ≤
rλ

4
3 . Consequently,

∥

∥x − P (f) − ∑q
n=0 cn(P (f))

n
∥

∥ ≤ rλ
4
3 . Set

Q(x) = P (x)−∑q
n=0 cn(P (x))

n. Then, the polynomial Q satisfies

‖x − Q(f)‖ ≤ rλ
4
3 , a contradiction to the hypothesis λ > 0. Con-

sequently, λ = 0, and therefore, x does belong to the closure of
Θ(H(E)). But since Θ is isometric, Θ(H(E)) is obviously closed
in H(E), and therefore, x belongs to Θ(H(E)). As a consequence,
Θ(H(E)) = H(E). �

Corollary 23.13. Let f ∈ H(d(a, r)) be strictly injective and let

d(b, s) = f(d(a, r)). Then,
−1
f belongs to H(d(b, s)).

Corollary 23.14. Let K have characteristic 0, let f ∈ H(a, r)) be

injective, and let d(b, s) = f(d(a, r)). Then,
−1
f belongs to H(d(b, s)).

Corollary 23.15. Let f ∈ A(d(0, r−)) be strictly injective in

d(0, r−) and let s = r|f ′(0)|. Then,
−1
f belongs to A(d(0, s−)).

Proof. Indeed, by Corollary 23.13,
−1
f belongs to H(d(0, u)) for

every u ∈ [0, s]. �

Corollary 23.16. Let K have characteristic 0, let f ∈ A(d(0, r−))

be injective in d(0, r−), and let s = r|f ′(0)|. Then,
−1
f belongs to

A(d(0, s−)).

Definition. An injective analytic function f ∈ Ab(d(a, r
−)) is said

to be bianalytic if f−1 belongs to A(f(d(a, r−))).
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We use the following lemma in topology:

Lemma 23.17. Let E be a topological space and let F and G be
subsets dense in E. If F is open, then F ∩G is dense in E.

Proof. Indeed, let a ∈ E, let V be an open neighborhood of a,
and let u ∈ V ∩ F . Since F is open, V ∩ F is a neighborhood of u.
Hence, as G is dense in E, there exists x ∈ (V ∩ F ) ∩ G. Therefore,
V ∩ (F ∩G) 	= ∅. �

Lemma 23.18. Let D be open. Let a be a point of D\D and let
f ∈ H(D ∪ {a}) be strictly injective in D. There exists an open set
E satisfying:

(i) E is open.
(ii) D ∪ {a} ⊂ E ⊂ D.
(iii) f belongs to H(E) and is strictly injective in E.

Proof. By Theorem 11.5, we know that f is of the form g+h with
g ∈ H(D) and h ∈ R(K\(D\(D ∪ {a}))). Since D is open, there
exists σ > 0 such that d(a, σ) ⊂ D. Now, as h ∈ R(D ∪ {a}), there
exists τ > 0 such that h ∈ R(D ∪ d(a, τ)). Let ρ = min(σ, τ) and let
E = D ∪ d(a, ρ). It is seen that E = D ∪ d(a, ρ), and therefore, E is
open. Next, both g, h belong to H(E), hence so does f .

We suppose that f is not injective in E. Let b and c ∈ E be
such that f(b) = f(c) and let ω = f(b). Let r ∈ R∗

+ be such that
d(b, r) ∪ d(c, r) ⊂ E whereas d(b, r) ∩ d(c, r) = ∅. Then f(d(b, r)) is
a disk d(ω, s) whereas f(d(c, r)) is a disk d(ω, t). We may obviously
assume s ≤ t. Let Σ = d(b, r)∩D and let Λ = d(c, r)∩D. Obviously,
Σ is dense in d(b, r) whereas Λ is dense in d(c, r), hence f(Σ) is dense
in d(ω, s) whereas f(Λ) is dense in d(ω, t). Hence, f(Λ) ∩ d(ω, s) is
dense in d(ω, s). Since Σ and Λ are open sets in K, by Corollary
22.10, both f(Σ) and f(Λ) are open sets in K because f is not a
constant in d(b, r) or in d(c, r). Hence, both f(Λ)∩ d(ω, s), f(Σ) are
dense open subsets of d(ω, s). Therefore, by Lemma 23.17, we see
that f(Σ) ∩ f(Λ) is dense in d(ω, s) and certainly is not empty. Let
y ∈ f(Σ) ∩ f(Λ) and α ∈ Σ, β ∈ Λ satisfy f(α) = f(β) = y. By
definition of Σ and Λ, we see that α and β ∈ D whereas α 	= β. This
contradicts the hypothesis “f is injective in D” and finally shows f
to be injective in E.
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Now, since f is strictly injective in d(a, r−)∩D, we have f ′(x) 	= 0
whenever x ∈ d(a, r−) ∩ D, hence by Lemma 23.11, f is strictly
injective in d(a, r−). Finally, we have f ′(x) 	= 0 whenever x ∈ E, and
this ends the proof of Lemma 23.18. �

We remember that Condition (B) was defined in Chapter 17.

Theorem 23.19. Let D be open, let D′ satisfy D ⊂ D′ ⊂ D, and
let f ∈ H(D′) be strictly injective in D. There exists an open set D′′
satisfying D′ ⊂ D′′ ⊂ D such that f belongs to H(D′′) and is strictly
injective in D′′.

Proof. By Lemma 23.18, for every a ∈ D′, there exists an open
set Da such that Da is open, satisfying Condition (B) such that
D∪{a} ⊂ Da ⊂ D and such that f belongs to H(Da) and is strictly
injective in Da. Let D

′′ =
⋃

a∈D′ Da. Then, D
′′ is open and such

that D′ ⊂ D′′ ⊂ D. By Theorem 11.5, f has a unique decomposition
in the form g + h with g ∈ H(D) and h ∈ R(K\(D\D′)). Since
f ∈ H(Da), obviously, h ∈ H(Da). Hence, h has no pole in Da

whenever a ∈ D′, therefore h ∈ R(D′′). Hence, f belongs to H(D′′).
Moreover, by Lemma 23.18, we have f ′(x) 	= 0 whenever x ∈ Da,
hence whenever x ∈ D′′.

Now, we just have to check that f is injective in D′′. Let a, b ∈ D′
satisfy f(a) = f(b). Since Da satisfies Condition (B), we may apply
Lemma 23.18 to Da and b and then we have an open set E such
that Da ∪ {b} ⊂ E ⊂ Da = D and such that f belongs to H(E)
and is strictly injective in E. Hence, the hypothesis f(a) = f(b) is
impossible, and therefore, f is injective in D′. But the hypothesis
made on D′ actually is satisfied on D′′. Hence, f is injective in D′′
and this finishes proving Theorem 23.19. �

Proposition 23.20. Let (d(αi, r
−
i ))i∈I be a partition of D. Let h ∈

H(D) be injective in D and let f ∈ H(D) satisfy

(i) |f ′(αi)− h′(αi)| < |h′(αi)| whenever i ∈ I,
(ii) ‖f − h‖d(αi,r

−
i ) < |h′(αi)|ri whenever i ∈ I.

Then f is strictly injective. Furthermore, for all i ∈ I, we have
f(d(αi, r

−
i )) = h(d(αi, r

−
i )).

Proof. By (i), h′ is not identically zero in d(αi, r
−
i ), hence by

Lemma 23.11, h is strictly injective in d(αi, r
−
i ). For every i ∈ I,
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we put si = |h′(αi)|ri. By Corollary 22.10, we have h(d(αi, r
−
i )) =

d(h(αi), s
−
i ), hence by (ii), it is seen that f(d(αi, r

−
i )) ⊂ d(h(αi), s

−
i ).

Let f(d(αi, r
−
i )) = d(f(αi), t

−
i ). Therefore, we have

(1) ti ≤ si,

while obviously

(2) ti ≥ |f ′(αi)|ri.
But, by (i), we have |f ′(αi)| = |h′(αi)|, hence by (1) and (2), we

can derive ti = si, hence ti = |f ′(αi)|ri, and therefore, by Theorem
23.9, f is strictly injective in d(αi, r

−
i ). Suppose that f is not injective

in all of D. Then there exists a and b ∈ D such that f(a) = f(b).
Since f is injective in each disk d(αi, r

−
i ), we see that there exist j and

m ∈ I with j 	= m such that a ∈ d(αj , r
−
j ) and b ∈ d(αm, r

−
m). Since

we have just proven that f(d(αi, r
−
i )) = h(d(αi, r

−
i )) for all i ∈ I,

we see that there exist a′ ∈ d(αj , r
−
j ) and b′ ∈ d(αm, r

−
m) such that

h(a′) = f(a), h(b′) = f(b). This clearly contradicts the hypothesis “h
is injective in D”. Consequently, f is injective in all of D. Therefore,
by Lemma 23.11, f is strictly injective. �

Proposition 23.21 shows the set of the strictly injective elements
to be open in H(D).

Proposition 23.21. Let D be such that δ(D,K\D) = ρ > 0. Let λ ∈
]0,+∞[. Let h ∈ H(D) be injective and satisfy |h′(x)| ≥ λ whenever
x ∈ D. For every f ∈ H(D) such that ‖f − h‖D < λρ, f is strictly
injective in D and satisfies f(d(α, ρ−)) = h(d(α, ρ−)) for all α ∈ D.

Proof. Let h ∈ H(D) satisfy ‖f − h‖
D
< λρ. Since the distance

from D to K\D is ρ > 0, there exists a partition of D in the form
(d(αi, ρ

−))i∈I and then we have ‖f − h‖d(αi,ρ−) < λρ ≤ |h′(αi)|ρ.
Moreover, given any g ∈ H(d(α, ρ−)), by Theorem 18.1, we have
‖g′‖d(α,ρ−) ≤ 1

ρ‖g‖d(α,ρ−), hence

|f ′(αi)− h′(αi)| ≤ 1

ρ
‖f − h‖d(αi,ρ−) < λ ≤ |h′(αi)|.

So, Conditions (i) and (ii) of Proposition 23.20 are clearly satisfied.
�
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Remark. As we know, when D has holes, ρ is just the lower bound
of the diameters of the holes.

Theorem 23.22. Let d(αi, r
−
i )i∈I be a partition of D, let h ∈ H(D),

and let u ∈]0, 1[. Let φ ∈ H(D) satisfy ‖φ‖D < 1 and ‖hφ‖d(αi ,r
−
i ) ≤

uri‖h′‖d(αi,r
−
i ) for all i ∈ I. Then, for every t ∈]max(u, ‖φ‖D), 1[

there exists a family (βi)i∈I with βi ∈ d(αi, r
−
i ) such that

(i) |h(βi)φ′(βi)| ≤ t|h′(βi)| whenever i ∈ I,
(ii) ‖hφ‖d(αi ,r

−
i ) ≤ t|h′(βi)|ri whenever i ∈ I.

Let h be strictly injective and let f = h(1 + φ). Then, f is strictly
injective and satisfies f(d(αi, r

−
i )) = h(d(αi, r

−
i )) for all i ∈ I.

Proof. Let us fix i ∈ I and put α = αi, r = ri. For every g ∈
H(d(α, r−)), we have ‖g‖d(α,r−) = lim|x−α|→r− |g(x)|, hence there

clearly exists β ∈ d(α, r−) such that

(1) |h′(β)| ≥ u

t
‖h′‖d(α,r−), hence the hypothesis implies

(2) ‖hφ‖d(β,r−) ≤ t
u

t
|h′(β)|r.

Moreover, we know that ‖φ′‖d(α,r−) ≤ 1
r ‖φ‖d(α,r−), hence we have

|h(β)φ′(β)| ≤ |h(β)|1
r
‖φ‖d(α,r−) ≤

1

r
‖h‖d(α,r−)‖φ‖d(α,r−).

As the norm ‖ . ‖d(a,r−) is multiplicative, we have |h(β)φ′(β)| ≤
1
r‖hφ‖d(α,r−), hence by the above hypothesis, |h(β)φ′(β)| ≤
u‖h′‖d(α,r−), and finally, by (1), we obtain

(3) |h(β)φ′(β)| ≤ t|h′(β)|.
Hence, we just have to put βi = β and do this for every i ∈ I in order
to obtain (i) and (ii) from (2) and (3). Since ‖φ‖

D
≤ 1, we may take

t ≥ ‖φ‖
D
.We see that f ′−h′ = h′φ+hφ′, hence by Condition (i), we

obtain |f ′(βi)− h′(βi)| ≤ t|h′(βi)|. Then, as t < 1 , and as h′(x) 	= 0
whenever x ∈ D, we see that |f ′(βi) − h′(βi)| < |h′(βi)| whenever
i ∈ I. This is just Condition (i) in Proposition 23.20. Moreover,
Condition (ii) implies Condition (ii) in Proposition 23.20. Hence, by
Proposition 23.20, f is strictly injective and satisfies f(d(αi, r

−
i ) =

h(d(αi, r
−
i )) for all i ∈ I. �
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Theorem 23.23. Let D be analytic and let F be the set of the injec-
tive elements of H(D). The closure of F in H(D) is equal to F ∪K.

Proof. Let F be the closure of F and let f ∈ F\K. Suppose that
f is not injective and let a, b ∈ D be such that f(a) = f(b). Without
loss of generality, we may obviously assume f(a) = 0. Now, let r ∈
]0, |a−b|[ be such that d(a, r)∪d(b, r) is included inD. Suppose that f
is not identically zero in D. Since D is an analytic set, the restriction
of f to d(a, r) (respectively d(b, r)) is not identically zero. Let h ∈ F
satisfy ‖f − h‖D < min(‖f‖d(a,r), ‖f‖d(b,r)). By Theorem 22.16, h
admits a zero in d(a, r) and another in d(b, r). But since r < |a −
b|, these two zeros are different, and therefore, this contradicts the
hypothesis “h ∈ F”. That ends the proof. �
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Chapter 24

Quasi-Invertible Analytic Elements

Throughout this chapter D is supposed to be infraconnected.

Some of the results given here were obtained in [35], [36], [44],
and [50]. We show that when an ideal of an algebra H(D) contains
a quasi-invertible element, this ideal is principal and generated by a
polynomial.

Lemma 24.1. Let T be a hole of D and let f ∈ H(D∪T ) be invertible
in H(D). If f has no zero in T, then f is invertible in H(D ∪ T ).
Proof. Let (fn)n∈N be a sequence in R(D ∪ T ) which converges
to f in H(D ∪ T ). Let T = d(a, r−). Since f has no zero in T , by
Theorem 22.15, we have |f(x)| = |f(a)| for all x ∈ T, and therefore,
|f(x)| =

D
ϕa,r(f) for all x ∈ T . Now, since D is infraconnected, by

Corollary 13.2, we have
D
ϕa,r(g) ≤ ‖g‖

D
whenever g ∈ H(D), hence

for n big enough,
∣

∣

∣

∣

1

f(x)
− 1

fn(x)

∣

∣

∣

∣

=
|fn(x)− f(x)|

|f(x)|2 ≤ ‖fn − f‖D
(
D
ϕa,r(f))2

whenever x ∈ T . Hence, we see that the sequence 1
fn

converges to 1
f

in H(D ∪ T ). �

Theorem 24.2. Let D ∈ Alg. If an ideal contains a quasi-invertible
element, then it is generated by a polynomial whose zeros belong

to
◦
D ∩D.

209
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Proof. Let J be an ideal of H(D) that contains a quasi-invertible
element f that is of the form Pg with g invertible in H(D) and

P (x) ∈ K[x], all the zeros of P lying inside D ∩
◦
D. Then, P belongs

to J . Consequently, the set J0 of polynomials that belong to J is not
empty and hence is an ideal of K[x], hence J0 is of the form Q(x)K[x]
with Q ∈ K[x]. On the other hand, by hypothesis, f factorizes in
H(D) in the form Pg with g invertible in H(D) and P (x) ∈ K[x], all

the zeros of P lying inside D∩
◦
D. Since fg−1 belongs to J , obviously

P belongs to J0. Hence, Q divides P and then all zeros of Q lie in

D ∩
◦
D. We show that J = QH(D).

First, we suppose that D is bounded. Let α1, . . . , αq be the zeros
of Q and suppose that there exists some h ∈ J \QH(D). Since D
is bounded, by Theorem 11.12, h is of the form �

S with � ∈ H(D)

and S a polynomial whose zeros belong to D\D. Hence, � belongs
to J . Now we can find r > 0 such that d(αi, r) ⊂ D, whenever
i = 1, . . . , q. Let Λ =

⋃q
i=1 d(αi, r) and let D′ = D ∪ Λ. Since the

zeros of Q lie in Λ, there exists λ > 0 such that |Q(x)| ≥ λ whenever
x ∈ D\Λ. Now since D is closed and bounded, there exists b ∈ K

such that ‖b�‖
D
< λ. We put φ = Q + b�. Clearly, outside Λ, we

have |φ(x)| ≥ λ. Next, by Theorem 22.18, in each disk d(αi, r), φ
has finitely many zeros, hence in D′, φ has finitely many zeros, all
of them in Λ. Therefore, by Theorem 16.2, it factorizes in the form
V (x)W (x) with W ∈ H(D′),W (x) 	= 0 whenever x ∈ D′ and V
a polynomial whose zeros belong to Λ. By Theorem 22.16, |W (x)|
has a strictly positive lower bound in Λ and another non-zero lower
bound in D′\Λ because |V (x)| is obviously bounded in D′. Finally,
W has a non-zero lower bound in D′, therefore it is invertible in
H(D′). Hence, V belongs to J . But then Q divides V in K[x]. But
since Q + b� is equal to V W , then Q divides Q + b� and hence it
divides � and h too. This contradicts the hypothesis h ∈ J \QH(D)
and finishes proving that Q generates J when D is bounded.

Now, we suppose D unbounded. We may obviously assume D to
have at least one hole d(a, r−) and without loss of generality, we may
assume a = 0. Let γ(x) = 1

x and let D′′ = γ(D). Then, D′′ is a
bounded set that belongs to Alg such that 0 /∈ D′. We also have
γ = γ−1 and γ(D′′) = D. Let ψ be the mapping from H(D) onto
H(D′′) defined as ψ(f) = f ◦ γ. Then, ψ is a K-algebra isomorphism
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from H(D) onto H(D′′). Moreover, ψ(J ) is an ideal J ′′ of H(D′′).
Let u = 1

x and T (u) = Q(x). Then we can check that J ′′ = TH(D′′),
which ends the proof. �

Definition and notation. For any integer n ∈ N, we denote by
Qn(D) the set of the quasi-invertible elements f ∈ H(D) that have
exactly n zeros, taking multiplicity into account and by Q(D) the
set
⋃∞
n=0Qn(D).

Theorem 24.3 shows that if two analytic elements f, g are close
enough, then the zeros of f and g also are respectively close, once
correctly ordered. It is known as the convergence of zeros theorem.

Theorem 24.3. Let D be closed and bounded. Let n ∈ N, let
f ∈ Qn(D), and let α1, . . . , αn be the zeros of f (taking multiplic-
ity into account). For every ε > 0, there exists η > 0 such that for
every h ∈ H(D) satisfying ‖f − h‖

D
≤ η, h belongs to Qn(D) and

the zeros β1, . . . , βn of h, once correctly ordered, satisfy |αi − βi| ≤ ε
(1 ≤ i ≤ n).

Proof. Let f = Pg ∈ Qn(D) with g invertible in H(D) and P
an n-degree monic polynomial whose zeros are interior to D. Let
γ1, . . . , γq be the different zeros of P , each γj of order sj (with
obviously

∑q
j=1 sj = n). Let ξ = infj �=� |γj − γ�|, let ε ∈]0, ξ[, let

Λj(ε) = d(γj , ε), and let Λ(ε) =
⋃q
j=1 d(γj , ξ). It is easily seen that

|P (x)| has a non-zero lower bound in D\Λ(ε). Since D is closed and
bounded, |g(x)| has a non-zero lower bound in D. Hence, |f(x)| has
a lower bound λ > 0 in D\Λ(ε). Let η = min(λ,min1≤j≤q ‖f‖Λj(ε))
and let h ∈ H(D) satisfy

(1) ‖f − h‖D < η.

Obviously, we have |f(x)| = |h(x)| ≥ λ whenever x ∈ D\Λ(ε). But
then by (1) and by Theorem 22.17, we see that h has exactly si zeros
like f in Λi(ε) (1 ≤ i ≤ q) taking multiplicity into account. Thus, we
have already proven the statement when all zeros of f have order 1.

Now, extending this to the general case is just a question of writ-
ing. We may assume the αi to be ordered in such a way that

α1 = · · · = αs1 = γ1, αs1+1 = · · · = αs1+s2 = γ2,

αs1+···+sq−1+1 = · · · = αs1+···+sq = γq.
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Thus, for every j = 1, . . . , q in Λj(ε), we can check that γj is equal
to αs1+···+sj−1+k whenever k = 1, . . . , sj. Since f admits sj zeros in
Λj(ε), as does h, we may denote them by βs1+···+sj−1+1, . . . , βs1+···+sj
(some of them being eventually equal). So, we obtain |αi − βi| ≤ ε
whenever i = 1, . . . , n. �

Corollary 24.4. Let D be closed and bounded. For every n ∈ N,
Qn(D) is open in H(D) and so is Q(D).

Lemma 24.5. Let a ∈ D satisfy a /∈
◦
D. There exists a quasi-

minorated element f ∈ Hb(D) which is not semi-invertible, satisfying

lim x→a
x∈D

f(x) = 0 and lim sup x→0
x∈D

∣

∣

f(x)
x

∣

∣ = +∞.

Proof. Without loss of generality, we may obviously assume a = 0.
Then the Cauchy filter F of base {d(0, r) ∩ D | r > 0} is pierced.
Let (Tm)m∈N be a sequence of holes of D that runs F and let D′ =
K\(⋃∞

m=0 Tm). By Corollary 17.5, there exists f ∈ Hb(D
′) such that

lim x→0
x∈D′ f(x) = 0 and such that lim sup x→0

x∈D

∣

∣

f(x)
x

∣

∣ = +∞. We check

that D′ has no monotonous pierced filter because its only holes are
the Tm. Hence, by Corollary 21.3, f is quasi-minorated. If 0 belongs

to D, it is seen that f(0) = 0 while lim supx→0
x∈D

∣

∣

f(x)
x

∣

∣ = +∞, hence f

can’t factorize in the form xg(x) with g ∈ H(D), and therefore, f is
not semi-invertible.

Now, suppose 0 /∈ D and that f semi-invertible. Then it factor-
izes in the form P (x)g(x) with P the polynomial of the zeros of f

in
◦
D and g an invertible element in H(D). Since 0 /∈ D, we have

P (0) 	= 0, hence lim x→0
x∈D

g(x) = 0. But since limx→0 |g(x)| = +∞, by

Corollary 11.9, 1
g(x) admits a pole at 0. Let n be its order. Then, by

Corollary 11.9, xn

g(x) has a finite limit different from zero at 0. But

since f(x)
x is unbounded in any set d(0, r) ∩ (D′\{0}), so is g(x)

x and

therefore we have lim infx→0

∣

∣
xn

g(x)

∣

∣= 0. Hence, g can’t be invertible.

This finally shows that f is not semi-invertible and finishes the proof
of Lemma 24.5. �

Lemma 24.6. Let D be such that ˜D\D is not bounded. Then there
exists a quasi-minorated element f ∈ Hb(D) satisfying

(1) lim
|x|→∞
x∈D

f(x) = 0
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and

(2) lim sup
|x|→∞
x∈D

|xf(x)| = +∞.

Moreover, xf does not belong to H(D).

Proof. Since D has holes, we may obviously assume that 0 belongs
to a hole. Let γ(x) = 1

x and let D′ = γ(D). Then D′ is bounded and

0 belongs to D′\
◦
D′. By Lemma 24.5, there exists a quasi-minorated

element h ∈ Hb(D
′) satisfying

(3) lim
x→0
x∈D

f(x) = 0

and

(4) lim sup
x→0
x∈D

∣

∣

f(x)

x

∣

∣ = +∞.

Then we set f = h ◦ γ. By (3), f satisfies (1), and by (4), f
satisfies (2). Now, by Lemma 16.7, f is quasi-minorated. Finally, we
check that xf does not belong to H(D). Indeed, suppose xf ∈ H(D).
By Theorem 11.5, xf is of the form g(x)+P (x), with g ∈ Hb(D) and
P ∈ K[x]. Let q = deg(P ). Since xf is not bounded, we have q > 0.
Then, x1−qf has a limit different from 0 when |x| tends to +∞ and
this contradicts (1). This ends the proof of Lemma 24.6. �

Theorem 24.7. If D does not belong to Alg, there exist invertible
elements f, g ∈ H(D) such that fg belongs to H(D) but is not
semi-invertible.

Proof. First, we suppose that there exists a ∈ (D\D)\
◦
D. Without

loss of generality, we assume a = 0. By Lemma 24.5, there exists

f ∈ Hb(D) such that lim x→0
x∈D

f(x) = 0 while f(x)
x is not bounded in

any set D ∩ d(0, r) (r > 0). Since f ∈ Hb(D), we can find A ∈ K

such that |A| > ‖f‖
D
. Let g = A+ f . Then g is invertible in H(D).

Let T = d(b, ρ−) be a hole of D and let F = x
(x−b)g . Then both

x
x−b , g

−1 belong to Hb(D), hence so does F . But by definition, F is
the product of two invertible elements of H(D). We also note that

F has no zero in D. Next, we note that f(x)(x−b)
x is not bounded

in any set D ∩ d(0, r) (r > 0), although lim x→0
x∈D

f(x)(x − b) = 0.
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Thus, f(x)(x−b)x cannot admit a pole at 0, and therefore, by Corollary

11.9, f(x)(x−b)x does not belong to H(D). But then, since A(x−b)
x does

belong to H(D), we see that F−1 does not belong to H(D). Since F
has no zero in D, it is not semi-invertible although both x

x−b , g
−1

are invertible in H(D).

Now, we suppose that ˜D\D is not bounded. Since D has holes,
we may obviously assume that 0 belongs to a hole. Let γ(x) = 1

x

and let D′ = γ(D). Then D′ is bounded, and 0 belongs to ∈ D′\
◦
D′.

Hence, as we just saw, there exist invertible elements h, g ∈ Hb(D
′)

such that hg belongs to Hb(D
′) and has no zero in D′ but is not

invertible in H(D′). Then we put τ = h ◦ γ, ψ = g ◦ γ, φ = (hg) ◦ γ.
By Theorem 12.7, both τ, ψ are invertible in H(D), and φ belongs
to H(D) and has no zero in D. Since hg is not invertible in H(D′),
by Theorem 12.7 again, φ is not invertible in H(D). Since it has
no zero in D, it is not semi-invertible in H(D) and that finishes the
proof of Theorem 24.7. �

Theorem 24.8. The following three statements are equivalent:

(i) D belongs to Alg and D is open.

(ii) ˜D\D is bounded and D is open.
(iii) The set of the quasi-minorated elements of H(D) is equal to the

set of the quasi-invertible elements.

Proof. By Theorem 17.9, we know that (i) implies (ii). Conversely,
suppose (ii) is satisfied. Particularly, D is open. Suppose (i) is not

satisfied. Then D does not belong to Alg. Since ˜D\D is bounded,

there must exist a ∈ D\D that does not belong to
◦
D, and therefore,

this contradicts (ii). Hence, (i) and (ii) are equivalent. Now, since
(ii) implies (i), we can apply Theorem 21.7, hence (ii) implies (iii).

Finally, it just remains to show that if ˜D\D is not bounded or if D
is not open, then there exist quasi-minorated elements that are not
quasi-invertible.

On one hand, if D is not open, by Lemma 24.5, such an ele-
ment does exist. On the other hand, if ˜D\D is not bounded, then D
does not belong to Alg, and therefore, by Theorem 24.7, there exist
invertible elements f, g in H(D) such that fg is not semi-invertible
and hence is not quasi-invertible. But, by Theorem 21.6, both f, g
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are quasi-minorated, and then, by Theorem 21.5, fg also is quasi-
minorated. That ends the proof of Theorem 24.8. �

Theorem 24.9. Let D be closed, let T be a hole of D, and let
f ∈ H(D ∪ T ) have no zero in T . There exists a bounded closed
infraconnected set E such that T ⊂ E ⊂ D∪T , T 	= E and such that
the restriction of f to E is invertible in H(E).

Proof. Let T = d(a, r−) and let λ =D ϕa,r(f). By Theorem 22.16,
we know that |f(x)| = λ for all x ∈ T . Moreover, since the restriction
of f to T is not identically zero, we have λ > 0. Let � = λ

2 .
First, we suppose C(a, r) ∩ D 	= ∅. Let b ∈ D ∩ C(a, r). Then

we have lim |x−b|→r, |x−b|<r,
x∈D

|f(x)| =D ϕb,r(f) =D ϕa,r(f) = λ. Hence,

there exists s ∈]0, r[ such that |f(x)| ≥ � for every x ∈ d(b, r−) ∩D.
Then, the set E = T ∪(d(b, r−)∩D) is clearly infraconnected, closed,
and bounded and we have |f(x)| ≥ � for all x ∈ E. Hence, the
restriction of f to E is invertible in H(E).

Now, we suppose C(a, r) ∩ D = ∅. There exists s > r such that
|f(x)| ≥ � for every x ∈ Γ(a, r, s) ∩D. So, we consider the set E =
T ∪ (Γ(a, r, s) ∩ D). It is infraconnected, closed, and bounded and
we have |f(x)| ≥ � for all x ∈ E. Hence the restriction of f to E is
invertible in H(E).

In both cases, we can see that T is strictly included in E. That
ends the proof of Theorem 24.9. �

We can now briefly examine the ideals of an algebra H(D) when
all elements are quasi-invertible.

Theorem 24.10. Let D ∈ Alg. If an ideal contains a quasi-invertible
element, then it is generated by a polynomial whose zeros belong to
◦
D ∩D.

Proof. Let H be an ideal of H(D) that contains a quasi-invertible
element f , and let H0 be the set of polynomials that belong to H. By
hypothesis, f factorizes in H(D) in the form Pg with g invertible in

H(D) and P (x) ∈ K[x], all the zeros of P lying inside D ∩
◦
D. Since

fg−1 belongs to H, obviously P belongs to H0. Hence, T divides P ,

and then all the zeros of T lie in D∩
◦
D. We show that H = TH(D).
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First, we suppose that D is bounded. It is clearly seen that H0

is an ideal of K[x], hence there exists T (x) ∈ K[x] such that H0 =
T (x)K[x].

Let α1, . . . , αq be the zeros of T . Now, we suppose that there
exists some h ∈ H\TH(D). Since D is bounded, by Theorem 11.12,
h is of the form �

S with � ∈ H(D) and S a polynomial whose zeros

belong to D\D. Hence, � belongs to H. Now, we can find r > 0 such
that d(αi, r) ⊂ D, whenever i = 1, . . . , q. Let Λ =

⋃q
i=1 d(αi, r) and

let D′ = D ∪ Λ. Since the zeros of T lie in Λ, there exists λ > 0
such that |T (x)| ≥ λ whenever x ∈ D\Λ. Now, since D is closed and
bounded, there exists b ∈ K such that ‖b�‖

D
< λ. We put φ = T+b�.

Clearly, outside Λ, we have |φ(x)| ≥ λ. Besides, by Theorem 22.18,
in each disk d(αi, r), φ has finitely many zeros, hence in D′, φ has
finitely many zeros, all of them in Λ. Hence, it factorizes in the form
Q(x)W (x) with W ∈ H(D′),W (x) 	= 0 whenever x ∈ D′ and Q
a polynomial whose zeros belong to Λ. By Theorem 22.16, |W (x)|
has a strictly positive lower bound in Λ and another non-zero lower
bound in D′\Λ because |Q(x)| is obviously bounded in D′. Finally,
W has a non-zero lower bound in D′, therefore it is invertible in
H(D′). Hence, Q belongs to H. But then T divides Q in K[x]. Since
T + b� is equal to WQ, then T divides T + b�, and �, and h too. This
contradicts the hypothesis h ∈ H\TH(D) and finishes proving that
T generates H when D is bounded.

Now, we suppose D unbounded. We may obviously assume D to
have at least one hole d(a, r−), and without loss of generality, we
may assume a = 0. Let γ(x) = 1

x , and let D′ = γ(D). Then D′ is
a bounded set that belongs to Alg such that 0 /∈ D′. We also have
γ = γ−1, and γ(D′) = D. Let ψ be the mapping from H(D) into
H(D′) defined as ψ(f) = f ◦ γ. Then ψ is a K-algebra isomorphism
from H(D) onto H(D′). Besides, ψ(H) is an ideal H′ of H(D′). Let
P (x) =

∏q
j=1(x − ai), for every j = 1, . . . , q, let a′i = 1

ai
, and let

B(u) =
∏q
j=1(u−a′i). Clearly, ψ(P ) = B(u)

uq . As 0 /∈ D′, u is invertible

in H(D′), and B belongs to H′. Hence, J ′ is generated by a polyno-

mial whose zeros lie inside D′ ∩
◦
D

′
. Now, let W (u) =

∏t
j=1(u− cj).

Since the cj lie in D
′, they are different from 0. For every j = 1, . . . , t,

let ej = 1
cj
, and let S(x) =

∏t
j=1(x − ej). It is seen that for each
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j = 1, . . . , t, ej does belong to D∩
◦
D. Now, let h ∈ H. Then ψ(h)

belongs toH′ and is of the formW (u)G(u), with G ∈ H(D′). Putting
F = ψ−1(G), inH(D), we have h = (−1)tS(x) F (x)

xt
∏t

i=1 ej
. As F (x)

xt is an

invertible element of H(D), this finishes showing that S generates H.
�

Corollary 24.11. Suppose D ∈ Alg and all elements are quasi-
invertible, except 0. Then H(D) is a principal ring and each ideal
is generated by a polynomial whose zeros lie in the opening of D and
every maximal ideal of H(D) is of the form (x−a)H(D) with a ∈ D.

By Corollaries 21.9, 21.10, and 24.11, we can derive again Corol-
laries 24.12 and 24.13:

Corollary 24.12. Suppose D ∈ Alg be closed and let T be the set of
holes of D. If { ˜T |T ∈ T } is finite, H(D) is principal, each ideal is
generated by a polynomial whose zeros lie in D, and every maximal
ideal of H(D) is of the form (x− a)H(D), with a ∈ D.

Corollary 24.13. If D is a disk d(a, r) or d(a, r−), or if D is
an annulus Γ(a, r1, r2) (with 0 < r1 < r2) or Δ(a, r1, r2) (with
0 < r1 < r2) or a circle C(a, r), then H(D) is principal, each ideal
is generated by a polynomial whose zeros lie in D and every maximal
ideal of H(D) is of the form (x− b)H(D) with b ∈ D.
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Chapter 25

Logarithm and Exponential
in a p-adic Field

In this chapter, the field K is supposed to have characteristic zero.

We define the p-adic logarithm and the p-adic exponential and
shortly study them, in connection with the study of the roots of 1
made in Chapter 24. Both functions are also defined in [1]. Here, as in
[50], we compute the radius of convergence of the p-adic exponential
by using results on injectivity seen in Chapter 23.

Lemma 25.1. K is supposed to have residue characteristic p �= 0.
Let r ∈]0, 1[, and for each n ∈ N, let hn(x) = (1+x)p

n
. The sequence

hn converges to 1 with respect to the uniform convergence on d(0, r).

Proof. Without loss of generality, we may assume |p| = 1
p . Let

E = d(0, r), and for each n ∈ N, let un = pn and let qn be the
integral part of n

2 . Now, we put tn = pqn and we denote by h the

identical function on E. Then, hn − 1 =
∑un

j=1

( un
j

)

hj . By Lemma

7.1, we have
∣

∣

( un
j

)∣

∣ ≤ p−n

|j| , hence

(1)

∣

∣

∣

∣

(

un
j

)∣

∣

∣

∣

≤ j p−n ≤ tn p
−n ≤ p−

n
2 whenever j = 1, . . . , tn.

Next, we have

hn − 1 =

tn
∑

j=1

(

un
j

)

hj +

un
∑

j=tn+1

(

un
j

)

hj . By (1), it is seen that

219
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(2)

∥

∥

∥

∥

∥

∥

tn
∑

j=1

(

un
j

)

hj

∥

∥

∥

∥

∥

∥

E

≤ p−
n
2

while

(3)

∥

∥

∥

∥

∥

∥

un
∑

j=tn+1

(

un
j

)

hj

∥

∥

∥

∥

∥

∥

E

≤ ‖h‖tn+1

E
.

Now, by (2) and (3), we see that limn→∞ ‖hn − 1‖
E
= 0. �

Definition and notation. As previously defined, for each q ∈ N∗,
we denote by rq the positive number such that logp(rq) = − 1

pq−1(p−1)
.

We denote by f(x) the series
∑∞

n=1(−1)n−1 xn

n .

Theorem 25.2. f has a radius of convergence equal to 1. If the
residue characteristic of K is p �= 0, then f is unbounded in d(0, 1−).
If the residue characteristic is zero, then |f(x)| is bounded by 1 in
d(0, 1−). The function defined in d(1, 1−) as Log(x) = f(x−1) has a
derivative equal to 1

x and satisfies Log(ab) = Log(a) + Log(b) when-
ever a, b ∈ d(1, 1−).

Proof. It is clearly seen that the radius of f is 1 because |n| ≥ 1
n .

As in the Archimedean case, the property Log(ab) = Log(a)+Log(b)
comes from the fact that both Log and the function ha defined as
ha(x) = Log(ax) have the same derivative. The other statements are
immediate. �

In Chapter 7, when K has residue characteristic p �= 0, we have
introduced the group W of the psth roots of 1, i.e. the set of the
u ∈ K satisfying up

s
= 1 for some s ∈ N.

Theorem 25.3. K is supposed to have residue characteristic p �= 0
(respectively 0). All zeros of Log are of order 1. The set of zeros of the
function Log is equal to W (respectively 1 is the only zero of Log).
The restriction of Log to the disk d(1, (R1)

−) (respectively d(1, 1−))
is injective and is a bijection from d(1, (R1)

−) onto d(0, (R1)
−)

(respectively from d(1, 1−) onto d(0, 1−)).

Proof. It is obvious that the zeros of Log are of order 1 because
the derivative of Log has no zero. First, we suppose K to have residue
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characteristic p �= 0. Each root of 1 in d(1, 1−) is a zero of Log. More-
over, by Theorem 7.8, we know that the only roots of 1 in d(1, 1−)
are the pnth roots. Now, we can check that Log admits no zero other
than the roots of 1. Indeed, suppose that a is a zero of Log but is
not a root of 1, and for each n ∈ N, let bn = ap

n
. Since bn belongs

to d(1, 1−), by Lemma 25.1, we have limn→∞ bn = 1. But obviously
Log(bn) = 0 for every n ∈ N, hence this contradicts the fact that 1
is an isolated zero of Log.

Thus, Log has no zero in the disk d(1, (R1)
−), except 1, and

therefore, by Theorem 22.7, the series f(x) =
∑∞

n=1(−1)n−1 xn

n sat-

isfies ν+(f, logp r) = 1 for every r ∈]0, R1[, hence r > rn

|n| for

all r ∈]0, R1[, for every n ∈ N∗. Therefore, by Corollary 23.10,
it is injective in d(0, R−

1 ). Then, by Corollary 22.10, we see that
Log(d(1, R−

1 )) = d(0, R−
1 ).

Now, we suppose that K has residue characteristic zero. Then,
the function f(x) =

∑∞
n=1(−1)n−1 xn

n satisfies ν+(f, logp r) = 1 for

every r ∈]0, 1[, hence r > rn

n for all r ∈]0, 1[, for every n ∈ N∗.
Therefore, f has no zero different from 1 in d(0, 1−) and, by Corollary
23.10, is injective in d(0, 1−). Then, by Corollary 22.10, we see that
Log(d(1, 1−)) = d(0, 1−). This ends the proof. �

Corollary 25.4. K is supposed to have residue characteristic 0.
There is no root of 1 in d(1, 1−), except 1.

Proof. Indeed, any root of 1 should be a zero of Log in d(1, 1−).
�

Definition and notation. If K has residue characteristic p �= 0, we
denote by exp the inverse (or reciprocal) function of the restriction
of Log to d(1, R−

1 ) which obviously is a function defined in d(0, R−
1 ),

with values in d(1, R−
1 ). If K has residue characteristic 0, we denote

by exp the inverse function of Log which is obviously defined in
d(0, 1−) and takes values in d(1, 1−).

Theorem 25.5. K is supposed to have residue characteristic
p �= 0 (respectively p = 0). The function exp belongs to Ab(d(0, R

−
1 ))

(respectively Ab(d(0, 1
−))), is a bijection from d(0, R−

1 ) onto d(1, R
−
1 )

(respectively from d(0, 1−) onto d(1, 1−)), and satisfies exp(x) =
exp′(x) =

∑∞
n=0

xn

n! whenever x ∈ d(0, R−
1 ) (respectively x ∈

d(0, 1−)). Moreover, the disk of convergence of its series is equal to
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d(0, R−
1 ) (respectively d(0, 1

−)). Further, if p �= 0, then exp does not
belong to H(d(0, R−

1 )).

Proof. By Corollary 23.15, we know that the function exp belongs
to Ab(d(0, R

−
1 )) (respectively Ab(d(0, 1

−))) and is obviously a bijec-
tion from d(0, R−

1 ) onto d(1, R−
1 ) (respectively from d(0, 1−) onto

d(1, 1−)). As it is the reciprocal of Log, it must satisfy exp(x) =
exp′(x) for all x ∈ d(0, R−

1 ) (respectively x ∈ d(0, 1−)), and there-
fore, exp(x) =

∑∞
n=0

xn

n! whenever x ∈ d(0, R−
1 ) (respectively

x ∈ d(0, 1−)). Thus, the radius of convergence r is at least R1 (respec-
tively 1). If the residue characteristic is 0, it is obviously seen that
the series cannot converge for |x| = 1, hence the disk of convergence
is d(0, 1−).

Now, we suppose that the residue characteristic is p �= 0. Suppose
that the power series of exp converges in d(0, R1). Then exp has
continuation to an element of H(d(0, R1)). On the other hand, since
ν(f, logp r) = 1 for all r ∈]0, R1[, we have ν−(f, logpR1) = 1, and
then by Theorem 22.9, Log(d(1, R1)) is equal to d(0, R1). Hence,
we can consider exp(Log(x)) in all the disk d(0, R1). By Corollary
12.3, this is an element of H(d(1, R1)). But this element is equal
to the identity in all of d(1, R−

1 ) and therefore in all of d(1, R1). Of
course, this contradicts the fact that Log is not injective in the circle
C(1, R1). This finishes proving that the disk of convergence of exp is
just d(0, R−

1 ).
Let us show that exp does not belong to H(d(0, R−

1 )). Indeed,
suppose exp belongs to H(d(0, R−

1 )). Consider the Mittag-Leffler
decomposition of exp on the infraconnected set d(0, R−

1 ). It is of
the form

∑∞
n=0 gn with g0 ∈ H(d(0, R1) and gn ∈ H0(K\d(an, R−

n ))
with an ∈ C(0, R1). Set Tn = d(an, R

−
1 ), n ∈ N∗ and S =

⋃∞
n=1 Tn.

Let K be the residue class field of K. By Theorem 8.4, we can con-
sider a complete algebraically closed extension ̂K of K whose residue
class field ̂K is not countable. Thus, we can find a class G of ̂C(0, R1)
that has an empty intersection with S, and then, by Theorem 15.1,
exp has continuation to an element of H(d(0, R−

1 ) ∪ G. Let c ∈ G.
Since |c| = R1, by Theorem 25.3, the function h(x) = Log(1+x)−c =
−(c+

∑∞
n=1

(−x)n

n ) satisfies ν−(h, logp(R1) = 0, ν+(h, logp(R1) > 1,

hence h admits a zero a ∈ ̂C(0, R1). Then, a does not belong to
K because if a ∈ K, then Log(1 + a) ∈ K, a contradiction. Now,
let ζ be a pth root of 1 different from 1 and let t = ζ(1 + a).
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Since |ζ − 1| = R1, t is of the form 1 + b with b ∈ ̂C(0, R1). We then

have Log(1+a) = Log(1+ b). Set E = ̂d(a,R−
1 ), F = ̂d(b,R−

1 ), D
′ =

d(0, R−
1 )∪E∪F, and D′′ = d(0, R−

1 )∪G. Since the image of d(0, R−
1 )

by Log(1 + x) is d(0, R−
1 ) and since the derivative of Log(1 + x) has

no zero, by Corollary 22.10, we can check that for each u ∈ ̂C(0, R1),
the image of d(u,R−

1 ) by Log(1 + x) is d(Log(1 + u), R−
1 ). Conse-

quently, both images of E and F by Log(1 + x) are equal to G.

Now, Log(1 + x) belongs to ̂H(D′), the image of D′ by the function

f(x) = Log(1 + x) is D′′, and exp belongs to ̂H(D′′). Consequently,
by Corollary 12.3, exp ◦Log(1 + x) belongs to ̂H(D′) and we have
exp ◦Log(1 + x) = 1 + x ∀x ∈ d(0, R−

1 ). Finally, since D′ has no
pierced filter, by Proposition 20.5, it is an analytic set. Consequently,
the equality exp ◦ Log(1 + x) = 1 + x ∀x ∈ d(0, R−

1 ) holds in all D′,
a contradiction since Log(1 + x) is not injective in D′. That finishes
showing that exp does not belong to H(d(0, R−

1 )). �

Notation. Henceforth, we put ex = exp(x).

Theorem 25.6. Suppose that p �= 0. Let x ∈ d(0, R−
1 ). Then ex

is algebraic over Qp if and only if so is x. Let u ∈ d(0, 1−). Then
log(1 + u) is algebraic over Qp if and only if so is u.

Proof. By Theorem 14.24, if x is algebraic over Qp, so is ex. Sim-
ilarly, if u is algebraic over Qp, so is log(1 + u). Consequently, sup-
pose that ex is algebraic over Qp. Then e

x is of the form 1 + t with
|t| < 1, hence log(1 + t) is algebraic over Qp. But then, log(1 + t) =
log(ex) = x, hence x is algebraic over Qp. Now, more generally, sup-
pose log(1 + u) is algebraic over Qp, with |u| < 1. Take q ∈ N such
that |pq log(1 + u)| < R1. We have pq log(1 + u) = log((1 + u)p

q
).

Since |pq log(1 + u)| < R1, we have | log((1 + u)p
q
)| < R1, hence

exp
(

log((1 + u)p
q
)
)

= (1 + u)p
q
. Consequently, (1 + u)p

q
is algebraic

over Qp and hence so is u. �

We can show a similar result when p = 0:

Theorem 25.7. Suppose that p = 0. Let x ∈ d(0, 1−). Then ex

is algebraic over Qp if and only if so is x. Let u ∈ d(0, 1−). Then
log(1 + u) is algebraic over Qp if and only if so is u.
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Chapter 26

Problems on p-adic Exponentials

The author is grateful to Michel Waldschmidt for his advices. On the
other hand, most of results first proven in the field K also hold (with
slide changes) in an ultrametric field K of residue characteristic 0,
as, for example, the Levi-Civita field [88].

Notation. Given three functions φ, ψ, ζ defined in an interval
J =]a,+∞[ (respectively J =]a,R[), with values in [0,+∞[, we write
φ(r) ≤ ψ(r) + O(ζ(r)) if there exists a constant b ∈ R such that
φ(r) ≤ ψ(r) + bζ(r). We write φ(r) = ψ(r) +O(ζ(r)) if |ψ(r)− φ(r)|
is bounded by a function of the form bζ(r).

Throughout this chapter, the field K is supposed to have charac-
teristic 0 and residue characteristic p �= 0 and we now denote by IL
an algebraically closed complete field with respect to an ultrametric
absolute value, with residue characteristic 0.

Next, we denote by Ψp the function Ψ on the field Cp and by Ψ0

the function Ψ on the field IL.
Proposition 26.1 is used in the proof of the next theorems and is

proven by induction, similar to (1.4.2) in [92].

Proposition 26.1. Let P1, . . . , Pq ∈ K[X] be different from 0 and
let w1, . . . , wq ∈ K be pairwise distinct. Let F (x) =

∑q
j=1 Pj(x)e

wjx.
Then F is not identically zero.

Corollary 26.2. Let b1, . . . , bn ∈ D1 (respectively in D0). The
functions x, eb1x, . . . , ebnx are algebraically independent over K

(respectively over IL) if and only if b1, . . . , bn are Q-linearly
independent.

225
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Theorem 26.3. Let λ > 0 and let F (x) =
∑k

i=1 fi(x)e
ωix, where

each ωi satisfies −Ψp(ωi) ≥ 1
p−1 + λ, each fi lies in Cp[x], and

deg(fi) = mi − 1. Let n =
∑k

i=1mi.
Then the number N of zeros of F in d(0, 1) satisfies N ≤ (n− 1)

(

1 + 1
λ(p−1)

)

.

Proof. Denoting by D the derivation d
dx , then F satisfies a relation

of the form

(1) DnF = c1Dn−1F + c2Dn−2F + · · ·+ cnF,

where

(2)
k
∏

i=1

(x− ωi)
mi = xn − c1x

n−1 − c2x
n−2 − · · · − cn.

Expanding F as a power series, we have

F (x) =

∞
∑

h=0

ahx
h =

∞
∑

h=0

bh
h!
xh, |x| < 1.

Moreover, by Proposition 26.1, F is not identically zero. From the
differential equation (1), we have the recurrence

(3) bh+n = c1bh+n−1 + · · · + cnbh, h = 0, 1, 2, . . . .

Since −Ψp(ωi) ≥ 1
p−1 + λ, the series F converges in d(0, 1), hence

it lies in H(d(0, 1)), therefore there exists t ∈ N such that |as| =
maxh∈N |ah|, and hence without loss of generality, we can suppose
that max1≤i≤k Ψp(ah) = 0. Let t be the biggest of the s ∈ N such
that |as| = maxh∈N |ah|. Thus we have |at| = 1 and |ah| < 1 ∀h > t.
Consequently, by Theorem 22.7, the number of zeros of F in d(0, 1)
is t.

Let q = 1
p−1 + λ, hence −Ψp(ωi) ≥ q (i = 1, . . . , k). From (2), we

can see that −Ψp(cj) > jq (j = 1, 2, . . . , n).
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Now, since by assumption we have Ψp(ah) ≤ 0 and Ψp(ah) =
Ψp(bh)−Ψp(h!), this implies that Ψp(bh) ≤ 0 (h = 0, 1, . . .). By (3),
we have

−Ψp(bn) ≥ min
1≤j≤n

(−Ψp(cj)−Ψp(bn−j) > min
1≤j≤n

(qj −Ψp(bn−j)) ≥ q.

Then, by (3), with h = 1, 2, . . ., we obtain −Ψp(bh+n−1) > hq, hence

−Ψp(ah+n−1) > hq +Ψp((n− 1 + h)!) > hq − (n− 1 + h)

p− 1

= hλ− n− 1

p − 1
.

Finally, it follows that if h≥ (n−1)
λ(p−1) , then necessarily Ψp(ah+n−1)< 0,

hence |ah+n−1| < |at| ∀h ≥ (n−1)
λ(p−1) , ∀h ≥ 1. Thus, we have |aj| < 1 =

|at| ∀j ≥ (n−1)(1+ 1
λ(p−1) ), therefore t < (n−1)

(

1+ 1
λ(p−1)

)

and hence

the number of zeros of F in d(0, 1) is bounded by (n−1)
(

1+ 1
λ(p−1)

)

.
�

Theorem 26.4. Let F (x) =
∑k

i=1 fi(x)e
ωix, where each ωi ∈ IL

satisfies Ψ0(ωi) < 0, each fi lies in IL[x], and deg(fi) = mi − 1. Let

n =
∑k

i=1mi.
Then the number N of zeros of F in d(0, 1) satisfies N ≤ n− 1.

Proof. Denoting by D the derivation d
dx , then F satisfies a relation

of the form

(1) DnF = c1Dn−1F + c2Dn−2F + · · ·+ cnF,

where

(2)

k
∏

i=1

(x− ωi)
mi = xn − c1x

n−1 − c2x
n−2 − · · · − cn.

Expanding F as a power series, we have

F (x) =
∞
∑

h=0

ahx
h, |x| < 1.
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Let bh = ahh!, h ∈ N. Then, F (x) =
∑∞

h=0
bh
h!x

h. By Proposition
26.1, F is not identically zero. From the differential equation (1), we
have the recurrence

(3) bh+n = c1bh+n−1 + · · · + cnbh, h = 0, 1, 2, . . . .

Since Ψ0(ωi) < 0 ∀i = 1, . . . , k, the series F converges in d(0, 1),
hence it lies in H(d(0, 1)), therefore there exists t ∈ N such that
|as| = maxh∈N |ah|, and hence without loss of generality, we can
suppose that max1≤i≤k Ψ0(ah) = 0. Let t be the biggest of the s ∈ N

such that |as| = maxh∈N |ah|. Thus we have |at| = 1 and |ah| <
1 ∀h > t. Consequently, by Theorem 22.7, the number of zeros of F
in d(0, 1) is t. Let ε = min1≤i≤k(−Ψp(ωi)). From (2), we can see that
Ψ0(cj) ≤ jε (j = 1, 2, . . . , n).

By assumption, we have Ψ0(ah) ≤ 0 and Ψ0(ah) = Ψ0(bh) −
Ψ0(h!) = Ψ0(bh) because Ψ0(h!) = 0 ∀h, hence Ψ0(bh) ≤ 0 (h =
0, 1, . . .). By (3), we have

−Ψ0(bn) ≥ min
1≤j≤n

(−Ψ0(cj)−Ψ0(bn−j)) > min
1≤j≤n

(εj −Ψ0(bn−j)) ≥ ε.

Then, by (3), with h = 1, 2, . . . we have −Ψ0(bh+n−1) > hε, hence

−Ψ0(ah+n−1) > hε+Ψ0((n− 1 + h)!) = hε ∀h ≥ 1.

Thus, for every h ≥ 1, we have −Ψ0(ah+n−1) > 0, hence t ≤ n − 1.
Consequently, the number of zeros of F in d(0, 1) is bounded by
(n− 1), which ends the proof. �

Hermite–Lindemann’s theorem is well known in complex analysis.
The same holds in p-adic analysis. We need Siegel’s lemma in all the
following theorems of this chapter. We choose a particular form of
this lemma [92]:

Lemma 26.5 (Siegel). Let E be a finite extension of Q of degree
q and let λi,j 1 ≤ i ≤ m, 1 ≤ j ≤ n be elements of E integral over

Z. Let M = max(|λi,j | 1 ≤ i ≤ m, | 1 ≤ j ≤ n) and let (S) be the
linear system {∑n

j=1 λi,jxj = 0, 1 ≤ i ≤ m}. There exists solutions

(x1, . . . , xn) of (S) such that xj ∈ Z ∀j = 1, . . . , n and

log(|xj |∞) ≤ log(M)
qm

n− qm
+

log(2)

2
∀j = 1, . . . , n.
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Lemma 26.6 is necessary in the proof of the following theorems
and is easily proved in [92] since its proof implies no change in the
field K since it only concerns algebraic numbers.

Lemma 26.6. Let a1, . . . , aq ∈ K be algebraic over Q, let
P (X1, . . . ,Xq) ∈ Z[X1, . . . , xq] be such that degXj

(P ) ≤ rj 1 ≤
j ≤ q, and let β = P (a1 · · · aq). Then β is algebraic over Q,
d(a1)

r1 · · · d(aq)rq is a multiple of den(β), and we have

s(β) ≤ logH(P ) +

q
∑

j=1

(rjs(aj) + log(rj) + 1).

The p-adic version of Hermite–Lindemann’s theorem was proved
by K. Mahler [73]. Here we give another proof, using specific ultra-
metric tools.

Notation. We denote by D0 the disk d(0, 1−), and if the residue

characteristic of K is p > 0, we put r1 = p
−1
p−1 and denote by D1 the

disk d(0, r−1 ).
Given a positive real number a, we denote by [a] the biggest inte-

ger n such that n ≤ a.

Remark. In particular, Levi-Civita’s fields have residue character-
istic 0 [88].

Theorem 26.7. Let α ∈ D1 ⊂ K be algebraic. Then eα is transcen-
dental.

Proof. We suppose that α and eα are algebraic. Let h = |α|. Let
E be the field Q[α, eα], let q = [E : Q], and let w be a common
denominator of α and eα. We construct a sequence of polynomi-
als (PN (X,Y ))N∈N in two variables such that degX(PN ) = [ N

log(N) ],

degY (PN ) = [(logN)3] and such that the function FN (x) = PN (x, e
x)

satisfy further, for every s = 0, . . . , N − 1 and for every j = 0, . . . ,
[log(N)],

ds

dxs
FN (jα) = 0.
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According to computations in the proof of Hermite Lindemann’s the-
orem in the complex context (Theorem 3.1.1 in [92]), we have

(1)
dMFN (γN )

dxM
=

u1(N)
∑

l=0

u2(N)
∑

m=0

bl,m,N

u1(N)
∑

σ=0

(

u1(N)!

σ!(u1(N)− σ)!

)

×
(

l!

(u1(N)− σ)!

)

mu1(N)−σ

ju1(N)−σ · (α)u1(N)−σ · (eα)ju2(N).

We put u1(N) = degX(PN ), u2(N) = degY (PN ). We solve the system

wu1(N)+u2(N) d
s

dxs
FN (jα) = 0, 0 ≤ s ≤ N − 1, j = 0, . . . , [log(N)],

where the undeterminates are the coefficients bl,m,N of PN . We then
write the system under the form

u1(N)
∑

l=0

u2(N)
∑

m=0

bl,m,N

min(s,l)
∑

σ=0

(

s!

σ!(s − σ)!

)(

l!

(l − σ)!

)

ms−σ.jl−σ ,

(2) (wα)l−σ(weα)jm.wu1(N)−(l−σ)+u2(N)−jm = 0.

That represents a system of N [log(N)] equations of at least
N([log(N)])2 undeterminates, with coefficients in E, integral over Z.

According to computations of Hermite–Lindemann’s theorem in
the complex context (Theorem 3.1.1 in [92]), it appears that in
system (2), each factor

(

s!
σ!(s−σ)!

)

,
(

l!
(l−σ)!

)

, ms−σ, jl−σ, (wα)l−σ ,
(weα)jm, wu1(N)−(l−σ)+u2(N)−jm admits a bounding of the form
SN(log(log(N)), when N goes to +∞. On one hand, wu1(N)+u2(N)

is a common denominator and we have

log(wu1(N)+u2(N)) ≤ log(ω)

(

N

log(N)
+
(

log(N)3
)

,

and hence we have a constant T > 0 such that

(3) log(wu1(N)+u2(N)) ≤ TM

logM
.
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Next, we note that

(4) log

(

u1(N)!

σ!(u1(N)− σ)!

)

≤ u1(N) log(u1(N))

≤ N

log(N)
log

(

N

log(N)

)

≤ N,

and similarly,

(5) log

(

l!

(u1(N)− σ)!

)

≤ u1(N) log(u1(N)) ≤ N,

and

(6) log(mu1(N)−σ) ≤ 3N

log(N)
log(log(N)).

Now, we check that

log
(

ju1(N)−σ.(|α|)u1(N)−σ.(|eα|)ju2(N)
)

≤ N +
N

log(N)
log(|α|) + log(N)(log(N))3 log(|eα|),

and hence there exists a constant L > 0 such that

(7) log
(

ju1(N)−σ .(|α|)u1(N)−σ.(|eα|)ju2(N)
)

≤ LN.

Therefore, by (2), (3), (4), (5), (6), and (7), we have a constant
C > 0 such that each coefficient a of the system satisfies

(8) s(a) ≤ CN(log(log(N)).

By Siegel’s lemma 26.5 and by (8), there exist integers bl,m,N , 0 ≤
l ≤ u1(N), 0 ≤ m ≤ u2(N) in Z such that

(9) 0 < max
l≤u1(N), m≤u2(N)

log(|bl,m,N |∞)

≤ qN log(N)

N(log(N))2 − qN log(N)
(CN log(log(N))
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and such that the function

(10) FN (x) =

u1(N)
∑

l=0

u2(N)
∑

m=0

bl,m;Nx
lemx

satisfies

ds

dxs
FN (jα) = 0, 0 ≤ s ≤ N − 1, j = 0, 1, . . . , [log(N)].

Now, by (9), we can check that there exists a constant G > 0 such
that

(11) max
l≤u1(N), m≤u2(N)

(log(|bl,m,N |∞) ≤ GN log(log(N))

log(N)
.

The function FN we have defined in (10) belongs to A(D1) and by
Proposition 26.1 is not identically zero, hence at least one of the
numbers ds

dxsFN (0) is not null. Let M be the biggest of the integers

such that ds

dxsFN (jα) = 0 ∀s = 0, . . . ,M−1, j = 0, 1, 2, . . . , [log(N)].
Thus, we have M ≥ N and there exists j0 ∈ {0, 1, . . . , [log(N)]} such

that dM

dxM
FN (j0α) �= 0. We put γN = dM

dxM
FN (j0α).

Let us now give an upper bound of s(γN ). On one hand,
wu1(N)+u2(N) is a common denominator, and by (2), we have a con-
stant T > 0 such that

log(wu1(N)+u2(N)) ≤ TM

logM
.

On the other hand, by (1), we have

dMFN (γN )

dxM
=

u1(N)
∑

l=0

u2(N)
∑

m=0

bl,m,N

u1(N)
∑

σ=0

(

u1(N)!

σ!(u1(N)− σ)!

)

×
(

l!

(u1(N)− σ)!

)

mu1(N)−σ .

ju1(N)−σ · (α)u1(N)−σ · (eα)ju2(N).

Now, by (2), (3), (6), (7), (8), and (10) and taking into account that
the number of terms is bounded by N(logN)2, we can check that
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there exists a constant B such that

(12) s(γN ) ≤ BN.

Let us now give an upper bound of |γN |. For convenience, we

first suppose that j0 = 0, hence dM

dxM
FN (0) �= 0. Set h = |α|.

Then, by Theorem 18.1, we have |γN | ≤ |FN |(h)
hM

. Moreover, we
note that FN admits at least M [log(M)] zeros in d(0, h), and there-

fore, by Corollary 22.30, we have |FN |(h) ≤ (

h
R1

)M [log(M)]
because

|FN |(r) ≤ 1 ∀r < R1. Consequently, |γN | ≤ hM(log(M−1)

(R1)M logM , and hence

log(|γN |) ≤M(log(M)− 1)(log(h)) −M log(M)(log(R1))).

Let λ = log(h) − log(R1). Then λ < 0. And we have log(|γN |) ≤
λM log(M)−M log(h), therefore there exists a constant A > 0 such
that

(13) log(|γN |) ≤ −AM log(M).

Let us now stop assuming that j0 = 0. Putting z = x − jα and
g(z) = f(x), since all points jα belong to d(0, h), it is immediate to go
back to the case j0 = 0, which confirms (13) in the general case. But
now, by Theorem 9.10, relations (12) and (13) make a contradiction
to the relation −2qs(γN ) ≤ log(|γN |) satisfied by algebraic numbers
and shows that γN is transcendental. But then, so is eα. �

In IL, we have a similar version:

Theorem 26.8. Let α ∈ IL be algebraic such that |α| < 1. Then eα

is transcendental over Q.

Proof. Everything works in IL as in a field of residue characteristic
p �= 0 up to Relation (8) in the proof of Theorem 26.7. Here we
can replace r1 by 1 and therefore the conclusion is the same as in
Theorem 26.7. �

Theorem 26.9 (Gelfond–Schneider). Let � ∈ D1, � �= 0, and let
b /∈ Q belong to K be such that b� ∈ D1. Then at least one of the
three numbers a = e�, b, eb� is transcendental.
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Proof. A large part of the proof does not involve the topology of
the field K and hence is similar to the proof in the field C [92] where
we can copy many technical relations. We suppose that a = e�, b and
eb� are algebraic over Q. Let E = Q[e�, b, eb�] and let δ = [E : Q]
and let d be a common denominator of b, e�, eb�.

Put S = max(1, |b|), T ∈]S, R1
|�| [, σ = log(TS ), τ = log T , Λ =

d(0, S), and Δ = d(0, T ). We consider integers N of the form q2,
with q ∈ N, and we first show that there exists a non-identically zero

polynomial PN (X,Y ) ∈ Z[X,Y ] such that degX(PN ) ≤ N
3
2 , and

degY (PN ) ≤ 2δN
1
2 such that the function FN (x) defined in Δ by

FN (x) = PN (x, e
�x) satisfy

FN (i+ jb) = 0 ∀i = 1, . . . , N, ∀j = 1, . . . , N.

In order to find PN , let us write

N
3
2−1
∑

h=0

2δN
1
2−1
∑

k=0

Ch,k(N)XhY k

with Ch,k(N) ∈ Z and consider the system of equations where the
Ch,k(N) are the undeterminates:

d(4δ+1)N
3
2 · FN (i+ jb) = 0 (1 ≤ i ≤ N ; 1 ≤ j ≤ N).

Thus, we obtain a system of N2 equations of 2δN2 undeterminates
in Z, with coefficients in E. By Lemma 26.4, these coefficients have
size bounded by

N
3
2 log(N) +N

3
2 (8δ + 2) log(d) + log(1 + |b|) + 2δ log(|e�+b�|)

≤ 3

2
N

3
2 log(N).

By Lemma 26.3, we can find in Z a family of integers not all equal

to zero, (Ch,k(N), 0 ≤ N
3
2 − 1, 0 ≤ k ≤ 2δN

1
2 − 1) satisfying

log

(

max
h,k

|Ch,k(N)|∞
)

≤ 2N
3
2 logN

(

δN2

2δN2 − δN2

)

= 2N
3
2 logN

such that the function FN defined by FN (x) = PN (x, e
�x) satisfies

FN (i+ jb) = 0 ∀i = 1, . . . , N, j = 1, . . . , N .
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Now, we can check the function FN is an analytic element in every
disk of the form d(0, r) such that r|�| < R1 and hence in Δ = d(0, T ).

Since the power of x in the various terms is at most N
3
2 and since

all coefficients are integers, we can check that log(|FN |(T )) ≤ τN
3
2 .

On the other hand, since the polynomial PN is not identically zero,
by Proposition 26.1, FN is not identically zero and then FN has
finitely many zeros in Λ. Particularly, there exists a point of the
form i + jb such that FN (i + jb) �= 0. Consequently, there exists
M ≥ N such that FN (i + jb) = 0 ∀i ≤ M, ∀j ≤ M and there
exists a point γN of the form i0 + j0b such that FN (γN ) �= 0 with
M < i0 ≤ M + 1, M < j0 ≤ M + 1. Consequently, the number
of zeros of FN in Λ is at least M2. Then, by Corollary 22.30, we

have log(|FN (γN )|) ≤ τN
3
2 − σM2, hence there exists λ > 0 such

that

(1) log(|FN (γN )|) ≤ −λM2 ∀N ∈ N.

By definition, neither σ nor τ depend on N , hence neither does λ.
On the other hand, by Lemma 26.4, we can check that s

(

FN (γN )
)

satisfies an inequality of the form s
(

FN (γN )
) ≤ AM

3
2 log(M) which

by (1) contradicts the inequality −2δs
(

FN (γN )
) ≤ log

(|FN (γN )|
)

and this ends the proof. �

Theorem 26.10 (Gelfond–Schneider in zero residue charac-
teristic). Let � ∈ D0, � �= 0, and let b /∈ Q belong to IL and be such
that b� ∈ D0. Then at least one of the three numbers a = e�, b, eb�

is transcendental.

Proof. The proof is identical to the proof of Theorem 26.9 except
that T now belongs to ]S, 1

|�| [. �

The six-exponential problem is well known on C and was solved by
Serge Lang [71] and K. Ramachandra. The problem is the following:
let a1, a2, a3 (respectively b1, b2 ∈ C) be Q-linearly independent.
Then at least one of the six numbers eaibj is transcendental. Next,
consider the same problem with only four exponentials: let a1, a2
(respectively b1, b2 ∈ C) be Q-linearly independent. The question is
whether one of the numbers eaibj is transcendental: this is the four
exponentials conjecture on C due to Serge Lang.
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The problem, however, has a solution somewhat similar to that
of the six exponentials problem, in the particular case when one of
the ratios a1

a2
and b1

b2
is algebraic.

The same problems make sense on a p-adic field such as Cp (pro-
vided the numbers aibj lie in the disk of convergence of the exponen-
tial). Here we give the solution of the six p-adic exponentials problem
on the field Cp and this of the four p-adic exponentials problem when

one of the ratios a1
a2

or b1
b2

is algebraic. This was described by Jean-

Pierre Serre [87].

Theorem 26.11. Let a1, a2, a3 (respectively b1, b2 ∈ Cp) be
Q-linearly independent and such that maxi=1,2,3 j=1,2 |aibj | < r1.
Then at least one of the numbers eaibj is transcendental.

Proof. Assume that all numbers eaibj are algebraic, put E =
Q[(eaibj )i=1,2,3, j=1,2] and q = [E : Q]. Without loss of generality, we
can assume that a1 = 1, |a2|, |a3| ≤ 1 and that max(|b1|, |b2|) ≤ 1

p2
.

Let t ∈ N∗ be such that teaibj is integral over Z for every i =

1, 2, 3 and every j = 1, 2 and let B = log
(

tmax{|eaibj |, i =

1, 2, 3, j = 1, 2}). Let � ∈ N be such that � > 9
√
2B(q + 1).

Consider now the linear system of �2N2 equations with coefficients
in E:

(SN )
∑

1≤m≤N,1≤n≤N,1≤s≤N
cm,n,s,Ne

(ma1+na2+sa3)(ib1+jb2) = 0,

1 ≤ i ≤ �N,

1 ≤ j ≤ �N. We note that the coefficients e(ma1+na2+sa3)(ib1+jb2) of
(SN ) satisfy

log
(

|e(ma1+na2+sa3)(ib1+jb2)|
)

≤ 6B�N2

1 ≤ m ≤ N, 1 ≤ n ≤ N, 1 ≤ s ≤ N, 1 ≤ i ≤ �N,

1 ≤ j ≤ �N. Now, by Siegel’s lemma 26.5, there exists a family of
solutions (cm,n,s,N )1≤m≤N,1≤n≤N,1≤s≤N in Z such that

(1) log |cm,n,s,N |∞ ≤ log 2

2
+ 6B

(q�2N2)�N2

(N3 − q�2N2)
.
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Let fN (x) =
∑

1≤m≤N, 1≤n≤N, cm,n,s,Ne
(ma1+na2+sa3)x. By Propo-

sition 26.1, fN is not identically zero. Then, by definition of (SN ),
we have fN (ib1 + jb2) = 0 ∀i = 1, . . . , �N, j = 1, . . . , �N , hence fN
admits at least �2N2 zeros in the disk d(0, 1

p2
). Let u be a point of

the form ib1+ jb2 with i, j ∈ N such that fN (ib1+ jb2) �= 0 and such
that i + j is minimum and let h be this minimum: say h = i0 + j0.
Thus we can check that when i and j are two positive integers such
that i + j < h, then fN (ib1 + jb2) = 0. Consequently, by construc-
tion, we have h > 2�N and the number of zeros of fN in d(0, 1

p2
) is at

least (h−1)2

2 . We note that ‖fN‖ ≤ 1 because |ex| = 1 ∀x ∈ d(0, R−
1 )

and cm,n ∈ Z ∀m,n ∈ N. Consequently, by Corollary 22.30, we have
log(|fN |(1p)) ≤ −(h− 1)N2 and therefore

(2) log |fN (u)| ≤ −(h− 1)2

2
.

Consider now some cm,n,s,Ne
(ma1+na2+sa3)(ib1+jb2) at the

point u. By (1), we have log(|cm,n,s,N |∞ ≤ 6B(q�2N2)�N2

N3−q�2N2 + and

log |e(ma1+na2+sa3)(i0b1+j0b2)| ≤ 6BNh. Consequently, by (1), we can
derive

log |cm,n,s,Ne(ma1+na2+sa3)(i0b1+j0b2)| ≤ 6BNh+
log 2

2
+

6Bq�3N4

N3 − q�2N2
,

therefore

(3) log(|fN (u)| ≤ 6BNh+
log 2

2
+

6Bq�3N4

N3 − q�2N2
+ 3 logN.

Here we note that the denominator of FN (u) is bounded by t3Nh

because t3Nh is clearly a multiple of the denominator of each
term e(ma1+na2+sa3)(ib1+jb2) whenever i + j ≤ h. Therefore, by
Corollary 9.12, we can derive

log(|fN (u)|) ≥ −3Nh(q + 1) log(t)

− q

(

6BNh+
log 2

2
+

6B�3N4

N3 − q�2N2
+ 3 log(N)

)

.
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Consequently, by (2) and (3), we obtain

(h− 1)2

2
≤ (q + 1)

(

9BNh+
log 2

2
+

6B�3N4

N3 − q�2N2
+ 3 log(N)

)

,

therefore (h−1)2

2 ≤ (q + 1)
(

9BNh+O(N)), and hence

h− 2 ≤ (h− 1)2

h
≤ 18B(q + 1)N +O(1),

and hence h − 1 ≤ 18B(q + 1)N + O(1). Now, since (h−1)2

2 ≥ �2N2,

we have
√
2�N ≤ 18B(q+1)N +O(1), hence � ≤ 9

√
2B(q+1) when

N is big enough, a contradiction to the hypothesis on �. �

And similarly, we have the following:

Theorem 26.12. Let a1, a2, a3 (respectively b1, b2 ∈ IL) be
Q-linearly independent and such that maxi=1,2,3 j=1,2 |aibj | < 1.
Then at least one of the numbers eaibj is transcendental over Q.

As explained above, when reducing to 4 exponentials eaibj ,
i = 1, 2, j = 1, 2, the transcendence of one of the four numbers is
just a conjecture in the general case. Here we give a proof in the
particular case when one of the ratios a1

a2
or b1

b2
is algebraic.

Theorem 26.13. Let a1, a2 (respectively b1, b2 ∈ Cp) be Q-linearly
independent and such that maxi=1,2 j=1,2 |aibj | < r1 and such that a1

a2

is algebraic. Then at least one of the numbers eaibj is transcendental.

Proof. Assume that all numbers eaibj are algebraic. Without
loss of generality, we can assume that |bi| ≤ 1

p2 , i = 1, 2. Put

a = a1
a2
. Let t ∈ N∗ be such that all the teaibj and ta are inte-

gral over Z for every i = 1, 2 and every j = 1, 2 and let

B = log
(

tmax(|a|,max{|eaibj |, i = 1, 2, j = 1, 2}). Without loss
of generality, we can assume that a1 = 1, hence a = a2. Since a is
algebraic, we can put E = Q[a, (eaibj )i=1,2, j=1,2] and q = [E : Q].
We can find integers s, l ∈ N satisfying

(1) s > (q + 1)Bl

(

12 +
qs

l2 − qs

)

.
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Consider now the linear system of sN2 equations with coefficients
in E:

(SN )
∑

1≤m≤lN,1≤n≤lN
cm,n,N (m+ na)ke(m+na)(ib1+jb2) = 0,

1 ≤ i ≤ N,

1 ≤ j ≤ N. We note that the coefficients (m + na)ke(m+na)(ib1+jb2)

of (SN ) satisfy

(2) log
(

|(m+ na)ke(m+na)(ib1+jb2)|
)

≤ 2BlN2 + k log(2N +B)

1 ≤ m ≤ lN, 1 ≤ n ≤ lN, 1 ≤ i ≤ N, 1 ≤ j ≤ N, 1 ≤ k ≤ s.

By Siegel’s lemma 26.5 and by (2), there exists a family of solutions
(cm,n,N )1≤m≤lN,1≤n≤lN in Z such that

log |cm,n,N |∞ ≤ log 2

2
+ (BlN2 + s(log 2N +B))

qsN2

(l2N2 − qsN2)
,

therefore

(3) log |cm,n,N |∞ ≤ qsBlN4

l2N2 − qsN2
+O(log(N)).

Now, let fN (x) =
∑

m≤lN,n≤:N cm,n,Ne
x(m+na) and let h be the

smallest integer such that (fN )
(h)(ib1+ jb2) �= 0 for some pair (i0, j0)

such that i0 ≤ N, j0 ≤ N . By Proposition 26.1, fN is not identically
zero, and by definition, s < h. Consequently, the number of zeros of
fN in d(0, 1

p2
) is at least (h− 1)N2, taking multiplicity into account.

Set u = i0b1 + j0b2. Consider now some cm,n,Ne
(m+na)(ib1+jb2) at the

point u. First, we have

log |e(m+na)(i0b1+j0b2)| ≤ 4BlN2.

Consequently, by (3), when N is big enough, we can derive

log |cm,n,Ne(m+na)(i0b1+j0b2)| ≤ qsBlN4

l2N2 − qsN2
+ 4BlN2 +O(log(N)),
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hence and therefore, by (2),

log |f (h)N (u)| ≤ qsBlN4

l2N2 − qsN2
+ 4BlN2 +O(log(N)).

On the other hand, we can check that

log(den((m+ na)he(m+na)(i0b1+j0b2)) ≤ 2BlN2 + hB +O(log(N)),

hence log(den(f
(h)
N (u))) ≤ 2BlN2 + sB + O(log(N)). Consequently,

by Corollary 9.11, we can derive

(4) log(|f (h)N (u)|) ≥ −(q + 1)

(

qsBlN4

l2N2 − qsN2
+ 4BlN2 + 8BlN2

+2hB +O(log(N))

)

.

As in Theorem 26.11, we have ‖fN‖ ≤ 1, hence, by Theorem 18.1,

we can derive ‖f (h)N ‖ ≤ 1
ph
. Next, cm,n,N ∈ Z ∀m,n ∈ N, consequently,

by Corollary 22.30, we have log(|fN |( 1
p2
)) ≤ −(h − 1)N2, and by

Theorem 18.1, log(|f (h)N |( 1
p2
)) ≤ −(h − 1)N2 + h. Therefore, by (2)

and (4), we obtain

(5) (h− 1)N2 − h ≤ (q + 1)

(

qsBlN4

l2N2 − qsN2
+ 12BlN2 + 2hB

)

+O(log(N)).

Now, by (1), we have s > (q + 1)Bl(12 + qs
l2−qs), and since h > s, we

can see that (5) is impossible when N is big enough, which ends the
proof. �

Similarly, we have the following:

Theorem 26.14. Let a1, a2 (respectively b1, b2 ∈ IL) be Q-linearly
independent and such that maxi=1,2 j=1,2 |aibj| < 1 and such that a1

a2

is algebraic. Then at least one of the numbers eaibj is transcendental
over Q.
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Chapter 27

Divisors of Analytic Functions

In this chapter, we define divisors in K or in a disk d(a,R−). We then
define the divisor of an analytic function and of an ideal.

Definition. We call a divisor in K (respectively a divisor in a
disk d(a,R−)) a mapping T from K (respectively from d(a,R−))
to N whose support is countable and has a finite intersection with
each disk d(a, r), ∀r > 0 (respectively ∀r ∈]0, R[). Thus, a divi-
sor on K (respectively of d(a,R−)) is characterized by a sequence
(an, qn)n∈N with an ∈ K, limn→∞ |an| = ∞ (respectively an ∈
d(a,R−), limn→∞ |an − a| = R), |an| ≤ |an+1|, and qn ∈ N∗ ∀n ∈ N.
So, we frequently denote a divisor by the sequence (an, qn)n∈N which
characterizes it.

The set of divisors on K (respectively on d(a,R−)) is provided
with a natural additive law that makes it a semi-group. It is also
provided with a natural order relation: given two divisors T and T ′,
we can set T ≤ T ′ when T (α) ≤ T ′(α) ∀α ∈ d(a,R−). Moreover, if
T, T ′ are two divisors such that T (α) ≥ T ′(α) ∀α ∈ d(0, R−), we
can define the divisor T

T ′ .
Given f ∈ A(K) (respectively f ∈ A(d(a,R−))), we can define

the divisor of f , denoted by D(f) on K (respectively of d(a,R−)), as
D(f)(α) = 0 whenever f(α) �= 0 and D(f)(α) = s when f has a zero
of order s at α.

Similarly, given an ideal I of A(K) (respectively of A(d(a,R−))),
we denote by D(I) the lower bound of the D(f) f ∈ I and D(I) is
called the divisor of I.

241
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Conversely, given a divisor E of K (respectively of d(a,R−)),
we denote by T (E) (respectively by Ta,R(E)) the ideal of A(K)
(respectively of A(d(a,R−))) of the f ∈ A(K) (respectively of the
f ∈ A(d(a,R−))) such that D(f) ≥ E.

As we see, given a divisor T on K, there is no problem to construct
an entire function whose divisor is T . But given a divisor T on a disk
d(a,R−), if K is not spherically complete, it is not always possible
to find an analytic function (in that disk) whose divisor is T due to
Lazard’s problem [72].

Finally, given a divisor T = (an, qn)n∈N, we denote by T the
divisor (an, 1)n∈N. Let T = (an, qn)n∈N be a divisor on K (respectively
of d(a,R−)). For every r > 0 (respectively r ∈]0, R[), we set |T |(r) =
∏

|aj |≤r
(

r
|aj |
)qj . The divisor T on d(a,R−) is said to be bounded if

limr→R |T |(r) <∞ and then we put ‖T‖ = limr→R |T |(r).
The K-algebra A(K) (respectively A(d(a,R−))) is provided with

the following topology of K-algebra: given ∈ A(K) (respectively
f ∈ A(d(a,R−))), the neighborhoods of f are the sets W(f, r, ε) =
{h ∈ {A(K) | |f − h|(r) ≤ ε} (respectively W(f, r, ε) = {h ∈
A(d(a,R−)) | |f − h|(r) ≤ ε}, with 0 < r < R, ε > 0).

Remark. Let f ∈ A(d(a,R−)) and let (an, qn)n∈N = D(f). Then
ωan(f) = qn ∀n ∈ N and ωα(f) = 0 ∀α ∈ d(a,R−)\{an | n ∈ N}.

Theorem 27.1 is immediate:

Theorem 27.1. Let a ∈ K, R > 0. Let f, g ∈ A(K) (respectively
f, g ∈ A((a,R−))) be such that D(f) ≥ D(g). Then there exists
h ∈ A(K) (respectively h ∈ A(d(a,R−))) such that f = gh.

Proof. Let T = D(g) = (an, qn)n∈N. Let us fix r > 0 (respec-
tively r ∈]0, R[), and let s ∈ N be such that |an| ≤ r ∀n ≤ s and
|an| > r ∀n > s. Let Pr(x) =

∏s
n=0(1− x

an
)qn . We can factorize f in

the form Prf̂ , and similarly, we can factorize g in the form Pr ĝ, hence
f
g = f̂

ĝ . Since ĝ has no zero in d(0, r), it is invertible in H(d(0, r)),

hence f
g belongs to H(d(0, r)). This is true for all r > 0 (respec-

tively for all r ∈]0, R[), and hence f
g belongs to A(K) (respectively

to A(d(a,R−))). �

Corollary 27.2. Let a ∈ K, R > 0. Let I be an ideal of A(K)
(respectively an ideal of A(d(a,R−))) and suppose that there exists
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g ∈ I such that D(g) = D(I). Then I = gA(K) (respectively I =
gA(d(a,R−))).

As an immediate application of the definitions, by Theorem 22.26,
we have Lemma 27.3:

Lemma 27.3. Let R ∈ R∗
+ and let f, g ∈ A(d(0, R−) be such that

D(f) ≤ D(g). Then, given r, s ∈]0, R[ such that r < s, we have
Ψ(f, log s)−Ψ(f, log r) ≤ Ψ(g, log s)−Ψ(g, log r).

In the whole field K, given a divisor T , it is always possible to
find an entire function admitting T for divisor.

Theorem 27.4. Let T = (αn, qn)n∈N be divisor of K. The infi-
nite product

∏∞
n=1(1− x

αn
)qn is uniformly convergent in all bounded

subsets of K and defines an entire function f ∈ A(K) such that
D(f) = T . Moreover, given g ∈ A(K) such that D(g) = T , then g is
of the form λf .

Proof. We assume that |αn| ≤ |αn+1| ∀n ∈ N. Let us fix R > 0 and
set fm(x) =

∏m
n=1(1− x

αn
)qn . Consider N ∈ N such that |αN | > R

and m ≥ N . On the one hand, |fm|(R) = |fN |(R). Set M = |fN |(R).
On the other hand, we check that

|fm+1(x)− fm(x)| =
∣

∣

∣

∣

∣

m
∏

n=1

(

1− x

αn

)qn
∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1− x

αm+1

)qm+1

− 1

)∣

∣

∣

∣

≤M

∣

∣

∣

∣

∣

qm+1
∑

k=1

(−1)k
(

qm+1

k

)(

x

αm+1

)k
∣

∣

∣

∣

∣

≤M
R

|αm+1| ∀x ∈ d(0, R).

Consequently, |fm+1 − fm|(R) ≤ M R
|αm+1| , which shows that the

sequence (fm)m∈N is uniformly converging in d(0, R) to an element of
H(d(0, R)), hence to a power series. This is true for all R > 0, hence
the limit f defined in K belongs to A(K). Now, for each m ∈ N, let
rm = |αm|. By construction, the zeros of fm in d(0, rm) are the αn
with 1 ≤ n ≤ m, each with multiplicity qn. And next, we note that
|(1 − x

αn
)qn | = 1 ∀n > m, ∀x ∈ d(0, rm). Consequently, the zeros of

f in d(0, rm) are exactly those of fm. Now, consider g ∈ A(K) such
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that D(g) = T . The function h ∈ A(K) such that f = gh has no zero
in K and hence is a constant. �

Corollary 27.5. For every divisor T on K, there exists f ∈ A(K)
such that D(f) = T . Moreover, if f(0) = 1, f satisfies |f |(r) =
|T |(r) ∀r > 0.

Corollary 27.6. Let T be a divisor on K, let g ∈ A(K) be such that
D(g) = T, and let f ∈ A(K) be such that D(f) ≥ T . Then there
exists h ∈ A(K) such that f = gh.

Proof. Indeed, let E = D(f)
T and let h ∈ A(K) be such that D(h) =

D(f)
T . Then D(f) = D(gh), hence by Theorem 27.4, f

gh is a constant
and we can choose h such that the constant is 1. �

Theorem 27.7. Let f ∈ A(K) have a divisor of the form (an, sqn)
with s ∈ N∗. Then, there exists g ∈ A(K) such that f = gs.

Proof. By Corollary 27.5, there exists h ∈ A(K) such that D(h) =

(an, qn). Then,
f
hs has no zero and no pole, and therefore, it is a

constant λ. Let l ∈ K be such that ls = λ and let g = lh. Then,
gs = f . �

So, by Theorem 27.4, given a divisor T on K, we can find an
entire function whose divisor is just T . It is natural to consider the
same problem inside a disk d(a, r−). Indeed, in C, it is known that a
similar problem always admits a solution: in the whole field C as well
as inside an open disk. Actually, in the general context of a complete
ultrametric algebraically closed field K, the problem has no solution
when K is not spherically complete.

This problem was first considered by M. Lazard [72] and we detail
the solutions he gave. First, we construct a function f whose divisor
is bigger than the given divisor but narrows it.

We deal with the problem by showing that given a sequence
(an)n∈N such that |an−a| < R for all n ∈ N and limn→∞ |an − a| = R,
a sequence of integers (qn)n∈N and a number ε > 0, there exists an
analytic function f ∈ A(d(0, R−)) that admits each an as a zero of
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order tn ≥ qn and such that |f |(r) ≤ (1 + ε) |T |(r). First, we need
Lemma 27.8.

Lemma 27.8. Let T = (an, qn)n∈N be a divisor on d(a,R−) and let
f ∈ A(d(a,R−)) satisfy f(0) = 1, D(f) ≥ T and |f |(r) = |T |(r) ∀r ∈
]0, R[. Then, D(f) = T .

Proof. Since f(0) = 1, we may write f in the form
∏∞
j=0(1− x

aj
)sj

with qj ≤ sj ∀j ∈ N. By hypothesis, we have qj ≤ sj ∀j ∈
N. Suppose that sk > qk for some index k and let rn =
|an|, n ∈ N. Since |f |(rk) = |T |(rk), when r ∈]rk, rk+1[, we
have |f |(r) = |f |(rk)( rrk )sk , |T |(r) = |f |(rk)( rrk )qk , and since |f |(r) =
|T |(r) ∀r ∈]0, R[, clearly sk = qk. �
Notation. For each divisor E of K, we denote by T (E) the set of
f ∈ A(K) such that E ≤ D(f). Similarly, for each divisor E of
d(a,R−), we denote by Ta,R(E) the set of f ∈ A(d(a,R−)) such that
E ≤ D(f).

Theorem 27.9. For every divisor E of K, T (E) is a closed ideal of
A(K). Moreover, T is a bijection from the set of divisors of K onto
the set of closed ideals of A(K). Further, given a closed ideal I of
A(K), then I = T (D(I)).

Similarly, we have Theorem 27.10:

Theorem 27.10. Let a ∈ K and take R > 0. For every divisor E of
d(a,R−), Ta,R(E) is a closed ideal of A(d(a,R−)). Moreover, Ta,R is
a bijection from the set of divisors of d(a,R−) onto the set of closed
ideals of A(d(a,R−)). Further, given a closed ideal I of A(d(a,R−))),
then I = Ta,R(D(I)).

Proof. (Theorems 27.9 and 27.10) Let E be a divisor of K (respec-
tively of d(a,R−)). First, let us check that T (E) (respectively
Ta,R(E)) is a closed ideal of A(K) (respectively of A(d(a,R−))). Let
E = (an, qn)n∈N and let (fm)m∈N be a sequence of elements of T (E)
(respectively of Ta,R(E)) converging to a limit f in A(K) (respec-
tively in A(d(a,R−))). For every n ∈ N, each fm admits an as a zero
of order at least qn, hence by Lemma 16.1, so does f . Consequently,
f belongs to T (E) (respectively f belongs to Ta,R(E)).

Now, let us show that T (respectively Ta,R) is injective. Let E, F
be two distinct divisors of K (respectively of d(a,R−)). Without loss
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of generality, we can suppose that E admits a pair (b, s) with s > 0
and that F either does not admit any pair (b,m) or admits a pair
(b,m) with m < s. Let f ∈ T (F ) (respectively let f ∈ Ta,R(F ))
and suppose that ωb(f) ≥ s. Then, by Lemma 16.1, f factorizes in
the form (x− b)s−mg with g ∈ A(K) (respectively g ∈ A(d(a,R−)))
and of course g belongs to T (F ) (respectively to Ta,R(F )). But by
construction, g does not belong to T (E) (respectively to Ta,R(E))
because ωb(g) < s. Therefore, T (E) �= T (F ) (respectively Ta,R(E) �=
Ta,R(F )). So, T (respectively Ta,R) is injective.

Now, let us show that T (respectively Ta,R) is injective. Let E, F
be two distinct divisors of K (respectively of d(a,R−)). By Theorem
27.4, there exists f ∈ A(K) (respectively f ∈ A(d(a,R−))) such that
D(f) = F , hence D(f) �= E. Therefore, D(f) /∈ T (E), and hence
T (E) �= T (F ). So, T is injective (respectively Ta,R(E) �= Ta,R(F ).
So, Ta,R is injective).

Let us show that it is also surjective. Let I be a closed ideal of
A(K) (respectively of A(d(a,R−))) and let E = D(I). Then E is
of the form (an, qn)n∈N with |an| ≤ |an+1| and limn→+∞ |an| = +∞
(respectively limn→+∞ |an| = R), hence there is a unique s ∈ N such
that an ∈ d(0, r) ∀n ≤ s and an /∈ d(0, r) ∀n > s.

Let J = T (E) (respectively J = Ta,R(E)). Then, of course, I ⊂ J .
Let us show that J ⊂ I. Let f ∈ J and take r > 0. Denoting by Pr
the polynomial

∏s
i=0(X − ai)

qi by Theorem 24.2, I ∩ H(d(0, r)) =
Pr(x)H(d(0, r)). But now all functions g ∈ J ∩H(d(0, r)) also are of
the form Pr(x)h(x) with h ∈ H(d(0, r)). Consequently, in H(d(0, r)),
we can write f in the form f =

∑m
j=1 gjhj with gj ∈ I and hj ∈

H(d(0, r)). Let ε > 0 be fixed.
For each j = 1, . . . ,m, narrowing each hj by a polynomial �j in

H(d(0, r)), we can find �j ∈ K[x] such that |gj(hj − �j)|(r) ≤ ε. Now,
let φr =

∑m
j=1 gj�j . Then φr belongs to I and satisfies |φr−f |(r) ≤ ε.

This is true for each r > 0 and for every ε > 0. Consequently, since
I is closed, f belongs to I. This finishes proving that T (respec-
tively Ta,R) is surjective. Further, we have proven that I = T (D(I))
(respectively I = Ta,R(D(I))). �

Theorem 27.11. Every closed ideal of A(K) is principal.

Proof. Indeed, consider a closed ideal I and let E = D(I). By
Theorem 27.9, I is of the form T (E) with E = D(I). By Theorem
27.4, there exists g ∈ A(K) such that D(g) = E and of course, g
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belongs to I. Hence, gA(K) ⊂ I. Now, let f ∈ I. Then, D(f) ≥ E,
hence by Theorem 27.1, f factorizes in the form gh with h ∈ A(K),
hence I = gA(K). �

Theorem 27.12. Let r ∈ |K∗|, let f ∈ H(C(0, r)), and let P ∈ K[x]
have all its zeros in d(0, r). There exists g ∈ H(C(0, r)) and L ∈
K[x] unique such that f = Pg + L, deg(L) < deg(P ), Ψ(R, log r) ≤
Ψ(f, log r), Ψ(g, log r) ≤ Ψ(f, log r) − Ψ(P, log r). Moreover, if f
belongs to H(d(0, r)), then so does g.

Proof. Since r ∈ |K|, without loss of generality, we may assume
that r = 1. Similarly, we may also assume that Ψ(P, 0) = Ψ(f, 0)= 0,
so P is quasi-monic. Thus, the problem now consists of finding
g ∈ H(C(0, 1)) and L ∈ K[x], each unique, satisfying the statements.

Let f(x) =
∑∞

−∞ amx
m, and for each n ∈ N, let fn(x) =

∑n
m=−n amx

m. For each n ∈ N, set un = sup|j|∞>n |aj |. Then,
limn→+∞ an = limn→−∞ an = 0. Next, we note that xnP is quasi-
monic like P . By applying Lemma 5.2 to xnfn, we have a Euclidean
division of xnfn by xnP in the form xnfn = xnPgn + Sn with
Sn ∈ K[x], deg(Sn) < n+deg(P ), Ψ(Sn, 0) ≤ 0, Ψ(gn, 0) ≤ 0. Now,
by construction, Sn = xn(fn − Pgn), hence Sn is of the form xnLn,
with Ln ∈ K[x], deg(Ln) < deg(P ), and Ψ(Ln, 0) = Ψ(Sn, 0) ≤ 0.
So, fn = Pgn + Ln.

Consequently, fn+1 − fn = P (gn+1 − gn) + Ln+1 − Ln. By
applying again Lemma 5.2 to xn+1(fn+1 − fn), we can check that
Ψ(gn+1 − gn, 0) ≤ log(un) and Ψ(Ln+1 − Ln, 0) ≤ log(un), hence
both sequences (gn)n∈N, (Ln)n∈N converge in H(C(0, 1)), and more
precisely, the sequence (Ln) converges to a polynomial L of degree
< deg(P ). Moreover, setting g = limn→∞ gn, clearly we have f =
Pg + L and Ψ(g, 0) ≤ 0, Ψ(L, 0) ≤ 0, which shows the existence of
g and L in the first claim.

Now, let us check that they are unique satisfying these relations.
Suppose we have h ∈ H(C(0, 1)) and S ∈ K[x] satisfying the same
properties, with particularly f = Ph + S, deg(S) < deg(P ). Then,
P (g − h) = S − L. Since deg(S − L) < deg(P ), S − L is an ele-
ment of H(C(0, 1)) having strictly less zeros than P in C(0, 1), a
contradiction, except if g = h, hence L = S.

Now, assume that f lies in H(d(0, 1)). Then, by Corollary 21.9,
f −L is a quasi-invertible element of H(d(0, 1)) hence is of the form
Qφ with φ invertible in H(d(0, 1)) and Q ∈ K[x], having all its zeros
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in d(0, 1). Hence, Pg = Qφ. This holds in H(C(0, 1)). But since P
has all its zeros in C(0, 1), P must divide Q: say Q = PV , with
V ∈ K[x] having all its zeros in d(0, 1). So, Pg = V φ, hence g = V φ,
and by hypothesis, both V, φ lie in H(d(0, 1)), hence so does g, which
completes the proof. �

Definition. Given r ∈ |K∗|, the division of an element f of
H(C(0, r)) by a polynomial P having all its zeros in d(0, r), as defined
in Theorem 27.12, is called Euclidean division of f by P in H(C(0, r))
or r-Euclidean division of f by P .

Lemma 27.13. Let (un)n∈N be a sequence in R+ such that
∑∞

n=0 un < +∞. Let A =
∑∞

n=0 un and let B > A. There exists
an increasing sequence (qn)n∈N such that limn→∞ qn = +∞ and such
that

∑∞
n=0 qnun ≤ B.

Proof. Let E = B−A. For every n ∈ N, we denote by sn the small-
est integer such that

∑∞
j=sn

uj ≤ 4−nE. Then, for every j ∈ N such

that sn ≤ j < sn+1, we set qj = 2n. We have
∑sn+1−1

j=sn
qjuj ≤ 2−nE,

hence
∑sn+1−1

j=0 qjuj ≤ A+ E
∑n

k=1 2
−k, and finally,

∑∞
j=0 qjuj ≤ B.

�

Theorem 27.14. Let T = (an, qn)n∈N be a divisor on the disk
d(a,R−) with an �= 0 ∀n ∈ N and let ε > 0. There exists
f ∈ A(d(a,R−)) such that D(f) ≥ T , f(a) = 1 and |f |(r) ≤
|T |(r)(1 + ε) ∀r ∈]0, R[.
Proof. Without loss of generality, we can assume a = 0. The set
{|aj | |j ∈ N} is obviously equal to the image of a strictly increasing
sequence of limit R that we denote by (rm)m∈N. For each m ∈ N, the
set Sm of the aj lying in C(0, rm) is of the form {ahm , ahm+1 , . . . , akm}.
We set B = 1 + ε and Pm =

∏km
j=hm

(

1− x
aj

)qj .

We can construct a polynomial whose divisor is (an, qn)n<t. For
every m ∈ N, we set μm = log rm, and λ = log(B).

Now, by Lemma 27.13, there exists an increasing sequence (tn)n∈N
in N such that limn→∞ tn = +∞ and such that

(1)

∞
∑

j=0

tj(μj+1 − μj) ≤ λ.
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For every s ∈ N, we put τ(s) =
∑s

j=0 tj(μj+1 − μj), and gs =
∏s
m=0 Pm. We note that Ψ(gq, μ) = Ψ(gs, μ) whenever μ ≤ μq and

q ≤ s. So, we can define the function � from ] −∞, log S[ into R as
�(μ) = lims→∞Ψ(gs, μ). Then � is an increasing function in μ that
satisfies

(2) �(μ) =

k(m)
∑

j=0

qj(μ −Ψ(aj)) whenever μ ∈ [μm, μm+1].

We construct a sequence (fs)s∈N in K[x] satisfying the following rela-
tions (αs), (βs), (γs), and (δs) for every s ∈ N and (εs), (ϕs) for every
s ∈ N∗:

(αs) fs(0) = 1.
(βs) Pj divides fs for every j ≤ s.
(γs) Ψ(fs, μs+1) ≤ �(μs+1) + τ(s).
(δs) Ψ(fs, μ) ≤ �(μ) + λ whenever μ < logS.
(εs) Ψ(fs − fs−1, μ) ≤ �(μ) + ts(μ − μs) + λ whenever μ ≤ μs.
(ϕs) Ψ(fs − fs−1, μ) ≤ �(μs) + ts(μ − μs) + τ(s) whenever μ ∈

]μs, log S].

We proceed by induction and prove that when (αs), (βs), (γs),
and (δs) are satisfied for s ∈ N, then we can derive (αs+1), (βs+1),
(γs+1), (δs+1), (εs+1), and (ϕs+1). By taking f0 = P0, we check
that (α0), (β0), (γ0), and (δ0) are obviously satisfied. We now sup-
pose already constructed fm satisfying (αm), (βm), (γm), and (δm) for
every m = 0, . . . , s and (εm), (ϕm) for every m = 1, . . . , s. We define
fs+1 satisfying (αs+1), (βs+1), (γs+1), (δs+1), (εs+1), and (ϕs+1). It is
seen that each polynomial Ps has all its zeros in C(0, rs).

Let Rs+1 be the rest of the Euclidean division of fs by Ps+1 in
H(C(0, rs+1)). Let Qs+1 = xts+1gs. We have

(3) Ψ(Qs+1, μ) = μts+1 +Ψ(gs, μ) whenever μ ∈ R.

We note that Qs+1 admits no zero in C(0, rs+1) and then is invert-
ible in H(C(0, rs+1)). As a consequence, according to Theorem 27.12,

we can perform the rs+1-Euclidean division of Rs+1

Qs+1
by Ps+1 in

H(C(0, rs+1)). Let Vs+1 be the rest of this division. Thus, Rs+1

Qs+1
is

of the form Ts+1Ps+1 + Vs+1 with Ts+1 ∈ H(C(0, rs+1)) and

(4) Ψ(Qs+1Vs+1, μs+1) ≤ Ψ(Rs+1, μs+1),
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we have Rs+1 = Qs+1(Ts+1Ps+1 + Vs+1). Now we put fs+1 = fs −
Qs+1Vs+1. Of course, fs+1 satisfies (αs+1). We check that fs+1 sat-
isfies (βs+1). By definition, each Pj divides gs for every j = 0, . . . , s,
and hence it divides Qs+1. Next, by (βs), Pj also divides fs. Con-
sequently, Pj divides fs+1 for every j = 0, . . . , s. Moreover, Ps+1

divides both fs−Rs+1 and Qs+1Ts+1Ps+1. Hence it also divides fs+1

and thereby (βs+1) is satisfied.
Now, we prove (ϕs+1). By (4), Rs+1 satisfies Ψ(Rs+1, μs+1) ≤

Ψ(fs, μs+1). Hence, by Relation (γs), we have

(5) Ψ(Rs+1, μs+1) ≤ �(μs+1) + τ(s) = Ψ(gs+1, μs+1) + τ(s).

Since deg(Rs+1) < deg(Ps+1) < deg(gs+1) and since all zeros of
gs+1 lie in d(0, rs+1), gs+1 has more zeros than Rs+1 in d(0, rs+1),
and therefore, by Theorem 22.26, we have

Ψ(Rs+1, μ)−Ψ(Rs+1, μs+1) ≤ Ψ(gs+1, μ)−Ψ(gs+1, μs+1)

whenever μ ∈]μs+1, log S], and therefore, by (5), we obtain

(6) Ψ(Rs+1, μ) ≤ Ψ(gs+1, μ) + τ(s) whenever μ ∈]μs+1, log S].

Since Rs+1

Qs+1
= Ts+1Ps+1 + Vs+1, by Theorem 27.12, we have

Ψ(Qs+1Vs+1, μs+1)) ≤ Ψ(Rs+1, μs+1), and hence, by (5),
Ψ(Qs+1Vs+1, μs+1) ≤ �(μs+1) + τ(s). But �(μs+1) = Ψ(gs+1, μs+1),
hence by (6), we obtain

(7) Ψ(Qs+1Vs+1, μs+1) ≤ Ψ(gs+1, μs+1) + τ(s).

We note that deg(Qs+1Vs+1) < deg(gs+1)+ ts+1 and that all zeros of
gs+1 lie in d(0, rs+1). Hence, by Theorem 22.26 and by (3) and (7),
we have

(8) Ψ(Qs+1Vs+1, μ) ≤ Ψ(gs+1, μ) + ts+1(μ − μs+1) + τ(s) for every
μ ∈]μs+1, log S].

Actually, by definition of fs+1, we have Ψ(Qs+1Vs+1, μ) = Ψ(fs+1 −
fs, μ) and Ψ(gs+1, μ) ≤ �(μ) for every μ ∈]μs+1, log S], hence by (7),
we have proved ϕs+1. We deduce (εs+1).
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In particular, when μ = μs+2, we obtain

Ψ(Qs+1Vs+1, μs+2) ≤ �(μs+2) + ts+1(μs+2 − μs+1) + τ(s).

But we note that ts+1(μs+2 − μs+1) + τ(s) = τ(s + 1), hence

(9) Ψ(Qs+1Vs+1, μs+2) ≤ �(μs+2) + τ(s+ 1).

And, by (8) and (1), we obtain

(10) Ψ(fs+1 − fs, μ) ≤ �(μ) + λ whenever μ ∈]μs+1, log S].

Now we take μ ≤ μs+1. It is seen that

Ψ(Qs+1, μ)−Ψ(Qs+1, μs+1) = �(μ)− �(μs+1) + ts+1(μ − μs+1).

Therefore, we have

Ψ(Qs+1Vs+1, μ) ≤ Ψ(Qs+1Vs+1, μs+1) + �(μ)− �(μs+1)

+ ts+1(μ − μs+1).

But by (8), we have Ψ(Qs+1Vs+1, μs+1) ≤ �(μs+1) + λ, hence
we obtain Ψ(Qs+1Vs+1, μ) ≤ �(μ) + λ + ts+1(μ − μs+1) whenever
μ ≤ μs+1, and this is (εs+1). In particular, we have Ψ(fs+1− fs, μ) ≤
�(μ)+λ whenever μ ≤ μs+1, and therefore, by (δs), we obtain (δs+1).

Now, we show (γs+1). Obviously, we have

(10) Ψ(f0, μs+2) ≤ �(μs+2).

Next, by Relations (ϕm)1≤m≤s+1 for every m ∈ N∗, we have

Ψ(fm − fm−1, μs+2) ≤ �(μm) + [tm(μs+2 − μm) + τ(m)].

But as the sequence (tm)m∈N is increasing, it is seen that

τ(m) + tm(μs+2 − μm) ≤
s+1
∑

j=0

tj(μj+1 − μj) = τ(s+ 1).

Obviously, �(μs+2) ≥ �(μm), hence we obtain Ψ(fm − fm−1, μs+2) ≤
�(μs+2) + τ(s + 1) whenever m = 1, . . . , s+ 1. Finally, by (10), fs+1

satisfies Ψ(fs+1, μs+2) ≤ �(μs+2) + τ(s+ 1) and this is (γs+1).
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We note that (εs) and (ϕs) are not used to prove

(αs+1), (βs+1), (γs+1), (δs+1), (εs+1), (ϕs+1).

Consequently, (ε1) and (ϕ1) are clearly proven by (α0), (β0), (γ0),
and (δ0), and therefore, we are now done with the recurrence. There-
fore, we can now construct the sequence (fs)s∈N satisfying (αs), (βs),
(γs), (δs), (εs), and (ϕs). By Relations (εs), the sequence is easily seen
to converge in each algebra H(d(0, u)) whenever u ∈]0, S[. Indeed,
given u ∈]0, S[ and N ∈ N such that μN < log u, by (εs+1), we have

log(‖fs+1 − fs‖d(0,u)) = Ψ(fs+1 − fs, log u)

≤ �(log u)− ts(log u− μs+1) + λ,

hence log(‖fs+1 − fs‖d(0,u)) ≤ �(log u) − ts(log u − μN ) + λ, when-
ever s > N. As lims→+∞ ts = +∞, it is seen that lims→∞ ‖fs+1 −
fs‖d(0,u) = 0.

Let f be the function defined in d(0, R−) as the limit of the
sequence (fs)s∈N in each disk d(0, u). Obviously, as an element of
H(d(0, u)) for every u ∈]0, S[, f belongs to A(d(0, R−)). By Rela-
tions (αs), f satisfies f(0) = 1.

We check |f |(r) ≤ B|T |(r). Let u ∈]0, R[ be such that μN ≤
log u ≤ μN+1. We have log ‖f‖d(0,u) = Ψ(f, log u).

When s is big enough, Ψ(fs, log u) is clearly equal to Ψ(f, log u),
hence f satisfies log ‖f‖d(0,u) = Ψ(fs, log u) ≤ �(log u) + λ. Hence,
by (2), we obtain |f |(r) ≤ B|T |(r). Now, we just have to check that
every aj is a zero of f of order zj ≥ qj. Letm be such that hm ≥ j. For
every s ≥ m, (1− x

aj
)qj divides fs in H(d(0, u)) (for every u ∈]0, S]),

hence by Lemma 16.1, (1 − x
aj
)qj divides f in H(d(0, u)) and this

finishes the proof of Theorem 27.14. �

We can obtain a small improvement of Theorem 27.14:

Theorem 27.15. Let T = (an, qn)n∈N be a divisor on the disk
d(a,R−) with an �= 0 ∀n ∈ N, and let ε > 0 and ρ ∈]0, R[.
There exists g ∈ A(d(a,R−)) such that D(g) ≥ T , g(a) = 1 and
|g|(r) ≤ |T |(r)(1 + ε) ∀r ∈]0, R[ and D(g)(α) = T (α) ∀α ∈ d(a, ρ).
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Proof. By Theorem 27.14, we have a function f ∈ A(d(a,R−))
such that D(f) ≥ T , f(a) = 1 and |f |(r) ≤ |T |(r)(1 + ε) ∀r ∈]0, R[.
Now, we can construct a polynomial P (x) such that P (0) = 1
and admitting in d(a,R−) a divisor D(P ) satisfying D(P )(α) =
D(f)(α)
T (α) ∀α ∈ d(a, ρ) and D(P )(α) = 0 ∀α ∈ d(a,R−)\d(a, ρ). Then

the function g = f
P satisfies D(g)(α) = T (α) ∀α ∈ d(a, ρ), T ≤

D(g) ≤ D(f), and hence |g|(r) ≤ |f |(r) ≤ |T |(r)(1 + ε) ∀r ∈]0, R[.
�

Remark. Here we may note that H(d(0, R−)) is much smaller
than Ab(d(0, R

−)). Indeed, by Theorem 27.15, there exist functions
f ∈ Ab(d(0, R

−)) having infinitely many zeros in d(0, R−). But, by
Theorem 21.8, any element of H(d(0, R−)) is quasi-invertible and
hence has finitely many zeros.
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Chapter 28

Michel Lazard’s Problem

This chapter is aimed at studying the following problem mentioned
in Chapter 26 and first considered by M. Lazard in a tremendous
work [72]. Let T be a divisor on a disk d(a,R−). Does there exist a
function f ∈ A(d(a,R−)) such that D(f) = T ? The answer depends
on whether or not K is spherically complete.

Theorems 28.1 and 28.4 were first proved in [72]. Proofs are long
and much technical. Here we try to give an easier presentation of
the proofs which is due to Labib Haddad. More precisely, when K

is spherically complete, Theorem 28.4 shows the following result, as
it was done in [72]: let T = (an, qn) be a divisor on d(a,R−), with
|an| ≤ |an+1| and |au(m)| < |au(m)+1|. For each m ∈ N, let Pm(x) =
∏u(m+1)
j=u(m)+1(x− aj) and let (Qm) ∈ K[x] be such that |Qm|(ρm) ≤

|T |(ρm). Then there exists a function f ∈ A(d(a,R−)) such that Pm
divides f −Qm. Hence, in particular, given a divisor T on d(a,R−),
there exists a functions f analytic in d(a,R−), whose divisor is T .

Theorem 28.1. Let K be not spherically complete and let (Dn)n∈N
be a decreasing sequence of disks d(un, ρn) such that

⋂∞
n=0Dn= ∅. Let

R = 1
limn→∞ diam(Dn)

. There exists sequences (cn)n∈N of d(0, R−) such
that limn→∞ |cn| = R and such that no function f ∈ A(d(0, R−))
admits for divisor the divisor T = (cn, 1)n∈N.

Proof. Without loss of generality, we may obviously assume that
R > 1, hence 1

R < 1 < R. Consequently, we may assume that D0 ⊂
d(0, R−). For each n ∈ N, we set ρn = diam(Dn), hence ρn > ρn+1.

255
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For every n ∈ N, we can take αn ∈ Dn\Dn+1. Let βn = αn+1 − αn,
n ∈ N, hence

(1) ρn+1 < |βn| ≤ ρn.

Consider the divisor T = ( 1
βn
, 1)n∈N and suppose that there exists f ∈

A(d(0, R−)) whose divisor is exactly T . Without loss of generality,
we can assume that f(x) =

∏

n∈N(1− βnx). Then f(x) is a series of
the form 1 +

∑∞
n=1 anx

n. We show that α1 − a1 ∈ Dn ∀n ≥ 1.

Let us fix n ∈ N. We can check that αn − α1 =
∑n−1

j=1 βj , hence

αn − (α1 − a1) = a1 +
∑n−1

j=1 βj . Since αn ∈ Dn, then α1 − a1 lies in

Dn if and only if |a1 +
∑n−1

j=1 βj | ≤ ρn.

For all n ∈ N, we set tn = |(βn)−1|. By (1), the sequence (tn) is
strictly increasing and satisfies

(2) |an| =
n
∏

j=1

tj ∀n ≥ 1.

Particularly, an �= 0 ∀n ≥ 1. For each s ≥ 1, we put fs =
∑s

n=0 anx
n.

Then, deg(fs) = s. By (2), we see that the s zeros of fs are distinct
and are of the form γsj , 1 ≤ j ≤ s, with |γsj | = tj. Thus, fs is of the

form
∏s
j=1(1 − βs,jx), with |βs,j | = |βj | = t−1

j . By identification of

coefficients, we obtain a1 = −∑s
j=1 βs,j. Consequently, when n ≤ s,

we have

(3)

s
∑

j=1

βj − βs,j = a1 +

s
∑

j=1

βj .

Let us fix n ∈ N∗. By Theorem 24.3, we can see that for each
j = 1, . . . , n, we have lims→∞ βs,j = βj . Consequently, when s is big

enough, we can see that |∑n−1
j=1 βj −

∑s
j=1 βs,j| ≤ ρn. Therefore, by

(3), we have |a1 +
∑n−1

j=1 βj | ≤ ρn.
Consequently, α1 − a1 lies in Dn. This is true for every n ∈ N, a

contradiction to the hypothesis
⋂∞
n=0Dn = ∅. �

In order to prove Theorem 28.4, we must introduce a set of nota-
tions that hold throughout this chapter.
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Notation. We consider a divisor T on d(0, R−) of the form
(ai,m,, qi,m)i≤um,m∈N, where the points ai,m lie in the circle C(0, ρm)
with 0 < ρm < ρm+1 ∀m ∈ N and limm→+∞ ρm = R. We denote by
(Pm)m∈N the polynomial Pm =

∏um
i=1

(

1− x
ai,m

)qi,m whose zeros by

definition belong to the circle C(0, ρm), and for each m ∈ N, we set
dm = deg(Pm).

We denote by (Qm)m∈N a sequence of K[x] satisfying |Qm|(ρm) ≤
|T |(ρm), deg(Qm) < dm ∀m ∈ N. We note that |T |(r) =
∏s−1
m≥1

(

r
ρm

)dm whenever r ∈ [ρs−1, ρs]. Given q ∈ N, s ∈ N, r ∈]0, R[,
we set

λ(q, s, r) = |T |(r)
(

r
R

)q
min

(

1,
(

r
ρs

))

, i.e.

λ(q, s, r) = |T |(r)
(

r
R

)q(
r
ρs

)

∀r ∈]0, ρs],

λ(q, s, r) = |T |(r)
(

r
R

)q ∀r ∈ [ρs, R[.

Particularly, we note that λ(q, s, r) ≤ |T |(r) ∀r < R. Now, given

n ∈ N, we set υ(q, s, n) = infr<R
(λ(q,s,r)

rn

)

.
Recall that the Euclidean division in H(C(0, r)) is defined in

Chapter 27. We denote by Λ(q, s) the subset of the h ∈ A(d(0, R−))
satisfying the following:

(α) h(0) = 1.
(β) |h|(r) ≤ |T |(r) ∀r < R.
(γ) Pm divides h−Qm in A(d(0, R−)) ∀m = 0, . . . , s.
(δ) The restXm of the Euclidean division of h by Pm inH(C(0, ρm))

satisfies |Xm −Qm|(ρm) ≤ λ(q,m, ρm) = |T |(ρm)
(ρm
R

)q ∀m ≥ 0.

Remark. By definition, q and n being fixed, the sequence in s:
(υ(q, s, n))s∈N is decreasing.

In the proof of Theorem 28.4, we use Lemmas 28.2 and 28.3.
Lemma 28.2 is immediate:

Lemma 28.2. Λ(q + 1, s) ⊂ Λ(q, s) and Λ(q, s) is a closed subset of
A(d(0, R−)).

Lemma 28.3. Let q ∈ N, s ∈ N∗, f ∈ Λ(q, s − 1). There exists
g ∈ Λ(q, s) such that |g − f |(r) ≤ λ(q, s, r) ∀r < R.
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Proof. Let h =
∏s−1
m=0 Pm and u = xq+1h. Then Pm and x have no

zero in C(0, ρs), hence they are invertible in H(C(0, ρs)) and hence
so is u. For each m ∈ N, we denote by Rm the rest of the Euclidean
division of f by Pm in H(C(0, ρm)). Since f ∈ Λ(q, s−1), by (γ), Pm
divides f−Qm for everym ≤ s−1, henceRm = Qm ∀m = 0, . . . , s−1.

Consider now the Euclidean division of (Qs − Rs)u
−1 by Ps in

H(C(0, ρs)): (Qs − Rs)u
−1 = EPs + S, with deg(S) < ds, E ∈

H(C(0, ρs)) and |S(ρs)| ≤ |(Qs −Rs)u
−1|(ρs), hence

(1) |Su|(ρs) ≤ |(Qs −Rs)|(ρs).
We then take g = f + Su, hence g = f + Shxq+1. We show that

g belongs to Λ(q, s) and that |g − f |(r) ≤ λ(q, s, r) ∀r < R. We note
that g belongs to A(d(0, R−)) and that g(0) = f(0) = 1.

Next, by hypothesis, Ps divides f−Rs and by construction divides
Su+Rs−Qs. But g−Qs = f +Su−Qs = f −Rs+Su+Rs−Qs ∈
A(d(0, R−)), hence Ps divides g −Qs in A(d(0, R−)).

Now, by hypothesis, f lies in Λ(q, s − 1), hence particularly
|f |(r) ≤ |T |(r), and we have

(2) |Qm −Rm|(ρm) ≤ |T |(ρm)
(ρm
R

)q ∀m ≥ 1.

Thus, by (1) and (2), we have

(3) |g − f |(ρs) ≤ |T |(ρs)
(ρs
R

)q
.

But since |S| is an increasing function in r, we have |S|(r) ≤
|S|(ρs) whenever r ≤ ρs. On the other hand, |h|(r) = |T |(r) ∀r ≤ ρs.
And, as we saw,

|g − f |(ρs) = |Su|(ρs) = |Shxq+1|(ρs) = |S|(ρs)|T |(ρs)(ρs)q+1

≤ |T |(ρs)
(ρs
R

)q
.

Consequently, |S|(r) ≤ |S|(ρs) ≤ 1
Rqρs

∀r ≤ ρs, and hence

(4) |g − f |(r) = |Shxq+1|(r) = |S|(r)|h|(r)rq+1

≤ |T |(r)
(ρs
R

)q( r

ρs

)

∀r ≤ ρs.
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Now, when r ≥ ρs, we have

|T |(r) =
∏

m≥1

|Pm|(r) = |h|(r)
∏

m≥s
|Pm|(r) ≥ |h|(r)|Ps|(r)

= |h|(r)
( r

ρs

)ds
.

Next, Sxq+1 is of the form λ
∏m
j=1(x− xj) and is a polynomial of

degree m ≤ q + ds, hence

|xq+1S|(r)
|xq+1S|(ρs) =

m
∏

j=1

|x− xj |(r)
|x− xj |(ρs) ≤

( r

ρs

)q+ds
.

Thus,

|g − f |(r) = |Shxq+1|(r) = |Sxq+1|(r)|h|(r)

≤ |Sxq+1|(ρs)
( r

ρs

)q+ds(ρs
r

)ds |T |(r)

= |T |(r)
( r

ρs

)q|Sxq+1|(ρs) = |T |(r)
( r

ρs

)q
(ρs)

q+1|S|(ρs)

≤ |T |(r)rq(ρs) 1

Rqρs
= |T |(r)

( r

R

)q
.

And finally, with (4), we obtain |g − f |(r) ≤ λ(q, s, r) ∀r ∈]0, R[. �

Theorem 28.4. Suppose K is spherically complete. Assume that
|Qm|(ρm) ≤ |T |(ρm) ∀m ∈ N. Let R ∈]0,+∞[. There exists f ∈
A(d(0, R−)) satisfying the following:

(i) f(0) = 1.
(ii) |f |(r) ≤ |T |(r) ∀r < R.
(iii) Pm divides f −Qm in A(d(0, R−)).

Proof. We mean to construct a sequence of functions (fq)q∈N which
belong to A(d(0, R−)), converging in A(d(0, R−)) to a function f
satisfying the claim.

We first fix q ∈ N and take fq ∈ Λ(q, 0). Let fq(x) =
∑∞

n=0 anx
n.

We construct a sequence (gq,s)s∈N satisfying gq,s ∈ Λ(q, s) and |gq,s−
gq,s−1|(r) ≤ λ(q, s, r), with gq,0 = fq. Suppose already constructed
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the gq,j for j = 0, . . . , s− 1. By Lemma 28.3, there exists h ∈ Λ(q, s)
such that |h− gq,s−1|(r) ≤ λ(q, s, r). So, we can set gq,s = h and the
sequence is then defined by induction for all s ∈ N.

Now, for each s ∈ N, we set gq,s(x) =
∑∞

n=0 bq,s,nx
n. Since by

construction the sequence gq,s satisfies

(1) |gq,s − gq,s−1|(r) ≤ λ(q, s, r)∀r < R,

then for each fixed n ∈ N, the sequence (bq,s,n)s∈N satisfies |bq,s,n −
bq,s−1,n| ≤ υ(q, s, n). Thus, for each fixed n ∈ N, we consider the
sequence of disks (Ds,n)s∈N defined as Dq,s,n = d(bq,s,n, υ(q, s, n)).
Since the sequence (υ(q, s, n))s∈N is decreasing and since |bq,s,n −
bq,s−1,n| ≤ υ(q, s, n), the sequence of disks (Dq,s,n)s∈N is decreasing
with respect to the inclusion. Consequently, since K is spherically
complete, for each n ∈ N, there exists aq+1,n ∈ ⋂∞

s=0Dq,s,n. Partic-
ularly, since υ(q, s, n) = 0 ∀n ≤ q, we note that bq,s,0 = bq,s−1,0 = 1
because gq,s−1 ∈ Λ(q, s− 1). Consequently, aq+1,0 = 1.

Now, we show that fq+1 belongs to Λ(q + 1, 0). Let fq+1(x) =
∑∞

n=0 aq+1,nx
n. Since aq+1,0 = 1, fq+1 satisfies Relation (α). Next, by

construction, we have |aq+1,n−bq,s−1,n| ≤ υ(q, s, n) ≤ υ(q, 1, n) ∀n ∈
N, hence obviously, |aq+1,n−aq,n| ≤ υ(q, 1, n) ∀n ∈ N. Consequently,
|aq+1,n − aq,n|rn ≤ λ(q, 1, r) ∀r < R, hence

(2) |fq+1 − fq|(r) ≤ λ(q, 1, r) ≤ |T |(r)
(

r
R

)q ∀r < R.

Now since, by hypothesis, |fq|(r) ≤ |T |(r), by (2), we can see
that |fq+1|(r) ≤ |T |(r), and therefore, fq+1 satisfies Relation (β).
Since (γ) is trivial when s = 0, it only remains to show that fq+1

satisfies (δ).
For each m ∈ N, let Sm,q+1 be the rest of the Euclidean division

of fq+1 by Pm in H(C(0, ρm)). For each s ≥ m, since Pm divides
gq,s −Qm, the rest of the Euclidean division of gq,s − fq+1 by Pm in
H(C(0, ρm)) is equal to Qm−Sm,q+1. Consequently, by (1), we have

(3) |Qm − Sm,q+1|(ρm) ≤ |gq,s − fq+1|(ρm) ≤ λ(q, s, ρm),

and hence

(4) |Qm − Sm,q+1|(ρm) ≤ |T |(ρm)
(ρm
R

)q(

min
(

1,
ρm
ρs

))

∀s ≥ m.
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Now, since lims→∞ ρs = R, by (4), we have |Qm − Sm,q+1|(ρm) ≤
|T |(ρm)

(ρm
R

)q+1
. This finishes showing that (δ) is satisfied by gq+1,s,

and therefore, gq+1,s belongs to Λ(q+1, 0). This true for all s, hence
by Lemma 28.2, fq+1 also belongs to Λ(q + 1, 0).

Thus, we have constructed a sequence (fq)q∈N of A(d(0, R−)) sat-
isfying fq ∈ Λ(q, 0)∀q ∈ N. By (2), we can see that the sequence
(fq)q∈N converges in all H(d(0, ρ)), for every ρ < R, to a limit f
which thereby belongs to H(d(0, ρ)) for all ρ < R. Consequently,
that function f belongs to A(d(0, R−)). Moreover, since Λ(q, 0) is
closed, f belongs to Λ(q, 0) for every q ∈ N. Consequently, by Rela-
tion (δ) true for every q, the rest Xm of the Euclidean division of
fq by Pm in H(C(0, ρm)) satisfies |Xm − Qm|(ρm) ≤ |T |(ρm)

(ρm
R

)q

for every q ∈ N, hence Xm = Qm. So, Pm divides f −Qm for every
m ∈ N. And by construction, f satisfies (α) and (β), which completes
the proof. �

Corollary 28.5. Suppose K is spherically complete. Let (an)n∈N
be a sequence of d(0, R−) such that |an| ≤ |an+1| ∀n ∈ N and
limn→+∞ |an| = R and let (bn)n∈N be a sequence of K. There exists
f ∈ A(d(a,R−)) such that f(an) = bn ∀n ∈ N.

Proof. Indeed, we can define a sequence of integers (sn)n∈N such
that the divisor T = (an, sn)n∈N satisfies |T |(|an|) ≥ |bn| ∀n ∈ N. �

Theorem 28.6. Suppose K is spherically complete. Let T be a divi-
sor on d(a,R−). There exists f ∈ A(d(a,R−)) such that D(f) = T .

Proof. Without loss of generality, we may obviously assume a = 0.
Take Qm = 0 ∀m ∈ N. By Theorem 28.4, there exists f ∈
A(d(0, R−)) such that

(i) f(0) = 1,
(ii) |f |(r) ≤ |T |(r) ∀r < R,
(iii) Pm divides f in A(d(0, R−)).

By (iii), clearly, D(f) ≥ T . Thus, we only have to check that
D(f) ≤ T . Indeed, for all s ∈ N, we have

|T |(ρs) =
s
∏

j=1

um
∏

i=1

∣

∣

∣

(

1− x

ai,m

)qi,m
∣

∣

∣(ρs) =

s
∏

j=1

um
∏

i=1

( ρs
ρm

)qi,m
.
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Now, suppose that T �= D(f). Then there exists α ∈ d(0, R−) such
that ωα(f) > T (α). Let s be such that ρs > |α|. Since f(0) = 1, we
have

|f |(ρs) ≥ ρs
|α|

s
∏

j=1

um
∏

i=1

∣

∣

∣

(

1− x

ai,m

)qi,m
∣

∣

∣(ρs) >
s
∏

j=1

um
∏

i=1

( ρs
ρm

)qi,m
= |T |(ρs),

a contradiction to (iii). �

Similar to A(K), the algebra A(d(a,R−)) is provided with the
natural topology of uniform convergence on each disk d(0, r) when-
ever 0 < r < R. Such a topology makes A(d(a,R−)) a topological
K-algebra.

In Chapter 26, we showed that inA(K) every closed ideal is princi-
pal. Here, following the same methods, provided that K is spherically
complete, we can prove similar results with algebras A(d(a,R−)):

Theorem 28.7. Suppose K is spherically complete. All closed ideals
of A(d(a,R−)) are principal.

Proof. Let I be a closed ideal of A(d(a,R−)) and let E = D(I).
By Theorem 27.10, we have I = Ta,R(E). Now, by Theorem 28.6,
there exists g ∈ A(K) such that D(g) = E and of course g belongs
to Ta,R(E) hence to I. Consequently, gA(d(a,R−)) ⊂ I. Conversely,
by Corollary 27.2, we have I = gA(d(a,R−)). �
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Chapter 29

Motzkin Factorization and Roots
of Analytic Functions

In this chapter, D is a closed infraconnected set and f belongs to
H(D).

The idea of factorizing semi-invertible analytic elements into a
product of singular factors is a remarkable idea due to Motzkin [75].
This factorization has tight links with the Mittag-Leffler series, as
shown in [36].

Lemma 29.1. Let T = d(a, r−), with a ∈ K and r > 0, let E = K\T
and take b ∈ T . Let g ∈ H(E) be invertible in H(E). Then there
exist λ ∈ K, q ∈ Z and h ∈ H(E) invertible in H(E), satisfying ‖h−
1‖

E
< 1, lim|x|→+∞ h(x) = 1 and g(x) = λ(x− b)qh(x). Moreover, λ,

q, and h are respectively unique, satisfying those relations. Further,

both λ and q do not depend on b in T and g′
g belongs to H0(E).

Proof. Without loss of generality, we may obviously assume a = 0.
As g is invertible, if g belongs to H0(E), then 1

g does not. So, we may

clearly assume that g does not belong to H0(E). By Theorem 11.5.
g is of the form g̃ + ĝ, with g̃ ∈ K[x], g̃ �= 0, and ĝ ∈ H0(E). Let
q = deg(g̃) and let λ be its coefficient of degree q. Now, we put h(x) =
g(x)

λ(x−b)q . By definition both λ, q do not depend on b in T . Hence,

we may also assume b = 0. Clearly, h satisfies lim|x|→+∞ h(x) = 1.
Since H(E) is a K-algebra and since g is invertible, h is invertible in
H(E). In particular, we note that h is bounded and admits no zero
in E. Now, we check that ‖h − 1‖

E
< 1. Let s = 1

r , let A = d(0, s)

263
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and let φ(u) = h( 1u ) whenever u ∈ d(0, s), u �= 0. Then φ belongs
to H(d(0, s)\{0}). But since h is bounded in E, φ is bounded in
d(0, s)\{0}. Moreover, the condition lim|x|→+∞ h(x) = 1 shows that
limx→0 φ(x) = 1, hence φ belongs to H(d(0, s)).

Thus, φ(u) is of the form
∑∞

n=0 anu
n with a0 = 1 and hence, by

Theorem 22.7, we have |an|sn < 1 ∀n > 0. Let ε = sup{|an|sn|n > 0}.
Then we have ‖φ − 1‖d(0,s) = ‖h − 1‖E = ε. Now, h, q, and λ

are easily seen to be unique. Indeed, let g(x) = αxtl(x) with l
invertible in H(E), satisfying lim|x|→+∞ l(x) = 1. Then we have

1 = xq−t λh(x)αl(x) . Consequently, considering the limit when |x| tends
to +∞, we have q = t, λ = α, and therefore, h = l. Finally, we

check that g′
g belongs to H0(E). Indeed, g′

g = q
x−b +

h′
h . Obviously,

q
x−b belongs to H0(E). Since lim|x|→∞ |h(x)| = 1, it is seen that h(x)

is of the form 1+
∑∞

n=1
an
xn with limn→∞ |ansn | = 0, and therefore, h′ is

an element ofH(E) such that lim|x|→∞ |h′(x)| = 0. As a consequence,
h′
h belongs to H0(E). Hence, so does g′

g and this ends the proof of
Lemma 29.1. �

Definition. Let E = K\d(a, r−) with a ∈ K and r > 0. Let f ∈
H(E) be invertible inH(E) and let λ(x−a)qh(x) be the factorization
given in Lemma 29.1. The integer q will be named the index of f
associated to d(a, r−) and will be denoted bymo(f, d(a, r−)). If λ=1,
the element f will be called a pure factor associated to d(a, r−). Let
GT be the group of invertible elements of H(K\T ).

The following Corollary is then immediate.

Corollary 29.2. Let T = d(a, r−). The set of pure factors associated
to T is a sub-multiplicative group of the group GT . Further, every
element of GT is of the form λh with h a pure factor associated to T
and λ ∈ K∗.

Lemma 29.3. Let T = d(a, r−), let E = K\T with a ∈ K and let
f be a pure factor associated to T such that ‖f − 1‖

E
< 1. Then

mo(f, T ) = 0.

Proof. Without loss of generality, we can assume a = 0. Let
q = mo(f, T ). By Lemma 29.1, there exists a unique element h invert-
ible in H(E) such that f = xqh and lim|x|→+∞ |h(x)| = 1. There-

fore, by Theorem 14.6, h(x) is of the form 1 +
∑+∞

n=1
an
xn , hence
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‖h‖E < 1. So, if q > 0, then f is unbounded, a contradiction. Next,
by Corollary 29.2, 1

f is a pure factor satisfying again the hypothesis
of Corollary 29.2, hence the hypothesis q < 0 gets to a contradiction
again. �

Definition. Let f belong to H(D). Let T be a hole of D and let h

be a pure factor associated to T . If f
h belongs to H(D ∪ T ) and has

no zero inside T , h is called the Motzkin factor of f in the hole T .

Theorem 29.4. Let T be a hole of D and let f have a Motzkin
factor h in T . Then h is unique. Further, if T is not an f -hole,
h is the polynomial of the zeros of f inside T . Moreover, if E is
another infraconnected set included in D admitting T as a hole and
if g denotes the restriction of f to E, then g admits a Motzkin factor
in the hole T as an element of H(E) and this Motzkin factor is equal
to h.

Proof. Let f have another Motzkin factor l in T , let F = f
h and let

G = f
l . Since G has no zeros inside T , by Theorem 24.9, there exists

a closed bounded infraconnected set D′ satisfying T ⊂ D′ ⊂ (D∪T ),
T �= D′, such that G is invertible in H(D′). Hence, in H(D′), we
have F

G = l
h , and hence, l

h belongs to H(D′). Since T �= D′, it is seen
that D′ ∩ (K\T ) is an infraconnected closed bounded set included
in D that admits T as a hole. Moreover, we have D′ ∪ (K\T ) = K.
Therefore, by Theorem 15.10, we see that l

h belongs to H(K) and is

hence a polynomial P . Since F
G belongs to H(D′) and has no zeros in

T , it is seen that mo(h, T ) = mo(l, T ), so we have lim|x|→∞
h(x)
l(x) = 1.

Hence, P = 1 and this proves that h is unique.
Now, we assume that T is not an f -hole, hence f belongs to

H(D ∪ T ). Let Q be the polynomial of the zeros of f inside T . Then

by Corollary 16.6, f
Q belongs to H(D ∪ T ) and has no zeros inside

T . Since its Motzkin factor h is unique, we have h = Q. The last
statement about g is obvious because g

h clearly belongs to H(E ∪ T )
and has no zero inside T . This ends the proof of Theorem 29.4. �

Definition and notation: We will call the f-supersequence of D the
sequence of the holes (Tn)n∈I such that either Tn is an f -hole or f
belongs to H(D∪T ) and has at least one zero inside Tn. If f admits
a Motzkin factor h in a hole T , it will be denoted by fT andmo(h, T )
will be called the Motzkin index of f in T . For every hole which does
not belong to the f -supersequence, we put fT = 1.
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Lemma 29.5 is immediate.

Lemma 29.5. Let D ∈ Alg, let T be a hole of D and let f, g ∈
H(D) admitting Motzkin factors in T . Then (fg)T = fT gT and
mo(fg, T ) = mo(f, T ) + mo(g, T ). Moreover, if f is invertible in
H(D), then (f−1)T = (fT )−1 and mo(f−1, T ) = −mo(f, T ).
Lemma 29.6. Let f ∈ H(D) and let (Tn)n∈N be the
f -supersequence. Suppose that for each n ∈ N, f admits
Motzkin factors in Tn. Then there exists N ∈ N such that
mo(fTn , Tn)= 0 whenever n > N . Moreover, if D ∈ Alg, the product
(∏t

n=1 f
Tn
)(∏∞

n=t+1 f
Tn
)

does not depend on t whenever t ≥ N .

Proof. Indeed, there exists N ∈ N such that we have
‖fTn − 1‖D < 1 whenever n ≥ N and therefore, by Corollary 29.2,
mo(fTn , Tn) = 0. Now, in Hb(D), we have

(∏∞
n=N+1 f

Tn
)

=
(∏t

n=N+1 f
Tn
)(∏∞

n=t+1 f
Tn
)

.

But then, if D belongs to Alg, we have
(∏t

n=1 f
Tn
)

(∏∞
n=t+1 f

Tn
)

=
(∏N

n=1 f
Tn
)(∏t

n=N+1 f
Tn
)(∏∞

n=t+1 f
Tn
)

=
(∏N

n=1

fTn
)(
∏∞
n=N+1 f

Tn
)

. �

Definition. Let (Tn)n∈I be the f -supersequence of D with I a subset
of N which is either finite or equal to N.

If I is finite, f is said to have a finite Motzkin factorization if it
factorizes in H(D) in the form

(

f0
∏

n∈I f
Tn
)

with f0 an element of

H( ˜D) whose zeros belong to D and for each n ∈ N, fTn is a Motzkin
factor in Tn.

If I is infinite and equal to N, f is said to have an infinite Motzkin
factorization if it admits a sequence of Motzkin factors fTn satisfy-
ing limn→∞ fTn − 1 = 0 such that f factorizes in H(D) in the form
(

f0
∏t
n=1 f

Tn
)(∏∞

n=t+1 f
Tn
)

, with f0 an element of H( ˜D) whose

zeros belong to D. In both cases, f0 will be called the principal factor
of f.

Corollary 29.7. Let D be bounded and let f have an infinite Motzkin
factorization with a f -supersequence (Tn)n∈N. Then we have f =
f0
(
∏∞
n=1 f

Tn
)

.

Corollary 29.8. Let f have an infinite Motzkin factorization with
a f -supersequence (Tn)n∈N such that mo(fTn , Tn) = 0 for all n > 0.
Then we have f = f0

(
∏∞
n=1 f

Tn
)

.
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Remark 1. Let f ∈ H(D) be unbounded and have Motzkin factor-

ization of the form
(

f0
∏N
n=1 f

Tn
)(
∏∞
n=N+1 f

Tn
)

. One cannot claim

that the product
(

f0
∏∞
n=1 f

Tn
)

converges inH(D) even ifD is closed
and belongs to Alg. Indeed, let r ∈]0, 1[, let (an)n∈N be a sequence
in d(0, 1) such that |an − am| = 1 whenever n �= m and a1 = 0.
For every n ∈ N∗, we put Tn = d(an, r

−) and E = K\(⋃∞
n=1 Tn

)

.
The holes of E are Tn. Let (λn)n≥2 be a sequence in d(0, r−) such
that limn→∞ λn = 0. For every n ≥ 2, we put gn = 1 + λn

x−an .
The sequence (gn)n≥2 is seen to satisfy ‖gn − 1‖E ≤ |λn|

ρ < 1,

and therefore, we have limn→∞ ‖gn − 1‖E = 0. Hence, the product
h =

∏∞
n=2 gn obviously converges in H(E).

Since E clearly belongs to Alg, we see that x2h belongs to H(E)
and is invertible in H(E). Now, f clearly has Motzkin factoriza-
tion with fTn = gn for every n ≥ 2, fT1 = x2 and f0 = 1. How-
ever, we will check that the sequence (fn)n∈N∗ defined by fn =
x2
∏n
j=2 gj does not converge in H(E). Indeed, we have fn+1(x) −

fn(x) = x2
(∏n

j=2 gj(x)
)

(gn+1(x)− 1). For every x ∈ K\d(0, 1),
we have

∣

∣x2
∏n
j=2 gj(x)

∣

∣| = |x2| and |gn+1(x) − 1| =
∣

∣

λn+1

x

∣

∣, hence

|fn+1(x) − fn(x)| = |x||λn+1|. Thus, fn+1 − fn is not bounded in
H(E), and therefore, the sequence (fn)n∈N∗ does not converge in
H(E). According to Theorem 4 in [75], the product

∏∞
n=1 fn should

converge to x2h in H(E). Here, we see that this is not true in the
general case. Actually, the proof given in [75] only shows the simple
convergence of the sequence (fn) and the uniform convergence on
bounded subsets of D.

By Lemma 29.5, Lemma 29.9 is immediate.

Lemma 29.9. Let D ∈ Alg, let f, g ∈ H(D) have Motzkin factor-
ization. Then so does fg. Moreover, we have (fg)0 = f0g0. Further,
if f is invertible, f−1 also has Motzkin factorization and it satisfies
(f−1)0 = (f0)−1.

Corollary 29.10 ((Boussaf) [13]). Let D ∈ Alg, let f have
an infinite Motzkin factorization of the form

(

f0
∏t
n=1 f

Tn
)

(
∏∞
n=t+1 f

Tn
)

. Let N ∈ N be such that mo(fTn , Tn) = 0 for all
n > N . Then we have

f = f0

(

N
∏

n=1

fTn

)( ∞
∏

n=N+1

fTn

)

.
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Proposition 29.11. Let f ∈ H(D) satisfy ‖f − 1‖D < 1 and have

Motzkin factorization of the form f0
(

∏∞
n=1 f

Tn
)

with
(

Tn
)

n∈N∗ the

f -supersequence of D. Then for each n ≥ 1, we have mo(fTn , Tn)= 0.

Proof. For every n ∈ N∗, we put qn = mo(fTn , Tn). By
Lemma 29.6, we may assume the (Tn)n∈N∗ ranged in such a way that
qn �= 0 for n ≤ N while qn = 0 whenever n > N. When n ≤ N , fTn

is of the form (x−αn)qn(1+ωn) with ωn ∈ H0(K\Tn), ‖ ωn ‖K\Tn< 1

and αn ∈ Tn. When n > N , fTn is just in the form (1 + ωn) with
ωn ∈ H0(K\Tn) and ‖ωn‖K\Tn < 1. On the other hand, since f has

no zero in D, obviously f0 has no zero in D, and therefore, it has no
zero in ˜D. Hence, by Theorem 22.7, f0 is of the form A(1 + ω0(x))

with ω0 ∈ H( ˜D), ‖ω0‖D
< 1. Let h(x) = A

∏N
n=1(x− αn)

qn . We see

that f factorizes in the form h
(

∏∞
n=0(1 + ωn)

)

. Since ‖ωn‖D < 1

for every n ∈ N and since limn→∞ ωn = 0, it is seen that h satisfies
(1) ‖h−1‖

D
< 1 as does f . Let us suppose q1 �= 0. We may obviously

assume α1 = 0. Let T1 = d(0, r−). Thus, in T1, h admits 0 as a zero
of order q1 if q1 > 0 (respectively a pole of order −q1 if q1 < 0) and
has neither any zero nor any pole different from 0. Anyway, when
x ∈ T1, we have

(2) |h(x)| = B|xq1 | with B = |A|∏N
n=2 |αn|qn .

We will show that (2) contradicts (1) except if q1 = 0.
Suppose q1 > 0. In T1, h(x) is a series of the form

∑+∞
n=q1

cnx
n

and h − 1 = (
∑+∞

n=q1
cnx

n)− 1, hence 1 ≤ ‖h − 1‖T1 ≤ ‖h − 1‖D,
which contradicts (1).

Now, suppose q1 < 0. By definition, h is obviously invertible in
R(D). Hence, we put F = 1

h and we see that F satisfies ‖F−1‖D < 1
and admits 0 as a unique zero in T1 while it has no pole in T1. Hence,
the same process lets us get to the same contradiction and finishes
showing that q1 = 0, and similarly, qn = 0 for every n ≥ 1. �

Proposition 29.12. Let f ∈ H(D) be invertible in H(D) and have

Motzkin factorization and let a ∈ D. Then f satisfies
∥

∥

∥

f
f(a)−1

∥

∥

∥

D

< 1

if and only if for every hole T of the f -supersequence of D, we have
mo(f, T ) = 0.
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Proof. Without loss of generality, we may obviously assume
f(a)= 1. By Proposition 29.11, we already know that if f satis-
fies ‖f − 1‖

D
< 1, then for every hole of the f -supersequence,

we have mo(f, T ) = 0. Now, we suppose that for every hole T
of the f -supersequence, we have mo(f, T ) = 0 and we will prove
that ‖f − 1‖

D
< 1. Indeed, by Lemma 29.3, for each hole of the

f -supersequence, we have ‖fT −1‖
D
< 1.Moreover, since f is invert-

ible, f0 must also be invertible, hence by Theorem 23.1, it is of the
form (1 + ψ(x)), with ‖ψ‖

D
< 1. Then ‖f − 1‖

D
< 1. �

We will show that all semi-invertible elements have Motzkin fac-
torization step after step, and first, we consider rational functions.

Proposition 29.13. Let f ∈ R(D). Then f admits the Motzkin
factorization.

Proof. The f -supersequence is obviously finite. Let T1, . . . , Ts be
this f -supersequence. We can obviously factorize f in a unique way

in the form
∏s
j=1

(

hj
lj

)

, whereas for each j = 1, . . . , s, both hj and lj

are monic polynomials whose zeros lie in Tj . Thus, we can check that
hj
lj

is the Motzkin factor fTj of f in the hole Tj . Therefore, putting

f0 = f
∏s

j=1

(

hj
lj

) , we have the Motzkin factorization: f = f0
∏s
j=1 f

Tj .
�

Proposition 29.14. Let φ ∈ H(D) satisfy ‖φ − 1‖
D
< 1. Then φ

admits the Moztkin factorization φ0
(

∏∞
n=1 φ

Tn
)

with
(

Tn
)

n∈N∗ the

f -supersequence. For every φ-hole T , we have ‖φT − 1‖
D
= ‖φT ‖D

.

Moreover, φ0 satisfies ‖φ0 − 1‖D = ‖φ0 − 1‖D .

Proof. First, we suppose φ ∈ R(D). Then by Proposition 29.13,
φ admits the Motzkin factorization. Now, by Proposition 29.12, for
each n > 0, we have mo(φ, Tn) = 0, and therefore, φTn is of the
form 1 + ωn with ‖ωn‖D

< 1 whenever n > 0, while φ0 = 1 + ω0

with ‖ω0‖D
< 1. Hence, we see that φTn =

(

ωn
∏

j �=n
j∈N

(1 + ωj)
)

Tn .

Clearly,
∏

j �=n
j∈N

(1 + ωj) is of the form 1 + φn with ‖φn‖D
< 1, hence

‖(ωnφn)‖D < ‖ωn‖D , and we obtain (1) ‖(ωnφn)Tn‖D ≤ ‖ωnφn‖D <
‖ωn‖D

.
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But ωn is clearly equal to (φTn)Tn and then we have (2) ‖(ωn)Tn‖D
=

‖ωn‖D
> ‖ωnφn‖D

≥ ‖(ωnφn)Tn‖D
.

Moreover, (ωn + ωnφn)Tn = (ωn)Tn +(ωnφn)Tn , hence by (1) and (2)

we have ‖(ωn(1 + φn))Tn‖D = ‖ωn‖D , and finally,

(3) ‖φTn‖D = ‖(ωn(1 + φn))Tn‖D = ‖ωn‖D = ‖φTn − 1‖D . In the

same way, we put
∏∞
n=1(1 + ωn) = 1 + ψ with

(4) ‖ψ‖D < 1.

It is seen that ψ belongs to H0(K\(⋃∞
n=1 Tn)). Hence, Theorem 15.1,

when applied to ψ, shows that

(5) ψ0 = 0.

Next, we have φ = (1 + ω0)(1 + ψ) = 1 + ω0 + ψ + ω0ψ, hence

φ0 = 1 + (ω0)0 + φ0 + (ω0ψ)0. By definition, ω0 ∈ H( ˜D), hence

ω0 = (ω0)0, and then by (5), we have φ0 = 1 + ω0 + (ω0ψ)0. But

by (4), it is seen that ‖(ω0ψ)0‖D
< ‖ω0‖D

, and hence finally, we

obtain ‖φ0 − 1‖D = ‖ω0‖D = ‖φ0 − 1‖D . Thus, we have proven the
inequalities satisfied by the φTn and by φ0 when φ belongs to R(D).

Now, we consider the general case when φ ∈ H(D). Let (fm)m∈N
be a sequence in R(D) such that limm→∞ ‖φ − fm‖D

= 0. Let
ε ∈]0, 1[ and let N ∈ N be such that ‖fm − φ‖

D
≤ ε whenever

m ≥ N . Let T be a hole of the φ-supersequence. We will show
that the sequence ((fm)

T )m∈N converges in H(D) and that this con-
vergence is uniform with respect to the φ-supersequence. We fix
m ≥ N . It is seen that ‖fm − 1‖

D
< 1 and then by Lemma 29.1

and Proposition 29.12, we have ‖(fm)T − 1‖
D
< 1, and in par-

ticular, ‖(fm)T ‖D
= 1. Moreover, we remember that in H(K\T ),

the norm ‖ . ‖
D

is multiplicative and actually equal to
D
ϕ

T
. Now,

let s ≥ N . We have ‖(fm)T − (fs)
T ‖

D
= ‖ (fm)T

(fs)T
− 1‖

D
. But by

Lemma 29.5, we have (fm)T

(fs)T
=
(

fm
fs

)T
and then by (3), in R(D),

we have
∥

∥

∥

(

fm
fs

)T
− 1
∥

∥

∥

D

=
∥

∥

∥

(

fm
fs

)

T

∥

∥

∥

D

. Finally, by Theorem 15.1, we

obtain
(6) ‖(fm)T−(fs)

T ‖
D
≤ ε. Relation (6) does not depend on the hole T

and it shows that, for each fixed n ∈ N∗, the sequence ((fm)Tn)m∈N is
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a Cauchy sequence which converges in H(K\Tn) to an element whose
index is equal to 0 and this convergence is uniform with respect
to n. For each n ∈ N∗, we put φn = limm→∞(fm)

Tn . Then it is
seen that

∏∞
n=1 φn = limm→∞

∏∞
n=1(fm)

Tn . As a consequence, the

sequence (fm)
0 is also convergent in H(D) and actually in Hb( ˜D).

Let φ0 be its limit. Then we have this factorization: φ =
∏∞
n=0 φn.

We recognize the Motzkin factorization for φ. Obviously, for each
fixed n > 0, the equality satisfied by the (fm)

Tn holds for φTn and

shows that ‖(φ)Tn‖D = ‖(φ)Tn − 1‖D . In the same way, the equality

satisfied by the (fm)
0 shows that ‖(φ)0 − 1‖D = ‖(φ)0 − 1‖D . This

ends the proof of Proposition 29.14. �

Theorem 29.15 is given in [36, 42, 50].

Theorem 29.15. Let a ∈ D. Let φ ∈ Hb(D) be such that |φ(a)| �= 0.
The following statements (i), (ii), and (iii) are equivalent:

(i) ‖φ− φ(a)‖
D
< |φ(a)|.

(ii) For every hole T , we have ‖φT ‖D
< |φ(a)| and ‖φ0−φ0(a)‖D

<
|φ(a)|.

(iii) φ is invertible, admits a Motzkin factorization and for every hole
T , φT satisfies ‖φT − 1‖D < 1 and φ0 satisfies ‖φ0 − φ0(a)‖D <
|φ(a)|.

Further, if statements (i)–(iii) are satisfied, then we have the
following:

(u) m(φ, T ) = 0 for every hole T.

(v) ‖φT ‖D = ‖φT − 1‖D |φ(a)| for every hole T.

(w) ‖φ0 − φ0(a)‖
D
= ‖φ0 − φ0(a)‖D

.

Proof. Without loss of generality, we may obviously assume
|φ(a)| = 1 and

(1) |φ(a)−1| < 1. Let (Tm)m∈I be the φ-supersequence of D. We note
that when (i) is satisfied, φ is obviously invertible.

First, we suppose (i) is satisfied and will show that so is (ii).
By Theorem 15.1, we have

(2) ‖(φ− φ(a))Tm‖D
≤ ‖φ− φ(a)‖

D
.

But it is seen that (φ− φ(a))Tm = φTm . Hence, by (2), we have
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(3) ‖φTm‖D
≤ ‖φ− φ(a)‖

D
< 1, whenever m ∈ I.

In the same way, (φ− φ(a))0 = φ
0
−φ(a), and then by Theorem 15.1,

we have

(4) ‖φ
0
− φ(a)‖

D
< 1.

Besides by (3), we see that ‖∑∞
m=1 φTm‖D

< 1, hence ‖φ − φ
0
‖
D

=

‖∑∞
m=1 φTm‖D

< 1, and therefore, |φ(a) − φ
0
(a)| < 1, hence by (4),

we see that

(5) ‖φ
0
− φ

0
(a)‖

D
< 1.

Finally by (3) and (5), statement (ii) is clearly proven.
Now, we will show that each of the statements (ii) and (iii) sepa-

rately imply (i). We suppose that (ii) is satisfied. Hence, we have

(6) ‖∑m∈I φTm‖D
< 1.

If D is bounded, by statement (ii), and by (6), we obtain (i). Now,

let D be not bounded. Then φ
0
is a constant λ. Hence, φ is in the

form λ+
∑∞

m=1 φTm with ‖φTm‖D
< 1 whenever m ≥ 1, hence

(7) ‖∑∞
m=1 φTm‖D

< 1.

Now, we have φ − φ(a) =
∑∞

m=0 φTm − φTm(a) =
∑∞

m=1

(φTm − φTm(a)). By (7), we see that ‖∑∞
m=1(φTm − φTm(a))‖D

< 1,
hence finally (i) ‖φ− φ(a)‖

D
< 1.

We now suppose (iii) is satisfied. Hence, we have (8) ‖φTm −
1‖D < 1 for all m ∈ I.

If D is bounded, we have ‖φ0−φ0(a)‖
D
< 1, hence by (8), we directly

have (i). If D is not bounded, then φ0 is a constant B such that
φ(a) = B

∏

m∈I φ
Tm(a), hence by (1) and (8), we see that |B−1| < 1,

and hence by (8), we obtain (i) again.
Thus, (i) is also implied by (ii) as by (iii). Obviously, by (1), (i)

implies ‖φ−1‖
D
< 1, and therefore, we may apply Proposition 29.14.

Next, we suppose that either (ii) or (iii) is satisfied. Hence, so is (i)
and so are (u) and (v) by Proposition 29.14.

Finally, we will show (w), and at the same time, we will finish

proving the equivalence between (ii) and (iii). Let ψ = (φ0(a))
−1φ.

We may apply Proposition 29.14 to ψ and we have

(9) ‖ψ0 − 1‖
D
= ‖ψ0 − 1‖

D
.
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But we have

(10) ‖ψ0 − 1‖
D
≥ ‖ψ0 − ψ0(a)‖

D
= ‖φ0 − φ0(a)‖

D
.

(11) ‖φ0 − φ0(a)‖D = ‖ψ0 − ψ0(a)‖D = ‖ψ0 − 1‖D .

Hence by (9), (10), (11) we obtain

(12) ‖φ0 − φ0(a)‖
D
≤ ‖φ0 − φ0(a)‖D

.

Now, let γ = φ0(a) and let χ = γ−1φ. By (1) and (7), we see that
|γ − 1| < 1, hence we may apply Proposition 29.14 to χ and we have

(13) ‖χ0 − 1‖
D
= ‖φ0 − φ0(a)‖D

while ‖φ0 − φ0(a)‖D = ‖χ0 − χ0(a)‖D ≤ ‖χ0 − 1‖D and ‖χ0 − 1‖D =

‖χ0 − χ0(a)‖
D

= ‖φ0 − φ0(a)‖
D
. Hence, by (13), we see that ‖φ0 −

φ0(a)‖D
≤ ‖φ0−φ0(a)‖

D
, and therefore, by (12), we obtain (w). This

finishes proving the equivalence between (ii) and (iii), and ends the
proof of Theorem 29.15. �

Remark 2. If D is not bounded, as φ is bounded, both φ0 and φ0
are constant, and therefore, the statements ‖φ0 − φ0(a)‖D < |φ(a)|
and ‖φ0 − φ0(a)‖D < |φ(a)| are automatically satisfied. Statement
(ii) is then equivalent to

(ii′) For every hole T , we have ‖φT ‖D
< |φ(a)| and statement (iii)

is equivalent to

(iii′) φ is invertible and for every hole T , φT satisfies ‖φT −1‖
D
< 1.

Theorem 29.16. Let D ∈ Alg. Then f has the Motzkin factoriza-
tion if and only if it is semi-invertible.

Proof. Without loss of generality, we may assume the
f -supersequence to be infinite. We denote it by (Tn)n∈N∗ . Let f have
the Motzkin factorization

f0

(

t
∏

n=1

fTn

)( ∞
∏

n=t+1

fTn

)

,

where the product
(
∏∞
n=t+1 f

Tn
)

converges in H(D). By defini-

tion, f0 is semi-invertible in H( ˜D) and hence in H(D). Moreover,
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(∏t
n=1 f

Tn
)(∏∞

n=t+1 f
Tn
)

is clearly invertible in H(D). So, f is
semi-invertible.

Now, we suppose f to be semi-invertible and will show it to have
the Motzkin factorization. By Lemma 29.9, we may clearly suppose
that f is invertible without loss of generality.
First, we suppose that there exists M in R∗

+ satisfying

(1) M ≤ |f(x)| whenever x ∈ D.

Let h ∈ R(D) satisfy

(2) ‖f − h‖D < M
2 ,

and let h0
∏N
n=1 h

Tn be the Motzkin factorization of h. For every n =
1, ...N , let qn = mo(h, Tn), let an ∈ Tn, let hn = (x− an)

−qnhTn and

let h0 = h0. Let u(x) =
∏N
n=1(x − an)

qn and let l(x) = h0
∏N
n=1 hn.

By (1) and (2), it is seen that h has no zero in D. Let a ∈ D. Then,
by Theorem 23.1, h0 satisfies ‖h0 − h0(a)‖

D
< |h0(a)|, and of course

for every n > 0, hn satisfy ‖hn − 1‖
D
< 1. Hence , we have

(3) ‖l − l(a)‖
D
< |l(a)|. Let b = |l(a)|.

In particular, we have |l(x)| = b whenever x ∈ D. Moreover, we note
that we have

(4) M
|l(a)| ≤ |u(x)|.

Let F = f
u . Then F does belong to Hb(D). By (3) and (4), we

check that |F (x) − l(x)| < b
2 , and therefore, by (3) again, we have

|F (x)| = b and ‖F − F (a)‖
D

≤ |F (a)|
2 . Now, we can apply Theorem

29.15 to F and then F has Motzkin factorization F 0
∏∞
n=1 F

Tn , with
mo(F, Tn) = 0 whenever n > 0. As a consequence f also has the

Motzkin factorization,
(

f0
∏N
n=1 f

Tn
)(∏∞

n=N+1 f
Tn
)

with f0 = F 0

and for each n = 1, . . . , N , fTn = (x− an)
qnF Tn and finally for each

n > N , fTn = F Tn .
Now, we suppose that inf{|f(x)| |x ∈ D} = 0. Since D is closed

and since f is invertible, we see that D is unbounded and that the
element G = 1

f is not bounded in D. Hence, by Corollary 11.7, there

exists q ∈ N∗ such that x−q

f has a non-zero limit when |x| tends to

+∞, (x ∈ D). Then it is easily seen that there exists c > 0 such
that |G(x)| ≥ c for all x ∈ D. Indeed, on one hand, there exists r
such that |G(x)| ≥ 1 for all x ∈ D\d(0, r), and on the other hand,
f is bounded in D ∩ d(0, r), hence we can find c ∈]0, 1[ such that
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|G(x)| ≥ c whenever x ∈ D\d(0, r). Thus, G admits the Motzkin
factorization, and then by Lemma 29.9, so does f . This ends the
proof of the theorem. �

Remark 3. If a closed set B does not belong to Alg, there
are counter-examples of invertible elements F which admit certain
Motzkin factor F T such that F

FT does not belong to H(B) (and
obviously does not belong to H(B ∪ T )). Indeed, don’t let B belong

to Alg. Since hypothesis B is closed, we know that ˜B\B is not
bounded. Hence, by Lemma 29.6, there exists a quasi-minorated ele-
ment f ∈ Hb(B) satisfying

(1) lim |x|→∞
x∈B

f(x) = 0,

such that xf does not belong to H(B). Since f ∈ Hb(B), we can take
it such that ‖f‖

B
< 1. Without loss of generality, we may assume

that 0 belongs to a hole of B. Let T = d(a, r−) be another hole

of B and let F = x(1+f)
(x−a) . Then it is seen that F belongs to Hb(B)

and is invertible in Hb(B) because both x
(x−a) , 1 + f are invertible

in Hb(B). Hence, F admits the Motzkin factorization. In particular,
we see that F T = 1

(x−a) . However, we check that (x − a)F does not

belong to H(B) because (x− a)F = x(1 + f) and by hypothesis, xf
does not belong to H(B).

In the same way, let G = 1
F . Since F is invertible in Hb(B), so is

G. But then we see that 1
x−aG does belong to Hb(B) and has no zero

in B, but obviously, its inverse does not belong to H(B). Therefore,
1

x−aG is not semi-invertible in H(B). Thus, there exist invertible ele-
ments h and g in H(B) such that hg is not semi-invertible, although
it belongs to H(B). This contradicts Theorem 1 in [75], which states

that f
fT

extends to an element of H(D ∪ T ).

Theorem 29.17 ((Boussaf) [13]). Let D belong to Alg and let
T = d(a, r−) be a hole of D. Then f admits a Motzkin factor in
the hole T if and only if

D
ϕa,r(f) �= 0.

Proof. On the one hand, we suppose that f admits a Motzkin
factor in the hole T . Let f = gfT . Since g belongs to H(D ∪ T ) and
has no zero in T , of course, by Theorem 22.16, we have

D
ϕa,r(g) �= 0.

Next, as an invertible element of H(D), it is seen that
D
ϕa,r(f

T ) �= 0.
Hence,

D
ϕa,r(f) �= 0.
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On the other hand, we suppose Dϕa,r(f) �= 0. Let F be the
circular filter of center a of diameter r and let M = Dϕa,r(f).
There do exist a1, . . . , aq ∈ d(a, r) and s, t satisfying s <
r < t, such that |f(x)| ≥ M whenever x ∈ D

⋂(⋂q
j=1 Γ(aj , s, t)

)

.

Let F = D
⋂
(
⋂q
j=1 Γ(aj, s, t)

)

. Then T is clearly a hole of F .

Next, the restriction g of f to F is invertible in H(F ), and therefore,
by Theorem 29.16, it admits a Motzkin factor gT in the hole T . But
then, f

gT
belongs to H(D) and H(F ∪ T ). Let E = F ∪ T . Clearly,

a hole of D ∩ E is either a hole of D included in E or a hole of E.
Hence, D and E are infraconnected sets that satisfy the hypothesis
of Theorem 15.10 and then f

gT
belongs to H(D ∪ F ) = H(D ∪ T ).

Finally, as gT is the Motzkin factor of g in T , g
gT

has no zero inside

T . This ends the proof. �

Theorem 29.18. Let D ∈ Alg and let G be the multiplicative group
of the invertible elements in H(D). Let T be the set of the holes of

D. Let G0 be the subgroup of the elements invertible in H( ˜D). Let
H = G0∏

T∈T GT . The product H is a direct product and is dense
in G.
Proof. The product is direct because for each element, the Motzkin
factorization is unique. Thus, H is the set of the invertible ele-
ments whose Motzkin factorization is finite. Since every element of
G has the Motzkin factorization, it obviously belongs to the closure
of H. �

Thanks to the Motzkin factorization, the question on whether the
nth root of an analytic element is an analytic element appears to be
linked to the number of zeros of each Motzkin factor.

Theorem 29.19. Let D be a closed bounded infraconnected set and
let f ∈ H(D) be semi-invertible. Let T be a hole of D. We assume
f s to have continuation to an element of H(D ∪ T ) for some s ∈
N∗. Then the number of the zeros of f s inside T is a multiple of s
(taking mutiplicities into account). Moreover, if f does not belong to
H(D ∪ T ), then the number of the zeros of f s inside T is different
from 0.

Proof. By Lemma 29.9, we have (f s)T = (fT )s. But as f s

belongs to H(D ∪ T ), by Theorem 29.4, (f s)T is the polyno-
mial of the zeros of f s inside T . Let Q = (f s)T . Then we have
deg(Q) = mo((f s), T ) = smo(f, T ). So, s divides deg(Q). Now,
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assume deg(Q) = 0. We have Q = 1, mo(f, T ) = 0, and therefore,
(fT )s = 1 and lim|x|→∞ fT (x)= 1. Thus, fT is just the constant 1,
and therefore, f belongs to H(D ∪ T ), which ends the proof of
Theorem 29.19. �

In particular, Theorem 29.19 applies to open disks.

Theorem 29.20. Let r ∈ |K| and let f ∈ H(d(0, r−))\H(d(0, r))
satisfy f s ∈ H(d(0, r)). Then f has continuation to an analytic ele-
ment in a set D of the form d(0, r)\(⋃t

i=1 d(ai, r
−)
)

with |ai| = r =
|ai − aj | whenever i �= j, such that for each i = 1, . . . , t, the number
of zeros of f s in d(ai, r

−) is a multiple of s different from 0.

Proof. The Mittag-Leffler series of f in d(0, r−) is of the form
∑∞

n=0 fn with f0 = f0 ∈ H(d(0, r)), and for every n > 0, fn = fTn ,
with Tn = d(an, r

−) and |an − aj | = |an| = r whenever n �= j. Since
f /∈ H(d(0, r)), at least one of the fn is different from 0. Let l be
an integer such that fl �= 0. Now, since f s belongs to H(d(0, r)), by
Theorem 29.19, f s has a number of zeros inside Tl which is different
from 0 and a multiple of s. Since any element ofH(d(0, r)) has finitely
many zeros in d(0, r), we see that there are finitely many integers l
such that fl �= 0. Let I be the finite set of the l ∈ N∗ such that fl �= 0
and let D = d(0, r)\(⋃l∈I d(an, r

−)
)

. Then by definition, f belongs
to H(D) and for every l ∈ I, the number of zeros of f s in Tn is
different from 0 and a multiple of s. This ends the proof of Theorem
29.20. �

Corollary 29.21. Let f be a power series whose radius of conver-
gence is r though f does not belong to H(d(0, r)). If for some s ∈ N∗,
f s has a radius of convergence r′ strictly superior to r and if f s

has strictly less than s zeros inside C(0, r) (taking multiplicities into
account), then f does not belong to H(d(0, r−)).

Proof. Since r′ > r, obviously we have s > 1. We assume that f
belongs to H(d(0, r−)), and therefore, r must belong to |K|. Since
r′ > r, f s belongs to H(d(0, r)), and then by Theorem 29.20, its
number of zeros inside C(0, r) is different from 0 and is a multiple of
s, which contradicts the hypothesis. Hence, finally, f does not belong
to H(d(0, r−)). �

We have now got to recall the definition of the function q
√
u when

u ∈ d(1, 1−).
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Notation.Henceforth, we suppose thatK has characteristic zero and
residue characteristic p. Let q ∈ N∗. Let (1+x)q = 1+qx+

∑q
j=2 bjx

j.

So, |q| = 1 and |bj | ≤ 1 whenever j = 2, . . . , q. Recall that rk was
defined in Chapter 7.

Theorem 29.22. Let q ∈ N∗. If q is prime to p, the mapping gq(x) =
(1 + x)q is injective in d(1, 1−) and maps d(1, 1−) onto d(1, 1−).
If p �= 0 and if q = p, the mapping gp(x) = (1 + x)p is injective in
d(1, r−1 ) and maps d(1, (r1)

−) onto d(1, (r2)−).

Proof. Suppose first q prime to p. Since |q| = 1 ≥ |bj| ∀j ≥ 2,
by Corollary 22.10 and Corollary 23.14, the mapping gq defines a
bijection from d(0, 1−) onto d(1, 1−).

Suppose now p �= 0 and take q = p. By Theorems 25.3 and 25.5,
inside d(0, (r1)

−), we can write gp(x) = exp(pLog(1 + x)). This way,
we note that when x ∈ d(0, (r1)

−), gp is injective and that we have
|Log(1 + x)| = |x| and | exp(x)− 1| = |x|, hence

|(1 + x)p − 1| = | exp(pLog(1 + x))− 1| = x

p
.

Consequently, the image of d(0, r−1 ) by gp is the disk
d(1, ( r1p )

−) = d(1, (r2)
−). �

Notation. Suppose q ∈ N∗ prime to p. The mapping ηq defined in
d(1, 1−) by ηq(u) = uq is a bijection from d(1, 1−) onto d(1, 1−).
We denote by q

√
u the inverse mapping from d(1, 1−) onto d(1, 1−)

and we put φq(x) =
q
√
1 + x whenever x ∈ d(0, 1−).

Suppose now p �= 0 and take q = p. The mapping ηp defined
in d(1, (r1)

−) by ηp(u) = up is a bijection from d(1, (r1)
−) onto

d(1, (r2)
−). So, we can denote by p

√
u that inverse mapping from

d(1, (r2)
−) onto d(1, (r1)

−) and we put φp(x) = p
√
1 + x whenever

x ∈ d(0, (r2)−).
Theorem 29.23. Let q ∈ N∗. If q is prime to p, φq belongs to
Ab(d(0, 1

−)) but does not belong to H(d(0, 1−)). Next, suppose now
p > 0. Then φp belongs to Ab(d(0, r

−
1 )) but does not belong to

H(d(0, r−1 )).

Proof. Suppose first that q is prime to p. By construction and by
Corollary 23.15, φq belongs to Ab(d(0, 1

−)). Suppose that φq belongs
to H(d(0, 1)). Then it must satisfy (φq(−1))q = 0, hence φq(−1)= 0,
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and therefore, φq(x)
q admits a zero of order q at −1. But this con-

tradicts the identity (φq(x))
q = 1 + x, and therefore, φq(x) does

not belong to H(d(0, 1)). Finally, since (φ′qx))q has a unique zero
in C(0, 1), by Corollary 29.21, we see that φq does not belong to
H(d(0, 1−)).

Suppose now that p > 0. By Theorem 29.22, the function f(x) =
(1 + x)p is strictly injective inside d(0, r−1 ) and maps d(0, r−1 ) onto
itself. So, by Corollary 23.15, it admits an inverse mapping φp defined
inside d(0, r−1 ) that belongs to Ab(d(0, r

−
1 )).

Let us show that φp does not belong to H(d(0, r−1 )). Indeed, sup-
pose φp belongs to H(d(0, r−1 )). Consider the Mittag-Leffler decom-
position of φp on the infraconnected set d(0, r−1 ). It is of the form
∑∞

n=0 gn with g0 ∈ H(d(0, r1) and gn ∈ H0(K\d(an, r−n )) with
an ∈ C(0, r1). Now, by Theorem 8.4, we can consider a complete

algebraically closed extension ̂K of K whose residue class field is not
countable.

Let χ be the residue class field of K. Thus, we can find a class
G of ̂C(0, r1) that has an empty intersection with

⋃∞
n=1 d(an, r

−
1 )

and then φp has continuation to an element of H(d(0, r−1 ) ∪ G. Let
c ∈ G. Since |c| = r1, the function h(x) = (1 + x)p − c satisfies
ν−(h, log(r1) = 0, ν+(h, log(r1) > 1, hence h admits a zero a ∈
̂C(0, r1). Then of course a does not belong to K. Now, let ζ be a pth
root of 1 different from 1 and let t = ζ(1 + a). By Corollary 7.7, we

have |ζ − 1| = r1, hence t is of the form 1 + b with b ∈ ̂C(0, r1).

We then have (1 + a)p = (1 + b)p. Set E = ̂d(a, r−1 ), F = ̂d(b, r−1 ),
D′ = d(0, r−1 ) ∪ E ∪ F and D′′ = d(0, r−1 ) ∪ G. Since the image of
d(0, r−1 ) by the function f is d(0, r−1 ), we can check that for each

u ∈ ̂C(0, r1), the image of d(u, r−1 ) by f is d(1, r−1 ). Consequently,
both images of E and F by f are equal to G. Now, since f belongs
to ̂H(D′), the image of D′ by f is D′′ and φp belongs to ̂H(D′′).
Consequently, by Corollary 12.3, φp◦f belongs to ̂H(D′) and we have
φp ◦ f(x) = 1 + x ∀x ∈ d(0, r−1 ). But since D′ has no pierced filter,
by Corollary 21.4, it is an analytic set. Consequently, the equality
φp ◦ f(x) = 1 + x ∀x ∈ d(0, r−1 ) holds in all D′, a contradiction since
f is not injective in D′. This finally shows that φp does not belong
to H(d(0, r−1 )). �

Remark 4. Let q be prime to p. Since φq belongs to Ab(d(0, 1
−)),

obviously φq belongs to H(d(0, r)), whenever r ∈]0, 1[. Now, let E
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be a closed bounded set in K and let h ∈ H(E) satisfy ‖h‖E < 1.
Then by Corollary 12.3, φq ◦ h belongs to H(E). In other words, if
g ∈ H(E) and if ‖g − 1‖

E
< 1, then q

√
g also belongs to H(E).

Remark 5. Theorems 29.19 and 29.20 couldn’t be significantly
improved as this example shows. Let q be an integer prime to p, let
a, b ∈ d(1, 1−), with a �= b, and let P (x) = (a−x)q−1(b−x). It is easily
seen that |P (x)−1| < 1 whenever x ∈ d(0, 1−) and then we can con-
sider f(x) = q

√

P (x). We will show that f ∈ H(d(0, 1−))\H(d(0, 1)).
Indeed, we have

f(x) = q

√

(a− x)q
(

b− x

a− x

)

= (a− x) q

√

1 +

(

b− a

a− x

)

= (a− x)

∞
∑

n=0

(1
q

n

)(

b− a

a− x

)n

= a− x+
1

q
(b− a)

+
∞
∑

j=1

( 1
q

j + 1

)

(b− a)j+1

(a− x)j
.

This is just a Mittag-Leffler series of the form f0 + f1 ∈ H(d(0, 1−)),
with

f0 = −x+ a+
1

q
(b− a) ∈ H(d(0, 1)),

f1 = −
∞
∑

j=1

( 1
q

j + 1

)

(a− b)j+1

(x− a)j
∈ H0(K\d(1, 1−)).

Thus, we see that f belongs to H(d(0, 1−)), and more precisely, f ∈
H(K\d(1, 1−)), but f /∈ H(d(0, 1)). Actually, f q has exactly q zeros
in d(1, 1−).
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Chapter 30

Order of Growth for
Entire Functions

Here we mean to introduce and study the notion of order of growth
of an entire function on K in relation with the distribution of zeros
in disks and in relation with the question whether an entire function
can be divided by its derivative inside the algebra of entire functions.
First, results were published in [16], [18], and [50]. The notion of order
of growth was defined by G. Valiron [90].

Definition and notation. Let f ∈ A(K). Similar to the defini-

tion known on complex entire functions, lim supr→+∞
log(log(|f |(r)))

log(r) is

called the order of growth of f or the growth order of f in brief and
is denoted by ρ(f). We say that f has finite order if ρ(f) < +∞.
In this chapter and in Chapters 30, 31, 32, and 33 we denote by
Log the Neperian logarithm function and by e the number such that
Log(e) = 1. Next, the function Ψ is now defined by Ψ(x) = Log(|x]).

Theorem 30.1 is easily proven:

Theorem 30.1. Let f, g ∈ A(K). Then

(i) if c(|f |(r))α ≥ |g|(r) with α and c > 0, when r is big enough,
then ρ(f) ≥ ρ(g),

(ii) ρ(f + g) ≤ max(ρ(f), ρ(g)) and if ρ(g) < ρ(f), then ρ(f + g) =
ρ(f),

(iii) ρ(fg) = max(ρ(f), ρ(g)).

281
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Proof. Suppose c(|f |(r))α ≥ |g|(r) with α and c > 0 when r is

big enough. Then we check that
(

lim supr→+∞
Log(Log(c(|f |(r))α))

Log(r)

) ≥
lim supr→+∞

Log(Log(|g|(r)))
Log(r) , hence ρ(f) ≥ ρ(g).

Next, we have |f + g|(r) ≤ max(|f |(r), |g|(r)), hence

Log(Log(|f + g|(r)))
Log(r)

≤ max

(

Log(Log(|f |(r)))
Log(r)

,
Log(Log(|g|(r)))

Log(r)

)

,

and hence ρ(f + g) ≤ max(ρ(f), ρ(g)).
Now, suppose ρ(f) > ρ(g). There exists a sequence (rn)n∈N of

limit +∞ such that limn→+∞
Log((Log(|f |(rn)

Log(rn)
= ρ(f) and |f |(rn) >

|g|(rn), hence |f + g|(rn) = |f |(rn) and hence ρ(f + g) ≥ ρ(f). But
we have proved that ρ(f + g) ≤ max(ρ(f), ρ(g)) = ρ(f).

Let us now show that ρ(fg) = max(ρ(f), ρ(g)). It is clear that
ρ(fg) ≥ max(ρ(f), ρ(g)), since |fg|(r) = |f |(r)|g|(r). Now, let t =
max(ρ(f), ρ(g). Then there exists a function ω defined in R+, of limit

0 at ∞, such that Log(Log(|f |(r)))
Log(r) ≤ t + ω(r) and Log(Log(|g|(r)))

Log(r) ≤
t+ ω(r). Hence, we have

Log(|f |(r)) ≤ rt+ω(r), Log(|g|(r)) ≤ rt+ω(r),

hence

Log(|f |(r)) + Log(|g|(r)) ≤ 2rt+ω(r),

therefore

Log(Log(|f |(r)) + Log(g|(r))) ≤ Log(2) + (t+ ω(r))Log(r),

hence,

Log(Log(|f |(r)) + Log(g|(r))) ≤ Log(2) + (t+ ω(r))Log(r),

hence

Log(Log(|f |(r).|g|(r)))
Log(r)

≤ Log(2)

Log(r)
+ t+ ω(r),
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and hence

lim sup
r→+∞

Log(Log(|f |(r).|g|(r)))
Log(r)

≤ t.

Consequently, ρ(fg) ≤ max(ρ(f), ρ(g)), which ends the proof. �

Corollary 30.2. Let f, g ∈ A(K). Then, ρ(fn) = ρ(f) ∀n ∈ N∗.

Notation. Given a number t ≥ 0, we denote by A(K, t) the
K-algebra of entire functions of order inferior or equal to t and we
put A∗(K) =

⋃

t>0 A(K, t).

Corollary 30.3. For any t ≥ 0, A(K, t) is a K-subalgebra of A(K).

Corollary 30.4. Consider the differential equation

(E) f (n) + an−1(x)f
(n−1)(x) + · · ·+ a0(x)f(x) = 0

with aj ∈ A∗(D), j = 0, . . . , n−1 and ρ(aj) < ρ(a0) ∀j = 1, . . . , n−1.
Then every non-trivial solution f of (E) satisfies ρ(f) ≥ ρ(a0).

Theorem 30.5. Let f ∈ A(K) and let P ∈ K[x]. Then, ρ(P ◦ f) =
ρ(f) and ρ(f ◦ P ) = deg(P )ρ(f).

Proof. Let n = deg(P ). For r big enough, we have

Log(Log(|f |(r))) ≤ Log(Log(|P ◦ f |(r))) ≤ Log((n + 1)Log(|f |(r)))

= Log(n+ 1) + Log(Log(|f |(r))).

Consequently,

lim sup
r→+∞

(

Log(Log(|f |(r)))
Log(r)

)

≤ lim sup
r→+∞

(

Log(Log(|P ◦ f |(r)))
Log(r)

)

≤ lim sup
r→+∞

(

Log(n + 1) + Log(Log(|f |(r)))
Log(r)

)

,

and therefore, ρ(P ◦ f) = ρ(f).
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Next, for r big enough, we have

Log(Log(|f |(r)))
Log(r)

≤ Log(Log(|f ◦ P |(r)))
Log(r)

=

(

Log(Log(|f ◦ P |(r))
Log(|P |(r))

)(

Log(|P |(r))
Log(r)

)

.

Now,

lim sup
r→+∞

(

Log(Log(|f ◦ P |(r))
Log(|P |(r))

)

= lim sup
r→+∞

(

Log(Log(|f |(r))
Log(r)

)

because the function h defined in [0,+∞[ as h(r) = |P |(r) is
obviously an increasing continuous bijection from [0,+∞[ onto
[|P (0)|,+∞[. On the other hand, it is obviously seen that

lim supr→+∞
(Log(|P |(r))

Log(r)

)

= n. Consequently,

lim sup
r→+∞

(

Log(Log(|f ◦ P |(r))
Log(|P |(r))

)

= n lim sup
r→+∞

(

Log(Log(|f |(r))
Log(r)

)

,

and hence ρ(f ◦ P ) = nρ(f). �

Theorem 30.6. Let f, g ∈A(K) be transcendental. Then, ρ(f ◦ g) ≥
max(ρ(f), ρ(g)). If ρ(f) �= 0, then ρ(f ◦ g) = +∞.

Proof. Let f(x) =
∑∞

j=0 anx
n and g(x) =

∑∞
j=0 bnx

n. Since g is

transcendental, for every n∈N, there exists rn such that s(rn, g)≥n.
Then, |g|(r) ≥ |bn|rn ∀r ≥ rn, and hence, by Theorem 30.5, we have

(1) ρ(f ◦ g) ≥ nρ(f).

Therefore, ρ(f ◦ g) ≥ ρ(f).
Now, let k ∈ N be such that ak �= 0 and let s0 be such that

s(s0, f) ≥ k. Then, |f |(r) ≥ |ak|rk ∀r ≥ s0, hence |f ◦ g|(r) ≥
|ak|(|g|(r))k ∀r ≥ s0, hence by Theorems 30.1 and 30.5, we have
ρ(f ◦ g) ≥ ρ(g). Next, Relation (1) is true for every n ∈ N. Suppose
now that ρ(f) �= 0. Then, by (1), we have ρ(f ◦ g) = +∞. �

Notation. Let f ∈ A(d(0, R−)). For each r ∈ ]0, R[, we denote by
s(r, f) the number of zeros of f in d(0, r), taking multiplicity into
account.
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Theorem 30.7. Let f ∈ A(K) be not identically zero and such that

for some t ≥ 0, lim supr→+∞
s(r,f)
rt is finite. Then, ρ(f) ≤ t.

Proof. Set lim supr→+∞
s(r,f)
rt = b ∈ [0,+∞[. Let us fix ε > 0. We

can find R > 0 such that s(r,f)
rt ≤ b + ε ∀r ≥ R, and hence, by

Corollary 22.30, we have |f |(r)
|f |(R) ≤ ( rR

)s(r,f) ≤ ( rR
)rt(b+ε))

. Therefore,

putting M = |f |(R), we have

Log(|f |(r)) ≤ Log(M) + rt(b+ ε)(Log(r)− Log(R)).

Now, when u > 2, v > 2, we know that Log(u + v) ≤ Log(u) +
Log(v). Applying that inequality with u = M and v = rt(b + ε)
(Log(r) − Log(R)) when rt(b + ε)(Log(r) − Log(R)) > 2, since
LogR ≥ 0, yields

Log(Log(|f |(r)))
≤ Log(Log(M)) + tLog(r) + Log(b+ ε) + Log(Log(r)− LogR))

≤ Log(Log(M)) + tLog(r) + Log(b+ ε) + Log(Log(r)).

Consequently,

Log(Log(|f |(r)))
Log(r)

≤ Log(Log(M)) + tLog(r) + Log(b+ ε) + Log(Log(r))

Log(r)
,

and hence we can check that

lim sup
r→+∞

Log(Log(|f |(r)))
Log(r)

≤ t. �

Theorem 30.8. Let f ∈ A(K) be not identically zero. If there exists
q ≥ 0 such that

lim sup
r→+∞

(

s(r, f)

rq

)

< +∞,

then ρ(f) is the lowest bound of the set of q ∈ [0,+∞[ such that

lim sup
r→+∞

(

s(r, f)

rq

)

= 0.
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Moreover, if lim supr→+∞
(s(r,f)

rt

)

is a number b ∈ ]0,+∞[, then
ρ(f) = t.

If there exists no q such that lim supr→+∞
(s(r,f)

rq

)

< +∞, then
ρ(f) = +∞.

Proof. The proof holds in two statements. First, we prove that
given f ∈ A(K) non-constant and such that for some t ≥ 0,

lim supr→+∞
s(r,f)
rt is finite, then ρ(f) ≤ t.

Set lim supr→+∞
( s(r,f)

rt

)

= b ∈ [0,+∞[. Let us fix ε > 0. We can

find R > 1 such that |f |(R) > e2 and s(r,f)
rt ≤ b + ε ∀r ≥ R, and

hence, by Corollary 22.30, we have |f |(r)
|f |(R) ≤ (

r
R

)s(r,f) ≤ (

r
R

)rt(b+ε))
.

Therefore, since R > 1, we have

Log(|f |(r)) ≤ Log(|f |(R)) + rt(b+ ε)(Log(r)).

Now, when u > 2, v > 2, we check that Log(u + v) ≤ Log(u) +
Log(v). Applying that inequality with u = Log(|f |(R)) and v =
rt(b+ ε)(Log(r)) when rt(b+ ε)(Log(r)) > 2 yields

Log(Log(|f |(r))) ≤ Log(Log(|f |(R))) + tLog(r)

+ Log(b+ ε) + Log(Log(r)).

Consequently,

Log(Log(|f |(r)))
Log(r)

≤ Log(Log(|f |(R))) + tLog(r) + Log(b+ ε) + Log(Log(r))

Log(r)
,

and hence we can check that

lim sup
r→+∞

Log(Log(|f |(r)))
Log(r)

≤ t

which proves the first claim.
Second, we prove that given f ∈ A(K) not identically zero and

such that for some t ≥ 0, we have lim supr→+∞
s(r,f)
rt > 0, then

ρ(f) ≥ t.
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By hypotheses, there exists a sequence (rn)n∈N such that

limn→+∞ rn = +∞ and such that limn→+∞
s(rn,f)
rtn

> 0. Thus, there

exists b > 0 such that limn→+∞
s(rn,f)
rtn

≥ b. We can assume that

|f |(r0)≥ 1, hence by Corollary 22.27, |f |(rn)≥ 1 ∀n. Let λ ∈ ]1,+∞[.
By Corollary 22.30, we have

|f |(λrn)
|f |(rn) ≥ (λ)s(rn,f) ≥ (λ)[b(rn)t],

hence

Log(|f |(λrn) ≥ Log(|f |(rn)) + b(rn)
tLog(λ).

Since |f |(rn) ≥ 1, we have Log(Log(|f |(λrn))) ≥ Log(bLog(λ)) +
tLog(rn), therefore

Log(Log(|f |(λrn))
Log(rn)

≥ t+
Log(bLog(λ))

Log(rn)
∀n ∈ N,

and hence

lim sup
r→+∞

Log(Log(|f |(r)))
Log(r)

≥ t

which ends the proof of the second claim. �

Definition and notation. Let t ∈ [0,+∞[ and let f ∈ A(K) be of

order t. We set ψ(f) = lim supr→+∞
s(r,f)
rt and call ψ(f) the cotype

of growth of f , or just the cotype of f in brief and we put ˜ψ(f) =

lim infr→+∞
s(r,f)
rt .

Lemma 30.9. Let f, g ∈ A(K). Then, max
(

s(r, f), s(r, g)
) ≤

s(r, fg) = s(r, f) + s(r, g).

Proof. Let r′ > r be such that both s(u, f) and s(u, g) are constant
in [r, r′]. Then, when μ = Log(u), by Corollary 19.3, we have

s(u, f) =
dΨ(f, μ)

dμ
, s(u, g) =

dΨ(g, μ)

dμ
∀μ ∈ ]Log(r),Log(r′)[.
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But since Ψ(fg, μ) = Ψ(f, μ) + Ψ(g, μ), the inequalities

max
(

s(r, f), s(r, g)
) ≤ s(r, fg) = s(r, f) + s(r, g)

are clear. �

Theorem 30.10. Let f, g ∈ A∗(K). Then ψ(fg) ≤ ψ(f) + ψ(g).
Moreover, if ρ(f) ≥ ρ(g), then ψ(f) ≤ ψ(fg). If ρ(f) = ρ(g), then
max

(

ψ(f), ψ(g)
) ≤ ψ(fg).

Proof. Set q = ρ(f), t = ρ(g) and suppose q ≥ t. By Theo-
rem 30.1, we have ρ(f.g) = ρ(f) = q. By Lemma 30.9, for each
r > 0, we have max

(

s(r, f), s(r, g)
) ≤ s(r, f.g) = s(r, f) + s(r, g).

Consequently,

lim sup
r→+∞

s(r, f.g)

rq
≤ lim sup

r→+∞
s(r, f)

rq
+ lim sup

r→+∞
s(r, g)

rq

≤ lim sup
r→+∞

s(r, f)

rq
+ lim sup

r→+∞
s(r, g)

rt

= ψ(f) + ψ(g).

Moreover, assuming again q ≥ t, then

ψ(f) = lim sup
r→+∞

s(r, f)

rq
≤ lim sup

r→+∞
s(r, fg)

rq
= lim sup

r→+∞
s(r, fg)

rρ(fg)
= ψ(fg).

Consequently, if ρ(f) = ρ(g), then max
(

ψ(f), ψ(g)
) ≤ ψ(fg). �

Theorem 30.11. Let f(x) =
∑+∞

n=0 anx
n ∈ A(K). Then,

ρ(f) = lim sup
n→+∞

(

nLog(n)

−Log|an|
)

.

Proof. We follow a similar way as this of [85] when ρ(f) < +∞.
Let t = ρ(f) and suppose first that t < +∞. Let α =

lim supn→+∞
nLog(n)
−Log|an| . Take q > t. For all n ∈ N, we have |an|rn ≤

|f |(r), and therefore, |an|rn ≤ e(r
q) and hence |an| ≤ r−ne(rq) i.e.

(1) Log|an| ≤ rq − nLog(r),

when r is big enough.
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Now, choose r =
(

n
s

) 1
q . So, we have Log|an| ≤ n

q − n
q Log(

n
q ), i.e.

−Log(|an|) ≥ −n
q
+
n

q
Log

(

n

q

)

.

Consequently, when n is big enough, we have

nLog(n)

(−Log|an|) ≤ nLog(n)
n
qLog(

n
q )− n

q

≤ q +O(1).

Therefore, we have α ≤ q and since this is true for each q > t, that
shows that α ≤ t.

Now, take β > α so that nLog(n)
(−Log|an|) < β for n big enough. Then,

when n is big enough, we have nLog(n) ≤ β(−Log|an|), hence

n
n
β ≤ 1

|an| , and hence |an| ≤ 1

n
n
β
. Consequently, |an|rn ≤ rn

n
n
β
. Now,

for r big enough, |f |(r) = supn∈N |an|rn ≤ supn∈N rn

n
n
β
.

Putting ϕ(n) = n
β and R = r

β , we have

|f |(r 1
β ) ≤ sup

n∈N
rϕ(n)

nϕ(n)
≤ sup

x>0

Rx

xx
.

Now, we check that the maximum on [0,+∞[ of the function g(x) =
Rx

xx is reached when x = R
e and hence is e

R
e = e

r
βe . Therefore, we

have |f |(r 1
β ) ≤ e

r
βe . Putting now u = r

1
β , we can derive |f |(u) ≤ e

uβ

βe ,
hence

Log(Log(|f |(u))) ≤ βLog(u)− Log(eβ).

Consequently,

lim sup
r→+∞

Log(Log(|f |(r)))
Log(r)

≤ β.

So, we have t ≤ β and since this is true for all β > α, we have proven
that t ≤ α, which ends the proof when t < +∞.
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Suppose now that t = +∞ and suppose that lim supn→+∞
nLog(n)

(−Log|an|) < +∞. Let us take q ∈ N such that

(2)
nLog(n)

(−Log|an|) < q ∀n ∈ N.

By Theorem 30.8, we have lim supr→+∞
s(r,f)
rq = +∞. So, we can

take a sequence (rm)m∈N such that

(3) lim
m→+∞

s(rm, f)

(rm)q
= +∞.

For simplicity, set um = s(rm, f), m ∈ N. By (2), for m big enough,
we have

umLog(um) < q(−Log(|aum |) = qLog

(

1

|aum |
)

,

hence

1

(um)um
> |aum |q,

therefore

|aum |q(rm)qum <
(rm)

qum

(um)um

i.e.

(|f |(rm))s <
(

(rm)
s

um

)um

.

But by Corollary 22.27, we have limr→+∞ |f |(rm) = +∞,
hence (rm)

q > um when m is big enough, and therefore,

lim supm→+∞
s(rm,f)
(rm)q ≤ 1, a contradiction to (3). Consequently, (2)

is impossible, and therefore,

lim sup
n→+∞

(

nLog(n)

−Log|an|
)

= +∞ = ρ(f).
�



October 24, 2024 19:22 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch30 FA1 page 291

Order of Growth for Entire Functions 291

Remark. Of course, polynomials have a growth order equal to 0. On
K as on C, we can easily construct transcendental entire functions of
order 0 or of order ∞.

Example 1. Suppose that for each r > 0 we have s(r, f) ∈
[rtLogr, rtLogr + 1]. Then of course, for every s > t, we have

lim supr→+∞
s(r,f)
rs = 0 and lim supr→+∞

s(r,f)
rt = +∞, so there exists

no t > 0 such that s(r,f)
rt have non-zero superior limit b < +∞. Con-

sequently, ρ(f) = +∞.

Example 2. Let (an)n∈N be a sequence in K such that −Log|an| ∈
[n(Log(n))2, n(Log(n))2 + 1]. Then clearly, limn→+∞

Log|an|
n = −∞,

hence the function
∑∞

n=0 anx
n has radius of convergence equal to

+∞. On the other hand, limn→+∞
nLog(n)
−Log|an| = 0, hence ρ(f) = 0.

Example 3. Let (an)n∈N be a sequence in K such that −Log|an| ∈
[n
√

Log(n), n
√

Log(n) + 1]. Then, limn→+∞
Log|an|

n = −∞ again,
and hence the function

∑∞
n=0 anx

n has radius of convergence equal
to +∞. On the other hand,

lim
n→+∞

(

nLog(n)

−Log|an|
)

= +∞ hence ρ(f) = +∞.

Theorem 30.12. Let f ∈ A∗(K). Then,

ρ(f) = inf

{

q ∈ ]0,+∞[ | lim
r→+∞

Log(|f |(r))
rq

= 0

}

.

Proof. Indeed, let M = inf{q ∈ ]0,+∞[ | limr→+∞
log(|f |(r))

rq = 0}.
First, we prove that ρ(f) ≤ M. Let q be such that

limr→+∞
Log(|f |(r))

rq = 0. Let us fix ε > 0. For r big enough, we have
Log(|f |(r))

rq ≤ ε, hence Log(|f |(r)) ≤ εrq, therefore Log(Log(|f |(r))) ≤
Logε + qLog(r), hence Log(Log(|f |(r)))

Log(r) ≤ q + ε
Log(r) . This is true for

every ε > 0, therefore lim supr→+∞
Log(Log(|f |(r)))

Log(r) ≤ q i.e. ρ(f) ≤ q,

and hence, ρ(f) ≤M .
On the other hand, we note that

M = sup

{

q ∈ ]0,+∞[ | lim sup
r→+∞

Log(|f |(r))
rq

> 0

}

.
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Now, suppose that for some q > 0, we have lim supr→+∞
Log(|f |(r))

rq =
b > 0. Let us fix ε ∈ ]0, b[. There exists a sequence (rn)n∈N such

that, when n is big enough, we have b− ε ≤ Log(|f |(rn))
(rn)q

≤ b+ ε, hence

qLog(rn) + Log(b− ε) < Log(Log(|f |(rn))) < qLog(rn) + Log(b− ε),
therefore

q +
Log(b− ε)

Log(rn)
<

Log(Log(|f |(rn)
Log(rn)

< q +
Log(b+ ε)

Log(rn)
.

Consequently, limn→+∞
Log(Log(|f |(rn))

Log(rn)
= q, and therefore, ρ(f) ≥ q,

hence ρ(f) ≥M . Finally, ρ(f) =M . �
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Chapter 31

Type of Growth for Entire Functions

Definition and notation. In complex analysis, the type of growth
is defined for an entire function having a finite order of growth t

as σ(f) = lim supr→+∞
Log(Mf (r))

rt , with t < +∞ [90]. Of course,
the same notion may be defined for f ∈ A(K). Here, as in
Chapters 30, we denote by Log the Neperian logarithm and by
e the number such that Log(e) = 1. Then, given f ∈ A∗(K) of

order t, we set σ(f) = lim supr→+∞
Log(|f |(r))

rt . Moreover, we put

σ̃(f) = lim infr→+∞
Log(|f |r))

rt .
A function f ∈ A(K) is said to be clean if ρ(f) < +∞ and

σ(f) = σ̃(f) and f is said to be regular if ρ(f) = ρ̃(f).

Theorem 31.1. Let f , g ∈ A∗(K). Then, σ(fg) ≤ σ(f) + σ(g).
If ρ(f) ≥ ρ(g), then σ(f) ≤ σ(fg), and if ρ(f) > ρ(g), then
σ(fg) = σ(f). If f is clean and such that ρ(f) > ρ(g), then fg
is clean. If f and g are clean and if ρ(f) = ρ(g), then fg is clean
and σ(fg) = σ(f) + σ(g) and ψ(fg) = ψ(f) + ψ(g). If ρ(f) = ρ(g),
then max(σ(f), σ(g)) ≤ σ(fg). If ρ(f) = ρ(g) and σ(f) > σ(g), then
ρ(f +g) = ρ(f) and σ(f +g) = σ(f). If ρ(f +g) = ρ(f) ≥ ρ(g), then
σ(f + g) ≤ max(σ(f), σ(g)).

Proof. Let s = ρ(f) ≥ t = ρ(g). Then, ρ(fg) = s, hence

σ(fg) = lim sup
r→+∞

Log(|fg|(r))
rs

= lim sup
r→+∞

Log(|f |(r).|g|(r))
rs

.

293
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Now, if s ≥ t, then

σ(fg) = lim sup
r→+∞

(Log(|f |(r))
rs

+
Log(|g|(r))

rs

)

≤ lim sup
r→+∞

Log(|f |(r))
rs

+ lim sup
r→+∞

Log(|g|(r))
rt

= σ(f) + σ(g).

Then we note that when t < s, we have

lim sup
r→+∞

Log(|g|(r))
rs

= 0,

hence

lim sup
r→+∞

Log(|fg|(r))
rs

= lim sup
r→+∞

Log(|f |(r))
rs

= σ(f).

Particularly, if f is clean, we have limits instead of limitsup as
long as f is concerned. Consequently, if t < s, then fg is clean.

Now, suppose that f and g are clean and that s = t. Then,

lim sup
r→+∞

Log(|f |(r)) + Log(|g|(r))
rt

= lim
r→+∞

Log(|f |(r)) + Log(|g|(r))
rt

= σ(f) + σ(g).

Thus, fg is clean. Moreover, since f and g are clean, we can see that
σ(fg) = σ(f) + σ(g) and ψ(fg) = ψ(f) + ψ(g).

Now, suppose again s > t. Then, by Theorem 30.1, ρ(f + g) =
ρ(f) = s. Consequently,

σ(f + g) = lim sup
r→+∞

(

Log|f + g|(r)
rs

)

≤ lim sup
r→+∞

(

max(Log|f |(r),Log|g|(r))
rs

)

= max

(

lim sup
r→+∞

(

Log|f |(r)
rs

)

, lim sup
r→+∞

(

Log|g|(r)
rs

))

≤ max

(

lim sup
r→+∞

(

Log|f |(r)
rs

)

, lim sup
r→+∞

(

Log|g|(r)
rt

))

= max (σ(f), σ(g)) .
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Now, suppose ρ(f) = ρ(g) = s. Then,

max

(

lim sup
r→+∞

(

Log(|f |(r))
rs

)

, lim sup
r→+∞

(

Log(|g|(r))
rs

))

≤ lim sup
r→+∞

(

Log(|f.g|(r))
rs

)

because the two both |f |(r) and |g|(r) tend to +∞ with r. Conse-
quently, σ(fg) ≥ max(σ(f), σ(g)).

Now, suppose again that ρ(f) = ρ(g) and suppose σ(f) > σ(g).
Let s = ρ(f), b = σ(f). Then, b > 0. Let (rn)n∈N be a sequence such

that limn→+∞ rn = +∞ and limn→+∞
Log(|f |(rn))

(rn)s
= b. Since σ(g) <

σ(f), we note that when n is big enough we have |g|(rn) < |f |(rn).
Consequently, when n is big enough, we have |f + g|(rn) = |f |(rn),
and hence

(1) lim
n→+∞

Log(|f + g|(rn))
(rn)s

= b.

Now, by definition of σ, we have σ(f + g) ≥ limn→+∞
Log(|f+g|(rn))

(rn)ρ(f+g) .

By Theorem 30.1, we have ρ(f + g) ≤ s, hence

σ(f + g) ≥ lim
n→+∞

Log(|f + g|(rn))
(rn)ρ(f+g)

≥ lim
n→+∞

Log(|f + g|(rn))
(rn)s

= lim
n→+∞

Log(|f |(rn))
(rn)s

= σ(f),

therefore by (1), σ(f + g) ≥ σ(f).
Suppose that σ(f + g) > σ(f). Putting h = f + g, we

have f = h − g with σ(g) < σ(h), hence σ(h − g) ≥
σ(h) i.e. σ(f) > σ(f + g), a contradiction. Consequently,

σ(f + g) = σ(f). Thus, lim supr→+∞
Log(|f+g|(r))

rs = b > 0. But then,

lim supr→+∞
Log(|f+g|(r))

rm = 0 ∀m > s. Therefore, by Theorem 30.12,
we have ρ(f + g) = ρ(f).
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Finally, suppose now that ρ(f + g) = ρ(f) ≥ ρ(g). Then,

σ(f + g) = lim sup
r→+∞

Log(|f + g|(r))
rs

≤ max
(

lim sup
r→+∞

Log(|f |(r))
rs

, lim sup
r→+∞

Log(|g|(r))
rs

)

≤ max
(

lim sup
r→+∞

Log(|f |(r))
rs

, lim sup
r→+∞

Log(|g|(r))
rt

)

= max(σ(f), σ(g)).

The last statement derives from the previous ones and from Theorem
30.1(iii). �

Corollary 31.2. Let f, g ∈ A(K) be such that ρ(f) �= ρ(g). Then,
σ(f + g) ≤ max(σ(f), σ(g)). The set of clean functions f ∈ A(K) is
a multiplicative semi-group. The set C(t), .) of clean functions f ∈
A(K) of order t is a submultiplicative semi-group and σ and ψ are
semi-group morphisms from (C(t), .) into (R+,+).

Proof. Indeed, assuming that ρ(f) > ρ(g), we have ρ(f + g) =
ρ(f) and hence the conclusion comes from the last statement of
Theorem 31.1. �

Now we show that σ(f) may be computed by the same formula
as on C.

Theorem 31.3 (16). Let f(x) =
∑∞

n=0 bnx
n ∈ A(K) be such that

0 < ρ(f) < +∞. Then, σ(f)ρ(f)e = lim supn→+∞
(

n n
√

|bn|ρ(f)
)

.

Proof. Let t = ρ(f). First, let us show that etσ(f) ≥
lim supn→+∞ n|bn| tn . We follow a similar way as in [86]. Let u = σ(f)
and let us take w > σ(f). For r big enough, we have Log(|f |(r)) ≤
wrt, hence for all n ∈ N, we can derive

(1) |bn| ≤ |f |(r)
rn

≤ ewr
t

rn
.

Now, let us take r such that the derivative of the logarithm of the

function ewrt

rn vanishes: we have wtrt−1 − n
r = 0. So, we can choose
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rn =
(

n
wt

) 1
t
and we can check that

|bn| ≤ e
n
t

(

n
wt

)n
t

=
(ewt

n

)n
t
.

Consequently, we have n|bn| tn ≤ ewt, therefore

lim supn→+∞ n|bn| tn ≤ etw. This is true for all w > σ(f), and hence

lim supn→+∞ n|bn| tn ≤ etσ(f).
Now, let us show the reverse inequality. Take c > 1

et

lim supn→+∞ n|bn| tn . When n is big enough, we have |bn| ≤
(

ect
n

)n
t
,

hence |bn|rn ≤
(

ect
n

)n
t
rn, and consequently, |f |(r) ≤ supn≥1

(

ect
n

)n
t
rn. Therefore, |f |(r) ≤ supx>1

(ect)
x
t rx

x
x
t

. Now, set y = x
t and

R = ecr. Then,

|f |(r 1
t ) ≤ sup

y>0

(ect)yry

(ty)y
= sup

y>0

(ecr

y

)y
= sup

y>0

Ry

yy
= e

R
e = ecr.

Thus, we have |f |(r) ≤ ecr
t
, and hence lim supr→+∞

Log(|f |(r))
rt ≤ c.

Therefore, σ(f) ≤ c, which ends the proof. �
In the proof of Theorem 31.5, we use the following trivial lemma:

Lemma 31.4. Let g, h be the real functions defined in ]0,+∞[ as

g(x) = etx−1
x and h(x) = 1−e−tx

x with t > 0. Then,

(i) inf{|g(x)| |x > 0} = t,
(ii) sup{|h(x)| |x > 0} = t.

Notations. Let f ∈ A(K) and let (an)n∈N be the sequence of zeros
of f with |an| ≤ |an+1|, n ∈ N and for each n ∈ N, let wn be the
multiplicity order of an. For every r > 0, let k(r) be the integer such
that |an| ≤ r ∀n ≤ k(r) and |an| > r ∀n > k(r). Then, by Corollary

22.27, Log(|f |(r)) is of the form
∑k(r)

n=0wn(Log(r)− Log(|an|)). We

put σ(f, r) =
∑k(r)

n=0 wn(Log(r)−Log(|an|))
rρ(f)

. In the same way, for any r > 0

and n ∈ N, ψ(f, r) = s(r,f)

rρ(f)
.

Theorem 31.5. Let f ∈ A(K) be such that 0 < ρ(f) < +∞. Then,
σ(f) < +∞ if and only if ψ(f) < +∞. Suppose that these hypotheses
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are satisfied. Then,

ρ(f)σ(f) ≤ ψ(f) ≤ ρ(f)
(

eσ(f)− σ̃(f)
)

and

ρ(f)
(

σ̃(f)− σ(f)

e

)

≤ ˜ψ(f) ≤ ρ(f)σ̃(f).

Further, the hypotheses σ(f) = σ̃(f) and ψ(f) = ˜ψ(f) are equivalent,
and if they are satisfied, then ψ(f) = ρ(f)σ(f).

Proof. Without loss of generality, we can assume that f(0) = 1.
Let u = ρ(f). Let (an)n∈N be the sequence of zeros of f with |an| ≤
|an+1|, n ∈ N, and for each n ∈ N, let wn be the multiplicity order of
an. For every r > 0, let k(r) be the integer such that |an| ≤ r ∀n ≤
k(r) and |an| > r ∀n > k(r). We put cn = |an|, n ∈ N.

We first show the inequality ρ(f)σ(f) ≤ ψ(f). By the definition
of σ(f, r), we can derive

σ(f, r) =

k(re−α)
∑

n=0

wn
(

Log(r)− Log(re−α)
)

ru

+

k(re−α)
∑

n=0

wn
(

Log(re−α)− Log(cn)
)

ru

+
∑

k(re−α)<n≤k(r)

wn(Log(re
−α)− Log(cn))

ru
,

hence

σ(f, r) ≤
k(re−α)
∑

n=0

wn
(

Log(r)− Log(re−α)
)

ru

+

k(re−α)
∑

n=0

wn
(

Log(re−α)− Log(cn)
)

ru
+ α

∑

k(re−α)<n≤k(r)

wn
ru
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because Log(r) − Log(cn) ≤ α ∀n ∈ [k(re−α), k(r)] ∩ N. Conse-
quently,

σ(f, r) ≤ α

k(re−α)
∑

n=0

wn
ru

+

k(re−α)
∑

n=0

wn
(

Log(re−α)− Log(cn)
)

ru

+ α
∑

k(re−α)<n≤k(r)

wn
ru
,

therefore

σ(f, r) ≤ α

k(r)
∑

n=0

wn
ru

+

k(re−α)
∑

n=0

wn
(

Log(re−α)− Log(cn)
)

ru
,

hence

σ(f, r) ≤ e−uα
k(re−α)
∑

n=0

wn(Log(re
−α)− Log(cn))

(re−α)u
+ α

∑

0≤n≤k(r)

wn
ru
.

Thus, we have

(1) σ(f, r) ≤ e−uασ(f, re−α) + αψ(f, r).

Suppose first that σ(f) < +∞. We check that we can pass to
superior limits on both sides, so we obtain σ(f) ≤ e−uασ(f)+αψ(f),
therefore σ(f) (1−e

−uα)
α ≤ ψ(f). That holds for every α > 0, hence,

by Lemma 31.4 (ii), we can derive

(2) ψ(f) ≥ ρ(f)σ(f).

Now, by (1), we have

σ(f, r)− e−uασ(f, re−α) ≤ αψ((r, f),

hence passing to inferior limits on both sides, we deduce

σ̃(f)− e−uασ(f)
α

≤ ˜ψ(f),

hence

u(σ̃(f)− e−uασ(f))
uα

≤ ˜ψ(f),
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therefore when αu = 1, we obtain

(3) ρ(f)

(

σ̃(f)− σ(f)

e

)

≤ ˜ψ(f).

We now show the inequality

ψ(f) ≤ ρ(f)(eσ(f)− σ̃(f)).

Let us fix α > 0. We can write

σ(f, r) =

k(re−α)
∑

n=0

wn(Log(r)− Log(re−α))
ru

+

k(re−α)
∑

j=0

wj(Log(re
−α)− Log(cn))

ru

+
∑

k(re−α)<j≤k(r)

wj(Log(r)− Log(cj))

ru
,

hence

σ(f, r) ≥ α

k(re−α)
∑

n=0

wn
ru

+

k(re−α)
∑

j=0

wj(Log(re
−α)− Log(cn))

ru
,

hence
(4)

σ(f, r) ≥ αe−uα
k(re−α)
∑

n=0

wn
(re−α)u

+ e−uα
k(re−α)
∑

j=0

wn(Log(re
−α)− Log(cn))

(re−α)u

and hence

(5) σ(f, r) ≥ αe−uαψ(f, re−α) + e−uασ(f, re−α).

Therefore, we can deduce

αe−uαψ(f) ≤ lim sup
r→+∞

(

σ(f, r)− e−uασ(f, re−α)
)

,
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and therefore

(6) αe−uαψ(f) ≤ σ(f)− e−uασ̃(f).

That holds for every α > 0 and hence, when uα = 1, by (6), we
obtain

(7) ψ(f) ≤ ρ(f)
(

eσ(f)− σ̃(f)
)

which is the left-hand inequality of the general conclusion.
Moreover, we see that if ψ(f) = +∞, then σ(f) = +∞.

Now, on (4), we can also take the inferior limit on both sides and
we deduce

σ̃(f) ≥ αe−uα ˜ψ(f) + e−uασ̃(f),

therefore

αe−uα ˜ψ(f) ≤ σ̃(f)(1− e−uα).

Then when uα tends to 0, we have

(8) ˜ψ(f) ≤ ρ(f)σ̃(f).

Now, suppose that σ(f) = +∞. We can find an increasing
sequence rn of limit +∞ such that σ(f, rn) = sup{σ(f, r) | r ≤
rn}, n ∈ N. Consider (1) when min(α, uα) > 1. Then, σ(f, rne

−α) <
σ(f, r)n, hence of course,

(1− e−uα)σ(f, rne−α) ≤ (1− e−uα)σ(f, rn),

and hence σ(f, rn)− e−uασ(f, rne−α) ≥ (1− e−uα)σ(f, rn), therefore
(1− e−uα)σ(f, rn) ≤ ψ(f, rn), which proves that ψ(f) = +∞.

Thus, σ(f) < +∞ is equivalent to ψ(f) < +∞. Consequently,
Relations (2), (3), (5), (7), and (8) still apply and hence hold as soon
as σ(f) < +∞ or ψ(f) < +∞.

Now, suppose that ˜ψ(f) = ψ(f). Then we have

ρ(f)σ(f) ≤ ψ(f) ≤ ρ(f)σ̃(f),

therefore σ(f) = σ̃(f) since ρ(f) > 0.
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Conversely, suppose that σ(f) = σ̃(f). Then, by (6), we have

ψ(f) ≤ σ(f)
(

euα−1
α

)

. That holds for every α > 0, and then, ψ(f) ≤
uσ(f), i.e. ψ(f) ≤ ρ(f)σ(f), hence by (2), we have ψ(f) = ρ(f)σ(f).

But now, by (1), we see that αψ(f, r) ≥ σ(f, r)− e−uασ(f, re−α),
hence, passing to the inferior limit, α ˜ψ(f) ≥ σ(f)(1− e−uα) ∀α > 0,

therefore ˜ψ(f) ≥ uσ(f). But we just showed that ψ(f) = uσ(f),

hence ˜ψ(f) = ψ(f).

Thus, we have shown that the hypotheses ˜ψ(f) = ψ(f) and
σ̃(f) = σ(f) are equivalent.

Now, suppose again that ψ(f) = ˜ψ(f). Then, by the inequalities
already proved, on the one hand, we have ψ(f) ≥ ρ(f)σ(f), and on
the other hand, we have ψ(f) ≤ ρ(f)σ(f). Consequently, ψ(f) =
ρ(f)σ(f). �

By Theorem 31.3, we obtain Corollary 31.6:

Corollary 31.6. Let f(x) =
∑∞

n=0 bnx
n ∈ A(K) be such that 0 <

ρ(f) < +∞. Then,

ρ(f)σ(f) ≤ ψ(f) ≤ lim sup
n→+∞

(

n n

√

|bn|ρ(f)
)− ρ(f)σ̃(f)

and eσ(f) =
lim supn→+∞

(

n n
√

|bn|ρ(f)
)

ρ(f) .

Theorem 31.7. Let f(x) ∈ A(K) be such that σ̃(f) > 0. Then, f is
regular.

Proof. Let a = σ̃(f), hence a = lim infr→,+∞
Log(|f |(r))

rρ(f)
, then

there exists R > 0 such that Log(|f |(r))
rρ(f)

≥ a
2 ∀r > R, hence

Log(|f |(r)) > a
2r
ρ(f) ∀r > R and hence

Log(Log(|f |(r))
Log(r)

≥ Log(a)− Log(2)

Log(r)
+ ρ(f) ∀r ≥ R.

Thus, ρ̃(f) ≥ ρ(f), which ends the proof. �

Theorem 31.8. Let f(x) =
∑∞

n=0 bnx
n ∈ A(K) be clean. Then,

eψ(f) = lim sup
n→+∞

(

n n

√

|bn|ρ(f)
)

and f is regular.
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Proof. The first statement is an immediate consequence of Corol-
lary 31.6. Now, suppose that f is clean. Let u = ρ(f) and s = σ(f).
Then, we have

lim
r→+∞

Log(|f |(r))
ru

= s,

hence limr→+∞(Log(Log(|f |(r)))− uLog(r)) = Log(s), therefore

lim
r→+∞

Log(Log(|f |(r)))
Log(r)

− u = 0

i.e.

ρ(f) = lim
r→+∞

Log(Log(|f |(r)))
Log(r)

,

hence f is regular. �

Remark. In [32], the authors claimed that if f is a regular complex
entire function, then σ(f) = σ̃(f). We see in the following that such
a statement does not hold for functions in A(K) and that the proof
in [4] is put in doubt.
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Chapter 32

Growth of the Derivative
of an Entire Function

Similar to the situation in complex entire functions, here we see
that the order and the type of the derivative of an entire function f
are respectively equal to those of f . As in Chapters 30 and 31, we
denote by Log the Neperian logarithm and by e the number such
that Log(e) = 1.

Throughout this chapter, K is supposed to have characteristic 0.

Theorem 32.1. Let f ∈ A(K) be not identically zero. Then, ρ(f) =
ρ(f ′).

Proof. Let f(x) =
∑∞

n=0 anx
n. By Theorem 30.11, we have ρ(f ′) =

lim supn→+∞
(

nLog(n)
−Log(|(n+1)an+1|)

)

. But since 1
n ≤ |n| ≤ 1, we have

Log(|an+1|)− Log(n+ 1) ≤ Log(|(n + 1)an+1|) ≤ Log(|an+1|),
hence

−Log(|an+1|)
nLog(n)

≤ −Log(|(n + 1)an+1|)
nLog(n)

≤ −Log(|an+1|)− Log(n+ 1)

nLog(n)
,

305
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hence

lim inf
n→+∞

(

−Log(|an+1|)
nLog(n)

)

≤ lim inf
n→+∞

(

−Log(|(n + 1)an+1|)
nLog(n)

)

≤ lim inf
n→+∞

(

−Log(|an+1|)− Log(n+ 1)

nLog(n)

)

.

But since

lim
n→+∞

Log(n+ 1)

nLog(n)
= 0,

we have

lim inf
n→+∞

(

−Log(|an+1|)
nLog(n)

)

= lim inf
n→+∞

(

−Log(|an+1|)− Log(n+ 1)

nLog(n)

)

,

therefore

lim inf
n→+∞

(−Log(|an+1|)
nLog(n)

)

= lim inf
n→+∞

(

−Log((n+ 1)|an+1|)
nLog(n)

)

.

But since all quantities are positive, we can derive

lim sup
n→+∞

nLog(n)

−Log(|an+1|) = lim sup
n→+∞

(

nLog(n)

−Log(|(n + 1)an+1|)
)

,

therefore

lim sup
n→+∞

nLog(n)

−Log(|an+1|) = lim sup
n→+∞

(

(n+ 1)Log(n+ 1)

−Log(|(n + 1)an+1|)
)

= ρ(f),

and hence ρ(f ′) = ρ(f). �

Corollary 32.2. Consider the differential equation

(E) f (n) + an−1(x)f
(n−1)(x) + · · ·+ a0(x)f(x) = 0

with aj ∈ A∗(K), j = 0, . . . , n − 1, and ρ(aj) < ρ(a0) ∀j = 1, . . . ,
n−1. Then, every non-trivial solution f of (E) satisfies ρ(f) ≥ ρ(a0).
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Corollary 32.3. The derivation on A(K) restricted to the alge-
bra A(K, t) (respectively to A∗(K)) provides that algebra with a
derivation.

In complex analysis, it is known that if an entire function f has
order t < +∞, then f and f ′ have the same type. We check that it
is the same here.

Theorem 32.4. Let f ∈ A(K) of order t ∈ ]0,+∞[. Then, σ(f) =
σ(f ′).

Proof. By Theorem 31.3, we have

eρ(f ′)σ(f ′) = lim sup
n→+∞

(

n (|n+ 1||an+1|)
t
n

)

= lim sup
n→+∞

(

(

(n+ 1) (|n+ 1||an+1|)
t
n

) n
n+1

(

n

n+ 1

))

= lim sup
n→+∞

(

(n+ 1) (|n+ 1||an+1|)
t

n+1

)

= eρ(f)σ(f).

But since ρ(f) = ρ(f ′) and since ρ(f) �= 0, we can see that σ(f ′) =
σ(f). �

Theorem 32.4 shows a way to compare the growth of an entire
function f to this of its derivative. Of course, we know that the
inequality |f ′|(r) ≤ |f |(r) holds always. But we don’t have an
inequality in the other side. However, thanks to Theorem 32.4, we
can get this corollary:

Corollary 32.5. Let f ∈ A∗(K) be not identically zero of order
t ∈ ]0,+∞[. Given ε > 0, there exists a sequence of intervals

[r′n, r′′n], with limn→+∞ r′n = +∞, such that |f ′|(r) ≥ |f |(r)e−(εrt)

∀r ∈ ⋃n∈N[r
′
n, r

′′
n].

By Theorems 31.5 and 32.4, we can now derive Corollary 32.6:

Corollary 32.6. Let f ∈ A∗(K) be not identically zero of order
t ∈ ]0,+∞[. If f is clean, then ψ(f) ≤ ψ(f ′), and if f ′ is clean, then
ψ(f) ≥ ψ(f ′).

Corollary 32.7. Let f ∈ A∗(K) be not identically zero of order
t ∈ ]0,+∞[. If f and f ′ are clean, then ψ(f) = ψ(f ′).
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Remark. More generally, if ψ(f) = ρ(f)σ(f) and ψ(f ′) =
ρ(f ′)σ(f ′), then ψ(f ′) = ψ(f).

By Theorem 31.5 and Corollary 32.7, the following conjecture is
natural and actually would just be an immediate consequence of the
conjecture following Corollary 31.6.

Conjecture. For every f ∈ A(K) such that 0 < ρ(f) < +∞, we
have ψ(f ′) = ψ(f).

Applying the above remark, in residue characteristic 0, we have
Theorem 32.8:

Theorem 32.8. Suppose that K has residue characteristic 0. Then
for every f ∈ A(K) such that 0 < ρ(f) < +∞, we have ψ(f ′) = ψ(f).

Proof. Indeed, we can check that for every r > 0, s(r, f ′) =
s(r, f)− 1, hence ψ(f ′) = ψ(f). �

Of course, polynomials have a growth order 0. On K as on C, we
can easily construct transcendental entire functions of order 0 or of
order ∞.

Example 1. Let (an)n∈N be a sequence in K such that −Log|an| ∈
[n(Log(n))2, n(Log(n))2 + 1]. Then clearly, limn→+∞

Log|an|
n = −∞,

hence the function
∑∞

n=0 anx
n has a radius of convergence equal

to +∞. On the other hand, limn→+∞
nLog(n)
−Log|an| = 0 hence ρ(f) = 0.

Example 2. Let (an)n∈N be a sequence in K such that −Log|an| ∈
[n
√

Log(n), n
√

Log(n)+1]. Then, limn→+∞
Log|an|

n = −∞ again, and
hence the function

∑∞
n=0 anx

n has radius of convergence equal to

+∞. On the other hand, limn→+∞
(

nLog(n)
−Log|an|

)

= +∞ hence ρ(f) =

+∞.

Similarly, comparing the number of zeros of f ′ to this of f inside
a disk is very uneasy. Now, we can give some precisions thanks to
Theorems 30.9 and 32.1.

Theorem 32.9. Let f, g ∈ A(K) be transcendental and of order
t ∈ ]0,+∞[. Then for every ε > 0,

lim sup
r→+∞

(

rεs(r, g)

s(r, f)

)

= +∞.
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Proof. Suppose first t = 0. The proof then is almost triv-

ial. Indeed, for all ε > 0, we have limr→+∞
s(r,f)
rε = 0, hence

limr→+∞ rε

s(r,f) = +∞, therefore limr→+∞
rεs(r,g)
s(r,f) = +∞.

Now, suppose t > 0. By Theorem 30.8, there exists λ > 0 such
that

(1) s(r, f) ≤ λrt ∀r > 1.

Let us fix s ∈ ]0, t[. By hypothesis, ρ(g) = ρ(f), and hence by

Theorem 30.8, we have lim supr→+∞
s(r,g)
rs = +∞, so there exists an

increasing sequence (rn)n∈N of R+ such that limn→+∞ rn = +∞ and
s(rn,g)
(rn)s

≥ n. Therefore, by (1), we have

λ(rn)
ts(rn, g)

(rn)ss(rn, f)
>
s(rn, g)

(rn)s
> n,

and hence

λ lim
n→+∞

(

(rn)
t−ss(rn, g)
s(rn, f)

)

= +∞.

Consequently,

(2) lim sup
r→+∞

(

(r)t−ss(r, g)
s(r, f)

)

= +∞.

Now, since that holds for all s ∈ ]0, t[, the statement comes from (2).
�

Finally, by Theorem 32.1, we can derive Corollary 32.10:

Corollary 32.10. Let f ∈ A(K) be transcendental and
of order t ∈ ]0,+∞[. Then for every ε > 0, we have

lim supr→+∞
(

rεs(r,f ′)
s(r,f)

)

= +∞ and lim supr→+∞
(

rεs(r,f)
s(r,f ′)

)

= +∞.

The conjecture ψ(f ′) = ψ(f) in the general context then seems
natural, as suggested in [16] and [18], but a proof does not seem
easy. However, by Theorems 31.5, 32.1, and 32.4, we can write
Corollary 32.11:

Corollary 32.11. Suppose that K is of characteristic 0. Let f ∈
A(K) be such that 0 < ρ(f) < +∞. Then,

|ψ(f)− ψ(f ′)|∞ ≤ ρ(f)[(e− 1)σ(f)− σ̃(f)].
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Chapter 33

Growth of an Analytic Function in an
Open Disk

In Chapters 30, 31, and 32, we defined the order of growth and the
type of growth for entire functions in K in a similar way as it is done
for complex entire functions and we also defined a cotype of growth
strongly linked to the order and the type: in most of the cases, the
cotype is the product of the order of growth by the type of growth.

Here we consider analytic functions in an “open” disk d(a,R−)
that we denote by E throughout this chapter.

Notations and definitions. Let f =
∑∞

n=0 anx
n ∈ A(E). In order

to define a growth order similarly as it was done in the algebra of
entire functions in K, we can define in A(E) a growth order in the
following way: given r ∈]0, R[, as it was done in complex analysis,
given an unbounded function f ∈ A(E), when r is close enough to R,

we put ρ(f, r) = Log(Log(|f |(r)))
−Log(R−r) and ρ(f) = lim supr→R− ρ(f, r), hence

ρ(f) = lim supr→R−
Log(Log(|f |(r)))

−Log(R−r) . Then ρ(f) is called the order of

growth of f [20].
On the other hand, for every r ∈]0, R[, if the set of the u > 0

such that limr→R− s(r, f)(R − r)u = 0 is empty, we put θ(f) = +∞.
Else, we then denote by θ(f) the lowest bound of the u > 0 such
that limr→R− s(r, f)(R − r)u = 0. Similarly, if the set of u > 0 such
that limr→R− Log(|f |(r))(R − r)u = 0 is empty, we put λ(f) = +∞.
Else, we denote by λ(f) the lowest bound of u > 0 such that
limr→R− Log(|f |(r))(R − r)u = 0. And if 0 < ρ(f) < +∞, we
put σ(f, r) = Log(|f |(r))(R − r)ρ(f), σ(f) = lim supr→R− σ(f, r),

311
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ψ(f, r) = s(r, f)(R− r)ρ(f), and ψ(f) = lim supr→R− ψ(f, r). We call
σ(f) the type of growth of f and ψ(f) the cotype of growth of f .

Let us recall that, as far as ultrametric entire functions are con-
cerned, the order of growth is equal to the lowest bound of s > 0

such that limr→+∞
Log(|f |(r))

rs = 0 and to the lowest bound of s > 0

such that limr→+∞
s(r,f)
rs = 0. Here we try to prove similar results.

This chapter is aimed at showing relations between these expressions
ρ(f), σ(f), ψ(f).

Notation. We denote by A∗(E) the set of unbounded functions f ∈
A(E) such that 0 < ρ(f) < +∞.

Theorems 33.1 and 33.3 are easy and don’t need any proof:

Theorem 33.1. Let f, g ∈ A∗(E). Then, ρ(f+g) ≤ max(ρ(f), ρ(g))
and ρ(fg) = max(ρ(f), ρ(g)).

Corollary 33.2. Let f, g ∈ A∗(E). Then, ρ(fn) = ρ(f) ∀n ∈ N0.
If ρ(f) > ρ(g), then ρ(f + g) = ρ(f).

Theorem 33.3. Let f ∈ A∗(E) and let P ∈ K[x] be non-constant.
Then, ρ(P ◦ f) = ρ(f).

Theorem 33.4. Let f, g ∈ A∗(E). Then, ψ(fg) ≤ ψ(f) + ψ(g).
Moreover, if ρ(f) = ρ(g), then max(ψ(f), ψ(g)) ≤ ψ(fg).

Proof. Set ρ(f) = u, ρ(g) = t. Without loss of generality, we can
assume u ≥ t. By Theorem 30.1, we have ρ(f.g) = ρ(f) = u. Now,
for each r > 0, we have s(f.g, r) = s(r, f) + s(g, r), hence

ψ(fg) = lim sup
r→R−

(s(r, f) + s(g, r))(R − r)s

≤ lim sup
r→R−

s(r, f)(R − r)s + lim sup
r→R−

s(g, r)(R − r)t,

hence ψ(fg) ≤ ψ(f) + ψ(g). Now, suppose u = t. Then,

ψ(fg) = lim sup
r→R−

(s(r, f) + q(g, r))(R − r)s

≥ lim sup
r→R−

max(s(r, f), s(g, r))(R − r)s

= max(ψ(f), ψ(g)).
�
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Remark 1. Let f ∈ A∗(E). If u > θ(f), then by definition,
limr→R− s(r, f)(R−r)u = 0. But if u < θ(f), then lim supr→R− s(r, f)
(R − r)u = +∞ because if lim supr→R− s(r, f)(R − r)u < +∞, we
can find u′ ∈]s, θ(f)[ and then we can check that limr→R− s(r, f)
(R − r)u

′
= 0, a contradiction.

Thanks to the classical inequality |f ′|(r) ≤ |f |(r)
r , Theorem 33.5

is then immediate:

Theorem 33.5. Suppose K has characteristic 0. Let f ∈ A∗(E).
Then, ρ(f ′) ≤ ρ(f).

Remark 2. In a field of characteristic p �= 0, certain analytic func-
tions have a null derivative. This is why we must suppose that K has
characteristic 0 in all statement involving derivatives.

In complex analysis, many estimates were given concerning the
growth order of solutions of linear differential equations. Here,
by Corollary 33.2 and Theorem 33.5, we can immediately obtain
Corollary 33.6:

Corollary 33.6. Suppose K has characteristic 0. Consider the
differential equation

(E) f (n) + an−1(x)f
(n−1)(x) + · · ·+ a0(x)f(x) = 0

with aj ∈ A∗(E), j = 0, . . . , n−1 and ρ(aj) < ρ(a0) ∀j = 1, . . . , n−1.
Then every non-trivial solution f of (E) satisfies ρ(f) ≥ ρ(a0).

Theorem 33.7. Suppose K has residue characteristic 0. Then for
every f ∈ A∗(D), we have ρ(f ′) = ρ(f), θ(f ′) = θ(f), σ(f ′) = σ(f)
and ψ(f ′) = ψ(f).

Remark 3. Theorem 33.7 does not hold in residue characteristic
p> 0 because there exist functions f ∈ A∗(D) such that ρ(f) > 0 and
that f ′ is bounded, as shown in the following example with R = 1:

g(x) =
∑∞

m=0
xp

m

pm . We can see that g′(x) =
∑∞

n=0 x
pm−1, hence g′

is bounded, and therefore ρ(g′) = 0. However, consider the sequence
(rm)m∈N defined as rm = 1 − 1

pm . We can check that |g|(rm) ≥
pm(rm)

pm, hence

Log(|g|(rm)) ≥ m+ pmLog(rm) = m+ pmLog

(

1− 1

pm

)

.
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When m is big enough, we have Log
(

1− 1
pm

) ≥ −2
pm , hence

Log
(|g|(rm)) ≥ m− pm

( 2

pm

)

= m− 2.

Therefore, when m is big enough, we have

Log
(

Log(|g|(rm)))
−Log(rm)

≥ Log(m− 2)

−Log(1− 1
pm )

>
Log(m− 2)

2
pm

=
pm

2
Log(m−2).

Thus, we have ρ(g) = +∞.

Remark 4. Theorem 33.7 applies, for instance, to the complex Levi-
Civita field whose residue characteristic is 0 [88].

Theorem 33.8. Let f ∈ A∗(E). Then, λ(f) = ρ(f).

Proof. First, we prove that ρ(f) ≤ λ(f). Obviously, we can assume
that λ(f) < +∞. Let u be such that
limr→R− Log(|f |(r))(R − r)u = 0. Let us fix ε > 0. For r close enough
to R, we have Log(|f |(r))(R − r)u ≤ ε, hence Log(|f |(r)) ≤ ε

(R−r)u ,
therefore Log(Log(|f |(r))) ≤ Logε− uLog(R− r), hence

Log(Log(|f |(r)))
(−Log(R− r))

≤ Log(ε)

(−Log(R− r))
+ u,

and hence

lim sup
r→R−

Log(Log(|f |(r)))
(−Log(R− r))

≤ u

i.e. ρ(f) ≤ u. This is true for every s such that limr→R− Log(|f |(r))
(R − r)u = 0 and hence ρ(f) ≤ λ(f).

On the other hand, we note that, by definition of λ(f), either
λ(f) = 0 and then λ(f) ≤ ρ(f), or

λ(f) = sup{u ∈]0,+∞[ | lim sup
r→R−

Log(|f |(r))(R − r)u > 0}.

Thus, suppose that λ(f) > 0. Let us take u ∈]0, λ(f)[. We have a
number b > 0 such that

lim sup
r→R−

(Log(|f |(r)(R− r)u) ≥ b > 0.

Let us fix ε ∈]0, b[. There exists a sequence (rn)n∈N in ]0, R[ such
that limn→+∞ rn = R and such that, when n is big enough, we have
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b− ε ≤ Log(|f |(rn))(R − rn)
u, hence −uLog(R− rn) + Log(b− ε) <

Log(Log(|f |(rn))), therefore

u+
Log(b− ε)

(−Log(R− rn))
≤ Log(Log(|f |(rn))

(−Log(R− rn))
.

Consequently, lim supn→+∞
Log(Log(|f |(rn))
(−Log(R−rn)) ≥ u, therefore ρ(f) ≥ u.

But this holds for every u < λ(f). Thus, ρ(f) ≥ λ(f), and finally,
ρ(f) = λ(f). �

Theorem 33.9. Let f, g ∈ A∗(E). Then, σ(fg) ≤ σ(f) + σ(g).
If ρ(f) ≥ ρ(g), then σ(f) ≤ σ(fg). If ρ(f) = ρ(g), then
max(σ(f), σ(g)) ≤ σ(fg).

If ρ(f) = ρ(g) and σ(f) > σ(g), then σ(f+g) ≥ σ(f). If ρ(f+g) =
ρ(f) ≥ ρ(g), then σ(f + g) ≤ max(σ(f), σ(g)).

Proof. Let u = ρ(f), t = ρ(g) and suppose u ≥ t. When r is close
enough to R, we have max(Log(|f |(r)),Log(|g|(r)) ≤ Log(|f.g|(r)) =
Log(|f |(r)) + Log(|g|(r)), and by Theorem 1, we have ρ(fg) = u.
Therefore,

σ(fg) = lim sup
r→R−

(

Log(|f.g|(r))(R − r)u
)

≤ lim sup
r→R−

(

Log(|f |(r))(R − r)u
)

+ lim sup
r→R−

(

Log(|g|(r))(R − r)t
)

= σ(f) + σ(g).

On the other hand,

σ(f) = lim sup
r→R−

Log(|f |(r))(R − r)u ≤ lim sup
r→+R−

(Log(|fg|(r))(R − r)u.

But ρ(fg) = u, hence σ(f) ≤ σ(fg). Particularly, if ρ(f) = ρ(g),
then max(σ(f), σ(g)) ≤ σ(fg).

Now, suppose again that ρ(f) = ρ(g) = u and suppose
σ(f) > σ(g). Let u = ρ(f), b = σ(f). Then, b > 0.
Let (rn)n∈N be a sequence such that limn→+∞ rn = R and
limn→+∞(Log(|f |(rn))(R − rn)

u) = b. Since σ(g) < σ(f), we note
that when n is big enough, we have |g|(rn) < |f |(rn). Consequently,
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when n is big enough, we have |f + g|(rn) = |f |(rn), and hence

(1) lim
n→+∞(Log(|f + g|(rn)))(R − rn)

u) = b.

By definition of σ, we have σ(f + g) ≥ limn→+∞(Log(|f + g|(rn)))
(R − rn)

ρ(f+g). By Theorem 1, we have ρ(f + g) ≤ u, hence

σ(f + g) ≥ lim
n→+∞(Log(|f + g|(rn)))(R − rn)

ρ(f+g)

≥ lim
n→+∞(Log(|f + g|(rn)))(R − rn)

u

= lim
n→+∞Log(|f |(rn))(R − rn)

u = σ(f),

therefore by (1), σ(f + g) ≥ σ(f).
Finally, suppose now that ρ(f + g) = ρ(f) ≥ ρ(g). Let u = ρ(f)

and t = ρ(g). Then,

σ(f + g) = lim sup
r→R−

(Log(|f + g|(r)))(R − r)u

≤ max
(

lim sup
r→R−

(Log(|f |(r)))(R − r)u, lim sup
r→R−

(Log(|g|(r)))(R − r)u
)

≤ max
(

lim sup
r→R−

(Log(|f |(r)))(R − r)u, lim sup
r→R−

(Log(|g|(r)))(R − r)t
)

= max(σ(f), σ(g))

which ends the proof. �

Corollary 33.10. Let f, g ∈ A∗(E) be such that ρ(f) �= ρ(g). Then,

σ(f + g) ≤ max(σ(f), σ(g)).

Lemma 33.11. Let a ∈ [1,+∞[ and b ∈ [0,+∞[. Then, Log(a+b) ≤
Log(a) + Log(b+ 1).

Proof. Indeed, since a ≥ 1, we have Log(a+ b) ≤ Log(a(b+ 1)) =
Log(a) + Log(b+ 1). �

Theorem 33.12. Let f ∈ A∗(E). Then, θ(f) − 1 ≤ ρ(f) ≤ θ(f).
Moreover, if 0 < ψ(f) <∞, then ρ(f) = θ(f).
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Proof. We denote by | . |∞ the Archimedean absolute value of
R. Let us first choose u > θ(f). Then, limr→R− s(r, f)(R − r)u = 0.
Now, since limr→R− |f |(r) = +∞, we can take � ∈]0, R[ such that
|f |(�) > 1. Then we can take b > 0 such that

s(r, f) ≤ b(R − r)−u ∀r ∈ [�,R[.

Now, taking r ∈ [�,R[, by Theorem 22.26, we have

Log(|f |(r)) ≤ Log(|f |(�))) + s(r, f)
(

Log
(r

�

))

which leads to

Log(|f |(r)) ≤ Log(|f |(�))) + b(R− r)−u
(

Log
(r

�

))

,

hence

Log(Log(|f |(r))) ≤ Log
(

Log(|f |(�))) + b(R− r)−u
(

Log
(r

�

)))

,

therefore, by Lemma 33.11, we can derive
(1)

Log(Log(|f |(r))) ≤ Log(Log(|f |(�)))+Log
(

b(R−r)−u
(

Log
(r

�

))

+1
)

.

Now, since u > 0, there obviously exists h ∈ [�,R[ such that b(R −
r)−u ≥ 1 ∀r ∈ [h,R−[, therefore by Lemma 33.11 again,

Log(Log(|f |(r))) ≤ Log(Log(|f |(�))) + Log
(

b(R − r)−u(Log
(r

�

))

+ Log(1 + 1)

i.e.
(2)

Log(Log(|f |(r))) ≤ Log(Log(|f |(�))) + Log(b)− sLog(R − r)

+ Log((Log( r� )) + Log(2)

Consequently, by (2), we obtain

Log(Log(|f |(r)))
−Log(R− r)

≤ Log(Log(|f |(�)))
−Log(R − r)

+
Log(b)

−Log(R − r)

+ u+
Log(Log( r� )) + Log(2)

−Log(R− r)
.
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We can check that

lim
r→R−

Log(Log(|f |(�))) + Log(b)

−Log(R− r)
= lim

r→R−

Log(Log( r� ) + Log(2)

−Log(R− r)
= 0,

and hence lim supr→R−
Log(Log(|f |(r)))

−Log(R−r) ≤ u. Consequently, choosing

ε > 0, there exists u ∈ [�, 1[ such that Log(Log(|f |(r)))
−Log(R−r) ≤ u + ε ∀r ∈

[u′, R[, and hence ρ(f) ≤ u+ε. But since that holds for every u > θ(f)
and for every ε > 0, we have ρ(f) ≤ u and hence ρ(f) ≤ θ(f).

Let us now show that ρ(f) ≥ θ(f) − 1. By Theorem 22.26, we
have

(3) Log(|f |(r))− Log(|f |( r2R )) ≥ s( r
2

R , f)(Log(r)− Log( r
2

R ))

= ( r
2

R , f)(Log(R)− Log(r)).

Consider now a number s < θ(f) and a sequence (rn)n∈N of
]0, R[ such that limn→+∞ rn = R and such that lim supn→+∞ s(rn, f)
(R − rn)

s ≥ b > 0. Then, by (3), we have

Log(|f |(rn)) ≥ b(Log(R)− Log(rn))
(

R− r2n
R

)s .

Consequently,

Log(Log(|f |(rn))) ≥ Log(b) + Log(Log(R)− Log(rn)))

− s
(

Log(R − rn) + Log(R+ rn)
)

+ 2uLog(R),

and therefore

Log(Log(|f |(rn)))
−Log(R− rn)

≥ Log(b)

−Log(R− rn)
+

Log(Log(R)− Log(rn))

−Log(R− rn)

+ u

(

1 +
Log(R+ rn) + 2Log(R)

−Log(R− rn)

)

.

Clearly,

lim
n→+∞

( Log(b)

Log(R − rn)

)

= lim
n→+∞

Log(R+ rn) + 2Log(R)

Log(R− rn)
= 0,
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and by elementary reasonings, we can check that

lim
t→R−

Log(Log(R)− Log(t))

Log(R− t)
= 1,

therefore

lim
n→+∞

Log(Log(R)− Log(rn))

Log(R− rn)
= 1.

Consequently,

lim sup
n→+∞

Log(Log(|f |(rn)))
−Log(R− rn)

≥ u− 1,

and therefore

lim sup
r→R−

Log(Log(|f |(r)))
−Log(R− r)

≥ u− 1.

That holds for every u < θ(f) and shows that if θ(f) < +∞, then
ρ(f) ≥ θ(f)−1. Next, if θ(f) = +∞, then we would have ρ(f) = +∞,
which is excluded by hypothesis since f ∈ A∗(E). Consequently, the
inequality ρ(f) ≥ θ(f)− 1 is established.

Let us now show that ρ(f) ≥ θ(f) when ψ(f) < +∞. Suppose
θ(f) > ρ(f) and let u ∈]ρ(f), θ(f)[. Then, by Remark 1, we have
lim supr→R− s(r, f)(R − r)s = +∞, but then lim supr→R− s(r, f)
(R − r)ρ(f) = +∞, i.e. ψ(f) = +∞, a contradiction. There-
fore, θ(f) ≤ ρ(f), and hence whenever ψ(f) < +∞, we have
θ(f) = ρ(f). �

Theorem 33.12 obviously suggests the following conjecture:

Conjecture. Let f ∈ A∗(E). Then, ρ(f) = θ(f).

Theorem 33.13 is much different from the relations concerning
ρ, σ, ψ obtained for entire functions.

Theorem 33.13. Let f ∈ A∗(E) be such that ψ(f) < +∞. Then,
σ(f) = 0.

Proof. Without loss of generality, we can assume that f(0) �= 0.
Let us fix ε > 0 and let R′ be such that Log(R) − Log(R′) = ε. Let
(an)n∈N be the sequence of zeros of f , for each n ∈ N, let wn be the
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order of an, and let rn = |an|. Now, let u be the biggest integer n
such that rn < R′ and for each r > 0, let m(r) be the biggest integer
n such that rn ≤ r.

Let Au =
∑u

n=0wn and let Bu = Log(|f(0)|) +
∑u

n=0 wn(Log(R
′) − Log(rn)). Let us take r ∈]R′, R[. Now, we can

write

σ(f, r)

ψ(f, r)
=
Bu +

∑m(r)
n=u+1wn(Log(r)− Log(rn))

Au +
∑m(r)

n=u+1wn
.

But by hypothesis, Log(r)− Log(rn) ≤ ε ∀n ≥ u, hence

σ(f, r)overψ(f, r) ≤ Bu + ε
∑m(r)

n=u+1wn

Au +
∑m(r)

n=u+1wn
.

Let us put φ(r) =
∑m(r)

n=u+1wn. Thus,

σ(f, r)

ψ(f, r)
≤ Bu + εφ(r)

Au + φ(r)
.

But since f belongs to A∗(D), it has infinitely many zeros in D,
hence φ(r) is an increasing unbounded function tending to +∞ when
r tends to R. Consequently, it is obvious that

lim
r→R

σ(f, r)overψ(f), r = 0.

Therefore, if lim supr→R− ψ(f, r) < +∞, then σ(f) = 0. �
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Chapter 34

The Set Mult(Ab(d(0, R
−))

Throughout this chapter, we fix R ∈]0,+∞[, we denote by D the
disk d(0, R−) and by A the K-algebra Ab(d(0, R

−)).
In this chapter, we examine the continuous multiplicative norms

and semi-norms on A. Following a work by J. Araujo [6], we show
that there exist continuous multiplicative semi-norms whose kernel is
a prime closed ideal that is neither null nor a maximal ideal. Theorem
34.1 is easily checked.

Theorem 34.1. Each circular filter of diameter r ∈]0, R[ secant with
the disk d(0, R−) defines a continuous multiplicative norm on A. The
norm ‖ . ‖D is a multiplicative norm on A. Each ultrafilter U on D
defines an element ϕU ∈ Mult(A, ‖ . ‖) as ϕU (f) = limU |f(x)|.
Proof. Let F be a circular filter of diameter r ∈]0, R[, secant
with D. There exists a disk D′ of diameter r′ ∈ [r,R[ such that
F is secant with D′. And then, by Proposition 14.12, A is included
in H(D′). Consequently, ϕ0,r′ belongs to Mult(H(D′), ‖ . ‖D′) and
therefore belongs to Mult(A, ‖ . ‖). On the other hand, by Theorem
14.20, ‖ . ‖D is a multiplicative norm defined on A. �

Thus, given an ultrafilter U on D, the function |f(x)| from D
to [0, ‖f‖] has a limit ϕU (f) which clearly defines an element of
Mult(A, ‖ . ‖).
Definition. Two filters F and G on a subset S of K are said to be
contiguous if for every F ∈ F and G ∈ G we have δ(F,G) = 0.
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Proposition 34.2 is immediate due to the uniform continuity of
functions in A:

Proposition 34.2. Let U and V be two contiguous ultrafilters on D.
Then, ϕU = ϕV .

Proof. Let f ∈ A, and let l = ϕU |(f) and m = ϕV(f). Let ε
be > 0. Since f is uniformly continuous, we can find η > 0 such
that |f(x) − f(y)| ≤ ε ∀x, y ∈ D such that |x − y| ≤ η. Let us
take F ∈ U and G ∈ V such that |f(x) − l|∞ ≤ ε ∀x ∈ F and
|f(x)| −m|∞ ≤ ε ∀y ∈ G. But since U and V are contiguous, there
exists x ∈ F and y ∈ G such that |x − y| ≤ η, hence |l −m|∞ ≤ 3ε.
That holds for every ε > 0, hence l = m. �

Remark. It seems very hard to know whether two ultrafilters U and
V on D such that ϕU = ϕV are contiguous.

Definition. Similar to the definition for analytic elements, an ele-
ment f ∈ A is said to be quasi-invertible if it factorizes in the form
Pg with P ∈ K[x] and g an invertible element of A.

By Corollary 14.16 and Theorem 14.19, we have the following
obvious lemma:

Lemma 34.3. An element f ∈ A is quasi-invertible if and only if it
has finitely many zeros.

Notation. Let Y be the filter on d(0, R−) admitting for basis the
family of sets of the form d(0, R−)\⋃∞

n=1(
⋃qn
j=1 d(an,j, r

−
n )) with

|aj,n| = rn < rn+1 < R ∀n ∈ N and limn→∞ rn = R.

Theorem 34.4. For every f ∈ A, ‖f‖D = limY |f(x)|.
Proof. Let f ∈ A, let (C(0, rn))n∈N be the sequence of cir-
cles of center 0 containing zeros of f and for every n ∈ N,
and let an,1, . . . , an,qn be the zeros of f in C(0, rn). Then we can
see that |f(x)| = |f |(|x|) ∀x /∈ d(0, R−)\⋃∞

n=1(
⋃qn
j=1 d(an,j, r

−
n )).

Next, by Theorem 14.20, we have ‖f‖D = limr→R |f |(r) which ends
the proof. �

Theorem 34.5. Let φ ∈ Mult(A, ‖ . ‖D) and assume that its restric-
tion ϕF to H(D) is not ‖ . ‖D. Then, φ(f) = limF |f(x)| ∀f ∈ A.
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Proof. By hypothesis, F is a circular filter of diameter l < R.
Suppose first l = 0. Then F is the filter of neighborhoods of a point
a ∈ D. Let r ∈]0, R[. Then f belongs to H(d(a, r)) and we show that
φ(h) ≤ ϕF (h) ∀h ∈ A.

Suppose first f is invertible. Since f has no zero in D, by Theorem
22.16, |f(x)| is a constant b > 0. Consequently, ‖f‖D = b = ϕF (f).
Suppose φ(f) �= b. Then φ(f) < b because b = ‖f‖D. Now consider
h = 1

f . Since ‖ . ‖D is multiplicative, we see that φ(h) > ‖h‖D, a
contradiction. Consequently, φ(f) = ϕF (f).

Suppose now f is quasi-invertible. Then f is of the form Pg
with P ∈ K[x] and g invertible in A. Then, φ(f) = φ(P )φ(g) =
ϕF (P )ϕF (g) = ϕF (f).

We now suppose that f is not quasi-invertible. By Lemma 34.3,
f has a sequence of zeros (an)n∈N in D, each having a multiplicity
order un. By Corollary 22.19, we have limn→+∞ |an| = R, so we can
assume |an| ≤ |an+1| ∀n ∈ N. Let t = φ(f) and s = limF |f(x)|.

First, we show that t ≤ s.
Suppose first that F is secant with a disk d(a, r) which con-

tains none of the an. By Corollary 22.29, we have
‖f‖d(a,r)
‖f‖D =

∏∞
n=0

( |an−a|
R

)un
, hence inside the disk d(a, r), |f(x)| is a constant

equal to ‖f‖D
∏∞
n=0

( |an−a|
R

)un
, and therefore,

(1) s = ‖f‖D
∞
∏

n=0

( |an − a|
R

)un
.

For each q ∈ N, let fq = f∏q
n=0(x−an)un

and let lq =
∑q

k=0 uk. So,

clearly, ‖fq‖D = ‖f‖D
Rlq

∀q ∈ N.

Now, since φ(P ) = ϕF (P ) ∀P ∈ K[x], we have
φ(
∏q
n=0(x− an)

un) =
∏q
n=0 |an − a|un , hence φ(fq) = t∏q

n=0 |an−a|un
.

But since φ(fq) ≤ ‖fq‖D, that yields
t

∏q
n=0 |an − a|un ≤ ‖fq‖D =

‖f‖D
Rlq

∀q ∈ N,

hence

tRlq
∏q
n=0 |an − a|un ≤ ‖f‖D ∀q ∈ N.
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Since this is true for every q ∈ N, we can derive

t
∞
∏

n=0

( Run

|an − a|un
)

≤ ‖f‖D,

hence by (1), t‖f‖Ds ≤ ‖f‖D and therefore t ≤ s.
Now, consider the case when there exists no disk d(a, r) such that

none of the an lie in d(a, r) and such that F is secant with that disk.
Since limn→∞ |an| = R, F is a filter admitting a center α. Let ρ be
its diameter: of course ρ < R because ϕF is not ‖ . ‖D. Consequently,
d(α, ρ) contains finitely many zeros of f . Suppose |aj −α| < ρ when-

ever j = 0, . . . , q. Let h = f∏q
j=0(x−aj)uj

. Then, ϕF (h) = s∏q
j=0 |aj−α|uj

and φ(h) = t∏q
j=0 |aj−α|uj

. Thus, we are led to the same problem with

h. Setting s′ = s∏q
j=0 |aj−α|uj

, t′ = t∏q
j=0 |aj−α|uj

, we have t′ ≤ s′, hence
t ≤ s in all cases and therefore we have proven

(2) φ(h) ≤ ϕF (h) ∀h ∈ A.

Suppose now that for some f ∈ A, we have φ(f) < ϕF (f). Let r ∈
]l, R[. The filter F is then secant with a unique disk d(a, r). Without
loss of generality, we can suppose that 0 belongs to d(a, r) and then
we can take a = 0. Let f(x) =

∑∞
n=0 bnx

n. For every q ∈ N, let
gq(x) =

∑q
n=0 bnx

n. We note that when q is big enough we have
ϕF (gq) = supn∈N |bn|rn. Set w = supn∈N |bn|rn. Now ϕF (f − gq) ≤
supn>q |bn|rn, therefore limq→+∞ ϕF (f − gq) = 0, and hence, by (2),

(3) lim
q→+∞φ(f − gq) = 0.

So, we can take q such that ϕF (f − gq) < ϕF (f), and hence, by (2),
φ(f − gq) < ϕF (f). But since gq is a polynomial, we have φ(gq) =
ϕF (gq), hence φ(gq) > φ(f). Consequently, φ(f − gq) = φ(gq) = w
when q is big enough, a contradiction to (3). �

By Corollary 22.29, we can derive Lemma 34.6:

Lemma 34.6. Let f ∈ A be not quasi-invertible such that f(0) = 1
and let (an)n∈N be the sequence of zeros with respective multiplicity

qn. Then the series
∑∞

n=0 qn log
(

R
|an|
)

converges to log ‖f‖D.



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch34 FA1 page 325

The Set Mult(Ab(d(0, R
−)) 325

Lemma 34.7. Let φ ∈ Mult(A, ‖ . ‖D) satisfy φ(P ) = ‖P‖D ∀P ∈
K[x]. Every quasi-invertible element f ∈ A also satisfies φ(f) =
‖f‖D.

Proof. First, suppose f ∈ A, invertible in A. Then, 1 =
φ(f)φ(f−1). But φ(f) ≤ ‖f‖D, φ(f−1) ≤ ‖f−1‖D, hence both
inequalities must be equalities. Now, take f = Pg ∈ A which is
quasi-invertible, with P ∈ K[x] and g ∈ A, invertible in A. Then,
φ(f) = φ(P )φ(g) = ‖P‖D‖g‖D = ‖Pg‖D = ‖f‖D. �

Theorem 34.8. Let φ ∈ Mult(A, ‖ . ‖D) be a norm and have a
restriction to K[x] equal to ‖ . ‖D. Then, φ(f) = ‖f‖D ∀f ∈ A.

Proof. Suppose the claim is wrong. Suppose that there exists
f ∈ A such that φ(f) �= ‖f‖D. By Lemma 10.5, we have φ(f) <
‖f‖D. Actually, without loss of generality, we can choose f ∈ A
such that φ(f) < 1 ≤ ‖f‖D and that f(0) �= 0. By Lemma
34.7, f is not quasi-invertible, hence f has a sequence of zeros
(an)n∈N in D, with |an| ≤ |an+1| and limn→+∞ |an| = R. For each
n ∈ N, let qn be the multiplicity order of an. By Lemma 34.6,

we know that
∑∞

n=0 qn log
(

R
|an|
)

< +∞. Consequently, by Lemma

34.6, there exists a sequence tn of strictly positive integers satisfying
tn ≤ tn+1, n ∈ N,

limn→∞ tn = +∞,
∑∞

n=0 tnqn log
(

R
|an|
)

< +∞.

By Theorem 27.14, there exists a function g ∈ A(d(0, R−))
admitting each an as a zero of order sn ≥ tnqn such that

g(0) = f(0) and |g|(|an|) ≤ 2
∣

∣

∣

∏n
k=0

(

an
ak

)tnqn
∣

∣

∣ ∀n ∈ N. Consequently,

limn→+∞ |g|(|an|) < +∞, and hence g belongs to A.
Now, for each n ∈ N and for each k = 0, . . . , n, set un,k =

max(0, tnqk − sk), and let Pn(x) =
∏n
k=0(

x
ak

− 1)un,k . Since the
sequence tn is increasing, we can check that for each fixed n ∈ N,
each zero ak of f tn is a zero of Png of order ≥ tnqk: indeed, this
is obvious, by definition of g, for all k ≥ n and when k < n, the
order of ak as a zero of Png is at least un,k + sk = max(sk, tnqk).
Consequently, by Theorem 27.1, in the ring A, we can write Png in
the form f tnσn, with σn ∈ A.



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch34 FA1 page 326

326 Value Distribution in Ultrametric Analysis and Application

We have ‖σn‖D‖f tn‖D = ‖Pn‖D‖g‖D, hence, since ‖f‖D ≥ 1, we
can see that

(1) ‖σn‖D ≤ ‖Pn‖D‖g‖D.
On the other hand, since the restriction of φ to K[x] is ‖ . ‖D, we
have φ(Pn) = ‖Pn‖D, hence φ(Png) = φ(Pn)φ(g) = ‖Pn‖Dφ(g), and
therefore, by (1), we have

‖Pn‖Dφ(g) = φ(Png) = φ(f tnσn) = (φ(f))tnφ(σn) ≤ (φ(f))tn‖σn‖D
≤ (φ(f))tn‖Pn‖D‖g‖D,

and hence φ(g) ≤ (φ(f))tn‖g‖D. Now, since φ(f) < 1, we can see
that g = 0, a contradiction. That ends the proof of Theorem 34.8.�

Let us now look at the maximal spectrum of A.

Theorem 34.9. Let M be an ideal of A. Then M is a maximal
ideal of codimension 1 if and only if it is of the form (x − a)A with
a ∈ D.

Proof. Given a ∈ D, the ideal (x − a)A is obviously a maximal
ideal of codimension 1. because the mapping χa from A to K defined
as χa(f) = f(a) maps A onto K.

Now, let M be a maximal ideal of codimension 1 and let τ be the
K-algebra homomorphism from A onto K admitting M for kernel.
Let a = τ(x). Since τ(x − a) = τ(x) − a is not invertible, we have
|a| < 1 because if |a| ≥ 1, then by Theorem 22.20, x− a is invertible
in A. Thus, a belongs to D. By Corollary 10.10, we know that τ
is continuous, hence τ(f) = f(a) ∀f ∈ A. Consequently, Ker(τ) =
(x− a)A. �

Notation. We denote by Mult1(A, ‖ . ‖) the set of multiplicative
semi-norms of A whose kernel is a maximal ideal of codimension 1.

By Theorems 34.5 and 34.9, we have the following corollary:

Corollary 34.10. Let φ ∈ Mult(A, ‖ . ‖)\Mult1(A, ‖ . ‖). If φ is not
a norm, its restriction to K[x] is ‖ . ‖D.
Remark. A admits maximal ideals of infinite codimension. The fol-
lowing theorem shows such examples.
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Theorem 34.11. Let (an)n∈N be a sequence of D such that
limn→+∞ |an| = 1 and

∏

n∈N |an| > 0 and let I be the ideal of the
f ∈ A such that limn→+∞ f(an) = 0. Then I is not null and is
included in a maximal ideal of infinite codimension.

Proof. Let T be the divisor of D defined by the sequence (an)n∈N.
By Theorem 27.14, there exists an analytic function f in D such that
f(an) = 0 ∀n ∈ N and such that |f |(r) ≤ |T |(r) + 1 ∀r ∈]0, R[. But
since

∏

n∈N |an| > 0, we can check that |T |(r) is bounded in ]0, R[
because

lim
r→R

|T ||(r) = 1
∏

n∈N |an| .

Consequently, f is bounded in D and hence f ∈ A. Therefore, I is
not null. But clearly, it is not included in any maximal ideal of the
form (x − a)A. Consequently, it is included in a maximal ideal of
infinite codimension. �



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch34 FA1 page 328



November 12, 2024 15:21 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch35 FA2 page 329

Chapter 35

The Corona Problem on Ab(d(0, 1
−))

The Corona conjecture, stated by Kakutani in 1941 in the field C,
was solved by L. Carlesson in 1962 [28]. Consider the open unit disk
O in C and the Banach algebra B of bounded holomorphic functions
in O. Each point of O obviously defines a maximal ideal of B. On the
other hand, all maximal ideals are of codimension 1 and the Gelfand
transform defines a topology on the maximal spectrum. The question
was whether the set of maximal ideals defined by points of O was
dense inside the whole spectrum of maximal ideals, with respect to
the Gelfand topology.

Consider now the situation in our field K. Let us keep the nota-
tion introduced in Chapter 34 but put D = d(0, 1−) and A =
Ab(d(0, 1

−)). The maximal ideals of A of codimension 1 are defined
by the points of D, but looking for a Gelfand topology on the max-
imal spectrum makes no sense because of maximal ideals of infinite
codimension. However, the only link existing between the various
kind of maximal ideals comes from continuous multiplicative semi-
norms. For simplicity, we denote ‖ . ‖ the Gauss norm on A. Here,
we have the topology of pointwise convergence on Mult(A, ‖ . ‖) and
we can ask whether the set of continuous multiplicative semi-norms
whose kernel is a maximal ideal of codimension 1 is dense in the
whole set of continuous multiplicative semi-norms whose kernel is a
maximal ideal, or even whether it is dense in the whole set of all
continuous multiplicative semi-norms. Both questions are very hard.
Here we solve the first with the use of the ultrametric holomorphic
functional calculus [40], [45], [49], [53]. A partial answer is given in

329
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[48] when the field is spherically complete. We have generalized it by
using Banachic processes.

Notation. Recall that we denote by U the disk d(0, 1). Let H be
the family of ideals J of U [x] such that J ∩ U �= {0}, and, given an
integer s ∈ N∗, let Hs be the set of J ∈ H generated by s elements.
For every ideal J ∈ H, we put t(J) = sup{|x| | x ∈ J∩U} and �(J) =
inf{supf∈J |f(x)| | x ∈ V } and we denote by u(J) the number such

that t(J) = �(J)u(J). Finally, we put m(s) = sup{u(J) | J ∈ Js}.
Henceforth, given f1, . . . , fs ∈ H(U) such that ‖fi‖ < 1 ∀i = 1, . . . , s,
we set w(f1, . . . , fs) = inf{max1≤i≤s |fi(x)| | x ∈ U}. Moreover, given
f1, . . . , fs ∈ A, we set λ(f1, . . . , fs) = inf{max1≤i≤s |fi(x)| | x ∈ D}.

Proposition 35.2 is also called Corona Statement in dimension 1.
However, on a non-archimedean field, it is not at all proven to be
equivalent to a property of density for maximal Proposition 35.1 is
proved in [91] and is indispensable for further results.

Proposition 35.1. Let J be a finitely generated ideal of U [x] such
that J ∩ U �= {0}. Then, m(s) = 2 ∀s ≥ 2.

Proposition 35.2. Let s ∈ N∗. For any f1, . . . , fs ∈ A satisfying
‖fi‖ < 1 (1 ≤ i ≤ s) and λ(f1, . . . , fs) > 0, there exist g1, . . . , gs ∈ A
satisfying

∑s
i=1 figi = 1 and ‖gi‖ < λ(f1, . . . , fs))

−2.

Proof. As the first step, we prove that for any f1, . . . , fs ∈ H(U)
satisfying ‖fi‖ < 1 ∀i = 1, . . . , s and w(f1, . . . , fs) > 0, there
exist g1, . . . , gs ∈ H(d(0, R)) satisfying

∑s
i=1 figi = 1 and ‖gi‖ <

(w(f1, . . . , fs))
−2 ∀i = 1, . . . , s.

Since K[x] is dense in H(U), we can find polynomials P1, . . . , Ps ∈
K[x] such that ‖Pi − fi‖ ≤ (w(f1, . . . , fs))

2 ∀i = 1, . . . , s. Since
w(f1, . . . , fs) > 0, by Corollary 24.13, there exists no maximal
ideal M of H(U) containing the ideal generated by f1, . . . , fs. Con-
sequently, there exist g1, . . . , gs ∈ H(U) such that

∑s
i=1 gifi = 1.

Therefore, we can define h1, . . . , hs ∈ H(U) such that ‖hi‖ ≤ 1 ∀
i = 1, . . . , s and such that

∑s
i=1 hifi is an element P0 ∈ U . Let I

be the ideal of U [x] generated by P0, P1, . . . , Ps. Since I ∩ U �= {0},
we have 0 < t(I) < �(I). Consequently, by Proposition 35.1, we can
find Q0, Q1, . . . , Qs ∈ U [x] such that

∑s
i=0QiPi is an element a ∈ U
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satisfying |a| ≥ (w(f1, . . . , fs))
m(s) = (w(f1, . . . , fs))

2. Then,

s
∑

i=1

a−1fi + a−1Q0

s
∑

i=1

hifi = 1 +
s
∑

i=1

a−1Qi(fi − Pi).

By construction, we have ‖∑s
i=1 a

−1Qi(fi − Pi)‖ < 1, and
hence 1 +

∑s
i=1 a

−1Qi(fi − Pi) is a unit u in H(U). So,
∑s

i=1 u
−1
(

a−1(Qi +Q0hi)
)

fi = 1, and hence for every i = 1, . . . , s,
we have ‖u−1a−1(Qi + Q0hi)‖ ≤ (w(f1, . . . , fs))

−2 ∀i = 1, . . . , s.
Thus, putting gi = u−1

(

a−1(Qi+Q0hi)
)

, i = 1, . . . , s, we have proven
that for any f1, . . . , fs ∈ H(U) satisfying ‖fi‖ < 1 ∀i = 1, . . . , s
and w(f1, . . . , fs) > 0, there exist g1, . . . , gs ∈ H(U) satisfying
∑s

i=1 figi = 1 and ‖gi‖ < (w(f1, . . . , fs))
−2 ∀i = 1, . . . , s.

Now, let us prove the conclusion of Proposition 35.2. So, we
take f1, . . . , fs ∈ A. Let (un)n∈N be a sequence in K such that
0 < |un| < |un+1| < · · · < 1 and limn→+∞ |un|n = 1. For each
i = 1, . . . , s, set fi,n(x) = fi(unx). Since each un belongs to D,
each fi,n is a power series of radius r > 1 and hence belongs to
H(U). Then by the claim we have just proven, for each n ∈ N,
there are gi,n ∈ H(U) such that

∑s
i=1 gi,nfi,n = 1 and ‖gi,n‖ <

(w(f1,n, . . . , fs,n))
−2. Now, each gi,n is a power series

∑+∞
k=0 gi,n,kx

k.

Let hi,n be the power series
∑2n

k=0 gi,n,k(un)
−kxk. Then we have

‖hi,n‖ < |un|−2n(w(f1, . . . , fs))
−2 and hence

∑s
i=1 hi,nfi is of the

form 1 + xntn(x) with tn ∈ H(U).
We get to a conclusion thanks to a Banach process. Let E be the

Banach space of bounded sequences in K provided with the classic
norm ‖(an)n∈N‖0 = supn∈N |an| and let C be the closed sub-space
of converging sequences. For every sequence (an)n∈N ∈ C, we put
L((an)) = limn→+∞ an.

Suppose first that K is spherically complete, there exists a lin-
ear map of norm 1 from E to K expanding L to E . Let ˜L be this
continuation of L. Set hi,n =

∑+∞
k=0 x

k and let li,k be the sequence

(hi,n,k)1≤n. For each pair (i, k), we can now define gi,k = ˜L(li,k) and
put gi =

∑+∞
k=0 gi,kx

k. Since ˜L is of norm 1, each sequence gi,k is
bounded and hence gi belongs to A. Moreover, by construction, gi
satisfies ‖gi‖ < (λ(f1, . . . , fs))

−2 ∀i = 1, . . . , s. Now, we have

(1)
s
∑

i=1

gifi =
+∞
∑

k=0

⎛

⎝

s
∑

i=1

(
k
∑

j=0

˜L(li,j)fi,k−j)
⎞

⎠xk
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and for each fixed k ∈ N,

s
∑

i=1

⎛

⎝

k
∑

j=0

˜L(li,j)fi,k−j

⎞

⎠ = ˜L
⎛

⎝

s
∑

i=1

(

k
∑

j=0

fi,jhi,n,k−j)

⎞

⎠.

Consequently, since

s
∑

i=1

hi,nfi = 1 + xntn(x),

we can check that

lim
n→+∞

⎛

⎝

s
∑

i=1

(

k
∑

j=0

fi,jhi,n,k−j)

⎞

⎠ = 1 whenever k = 0

and

lim
n→+∞

⎛

⎝

s
∑

i=1

(
k
∑

j=0

fi,jhi,n,k−j)

⎞

⎠ = 0 whenever k �= 0.

Consequently, since ˜L extends to E the limit on C, we have

˜L
⎛

⎝

s
∑

i=1

(

k
∑

j=0

fi,jhi,n,k−j)

⎞

⎠ = 1 whenever k = 0

and

˜L
⎛

⎝

s
∑

i=1

(

k
∑

j=0

fi,jhi,n,k−j)

⎞

⎠ = 0 whenever k �= 0.

Therefore, by (1), we obtain
∑s

i=1 gifi = 1.
Consider now the general case when K is no longer supposed

to be spherically complete. Consider a spherically complete alge-
braically closed extension ̂K of K. Set B = λ(f1, . . . , fs))

−2. Then

by what forgoes, there exist h1, . . . , hs ∈ ̂A such that
∑s

j=1 hjfi = 1

and max1≤j≤s ‖hj‖ < B.

Inside ̂A, let E be the closed subspace of the K-Banach space
generated by 1 and all coefficients of all the hj. Let us take ε > 0
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such that (1+ε)max1≤j≤s ‖hj‖ ≤ B. Since E is a K-Banach space of
countable type, there exists a K-linear map � from E to K satisfying
�(1) = 1 with a norm ‖�‖ satisfying ‖�‖ ≤ 1 + ε. Let T be the closed

subspace of ̂A consisting of the power series with coefficients in E.
Then T is a A-module and then we have an extension L of � from T
to A defined as L (∑∞

k=0 ekx
k
)

=
∑∞

k=0 �(ek)x
k which is A-linear and

its norm satisfies ‖L‖ ≤ 1 + ε. Now, putting gj = L(hj), 1 ≤ j ≤ s,
we have

∑s
i=1 figi = 1 and max1≤j≤s ‖gj‖ < B. �

Notation. Let I be an ideal of A. For each f ∈ A and for each ε > 0,
we set D(f, ε) = {x ∈ D | |f(x)| ≤ ε}.

Given φ ∈ Mult(A, ‖ . ‖), f, . . . , fq ∈ A and ε > 0, we denote
by V(φ, f1, . . . , fq, ε) the set {ψ ∈ Mult(A, ‖ . ‖)} such that |φ(fj)−
ψ(fj)|∞ ≤ ε, j = 1, . . . , q.

Corollary 35.3. Let I be a proper ideal of A. The family
(D(f, ε), f ∈ I, ε > 0) generates a filter F on D such that
I ⊂ J (F).

Proof. Let (D(fj, εj), 1 ≤ j ≤ n be such that
⋂n
j=1D(f, εj) = ∅.

Let ε = min1≤j≤n(εj) and let Fj = D\D(fj, ε), 1 ≤ j ≤ n. Then,
⋃n
j=1 Fj = D, hence by Theorem 35.2, 1 ∈ I, a contradiction. �

By Theorem 34.9 and Corollary 35.3, we can derive Corollary
35.4:

Corollary 35.4. Let M be a maximal ideal of A. Then there exists
an ultrafilter U on D such that M = J (U). Moreover, if U converges,
M is of codimension 1. If U does not converge, then M is of infinite
codimension.

Proof. Indeed, let M be a maximal ideal of A. The family
(D(f, ε), f ∈ U , ε > 0) generates a filter F on D such that
M ⊂ J (U). But since M is a maximal ideal, then M = J (U).
The conclusion on the codimension comes from Theorem 34.9. �

Conversely, now we see that certain ultrafilters define maximal
ideals. First, we need a few basic results.

Definition and notation. We denote by W the filter on D admit-
ting for basis the annuli Γ(0, r, 1). A sequence (an)n∈N is called a
regular sequence if infj∈N

∏

n∈N

n�=j
|an − aj | > 0.
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An ultrafilter U is said to be regular if it is thinner than a regular
sequence.

We denote by B(N,K) the K-algebra of bounded sequences of K.
Let S = (an)n∈N be a sequence in D thinner than W. We denote
by TS the mapping from A into B(N,K) which associates with each
f ∈ A the sequence (f(an)n∈N), and we denote by Σ(S) the set of
ultrafilters thinner than S and by I(S) the ideal of the f ∈ A such
that f(an) = 0 ∀n ∈ N.

From Corollary 4.6 of [91], we have Theorem 35.5 which is purely
technical:

Theorem 35.5. Let S be a sequence in D thinner than W. Then TS
is surjective on B(N,K) if and only if S is regular.

Notations. Let S be a regular sequence. Since TS is surjective,
there exists a K-algebra isomorphism ΛS from A

Ker(TS)
onto B(N,K),

where Ker(TS) = I(S).
For every ultrafilter G on N, we denote by Θ(G) the ideal of

B(N,K) consisting of sequences (an)n∈N such that limG an = 0.
Theorem 35.6 is also classical:

Theorem 35.6. Θ is a bijection from the set of ultrafilters on N onto
Max(B(N,K)). The restriction of Θ to the subset of non-principal
ultrafilters on N is a bijection from this set onto the set of non-
principal maximal ideals of B(N,K). Moreover, a maximal ideal of
B(N,K) is principal if and only it is of codimension 1.

Theorem 35.7. Let S be a regular sequence and let M be a maximal
ideal of A. The following two statements are equivalent:

(i) I(S) ⊂ M.
(ii) There exists an ultrafilter U thinner than S such that

M = J (U).
Moreover, the mapping G which associates with each ultrafilter
U thinner than S the ideal J (U) is a bijection from Σ(S) onto
the set of maximal ideals of A containing I(S).

Proof. Obviously, (ii) implies (i). Thus, suppose (i) true. Let S =
(an)n∈N. By Theorem 35.6, the isomorphism ΛS makes a bijection
G from the set of maximal ideals of A containing I(S) to the set of
maximal ideals of B(N,K), and more precisely, it makes a bijection
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from the set of maximal ideals of A of infinite codimension containing
I(S) to the set of maximal ideals of B(N,K) of infinite codimension
which actually are the non-principal maximal ideals of B(N,K). Let
N = G(M). By Theorem 35.5, there exists an ultrafilter U on N such
that N is the ideal of the bounded sequences tending to zero along
U . Now, let Ξ be the natural bijection from the set of non-principal
ultrafilters of N onto the set of ultrafilters thinner than S and let
V = Ξ(U). Then, N = ΛS(M), hence M = I(S). Moreover, in this
way, we can see that G ◦Ξ−1 is a bijection from Σ(S) onto the set of
maximal ideals of A containing I(S).
Corollary 35.8. If U is a regular ultrafilter on D, J (U) is a maxi-
mal ideal of A.

Proposition 35.9. Let (B, ‖ . ‖) be a unital commutative ultra-
metric K-Banach algebra. Suppose there exist � ∈ B, φ, ψ ∈
Mult(B, ‖ . ‖) such that ψ(�) < φ(�), sp(�) ∩ Γ(0, ψ(�), φ(�)) = ∅
and there exists ε ∈]0, φ(�) − ψ(�)[ satisfying further ‖(� − a)−1‖ ≤
M ∀a ∈ Γ(0, ψ(�), φ(�) − ε). Then there exists g ∈ B such that
ψ(g) = 1, φ(g) = 0.

Proof. By Theorem 10.6, we have ‖ � ‖si = sup{θ(�) | θ ∈
Mult(B, ‖ . ‖)}.

Let s = ψ(�), t = φ(�) − ε. Consider now the construction
made in Theorem 21.15 by taking s = r0, Q = ‖�‖, R = t − ε,
and l = 1

M and consider the sequence (an,j)n∈N,1≤j≤qn and the set

E = d(0, Q−)\
(

⋃

n∈N(∪qnj=1d(an,j, l
−))
)

defined in Theorem 21.15.

Then, in H(E), we have

(1)
∥

∥

∥

1

x− b

∥

∥

∥

E
≤ l ∀b ∈

⋃

n∈N
(∪qnj=1d(an,j , l

−)).

There exists a natural homomorphism σ from R(E) into B such
that σ(x) = �. And since Q = ‖�‖ and ‖(�−b)−1‖ ≤M ∀b ∈ Γ(0, s, t),
by Theorem 15.1 and by (1), σ is clearly continuous with respect
to the norms ‖ . ‖E of R(E) and ‖ . ‖ of B. Consequently, σ has
continuation to a continuous homomorphism from H(E) to B.

Now, let ψ′ = ψ ◦ σ, φ′ = φ ◦ σ. Then both φ′, ψ′ belong to
Mult(H(E), ‖ . ‖) and satisfy ψ′(x) = s, φ′(x) = t − ε. So, ψ′ is of
the form ϕF with F a circular on E secant with C(0, s) and φ′ is of
the form ϕG with G a circular on E secant with C(0, t).



November 12, 2024 15:21 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch35 FA2 page 336

336 Value Distribution in Ultrametric Analysis and Application

Consider now the function f constructed in Theorem 21.15 which,
by construction, belongs to H(E) and has no zero and no pole in
d(0, s−). Consequently, |f(x)| = |f(0)| = 1 ∀x ∈ d(0, s−). Moreover,
as showed in Theorem 21.15, we have limG f(x) = 0, hence φ′(f) = 0.
Putting g = σ(f), we have ψ(g) = ψ′(f) = 1 and φ(g) = φ′(f) = 0,
which ends the proof. �

Definition and notation. We denote by W the filter on D admit-
ting for basis the annuli Γ(0, r, R), r ∈]0, R[. Given an ideal I of A,
we denote by GI the filter generated by the sets D(f, ε), f ∈ I, ε > 0.
By definition, GI is minimal, with respect to the relation of thinness,
among the filters H such that limH f(x) = 0 ∀f ∈ I. A filter F on
D is said to be coroner if it is thinner than W.

By Theorem 10.9, each maximal ideal of a Banach K-algebra is the
kernel of at least one element of Mult(A, ‖ . ‖). A maximal ideal M
of A is said to be univalent if there exists only one φ ∈ Mult1(A, ‖ . ‖)
such that Ker(φ) = M and the algebra A is said to be multibijective
if every maximal ideal of A is univalent.

Theorem 35.10. Let M be a non-principal maximal ideal of A and
let U be an ultrafilter thinner than GM. Then ϕU belongs to the clo-
sure of Mult1(A, ‖ . ‖) in Multm(A, ‖ . ‖).
Proof. Let V be neighborhood of ϕU in Mult(A, ‖ . ‖). It contains
some set of the form V(ϕU , f1, . . . , fq, ε). For each j = 1, . . . , q, there
exists Ej ∈ U such that

∣

∣

∣ |fj(x)| − ϕU (fj)
∣

∣

∣

∞
≤ ε ∀x ∈ Ej.

Let E =
⋂q
j=1Ej . Then,

∣

∣

∣ |fj(x)| − ϕU (fj)
∣

∣

∣

∞
≤ ε ∀x ∈ E,∀j = 1, . . . , q.

Consequently, ϕa belongs to V(ϕU , f1, . . . , fq, ε) for all a ∈ E. �

Corollary 35.11. Let M be a univalent non-principal maximal ideal
of A and let φ ∈ Multm(A, ‖ . ‖) satisfy Ker(φ) = M. Then φ is of
the form φ(f) = limU |f(x)| with U a coroner ultrafilter and such that
J (U) = M. Moreover, φ belongs to the closure of Mult1(A, ‖ . ‖) in
Multm(A, ‖ . ‖).
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Proposition 35.12. Let U be a coroner ultrafilter on D, let f ∈
A\J (U) be non-invertible in A, such that ‖f‖ ≤ 1, and let g∈A,
h ∈ J (U) be such that fg = 1 + h. Let τ = ϕU (f), let ε ∈]0, τ [, and
let Λ = {x ∈ D

∣

∣

∣ |f(x)g(x)| − 1
∣

∣

∣

∞
< ε,

∣

∣

∣ |f(x)| − τ
∣

∣

∣

∞
< ε}.

Suppose that there exist a function ˜h ∈ A admitting for zeros in
D the zeros of h in D\Λ and a function h ∈ A admitting for zeros

the zeros of h in Λ, each counting multiplicities, so that h = h˜h.
Then |˜h(x)| has a strictly positive lower bound in Λ and h belongs to
J (U).

Moreover, there exists ω ∈]0, τ [ such that ω ≤ inf{max(|f(x)|,
|h(x)|) ∣∣ x ∈ D}. Further, for every a ∈ d(0, (τ − ε)), we have ω ≤
inf{max(|f(x)− a|, |h(x)|) ∣∣ x ∈ D}.
Proof. Let u ∈ Λ and let s be the distance of u from K\Λ. So,
the disk d(u, s−) is included in Λ, hence fg has no zero inside this
disk. Consequently, |f(x)g(x)| is a constant b in d(u, s−). Consider
the family Fu of radii of circles C(u, r), containing at least one zero
of fg. By Theorem 22.20, Fu has no cluster point different from 1.
Consequently, there exists ρ ≥ s such that fg admits at least one
zero in C(u, ρ) and admits no zero in d(u, ρ−). And then |f(x)g(x)|
is a constant c in d(u, ρ−). But then, at u, we see that b = c, and
therefore, d(u, ρ−) is included in Λ. Hence, ρ = s, and therefore, fg
admits at least one zero α in C(u, s). Thus, at α, we have h(α) = −1.
Therefore, in the disk d(α, s−), we can check that ϕα,s(h) ≥ 1. But
by Lemma 13.4, ϕα,s(h) = ϕu,s(h), hence ϕu,s(h) ≥ 1.

Now,

‖h‖
ϕu,s(h)

=
‖˜h‖

ϕu,s(˜h)

‖h‖
ϕu,s(h)

≥ ‖˜h‖
ϕu,s(˜h)

.

Therefore, since ϕu,s(h) ≥ 1, we obtain

(1)
‖˜h‖

ϕu,s(˜h)
≤ ‖h‖.

But since by definition d(u, s−) is included in Λ, ˜h has no zero in this

disk, hence |˜h(x)| is constant and equal to ϕu,s(˜h). Consequently, by
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(1), we obtain ‖h̃‖
|h̃(u)| ≤ ‖h‖, and therefore,

|˜h(u)| ≥ ‖˜h‖
‖h‖ ∀u ∈ Λ.

This shows that ˜h does not belong to J (U), hence, by Theorem 35.1,

ϕU (˜h) �= 0. Consequently, ϕU (h) = 0.

Now, by hypothesis, we have fg − h˜h = 1. Since both g, ˜h
belong to A and therefore are bounded in D, it is obvious that
inf{max(|f(x)|, |h(x)|) ∣∣ x ∈ D} > 0. So, we may obviously choose
ω ∈]0, τ − ε[ such that

(2) ω ≤ inf{max(|f(x)|, |h(x)|) ∣∣ x ∈ D}.
Let us now show that for every a ∈ d(0, (τ − ε)), we have ω ≤

inf{max(|f(x)− a|, |h(x)|) ∣∣ x ∈ D}.
Let Λ′ = {x ∈ D

∣

∣ |f(x)| ≥ τ − ε} and let a ∈ d(0, (τ − ε)−).
When β lies in Λ′, we have |f(β)| > |a|, hence by (2), max(|f(β) −
a|, |h(β)|) ≥ ω because by(2), either ω ≤ |h(β)|, or ω ≤ |f(β)| =
|f(β)− a|.

Now, let β lie in D\Λ′ and let t be the distance from β to Λ′.
Since D\Λ′ is open, t is > 0. Consider ϕβ,t(f). Either there exists
� ∈ Λ′ such that |β−�| = t and then ϕβ,t(f) ≥ |f(�)| or there exists a
sequence (xn)n∈N ∈ Λ′ such that limn→+∞ |β − xn| = t. Now, let β lie
inD\Λ′ and let t be the distance from β to Λ′. SinceD\Λ′ is open, t is
> 0. Consider ϕβ,t(f). Either there exists μ ∈ Λ′ such that |β−μ| = t
and then ϕβ,t(f) ≥ |f(μ)| ≥ τ−ε or there exists a sequence (xn)n∈N ∈
Λ′ such that limn→+∞ |β − xn| = t and |xn − β| > t. Suppose that
we are in the second case: there exists a sequence (xn)n∈N ∈ Λ′ such
that limn→+∞ |β − xn| = t and |xn − β| > t. Then the sequence is
thinner than the circular filter of center β and diameter t, hence

lim
n→+∞ |f(xn)| = ϕβ,t(f),

hence ϕβ,t(f) ≥ τ − ε again. If f has no zero in d(β, t−), then |f(x)|
is a constant in that disk, hence of course ϕβ,t(f) < τ − ε, a contra-
diction. Consequently, f must have a zero γ in d(β, t−). Therefore,
due to (2), we have |h(γ)| ≥ ω. But since, by definition, Λ ⊂ Λ′, the
zeros of h belong to Λ′. And since d(β, t−) ∩ Λ′ = ∅ actually h has
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no zero in d(β, t−). Consequently, |h(x)| is constant in d(β, t−), and
hence |h(β)| ≥ ω, which completes the proof. �

The following basic lemma is easily checked:

Lemma 35.13. Let S be a set and let E be a subset. Let F be an
ultrafilter on E. Then the filter ˜F on S with basis F is an ultrafilter
inducing on E the ultrafilter F .

Corollary 35.14. Let S be a set and let E be subset of S. Let F be
an ultrafilter on E and let ̂F = G be the ultrafilter on S having F
as a basis of filter. Let f be a function defined on S with values in a
compact topological space T . Then, limG f(x) = limF f(x).

Proof. Suppose that f admits distinct limits on F and G. Then F
is a basis of a filter on S that is not secant with G, a contradiction
since F is the ultrafilter induced by G on E. �

Proposition 35.15. Let M be a non-principal maximal ideal of A
and let U be an ultrafilter on D such that M = J (U). Let f ∈ A\M
satisfy ‖f‖ < 1, let τ = ϕU (f), and let ε ∈]0, τ [. There exists c > 0
such that, for every a ∈ d(0, τ − ε), there exists ga ∈ A satisfying
(f − a)ga − 1 ∈ M and ‖ga‖ ≤ c.

Proof. Suppose first that f is invertible in A. By Theorem 22.20,
|f(x)| is a constant and hence is equal to τ . Therefore, |f(x)− a| =
τ ∀a ∈ d(0, τ − ε). Consequently, f − a is invertible and its inverse
ga satisfies ‖ga‖ = τ−1. Thus, we only have to show the claim when
f is not invertible.

Since f does not belong to M, we can find g ∈ A and h ∈ M
such that fg = 1 + h with h ∈ M.

Let ̂K be an algebraically closed spherically complete extension
of K, and let ̂D be the disk {x ∈ ̂K | |x| < 1}. Let ̂A be the algebra

of bounded power series converging in ̂D with coefficients in ̂K.
U makes a basis of a filter ̂U on ̂D, and by definition, U is the the

filter induced by ̂U on D. By Lemma 35.13, ̂U is an ultrafilter on ̂D.
Consider now f as an element of ̂A. Then ̂U defines an element

ψ of Mult( ̂A, ‖ . ‖) as ψ(�) = limÛ |�(x)|,∀� ∈ ̂A. Consequently, by
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Corollary 35.14, τ is equal to limU |f(x)|. Let

Λ = {x ∈ ̂D
∣

∣ | |f(x)g(x)| − 1|∞ < ε, | |f(x)| − τ |∞ < ε}.

By Proposition 28.6, we can factorize h in the form ˜hh, where ˜h ∈ ̂A
is a function admitting for zeros in ̂D the zeros of h in ̂D\Λ and

h ∈ ̂A is a function admitting for zeros the zeros of h in Λ, each
counting multiplicities. Moreover, we can choose h so that ‖h‖ < 1.

Now, in the field ̂K, by Proposition 35.12, there exists ω > 0
such that for every a ∈ ̂d(0, (τ − ε)), we have ω ≤ inf{max(|f(x) −
a|, |h(x)|) ∣∣ x ∈ ̂D}. This implies that inf{max(|f(x)−a|, |h(x)|) |x ∈
D} ≥ ω ∀a ∈ ̂d(0, τ − ε). We note that ‖f − a‖ < 1 for every

a ∈ ̂d(0, τ − ε), so we may apply Theorem 35.1 and obtain a bound

b only depending on f and h and functions �a, ha ∈ ̂A such that
(f − a)�a + hha = 1, with

(1) ‖�a‖ < b, ‖ha‖ < b ∀a ∈ ̂d(0, τ − ε).

By hypothesis, we have limU h(x) = 0. Hence, by Corollary 35.14,

on ̂D we have limÛ h(x) = 0. Then, by Proposition 35.12, we have

limÛ h(x) = 0, hence, on D,

(2) lim
U
hha(x) = 0 ∀a ∈ d(0, τ − ε).

Now, let us fix a ∈ d(0, τ − ε). Let G be the closed K-vector

subspace of ̂K (considered as a K-Banach space), linearly gener-
ated over K by 1 and all coefficients of �a. Take η > 0 such that
(1 + η)max(‖�a‖, ‖ha‖) ≤ b. We note that G is a K-Banach space
of countable type, hence there exists a K-linear mapping Ξ from G
to K of norm ≤ 1 + η such that Ξ(1) = 1 [89]. Let F be the closed

K-vector subspace of ̂A consisting of all power series with coefficients
in E. Then F is a A-module and Ξ has continuation to a A-linear
mapping ̂Ξ from F to A defined as ̂Ξ(

∑∞
n=0 bnx

n) =
∑∞

n=0 Ξ(bn)x
n.

This mapping ̂Ξ has a norm bounded by 1+η. Set ga = ̂Ξ(�a). Then,
by (1), we have

(3) ‖ga‖ ≤ b(1 + η) ∀a ∈ d(0, τ − ε).
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On the other hand, by construction, for every z ∈ G, we have |̂Ξ(z)| ≤
|z|(1 + η): that holds particularly for elements of G ∩D. Now, since
(f −a)(la)−hha = 1, for all x ∈ D, we have la(x) ∈ G, f(x)−a ∈ K
and hence hha(x) belongs to G. Therefore, the inequality applies

and shows that |̂Ξ(hha)(x)| ≤ |(hha)(x)|(1 + η), hence by (2),

we can derive limU ̂Ξ(hha)(x) = 0 ∀a ∈ d(0, τ − ε). But since ̂Ξ is a

A-module linear mapping, we have ̂Ξ((f − a)ha − 1) = (f − a)
ga − 1. Consequently, limU |(f(x)− a)ga(x)− 1| = 0 ∀a ∈ d(0, τ − ε)
and hence (f − a)ga − 1 belongs to J (U). Putting c = b(1 + η), by
(3), we are done. �

Theorem 35.16. A is multibijective.

Proof. Suppose A is not multibijective and let M be a maximal
ideal which is not univalent. Let F be the quotient field A

M , let θ
be the canonical surjection from A onto F, and let ‖ . ‖q be the
K-Banach algebra quotient norm of F . By Corollary 35.11, there
exists an ultrafilter U on D such that M = J (U). Thus, there exists
ψ ∈ Mult(A, ‖ . ‖) such that Ker(ψ) = M and ψ �= ϕU . Conse-
quently, there exists f ∈ A such that ψ(f) �= ϕU (f), with ψ(f) �=0,
ϕU (f) �= 0.We check that we may also assume ψ(f) < ϕU (f). Indeed,
suppose ψ(f) > ϕU (f). Let g ∈ A be such that θ(g) = θ(f)−1.
Then we can see that ψ(g) = ψ(f)−1, ϕU (g) = (ϕU (f))−1, therefore
ψ(g) < ϕU (g). Thus, we may assume ψ(f) < ϕU (f) without loss
of generality. Similarly, we may obviously assume that ‖f‖ < 1. By
Lemma 35.7, we know that f is not invertible.

By construction, ϕU factorizes in the form φ1 ◦ θ and similarly, ψ
factorizes in the form φ2 ◦ θ with φ1, φ2 ∈ Mult(F, ‖ . ‖q). So, on F
we have φ1(θ(f)) > φ2(θ(f)).

Let τ = ϕU (f) and let ε ∈]0, τ [. By Proposition 35.15, there exists
c > 0 such that, for every a ∈ d(0, τ − ε), there exists ga ∈ A
satisfying (f−a)ga−1 ∈ M and ‖ga‖ ≤ c. Now, θ(ga) = (θ(f−a))−1.
Thus, ‖(θ(f − a))−1‖q ≤ c ∀a ∈ d(0, τ − ε). Therefore, by applying
Proposition 35.9 to the K-Banach algebra F , we can see that there
exists y ∈ F such that φ1(y) = 1, φ2(y) = 0. Therefore, taking g ∈ A
such that θ(g) = y, we get ϕU (g) = 0, ψ(g) = 1, a contradiction to
the hypothesis Ker(ϕU ) = Ker(ψ). This finishes showing that A is
multibijective. �



November 12, 2024 15:21 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch35 FA2 page 342

342 Value Distribution in Ultrametric Analysis and Application

By Corollary 35.11, we have the following two corollaries:

Corollary 35.17. For every φ ∈ Multm(A, ‖ . ‖)\Mult1(A, ‖ . ‖),
there exists a coroner ultrafilter U such that φ(f) = limU |f(x)|
∀f ∈ A.

Corollary 35.18. Mult1(A, ‖ . ‖) is dense in Multm(A, ‖ . ‖).

Another interesting question was whether certain elements of
Mult(A, ‖ . ‖) may have a kernel that is neither null nor a maxi-
mal ideal. The question was solved by Jesus Araujo thanks to this
nice example [6].

Theorem 35.19 (J. Araujo, [6]). Let h(x) =
∑∞

n=0 anx
n and

suppose that the sequence
( |an|
|an+1|

)

n∈N
is strictly increasing of limit 1.

Then, h belongs to A. Moreover, putting rn = |an|
|an+1| , n ∈ N, h admits

a unique zero on each circle C(0, rn) and has no other zero in D.
Let N be an ultrafilter on N, and for every f ∈ A, let φ(f, n) =

‖f‖d(αn,r). Let ϕr(f) = limN φ(f, n).
Then ϕr belongs to Mult(A, ‖ . ‖) and Ker(ϕr) is neither null

nor a maximal ideal of A. Moreover, Ker(ϕr) does not depend on
r ∈]0, 1[.

However, each so defined semi-norm ϕr belongs to the closure of
Mult1(A, ‖ . ‖) in Mult(A, ‖ . ‖).

Proof. LetM be the ideal of the f ∈ A such that limN |f(αn)| = 0.
Of course, h belongs to M and Ker(ϕr) is strictly included in M.
Indeed, since h admits a unique zero in the disk d(αn, r), it satis-
fies ‖h‖d(αn ,,r) = |h|(rn) rnr and therefore limN ‖h‖d(αn ,r)) =

R
r , which

proves that h does not belong to Ker(ϕr).
On the other hand, we prove that Ker(ϕr) is not null. Let

(qn)n∈N∗ be a sequence of positive integers satisfying qn ≤ qn+1 ∀n ∈
N∗, limn→+∞ qn = +∞ and such that the series

∑+∞
n=1 qn log(

R
rn
) con-

verges: we can easily find the sequence (qn) since limn→+∞ rn = R.
Now, consider the divisor (αn, qn)n∈N of the disk d(0, R−). By Theo-
rem 27.14, there exists g ∈ A(d(0, R−)) admitting each αn as a zero
of order tn ≥ qn and such that |g|(rn) ≤ |T |(rn)+ 1 ∀n ∈ N∗. Conse-
quently, g is bounded in d(0, R−) and hence belongs to A. Next, for
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every n ∈ N∗, by Corollary 22.30, we have

‖g‖d(αn ,r) ≤ |g|(rn)
( r

rn

)tn ≤ ‖g‖
( r

rn

)qn
.

Since the sequence (qn)n∈N∗ tends to +∞ and the sequence (rn)
is increasing, we have limn→+∞ ‖g‖d(αn ,r) = 0, which proves that g
belongs to Ker(ϕr). Let f ∈ Ker(ϕr) and let s ∈]0, R[. If s < r, it
is obvious that f belongs to Ker(ϕs). Now, suppose s > r. Consider
an element L of N such that infn∈L ‖f‖d(αn,r) = 0. We prove that
infn∈L ‖f‖d(αn,s) = 0. For each n ∈ N∗, by Corollary 22.32, we have

(1) log(‖f‖d(α,s))− log(‖f‖d(α,r))

≤
(

log(‖f‖d(α,rn))− log(‖f‖d(α,s))
)( log(s)− log(r)

log(rn)− log(s)

)

.

Suppose that the sequence ‖f‖d(αn,s) does not tend to 0. There
exists a sequence (um)m∈N of N∗ such that ‖f‖d(αum ,s) > b ∀m ∈ N

with b > 0. But then we get to a contradiction with (1). Conse-
quently, infn∈L ‖f‖d(αn,s) = 0 and therefore f belongs to Ker(ϕs),
which proves that Ker(ϕs) = Ker(ϕr) and finishes the proof of
Theorem 35.19. �

Question. The characterization of all multiplicative semi-norms is
not yet complete: does φ ∈ Mult(A, ‖ . ‖) exist different from those
we have studied?
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Chapter 36

Meromorphic Functions in K

In this chapter, we define and examine the basic properties of mero-
morphic functions: relations with poles of analytic elements, absolute
values on fields of meromorphic functions defined by circular filters,
value of the derivative on a circular filter, development in a Laurent
series in an annulus, and existence of primitives [19].

Definition and notation.We denote byM(K) the field of fractions
of A(K). The elements of M(K) are called meromorphic functions
in K.

In the same way, given a ∈ K and r > 0, we denote by
M(d(a, r−)) (respectively Mb(d(a, r

−)), respectively Mu(d(a, r
−)))

the field of fractions of A(d(a, r−)) (respectively the field of fractions
of Ab(d(a, r

−)), respectively the set M(d(a, r−))\Mb(d(a, r
−))).

The topology defined on A(K) (respectively A(d(a,R−))) has
expansion to M(K) (respectively to M(d(a,R−))). The neighbor-
hoods of a function f ∈ M(K) (respectively M(d(a,R−))) are the
sets W(f, r, ε) = {h ∈ {M(K) | |f − h|(r) ≤ ε}, with r > 0 (respec-
tively W(f, r, ε) = {h ∈ {M(d(a,R−)) | |f−h|(r) ≤ ε}, with r > 0).

Let b ∈ K (respectively b ∈ d(a,R−)) and let r ∈ R∗
+ (respectively

r ∈]0, R[). The absolute value ϕb,r defined on A(K) (respectively on
A(d(a,R−))) has an immediate continuation to M(K) (respectively
to M(d(a,R−))) that we denote again by ϕb,r. In the same way,
ϕ0,r is denoted by | . |(r) on M(K) and on M(d(0, R−)). Similarly,

345
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the function Ψ( . μ) defined on A(K) and on A(d(0, R−)) has an
immediate continuation to M(K) and to M(d(0, R−)) as Ψ(hl , μ) =
Ψ(h, μ)−Ψ(l, μ), with h, l ∈ A(K) (respectively h, l ∈ A(d(0, R−))).

Let f = h
l ∈ M(K) (respectively f = h

l ∈ M(d(a,R−))). For
each α ∈ K (respectively α ∈ d(a,R−)), the number ωα(h) − ωα(l)
does not depend on the functions h, l chosen to make f = h

l . Thus,
we can generalize the notation by setting ωα(f) = ωα(h) − ωα(l). If
ωα(f) is an integer q > 0, α is called a zero of f of order q. If ωα(f)
is an integer q < 0, α is called a pole of f of order −q. If ωα(f) ≥ 0,
f will be said to be holomorphic at α.

Similarly, as for A(K), given f ∈ M(K) (respectively f ∈
M(d(a,R−))), we can define the divisor D(f) on K (respectively
of d(a,R−)) as D(f)(α) = 0 whenever f(α) �= 0 and D(f)(α) = s
when f has a zero of order s at α.

Lemma 36.1. Let r,R ∈ R∗
+ with 0 < r < R and let f ∈

M(d(a,R−)). Then f has finitely many poles a1, . . . , aq in d(a, r−).
Let E = d(a, r)\{a1, . . . , aq}. Then f belongs to H(E). If there exists
s ∈ N∗ such that f s is a constant, then so is f .

Proof. Without loss of generality, we can assume a = 0. Let f = h
l

with h, l ∈ A(d(0, R)). Since l belongs to A(d(0, R)), by Corollary
22.19, l has finitely many zeros in d(0, r), hence f has finitely many
poles a1, . . . , aq in d(0, r). Suppose first f is of the form 1

l with l ∈
A(d(0, R−)). By Corollary 14.16, l factorizes in the form P (x)u(x)
with P ∈ K[x] a polynomial whose zeros in d(a, r) are a1, . . . , aq and
u ∈ A(d(0, R−)) is invertible in H(d(0, r)). On the other hand, 1

P (x)

obviously belongs to R(E). And by Proposition 17.3, E belongs to
Alg. Consequently, l is invertible in H(E). Consider now the general
case f = h

l with h, l ∈ A(d(0, R)). Then both h, 1
l belong to H(E)),

hence by Proposition 17.3, so does f .
Suppose now that f s is a constant. Since K is algebraically closed

and since M(d(a,R−)) is a field extension of K, f belongs to K. �

Corollary 36.2. Let f ∈ M(d(a,R−)), let r ∈]0, R[, let αj, 1 ≤
j ≤ q be the poles of f in d(a, r), let ρ ∈]0,mini �=j |αi − αj |[, and
for each j = 1, . . . , q, let ρj ∈]0, ρ[ and let Tj = d(αj , ρ

−
j ). Let D =

d(a, r)\(⋃qj=1 Tj
)

. Then f belongs to H(D).
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Lemma 36.3. Let f ∈ M(K). There exists h ∈ A(K) such that
D(h) = D(f) and then the function l = h

f belongs to A(K). Then

D( 1f ) = D(l) and we can write f in the form h
l with h, l ∈ A(K),

having no common zero.

Proof. Indeed, by Theorem 27.4, there exists h ∈ A(K) such that
D(h) = D(f) and hence conclusion follows. �

Remark. Let f ∈ M(d(a,R−)), let r ∈]0, R[, and let αj ,
1 ≤ j ≤ n be the poles of f in d(a, r), of respective order qj. By
Lemma 36.1, f belongs to H(d(a, r)\{α1, . . . , αn}). Now, according
to the definition of poles for analytic elements (see Chapter 11), f
also admits each αj as a pole of order qj, considered as an element
of H(d(a, r)\{α1, . . . , αn}).

By Theorem 27.4, we have already seen that if f ∈ M(K) has no
zero and no pole in K, then it is a constant. Here we can generalize
that with functions inside a disk.

Theorem 36.4. Let f ∈ M(K) (respectively f ∈ M(d(a,R−)))
have no pole in K (respectively in d(a,R−)). Then f belongs to A(K)
(respectively to A(d(a,R−))).

Proof. Suppose f ∈ M(K) has no pole in K. By Lemma 36.3, we
can write f in the form h

l with D(f) = D(h). Since f has no pole in
K, l has no zero and hence is a constant, which ends the proof when
f belongs to M(K).

Suppose now that f belongs to M(d(a,R−)) and has no pole
in d(a,R−). By Proposition 14.12, it is sufficient to show that for
each ρ ∈]0, R[, f belongs to H(d(a, ρ)). Let f = h

l , with h, l ∈
A(d(a,R−)). By Proposition 14.12, both h, l belong to H(a, ρ)).

By hypothesis, each zero α of l is a zero of h such that ωα(h) ≥
ωα(l). Let P be the polynomial admitting for zeros the zeros of l
inside d(a, ρ) with the same multiplicity and no other zero. Then P
divides h and l in A(d(a,R−)), say h = Pφ, l = Pψ. So, ψ is a
power series that has no zero in d(a, ρ), hence by Theorem 16.9, it is
an invertible element of H(d(a, ρ)), which ends the proof. �

Corollary 36.5. Let f, g ∈ A(K) (respectively f, g ∈ A(d(a,R−)))
be such that D(g) ≤ D(f). There exists h ∈ A(K) (respectively h ∈
A(d(a,R−))) such that f = gh.
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Proof. Indeed, fg belongs to M(K) (respectively to M(d(a,R−)))
and has no pole. �

Corollary 36.6. Let f ∈ M(K) (respectively f ∈ M(d(a,R−)))
have no zero and no pole in K (respectively in d(a,R−)). Then it is
a constant (respectively an invertible element of Ab(d(a,R

−))).

Corollary 36.7. Let f, g ∈ A(K) (respectively f , g ∈ A(d(a,R−)))
satisfy D(f) = D(g). Then f

g belongs to K (respectively is invertible

in Ab(d(a,R
−))).

Corollary 36.8. Let f ∈ A(K) be such that D(f) = (an, qn)n∈N
with an �= 0 ∀n ∈ N, limn→+∞ |an| = +∞. Then f(x) is of the form

λ
∏∞
n=0

(

1− x
an

)qn
with λ ∈ K.

Theorem 36.9. Let f be a function defined in K such that for every
r > 0, the restriction of f to d(0, r−) belongs to M(d(0, r−)). Then,
f ∈ M(K).

Proof. Let (an, qn)n∈N be the sequence of the poles of f in K of
respective order qn, with |an| ≤ |)an+1|. Since the sequence (|an|)n∈N
tends to +∞, the product

∏∞
n=1

(

1− x
an

)qn
converges in ql K and the

function g(x) =
∏∞
n=1

(

1− x
an

)qn
belongs to A(d(0, r−)) for every

r > 0, hence it is a power series converging in all K, therefore it lies
in A(K). Consequently, f lies in M(K). �

By Theorem 28.6, Lemma 36.9 and Corollary 36.10 are
immediate:

Lemma 36.10. Let K be spherically complete, let a ∈ K, r ∈ R∗
+,

and let B, C be divisors on d(a,R−). There exists f ∈ M(d(a,R−))
such that D(f) = B and D( 1f ) = C.
Corollary 36.11. Let K be spherically complete, let a ∈ K, r ∈ R∗

+,
and let f ∈ M(d(a,R−)). There exist g, h ∈ A(d(a,R−)), having no
common zero, such that f = g

h .

Remark. If K is not spherically complete, in the general case, as
shown in Theorem 28.1, we cannot find an analytic function h ∈
A(d(a,R−)) such that D(h) = D(f). Consequently, in a field such
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as Cp, we can’t write f in the form f = h
l with h, l ∈ A(d(a,R−)),

having no common zero (this gap was forgotten in several works).
However, by Theorem 8.4, we can take an algebraically closed

spherically complete extension ̂K of K and consider f as an analytic
function on the disk ̂d(a,R−) in the field ̂K: then f may be written

in the form f = ĥ

l̂
with ̂h, ̂l ∈ A(̂d(a,R−)), with ̂h, ̂l having no

common zero.

Theorem 36.12. Let r ∈ R∗
+, let f(x) = M(K) (respectively

f ∈ M(d(a, r−))), let S be the set of zeros and poles of f in K

(respectively in d(a, r−)), let t be the g.c.d. of {ωα(f) | α ∈ S}, and
let n ∈ N∗. If there exists g ∈ M(K) (respectively g ∈ M(d(a, r−)))
such that gq = f , then q divides t. Conversely, if q divides t, then
there exists g ∈ M(K) such that gq = f (respectively if p is prime
to q and if q divides t then there exists g ∈ M(d(a,R−)) such that
gq = f).

Proof. If there exists g ∈ M(d(a, r−)) (respectively g ∈ M(K))
such that gq = f , then of course, ωα(g) divides ωα(f) for every
α ∈ S and hence it divides t. Now suppose q divides t and set t = lq.
For each α ∈ S, ωα(f) is of the form tsα = qlsα.

Suppose first f ∈ M(K). By Lemma 36.3, in M(K), there exists
g ∈ M(K) admitting each zero α of f as a zero of order lsα and each

pole α of f as a pole of order −lsα. Then f
gq has no zero and no pole

in K, hence, by Corollary 36.6, it is a constant λ. Let υ be a q − th
root of λ. Then, f = (υg)q .

Now, suppose that q is prime to p and suppose f ∈ M(d(a,R−)).
Suppose first that K is spherically complete. By Lemma 36.10 there
exists g ∈ M(d(a,R−)) admitting each zero α of f as a zero of order

lsα and each pole α of f as a pole of order −lsα. Then f
gq has no zero

and no pole in d(a,R−), hence, it belongs to A(d(a, r−)). But since it
has no zero, by Corollary 23.2, it satisfies |h(x)−h(a)| < |h(a)| ∀x ∈
d(a, r−). Let ψ(x) = h(x)

h(a) . Then we have |ψ(x)−1| < 1 ∀x ∈ d(a, r−)
and then, since q is prime to p, by Theorem 29.23, we can apply the
function q

√
. to ψ(x) in order to get a function q

√

ψ(x) ∈ A(d(a, r−)).
Now, let υ be a q-th root of h(a). We have f(x) = h(a)ψ(x)(g(x))q =
(

υ n
√

ψ(x)g(x)
)q

which ends the proof whenK is spherically complete.
Consider now the general case, whenK is no longer supposed to be

spherically complete. Let ̂K be a spherically complete algebraically



October 24, 2024 19:24 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch36 FA1 page 350

350 Value Distribution in Ultrametric Analysis and Application

closed extension of K. The function f has continuation to a func-
tion ̂f which belongs toA(̂d(α,R−)) and hence there exists a function

g ∈ A(̂d(α,R−)) such that gq = f . Then, by Lemma 14.5, g is a power
series that has all coefficients in K and hence belongs to A(d(a,R−)).

�

Corollary 36.13. Let f(x) ∈ M(K), let S be the set of zeros and
poles of f in K, and let t be the g.c.d. of {ωα(f) | α ∈ S}. Then
t is the greatest of the integers n such that there exists g ∈ M(K)
satisfying gn = f .

Theorem 36.14. Let f ∈ M(K) (respectively f ∈ M(d(a,R−)),
respectively f ∈ M(D)) be constant inside a disk included in K

(respectively in d(a,R−), respectively in D). Then f is constant in
K (respectively in d(a,R−), respectively in D).

Proof. For a non-identically zero meromorphic function, the zeros
and the poles of f are isolated. Consequently, if f(x) is equal to a
constant inside a disk, it is constant in the set of definition. �

Definition. Given f ∈ M(K) (respectively f ∈ M(d(a,R−)),
respectively f ∈ M(D)), we call divisor of the poles of f on K

(respectively on d(a,R−)) the divisor of 1
f on K (respectively on

d(a,R−), respectively on D).

Lemma 36.15. Let f ∈ M(K)\A(K) (respectively f ∈
M(d(0, R−))\A(d(0, R−))) and suppose 0 is not a pole of f . Let r
be the minimal distance of the poles of f to 0. Then f belongs to
A(d(0, r−)) and its radius of convergence is r.

Proof. Consider the divisor T of the poles of f on d(0, R−). If
f ∈ M(K)\A(K), there is no problem to write f in the form h

l with
h, l ∈ A(K), where l has no zero in d(0, r−). Consequently, by Corol-
lary 23.2, the restriction of l to d(0, r−) is invertible in A(d(0, r−)).
Therefore, h

l belongs to A(d(0, r−)) and hence its radius of conver-
gence is ≥ r. Conversely, since f has a pole in C(0, r), it is not equal
to a power series in x in d(0, r) and hence, the radius of convergence
is r.

Now, suppose f ∈ M(d(0, R−))\A(d(0, R−)). By Theorem 27.15,
we can find a function l ∈ A(d(0, R−)) such that D(l) ≥ T and such
that none of the zeros of l lie in d(0, r−). Next, we set h = fl and
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see that h has no pole in d(0, R−). So, in both cases, we have made
f in the form h

l with h, l ∈ A(K), where l has no zero in d(0, r−).
The proof is then similar to the case f ∈ A(K). �

Corollary 36.16. Let f ∈ M(K)\A(K) (respectively f ∈
M(d(0, R−))\A(d(0, R−))). If 0 is not a pole, f(x) has a develop-
ment in a power series whose radius of convergence is the minimal
distance of poles of f to 0. If 0 is a pole of order q of f , then f(x) has
a development in a Laurent series

∑∞
k=−q akx

k with a−q �= 0 and the

radius of convergence of the series
∑∞

k=0 akx
k is equal to the minimal

distance of non-zero poles of f to 0.

Theorem 36.17. Let f ∈ M(d(0, R−)) have no pole in an annu-
lus Γ(0, r, s) with s < R. Then f(x) is equal to a Laurent series
∑+∞

−∞ anx
n converging in all Γ(0, r, s). For each μ ∈ [log r, log s], if f

has q zeros and t poles in d(0, θμ) taking multiplicity into account, one
has ν+(f, μ) = q− t, and if f has q′ zeros and t′ poles in d(0, (θμ)−),
one has ν−(f, μ) = q′ − t′. Then the functions in ρ: ν+(f, log ρ),
ν−(f, log ρ) and |f |(ρ) are increasing. Let k = ν+(f, log r). Then
|f |(ρ) ≥ |ak|ρk ∀ρ ∈ [r, s].

Proof. Since f belongs to M(d(0, R−)) and since s < R, f has
finitely many zeros and poles in d(0, s), hence we can write it h

l with
h, l ∈ A(d(0, R−)) having no common zero in d(0, s). Since f has no
pole in Γ(0, r, s), l has no zero in Γ(0, r, s). Let ρ = θμ. By Corollary
19.3, we have ν+(f, μ) = ν+(h, μ) − ν+(l, μ) = q − t. Similarly, in
d(0, ρ−), we have ν−(f, μ) = ν−(h, μ) − ν−(l, μ) = q′ − t′.

We can write f(x) in the form h(x)
Q(x) with h ∈ A(d(0, s−) and

Q ∈ K[x]. Then Q has no zero in Γ(0, r, s) and hence ν+(Q,μ) is
constant in [log r, log s[. On the other hand, ν+(h, μ) is increasing
hence so is ν+(f, μ). Consequently, the function |f |(ρ) is increasing.
Therefore, |f |(ρ) ≥ |ak|ρk ∀ρ ∈ [r, s]. �

Corollary 36.18. Let f ∈ M(d(0, R−)) have no pole in Γ(0, r, s),
with 0 < r < s < R and let q = ν−(f, log s), k = ν+(f, log r). Then,

(s

r

)k
≤ |f |(s)

|f |(r) ≤
(s

r

)q
.

Corollary 36.19. Let f ∈ M(K)\K(x) have finitely many poles.

For every q ∈ N, f satisfies limr→∞
|f |(r)
rq = +∞.
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Proof. Let f = h
Q with Q a monic polynomial and h ∈ A(K). Since

f /∈ K(x), h does not lie in K[x] hence it has infinitely many zeros
and therefore infinitely many terms an �= 0 when n > 0. �

We also need the following lemma in the future:

Lemma 36.20. Let f ∈ M(K) be transcendental and have finitely
many poles and let P be a polynomial. There exists s > 0 such that
|f + P |(r) = |f |(r) ∀r ≥ s and then f has the same number of zeros
as f + P in d(0, r).

Proof. Let R ∈ R∗
+ be such that all poles of f and all zeros of P

lie in d(0, R), let q be the number of poles of f and let t = deg(P ).

Then f(x) is of the form g(x)∏q
j=1(x−bj)

with g(x) of the form
∑∞

n=0 anx
n.

Now, when r > R, we have |f |(r) = |g|(r)
rq and |P |(r)| = |P |(R)

Rt rt.
Consequently, by Theorem 22.22, |f |(r) gets bigger than |P |(r) when
r is big enough and hence there exists s > R such that |P |(r) <
|f |(r) ∀r > s. But then, by Corollary 22.23, we have ν(f, log r) =
ν(f +P, log r) ∀r > s and hence f and f +P have the same number
of zeros in d(0, r). �

Definitions. Let f ∈ M(K) (respectively f ∈ Mu(d(a,R
−))) and

let b ∈ K. Then b is said to be an exceptional value for f or a Picard
value if f − b has no zero in K (respectively in d(a,R−)) and b is
said to be a pseudo-exceptional value for f if limr→∞ |f − b|(r) = 0
(respectively limr→R− |f − b|(r) = 0). Moreover, if f ∈ M(K)\K(x)
(respectively if f ∈ Mu(d(a,R

−))), b is said to be a quasi-exceptional
value for f if f − b has finitely many zeros in K (respectively in
d(a,R−)) [49], [52], [81].

Theorem 36.21. Let f ∈ M(K)\K (respectively f ∈ Mu(d(a,
R−))). If b is an exceptional value for f, then it is a pseudo-
exceptional value for f . Let f ∈ M(K)\K(x) (respectively f ∈
Mu(d(a,R

−))). If b is a quasi-exceptional value for f, then it is a
pseudo-exceptional value for f .

Proof. Without loss of generality, we may assume that a = b = 0.
Suppose first that f ∈ M(K)\K and that 0 is an exceptional value
for f . So, 1

f has no pole in K (respectively in d(0, R−)), hence it is a

function h ∈ A(K)\K (respectively h ∈ Au(d(0, R
−))) so that f = 1

h .
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Then, by Corollary 14.18 (respectively by Theorem 14.20), we have
limr→+∞ |h|(r) = +∞ (respectively limr→R− |h|(r) = +∞).

Suppose now that f ∈ M(K)\K(x) and that 0 is a quasi-

exceptional value for f . Then f is of the form P (x)
h(x) with P ∈ K[x]

and h ∈ A(K)\K(x). By Corollary 14.7, we have limr→+∞
|P |(r)
|h|(r) = 0,

which proves the claim when f ∈ M(K)\K(x).
Next, suppose that f ∈ Mu(d(0, R

−)) admits 0 as a quasi-

exceptional value. Then f is of the form P (x)
h(x) with P ∈ K[x] and

h ∈ Au(d(0, R
−)). So P is bounded in d(0, R−), hence of course

limr→+∞
|P |(r)
|h|(r) = 0, which ends the proof. �

Theorem 36.22. Let f ∈ M(K)\K (respectively f ∈ Mu(d(a,
R−))). Then f admits at most one pseudo-exceptional value. More-
over, if f ∈ A(K)\K (respectively f ∈ A(d(a,R−))), then f has no
pseudo-exceptional value.

Proof. Suppose that b is a pseudo-exceptional value for f . Without
loss of generality, we may assume that a = b = 0. Let t ∈ K∗. Since
limr→+∞ |f |(r) = 0 (respectively limr→R− |f |(r) = 0), it is obvious
that limr→+∞ |f − t|(r) = |t| (respectively limr→R− |f − t|(r) = |t|),
so t is not a pseudo-exceptional value for f .

Now, suppose f ∈ A(K)\K. Since limr→+∞ |f |(r) = +∞,
of course, 0 is not a pseudo-exceptional value of f . Finally,
suppose A(d(0, R−))). Then if f ∈ Au(d(0, R

−)), we have
limr→R |f |(r) = +∞, hence 0 is not a pseudo-exceptional value of f .
And if f ∈ Ab(d(0, R

−)), we have limr→R |f |(r) = ‖f‖d(0,R−) which
is not 0, hence 0 is not a pseudo-exceptional value of f either. �

Corollary 36.23. Let f ∈ M(K)\K (respectively f ∈ Mu(d(a,
R−))). Then f admits at most one exceptional value. Moreover, if
f ∈ M(K)\K(x) (respectively f ∈ Mu(d(a,R

−))), then f admits at
most one quasi-exceptional value. Further, if f ∈ A(K)\K (respec-
tively if f ∈ Au(d(a,R

−))), then f admits no exceptional value. And
if f ∈ A(K)\K[x] (respectively if f ∈ Au(d(a,R

−))), then f admits
no quasi-exceptional value.
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Chapter 37

Residues of Meromorphic Functions

Throughout this chapter, D is infraconnected, T is a hole of D, and
V is a disk of the form d(a, r) or d(a, r−), included in ˜D, such that
˜V ∩D �= ∅.
Definition and notation. Let f ∈ M(K) (respectively f ∈
M(d(0, R−))) have a pole α of order q and let f(x) =
∑−1

k=−q ak(x− α)k + h(x) with a−q �= 0 and h ∈ M(K) (respectively

f ∈ M(d(0, R−))) and h holomorphic at α. Accordingly to previous
notations for analytic elements in Chapters 11 and 15, the coefficient
a−1 is called residue of f at α and denoted by res(f, α).

We can now compare residues on a hole defined for analytic ele-
ments and residues at a point, we just defined for a meromorphic
function:

Theorem 37.1. Let a ∈ K, let R ∈ R∗
+, let f ∈ M(d(a,R−)), and

let r ∈]0, R[. Let αj, 1 ≤ j ≤ q be the poles of f in d(a, r), let
ρ ∈]0,mini �=j |αi − αj|[ and for each j = 1, . . . , q, let ρj ∈]0, ρ[, and
let Tj = d(αj , ρ

−
j ). Let D = d(α, r)\(⋃q

j=1 Tj
)

. Then f belongs to

H(D) and res(f, αj) = res(f, Tj), j = 1, . . . , q.

Proof. By Corollary 36.2, f belongs to H(D). On the other hand,
assuming that αj is a pole of order sj, by Corollary 36.16, f(x)
has a development at αj in a Laurent series

∑∞
m=−sj

bm,j(x− αj)
m.

Consequently, by Theorem 15.1, the Mittag-Leffler term of f on Tj
with respect to the infraconnected set D is

∑−1
m=−sj

bm,j(x− αj)
m.

Then res(f, Tj) = b−1,j = res(f, αj), which ends the proof. �

355
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Corollary 37.2. Let f ∈ Hb(D) be meromorphic in T = d(b, r−)
and admit only one pole b inside T . Let q be the multiplicity order
of b. Then the Mittag-Leffler term of f associated with T is of the
form

∑q
j=1

aj
(x−b)j

, with aq �= 0 and also is of the form P
(x−aj)q

, where

P is a polynomial of degree s < q. Moreover, it does not depend on
r when r tends to 0.

Definition. Let f ∈ M(d(a,R−)), let b be a pole of order t of f , let
r > 0 be such that d(b, r−) contains no pole of f other than b, and

let P (x)
(x−b)t be the Mittag-Leffler term of f associated with d(b, r−).

Then P (x)
(x−b)t is called the singular part of f at b.

Thus, when we consider the Laurent development of f around b,
it is of the form

∑∞
−t

an
(x−b)n and the singular part of f at the pole b

is
∑−1

−t
an

(x−b)n .

An element f ∈ H(D) is said to bemeromorphic in V if there exist
finitely many points (ai)(1≤i≤n) in V such that f has continuation to
an element of H((D ∪ V )\{ai| 1 ≤ i ≤ n}).

Let f be meromorphic in V and belong to H((D ∪ V )\{ai| 1 ≤
i ≤ n}). For each i = 1, . . . , n, if f /∈ H((D ∪ V )\{ah |h �= i}), then
by Corollary 11.9 and Theorem 11.10, ai is a pole of f as an element
of H((D ∪ V )\{aj |1 ≤ j ≤ n}). Let qi be its order. Then ai is called
a pole of f of order qi in V. The polynomial P (x) =

∏n
i=1(x− ai)

qi

is called the polynomial of the poles of f in V .

Lemma 37.3. Let D be bounded or belong to Alg and let f ∈ H(D).
If f is meromorphic in T , the polynomial of its poles P in T satisfies
Pf ∈ H(D ∪ T ).
Proof. Indeed, let D′ = (D ∪ T )\{a1, . . . , an}. If D is bounded,
then so is D′, and therefore by Theorem 11.4, Pf belongs to H(D′).
But by construction Pf is bounded at each point ai, and therefore
by Corollary 11.6, Pf belongs to H(D ∪ T ).

Now, suppose D ∈ Alg. Then by Theorem 17.9, D′ belongs
to Alg and therefore Pf belongs to H(D′), so we have the same
conclusion. �

Lemma 37.4. Let D be bounded (respectively let D ∈ Alg) and let
f be invertible in H(D). Then f is meromorphic in T if and only if
so is 1

f .
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Proof. First, we suppose f meromorphic in T . Let P be the poly-
nomial of its poles in T and let g(x) = f(x)P (x). Since D is bounded
(respectively belongs to Alg) by Lemma 37.3, g belongs to H(D∪T ).
Let Q be the polynomial of the zeros of g in T . Since f has no zero
in D, Q actually is the polynomial of the zeros of g in D ∪ T and
then g is of the form Q(x)h(x) with h an element of H(D ∪ T ) that
has no zero in T . Hence, we have 1

h = 1
f
Q
P . If D ∈ Alg, 1

h obviously

belongs to H(D). If D is bounded, we have Q
P ∈ Rb(D), and then by

Theorem 11.4, 1
h belongs to H(D). Thus, 1

h belongs to H(D) anyway.
Now, by Lemma 24.1, h is invertible in H(D∪T ). Hence, f factorizes
in the form P

Qh and then 1
f = 1

Q
P
h . But

P
h belongs to H(D ∪ T ) and

therefore 1
f is meromorphic in T and admits Q as the polynomial of

its poles in T . We may obviously apply the same reasoning to 1
f and

this shows the converse. �

Theorem 37.5. Let F ∈ H(D) be meromorphic in T and satisfy
‖F − 1‖

D
< 1. Then F has as many poles as many zeros in T .

Proof. Without loss of generality, we may obviously assume thatD
is bounded because the hypothesis remains true in any setD∩d(0, R).
We may also assume that T = d(0, r−). Let P (respectively Q) be
the polynomial of the zeros (respectively the poles) of F in T . Then

by Lemma 37.3, F factorizes in the form f
Q with f ∈ H(D ∪ T ).

Now, the zeros of f inside T are just those of F , hence f factorizes
in the form Pg with g ∈ H(D ∪ T ), g having no zero in T . Let
h = P

Q . Since g has no zero in T , by Theorem 22.14, |g(x)| is equal

to a constant inside T . Let s ∈]0, r[ be such that all zeros of P and
of Q lie in d(0, s). Then obviously F belongs to H(Γ(0, s, r)). Now,
by hypothesis, there exists λ > 0 such that Ψ(F, μ) ≤ λ for all
μ ≥ log r. Hence by continuity, there exists λ′ > 0 and s′ in ]s, r[
such that Ψ(F, μ) ≤ λ′ for all μ ≥ log s′. Thus, there exists b ∈]0, 1[
and t in ]s′, r[ such that |F (x)− 1| ≤ b for all x ∈ Γ(0, t, r) and then,
|h(x)| is constant in Γ(0, t, r). Hence, we have d

dµΨ(h, μ) = 0 for all

μ ∈ [log t, log r]. Since h has neither any zero nor any pole in C(0, t),
by Corollary 4.17, h has as many zeros as many poles in d(0, t) and
therefore in d(0, r) and this ends the proof. �

It is useful to consider again elements meromorphic at a point.
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Lemma 37.6. Let a ∈ D and let f ∈ H(D) be meromorphic but not
holomorphic at a. Then a is a pole of f .

Proof. By hypothesis, there exists r > 0 such that f belongs to
H
(

D ∪ (d(a, r)\{a})). Suppose that a is not a pole of f . Then by
Theorem 36.4, f belongs to H(D∪d(a, r)) and then f is holomorphic
at a. �

Corollary 37.7. Let a ∈ D and let f ∈ H(D). Then f is meromor-
phic at a and admits a as a pole of order q if and only if there exists
a disk d(a, r) included in D and an element h ∈ H(d(a, r)) such that
f(x)(x− a)q = h(x) whenever x ∈ d(a, r)\{a} and h(a) �= 0.

Corollary 37.8. Let D satisfy Condition (B) and let f ∈ H(D).
For every a ∈ D, f is meromorphic at a. For every a ∈ D, f is
holomorphic at a.

Remark. Let a ∈ D\
◦
D and let f admit a as a pole of order q.

This does not imply that f is meromorphic at a. Indeed, by [44], we

know that there exist infraconnected sets E with a point a ∈ E\
◦
E

and elements h ∈ H(E) such that lim|x−a|→0 h(x) = 0 and such that

lim sup|x−a|→0

∣

∣

h(x)
x−a

∣

∣= +∞. Let E′ = E\{a} and let g = 1+h
x−a . It is

easily seen that a is a pole of order 1 for g. But h does not belong
to any space H(d(a, r)), whenever r > 0 (because if it did, it should
factorize in H(d(a, r)) in the form (x− a)�(x), with � ∈ H(d(a, r))).
Thus, it is seen that (x− a)g does not belong to H(E) and therefore
g is not meromorphic at a.

Concerning the derivation, Theorem 37.9 is easy and follows the
classical rules:

Theorem 37.9. Let f ∈ M(K) (respectively f ∈ M(d(a,R−))).
For each α ∈ K (respectively α ∈ d(a,R−)) such that f is holo-
morphic at α, f has a derivative f ′(α) at α. Further, given a point
β ∈ K (respectively β ∈ d(a,R−)) and the Laurent development of f
at β:

∑∞
k=−q ak(x− β)k with a−q �= 0, the development of f ′ at β is

∑0
k=−q kak(x− β)k−1 +

∑∞
k=1 kak(x− β)k−1.

Proof. Suppose first f is holomorphic at α. By Theorem 36.4, f(x)
is equal to a power series

∑∞
k=0 ak(x− α)k converging inside a disk

d(α, r−), where r is the minimal distance from α to the various poles.
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Then by Theorem 18.1, we know that f has a derivative whose devel-
opment is obtained by deriving term by term.

Suppose now that β is a pole of order q and let r ∈]0, R[ be
strictly inferior to the minimal distance from β to the other poles
(with just r < R if β is the unique pole of f). By Lemma 36.1, for
every ρ ∈]0, r[, f belongs to H(d(β, r)\d(β, ρ−)) and the Laurent
development of f at β is its Mittag-Leffler development as an ele-
ment of H(d(β, r)\d(β, ρ−)): the Mittag-Leffler term associated with
the hole d(β, ρ−) is

∑−1
k=−q ak(x− β)k with a−q �= 0 and the term

associated with d(β, r) is
∑∞

k=0 ak(x− β)k with a−q �= 0. Conse-
quently, by Theorem 18.19, the derivative has a Mittag-Leffler devel-
opment at β:

∑−1
k=−q kak(x− β)k−1 +

∑∞
k=1 kak(x− β)k−1. This is

true for all r ∈]0, R[ strictly inferior to the minimal distance from β
to the other poles and for every ρ ∈]0, r[, which ends the proof. �

Theorem 37.10 is an improvement of the classical upper bound f ′
in function of f . That is due to J.P. Bézivin [10].

Theorem 37.10. For each n ∈ N and for all r ∈]0, R[, we have

|f (n)|(r) ≤ |n!| |f |(r)
rn

.

Moreover, given r ∈]0, R[ such that ν+(f, log r) = ν−(f, log r), if the
residue characteristic p does not divide ν(f, log r), then ν(f ′, log r) =
ν(f, log r)− 1 and

|f ′|(r) = |f |(r)
r

.

Proof. When f ∈ A(d(0, R−)), this is shown at Corollary 18.16.
Now, consider the general case and set f = U

V with U, V ∈
A(d(0, R−)). The stated inequality is trivial when q = 1. So, we
assume it holds for q ≤ n− 1 and consider f (n). Writing U = V

(

U
V

)

,
by Leibnitz theorem, we have

U (n) =
n
∑

q=0

(

n
q

)

V (n−q)
(U

V

)(q)
,

and hence

V
(U

V

)(n)
= U (n) −

n−1
∑

q=0

(

n
q

)

V (n−q)
(U

V

)(q)
.
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Now, by Corollary 18.16, we have

(1), |U (n)|(R) ≤ |n!| |U |(R)
Rn

and for each q ≤ n− 1, we have |V (n−q)|(R) ≤ |(n− q)!| |V |(R)
Rn−q

and
∣

∣

∣

(

U
V

)(q)∣
∣

∣(R) ≤ |q!| |U |(R)
|V |(R)Rq . Consequently,

∣

∣

∣

(U

V

)(q)∣
∣

∣(R)
∣

∣

∣

(U

V

)(n−q)∣
∣

∣(R) ≤ |((n − q)!)q!| |U |(R)
|V |(R)Rn

and then we can derive

(2)
∣

∣

∣

(

n
q

)

∣

∣

∣

∣

∣

∣

(U

V

)(q)∣
∣

∣(R)
∣

∣

∣

(U

V

)(n−q)∣
∣

∣(R) ≤ |n!| |U |(R)
|V |(R)Rn

.

So, by (1) and (2), the first conclusion holds for q = n.
Suppose now that ν+(f, log r) = ν−(f, log r) and that the residue

characteristic of K does not divide ν(f, log r). Without loss of gen-
erality, we may assume that f has no pole in C(0, r) because all
conclusions hold by continuity. In C(0, r), f(x) is equal to a power
series

∑+∞
−∞ anx

n. Set q = ν(f,− log(r)). Then, |f |(r) = |aq|rq and

|f ′|(r) = |q||aq|rq−1 = |aq|rq−1, which ends the proof. �

It seems obvious that the condition for a meromorphic function
to admit primitives is that all residues are null. This is stated by
Theorem 37.11 but the proof is not this immediate.

Let us remark that the topology of uniform convergence in all
disks of K (respectively of all disk included inside an open disk
d(a,R−)) is obviously defined on the algebra M(K) (respectively
M(d(a,R−))) and that M(K) (respectively M(d(a,R−))) is com-
plete for that topology.

Theorem 37.11 is a Mittag-Leffler theorem similar to this known
in complex analysis.

Theorem 37.11. Let (am, qm)m∈N be a divisor of K and for every
n ∈ N, and let Qm ∈ K[x] be of degree < qm, prime with (x − am)
such that ‖Qm‖ ≤ 1 ∀m. There exists f ∈ M(K) admitting for poles
each am of order qm and no other pole and such that its singular part
is Qm

(x−am)qm .
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Proof. Since deg(Qm) < qm, we can check that the series
∑∞

n=0
Qm(x)

(x−am)qm converges for all x /∈ {a0, . . . , am..} because when

|x − am| ≥ |am| ≥ 1, then
∣

∣

∣

Qm(x)
(x−am)qm

∣

∣

∣ ≤ ‖Qm‖. The series defines a

meromorphic function f in each disk d(0, r−), and hence, by Theo-
rem 36.9, it is a meromorphic function in K. Then for each m ∈ N,
the function f(x)− Qm

(x−am)qm is holomorphic at am, hence Qm

(x−am)qm

is its singular part at am. Moreover, since Qm is prime with x− am,
then am is a pole of order qm. �

Now, we can give an easy proof Theorem 37.12:

Theorem 37.12. K is supposed to have characteristic 0. A function
f ∈ M(K) (respectively f ∈ M(d(a,R−)), a ∈ K, R > 0) admits
primitives in M(K) (respectively in M(d(a,R−))) if and only if all
residues of f are null.

Proof. Let a be a pole of f . According to the Laurent series of
f at a, if f admits primitives, then f has no residue different from
zero at a because the function 1

x−a has no primitive in M(d(a, r))
(whenever r > 0).

Now let (am)m∈N be the sequence of poles of f , each of respective
order qm and suppose that res(f, am) = 0 ∀m ∈ N. Then the singular

part of f at am is of the form Qm(x−am))
(x−am)qm with qm ≥ 2 and Qm(x)

is a polynomial of degree ≤ qm − 2. Consequently, the singular part

lm of f at am admits a primitive Lm of the form Pm(x−am)
(x−am)qm−1 with

deg(Pm) ≤ qm − 2. Suppose first that f has finitely many poles
a1, . . . , aq. Then f(x) is of the form g(x) +

∑q
m=1 lm(x), where g is

a power series converging in K and hence g admits a primitive G
vanishing at 0, which is also a power series converging in K. Then f
admits a primitive F (x) = G(x) +

∑q
m=1 Lm(x).

Consider now the general case and take a disk d(0, R). Let
a1, . . . , aq(R) be the poles of f in d(0, R). Then in the same way,

i d(0, R) we can write f(x) = gR(x) +
∑q(R)

m=1 lm(x), where gR is
a power series converging in d(0, R). Then, gR has a primitive GR

converging in d(0, R), and hence in d(0, R), f(x) admits primitive S

GR +
∑q(R)

m=1 Lm(x) + c, where C is a constant. Let FR be the primi-
tive that vanishes at 0.
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This holds for all R > 0, hence when R < R′, the decomposition
in d(0, R) is the restriction of that in d(0, R′). Thus, f admits in
each disk d(0, R) a primitive FR vanishing at 0 such that FR(x) =
FR′(x) ∀x ∈ d(0, R). Consequently, we can define a function F which
is a primitive of f in K, and by Theorem 36.9, it is meromorphic in
all K. �

Corollary 37.13. The field K is supposed to have characteristic 0.
Let f ∈ M((K) (respectively f ∈ M(d(a,R−)), a ∈ K, R > 0).
Then f ′ belongs to K(x) if and only if so does f .

Proof. If f belongs to K(x), of course, so does f ′. Now, suppose f ′

belongs to K(x). We can write it in the form
∑q

j=1
bj

(x−aj)
qj . And by

Theorem 37.11, we have qj ≥ 2 ∀j = 1, . . . , q. Consequently, since K

has characteristic 0, f(x) is of the form −∑q
j=1

bj

qj(x−aj )
qj−1 + c with

c ∈ K and hence f belongs to K(x). �
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Chapter 38

Bezout Algebras of Analytic
Functions

Let us recall that the ring of analytic functions on a region of the
complex number field is well known to be a Bezout ring. The two
fundamental theorems necessary for a proof are the Weierstrass fac-
torization theorem and the Mittag-Leffler theorem.

According to results of [72], it appears that in several hypothe-
ses, rings of analytic functions on complete ultrametric algebraically
closed fields are Bezout rings. However, that interesting property
is not stated. Moreover, it derives from a Mittag-Leffler theorem
referred in general topology whose justification is not relevant. Here
we plan to give proofs of all these properties, using results on quasi-
invertible analytic elements and on a Mittag-Leffler theorem for
meromorphic functions similar to this of complex analysis but is quite
different from Krasner’s Mittag-Leffler theorem for analytic elements
on an infraconnected subset of K.

In Chapter 26, we showed that in A(K) every closed ideal is
principal. Here, following the same methods, provided that K is
spherically complete, we can now prove similar results with algebras
A(d(a,R−)):

Theorem 38.1. Suppose K is spherically complete. Let B be a
divisor on d(a,R−). There exists f ∈ A(d(a,R−)) such that
D(f) = B.

363
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Proof. Without loss of generality, we may obviously assume a = 0.
Take Qm = 0 ∀m ∈ N. By Theorem 28.4, there exists f ∈
A(d(0, R−)) such that

(i) f(0) = 1,
(ii) |f |(r) ≤ |B|(r) ∀r < R,
(iii) Pm divides f in A(d(0, R−)).

By (iii), clearly D(f) ≥ B. Thus, we only have to check that
D(f) ≤ B. Indeed, for all s ∈ N, we have

|B|(ρs) =
s
∏

j=1

um
∏

i=1

∣

∣

∣

(

1− x

ai,m

)qi,m
∣

∣

∣(ρs) =

s
∏

j=1

um
∏

i=1

( ρs
ρm

)qi,m
.

Now, suppose that B �= D(f). Then there exists α ∈ d(0, R−) such
that ωα(f) > B(α). Let s be such that ρs > |α|. Since f(0) = 1, we
have

|f |(ρs) ≥ ρs
|α|

s
∏

j=1

um
∏

i=1

∣

∣

∣

(

1− x

ai,m

)qi,m
∣

∣

∣(ρs) >

s
∏

j=1

um
∏

i=1

( ρs
ρm

)qi,m
= |T |(ρs),

a contradiction to (iii). �

By Theorems 27.10 and 38.1, we have Corollary 38.2:

Corollary 38.2. Suppose K is spherically complete. Let B be a divi-
sor on d(a,R−). Then Ta,R(B) is principal [34].

Corollary 38.3. Suppose K is spherically complete. Then all closed
ideals of A(d(a,R−)) are principal [34].

Proof. Let I be a closed ideal of A(d(a,R−)) and let E = D(I).
By Theorem 27.10, we have I = Ta,R(E). Now, by Corollary 38.2,
Ta,R(E) is principal. �

Lemma 38.4. Let E be a divisor of K (respectively a divisor of
d(a,R−), a ∈ K, R > 0) and for each r > 0 (respectively r ∈
]0, R[), let gr ∈ H(C(0, r)). There exists g ∈ A(K) (respectively g ∈
A(d(a,R−))), not depending on r, such that D(g − gr) ≥ Er.

Proof. Let f ∈ A(K) (respectively f ∈ A(d(a,R−))) be such that
D(f) ≥ E. By Theorem 37.11, there exists F ∈ M(K) whose princi-
pal parts at the poles located in C(0, r) are respectively the same as
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those of grf
−1 for each r > 0. Then fF belongs to A(K) (respectively

to A(d(a,R−))). Putting g = fF , we can see that D(g − gr) ≥ Er,
which ends the proof. �

Theorem 38.5. Every ideal of finite type of A(K) is closed and is
of the form T (E) with E a divisor of K.

Proof. Let I be an ideal of finite type of A(K) generated by
f1, . . . , fq and let E = D(I). Then, I = T (E), and by Theorem 27.9,
T (E) is closed, hence the closure of I is T (E). Consequently, we can
see that E = min(D(f1), . . . ,D(fq)). Let us fix r > 0. In H(C(0, r)),
there exist g1,r, . . . , gq,r ∈ H(C(0, r)) such that g =

∑q
j=1 gj,rfj. For

each j = 2, . . . , q, let fj,r be the polynomial of the zeros of fj in
C(0, r). By Lemma 38.4, there exists gj ∈ A(K), not depending on
r, such that gj,r − gj be divisible in H(C(0, r)) by D(f1,r). Now, set
h = g−∑q

j=2 gjfj. We have D(h) ≥ D(f1), hence h factorizes in the

form g1f1 with g1 ∈ A(K) (respectively g1 ∈ A(d(a,R−))) and then

g = h+

q
∑

j=2

gjfj =

q
∑

j=1

gjfj.

�
Similarly, when K is spherically complete, we have Theorem 38.6:

Theorem 38.6. Suppose K is spherically complete. Given a ∈ K

and R > 0, every ideal of finite type of A(d(a,R−)) is closed and is
of the form Ta,R(E) with E a divisor of d(a,R−) [34].

Proof. Let I be an ideal of finite type of A(d(a,R−)) gener-
ated by f1, . . . , fq and let E = D(I). Then, I = Ta,R(E), and by
Theorem 27.10, Ta,R(E) is closed, hence the closure of I is Ta,R(E).
Consequently, we can see that E = min(D(f1), . . . ,D(fq)). Let us
fix r > 0. In H(C(0, r)), there exist g1,r, . . . , gq,r ∈ H(C(0, r))
such that g =

∑q
j=1 gj,rfj. For each j = 2, . . . , q, let fj,r be the

polynomial of the zeros of fj in C(0, r). By Lemma 38.4, there
exists gj ∈ A(d(a,R−)), not depending on r, such that gj,r − gj
is divisible in H(C(0, r)) by D(f1,r). Now, set h = g −∑q

j=2 gjfj.

We have D(h) ≥ D(f1), hence h factorizes in the form g1f1 with
g1 ∈ A(d(a,R−)) and then

g = h+

q
∑

j=2

gjfj =

q
∑

j=1

gjfj.
�
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By Theorem 38.5, we have Corollary 38.7:

Corollary 38.7. A(K) is a Bezout ring [34].

Proof. Indeed, consider an ideal of finite type I. By Theorem 38.5,
it is closed, and hence, by Theorem 27.11, it is principal. �

And by Theorem 38.6, we have Corollary 38.8:

Corollary 38.8. Let a ∈ K and let R > 0. If K is spherically com-
plete, A(d(a,R−)) is a Bezout ring.

Proof. Indeed, consider an ideal of finite type I. By Theorem 38.7,
it is of the form Ta,R(E) with E a divisor of d(a,R−) and it is closed.
But then, by Corollary 38.3, it is principal. �
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Chapter 39

Meromorphic Functions Out of a Hole

Notation. We fix R > 0 and denote by I the interval [R,+∞[.
Throughout this chapter, we denote by S the disk d(0, R−) and put
D = K\S.

We denote by H0(D) the K-subvector space of the f ∈ H(D) such
that lim|x|→+∞ f(x) = 0.

By classical properties of analytic elements, we know that given
a circle C(a,R) and an element f of H(C(a,R)) i.e. a Laurent series
f(x) =

∑+∞
−∞ cn(x− a)n converging whenever |x| = r, then |f(x)| is

equal to supn∈Z |cn|rn in all classes of the circle C(a, r) except maybe
in finitely many. When a = 0, we put |f |(r) = supn∈Z |cn|rn. Then,
|f |(r) is a multiplicative norm on H(C(0, r)).

We denote by A(D) the K-algebra of Laurent series converging
in D and by Ac(D) the set of f ∈ A(D) having infinitely many
zeros in D. Similarly, we denote by M(D) the field of fractions of
A(D) that we call field of meromorphic functions in D and we denote
by Mc(D) the set of functions f ∈ M(D) which have infinitely
many zeros or poles in D. We denote by M0(D) the set of functions
f ∈ M(D) which have finitely many zeros and poles in D.

Similarly, as we did in K and inside a disk, here we define a
pseudo-exceptional value and a quasi-exceptional value in D. Given a
meromorphic function f ∈ M(D), a value b ∈ K is called a pseudo-
exceptional value for f if lim|x|→+∞ f(x) = b it is called a quasi-
exceptional value for f if f − b has finitely many zeros in D, and it
is called an exceptional value for f if has no zero in in D.

367
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Proposition 39.1. Let f ∈ Mc(D) and let b be a quasi-exceptional
value. Then b is a pseudo-exceptional value.

Proof. Without loss of generality, we may assume that b = 0.
Therefore, we can write f in the form P

h with P a polynomial whose
zeros lie in D and h ∈ Ac(D). On the other hand, h(x) is a Lau-
rent series

∑+∞
−∞ anx

n converging in all D, having infinitely many
zeros, hence infinitely many coefficients an with n > 0 are different

from zero, therefore one sees that lim|x|→+∞
|P |(r)|
|h|(r) = 0, and hence

lim|x|→+∞
|P (x)|)|
|h(x)| = 0. �

Proposition 39.2. Let f ∈ M(D). If f has infinitely many zeros
in D (respectively infinitely many poles in D), the set of zeros
(respectively the set of poles) is a sequence (αn)n∈N such that
limn→+∞ |αn| = +∞.

Proof. Suppose first f ∈ A(D). For each L > R, f belongs
to H(Δ(0, R, L)), and by Corollary 21.11, it is quasi-invertible in
H(Δ(0, R, L)), hence it has finitely many zeros in Δ(0, R, L), for
every L > R. Consequently, if f has infinitely many zeros in D,
the zeros form a sequence (αn)n∈N such that limn→+∞ |αn| = +∞.
Suppose now f ∈ M(D). Then f is of the form g

h with g, h ∈
f ∈ A(D). If f has infinitely many zeros, so does g, and each zero
of f is a zero of g, hence the zeros of f form a sequence (αn)n∈N
such that limn→+∞ |αn| = +∞. Similarly, if f has infinitely many
poles, the h has infinitely many zeros, and each pole of f is a
zero of h, hence the poles of f form a sequence (βn)n∈N such that
limn→+∞ |βn| = +∞. �

Theorem 39.3. Let f ∈ M(D) have no zero and no pole in D. Then
f(x) is of the form

∑q
−∞ anx

n with |aq|rq > |an|rn ∀n < q, ∀r ≥ R,
and |f(x)| = |aq|rq ∀x ∈ D.

Proof. For every r ≥ R, f belong to H(C(0, r)), and by Theorem
22.1, we have ν+(f, log(r)) = ν−(f, log(r)). Consequently, by conti-
nuity, ν(f, log(r) is a constant q in log(R),+∞[. It is then clear that
|f(x)| = |aq|rq ∀x ∈ D. �
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Theorem 39.4. Let f ∈ M(D) have at least infinitely many zeros
or infinitely many poles in D. Then f admits at most one pseudo-
exceptional value.

Proof. Suppose that f ∈ Mc(D) has two distinct pseudo-
exceptional values a and b. Without loss of generality, we can assume
that a = 0, and hence f is of the form φ

ψ with φ and ψ ∈ A(D), ψ

admitting infinitely many zeros and satisfying limr→+∞
φ|(r)
|ψ|(r) = 0.

Then, f −b = φ−bψ
ψ . But when r is big enough, we have |φ−bψ(r)| =

|bψ|(r), therefore φ − bψ does not admit 0 as a pseudo-exceptional
value, a contradiction. �

Corollary 39.5. Let f ∈ M(D) have at least infinitely many zeros
or infinitely many poles in D. Then f admits at most one exceptional
value.

Definition. Let f ∈ H(D) have no zero in D, f(x) =
∑q

−∞ anx
n

with |aq|Rq > |an|Rn ∀n < q and aq = 1. Then f is a Motzkin factor
associated with S and the integer q is called the Motzkin index of f
and is denoted by mo(f, S).

Theorem 39.6. Let f ∈ M(D). We can write f in a unique way in
the form fSf0 with fS ∈ H(K\D) a Motzkin factor associated with
S and f0 ∈ M(K), having no zero and no pole in S.

Proof. Suppose first f ∈ A(D) and take V > R. Then as a quasi-
invertible element of H(Δ(0, R, V )), by Theorem 29.16, f admits
a factorization in the form fSf0, where fS is a Motzkin factor
and f0 belongs to H(d(0, V )) and has no zero in S. Moreover, by
Lemma 29.6, fS does not depend on V . Consequently, since fS is
obviously invertible in A(D), we can factorize f ∈ A(D) in the form
fSf0, where f0 belongs to A(K) and has no zero in S.

Consider now the general case: f = g
h with g, h ∈ A(D). Then

we can write g = gSg0, h = hSh0, hence f =
(

gS

hS

)(

g0

h0

)

. Then we

can check that this is the factorization announced in the statement:
fS = gS

hS
and f0 = g0

h0 .
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Lemma 39.7 is immediate:

Lemma 39.7. The set of Motzkin factors associated with S makes a
multiplicative group. Let f, g ∈ M(D). Then, (fg)S = (fS)(gS),
(

1
f

)S
= 1

fS
, (fg)0 = (f0)(g0),

(

1
f

)0
= 1

f0 , and mo(fg, S) =

mo(f, S) +mo(g, S), mo( 1f , S) = −mo(f, S).
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Chapter 40

Shilov Boundary for Algebras H(D)

Given a holomorphic function f in an open bounded connected sub-
set D of C, |f(z)| reaches its maximum on the boundary of D.
Consider now a closed bounded infraconnected subset D of K and
f ∈ H(D). We show that the supremum of the φ(f) when φ runs
in Mult(H(D), ‖ . ‖D) is reached on the Shilov boundary that we
characterize. We show that the set of circular filters is provided
with a tree structure and that the diameter is an increasing function
with values in R, defining distances associated with this structure.
The first remarks on that tree structure are due to E. Motzkin [74],
and it was thoroughly examined in [14] and in [49]. Here the structure
is helpful to determine the Shilov boundary for algebras H(D).

Throughout this chapter and in the following, according to
Theorem 14.1, we identify Φ(D) with Mult(H(D), ‖ . ‖D).
Definition and notation. Given a ∈ K and r > 0, we denote
by Fa,r the circular filter of center a and diameter r. Given a large
circular filter F , the set of its centers is denoted by Q(F). Given two
circular filters F and G, F is said to surround G if either G is secant
with Q(F) or if F = G. Then, F is said to strictly surround G if F
surrounds G and is different from G.

Similarly, a circular filter F is said to surround a monotonous filter
G if it surrounds the circular filter associated with G. A monotonous
filter F is said to surround a circular filter G if its associated circular
filter surrounds G and F is said to surround a monotonous filter G
if the circular filter associated with F surrounds the circular filter
associated with G.

371
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We denote by � the relation on the set of circular filters defined
as F � G if G surrounds F and by ≺ the relation defined as F ≺ G
if F � G and F �= G .

Given an order relation R defined on a set E, we call strict-order
associated with R the relation R defined as aRb if aRb and a �= b.

Let D be an infraconnected subset of K. If D is bounded, of
diameter R, the circular filter of center a ∈ D and diameter R is
called the peripheral of D.

A circular filter F ∈ Φ(K) is said to be D-bordering if it is secant
with both D and K\D. Moreover, it is said to be strictly D-bordering
if it is the peripheral of D or the peripheral of a hole of D.

Remark. If a circular filter F ∈ Φ(K) is strictly D-bordering it has
a center.

Lemma 40.1. Let D be a closed infraconnected subset of K. Every
circular filter which is strictly D-bordering is D-bordering. Further,
if D is infraconnected affinoid, then a circular filter is D-bordering
if and only if it is strictly D-bordering.

Proof. Let F be the peripheral of a hole T = d(a, r−) of D. All
annuli Γ(b, r′, r′′) with b ∈ d(a, r) and r′ < r < r′′ have a non-empty
intersection with T and D, which shows that F is D-bordering. And
we have a similar situation with the peripheral of D if D is bounded.

Now, if D is infraconnected affinoid, the set of holes is finite. If a
circular filter F ∈ Φ(D) is not strictly D-bordering, then it admits

annuli having an empty intersection with any hole and with K\ ˜D,
hence it is not D-bordering. �

Lemmas 40.2 and 40.3 are immediate:

Lemma 40.2. Let F ,G be two circular filters such that Q(F) �= ∅
and Q(G) �= ∅. Then, F � G if and only if Q(F) ⊂ Q(G).
Lemma 40.3. Let F ,G be two circular filters such that F � G.
Then, diam(F) ≤ diam(G). Moreover, F = G if and only if
diam(F) = diam(G).
Theorem 40.4. The relation � is an order relation on Φ(K) and ≺
is the strict-order associated with this order relation.
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Proof. Indeed, the relation is reflexive by definition. Let F ,G,H
be three circular filters. Suppose that F � G and G � F . If F �= G,
then by definition Q(F) �= ∅, Q(G) �= ∅, F is secant with Q(G), and
G is secant with Q(F). Consequently, Q(F) = Q(G), and therefore,
by Lemma 40.3, we have F = G. Finally, suppose that F � G and
G � H, with F �= G �= H. Then, F is secant with Q(G) and with
Q(H), and therefore, F � H. �

Corollary 40.5. Let D be infraconnected. The mapping diam is
strictly increasing from Φ(D), ordered by �, to R+.

Theorem 40.6. Let D be infraconnected and let F ∈ Φ(D). Then
F is a minimal element in Φ(D) if and only if

(i) either it is punctual,
(ii) or it has no center,
(iii) or Q(F) ∩D = ∅.
Proof. On one hand, it is easily seen that if F is punctual, or has
no center, then it is minimal in Φ(K) and therefore in Φ(D). Suppose
now that Q(F) ∩ D = ∅. Suppose that G ∈ Φ(D) satisfies G ≺ F .
Then G is secant with Q(F) and has a diameter strictly inferior to
the diameter r of F , hence there exists a disk d(b, s) ∈ G, with s < r.
Consequently, d(b, s) ⊂ Q(F). Since d(b, s)∩D = ∅, we see that G is
not secant with D.

Now, let F ∈ Φ(D) be minimal in Φ(D). Suppose that F is not
punctual and has a center and let r = diam(F). If Q(F) ∩ D �= ∅,
then for any a ∈ Q(F) ∩ D, of course, F surrounds the filter of
neighborhoods of a, a contradiction to the hypothesis “F minimal in
Φ(D)”. Thus, Q(F) ∩ D = ∅. If Q(F) = ∅, then F has no center.
Else, Q(F) ∩D = ∅, which ends the proof. �

Lemma 40.7. Let F ,G be two circular filters such that Q(F) ∩
Q(G) �= ∅. Then F and G are comparable with respect to the
relation �.

Proof. Since Q(F) ∩ Q(G) �= ∅ and since both Q(F), Q(G) are
disks, we can suppose, for instance, Q(F) ⊂ Q(G). Then F is secant
with Q(G), hence F � G. �
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Theorem 40.8 is a very typical theorem concerning circular filters:

Theorem 40.8. Let F , G be two circular filters surrounding a cer-
tain circular filter H. Then F and G are comparable with respect to
the relation �.

Proof. If F = H, then G just surrounds F . Now, suppose that
both F , G strictly surround H. Then H is secant with both Q(F)
and Q(G), hence Q(F) ∩ Q(G) �= ∅. Therefore, either Q(F) ⊂
Q(G) or Q(G) ⊂ Q(F), hence by Lemma 40.7, F and G are
comparable. �

Theorem 40.9 is also very important:

Theorem 40.9. Let F ∈ Φ(K) and let s > diam(F). There exists
a unique disk d(a, s) such that F is secant with it and there exists a
unique circular filter on K, of diameter s, surrounding F .

Proof. Let r = diam(F). We can check that there exists a unique
disk d(b, s) such that F is secant with this disk. Indeed, if F has a
center a, this disk is just d(a, s). Then F is surrounded by the filter
G of center a and diameter s.

Now, if F has no center, it admits as one of its elements a disk of
d(b, s′) with r < s′ < s and hence F is secant with d(b, s). Consider
now another disk d(c, s) such that F is secant with it. Then we have
d(b, s′) ∩ d(c, s) �= ∅, hence d(b, s′) ⊂ d(c, s), and hence d(b, s) =
d(c, s). So, we have shown again that F is surrounded by the filter G
of center a and diameter s.

Conversely, let H be another circular filter of diameter s, sur-
rounding F . Then, by Theorem 40.8, G and H are comparable. But
they have the same diameter, hence by Lemma 40.3, they are equal.

�

By Proposition 3.14, we obtain Theorem 40.10.

Theorem 40.10. Let D be infraconnected, let F be a circular filter
on K secant with D, and let r ∈]diam(F),diam(D)[. The unique
circular filter of diameter r surrounding F is secant with D.

Proof. By Theorem 40.9, there exists a unique disk d(a, r) such
that F is secant with it. By Proposition 3.14, the circular filter G of
center a and diameter r is secant with D and obviously surrounds F .
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This filter is unique by Theorem 40.9. Now, there exists a G-affinoid
G containing annuli Γ(a, s, r) and Γ(a, r, t) such that G∩D = ∅. On
the other hand, by definition, D being infraconnected admits points
in Γ(a, r, t) and also in Γ(a, s, r), a contradiction. This shows that G
is secant with D. �

Proposition 40.11. Let F , G be two circular filters on K which
are not comparable for the relation �. There exist disks F ∈ F and
G ∈ G such that F ∩G = ∅. Moreover, given disks F ′ = d(a, r′) ∈ F ,
G′ = d(b, s′) ∈ G such that F ′∩G′ = ∅, we have δ(F,G) = δ(F ′, G′) >
max(diam(F),diam(G)).

Proof. Suppose first that both F , G have no center. Then F
(respectively G) admits a canonical basis D (respectively E) con-
sisting of a decreasing sequence of disks. But since the two filters
are not secant, we can obviously find F ∈ D and G ∈ E such that
F ∩G = ∅.

Suppose now that F has centers and let d(a, r) = Q(F). If all
disks G ∈ G contain d(a, r), then G surrounds F , a contradiction
to the hypothesis. Hence, there exists a disk G ∈ G which does not
contain d(a, r). Let d(b, s) ∈ G be a disk such that d(b, s)∩d(a, r) = ∅.
Then we have |a−b| > r, therefore we can take r′ ∈]r, s[ and we have
d(a, r) ∩ d(b, r′) = ∅.

Consider now disks F ′ = d(a, r′) ∈ F , G′ = d(b, s′) ∈ G such that
F ′ ∩G′ = ∅. Let R = |a− b|. Since F ′ ∩G′ = ∅, we have δ(F ′, G′) =
R > max(r′, s′) and F is secant with d(a,R−), G is secant with
d(b,R−). Therefore, F is included in d(a,R−) and G is included in
d(b,R−). Consequently, δ(F,G) = R and diam(F) < diam(F ) < R,
diam(G) < diam(G) < R. That ends the proof. �

Notation. Let F , G be two circular filters which are not comparable
for �. By Proposition 40.11, we note that given disks F ∈ F and
G ∈ G such that F ∩ G = ∅, δ(F,G) does not depend on the choice
of the disks F ∈ F and G ∈ G, so we can put λ(F ,G) = δ(F,G) with
F, G disks such that F ∈ F , G ∈ G, F ∩G = ∅.

Theorem 40.12. Let D be infraconnected and let F ,G ∈ Φ(D).
There exists sup(F , G) ∈ Φ(D) and it is the unique circular filter of
diameter λ(F ,G) which surrounds both F and G.
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Proof. The claim is trivial when the two filters are comparable
for �. So we assume they are not. Let l = λ(F ,G). By Theorem 40.9,
there exists a unique circular filter S ∈ Φ(K) of diameter l surround-
ing F . Then S has centers and Q(S) is a disk d(a, l). By Proposition
40.11, there are disks included in d(a, l) which belong to G and there-
fore are secant with d(a, l), hence S surrounds G. We check that S
is the smallest element of the set of filters on K surrounding both F
and G. Indeed, let H be a circular filter surrounding F and G. Then
both F and G are secant with Q(H). Let d(b, s) = Q(H). Consider
disks F = d(α, ρ) ∈ F and G = d(β, σ) ∈ G such that F ∩ G = ∅.
Since F ∩ d(b, s) �= ∅ and G ∩ d(b, s) �= ∅ and since F ∩ G = ∅, it is
easily seen that both F, G are included in d(b, s), hence s ≥ l. But
since both S, H surround F , by Theorem 40.8, they are compara-
ble for �. Then, since l ≤ s, H surrounds S and therefore S is the
smallest element of the set of filters on K surrounding both F and G.

Now, suppose that both F , G are secant with D. Then, d(α, ρ) ∩
D �= ∅ and d(β, σ) ∩ D �= ∅. Since S is the circular filter of cen-
ter α and diameter l = |α − β|, it is secant with D because D is
infraconnected. �
Notation. Let F , G be two circular filters and let S = sup(F ,G).
We set δ(F ,G) = diam(S)− diam(F)+diam(G)

2 .

Remark. Particularly, if F � G, we have δ(F ,G) = diam(G) −
diam(F). Moreover, given a, b ∈ K, the filter of neighborhoods F of
a and the filter of neighborhoods G of b satisfy δ(F ,G) = |a− b|.

Lemma 40.13 is immediate:

Lemma 40.13. Let F ,G be circular filters. Suppose there are infra-
connected subsets F ∈ F , G ∈ G such that F ∩ G = ∅. Then,
δ(F,G) = diam(sup(F ,G)), 2δ(F ,G) = 2δ(F,G) − diam(F) −
diam(G), and |diam(F) − diam(G)|∞ ≤ δ(F ,G). If F � G, we have
δ(F ,G) = diam(G) − diam(F).

Proof. Let S = sup(F ,G). Since both F and G are infraconnected,
we have δ(F,G) = diam(S) hence 2δ(F,G) = δ(F ,S) + δ(G,S) =
2diam(S)− diam(F) − diam(G). The other claims are immediate.

�

Theorem 40.14. δ is a distance on Φ(K).

Proof. We only have to show the triangular inequality. Let
F ,G,H ∈ Φ(K), with diam(F) = r, diam(G) = s, diam(H) = t. Let
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X = sup(F ,G), Y = sup(G,H), diam(X ) = M, diam(Y) = N . Sup-
pose, for instance,M ≤ N . We note that both X ,Y surround G. Con-
sequently, by Theorem 40.8, they are comparable. And sinceM ≤ N ,
we have X � Y. Consequently, F � Y, and hence, sup(F ,H) has a
diameter V ≤ N . Then, 2δ(F ,H) = 2V − r − t ≤ N − r − t.

On the other hand, 2δ(F ,G)+2δ(G,H) = 2M−r−s+2N−s− t.
But since s ≤ M , we have 2δ(F ,G) + 2δ(G,H) ≥ 2N − r − t ≥
2V − r − t = 2δ(F ,H). �
Remark. δ is not a non-Archimedean distance on Φ(K). Indeed,
consider three circular filters Fa,r, Fa,s, Fa,t with r < s < t. Then,
δ(Fa,r ,Fa,t) = t− r = δ(Fa,r,Fa,s) + δ(Fa,s,Fa,t).
Definition. Henceforth, we call δ-topology the topology defined by
the distance δ.

Theorem 40.15. Every bounded monotonous sequence of Φ(K) with
respect to the order � has a limit with respect to the δ-topology.

Proof. Let (Fn)n∈N be a bounded monotonous sequence of cir-
cular filters and for each n ∈ N, let rn = diam(Fn). Without loss
of generality, we can obviously assume that the sequence is strictly
monotonous. Clearly, for each n ∈ N∗, each filter Fn has a center.
Let l = limn→∞ rn. Suppose first that it is a decreasing sequence.
For each n ∈ N, we can find a center an /∈ d(an+1, rn+1). Thus, the
sequence (an)n∈N is such that the sequence (|an+1−an|)n∈N is strictly
decreasing. Hence, by Proposition 3.18, there exists a unique circular
filter F less thin than the sequence (an)n∈N of radius l. And then,
we check that the sequence (Fn)n∈N converges to F with respect
to the δ-topology. If the sequence is increasing, it is easily seen
that the sequence converges to the circular filter of center a1 and
diameter l. �

Theorem 40.16. Φ(K) is complete with respect to the δ-topology.

Proof. Let (Fn)n∈N be a Cauchy sequence with respect to the
δ-topology. Without loss of generality, we can suppose that each Fn
has a center. Indeed, for each n ∈ N, we can take a circular filter F ′

n

with a center such that δ(F ′
n,Fn) < 1

n and then we check that the
sequence (F ′

n)n∈N is a Cauchy sequence again. Then, if it converges
to a limit G, so does the sequence (Fn)n∈N.

So, we suppose that for each n ∈ N, Fn has a center an. Let rn =
diam(Fn). For every m,n ∈ N, let Sm,n denote sup(Fm,Fn) and let
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sm,n = diam(Sm,n). Next, for each n ∈ N, let sn = supm≥n,t≥n,(sm,t).
So, by definition, the sequence (sn) is decreasing. We show that the
sequence d(an, sn)n∈N is decreasing with respect to the inclusion.
Indeed, by definition, for every m ≥ n, we have Q(Sn,m) ⊂ d(an, sn),
therefore Q(Fn+1) ⊂ d(an, sn), hence an+1 ∈ d(an, sn), and hence
d(an+1, sn+1) ⊂ d(an, sn).

Now, for every n ∈ N, let Gn be the circular filter of center an and
diameter sn. The sequence (Gn)n∈N is then decreasing with respect
to the order �, and therefore, by Theorem 40.15, has a limit G
with respect to the δ-topologies. Let s = limn→∞ sn. We prove that
limn→+∞ δ(Fn,Gn) = 0.

Let ε > 0. By definition of the sequence sn, we can find a rank
t(ε) such that

(1) sn − s ≤ ε
4 ∀n ≥ t(ε).

And since the sequence (Fn) is a Cauchy sequence, there exists k(ε) ∈
N such that δ(Fm,Fq) ≤ ε

4 ∀m, q ≥ k(ε). We can choose k(ε) ≥ t(ε).
By Lemma 40.13, we can derive

(2) |rn − rm|∞ ≤ ε
4 ∀m,n ≥ k(ε).

On the other hand, since Gn surrounds Fn, we have

(3) δ(Gn,Fn) = sn − rn.

Now, let q > m ≥ n ≥ t(ε). By definition of the distance δ, we
have δ(Fm,Sm,q) ≤ δ(Fm,Fq) ≤ ε

4 , hence

(4) sm,q − rm ≤ ε
4 .

Now, we can take m, q bigger than n and such that sn−sm,q ≤ ε
4 ,

therefore sm − sm,q ≤ ε
4 because sm ≤ sn. Consequently,

δ(Gn,Fn) = sn − rn = (sn − sm) + (sm − sm,q)

+ (sm,q − rm) + (rm − rn)

≤ (sn − sm) + (sm − sm,q) + (sm,q − rm) + |rm − rn|∞,

and hence, by (1), (2), (3), and (4), we obtain δ(Gn,Fn) ≤ ε ∀n ≥
k(ε). Thus, limn→∞ δ(Fn,G) = 0, and therefore, the Cauchy sequence
Fn has limit G. �
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Remark. In [85], another distance ˜δ is defined on the set of large

circular filters, as ˜δ(F ,G) = 2 log(diam(sup(F ,G))− log(diam(F))−
log(diam(G)). This last distance ˜δ defines the same topology as δ on
the set of large circular filters but does not admit the same Cauchy
sequences and does not expand the usual distance on the field K

defined by the absolute value. As a consequence, the set of large
circular filters appears to be complete with respect to ˜δ and therefore
a sequence converging to a point a ∈ K in the usual sense, actually
has no limit for ˜δ. We use ˜δ in Chapter 40.

Theorem 40.17. Let B be a totally ordered subset of Φ(K). Then B
admits an infimum T with respect to the order �. Further, a subset
A of Φ(K) admits a supremum with respect to the order � if and
only if it is bounded with respect to the δ-topology.

Proof. Let B be a totally ordered subset of Φ(K) and set r =
inf{diam(G) | G ∈ B}. By Lemma 40.13, we can see that all sequences
(Gn)n∈N of B satisfying limn→∞ diam(Gn) = r are Cauchy sequences
and admit the same limit T . Therefore, T is clearly the infimum of
B with respect to �. Now, let A be a subset of Φ(K). If it admits a
supremum with respect to the order �, it is obviously bounded. Con-
versely, assume that A is bounded. We can clearly find a disk d(b, s)
such that all elements of A are secant with d(b, s). Consequently, the
circular filter F of center b and diameter s is such that Q(F) contains
all elements of A. Now, by Theorem 40.8, the set A∗ of circular filters
surrounding all elements of A is totally ordered and therefore admits
an infimum S and we have G � S for every G ∈ A. Consequently,
S is the supremum of A. �

Remark. By Lemma 3.15, it is easily seen that there exist circular
filters without countable bases if and only if the residue class field of
K is not countable.

Theorem 40.18. Let D be a closed bounded subset of K and
let ϕF ∈ Mult(H(D), ‖ . ‖D). There exists a basis of neighbor-
hoods of ϕF in Mult(H(D), ‖ . ‖D), with respect to the topology of
pointwise convergence, consisting of the family of sets of the form
Mult(H(E ∩D), ‖ . ‖E∩D), where E is a F-affinoid.

Proof. Let f1, . . . , fq ∈ H(D) and consider a neighborhood
W of ϕF of the form {ψ ∈ Mult(H(D), ‖ . ‖D) | |ϕF (fj) −
ψ(fj)|∞ ≤ ε} : we show that it contains a neighborhood of the
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form Mult(H(E ∩D), ‖ . ‖E∩D), where E is a F-affinoid. Indeed,
by Lemma 3.15 and Theorem 14.1, there exist infraconnected affi-
noid sets Ej ∈ F , (1 ≤ j ≤ q) such that | |fj(x)| − ϕF (fj)|∞ ≤
ε ∀x ∈ Ej (1 ≤ j ≤ q). Then, by Proposition 2.16,

⋂q
j=1Ej is

an infraconnected affinoid set E which belongs to F . So, E is a
F-affinoid such that | |fj(x)| − ϕF (fj)|∞ ≤ ε ∀x ∈ Ej (1 ≤ j ≤ q),
therefore | |ψ(fj)| − ϕF (fj)|∞ ≤ ε ∀x ∈ Ej (1 ≤ j ≤ q), ∀ψ ∈
Mult(H(E ∩D), ‖ . ‖E∩D). Then, Mult(H(E), ‖ . ‖E) is a neigh-
borhood of ϕF in Mult(K(x)) and Mult(H(E ∩D), ‖ . ‖E∩D) is a
neighborhood of ϕF in Mult(H(D), ‖ . ‖D). �

Corollary 40.19. Let ϕF ∈ Mult(K[x]). There exists a basis of
neighborhoods of ϕF in Mult(K[x]), with respect to the topology of
pointwise convergence, consisting of the family of sets of the form
Mult(R(E), ‖ . ‖E), where E is a F-affinoid.

Theorem 40.20. Let D be a closed bounded set. The topol-
ogy of pointwise convergence is weaker than the δ-topology on
Mult(H(D), ‖ . ‖D).
Proof. Let ϕF ∈ Mult(H(D), ‖ . ‖D) and let r = diam(F). Since
the F-affinoids form a basis of the filter F , it is sufficient to show that
given an F-affinoid E there exists ε > 0 such that if δ(F ,G) ≤ ε, then
F is secant with E.

Suppose first that F has no center. There exists a disk F included
in E, of diameter s > r with s− r ≤ ε

2 , and hence for every circular
filter G secant with F , of diameter t ∈]r, s], we have δ(F ,G) ≤ 2(s−r).
Consequently, fixing ε ≤ 2(s − r), we can see that all G secant with
F satisfy δ(F ,G) ≤ ε, hence F contains a neighborhood of F .

Suppose now that F has a center a. Let l be the minimum of the
diameters of holes of E inside Q(F) and let t be an annulus Γ(a, r, t)

containing no hole of E. Let us now fix ε < min(t−r,r−l)
2 . Take G secant

with E such that δ(F ,G) ≤ ε.
Suppose first that G is secant with Q(F) and then, for instance, is

secant with d(a, r−). Then we can see that G is secant with Γ(a, l, r)
and hence is secant with E. Suppose now that G is not secant with

Q(F) and hence is secant with K\d(a, r). Since ε < min(t−r,r−l)
2 , we

can see that G is secant with Γ(a, r, t) ⊂ E.
Consequently, we have found a neighborhood V of ϕF with respect

to the δ-topology such that if δ(F ,G) ≤ ε, then G is secant with E.
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That finishes proving that every neighborhood of F with respect to
the pointwise topology contains a neighborhood with respect to the
δ-topology. �

Remark. The two topologies do not coincide in the general case.
Suppose that a set D has an increasing filter F of center a and
diameter R. Let (an)n∈N be a sequence of D such that |an − a| <
|an+1 − a| and limn→+∞ |an − a| = R.

The sequence (ϕan)n∈N converges to ϕF with respect to the point-
wise topology but does not converge to any limit with respect to the
δ-topology.

Notation. We denote by Σ(D) the set of D-bordering circular filters
and by Σ0(D) the set of strictly D-bordering circular filters.

Remark. Since the topology of pointwise convergence is weaker
than the δ-topology, the boundary of Mult(R(D), ‖ . ‖D) inside
Mult(K[x]), with respect to the δ-topology, is obviously included in
the boundary of Mult(R(D), ‖ . ‖D) inside Mult(K[x]), with respect
to the topology of pointwise convergence. The equality does not hold
in the general case.

Lemma 40.21. Let D be a closed bounded infraconnected subset of
K and let F be a D-bordering but not strictly D-bordering circular
filter. For every disk M ∈ F , F is secant with M\D but not secant
with any hole of D. Moreover, Σ0(D) is dense in Σ(D) with respect
to the topology of pointwise convergence.

Proof. Let ϕF ∈ Σ(D)\Σ0(D). Then every element of F contains
holes of D and hence is secant with M\D. Suppose that F is secant
with a hole T = d(b, ρ−) of D. Since F is not the peripheral of T,
it is secant with a disk d(c, s) ⊂ d(b, ρ−) with s < ρ, and of course,
it has elements B of diameter l ∈]s, ρ[ that contain no hole of D,
a contradiction. So, F is not secant with any hole of D. Now, take
h1, . . . , hn ∈ H(D) and ε > 0. Since F admits a basis of infracon-
nected affinoid sets, we can find an infraconnected affinoid set E ∈ F
such that | |hj(x)| − ϕF (hj)|∞ < ε ∀x ∈ E ∩ D,∀j = 1, . . . , n.
Then there exists a hole T of D included in E. Consequently,
|ϕT (hj) − ϕF (hj)|∞ < ε ∀j = 1, . . . , n. This shows that Σ0(D) is
dense in Σ(D). �
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Corollary 40.22. Let D be a closed infraconnected subset of K such
that Σ0(D) is finite. Then, Σ(D) = Σ0(D).

Remark. When Σ0(D) is not finite, it is not necessarily dense in
Σ(D) with respect to the δ-topology. Consider a sequence (an)n∈N
with |an| < |an+1| and limn→+∞ |an| = 1, let r ∈]0, |a1|, and let

D = d(0, 2)\(
∞
⋃

n=1

d(an, r
−).

Then Σ0(D) consists of the set of circular filters Fan,r and F0,2.
But Σ(D) also contains F0,1. Then the sequence (Fan,r)n∈N does
converge to F0,1 with respect to the pointwise convergence but is not
a Cauchy sequence with respect to the δ-topology, and more precisely,
δ(F0,1,Fan,r) = 1− r.

Theorem 40.23 ([15], [49], [50]). Let D be a closed bounded sub-
set of K. Then Σ(D) is equal to the boundary of Mult(H(D, ‖ . ‖D)
inside Mult(K[x]) with respect to the topology of pointwise
convergence.

Proof. First, we show that Σ(D) is included in the boundary of
Mult(H(D, ‖ . ‖D) inside Mult(K[x]). Since Σ0(D) is dense inside
Σ(D) and since the boundary of Mult(H(D, ‖ . ‖D) inside Mult(K[x])
is obviously closed, it is sufficient to show that Σ0(D) is included in

that boundary. Let ˜D = d(a, r) and let ϕF ∈ Σ0(D). Let F be the
subset of Mult(K[x])\Mult(H(D), ‖ . ‖D) consisting of all ϕG such
that G is secant with K\d(a, s) for some s > r. If F is the peripheral
of d(a, r), it is obvious that ϕF belongs to the closure of F and hence
belongs to the boundary of Mult(H(D), ‖ . ‖D).

Consequently, we are led to assume that F is the peripheral of
certain hole d(bj , r

−
j ) of D and then symmetrically, it is also obvious

that ϕF belongs to the closure of Mult(K[x])\Mult(H(D), ‖ . ‖D)
inside Mult(K[x]).

Now, let us show that the boundary of Mult(H(D, ‖ . ‖D) inside
Mult(K[x]) is included in Σ(D). Indeed, let ϕF ∈ Mult(H(D), ‖. ‖D)
belong to the closure of Mult(K[x])\Mult(H(D), ‖. ‖D) in
Mult(K[x]). Since F is secant with D, we only need to show that
it is also secant with K\D. Let t = diam(F). Suppose it is not
secant with K\D. Then we can find an F-affinoid F of the form
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d(b, u)\
(

⋃q
j=1 d(cj , ρ)

)

that is included in D, with t < u < r, ρ < t

and |ci − cj | = t ∀i �= j. Now, let us take s′ ∈]ρ, t[ and s′′ ∈]t, u[ and
set

E = d(b, s′′)
∖(

q
⋃

j=1

d(cj , s
′−)
)

.

Let h(x) =
∏q
j=1(x− cj). On one hand, we can check that when

x ∈ K\D, either |x− b| ≥ u, and then |h(x)| ≥ uq, or |x− ck| ≤ ρ for
some k and then |h(x)| ≤ ρ(

∏

j 	=k |cj − ck|) = ρtq−1.
On the other hand, when x belongs to E, then we can check that

ρtq−1 < s′tq−1 ≤ |h(x)| ≤ s′′q < uq , which contradicts the hypothe-
sis that ϕF belongs to the closure of Mult(K[x])\Mult(H(D), ‖ . ‖D)
in Mult(K[x]). Consequently, F is secant with K\D and hence
ϕF belongs to Σ(D). This finishes showing that the bound-
ary of Mult(H(D), ‖ . ‖D) is included in Σ(D) and hence is
equal to Σ(D). �

Definition. A subset S of Φ(D) is called a Shilov set if for every
f ∈ H(D), there exists F ∈ S such that ϕF (f) = ‖f‖D. A Shilov set
that is closed with respect to the topology of pointwise convergence is
called Shilov boundary for H(D) if it is the smallest closed Shilov set.

Theorem 40.24. Let D be a closed bounded infraconnected subset
of K. Then Σ(D) is equal to the Shilov boundary for H(D).

Proof. First, we note that Σ(D) is closed inside Mult(K[x])
because, by Theorem 40.23, it is the boundary of Mult(H(D), ‖ . ‖D).
By the Mittag-Leffler Theorem 16.1, it is easily seen that Σ0(D) is a
Shilov set for H(D).

Now, we show that Σ(D) is the smallest closed Shilov set. Suppose
it is not the smallest. Then, there exists another closed Shilov set S
which does not contain Σ(D). Since S is closed and since Σ0(D)
is dense in Σ(D), there exists ψ ∈ Σ0(D)\S. Let G be the strictly
D-bordering filter such that ψ = ϕG . Thus, ψ is of the form ϕb,s.

Since S is closed, there exists an infraconnected affinoid set E
of the form d(b, s′′)\⋃q

j=1 d(cj , s
′), with s′ < s < s′′ such that

Mult(H(E), ‖ . ‖E) ∩ S = ∅. This means that for every ϕF ∈ S,
F is not secant with E. Let r = diam(D) and suppose first that
s = r. Consider g(x) =

∏q
j=1(x − cj). Then, ϕG(h) = rq, and for
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every ϕF ∈ S, we can check that ϕF (g) ≤ s′q, a contradiction to the
hypothesis “S is a Shilov set”.

Consequently, we have s < r, and therefore, since ϕG ∈ Σ0(D), the

disk d(b, s−) is a hole of D. Let h(x) =
∏q

j=1(x−cj)
(x−b)q+1 . Then, ϕG(h) = 1

s ,

and for every ϕF ∈ S, we can check that ϕF (h) = max( s
′
s2 ,

1
s′′ ) <

1
s ,

a contradiction to the hypothesis “S is a Shilov set”. Thus, we have
proven that any closed Shilov set must contain Σ(D) and this finishes
proving that Σ(D) is the Shilov boundary for H(D). �

Corollary 40.25. Let D be an infraconnected affinoid subset of K.
The Shilov boundary for H(D) is equal to Σ0(D).

Corollary 40.26. Let D be a closed bounded infraconnected subset
of K. The following three sets are equal:

(i) Σ(D),
(ii) the boundary of Mult(H(D), ‖ . ‖D) inside Mult(K[x]) with

respect to the topology of pointwise convergence,
(iii) the Shilov boundary for (H(D), ‖ . ‖D) with respect to the topol-

ogy of pointwise convergence.

More precisely, we can state Corollary 40.27:

Corollary 40.27. Let D be a closed bounded infraconnected subset
of K having finitely many D-bordering filters. The following four sets
are equal:

(i) Σ(D),
(ii) the boundary of Mult(H(D), ‖ . ‖D) inside Mult(K[x]) with

respect to the topology of pointwise convergence,
(iii) the boundary of Mult(H(D), ‖ . ‖D) inside Mult(K[x]) with

respect to the δ-topology,
(iv) the Shilov boundary for (H(D), ‖ . ‖D) with respect to the topol-

ogy of pointwise convergence.

Proof. If D has finitely many D-bordering filters, the boundary
of Mult(H(D), ‖ . ‖D) inside Mult(K[x]) is finite for both topologies
and hence is reduced to Σ(D) = Σ0(D). �
Remark. In particular, Corollary 40.27 applies to H(D) when D is
an infraconnected affinoid set and then H(D) is also called Krasner–
Tate algebra [37].
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Chapter 41

Mappings from Φ(D) to the
Tree Φ(K)

We show that every element f ∈ H(D) has continuation to a map-
ping f∗ from Φ(D)) to Φ(K). Given a circular filter F ∈ Φ(D), the
mapping that associates with each f ∈ H(D) the circular filter f∗(F)
is uniformly continuous with respect to the norm of H(D) and the
metric δ on Φ(K) [492].

Every analytic element on a closed bounded set D has expansion
to a function from Mult(H(D), ‖ ·‖D) to Mult(K[x]) which is contin-
uous with respect to both topologies on Mult(K[x]). Results apply to
meromorphic functions in K because, in particular, they define open
continuous functions in Mult(K[x]) with respect to the topology of
pointwise convergence. Such a mapping is increasing with respect to
the order of the tree Mult(K[x]) if and only if it is an entire function.

Notation. Throughout this chapter, we denote by D an infracon-
nected affinoid subset of K.

Lemma 41.1 is easy:

Lemma 41.1. Let F , G ∈ Φ(K) be secant with a disk d(a, r). Then,
δ(F ,G) ≤ r.

Proof. Since F , G ∈ Φ(K) are secant with d(a, r), their diameters
are ≤ r. On the other hand, sup(F ,G) is also secant with d(a, r) and
hence has a diameter ≤ r. Consequently, δ(F ,G) ≤ r. �

385
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Theorem 41.2. Let the annuli Γ(a, r′, r) and Γ(a, r, r′′) be included
in D and let h ∈ H(D). Then h(Fa,r) is a basis of a filter thinner
than a circular filter H of center h(a) and diameter ϕa,r(h− h(a)).

Proof. Since D is affinoid, up to a change of variable, we can
assume that d(a, r−) ⊂ D, hence h ∈ A(d(a, r−)). Then, putting
s = ϕa,r(h − h(a)), we can see that, given ρ < r, h(Γ(a, ρ, r))
is an annulus of the form Γ(h(a), ψ(ρ), s) with ψ(ρ) < s and
that limρ→r ψ(ρ) = s. Consequently, h(Fa,r) is a basis of a filter
C secant with the increasing filter of center h(a) and diameter
s = ϕa,r(h − h(a)) and hence is secant with the circular filter H
of center h(a) and diameter s.

On the other hand, we have ϕa,r(g ◦ f) = limC |g(u)| ∀g ∈ K(u).
Hence, for every g ∈ K(u), |g(u)| admits a limit along C. Therefore,
by Theorem 4.22, C is thinner than a circular filter H′ and hence H′
is a circular filter secant with H. But then it is equal to H, which
ends the proof. �

Theorem 41.3. Let h ∈ H(D) and let F be a circular filter with
no center secant with D. Then h(F) is a basis of a filter F ′ thinner
than a circular filter H with no center.

Proof. Let (Dn)n∈N be a canonical basis of F . Since
⋂

n∈NDn = ∅,
without loss of generality, we can assume that there exists q ∈ N∗
such that Dq ⊂ D. Consequently, by Theorem 22.9, each h(Dn) is
a disk and hence the sequence h(Dn) is a decreasing sequence of
disks. Suppose now the intersection of the sequence (h(Dn))n∈N is
not empty and let b ∈ ⋂

n∈N h(Dn). For each n ∈ N, there exists
an ∈ Dn such that h(an) = b. Since the equation h(x) = b has
finitely many solutions inside a disk, there exists α ∈ ⋂n∈N h(Dn)
such that h(α) = b, a contradiction. This finishes showing that h(F)
is a basis of a circular filter with no center. �

Notation. Let h ∈ H(D) and let F be a circular filter secant withD.
We denote by h∗(F) the circular filter less thin than the filter admit-
ting h(F) for basis.

Corollary 41.4. Let F be a large circular filter on D and let h ∈
H(D). Then h∗(F) has a center if and only if so does F . Moreover,
given f ∈ H(h(D)), then ϕh∗(F)(f) = ϕF (f ◦ h).
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Proof. We only have to check that ϕh∗(F)(f) = ϕF (f ◦ h) ∀f ∈
H(h(D)). Indeed,

ϕh∗(F)(f) = lim
h∗(F)

(f(x)) = lim
F

(h(f(x))) = ϕF (h ◦ f) ∀f ∈ H(h(D)).
�

Corollary 41.5. Suppose Γ(a, r, s) ⊂ D. Let h(x) =
∑+∞

−∞ an
(x − a)n ∈ H(D). Assume that ν(h, log u) = m 	= 0 ∀u ∈]r, s[.
Let F (respectively G) be the circular filter of center a and diam-
eter r (respectively s). Then, h∗(F) (respectively h∗(G)) is the cir-
cular filter of center 0 and diameter |h|(r) = |am|rm (respectively
|h|(s) = |am|sm). Moreover, h∗(F) and h∗(G)) are circular filters
comparable with respect to the order 
.

Proof. By Lemma 41.2, h(F) (respectively h(G)) is a basis of a
filter F ′ (respectively G′) thinner than the circular filter of center a
and diameter ϕa,r(h− h(a)) (respectively ϕa,s(h− h(a))) i.e. |am|rm
(respectively |am|sm). The last statement is obvious. �

Definition. Let F be a field. Given h = P (x)
Q(x) ∈ F (x) with

P, Q ∈ F [x] relatively prime, we call degree of h the number
deg(h) = max(deg(P ),deg(Q)) and we call absolute degree of h the
number |deg(P )− deg(Q)|∞.

Theorem 41.6. Let F ∈ Φ(D) and let f, h ∈ H(D) be such
that ϕF (f − h) < diam(h∗(F)). Then, h∗(F) = f∗(F). Fur-
ther, if E is a closed bounded set containing f(D), then ϕf∗(F) ∈
Mult(H(E), ‖ . ‖E), and for all g ∈ H(E), it satisfies ϕf∗(F)(g) =
ϕF (g ◦ f) ∀g ∈ H(E).

Proof. Suppose first that F has no center. By Theorem 41.3, we
know that h(F) is a basis of h∗(F). Then, given a decreasing sequence
of disks (Dn)n∈N making a basis of F , we have Dn ⊂ D when n is
big enough and then we can check that h(Dn) = f(Dn), which shows
the conclusion.

Suppose now that F has a center a and let r be its diameter. Since
D is infraconnected affinoid, either it contains an annulus Γ(a, r′, r)
or it contains an annulus Γ(a, r, r′′) where f has no zero. In such an
annulus, f(x) is equal to a Laurent series

∑+∞
−∞ an(x− a)n. Now, we

have ϕF (f − h) < diam(h∗(F)). Then, ϕF (f − a0) = ϕa,r(f − a0) =
ϕa,r(h− a0) = diam(h∗(F)).
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When r′ or r′′ are close enough to r, if D contains the annulus
Γ(a, r′, r), we can check that the image of Γ(a, r′, r) by f−a0 is equal
to this by h− a0, and similarly, if D contains the annulus Γ(a, r, r′′),
the image of Γ(a, r, r′′) by f−a0 is equal to this by h−a0. This holds
for every such annuli in D secant with F and shows that h(F) and
f(F) are bases of a same filter. Consequently, f(F∩D) generates the
same filter as h(F ∩D). Then, by Lemma 41.2, there exists a unique
circular filter H = h∗(F), less thin than the filter admitting for basis
f(F). Moreover, by Lemma 41.2, H admits a0 as a center and its
diameter, by construction, is ϕa,r(h − a0). Then, by Corollary 41.5,
we check that diam(f∗(F)) belongs to |K| if and only if so does
diam(F).

Now, for every P ∈ K[x], we set ψ(P ) = ϕF (P ◦ f). Then ψ
belongs to Mult(K[x]) and therefore is of the form ϕG . Hence, by
Theorem 4.10, G = H and the last statement is immediate. �

Theorem 41.7. Let F ∈ Φ(D) and let f, h ∈ H(D). Then,
δ(f∗(F), h∗(F)) ≤ ‖f − h‖D.

Proof. Let F ′ = f∗(F) and let F ′′ = h∗(F). Let r = ‖f − h‖D.
Suppose first diam(F ′) > r. Then, by Theorem 41.6, we have
F ′ = F ′′. Similarly, if diam(F ′′) > r, we have F ′ = F ′′.

Suppose now diam(F ′) ≤ r and diam(F ′′) ≤ r. Suppose first that
F has no center. Then, by Corollary 41.4, both F ′ and F ′′ have
no center. Set s′ = diam(F ′) and s′′ = diam(F ′′). Let (Dn)n∈N be
a decreasing sequence of disks making a basis of F and let E′

n =
f(Dn), E

′′
n = h(Dn), n ∈ N. Then the sequence (E′

n)n∈N is a basis of
F ′ and the sequence (E′′

n)n∈N is a basis of F ′′. But then, δ(E′
n, E

′′
n) ≤

r ∀n ∈ N and hence E′
n = E′′

n ∀n ∈ N because diam(E′
n) ≥ diam(F ′)

and diam(E′′
n) ≥ diam(F ′′). Consequently, F ′ = F ′′.

Suppose now that F has a center. Since D is affinoid, without
loss of generality, we can assume that F is the filter of center 0 and
diameter 1 and that d(0, 1) ⊂ D. Then, f(d(0, 1)) is a disk d(a, s)
and h(d(0, 1)) is a disk d(b, t) and we have |a− b| ≤ r, with a = f(0)
and b = h(0). Now, by Theorem 41.2, F ′ is secant with d(a, s) and
F ′′ is secant with d(b, t) and we have s = diam(F ′), t = diam(F ′′).
Thus, both F ′, F ′′ are secant with the disk d(a, r) = d(b, r), and
hence δ(F ′,F ′′) ≤ ‖f − h‖D. �
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Corollary 41.8. For every f ∈ H(D), f∗ is the uniform limit of
a sequence (hn)∗ with hn ∈ R(D), with respect to the distance δ on
Φ(D).

Definition and notation. Let D be a subset of K and let u be > 0.
We denote by Φ(D,u) the set of F ∈ Φ(D) such that diam(F) < u.
We call segment of Φ(D) a connected totally ordered subset of Φ(D)
with respect to the δ-topology.

Lemma 41.9. Let F , G be circular filters such that diam(F) <
r, δ(F ,G) ≤ r. Then diam(G) < 2r and both F , G are secant with a
same disk d(a, 2r).

Proof. If G 
 F , then diam(G) < r and there is nothing to show.
Suppose now that F 
 G. Then G has a center a. Since δ(F ,G) ≤ r,
we have diam(G) < s + r ≤ 2r, hence both F , G are secant with
d(a, 2r).

Suppose now that F and G are not comparable with respect
to 
. Let S = sup(F , G), and let s = diam(S). We have
δ(F ,S) < δ(F ,G) ≤ r, hence diam(S) ≤ diam(F) + δ(F ,G) < 2r.
Consequently, both F and G are secant with the disk Q(S) of diam-
eter s < 2r, and therefore, diam(G) < 2r. �

Lemma 41.10. Let σ = codiam(D), let f ∈ H(D), and let ε be > 0.
There exists u ∈]0, σ[ such that the restriction of f∗ to the set Φ(D,u)
satisfies the following property: δ(f∗(F), f∗(G)) ≤ ε ∀F ,G ∈ Φ(D,u)
such that δ(F ,G) < u.

Proof. Since f is uniformly continuous, there exists t ∈]0, σ[ such
that |f(x) − f(y)| ≤ ε ∀x, y ∈ D such that |x − y| ≤ t. Let u =
t
2 and let F , G ∈ Φ(D,u) be such that δ(F ,G) < u. Then F is
secant with a disk d(a, u), and since δ(F ,G) < u, by Lemma 41.9, G
is secant with d(a, t). Consequently, δ(f∗(F) and f∗(G)) are secant
with a same disk of diameter ε, and therefore, by Lemma 41.1 again,
δ(f∗(F), f∗(G)) ≤ ε. �

Lemma 41.11. Let σ = codiam(D), let h ∈ R(D), and let u ∈]0, σ[
be fixed. Let w be the absolute degree of h. Let Fa,r,Fa,s belong to
Φ(D) with u ≤ r < s. Then,

δ(h∗(Fa,r), h∗(Fa,s)) ≤ ‖h‖D
(

sw − rw

uw

)

.
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Proof. Without loss of generality, we can assume a = 0. Suppose
first that h has no pole in Γ(0, r, s). Then h(x) is equal to a Lau-
rent series

∑+∞
−∞ anx

n converging in that annulus. Without loss of
generality, we can suppose that a0 = 0. Let k = ν+(h, log r) and
q = ν−(h, log s). Suppose first |h|(s) > |h|(r). Then, by Corollary

36.18, we have 1 < |h|(s)
|h|(r) ≤

(

s
r

)q
. Now, suppose |h|(s) < |h|(r). Then

we have 1 < |h|(r)
|h|(s) ≤

(

s
r

)−q
. On the other hand, by Theorem 36.17,

we have |q| ≤ w. Consequently, when |h|(s) > |h|(r), we obtain

0 < |h|(s) − |h|(r) ≤ |h|(r)
( (s

r

)w − 1
)

≤ ‖f‖D
((s

r

)w − 1
)

,

and when |h|(s) < |h|(r), we obtain

0 < |h|(r)− |h|(s) ≤ |h|(s)
((s

r

)w − 1
)

≤ ‖f‖D
((s

r

)w − 1
)

.

So, in both cases, we have

0 <
∣

∣

∣ |h|(s) − |h|(r)
∣

∣

∣

∞
≤ ‖f‖D

((s

r

)w − 1
)

≤ ‖f‖D
(sw − rw

uw

)

,

therefore

δ(h∗(F0,r), h∗(F0,s)) ≤ ‖h‖D
(sw − rw

uw

)

.

Consider now the general case when h may admit poles in Γ(0, r, s).
Let C(0, r1), . . . , C(0, rk) be the circles included in Γ(0, r, s), contain-
ing at least one pole of h, with r < r1 < · · · < rk < s. Set r0 = r
and rk+1 = s. Thus, we have F0,r ≺ F0,r1 ≺ · · · ≺ F0,rk ≺ F0,s

and hence δ(F0,r,F0,s) =
∑k

j=0 δ(F0,rj ,F0,rj+1). As we just showed,

δ(h∗(F0,rj ), h∗(F0,rj+1)) ≤ ‖h‖D
(

rwj+1−rwj
uw

)

, j = 0, . . . , k. Therefore,

δ(h∗(F0,r), h∗(F0,s)) ≤ ‖h‖D
k
∑

j=0

(rwj+1 − rwj
uw

)

= ‖h‖D
(sw − rw

uw

)

.

�

Theorem 41.12. Let σ = codiam(D), let h ∈ R(D), let u ∈]0, σ[
be fixed, and let w be the absolute degree of h. Let F ,G ∈ Φ(D) with
u ≤ diam(F) = r < diam(G) = s and F ≺ G. Then,

δ(h∗(F), h∗(G)) ≤ ‖h‖D
(sw − rw

uw

)

.
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Proof. By Lemma 41.10, we only have to check the conclusion
when F has no center. Then F has a basis consisting of a decreas-
ing sequence of disks (Dn)n∈N and these disks are included in D
when n is big enough. The sequence (h(Dn))n∈N is then a basis of
h∗(F). For each n ∈ N, there is a unique circular filter Fn ∈ Φ(D)
such that Q(Fn) = Dn. Setting rn = diam(Dn) = diam(Fn), we
have limn→∞(rn) = r, and we can check that each filter h∗(Fn) has
a center and, by Lemma 41.11, satisfies

δ(h∗(Fn), h∗(G)) ≤ ‖h‖D
(sw − rwn

uw

)

.

Now, when n tends to +∞, δ(h∗(Fn), h∗(F)) tends to 0 and

‖h‖D
(

sw−rw
uw

)

, which ends the proof. �

Theorem 41.13. Let diam(D) = R and let f ∈ H(D). The mapping
f∗ from Φ(D) to Φ(K) is uniformly continuous with respect to the
δ-topology on both sets.

Proof. By Corollary 41.8, f∗ is a uniform limit of a sequence
((h∗)n)n∈N with hn ∈ R(D), so it is sufficient to prove the state-
ment when h ∈ R(D), what we assume. For convenience, we can
also suppose that D ⊂ d(0, R) with R < 1. Let σ = codiam(D), let
h ∈ R(D), and let ε be > 0. By Lemma 41.10, there exists u ∈]0, σ[
such that the restriction of h∗ to the set Φ(D,u) satisfies the fol-
lowing property: δ(h∗(F), h∗(G)) ≤ ε ∀F ,G ∈ Φ(D,u) such that
δ(F ,G) ≤ u. So, we fix u in that way. Let F , G ∈ Φ(D) be such that

δ(F ,G) ≤ min

(

εuw

2w+1‖f‖DwR2
,
u

2

)

.

Suppose first that diam(F) < u
2 . Since δ(F ,G) ≤ u

2 , by Lemma 41.9,
we can check that F ,G are secant with a same disk d(a, u), and hence
by Lemma 41.10, δ(h∗(F), h∗(G)) ≤ ε.

Now, suppose that diam(F) ≥ u
2 , diam(G) ≥ u

2 . Let S =
sup(F ,G), let r = diam(F), and let t = diam(S). Then,
δ(f∗(F), f∗(G)) ≤ δ(f∗(F), f∗(S)) + δ(f∗(S), f∗(G)). Since F ≺ S,
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by Theorem 41.12, we have

δ(f∗(F), f∗(S)) ≤ ‖f‖D
(

tw − rw
(

u
2

)w

)

.

But now, since r < t < 1, we note that tw − rw ≤ (t − r)wR2 =
δ(S,F)wR2, hence

δ(f∗(F), f∗(S)) ≤ ‖f‖D
(

(t− r)wR2

(

u
2

)w

)

= ‖f‖D
(

δ(F ,S)wR2

(

u
2

)w

)

≤ ε

2
.

Similarly, we have δ(f∗(G), f∗(S)) ≤ ε
2 . Therefore, δ(f∗(F), f∗(G)) ≤

ε ∀F ,G ∈ Φ(D) such that δ(F ,G) ≤ min( εuw

2w+1‖f‖D ,
u
2 ). Consequently,

f∗ is uniformly continuous. �

Notation. Given f ∈ M(K), we denote by Π(f) the set of poles
of f .

Lemma 41.14. Let f ∈ M(K) and suppose that Π(f) ∩ D = ∅.
Then, f ∈ H(D).

Proof. We can write f in the form g
h , where g, h ∈ A(K) have no

common zeros and h(x) 	= 0 ∀x ∈ D, hence h is invertible in H(D).
�

Theorem 41.15. Let f ∈ H(D) and let B = f(D). Then,
f∗(Φ(D)) = Φ(B).

Proof. First, let F ∈ Φ(D). The circular filter f∗(F) is clearly
secant with B and hence belongs to Φ(B).

Now, let G ∈ Φ(B). Let (bn)n∈N be a sequence of B thinner than
G and let (an)n∈N be a sequence of D such that f(an) = bn ∀n ∈ N.
Since the sequence (an)n∈N is bounded, by Corollary 3.20, we can
extract a subsequence (aζ(m))m∈N which is thinner than a circular
filter H. Then, H ∈ Φ(D). And then the sequence (bζ(m))m∈N is
thinner than f∗(H), hence f∗(H) = G. �

Lemma 41.16. Let f ∈ H(D) and Fa,r ∈ Φ(D). Then f∗(Fa,r) is
of the form Fb,s. Moreover, s belongs to |K| if and only if so does r.
Let Fe,u ∈ Φ◦(f(D)) with u ∈ |K|. There exists Fc,t ∈ Φ◦(D) such
that f∗(Fc,t) = Fe,u, with t ∈ |K|.
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Proof. By Corollary 41.5, it is obvious that f∗(Fa,r) is a circular
filter with a center b and a diameter s. Moreover, by Corollary 41.5
again, s belongs to |K| if and only if so does r. Now, consider Fe,u.
By Lemma 41.15, there exists Fc,t ∈ Φ(D) such that f∗(Fc,t) = Fe,u
and then, as we just saw, t belongs to |K| if and only if so does u.

�

Theorem 41.17. Let f ∈ M(K) (respectively f ∈ M(d(a,R−))).
Then f∗ is increasing from Φ(K)\Π(f) to Φ(K) if and only if f ∈
A(K) (respectively f ∈ A(d(a,R−))).

Proof. Let f ∈ A(K) (respectively f ∈ A(d(a,R−))). Let F , G ∈
Φ(K) be such that F ≺ G. Let s = diam(G) and r = diam(F),
hence r < s. Suppose first that F has a center a. Without loss of
generality, we can assume a = 0. Let f(x) =

∑∞
n=0 anx

n, and let
k = ν(f, log r), q = ν(f, log s). Then, by Theorem 41.6, we
have f∗(F) = |ak|rk, f∗(G) = |aq|rq, and of course, |ak|rk =
|f |(r), |aq|rq = |f |(s), hence |f |(r) < |f |(s). Let ρ = |f |(r), σ =
|f |(s). So we have f∗(F) = F0,ρ, f∗(G) = F0,σ, hence f∗(F) ≺ f∗(G).
Now, suppose that F has no center. Then F admits a center in a
spherically complete extension ̂K of K and f has an expansion ̂f in
̂K, hence the relation f∗(F) ≺ f∗(G) holds in ̂K, so it holds in K.

Now, consider f ∈ M(K)\A(K) (respectively f ∈ M(d(a,R−))\
A(d(a,R−))) and let a be a pole of f . Let d(a, l) be a disk such that f
admits neither zeros nor poles different from a inside d(a, l). Without
loss of generality, we can assume a = 0. Let r, s ∈]0, l[ be such that
r < s. Set ω0(f) = −q. Inside d(0, l), |f |(r) is of the form |a|r−q. Let
ρ = |f |(r), σ = |f |(s). Then f∗(F0,r) = F0,ρ, f∗(F0,t) = F0,σ , hence
of course F0,σ ≺ F0,ρ, which shows that f∗ is not increasing. �
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Chapter 42

Injective Analytic Elements

In this chapter, D is an infraconnected affinoid subset of K.

This chapter is aimed at characterizing the injective meromorphic
functions in a subset that is a chained union of infraconnected affinoid
subsets. The relation satisfied by such injective functions recalls the
one obtained in [58] by Yvette Perrin. The equality

|f(x)− f(y)|2 = |x− y|2|f ′(x)f ′(y)| ∀x, y ∈ D

was shown for various kinds of injective analytic functions.
In Chapter 49 of Ref. [44], it was suggested that all injective ana-
lytic elements should satisfy that by making the conjecture that an
injective analytic element should be the product of a major Moebius
function by a train of minor Moebius functions.

In Ref. [80], J. Rivera Letelier stated the above equality for all
injective meromorphic functions. Here we give a complete proof of
this equality by using tools of circular filters and the Shilov boundary.

Notation. Recall that we denote by U the unit disk d(0, 1) and by

K the residue class field of K. We use the hyperbolic distance ˜δ and
defined on Φ◦(K) as follows: consider two circular filters F , G ∈
Φ◦(K), and let S = sup(F ,G). We set ˜δ(F ,G) = 2 log(diam(S)) −
log(diam(F)) − log(diam(G)).

Thus, Lemma 42.1 is immediate:

Lemma 42.1. Let a, b ∈ K, r, s ∈ R∗
+. Then,

˜δ(Fa,r,Fb,s) = 2max(log r, log s, log |a− b|)− log r − log s.

395
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Lemma 42.2. ˜δ is a distance on Φ◦(K) that defines the same topol-
ogy as δ on Φ◦(K).

Proof. We only have to show that ˜δ satisfies the triangular inequal-
ity. The proof is similar to this of Theorem 40.14, by replacing each
diameter by its logarithm, but it also takes into account the con-
cavity of the logarithm. Next, as the logarithm function is locally
bicontinuous, it is easily seen that each neighborhood with respect
to δ is a neighborhood with respect to ˜δ and vice versa. �

Next, we need several lemmas.

Lemma 42.3. Let Fa,r ∈ Φ◦(K) and let f(x) = 1
x . Then,

if |a| ≤ r, then f∗(Fa,r) = F0, 1
r
,

if |a| > r, then f∗(Fa,r) = F 1
a
, r
|a|2

.

Proof. Suppose first |a| ≤ r. The annuli Γ(0, r − ε, r + ε) belong
to Fa,r and their images by f are annuli of the form Γ(0, 1

r+ε ,
1
r−ε).

But the unique circular filter admitting all these annuli for elements
is clearly F0, 1

r
.

Suppose now that |a| > r. The annuli Γ(a, r − ε, r + ε) belong to
Fa,r and their images are annuli of the form Γ( 1a ,

r−ε
|a|2 ,

r+ε
|a|2 ). But the

unique circular filter admitting these annuli for elements is clearly
F 1

a
, r
|a|2

, which ends the proof. �

Lemma 42.4. Let f ∈ H(D) be a Moebius function. Then f∗ is

isometric in Φ◦(D) with respect to the distance ˜δ.

Proof. f is equal to a composition of particular Moebius functions
of three types:

(i) h1(x) = x+ c, c ∈ K,
(ii) h2(x) = λx, λ ∈ K,

(iii) h3(x) =
1

x
.

Consequently, it is sufficient to prove that each hj is isometric. h1 is

obviously isometric with respect to ˜δ. Let us check that so is h2.
For simplifying notation, put g = f2 and l = h3. Consider two
circular filters Fa,r, Fb,s with r ≤ s. It is immediately seen that
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g∗(Fa,r) = Fλa,|λ|r and g∗(Fb,s) = Fλb,|λ|s. Then,

˜δ(g∗(Fa,r), g∗(Fb,s)
= 2max(log(|λ|r), log(|λ|s), log(|λa− λb|))− log(|λa|)− log |λs|
= 2max(log r, log s, log(|a− b|))− log r − log s = ˜δ(Fa,r,Fb,s).

We now consider l = h3 and check that l preserves the distance in
each of the following six cases:

(1) Suppose first a �= 0, b �= 0, |a| ≤ |b|, |a − b| = |b|, r < |a|, s < |b|.
By Lemma 42.3, we have l∗(Fa,r) = F 1

a
, r
|a|2

, l∗(Fb,s) = F 1
b
, s
|b|2

, hence

˜δ(l∗(Fa,r), l∗(Fb,s)) = 2max

(

log
r

|a|2 , log
s

|b|2 , log
(∣

∣

∣

∣

1

a
− 1

b

∣

∣

∣

∣

))

− log
r

|a|2 − log
s

|b|2 .

Since 1
|a| ≥ 1

|b| and
r

|a|2 <
1
|a| ,

s
|b|2 <

1
|b| , we get

˜δ(l∗(Fa,r), l∗(Fb,s)) = 2 log
1

|a| − log
r

|a|2 − log
s

|b|2
= log |a− b| − log r − log s = ˜δ(Fa,r,Fb,s).

(2) Suppose |a| = |b|, |a−b| < |b|, r < |a−b|, s < |a−b|. By Lemma
42.3, we have again l∗(Fa,r) = F 1

a
, r
|a|2

, l∗(Fb,s) = F 1
b
, s
|b|2

, hence

˜δ(l∗(Fa,r), l∗(Fb,s)) = 2max

(

log
r

|a|2 , log
s

|b|2 , log
(∣

∣

∣

∣

1

a
− 1

b

∣

∣

∣

∣

))

− log
r

|a|2 − log
s

|b|2 .

Now, log(| 1a − 1
b |) = log |b−a|

|a|2 > max(log r
|a|2 , log

s
|b|2 ), so

˜δ(l∗(Fa,r), l∗(Fb,s)) = 2 log

( |b− a|
|a|2

)

− log
r

|a|2 − log
s

|b|2

= 2 log |b− a| − log r − log s = ˜δ(Fa,r,Fb,s).
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(3) Suppose a = b �= 0, r < s < |b|. Then, l∗(Fa,r) = F 1
a
, r
|a|2

,

l∗(Fa,s) = F 1
a
, s
|a|2

, hence

˜δ(l∗(Fa,r), l∗(Fa,s)) = 2max

(

log
r

|a|2 , log
s

|a|2
)

− log
r

|a|2 − log
s

|a|2

= log r − log s = ˜δ(Fa,r,Fb,s).
(4) Suppose that a = 0, b �= 0, r < |b|, s < |b|. Then, l∗(F0,r) = F0, 1

r
,

l∗(Fb,s) = F 1
b
, s
|b|2

, hence

˜δ(l∗(Fa,r), l∗(Fb,s))

= 2max

(

log
1

r
, log

s

|b|2 , log
(∣

∣

∣

∣

1

b

∣

∣

∣

∣

))

− log
1

r
− log

s

|b|2

= 2 log
1

r
− log

1

r
− log

s

|b|2 = 2 log |b| − log r − log s

= ˜δ(F0,r,Fb,s).
(5) Suppose finally a = b = 0, r < s. Then, l∗(F0,r) =
F0, 1

r
, l∗(F0,s) = F0, 1

s
, so

˜δ(l∗(F0,r), l∗(F0,s)) = ˜δ(F0, 1 ,F0, 1
s
)

= 2max

(

log
1

r
, log

1

s

)

− log
1

r
− log

1

s

= log s− log r = ˜δ(F0,r,F0,s).

(6) Suppose now that b = 0, r < |a|, s ≥ |a|. As in the previous
case, we have l∗(F0,s) = F0, 1

s
, l∗(Fa,r) = F 1

|a| ,
r

|a|2
, hence

˜δ(l∗(Fa,r), l∗(Fb,s))

= 2max

(

log
r

|a|2 , log
(∣

∣

∣

∣

1

|a|
∣

∣

∣

∣

))

− log
1

s
− log

r

|a|2
= −2 log |a|+ log s− log r + 2 log |a| = log s− log r

= ˜δ(F0,r,Fb,s).
Now, we check that one of those six cases occurs:



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch42 FA1 page 399

Injective Analytic Elements 399

(A) suppose that Fa,r ≺ Fb,s. Then we can assume a = b. If a =
b = 0, we are in case (5). If 0 is not a center of both filters, we
are in case (3). If a = 0 but b is not a center of Fb,s, we are in
case (6). There is no other possibility when Fa,r ≺ Gb,s.

(B) Suppose now that Fa,r and Gb,s are not comparable for the rela-
tion �. If a = 0 and b �= 0, we have r < |b| and s < |b|, so we are
in case (4). Suppose now a �= 0, b �= 0. Then we are in case (1)
or in case (2). That finishes the proof of the lemma.

�

In order to prove Lemma 42.7, we have to recall a classical lemma
in algebra:

Lemma 42.5. Let F be an algebraically closed field and let f, g be
rational functions such that g ◦ f is the identity on F . Then both f
and g are Moebius functions.

We also need Lemma 42.6:

Lemma 42.6. Let h(x) = ax+b
cx+d with a, b, c, d ∈ U and |ad−bc| = 1

and let G = F0,1. Then, h∗(G) = G.
Proof. Let h be the residue class of h in K(u). The Moebius func-
tion h is injective and maps all elements of K to K except at most
one. Consider now a G-affinoid D. Since G = F0,1, all classes of U are
included in D except at most finitely many, and therefore, D is sent
by h onto a set containing all classes of U except a finite number of
them. Therefore, h∗(G) is less thin than the filter T generated by the
sets consisting of all classes of U except finitely many. And clearly,
G is the unique circular filter thinner than T . Hence, h∗(G) = G. �

Lemma 42.7. Suppose ˜D = U . Let f ∈ H(D) be such that
f∗(F0,1) = F0,1. Then |f(x)| = 1 holds in all classes of U except
maybe finitely many and there exists h ∈ R(D) such that

(i) ‖f − h‖D < 1,

(ii) h =
P

Q
with P, Q ∈ K[x], ‖P‖ = 1, ‖Q‖ = 1,

(iii) h∗(F0,1) = F0,1.

Moreover, given any function h ∈ R(D) such that ‖f − h‖D < 1,
then h satisfies (ii) and (iii).
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Proof. We know that |f(x)| = |f |(1) holds in all classes of U
except maybe a finite number of them. But since f∗(F0,1) = F0,1,
we have |f |(1) = 1. Consider now h ∈ K(x) satisfying ‖f − h‖D < 1.
By Theorem 41.6, we have h∗(F0,1) = f∗(F0,1) = F0,1. Then we
can write h in the form P

Q with with P, Q ∈ K[x], ‖P‖ = 1,

‖Q‖ = 1. �

Notation. Let F0,1 ∈ Φ(D) and let f ∈ H(D) be such that
f∗(F0,1) = F0,1. Let h ∈ R(D) satisfy ‖f − h‖D < 1.

Lemma 42.8. Suppose ˜D = U and let F0,1 ∈ Φ(D), let f ∈ H(D) be
bianalytic and assume that f∗(F0,1) = F0,1. There exists a neighbor-

hood V of F0,1 with respect to the metric ˜δ such that the restriction
of f∗ to V is isometric. Moreover, the image f of f in the residue
class field K(t) is a Moebius function.

Proof. Let us set again G = F0,1. Since f is bianalytic, the

inverse function g =
−1
f belongs to H(f(D)). We define a neigh-

borhood V of F0,1 such that f∗ is isometric in V with respect to

the distance ˜δ. Consider the image f of f in the residue class field
K(u). Since ϕ0,1(f) = 1, |f(x)| is equal to 1 in all classes of U
except maybe finitely many. Let B be the union of the classes of

U included in D. Then B is of the form U\
(

∪qj=1 d(ai, 1
−)
)

with

|aj | ≤ 1, |ai − aj | = 1 ∀i, j ≤ q. By definition, f is injective
in B. Since f∗(G) = G, for each class Λ of U included in D, by
Corollary 36.11, f(Λ) is a class of U, and hence, f takes different
values in different classes of U . Now, similarly, the function g maps
all classes of U but finitely many onto classes of U . Moreover, when
f takes values in a class Λ of C(0, 1), then g is defined in Λ. So, sim-
ilarly, g is not a constant and satisfies g ◦ f(u) = u for all elements
u ∈ K but finitely many. Consequently, g ◦ f is the identity in K(u),
and hence by Lemma 42.5, f is a Moebius function. Then we can
find a Moebius function h(x) = ax+b

cx+d such that h = f , which implies
a, b, c, d ∈ U and |ad− bc| = 1.

Therefore, f(x) is of the form h(x) + τ(x) with τ ∈ H(D) satis-
fying ϕ0,1(τ) < 1. Then, by Lemma 42.6, we have h∗(G) = G. Now,
since ϕ0,1(τ) < 1, by Theorem 41.6, we have h∗(G) = f∗(G) = G.
Moreover, by Theorem 41.12, both functions h∗ and f∗ are contin-
uous with respect to the δ-topology, so there exists a neighborhood
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V of G in Φ◦(D)) such that diam(τ∗(H)) < diam(h∗(H)) ∀H ∈ V,
therefore (h+ τ)∗ and h∗ give the same image of H for every H ∈ V.
But by Lemma 42.4, h∗ is isometric, hence f∗ is isometric in V. �

Corollary 42.9. Let f ∈ H(D) be bianalytic and let Fa,r ∈ Φ◦(D)
with r ∈ |K|. There exists a neighborhood V of Fa,r with respect to

the metric ˜δ such that the restriction of f∗ to V is isometric.

Proof. Since r ∈ |K|, without loss of generality, we can suppose
that Fa,r = F0,1 and consider the restriction of f to D∩U . Then we
can apply Lemma 42.8 to this restriction. �

Lemma 42.10. Let I and J be closed bounded intervals in R∗
+ with

a homeomorphism φ from I onto J and assume that for each a ∈ I,
there exists a neighborhood V of a such that | log a − log b|∞ =
| log(φ(a)) − log(φ(b))|∞ ∀a, b ∈ V. Then, | log a − log b|∞ =
| log(φ(a)) − log(φ(b))|∞ ∀a, b ∈ I.

Proof. By elementary properties of real functions in an interval,
since φ is a homeomorphism from I onto J , it is strictly monotonous.
Without loss of generality, we can assume that it is increasing. Now,
let a, b ∈ I with a < b. By compacity, we can find finitely many open
intervals Vk, k = 1, . . . , q such that [a, b] =

⋃q
k=1 Vk and | log x −

log y|∞ = | log(φ(x) − log(φ(y)|∞ ∀x, y ∈ Vk, ∀k = 1, . . . , q − 1.
Set Vk =]ak, ak+1[. Without loss of generality, we can assume that
a < ak < ak+1 < aq < b. Then,

| log(φ(a)) − log(φ(b))|∞ = log(φ(b)) − log(φ(a))

= log(φ(a1))− log(φ(a)) +

q−1
∑

k=1

log(φ(ak+1))− log(φ(ak))

+ log(φ(b)) − log(φ(aq))

= log(a1)− log(a) +

q−1
∑

k=1

log(ak+1)− log(ak) + log(b)− log(aq)

= log(b)− log(a),

which ends the proof. �
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Definition. Let Fa,r, Fb,s be two circular filters on K. If Fa,r ≺ Fb,s,
we call shortest path from Fa,r to Fb,s the path γ defined by the
following function γ from [r, s] to Φ◦(K): γ(u) = Fa,u.

Now, if Fa,r and Fb,s are not comparable, we set S =
sup(Fa,r, Fb,s), with R = diam(S), and we call shortest path from
Fa,r to Fb,s the path γ defined by the following injective func-
tion from [r, 2R − s] to Φ◦(K): γ(u) = Fa,u, ∀u ∈ [r,R] and
γ(u) = Fb,2R−u, ∀u ∈ [R, 2R− s].

We prove Proposition 42.12 in two steps. Lemma 42.11 is imme-
diate and just comes from the definition of ˜δ and lets us define the
distance ˜d on intervals in R:

Lemma 42.11. Let Fa,r, Fa,s be two circular filters in K such that
Fa,r ≺ Fa,s. Let γ be the shortest path defined in the interval I = [r, s]

with values in Φ◦(K), as γ(u) = Fa,u ∀u ∈ [r, s]. On I, let ˜d be defined

by ˜d(t, u) = | log u − log t|∞. Then ˜d is a distance on I and γ is an
isometric homeomorphism from I to γ(I) when I is equipped with

the distance ˜d and γ(I) is equipped with the distance ˜δ.

Lemma 42.11 is generalized in Proposition 42.12:

Proposition 42.12. Let Fa,r, Fb,s be two circular filters in K and
let Fa,R = Fb,R = sup(Fa,r,Fb,s). Let γ be the shortest path from Fa,r
to Fb,s defined in the interval I = [r, 2R− s]. Then γ is an isometric
homeomorphism from I to γ(I) when I is equipped with the distance
˜d and γ(I) is equipped with the distance ˜δ.

Proof. If Fa,r ≺ Fb,s or if Fb,s ≺ Fa,r, then the claim is given
by Lemma 42.11. Now, assume that Fa,r and Fb,s are not compa-
rable. Then the restriction of γ to both sections [r,R], [R, 2R − s]
is isometric. So, we only have to check that given u ∈ [r,R] and

w ∈ [R, 2R − s], we have ˜δ(Fa,u,Fb,w) = ˜d(u,w). But actually we
check that

˜d(u,w) = | log(u)− log(w)|∞
= |(log(R)− log(u)) + (log(w)− log(R))|∞
= | log(R)− log(u)|∞ + | log(w) − log(R)|∞
= ˜d(u,R) + ˜d(R,w),
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and similarly, ˜δ(Fa,u,Fb,w) = ˜δ(Fa,u,Fa,R) + ˜δ(Fb,R,Fb,w), which
ends the proof. �

Theorem 42.13. Let f ∈ H(D) be injective. Then f∗ is injective on
Φ(D).

Proof. Consider first two circular filters with centers, secant with
D: Fa,r, Fb,s, with r, s ∈ |K| and assume that f∗(Fa,r) = f∗(Fb,s).
We prove that Fa,r = Fb,s. By Theorem 41.6, we can assume that f
belongs to R(D) and we know that f∗(Fa,r) is a circular filter Fc,t
such that t lies in |K|. Let E = f(C(a, r) ∩D). Since D is affinoid,
C(a, r)∩D contains all classes of C(a, r) except maybe finitely many.
Let us show that f(D ∩C(a, r)) contains all classes of C(c, t) except
maybe finitely many. Without loss of generality, we can assume that
a = c = 0 and that r = t = 1. Thus, we have f∗(F0,1) = F0,1.
Then by Lemma 42.8, the residue class f of f in the residue field
K(X) is a Moebius function. Let u1, . . . , um be the classes of d(0, 1)
that are not included in D. Then, since f is a Moebius func-
tion, f(K\{u1, . . . , um}) is a set of the form (K\{w1, . . . , wm}) with
w1, . . . , wm classes of C(0, 1), hence f(D∩C(0, 1)) contains all classes
of C(0, 1) except finitely many, what we wanted to show.

Thus, we have proven that f(C(a, r) ∩D) contains all classes of
C(c, t) except maybe finitely many. But then, similarly, all classes of
C(c, t) but finitely many are included in f(D∩C(b, s)). Consequently,
there exists a class of C(c, t) included in both f(D ∩ C(a, r)) and
f(D ∩C(b, s)), a contradiction to the hypothesis of injectivity on f ,
except if Fa,r = Fb,s.

Consider now general case and let G, H ∈ Φ(D) be such that
f∗(G) = f∗(H), assuming that G, for instance, has no center. Then,
by Corollary 41.4, f∗(G) also has no center and neither has H. Since
G and H are two distinct circular filters with no center, there exist
disks d(a, r) and d(b, s) such that d(a, r) ∩ d(b, s) = ∅ and such that
G is secant with d(a, r) and H is secant with d(b, s). Let (Dn)n∈N
be a basis of G consisting in a decreasing sequence of disks included
in d(a, r) and let (En)n∈N be a basis of H consisting in a decreasing
sequence of disks included in d(b, s). Since f is injective, we have
f(Dm) ∩ f(En) = ∅ ∀m, n ∈ N, and hence f∗(G) �= f∗(H), which
ends the proof. �
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Theorem 42.14. Let f ∈ H(D) be bianalytic. Then the function f∗
is isometric with respect to the distance ˜δ.

Proof. Since the set of circular filters with a center is dense in
the whole set Φ◦(D) with respect to the δ-topology and there-

fore with respect to the topology defined by ˜δ, it is sufficient to
prove that for any two circular filters Fa,r,Fb,s ∈ Φ◦(D), we have
˜δ(f∗(Fa,r), f∗(Fb,s)) = ˜δ(Fa,r,Fb,s).

Let Fa,r, Fb,s ∈ Φ◦(D). Let Fa,R = Fb,R = sup(Fa,r,Fb,s). Let
Fα,ρ = f∗(Fa,r) and Fβ,υ = f∗(Fb,s) and let Fα,υ = sup(Fα,ρ,Fβ,τ ).

Consider the shortest path γ defined in the interval I = [r, 2R−s],
with values in Φ◦(D). Similarly, consider the shortest path σ defined
in the interval J = [ρ, 2υ − τ ], with values in Φ◦(f(D)) such that
σ(ρ) = Fα,ρ, σ(2υ − τ) = Fβ,τ .

By Theorem 42.13, f∗ is injective, hence the mapping h =
σ−1 ◦ f∗ ◦ γ is injective and hence is a bijection from I onto J . More-
over, since both σ, φ are homeomorphism, h is continuous. Conse-
quently, it is a continuous bijection from I onto J with respect to
the metric ˜d. But the topology defined by the metric ˜d on a bounded
interval of R is clearly the same as the usual topology. Consequently,
h is a continuous bijection from I onto J with respect to the usual
topology of R on both I and J . Therefore, h, as an injective con-
tinuous function, is a strictly monotonous function. Without loss of
generality, we can assume that h is strictly increasing.

Now, by Corollary 42.9, for every u ∈ I ∩ |K|, there exists a
neighborhood V(u) such that h is isometric in V(u) with respect to
˜d. This means that in such an interval V(u), we have | log(h(y)) −
log(h(x))|∞ = log y − log x ∀x, y ∈ V(u), x < y.

But since |K| is dense in R+, by compacity, we can find finitely
many intervals [aj , aj+1] , with aj ∈ |K|, j = 0, . . . , q − 1, such that
I = [a0, aq] and that h is isometric in each interval ]aj, aj+1[. Actu-
ally, by continuity, h is then isometric in each interval [aj, aj+1]. So,

in each interval [aj , aj+1], we have
h(y)
h(x) =

y
x , and then, by continuity,

we can check that the equality h(y)
h(x) =

y
x holds in all I. For instance,

let a ∈ [ak, ak+1] and let b ∈ [ak+1, ak+2]. Then,

h(b)

h(a)
=
( h(b)

h(ak+1)

)(h(ak+1)

h(a)

)

=
( b

ak + 1

)(ak+1

a

)

=
b

a
.
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So, by induction, we can extend the relation to the whole interval I.
And similarly, if h is decreasing, then we have

h(b)

h(a)
=
a

b
∀a, b ∈ I, a < b.

Consequently, h is isometric.
Now, by Proposition 42.12, both γ, σ are isometric homeomor-

phisms from I (respectively J) to their respective images, when I

(respectively J) is provided with ˜d and Φ◦(D) is provided with ˜δ.

Consequently, f∗ is isometric with respect to ˜δ. �

Notation. We denote by P the peripheral of D.

Theorem 42.15. Suppose ˜D = U and let f ∈ H(D) be bianalytic

and such that f̃(D) = U and f∗(P) = P. Then f∗ preserves the
order � and the distance δ on circular filters of Φ(D). Moreover,
given G,G′ ∈ Φ(D), f∗ satisfies f∗(sup(G,G′)) = sup(f∗(G), f∗(G′)).

Proof. Since the set of centered circular filters is dense inside
Φ(D), it is sufficient to prove the statement when both G,G′ are
centered and large. So we assume G = Fa,r, G′ = Fa′,r′ with rr′ > 0.

Let us first show that f∗ preserves the order and hence take a′ =
a, r < r′. Set f∗(Fa,r) = Fb,s, f∗(Fa,r′) = Fb′,s′ . Since f∗(P) = P
and since P also is the peripheral of f(D), by Theorem 42.14, we have
˜δ(Fa,r,P) = − log r, ˜δ(Fb,s,P) = − log s, hence r = s, and similarly,

r′ = s′. Consequently, ˜δ(Fb,s,Fb′,r′) = 2max(r, r′, log |b′− b|)− r− r′.
But by Theorem 42.14, ˜δ(Fb,r,Fb′,r′) = ˜δ(Fa,r,Fa,r′) = log r′ − log r.
Thus, log(|b′−b|) ≤ r′ , hence Fb′,r′ = Fb,r′ , and therefore, f∗(Fa,r) ≺
f∗(Fa,r′), i.e. f∗ preserves the order.

Consequently, we can derive that f∗ preserves the distance δ on
the set {Fa,ρ | ρ ≥ r}. Indeed, we have δ(Fa,ρ,Fa,r) = ρ− r, but we
have seen that f∗(Fa,ρ), f∗(Fa,r) are of the form Fb,ρ,Fb,r respec-
tively, hence δ(f(Fa,ρ), f(Fa,r)) = ρ− r = δ(Fa,ρ,Fa,r). Particularly,
since f∗ preserves P, it is obvious that f∗ also preserves the diameters
of circular filters.

Now, we prove that f∗ preserves the supremum. We consider
Fa,r, Fa′,r′ and set M = sup(Fa,r,Fa′,r′) and N = sup(f∗(Fa′,r),
f∗(Fa,r′)). The statement is trivial when a = a′. So, we can assume
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that the two filters are not comparable. Therefore, diam(M) =

|a− a′| > max(r, r′) and ˜δ(Fa,r,Fa,r′) = 2 log |a− a′| − log r− log r′.
Moreover, since f∗ preserves the diameter, we have diam(f∗(M)) =
diam(M) = |a − a′|. On the other hand, we have f∗(Fa,r) =
Fb,r, f∗(Fa′,r′) = Fb′,r′ . Since f∗ preserves the order, we have
Fb,r ≺ f∗(M), Fb,r′ ≺ f∗(M), hence N � f∗(M). On the other

hand, since f∗ preserves the distance ˜δ, we have

2max(log r, log r′, log |a− a′|)− log r − log r′

= 2max(log r, log r′, log |b− b′|)− log r − log r′,

hence log |a − a′| = max(log r, log r′, log |b − b′|), and hence |b −
b′| = |a − a′|. Consequently, diam(N ) = |a − a′| = diam(f∗(M)),
which proves the equality, and therefore, f∗(M) = N . Conse-
quently, f∗(sup(G,G′)) = sup(f∗(G), f∗(G′)). Moreover, since f∗ pre-
serves the distance δ on a totally ordered subset of Φ(D) and since
f∗(P) = P, we can check that δ(M,P) = δ(N ,P), and hence
diam(N ) = diam(M).

Now, let us show that f∗ preserves the distance δ in general.
Let R = diam(M) = diam(N ). We have sup(f∗(Fa,r), f∗(Fa′,r′)) =
Fb,R = Fb′,R. Then, f∗(Fa,r) = Fb,r, f∗(Fa′,r′) = Fb′,r′ and
f∗(Fa,R) = Fb,R = Fb′,R. Consequently, δ(Fa,r ,Fa′,r′) = 2R− r − r′,
and hence δ(f∗(Fa,r), f∗(Fa′,r′) = δ(Fb,r ,Fb′,r′) = 2R− r − r′, which
ends the proof. �

Theorem 42.16. Let f ∈ H(D) be bianalytic. Then, f∗(Σ(D)) ⊂
Σ0(f(D)).

Proof. Let P be the peripheral of D, let R = diam(P), and let
E = f(D). Then f∗(P) is a circular filter Fa,r. Suppose Fa,r does
not belong to Σ0(E). By definition of Σ0(E), there exists no annulus
Γ(a, r′, r) with empty intersection with E, and similarly, there is no
annulus Γ(a, r, r′′) with empty intersection with E. Now, since D is
infraconnected, by Theorem 21.12, so is E. Therefore, by Proposition
3.17, we can find circular filters Fa,r′ , Fa,r′′ secant with E, with
r′ < r < r′′ and r′, r′′ ∈ |K|. Consequently, by Theorem 41.6 and
Lemma 41.16, there exist circular filters Fα′,ρ′ , Fα′′,ρ′′ secant with
D such that f∗(Fα′,ρ′) = Fa,r′ and f∗(Fα′′,ρ′′) = Fa,r′′ (with ρ′, ρ′′ ∈
|K|). Next, since f is injective, by Theorem 42.13, f∗ is injective on
the set of circular filters Fα,ρ ∈ Φ(D), hence both Fα′,ρ′ , Fα′′,ρ′′ are
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different from P, therefore, ρ′ < R, ρ′′ < R. Let R′ = max(ρ′, ρ′′).
Since D is infraconnected, there exists a path γ′ from [0, 1] to Φ(D)
such that γ(0) = Fα′,ρ′ , γ(1) = P, and similarly, there exists a
path γ′′ from [1, 2] to Φ(D) such that γ(1) = P, γ(1) = Fα′′,ρ′′ .
Thus, we can derive a path γ from [0, 2] to Φ(D) such that γ(0) =
Fα′,ρ′ , γ(2) = Fα′′,ρ′′ . Then f∗ ◦ γ defines a path from [0, 2] to Φ(E)
such that f∗ ◦ γ(0) = Fa,r′ and f∗ ◦ γ(2) = Fa,r′′ . Let s ∈]R′, R].

The function in t: diam(f∗ ◦ γ(t)) is obviously continuous in t,
and therefore, by intermediate values theorem, there exists τ ′ ∈]0, 1[
and τ ′′ ∈]1, 2[ such that diam(f∗ ◦ γ(τ ′)) = diam(f∗ ◦ γ(τ ′′)), a con-
tradiction to the injectivity of f∗. This proves that one of the two
annuli Γ(a, r′, r) and Γ(a, r, r′′) has an empty intersection with E,
and therefore, Fa,r belongs to Σ0(E).

By inversion, we can generalize this proof to any other circular
filter of Σ(D). Consider a circular filter F ∈ Σ(D) that is not P. Since
D is infraconnected affinoid, by Corollary 40.25, it is the peripheral of
a hole T = d(b, s−) of D. Without loss of generality, we can assume
that b = 0. Let u(x) = 1

x and let B = u(D). Obviously, u∗(F) is
the peripheral P ′ of B and Σ(f(D)) = Σ(f ◦ u(B)). So, (f ◦ u)∗(P ′)
belongs to Σ0(f ◦ u(B)). �

Remark. Actually, we know that given an infraconnected affinoid set
D,H(D) is a Krasner–Tate algebra [37], so for every f ∈ H(D), f(D)
also is infraconnected affinoid, hence Σ(f(D)) = Σ0(f(D)). On the
other hand, if the field K has characteristic zero, an injective analytic
element of the Krasner–Tate algebra H(D) is a universal generator
[39], which proves that the inverse function belongs to H(f(D)) and
then f∗ is a bijection from Σ(D) onto Σ(f(D)). And if K has char-
acteristic p �= 0, an injective function is a pqth root of a universal
generator [39], which leads to the same result.

Theorem 42.17. Let f ∈ H(D) be bianalytic. Then,

|f(x)− f(y)|2 = |x− y|2|f ′(x)f ′(y)| ∀x, y ∈ D.

Proof. Since D is infraconnected affinoid, we can assume that
˜D = U . Let E = f(D).

Suppose first that f∗(P) is the peripheral of E. Without loss of
generality, we can assume that 0 ∈ E ∩ D. Let R = diam(E). By
Lemma 41.16, R belongs to |K|, so we can take λ ∈ K such that
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|λ| = 1
R . Let g = λf . Then, g∗(P) = P, hence we can apply Theorem

42.15 to g: g∗ preserves the distance δ onD, so we have |g(x)−g(y)| =
|x− y| ∀x, y ∈ D.

We can deduce that |g′(x)| is identically equal to 1 in all D.
Indeed, let us fix y in D. Put a = y and b = g(y). Then of course,
∣

∣

∣ limx→a

(

g(x)−g(a)
x−a

)∣

∣

∣ = 1, hence |g′(x)|| = 1 ∀x ∈ D. Therefore, we

can write

|g(x) − g(y)|2 = |x− y|2|g′(x)g′(y)| ∀x, y ∈ D.

Suppose now that f∗(P) is not the peripheral of f(D). By The-
orem 42.16, f∗(P) is the peripheral of a hole T = d(a, r−) of E.
Without loss of generality, we can suppose that 0 ∈ T . By Lemma
41.16, diam(T ) belongs to |K|, so we can find λ ∈ K such that |λ| =
diam(T ). Consider now the function h(x) = λ

f(x) . Clearly, h∗(P) = P.

Consequently, we have |h(x)−h(y)|2 = |x−y|2|h′(x)h′(y)| ∀x, y ∈ D.
This means
∣

∣

∣

λ(f(x)− f(y))

f(x)f(y)

∣

∣

∣

2
= |x− y|2

∣

∣

∣

(λf ′(x)
f(x)2

)(λf ′(y)
f(y)2

)∣

∣

∣ ∀x, y ∈ D,

and hence |f(x)− f(y)|2 = |x− y|2|f ′(x)f ′(y)| ∀x, y ∈ D again. �

Remark. In Ref. [58], Yvette Perrin showed that in a Hederic field,
an injective meromorphic function is a Moebius function, i.e. it
satisfies

(f(x)− f(y))2 = (x− y)2f ′(x)f ′(y) ∀x, y ∈ D.

Here we obtain a formula that looks like that one.

In Corollary 23.13, we saw that a strictly injective analytic ele-
ment on a disk d(a, r) is bianalytic. This is much more general and
concerns particularly analytic elements on affinoid sets, but the the-
ory of Krasner–Tate algebras is then necessary to give a clear expla-
nation of this [37], [39]. In order to generalize Theorem 42.17, we
must recall those statements.

Theorem 42.18. Let D be an infraconnected affinoid subset of K.
Then, H(D) id a Krasner–Tate algebra.

Theorem 42.19. Let D be an infraconnected affinoid subset of K
and let f ∈ H(D). Then, f(D) is an affinoid subset of K.
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Now, when K is of characteristic 0, we can add a few precisions.

Theorem 42.20. Let K have characteristic 0, let D be an infracon-
nected affinoid subset of K, and let f ∈ H(D) be injective. For every
b ∈ sp(f), either f − b is invertible in H(D), of (f − b)H(D) is a
maximal ideal of H(D). Moreover, f−1 belongs to H(f(D).

By Corollary 36.2, we can also derive Corollary 42.21:
In a consequence of Theorems 42.17 and 42.20, we obtain the

following theorem:

Theorem 42.21. Let K have characteristic 0, let D be an infracon-
nected affinoid subset of K, and let f ∈ H(D) be injective. Then,

|f(x)− f(y)|2 = |x− y|2|f ′(x)f ′(y)| ∀x, y ∈ D.

By Corollary 36.2, we can also derive Corollary 42.20:

Corollary 42.22. Let K have characteristic 0. Let a ∈ K, r ∈ R∗
+

and let f ∈ M(d(a,R−)) and let D be an affinoid infraconnected
subset of d(a,R). Then f is injective in D if and only if f ′ has no
zero in D and f satisfies

|f(x)− f(y)|2 = |x− y|2|f ′(x)f ′(y)| ∀x, y ∈ D.

Corollary 42.23. Let K have characteristic 0. Let E be a chained
union of infraconnected affinoid subsets (Dj)j∈J of K and let f be a
function from E to K whose restriction to each Dj belongs to H(Dj)
and is injective in E. Then for every x, y ∈ E, we have

|f(x)− f(y)|2 = |x− y|2|f ′(x)f ′(y)|.
Proof. Indeed, given x, y ∈ E, there exists a finite chained family
of infraconnected subsets Dj(1), . . . ,Dj(q) whose union E′ contains
x, y. By Proposition 2.13, E′ is infraconnected, and by Proposition
2.16, it is affinoid. Moreover, by Theorem 15.12, f belongs to H(E′),
so the conclusion follows from Theorem 42.17. �

Examples.

(1) Let (an)n∈N be a sequence of K such that limn→∞ |an| = 1, let
(rn)n∈N be a sequence of |K| such that
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0 < rn < |an|, and let D = {x ∈ d(0, 1−)\⋃∞
n=1 d(an, r

−
n ). Let

f ∈ H(D) be injective.
For every r ∈ |K|∩]0, 1[, the set Dr = D ∩ d(0, r) is clearly

affinoid, hence the restriction of f to Dr is bianalytic, and hence,
we have

|f(x)− f(y)|2 = |x− y|2|f ′(x)f ′(y)| ∀x, y ∈ Dr.

This holds for every r < 1, and hence, this holds for all x, y ∈ D.
(2) Let f be a meromorphic function in K which is injective in the

annulus Γ(0, r, s). Given s′, r′|K| such that rleqR′ < s′|eqs, then
Γ(0, r′, s′) is an affinoid, and hence,

|f(x)− f(y)|2 = |x− y|2|f ′(x)f ′(y)| ∀x, y ∈ Γ(0, r′, s′).

This holds for every r′, s′, and hence,

|f(x)− f(y)|2 = |x− y|2|f ′(x)f ′(y)| ∀x, y ∈ Γ(0, r, s).

Proof. This is given by Theorem 41.5 for Example 1 and
Theorem 41.7 for Example 2. �



October 24, 2024 19:29 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch43 FA1 page 411

Chapter 43

Counting Functions and
Nevanlinna Theory

The Nevanlinna theory was made by Rolf Nevanlinna on complex
functions [79] and widely used by many specialists of complex func-
tions, particularly Walter Hyman [65]. It consists of defining counting
functions of zeros and poles of a meromorphic function f and giv-
ing an upper bound for multiple zeros and poles of various functions
f − b, b ∈ C.

A similar theory for functions in a p-adic field was constructed
and correctly proved by A. Boutabaa [21] in the field K, after some
previous work by Ha Huy Khoai [63]. In [23], the theory was extended
to functions in M(d(0, R−)) by taking into account Lazard’s prob-
lem [72].

Notations. Recall that given three functions φ, ψ, ζ defined in an
interval J =]a,+∞[ (respectively J =]a,R[), with values in [0,+∞[,
we write φ(r) ≤ ψ(r) + O(ζ(r)) if there exists a constant b ∈ R

such that φ(r) ≤ ψ(r) + bζ(r). We write φ(r) = ψ(r) + O(ζ(r)) if
|ψ(r)− φ(r)| is bounded by a function of the form bζ(r).

Similarly, we write φ(r) ≤ ψ(r) + o(ζ(r)) if there exists a func-
tion h from J =]a,+∞[ (respectively from J = ]a,R[) to R such

that limr→+∞
h(r)
ζ(r) = 0 (respectively limr→R

h(r)
ζ(r) = 0) and such that

φ(r) ≤ ψ(r) + h(r). And we write φ(r) = ψ(r) + o(ζ(r)) if there
exists a function h from J = ]a,+∞[ (respectively from J = ]a,R[)

to R such that limr→+∞
h(r)
ζ(r) = 0 (respectively limr→R

h(r)
ζ(r) = 0) and

such that φ(r) = ψ(r) + h(r).

411
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Throughout this chapter, we denote by I the interval [t,+∞[ and
by J an interval of the form [t, R[ with t > 0.

We have to introduce the counting function of zeros and poles of
a meromorphic function f ∈ M(K) or f ∈ M(d(0, R−)) counting or
not multiplicity. Here we choose a presentation that avoids assuming
that all functions we consider admit no zero and no pole at the origin.

Definitions. We denote by Z(r, f) the counting function of zeros of
f in d(0, r) in the following way.

Let (an), 1 ≤ n ≤ υ(r), be the finite sequence of zeros of f such
that 0 < |an| ≤ r of respective order sn.

We set Z(r, f) = max(ω0(f), 0) log r +
∑υ(r)

n=1 sn(log r − log |an|),
and so, Z(r, f) is called the counting function of zeros of f in d(0, r),
counting multiplicity.

In order to define the counting function of zeros of f without
multiplicity, we put ω0(f) = 0 if ω0(f) ≤ 0 and ω0(f) = 1 if
ω0(f) ≥ 1.

Now, we denote by Z(r, f) the counting function of zeros of f
without multiplicity:

Z(r, f) = ω0(f) log r +
∑υ(r)

n=1(log r − log |an|), and so, Z(r, f) is
called the counting function of zeros of f in d(0, r) ignoring mul-
tiplicity.

In the same way, considering the finite sequence (bn), 1 ≤
n ≤ τ(r), of poles of f such that 0 < |bn| ≤ r, with respec-
tive multiplicity order tn, we put N(r, f) = max(−ω0(f), 0) log r +
∑τ(r)

n=1 tn(log r − log |bn|) and then N(r, f) is called the counting func-
tion of the poles of f , counting multiplicity.

Next, in order to define the counting function of poles of f without
multiplicity, we put ω0(f) = 0 if ω0(f) ≥ 0 and ω0(f) = 1 if ω0(f) ≤
−1 and we set N(r, f) = ω0(f) log r +

∑τ(r)
n=1(log r − log |bn|) and

then N(r, f) is called the counting function of the poles of f , ignoring
multiplicity.

Now we can define the Nevanlinna function T (r, f) in I or J as
T (r, f) = max(Z(r, f), N(r, f)) and the function T (r, f) is called
characteristic function of f or Nevanlinna function of f .

Finally, if S is a subset of K, we denote by ZS0 (r, f
′) the counting

function of zeros of f ′, excluding those which are zeros of f − a for
any a ∈ S.
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Remark. If we change the origin, the functions Z, N, T are not
changed, up to an additive constant.

By Corollary 21.2, Lemma 43.1 is easy:

Lemma 43.1. Let ̂K be a complete algebraically closed extension
of K whose absolute value extends that of K and let f ∈ M(K)

(respectively let f ∈ M(d(0, R−))). Let ̂d(0, R) = {x ∈ ̂K | |x| < R}.
The meromorphic function ̂f defined by f in ̂d(0, R) has the same
Nevanlinna functions as f .

In a p-adic field such as K, the first main theorem is almost imme-
diate and is an immediate consequence of Corollary 22.27.

Theorem 43.2. Let f ∈ M(K) (respectively f ∈ M(d(0, R−)))
have no zero and no pole at 0. Then log(|f |(r)) = Ψ(f, log r) =
log(|f(0)|) + Z(r, f) − N(r, f) and log+(|f |(r)) ≤ log(|f(0)|) +
T (r, f)−N(r, f).

Proof. We can write f(x) = h
l with h, l ∈ A(K) (respectively

h, l ∈ A(d(0, R−))) such that l(0)h(0) �= 0. By Corollary 22.27, we
have log(|h|(r)) = log(|f(0)|) + Z(r, h), log(|l|(r)) = log(|l(0)|) +
N(r, l), so the conclusion is obvious. �

Theorem 43.3 is now immediate:

Theorem 43.3. Let f, g ∈ M(K) (respectively f, g ∈ M(d(0,
R−))). Then, Z(r, fg) ≤ Z(r, f) + Z(r, g), N(r, fg) ≤ N(r, f) +
N(r, g), T (r, fg) ≤ T (r, f) + T (r, g), T (r, f + g) ≤ T (r, f) +
T (r, g) + O(1), T (r, cf) = T (r, f) ∀c ∈ K∗, T (r, 1f ) = T (r, f)),

T (r, fg ) ≤ T (r, f)) + T (r, g).

Suppose now f, g ∈ A(K) (respectively f, g ∈ A(d(0, R−))). Then,
Z(r, fg) = Z(r, f)+Z(r, g), T (r, f) = Z(r, f)), T (r, fg) = T (r, f)+
T (r, g) +O(1), and T (r, f + g) ≤ max(T (r, f), T (r, g)). Moreover, if
limr→+∞ T (r, f)− T (r, g) = +∞, then T (r, f + g) = T (r, f) when r
is big enough.

Lemma 43.4. Let α1, . . . , αn ∈ K be pairwise distinct, let P (u) =
∏n
i=1(u − αi), and let f ∈ M(d(0, R−)). Then, Z(r, P (f)) =

∑n
i=1 Z(r, f − αi) and Z(r, P (f)) =

∑n
i=1 Z(r, f − αi).

Lemma 43.5. Let f ∈ M(K). Then f belongs to K(x) if and only
if T (r, f) = O(log r).
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Proof. If f belongs to K(x), one can write it P (x)
Q(x) with P, Q ∈ K[x]

having no common zeros, hence Z(r, f) = Z(r, P ) and N(r, f) =
Z(r,Q), and hence T (r, f) = O(log r).

Now suppose that f /∈ K(x). Suppose, for instance, that f
has infinitely many zeros (an) of respective order qn. Then let us
fix s ∈ N and let t ∈ N be > s + 1. For r big enough, we
have Z(r, f) >

∑t
n=1(log r −Ψ(an)) > s log r, hence Z(r, f) is not

O(log r). Similarly, if f has infinitely many poles, we get to the same
conclusion. �

Applying Lemma 43.1 and Theorem 37.10 to f ′
f , up to a change

of origin, we can derive Corollary 43.6:

Corollary 43.6. Let f ∈ M(K) (respectively f ∈ M(d(0, R−))).
Then,

Z

(

r,
f ′

f

)

−N

(

r,
f ′

f

)

≤ − log r +O(1).

Theorem 43.7. Let f ∈ A(K) (respectively f ∈ A(d(0, R−))) and
let b ∈ K. Then, Z(r, f) = Z(r, f − b) + O(1) r ∈ I (respectively
r ∈ J).

Proof. Let f(x) =
∑∞

n=0 anx
n and let ρ ∈ R∗

+ (respectively
ρ ∈]0, R[) be such that ν+(f, log ρ) > 0 and ν+(f − b, log ρ) > 0.
Then we have ν+(f, μ) = ν+(f − b, μ) ∀μ > log ρ (respectively
∀μ ∈] log ρ, logR[). Consequently, on each circle C(0, r) such that
r > ρ (respectively r ∈]ρ,R[), f and f − b have the same number of
zeros, taking multiplicity into account. Let (an) be the sequence of
zeros of f , with respective multiplicity qn, with |an| ≤ |an+1|, n ∈ N∗
and |an| > ρ if and only if n ≥ t.

Similarly, let (bn) be the sequence of zeros of f−b, with respective
multiplicity sn, with |bn| ≤ |bn+1|, n ∈ N∗ and |bn| > ρ if and only if
n ≥ u. Since f and f − b have the same number of zeros in d(0, ρ),
we also have
(1)

∑t
n=1 qn =

∑u
n=1 sn.

Consequently, for all r > ρ (respectively r ∈]ρ,R[), we have

∑

n≥t,
|an|≤r

qn(log r −Ψ(an)) =
∑

n≥u
|bn|≤r

sn(log r −Ψ(bn)).
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Now, suppose that both f(0), f(0)− b are not 0. Then,

Z(r, f) =
∑

|an|≤r
qn(log r −Ψ(an)),

Z(r, f − b) =
∑

|bn|≤r
sn(log r −Ψ(bn)).

Therefore, Z(r, f)− Z(r, f − b) is reduced to

∑

|an|≤r,
|an|≤ρ

(log r −Ψ(an))−
∑

|bn|≤r,
|bn|≤ρ

(log r −Ψ(bn))

=

t
∑

n=1

qn(log r −Ψ(an))−
u
∑

n=1

sn(log r −Ψ(bn))

that this is a constant by (1), for r > ρ (respectively for r ∈]0, R[).
And now, suppose that 0 is a zero of order q1 of f . Then,

Z(r, f) = q1 log r +
∑

n≥2,|an|≤r
qn(log r −Ψ(an)),

and therefore, Z(r, f)− Z(r, f − b) is reduced to

q1 log r +
∑

n≥2,
|an|≤ρ

qn(log r −Ψ(an))−
∑

|bn|≤ρ
sn(log r −Ψ(bn))

= q1 log r +

t
∑

n=2

qn(log r −Ψ(an))−
u
∑

n=1

sn(log r −Ψ(bn)),

and we check that this is a constant again thanks to (1).
Similarly, if f(0) = b, then f and f − b playing the same role, we

have the same conclusion. �

Theorem 43.8 (First Main Theorem). Let f, g ∈ M(K)
(respectively let f, g ∈ M(d(0, R−))). Then T (r, f + b) = T (r, f) +
O(1) and log+ |f |(r) ≤ T (r, f)−N(r, f) +O(1).

Let h be a Moebius function. Then, T (r, f) = T (r, h ◦ f) +O(1).
Let P (X) ∈ K[X]. Then, T (r, P (f)) = deg(P )T (r, f) + O(1) and
T (r, f ′P (f) ≥ T (r, P (f)).
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Suppose now f and g have finitely many poles. Then, Z(r, fg) =
Z(r, f) + Z(r, g), T (r, f) = Z(r, f)) + O(1), T (r, fg) = T (r, f) +
T (r, g) + O(1), and T (r, f + g) ≤ max(T (r, f), T (r, g)) + O(|og(r)).
Moreover, if limr→+∞ T (r, f)− T (r, g) = +∞, then T (r, f + g) =
T (r, f) when r is big enough.

Proof. T (r, f + b) ≤ T (r, f) + O(1) ≤ T (r, f + b) + O(1), hence
T (r, f + b) = T (r, f) +O(1) ∀b ∈ K. Now, consider T (r, f + g) when
f, g have finitely many poles. We have T (r, f + g) = Z(r, f + g) +
O(log r) ≤ max(Z(r, f), Z(r, g)) +O(log(r)).

Let h(X) = aX+b
cX+d be a Moebius function and let g(x) = h ◦ f(x).

We can write h(X) = a
c +

λ
cX+d with λ = d(1− a

c ). Then,

T (r, g) = T

(

r,
λ

cf(x) + d

)

+O(1) = T (r, cf(x) + d) +O(1)

= T (r, f(x)) +O(1).

Now, let P (X) =
∏q
k=1(X − ak) ∈ K[x] be a polynomial of degree q

and let F (x) = P (f(x)). Then, T (r, f − ak) = T (r, f) + O(1) ∀k =
1, . . . , q, and hence, T (r, F ) = qT (r, f) + O(1). Moreover, zeros of
P (f) are not poles of f ′ and poles of f ′ are poles of f and hence
are not zeros of P (f). Consequently, N(r, f ′P (f) = N(r, P (f)) +
N(r, f ′) = N(r, P (f)) + N(r, f) + N(r, f), Z(r, f ′P (f)) =
Z(r, P (f) + Z(r, f ′). Therefore, T (r, f ′P (f) ≥ T (r, P (f)).

It now only remains to prove that T (r, P (f)) = qT (r, f) +
O(1). Let P (X) =

∏q
j=1(X − aj). It is immediate to check that

Z(r, P (f)) =
∑q

j=1 Z(r, f − aj) = qZ(r, f) + O(1) and that

N(r, P (f)) = qN(r, f), therefore T (r, P (f)) = qT (r, f) +O(1). �

Theorem 43.9. Let f ∈ M(K) (respectively f ∈ M(d(0, R−))).
There exists φ, ψ ∈ A(K) (respectively φ, ψ ∈ A(d(0, R−))) such

that f = φ
ψ and max(T (r, φ), T (r, ψ)) ≤ T (r, f) + O(1), r ∈ I

(respectively (r ∈ J)).

Proof. Let V1 = D(f) and let V2 = D( 1f ). Suppose first f ∈ M(K).

By Theorem 27.4, there exists φ, ψ ∈ A(K) such that D(f) =
D(φ), D( 1f ) = D(ψ). Consequently, Z(r, f) = Z(r, φ), N(r, f) =

Z(r, ψ) and the claim is immediate. Now, suppose f ∈ M(d(0, R−)).
By Theorem 27.14, there exists φ ∈ A(K) such that D(f) ≤ D(φ) and
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such that |D(φ)|(r) ≤ |V1|(r)+1, r ∈ J , hence Z(r, φ) ≤ Z(r, f)+1,

r ∈ J . Let ψ = φ
f . Then ψ lies in A(d(0, R−)) because D(f) ≤ D(φ).

And D(ψ) = D( 1f ) + D(φ) − D(f). Consequently, |D(ψ)|(r) ≤
|D( 1f )|(r) + 1. But T (r, φ) = Z(r, φ) + O(1) = log(|D(φ)|(r)) + o(1)

and T (r, ψ) = Z(r, ψ) + O(1) = log(|D(ψ)|(r)) + O(1). Therefore,
max(T (r, φ), T (r, ψ)) ≤ max(Z(r, f), N(r, f)) +O(1), r ∈ I (respec-
tively (r ∈ J)). �

Theorem 43.10. Let f ∈ M(d(0, R−)). Then f belongs to Mb(d(0,
R−)) if and only if T (r, f) is bounded in [0, R[.

Proof. Suppose first f ∈ A(d(0, R−)). Without loss of general-
ity, we can obviously suppose that f(0) �= 0. By Theorem 43.2, we
have log |f |(r) = log(|f(0)|) + Z(r, f). And |f |(r) = sup{|f(x)| | x ∈
d(0, r−)}, so the claim is clear. Now, consider the general case. Sup-
pose T (r, f) is not bounded, so either Z(r, f) or N(r, f) is not

bounded. Let f = φ
ψ with φ, ψ ∈ A(d(0, R−)). If Z(r, f) is not

bounded, then φ /∈ Ab(d(0, R
−)). If N(r, f) is not bounded, then

ψ /∈ Ab(d(0, R
−)). Thus, f cannot be put in the form φ

ψ with φ,

ψ ∈ Ab(d(0, R
−)), and therefore, f /∈ Ab(d(0, R

−)).
Conversely, if f ∈ Ab(d(0, R

−)), then it is of the form φ
ψ with φ,

ψ ∈ Ab(d(0, R
−)), hence both Z(r, φ), Z(r, ψ) are bounded. But since

Z(r, f) ≤ Z(r, φ) and N(r, f) ≤ Z(r, ψ), T (r, f) is clearly bounded
in [0, R[. �

Corollary 43.11. Let f ∈ Mu(d(a,R
−)), and let h ∈ Mb(d(a,

R−)), h �= 0. Then, fh belongs to Mu(d(a,R
−)).

By Theorems 43.8 and 43.10, we can also derive Corollary 43.12.

Corollary 43.12. Let f ∈ M(d(a,R−)) and let P ∈ K[x]. Then
P (f) belongs to Mb(d(a,R

−)) if and only if so does f .

Theorem 43.13. Let K be of characteristic 0. Let f ∈ M(K)
(respectively f ∈ M(d(0, R−))). Then Z(r, f ′)−N(r, f ′) ≤ Z(r, f)−
N(r, f) − log r + O(1), r ∈ I (respectively r ∈ J). Moreover,
N(r, f (k)) = N(r, f) + kN(r, f) + O(1), r ∈ I and Z(r, f (k)) ≤
Z(r, f) + kN(r, f)− k log r +O(1), r ∈ I (respectively r ∈ J).
Proof. Without loss of generality, we can assume that f,
f ′, . . . , f (k) have no zero and no pole at 0.
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The first statement is immediate and just comes from this basic
property: if α is a pole of f of order q, then it is a pole of f (k) of
order q + k. Next, by Theorem 43.2, we have Z(r, f) − N(r, f) =
Ψ(f, log r) − log(|f(0)|) and Z(r, f ′) − N(r, f ′) = Ψ(f ′, log r) −
log(|f ′(0)|). But Ψ(f ′, log r) ≤ Ψ(f, log r) − log r, hence we obtain
Z(r, f ′) ≤ N(r, f ′) − N(r, f) + Z(r, f) − log(r) + O(1). Actually,
N(r, f ′)−N(r, f) = N(r, f), hence N(r, f (k)) = N(r, f) + kN(r, f).
Next, Z(r, f ′) ≤ Z(r, f) + N(r, f) − log(r) + O(1). Now, suppose
that the second statement has been proved for k ≤ t. Thus, we have
Z(r, f (t+1)) ≤ Z(r, f (t)) +N(r, f (t))− log(r) = O(1). But as we just
noted, N(r, f (t)) = N(r, f), hence Z(r, f (t+1)) ≤ Z(r, f) + (t + 1)
N(r, f)− (t+ 1) log(r) +O(1). �

Lemma 43.14 is now classical and easily checked:

Lemma 43.14. Let α1, . . . , αq ∈ K be pairwise distinct, let S =
{α1, . . . , αq}, and let P (x) =

∏q
j=1(x − αj). Let f ∈ M(K) (respec-

tively f ∈ M(d(0, R−))). Then,

n
∑

j=1

Z(r, f − αj) = Z(r, P (f)),

n
∑

j=1

Z(r, f − αj) = Z(r, P (f)) ∀r ∈ I

(respectively ∀r ∈ J). Moreover, assuming that K is of characteris-
tic 0, we have

Z(r, P (f))− Z(r, P (f)) ≤ Z(r, f ′) ≤ Z(r, f) +N(r, f)− log(r)

+O(1) ∀r ∈ I (respectively ∀r ∈ J).

Corollary 43.15. We assume that K is of characteristic 0. Let
f ∈ M(K) (respectively f ∈ M(d(0, R−))). Then, T (r, f (k)) ≤
(k + 1)T (r, f) +O(1) (r ∈ I) (respectively r ∈ J).

Theorem 43.16. We assume that K is of characteristic 0. Let f ∈
M(K) (respectively f ∈ M(d(0, R−))). Then, T (r, f) − Z(r, f) ≤
T (r, f ′)− Z(r, f ′) +O(1). Further, given α ∈ M(d(0, R−)), we have
T (r, αf) − Z(r, αf) ≤ T (r, f)− Z(r, f) + T (r, α).

Proof. By Theorem 43.13, the first statement is immediate.
Let us check the last one. On one hand, T (r, f) − Z(r, f) =
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max(Z(r, f), N(r, f)) − Z(r, f) = max(0, N(r, f) − Z(r, f)) r < R.
On the other hand,

T (r, f ′)− Z(r, f ′) = max(Z(r, f ′), N(r, f ′))− Z(r, f ′)

= max(0, N(r, f ′)− Z(r, f ′))

= max(0, N(r, f) +N(r, f)− Z(r, f ′)) r < R.

But by Theorem 43.13, −Z(r, f ′) ≥ −Z(r, f) − Z(r, f) + log(r) +
O(1) r < R, hence T (r, f ′) − Z(r, f ′) ≥ max(0, N(r, f) − Z(r, f) +
log(r)) +O(1) ≥ T (r, f)− Z(r, f) +O(1), r < R.

Now, let α ∈ M(d(0, R−)). Suppose N(r, αf) ≥ Z(r, αf), r < R.
Then, T (r, αf)−Z(r, αf) = N(r, αf)−Z(r, αf) r < R. We can write

α in the form β(x)
λ(x) with β, λ ∈ H(d(0, r)), β, λ having no common

zero. Next, we can write λ in the form λ1λ2 were each zero of λ1 is
not a zero of f and each zero of λ2 is a zero of f . Then we can check
that N(r, αf) = N(r, f) +Z(r, λ1) and Z(r, αf ≥ Z(r, f)−Z(r, λ2).
Consequently, N(r, αf)−Z(r, αf) ≤ N(r, f) + Z(r, λ1)− (Z(r, f)−
Z(r, λ2)) = N(r, f) − Z(r, f) + Z(r, λ1) + Z(r, λ2) = N(r, f) −
Z(r, f) + Z(r, λ) ≤ N(r, f)− Z(r, f) + T (r, λ) r < R.

Suppose now that N(r, αf) ≤ Z(r, αf). We can do a symmetric
reasoning with the zeros of β. �

Lemma 43.17 is an immediate consequence of Corollary 22.27 and
Theorem 37.10:

Lemma 43.17. Let f ∈ M(K) (respectively f ∈ M(d(0, R−))) and

let G = f ′
f . Then, G satisfies Z(r,G) ≤ N(r,G)− log r+O(1) r ∈ I

(respectively (r ∈ J)).

Proof. Without loss of generality, we can assume that 0 is nei-
ther a pole of f nor a zero for ff ′. By Theorem 37.10, G satisfies
Ψ(G, log r) ≤ − log r. On the other hand, by Theorem 43.2, we have
Ψ(G, log r) = log |G(0)|+ Z(r,G)−N(r,G). Consequently, we obtain
log |G(0)| + Z(r,G) − N(r,G) ≤ − log r + O(1), which proves the
claim. �

Corollary 43.18. Let f ∈ M(K) (respectively f ∈ M(d(0, R−)))
and let G = f ′

f . Then, T (r,G) = N(r,G) +O(1).

Proof. By Lemma 43.17, we have T (r,G)) ≤ N(r,G) +O(1). But
as all meromorphic functions, G satisfies T (r,G) ≥ N(r,G). �
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Chapter 44

A Non-Clean Entire Function

In Chapter 31, we noted the following question:

Let f(x) =
∑∞

n=0 bnx
n ∈ A(K) be such that 0 < ρ(f) < +∞. Do we

have

ρ(f)σ(f) = ψ(f) =
lim supn→+∞

(

n n
√

|bn|ρ(f)
)

e
?

Actually, the answer is no in the general case. Using the counting
function of an entire function, we construct a counter-example. In
order to prove that, we need two basic lemmas.

Lemma 44.1. Let f1, f2 be two functions from R+ to R+ such that
limx→+∞ f1(x) = limx→+∞ f2(x) = +∞ and

lim sup
x→+∞

f1(x)

f2(x)
= b ∈ R+, lim inf

x→+∞
f1(x)

f2(x)
= a > 0.

Then,

lim
x→+∞

Log(f1(x))

Log(f2(x))
= 1.

Lemma 44.2. Let α, β ∈ R+ and let g(x) = e−x(αx − β). Then g′

has a unique zero at 1 + β
α and g(1 + β

α) = αe−(1+ β
α
). Moreover, g

is increasing in [0, 1+ β
α ] and is decreasing in [1+ β

α ,+∞[ and tends
to 0 when x tends to +∞.

421
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Theorem 44.3. Suppose that K is of characteristic 0. There exist
regular non-clean functions f ∈ A(K) such that ψ(f) > ρ(f)σ(f).

Proof. We begin the definition of positive increasing sequences
(rm)m∈N, (αm)m∈N in N∗, (βm)m∈N, where r0 = 1, r2m ∈
|K|, 2r2m ≤ αm < 2r2m+1, We put qm = αm−αm−1, νm = Log(rm),
β0 = 0, and βm = βm−1 + qm(Log(r2m)).

In [0,+∞[, we define gk(ν) = e−ν(αkν−βk) up to the rank m and
suppose that the function gk satisfies 1 ≤ gk(ν2k) ≤ 1 + 1

4k2
and 1 ≤

gk(ν2k+2) ≤ 1 + 1
4(k+1)2

∀k = 1, . . . ,m− 1 and gk−1(ν2k) = gk(ν2k).

By Lemma 44.2, gk is increasing in [ βkαk
, 1 + βk

αk
] from 0 to a

maximum equal to αke
1+

βk
αk and is decreasing to 0 when ν tends

to +∞. Hence, gk takes the value 1 at a unique point λ2k in
[ βkαk

, 1+ βk
αk

] and at a unique point λ2k+2 ∈ [1+ βk
αk
,+∞[. We then have

gk(λ2k) = e−λ2k(αkλ2k−βk) and gk(λ2k+2) = e−λ2k+2(αkλ2k+2−βm),
hence λ2k = eλ2k+βk

αk
and λ2k+2 = eλ2k+2+βk

αk
> ν2k+1 and we can

take the value r2k+2 ∈ |K| close enough to eλ2k+2 such that, putting
r2k+2 = eν2k+2 , we then have

1 ≤ gk(ν2k+2) = 1 + xk ≤ 1 +
1

4(k + 1)2

and

(1) 1 ≤ gk(ν2k) = 1 + yk ≤ 1 +
1

4(k)2
.

We note that r2k+2 > r2k+1, hence ν2k+2 > ν2k+1. Next, the func-
tion gk+1 is defined in the same way in [ν2k+2, ν2k+4] as gk+1(ν) =
e−ν(αk+1ν −βk+1). And we can check that gk+1(ν2k+2) = gk(ν2k+2).

Then by Lemma 44.2, gm has a maximum at

(2) ν2m+1 = 1 +
βm
αm

,

and gm+1 has a maximum at ν2m+3 = 1 + βm+1

αm+1
and gm+1(ν2m+3) =

αm+1e
βm+1
αm+1 > 1, hence ν2m+3 > ν2m+2. Consequently, the sequence

(rn)n∈N and is strictly increasing. This way, the sequences are now
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defined for all m ∈ N. Recall that qm = αm − αm−1. We put Θm =

ν2m+1 − ν2m. Then, ν2m = βm+eν2m (1+xm)
αm

, and hence by (1) and (2),
we obtain

(3) Θm = 1− eν2m(1 + ym)

αm
= 1− r2m(1 + ym)

αm
= 1− r2m(1 + ym)

2r2m + ηm
,

where (ηm)m∈N is a positive sequences bounded by 1 and the sequence
(ym), by (1), satisfies 0 ≤ ym ≤ 1

4(m)2
. Then,

(4) Θm ≥ 1

2
− 1

8(m)2
>

15

32
.

We can now define by induction the sequences (rm), (νm), (gm),
(ym), (Θm) and then limn→+∞ rn = +∞. Consequently, by (3) and
(4),

(5) lim
m→+∞Θm =

1

2
.

We now obtain

gm(ν2m+1) = e−ν2m+1(αmν2m+1 − βm) = αme
−(1+ βm

αm
),

and hence, by (2),

(6) gm(ν2m+1) =
(2r2m + ηm)

r2m+1
= 2e−Θm + ζm,

where (ζm)m∈N is a positive sequence of limit 0, since
limm→+∞ r2m+1 = +∞.

We can now define a function g in [0,+∞[ as g(ν) = gm(ν) when
ν ∈ [Log(r2m),Log(r2m+2)].

So, by (5), we have

(7) lim
m→+∞ g(ν2m+1) =

2√
e
.

Thus, we can check that

(8) lim sup
ν→+∞

g(ν) = lim sup
m→+∞

g(ν2m+1) < 2.

Now, by Theorem 27.4, we can consider the entire function f
admitting qm zeros on each circle C(0, r2m) and no other zero. Let
(aj,m)(1≤j≤qm) be the zeros of f on the circle C(0, r2m).
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Then, when 2m ≤ r < r2m+2, the counting functions of zeros of f
(counting multiplicity) is of the form

Z(f, r) =

m
∑

k=1

qk
∑

j=1

(ak,j(Log(r)− Log(r2k)))

=
m
∑

k=1

qk(Log(r)− Log(r2k))),

and hence, putting αm =
∑m

k=1 qk and βm =
∑m

k=1 qkr2k, the func-
tion g appears as the quotient of the counting function of zeros of f
(counting multiplicity) by eν when we put ν = Log(r). So, we have
Log(|f |(r))

r = g(ν) whenever Log(r) = ν ∈ [ν2m, ν2m+2[, and therefore
by (1), we can see that

lim inf
r→+∞

Log(|f |(r))
r

= 1

and

(9) lim sup
r→+∞

Log(|f |(r))
r

= lim
m→+∞ |g(ν2m+1)| = 2√

e
.

Moreover, by (9) and Lemma 44.1, we have

lim
r→+∞

Log(Log(|f |(r)))
Log(r)

= 1,

hence ρ(f) = 1.

Further, since lim supr→+∞
Log(|f |(r))

r = 2√
e

and lim infr→+∞
Log(|f |(r))

r = 1, we can see that σ(f) = 2√
e
and σ̃(f) = 1. Thus,

f is not clean though it is regular.

More precisely, by construction, for every r ∈ [r2m, r2m+2[, we
have ψ(f, r) = 2r2m+ηm

r , and hence ψ(f, r2m) is of the form 2 + ym,
where (ym)m∈N is a sequence of limit 0. Therefore, ψ(f) ≥ 2, while
ρ(f) = 1. This shows that f does not satisfy the relation ψ(f) =
ρ(f)σ(f), and hence, this is not always satisfied when a function f
is not clean. �
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Remark 1. Of course, by Theorem 31.5, we know that the function f
built in the proof of Theorem 44.3 satisfies ψ(f) > ˜ψ(f). But we can
directly verify this: on one hand, ψ(f) = 2, and on the other hand,

we can see that ψ(f, r2m+1) =
αm

r2m+1
, and hence by (5), ˜ψ(f) ≤ 2√

e
.

Next, f must satisfy Theorem 31.5: ρ(f)σ(f) ≤ ψ(f) ≤ ρ(f)
(eσ(f)− σ̃(f)). Let us check. We have seen that ψ(f) = 2, ρ(f) = 1,
σ(f) = 2√

e
, σ̃(f) = 1. Then, ρ(f)(eσ(f)− σ̃(f)) = 2

√
e−1 > 2. That

is okay.

Remark 2. By Corollary 31.7, a clean entire function such that
σ(f) > 0 is regular. The converse is not true, as shown in Theo-
rem 44.3.

In complex analysis, given an entire function f , we putM(f, r) =
sup{|f(z)|∞, |z|∞ = r}, where | . |∞ is the archimedean modulus
on C. In [4], the authors claimed that if a complex entire function f
satisfies

lim sup
r→+∞

Log(Log(M(f, r)))

Log(r)
= lim inf

r→+∞
Log(Log(M(f, r)))

Log(r)
,

then

lim sup
r→+∞

Log(M(f, r))

rρ
= lim inf

r→+∞
Log(M(f, r))

rρ
,

where ρ = limr→+∞
Log(Log(M(f,r)))

Log(r) . In the field K, we just checked

that such a theorem does not hold. Actually, the proof of [4] is put
in doubt by the following argument held in Lemma 2 of [4]:

since

∫ +∞

r0

exp(Log(M(r, f))

(exp(rλ))t−ε+1
dr = +∞,

“then”

lim inf
r→+∞

exp(Log(M(r, f))

(exp(rλ))t−ε
= +∞.

Suppose, for example, that in [r0,+∞[, M(r, f) is equivalent to
exp(rλ(t−ε+1))

r .
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Then, exp(rλ(t−ε+1))
exp(rλ(t−ε)) is equivalent to 1

r , and hence

∫ +∞

r0

exp(Log(M(r, f))

(exp(rλ))t−ε+1
dr = +∞,

but

lim inf
r→+∞

exp(Log(M(r, f))

(exp(rλ))t−ε
= 0.
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Chapter 45

Nevanlinna Theory in KKK and
Inside a Disk

We can now prove the second main theorem under different forms.
Lemma 45.1 is essential and directly leads to the theorems.

Lemma 45.1. Let f ∈ M(K) (respectively f ∈ Mu(d(0, R
−))). Sup-

pose that there exists ξ ∈ K (respectively ξ ∈ Mb(d(0, R
−))) and

a sequence of intervals In = [un, vn] such that un < vn < un+1,
limn→+∞ un = +∞ (respectively limn→+∞ un = R) and

lim
n→+∞

(

inf
r∈In

T (r, f)− Z(r, f − ξ)
)

= +∞

(respectively limn→+∞ (infr∈In T (r, f)− Z(r, f − ξ)) = +∞).
Let τ ∈ K (respectively let τ ∈ Mb(d(0, R

−))), τ �= ξ. Then,
Z(r, f − τ) = T (r, f) +O(1) ∀r ∈ In, when n is big enough.

Proof. We know that the Nevanlinna functions of a meromor-
phic function f are the same in K and in an algebraically closed
complete extension of K whose absolute value extends that of K.
Consequently, without loss of generality, we can suppose that K is
spherically complete because we know that such a field does admit
a spherically complete algebraically closed extension whose absolute
value expands that of K. If f belongs to M(K), we can obviously
set it in the form g

h , where g, h belong to A(K) and have no com-
mon zero. Next, since K is supposed to be spherically complete, if f
belongs to M(d(0, R−)), we can also set it in the form g

h , where g, h

427
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belong to A(d(0, R−)) and have no common zero. Consequently, we
have T (r, f) = max(Z(r, g), Z(r, h)).

When ξ is a constant, we can obviously suppose that ξ = 0.
Suppose now ξ ∈ Mu(d(0, R

−)). Then, f − ξ also belongs to
Mu(d(0, R

−)) and τ − ξ belongs to Mb(d(0, R
−)). Consequently, in

both cases, we can assume ξ = 0 to prove the claim. Next, up to a
change of origin, we can also assume that none of the functions we
consider have a pole or a zero at the origin.

Now, we have limn→+∞
(

infr∈In T (r, f)− Z(r, f)
)

= +∞ i.e.

(1) lim
n→+∞

(

inf
r∈In

(Z(r, h) − Z(r, g))
)

= +∞.

Particularly, we note that T (r, f) = Z(r, h) + O(1) whenever r ∈ In
when n is big enough.

Consider now Z(r, f − τ) = Z(r, g − τh). But by (1), we can
see that |g|(r) < |τ |h|(r) ∀r ∈ In when n is big enough, hence
Z(r, g − τh) = Z(r, τh) ∀r ∈ In when n is big enough, hence
Z(r, τh) = Z(r, h) ∀r ∈ In when n is big enough. Therefore,
Z(r, f − τ) = Z(r, h) + O(1) = T (r, f) + O(1), ∀r ∈ In when n
is big enough. So the claim is proven when τ is a constant.

Suppose now that f ∈ M(d(0, R−)) and τ ∈ Mb(d(0, R
−)).

By Theorem 36.11, we can write τ in the form φ
ψ , where φ,ψ ∈

Ab((d(0, R
−)) have no common zero. Consider Z(r, f − τh) =

Z(r, ψg−φhψh ). Since g and h have no common zero and since both φ,ψ

are bounded, we have Z(r, ψg−φhψh ) = Z(r, ψg − φh)+O(1). By (1), in

In, we have |ψg|(r) < |φh|(r) when n is big enough, and since | . |(r) is
an absolute value, |ψg−φh|(r) = |φh|(r) in In when n is big enough.
Therefore, we have Z(r, ψg − φh) = Z(r, φh) = Z(r, h) + O(1) in In
when n is big enough. Consequently, Z(r, f − τ) = Z(r, h) +O(1) =
T (r, h) +O(1) = T (r, f) +O(1) ∀r ∈ In when n is big enough. That
finishes proving Lemma 45.1. �

Theorem 45.2. Let f ∈ M(K) and let a1, . . . , aq ∈ K be distinct.
Then,

(q − 1)T (r, f) ≤ max
1≤k≤q

⎛

⎝

q
∑

j=1,j �=k
Z(r, f − aj)

⎞

⎠+O(1).
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Corollary 45.3. Let f ∈ M(K) and let a1, . . . , aq ∈ K be distinct.
Then, (q − 1)T (r, f) ≤∑q

j=1 Z(r, f − aj) +O(1).

Theorem 45.4. Let f ∈ M(d(0, R−)) and let τ1, . . . , τq ∈
Mb(d(0, R

−)) be distinct. Then,

(q − 1)T (r, f) ≤ max
1≤k≤q

⎛

⎝

q
∑

j=1,j �=k
Z(r, f − τj)

⎞

⎠+O(1).

Corollary 45.5. Let f ∈ M(d(0, R−)) and let τ1, . . . , τq ∈
Mb(d(0, R

−)) be distinct. Then, (q−1)T (r, f) ≤∑q
j=1 Z(r, f − τj)+

O(1).

Proof. (Proof of Theorems 45.2 and 45.4) Suppose Theorems 45.2
(respectively Theorem 45.4) is wrong. In order to make a unique
proof for the two theorems, in Theorem 45.2, we set τj = aj .
Thus, there exists f ∈ M(K) (respectively f ∈ M(d(0, R−))) and
τ1, . . . , τq ∈ K (respectively τ1, . . . , τq ∈ Mb(d(0, R

−))) such that

(q−1)T (r, f)−max1≤k≤q
(

∑q
j=1,j �=k Z(r, f−τj)

)

admits no superior

bound in ]0,+∞[. So, there exists a sequence of intervals Js = [ws, ys]
such that ws < ys < ws+1, lims→+∞ws = +∞ (respectively
lims→+∞ws = R) and two distinct indices m ≤ q and t ≤ q such
that

lim
s→+∞ inf

r∈Js
(

T (r, f)− Z(r, f − τm)
)

= +∞

and

lim
s→+∞ inf

r∈Js
(

T (r, f)− Z(r, f − τt)
)

= +∞.

But by Lemma 45.1, this is impossible. This ends the proof of The-
orems 45.2 and 45.4. �

Remark. Theorem 45.2 does not hold in complex analysis. Indeed,
let f be a meromorphic function in C omitting two values a and b,
such as f(x) = ex

ex−1 . Then, Z(r, f − a) + Z(r, f − b) = 0.

Theorem 45.6. Let K be of characteristic 0. Let α1, . . . , αq ∈ K,
with q ≥ 2, let S = {α1, . . . , αq}, and let f ∈ M(K) (respectively
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f ∈ M(d(0, R−))). Then, (q − 1)T (r, f) ≤ ∑q
j=1 Z(r, f − αj) +

Z(r, f ′)− ZS0 (r, f
′) +O(1)∀r ∈ I (respectively ∀r ∈ J).

Moreover, if f belongs to f ∈ A(K) (respectively A(d(0, R−))),
then qT (r, f) ≤∑q

j=1 Z(r, f −αj)+Z(r, f ′)−ZS0 (r, f ′)+O(1)∀r ∈ I

(respectively ∀r ∈ J).

Theorem 45.7 (Second Main Theorem) A. Boutabaa. Let K
be of characteristic 0. Let α1, . . . , αq ∈ K, with q ≥ 2, let S =
{α1, . . . , αq}, and let f ∈ M(K) (respectively f ∈ Mu(d(0, R

−))).
Then,

(q − 1)T (r, f) ≤
q
∑

j=1

Z(r, f − αj) +N(r, f)− ZS0 (r, f
′)− log r +O(1)

∀r ∈ I (respectively ∀r ∈ J).
Proof. (Proof of Theorems 45.6 and 45.7) By Theorem 45.2
(respectively 45.4), there exists a constant B > 0, and for each
r > 0 (respectively for each r ∈]0, R[), there exists k(r) ∈ N,
k(r) ≤ q, such that (q − 1)T (r, f) ≤ ∑q

j=1,j �=k(r)Z(r, f − aj) + B

i.e. (q − 1)T (r, f) ≤ ∑q
j=1 Z(r, f − aj) − Z(r, f − ak(r)) + B. Now,

∑q
j=1 Z(r, f − aj) =

∑q
j=1 Z(r, f − aj) + Z(r, f ′)− ZS0 (r, f

′)− log r.

Consequently, (q − 1)T (r, f) ≤ ∑q
j=1 Z(r, f − aj) + Z(r, f ′) −

ZS0 (r, f
′)−Z(r, f−ak(r))+B, and this proves the first claim of Theo-

rem 45.6. Particularly, if f ∈ A(K) (respectively if f ∈ A(d(0, R−))),
then we have Z(r, f−aj) = T (r, f−aj) = T (r, f)+O(1) ∀j = 1, . . . , q,
hence Z(r, f − ak(r)) = T (r, f) + O(1), and therefore, qT (r, f) ≤
∑q

j=1 Z(r, f − aj)+Z(r, f ′)−ZS0 (r, f
′)+O(1), which ends the proof

of Theorem 45.6.
Henceforth, by Theorem 43.13, there exists a constant cj > 0

such that Z(r, f ′) ≤ Z(r, f − aj) = N(r, f − aj) − log r + cj .
Let c = max(c1, . . . , cq). Then, Z(r, f

′)−ZS0 (r, f
′)−Z(r, f − ak(r) ≤

N(r, f − ak(r)) + c− log r = N(r, f) + c− log r. Consequently,

q
∑

j=1

Z(r, f − aj) =

q
∑

j=1

Z(r, f − aj) +N(r, f)− log r +O(1).

That finishes the proof of Theorem 45.7. �
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Remark. In Theorem 45.7, in the hypothesis f ∈ M(d(0, R−)), the
term − log r has no veritable meaning since r is bounded.

Corollary 45.8. Let K be of characteristic 0. Let α1, . . . , αq ∈ K,
with q ≥ 2, let S = {α1, . . . , αq}, and let f ∈ M(K) (respectively
f ∈ M(d(0, R−))). Then,

q
∑

j=1

(

Z(r, f − αj)− Z(r, f − αj)
) ≤ T (r, f) +N(r, f)− ZS0 (r, f

′)

− log r +O(1) ∀r ∈ I (respectively ∀r ∈ J).

We can check that given f ∈ A(K) such that 0 < ρ(f) < +∞ and

0 < σ(f), we have σ(f, r) = T (r,f)

rρ(f)
. Consequently, Corollary 45.9 is

just a corollary of Corollary 45.8.
Using ρ(f), we can derive a new form of the main Nevanlinna

theorem for entire functions:

Corollary 45.9. Let K be of characteristic 0. Let f ∈ A(K) be such
that 0 < ρ(f) < +∞ and let a1, . . . , aq ∈ K. Then,

(q − 1)σ(f) ≤ lim sup
r→+∞

(

1

rρ(f)

q
∑

i=1

Z(r, f − ai)

)

.

Proof. We have σ(f, r) = Log(|f |(r))
rρ(f)

, hence by Theorem 45.7,

rρ(f)(q − 1)σ(f, r) ≤
q
∑

i=1

Z(r, f − ai)− Log(r) +O(1).

The conclusion is then obvious. �

Corollary 45.10. Let K be of characteristic 0. Let f ∈ A(K) be
clean. Let a1, . . . , aq ∈ K. Then,

(q − 1)σ(f) ≤ lim inf
r→+∞

(

1

rρ(f)

q
∑

i=1

Z(r, f − ai)

)

and

(q − 1)ψ(f) ≤ lim inf
r→+∞

(

ρ(f)

rρ(f)

q
∑

i=1

Z(r, f − ai)

)

.
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Chapter 46

Nevanlinna Theory Out of a Hole

Throughout Chapters 46–57, the field K is supposed to be of charac-
teristic 0

Now, we mean to construct a Nevanlinna theory for meromorphic
functions in the complement of an open disk thanks to the use of
specific properties of the analytic elements on infraconnected subsets
of K already examined.

Given f ∈ M(D), for r > R, here we denote by ZR(r, f) the
counting function of zeros of f between R and r, i.e. if α1, . . . , αm
are the distinct zeros of f in Δ(0, R, r), with respective multiplicity
uj , 1 ≤ j ≤ m, then ZR(r, f) =

∑m
j=1 uj(log(r)− log(|αj |)).

Similarly, we denote by NR(r, f) the counting function of poles of
f between R and r, i.e. if β1, . . . , βn are the distinct poles of f
in Δ(0, R, r), with respective multiplicity vj , 1 ≤ j ≤ m, then
NR(r, f) =

∑n
j=1 vj(log(r)− log(|βj |)). Finally, we put TR(r, f) =

max
(

ZR(r, f), NR(r, f)
)

.

Next, we denote by ZR(r, f) the counting function of zeros with-
out counting multiplicity: if α1, . . . , αm are the distinct zeros of f in
Δ(0, R, r), then we put ZR(r, f) =

∑m
j=1 log(r)− log(|αj |).

Similarly, we denote by NR(r, f) the counting function of poles
without counting multiplicity: if β1, . . . , βn are the distinct poles of
f in Δ(0, R, r), then we put NR(r, f) =

∑n
j=1 log(r)− log(|βj |).

Finally, putting W = {a1, . . . , aq}, we denote by ZWR (r, f ′) the
counting function of zeros of f ′ on points x where f(x) /∈W .

Given two functions defined in an interval I = [b,+∞[, we write
φ(r) = ψ(r) + O(log(r)) (respectively φ(r) ≤ ψ(r) + O(log(r)))

433
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if there exists a constant B > 0 such that |φ(r) − ψ(r)|∞ ≤
B log(r), r ∈ I (respectively φ(r)− ψ(r) ≤ B log(r), r ∈ I).

We write φ(r) = o(ψ(r)), r ∈ I, if limr→+∞
φ(r)
ψ(r) = 0.

Theorem 46.1. Let f ∈ M(D). Then, log(|f |(r)) − log(|f |(R)) =
ZR(r, f)−NR(r, f) +mo(f, S)(log r − logR) (r ∈ I).

Proof. By Theorem 39.6, we have f = fSf0. Since fS has no
zero and no pole in D, by Theorem 39.3, it satisfies |fS|(r)) =
rmo(f,S) ∀r ∈ I, hence log(|fS |(r))− log(|fS |(R)) = mo(f, S)(log r−
logR) (r ∈ I). Next, since f0 has no zero and no pole in S, we have
log(|f0|(r))− log(|f0|(R)) = ZR(r, f

0)−NR(r, f
0) (r ∈ I), therefore

the statement is clear. �

Corollary 46.2. Let f ∈ M(D). Then TR(r, f) is identically zero if
and only if f is a Motzkin factor.

Corollary 46.3. Let f, g ∈ A(D) satisfy log(|f |(r)) ≤
log(|g|(r)) ∀r ≥ R (r ∈ I). Then, ZR(r, f) ≤ ZR(r, g) + (mo(g, S) −
mo(f, S))(log(r)− log(R)), (r ∈ I).

Theorem 46.4. Let f ∈ A(D). Then, ZR(r, f
′) ≤ ZR(r, f) +

O(log(r)) (r ∈ I).

Proof. Indeed, by Theorem 18.2, we have |f ′|(r) ≤ |f |(r)
r . There-

fore, the conclusion comes from Theorem 46.1. �

We can now characterize the set Mc(D):

Theorem 46.5. Let f ∈ M(D). The three following statements are
equivalent:

(i) lim
r→+∞

TR(r, f)

log(r)
= +∞ (r ∈ I),

(ii)
TR(r, f)

log(r)
is unbounded,

(iii) f belongs to Mc(D).

Proof. Consider an increasing sequence (un)n∈N in R+ such
that limn→+∞ un = +∞ and let (kn)n∈N be a sequence of N∗.
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Clearly, we have

lim
r→+∞

∑

un≤r kn(log(r)− log(un))

log(r)
= +∞.

Consequently, if a function f ∈ Mc(D) has infinitely many zeros

(respectively infinitely many poles in D), then limn→+∞
ZR(r,f)
log(r) =

+∞ (respectively limn→+∞
NR(r,f)
log(r) = +∞), hence in both cases,

limn→+∞
TR(r,f)
log(r) = +∞. Conversely, if f has finitely many zeros and

finitely many poles in D, then we check that limn→+∞
TR(r,f)
log(r) < +∞.

Thus, the equivalence of the three statements is clear. �

Theorem 46.6. The set M0(D) = M(D)\Mc(D) is a subfield of
M(D). Every f ∈ Mc(D) is transcendental over M0(D).

Proof. By Theorem 46.5, M0(D) is a subfield of M(D). Now, con-
sider a polynomial P (Y ) =

∑n
j=0 ajY

j ∈ M0(D)[Y ] with an = 1. Let

f ∈ Mc(D) and suppose that P (f) = 0. Then, fn = −∑n−1
j=0 ajf

j.

Set Ξ =
∑n−1

j=0 ajf
j and f = f0 gh with g, h ∈ A(D) having no zero

in S. Then, Ξ =
∑n−1

j=0 ajg
jhn−1−j

hn−1 .

Since
∑n−1

j=0 ajg
jhn−1−j belongs to A(D), by Theorem 46.7, we

have

TR

⎛

⎝r,

n−1
∑

j=0

ajg
jhn−1−j

⎞

⎠ ≤ (n− 1)TR(r, f) +O(log(r)), (r ∈ I),

and of course, TR(r, h
n−1) ≤ (n− 1)TR(r, f), (r ∈ I). Consequently

TR(r,Ξ) ≤ (n− 1)TR(r, f) +O(log(r), (r ∈ I).

But on the other hand, by Theorem 46.7, TR(r, f
n) = nTR(r, f).

Therefore, we should have nTR(r, f) ≤ (n − 1)TR(r, f) +
O(log(r), (r ∈ I), which is impossible by Theorem 46.6 because
f belongs to Mc(D). Consequently, the equality P (f) = 0 is impos-
sible, which proves that f is transcendental over M0(D). �

Operations on M(D) work almost like for meromorphic functions
in the whole field.
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Theorem (First Main Theorem) 46.7. Let f, g ∈ M(D). Then
for every b ∈ K, we have TR(r, f + b) = TR(r, f) +O(log(r)) (r ∈ I),
TR(r, f.g) ≤ TR(r, f) + TR(r, g) + O(log(r)) (r ∈ I), TR(r,

1
f ) =

TR(r, f), TR(r, f + g) ≤ TR(r, f) + TR(r, g) + O(log(r)) (r ∈ I),
and TR(r, f

n) = nTR(r, f).
Let h be a Moebius function. Then, TR(r, h ◦ f) = TR(r, f) +
O(log(r)) (r ∈ I).

Moreover, if both f and g belong to A(D), then

TR(r, f + g) ≤ max(TR(r, f), TR(r, g)) +O(log(r)) (r ∈ I)

and TR(r, fg) = TR(r, f) + TR(r, g), (r ∈ I). Particularly, if f ∈
Ac(D), then TR(r, f + b) = TR(r, f) + O(1) (r ∈ I). Given a poly-
nomial P (X) ∈ K[X] of degree q, then TR(r, P ◦ f) = qTR(r, f) +
O(log(r)).

Proof. Suppose first f, g ∈ A(D). It is immediate to check that
TR(r, fg) = ZR(fg) = ZR(f) + ZR(r, g) = TR(r, f) + TR(r, g), that
TR(r, f

n) = nTR(r, f), and that TR(r,
1
f ) = TR(r, f).

Then, TR(r, f + g) = ZR(r, f + g) = log(|f + g|(r)) −
mo(f + g, S)(log(r) − log(R)), (r ∈ I). But log(|f + g|(r)) ≤
max

(

log(|f |(r)), log(|g|(r))), hence

ZR(r, f + g) ≤ max
(

ZR(r, f) +mo(f, S)(log(r)− log(R)),

ZR(r, g) +mo(g, S)(log(r)− log(R))
)

,

and hence TR(r, f + g) ≤ max
(

TR(r, f), TR(r, g)
)

+O(log(r)).
Particularly, given b ∈ K, we have TR(r, f + b) ≤ TR(r, f) +

O(log(r)) ≤ TR(r, f) + O(log(r)), hence TR(r, f + b) = TR(r, f) +
O(log(r)).

Now, given a polynomial of degree q, we have ZR(r, P ◦ f) =
qZR(r, f)+O(log(r)) andNR(r, P ◦f) = qNR(r, f), hence TR(r, P ◦f)
= qTR(r, f).

Now, suppose f ∈ Ac(D). Then f(x) is a Laurent series
∑+∞

−∞ anx
n convergent in all D such that limr→+∞ |f |(r) = +∞. Let

b ∈ K and take V be such that |f |(r) > |b| ∀r ≥ V . Then for every
r > V , |f |(r) is of the form |ak|rk with k > 0, |an|rn < |ak|rk ∀n > k
and the number of zeros of f in Δ(0, R, r) is k − mo(f, S). Next,
f − b is of the form

∑+∞
−∞ cnx

n with cn = an ∀n �= 0 and c0 = a0 − b.
Consequently, f − b has the same number of zeros in Δ(0, R, r) and
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in each circle C(0, r) for r > V . Therefore, TR(r, f) = TR(r, f − b)
when r is big enough.

Next, consider the general case: f, g ∈ M(D). First, it is imme-
diate to check that TR(r, fg) ≤ TR(r, f) + TR(r, g). Similarly, for
TR(r,

1
f ). By definition, we have ZR(r,

1
f ) = NR(r, f) and NR(r,

1
f ) =

ZR(r, f), hence TR(r,
1
f ) = TR(r, f).

Now, consider TR(r, f + g) in the general case: f, g ∈ M(D). By
Theorem 39.6, we can write

f + g = fS
(

f01
f02

)

+ gS(g01 , g
0
2),

hence

TR(r, f + g) = TR

(

r,
fSf01 g

0
2 + gSg01f

0
2

f2g2

)

with f01 , f
0
2 , g

0
1 , g

0
2 ∈ A(K), having no zero in T and fS, gS Motzkin

factors associated with S. Then, ZR(r, f
Sf01g

0
2) = ZR(r, f

0
1 ) +

ZR(r, g
0
2), ZR(r, g

Sg01f
0
2 ) = ZR(r, g

0
1) + ZR(r, f

0
2 ), hence, by what

we just saw, ZR(r, f
Sf01g

0
2 + gSg01f

0
2 ) ≤ max

(

TR(r, f), TR(r, g)
)

+
O(log(r)). And obviously, ZR(r, f2g2) ≤ TR(r, f) + TR(r, g). So we
obtain in the general case TR(r, f + g) ≤ TR(f) + TR(r, g) +
O(log(r)).

Finally, consider a Moebius function h. Then, h ◦ f(x) is of the
form C + ε

αf(x)+β , and thereby, TR(r, h ◦ f) = TR(r, f) + O(log(r)).
�

Theorem 46.8. Every f ∈ Mc(D) is transcendental over M0(D).

Proof. Consider a polynomial P (Y ) =
∑n

j=0 ajY
j ∈ M0(D)[Y ]

with an = 1. Let f ∈ Mc(D) and suppose that P (f) = 0. Then,
fn = −∑n−1

j=0 ajf
j. Set Ξ =

∑n−1
j=0 ajf

j and f = f0 gh with g, h ∈
A(D) having no zero in S. Then, Ξ =

∑n−1
j=0 ajg

jhn−1−j

hn−1 .

Since
∑n−1

j=0 ajg
jhn−1−j belongs to A(D), by Theorem 46.7, we

have

TR

⎛

⎝r,
n−1
∑

j=0

ajg
jhn−1−j

⎞

⎠ ≤ (n− 1)TR(r, f) +O(log(r)), (r ∈ I),

and of course, TR(r, h
n−1) ≤ (n− 1)TR(r, f), (r ∈ I). Consequently,

TR(r,Ξ) ≤ (n− 1)TR(r, f) +O(log(r), (r ∈ I).
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But on the other hand, by Theorem 46.7, TR(r, f
n) = nTR(r, f).

Therefore, we should have nTR(r, f) ≤ (n − 1)TR(r, f) +
O(log(r), (r ∈ I), which is impossible by Theorem 46.6 because
f belongs to Mc(D). Consequently, the equality P (f) = 0 is impos-
sible, which proves that f is transcendental over M0(D). �

Theorem 46.9. Let f ∈ M(D). Then, NR(r, f
(k)) = NR(r, f) +

kNR(r, f), (r ∈ I) and ZR(r, f
(k)) ≤ ZR(r, f) + kNR(r, f) +

O(log(r)), (r ∈ I).
Proof. The inequality NR(r, f

(k)) = NR(r, f) + kNR(r, f) +
O(1), r ∈ I, is obvious. Next, consider f in the form g

h with

g, h ∈ A(K). Recall that we can write h in the form h˜h with h

and ˜h in A(K), each zero of h being of order one and all zeros of h

being a zero of h. So, h′ is of the form ˜ĥh, where ̂h belong to A(K)

and none of the zeros of ̂h is a zero of h. Then, f ′ is of the form
g′h−gĥ
hh

. So, ZR(r, f
′) ≤ ZR(r, g

′h− ĝh), and hence, by Theorem 46.7,

(1) ZR(r, f
′) ≤ max(ZR(r, g

′h), ZR(r, ĝh).

On one hand, by Theorem 46.5, ZR(r, g
′) ≤ ZR(r, g) + O(log r),

and by Corollary 46.4, we have ZR(r, g
′) ≤ ZR(r, f) + O(log(r)).

Obviously, ZR(r, h) ≤ ZR(r, h) = NR(r, �) = NR(r, f), hence
ZR(r, g

′h) ≤ ZR(r, f) +NR(r, f).

Now, let us estimate ZR(r,̂h). Since log(|h′|(r)) ≤ log(|h|(r)) −
log r, we have ZR(r, h

′) ≤ ZR(r, h) + O(log(r)). But since h′ = ̂h˜h,

we have ZR(r,̂h) = ZR(r, h
′) − ZR(r,˜h) ≤ ZR(r, h) − ZR(r,˜h) +

O(log(r)) = ZR(r, h) + O(log(r)) = NR(r, f) + O(log(r)). Conse-
quently,

ZR(r, ĝh) ≤ ZR(r, g) +NR(r, f) +O(log(r))

= ZR(r, f) +NR(r, f) +O(log(r)).

Thus, by (1), we have proven the claim when k = 1 and then it is
immediately derived by induction on k. �

Similar to Lemmas 43.17 and 46.9, now we have Lemma 46.10
and Corollary 46.11:

Lemma 46.10. Let f ∈ M(D) and let G = f ′
f . Then, G satisfies

ZR(r,G) ≤ NR(r,G) − log r +O(1) (r ≥ R).
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Corollary 46.11. Let f ∈ M(D) and let G = f ′
f . Then, TR(r,G)−

NR(r,G) = 0 +O(1).

Lemma 46.12 is necessary in the proof of Theorem 46.13.

Lemma 46.12. Let f ∈ M(D). Suppose that there exists ξ ∈ K

and a sequence of intervals Jn = [un, vn] such that un < vn < un+1,

limn→+∞ un = +∞, and limn→+∞
[

infr∈Jn
TR(r,f)−ZR(r,f−ξ)

log(r)

]

= +∞.

Let τ ∈ K τ �= ξ. Then, ZR(r, f − τ) = TR(r, f)+O(log(r))) ∀r ∈
Jn when n is big enough.

Proof. Without loss of generality, we can obviously suppose that
ξ = 0. By Theorem 39.6, f is of the form fSf0 and f0 is of the form
g
h with g, h ∈ A(D), having no zero in S. Set w = fS. Thus, we have

lim
n→+∞

[

inf
r∈Jn

ZR(r, h) − ZR(r, g)

log(r)

]

= +∞.

Consequently, by Theorem 46.1,

(1) lim
n→+∞

[

inf
r∈Jn

log(|h|(r) − log(|g|(r)
log(r)

]

= +∞.

Consider now f − τ . We have f − τ = wg−τh
h , hence

log(|f |(r)) = log
(|wg − τh|(r)− log(|h|(r)).

But by (1), we have log(|τh|(r)) > log(|wg|(r)) because log(|w|(r) =
O(log(r)), therefore log

(|wg − τh|(r)) = log(|τh|(r)) ∀r ∈ Jn when
n is big enough, and hence

(2) lim
n→+∞

[

sup
r∈Jn

log(|τh− wg|(r) − log(|h|(r)
log(r)

]

= 0.

Consequently, by (2) and by Theorem 46.1,

lim
n→+∞

[

sup
r∈Jn

ZR(r, τh − wg) − ZR(r, h)

log(r)

]

= 0

i.e.

lim
n→+∞

[

sup
r∈Jn

ZR(r, f − τ)− TR(r, f)

log(r)

]

= 0,

which proves the claim. �
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The Nevanlinna second main theorem is based on the following
theorem:

Theorem 46.13. Let f ∈ M(D) and let a1, . . . , aq ∈ K be distinct.
Then,

(q− 1)TR(r, f) ≤ max
1≤k≤q

⎛

⎝

q
∑

j=1,j �=k
ZR(r, f − aj)

⎞

⎠+O(log(r)) (r ∈ I).

Proof. Suppose Theorem 46.13 is wrong. Thus, there exists
f ∈ M(D) and a1, . . . , aq ∈ K such that (q − 1)TR(r, f) −
max1≤k≤q

(

∑q
j=1,j �=k ZR(r, f − aj)

)

admits no superior bound in

]0,+∞[. So, there exists a sequence of intervals Js = [ws, ys] such
that ws < ys < ws+1, lims→+∞ws = +∞ and two distinct indices
m ≤ q and t ≤ q such that

lim
s→+∞

[

inf
r∈Js

(

TR(r, f)− ZR(r, f − am)
)

log(r)

]

= +∞

and

lim
s→+∞

[

inf
r∈Js

(

TR(r, f)− ZR(r, f − at)
)

log(r)

]

= +∞.

But by Lemma 46.12, that is impossible. �
We can now state and prove the second main theorem for M(D).

Theorem 46.14. Let K be of characteristic 0. Let f ∈ M(D), let
α1, . . . , αq ∈ K, with q ≥ 2, and let W = {α1, . . . , αq}. Then,

(q − 1)TR(r, f) ≤
q
∑

j=1

ZR(r, f − αj) + ZR(r, f
′)

−ZWR (r, f ′) +O(log(r)) (r ∈ I).

Moreover, if f belongs to A(D), then

qTR(r, f) ≤
q
∑

j=1

ZR(r, f − αj) + ZR(r, f
′)

−ZWR (r, f ′) +O(log(r)) (r ∈ I).
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Theorem 46.15 (Second Main Theorem). Let K be of charac-
teristic 0. Let f ∈ M(D), let α1, . . . , αq ∈ K, q ≥ 2, and let
W = {α1, . . . , αq}. Then,

(q − 1)TR(r, f) ≤
q
∑

j=1

ZR(r, f − αj) +NR(r, f)

−ZWR (r, f ′) +O(log(r)) (r ∈ I).

Proof. (Proof of Theorems 46.14 and 46.15) By Theorem 46.13,
there exists a constant B > 0, and for each r > R, there exists
k(r) ∈ N, k(r) ≤ q, such that

(q − 1)TR(r, f) ≤
q
∑

j=1,j �=k(r)
ZR(r, f − aj) +B log(r).

Now, since K is of characteristic 0, we have
q
∑

j=1

ZR(r, f−aj) =
q
∑

j=1

ZR(r, f−aj)+ZR(r, f
′)−ZWR (r, f ′)+B log(r).

Consequently,
(9)

(q − 1)TR(r, f) ≤
q
∑

j=1

ZR(r, f − aj) + ZR(r, f
′)− ZWR (r, f ′)

−ZR(r, f − ak(r)) +O(log(r))

and this proves the first claim of Theorem 46.14.
Particularly, if f ∈ A(D), then we have ZR(r, f − aj) =

TR(r, f − aj) = TR(r, f) + O(log(r)) ∀j = 1, . . . , q, hence
ZR(r, f − ak(r)) = TR(r, f) +O(log(r)), and therefore,

qTR(r, f) ≤
q
∑

j=1

ZR(r, f − aj) + ZR(r, f
′)− ZWR (r, f ′) +O(log(r)),

which ends the proof of Theorem 46.14.
Consider now the situation in Theorem 46.15. By Theorem 46.9,

for each j = 1, . . . , q, there exists a constant Bj > 0 such that
ZR(r, f

′) ≤ ZR(r, f − aj) + NR(r, f − aj)+Bj log(r). Consequently,
there exists a constant C > 0 such that ZR(r, f

′) ≤ ZR(r, f−ak(r))+
NR(r, f − ak(r)) + C log(r) ∀r > R.
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Therefore, by Relation (9), that remains true in Theorem 46.15,
we can derive

(q − 1)TR(r, f) ≤
q
∑

j=1

ZR(r, f − αj) +NR(r, f)− ZWR (r, f ′)

+O(log(r)) ∀r ∈ I.
�

Corollary 46.16. Let f ∈ M(K) and let a1, . . . , aq ∈ K be distinct.
Then, (q − 1)TR(r, f) ≤

∑q
j=1 ZR(r, f − aj) +O(log(r)) (r ∈ I).

Corollary 46.17. Let K be of characteristic 0. Let f ∈ M(D), let
α1, . . . , αq ∈ K, with q ≥ 2, and let W = {α1, . . . , αq}. Then

q
∑

j=1

(

ZR(r, f − αj)− ZR(r, f − αj)
)

≤ TR(r, f) +NR(r, f)− ZWR (r, f ′) +O(log(r)) (r ∈ I).
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Chapter 47

Immediate Applications of the
Nevanlinna Theory

Throughout this chapter, the field K is supposed to be of
characteristic 0.

Notation. In all the chapters, the field K is supposed to be of char-
acteristic 0. As in Chapter 41, we denote by D the set K\d(0, R−)
with R a positive number. The definitions of A(D), Ac(D), M(D),
and Mc(D) are those given in Chapter 46.

As immediate applications of the second main theorem, we can
note Theorems 47.1–47.4.

Theorem 47.1. Let a1, a2 ∈ K(a1 �= a2) and let f, g ∈ A(K) satisfy
f−1({ai}) = g−1({ai})(i = 1, 2). Then, f = g.

Remark. Theorem 47.1 does not hold in complex analysis. Indeed,
let f(z) = ez , g(z) = e−z, and let a1 = 1, a2 = −1. Then,
f−1({ai}) = g−1({ai}) (i = 1, 2), though f �= g.

Theorem 47.2. Let a1, a2, a3 ∈ K (ai �= aj ∀i �= j) and let
f, g ∈ Au(d(a,R

−)) (respectively, g ∈ Ac(D)) satisfy f−1({ai}) =
g−1({ai})(i = 1, 2, 3). Then, f = g.

Theorem 47.3. Let a1, a2, a3, a4 ∈ K(ai �= aj ∀i �= j) and let
f, g ∈ M(K) satisfy f−1({ai}) = g−1({ai})(i = 1, 2, 3, 4). Then,
f = g.

443
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Theorem 47.4. Let a1, a2, a3, a4, a5 ∈ K(ai �= aj ∀i �= j)
and let f, g ∈ Mu(d(a,R

−)) (respectively f, g ∈ Mc(D)) satisfy
f−1({ai}) = g−1({ai}) (i = 1, 2, 3, 4, 5). Then, f = g.

Remark. Let f(x) = x
3x−1 , g(x) =

x2

x2+2x−1
. Let a0 = 0, a1 = 1,

a2 =
1
2 . Then we can check that f−1({ai}) = g−1({ai}), i = 1, 2, 3.

So, Theorem 47.3 is sharp.

Proof. (Theorems 47.1–47.4) Let I =]0,+∞[ in Theorems 47.1
and 47.3 and let I =]0, R[ in Theorems 47.2 and 47.4. For each j =
1, . . . , n, let Sj be the set of all zeros of f − aj (without taking
multiplicities into account). Since ai �= aj ∀i �= j, we have Si ∩ Sj =
∅ ∀i �= j. Next, we note that f(x) = aj implies f(x) − g(x) = 0.
Consequently, we check the following:

(1)
∑n

j=1 Z(r, f − aj) ≤ Z(r, f − g).

Suppose first that f and g either belong to A(K) or belong to
A(d(0, R−)).

By applying Theorem 45.7 to f, we obtain

(n− 1)T (r, f) ≤
n
∑

j=1

Z(r, f − aj) +N(r, f)− log(r) +O(1)

≤ nZ(r, f − g) +N(r, f)− log(r) +O(1) (r ∈ I),

hence by (1),

(n− 1)T (r, f) ≤ T (r, f − g) +N(r, f) − log(r) +O(1) (r ∈ I),

and finally

(n− 1)T (r, f) ≤ T (r, f − g) +N(r, f)− log(r) +O(1) (r ∈ I).

Similarly,

(n− 1)T (r, g) ≤ T (r, f − g) +N(r, g) − log(r) +O(1) (r ∈ I),

therefore we obtain

(2) (n − 1)max(T (r, f), T (r, g)) ≤ T (r, f − g)) + max(N(r, f),
N(r, g))−log(r)+O(1) (r ∈ I).
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Assume we are in the hypothesis of Theorem 47.1. We have
N(r, f) = N(r, g) = 0, and by Theorem 43.3, T (r, f − g) ≤
max(T (r, f), T (r, g)) +O(1). Consequently, by (2),

(n− 1)max(T (r, f), T (r, g))

≤ max(T (r, f), T (r, g)) − log(r) +O(1) (r ∈ I).

Since r is not bounded, we can see that the inequality does not hold
with n = 2, when r goes to +∞.

Now, assume the hypothesis of Theorem 47.2. Again, we have
N(r, f) = N(r, g) = 0, and by Theorem 43.3, T (r, f − g) ≤
max(T (r, f), T (r, g)) +O(1), hence by (2),

(n− 1)max(T (r, f), T (r, g)) ≤ max(T (r, f), T (r, g)) +O(1) (r ∈ I).

Since f, g are unbounded, by Theorem 43.10, so are T (r, f), T (r, g)
in intervals ]r0, R[, hence the inequality does not hold with n = 3.

Suppose now that f and g belong to Ac(D). We then obtain

(n− 1)TR(r, f) ≤ TR(r, f − g) +O(log(r)) (r > R)

≤ max(TR(r, f), TR(r, g)) +O(log(r),

and similarly,

(n− 1)TR(r, g) ≤ TR(r, f − g) +O(log(r)) (r > R)

≤ max(TR(r, f), TR(r, g)) +O(log(r)),

therefore

(n− 1)max(RR(r, f), T (r, g)) ≤ max(TR(r, f), TR(r, g)) +O(log(r)),

and hence n ≤ 2, which proves the conclusion whenever n ≥ 3.
Assume now the hypothesis of Theorem 47.3. Since

max(N(r, f), N(r, g)) ≤ max(T (r, f), T (r, g)),

by (2) and Theorem 43.3, we have

(n− 1)max(T (r, f), T (r, g))

≤ 3max(T (r, f), T (r, g)) − log(r) +O(1) (r ∈ I).

Since r is not bounded, the inequality does not hold with n = 4,
when r goes to ∞.
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Finally, assume we are in the hypothesis of Theorem 47.4. Suppose
first that f and g belong to Mu(d(0, R

−)). By (2) and Theorem 43.3,
we have

(n− 1)max(T (r, f), T (r, g)) ≤ 3max(T (r, f), T (r, g))+O(1) (r ∈ I).

Since T (r, f), T (r, g) are not bounded, the inequality does not hold
with n = 5.

And now, suppose that f and g belong to Mc(D). We then obtain

(n− 1)TR(r, f) ≤ TR(r, f − g) +O(log(r)) (r > R)

≤ 3(TR(r, f) + TR(r, g)) +O(log(r)),

and similarly,

(n− 1)TR(r, g) ≤ TR(r, f − g) +O(log(r)) (r > R)

≤ 3(TR(r, f) + TR(r, g)) +O(log(r)),

therefore

(n− 1)(TR(r, f) + TR(r, g)) ≤ 3(TR(r, f) + TR(r, g)) +O(log(r)),

and hence n ≤ 4, which proves the conclusion whenever n ≥ 5. That
finishes the proof of Theorem 47.4. �

Definitions. Let f ∈ M(K). The function f is called a function
of uniqueness (respectively a function of strong uniqueness) for a
family F of functions defined in a suitable subset ofK if given any two
functions f, g ∈ F satisfying h◦f = h◦g (respectively h◦f = b(h◦g)
with b ∈ K∗), then f and g are identical.

Similarly, we consider the same question in the purely algebraic
context. Let E be an algebraically closed field, let h ∈ E(x), and
let F be a subset of E(x). Then h is called a function of uniqueness
for F (respectively a function of strong uniqueness for F) if given
any two functions f, g ∈ F satisfying h ◦ f = h ◦ g (respectively
h ◦ f = b(h ◦ g), with b ∈ E∗), f and g are identical.

Particularly in each case, if h is a polynomial, it is called a poly-
nomial of uniqueness for the family F (respectively a polynomial of
strong uniqueness for the family F).
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In Theorem 47.6, we need the following basic lemma [59]:

Lemma 47.5. Let E be an algebraically closed field of characteristic
0 and let P (x) = (n−1)2(xn−1)−n(n−2)(xn−1−1)2 ∈ E[x]. Then P
admits 1 as a zero of order 4 and all other zeros uj (1 ≤ j ≤ 2n− 6)
are simple.

Theorem 47.6. Let

Q(x) = b((n+ 2)(n + 1)xn+3 − 2(n+ 3)(n + 1)xn+2

+(n+ 3)(n + 2)xn+1)

with b ∈ K∗. Let R ∈]0,+∞[. Then Q is a polynomial of uniqueness
for M(K) for every n ≥ 2 and is a polynomial of uniqueness for
Mu(d(0, R

−)) and for Mc(D) for every n ≥ 3.

Proof. Suppose f, g ∈ M(K) (respectively f, g ∈ Mu(d(0, R
−)),

respectively f, g ∈ Mc(D)) and suppose that Q(f) = Q(g). Let

h = f
g . We can derive

(n+ 2)(n + 1)(hn+3 − 1)g2 − 2(n+ 3)(n + 1)(hn+2 − 1)g

+(n+ 3)(n + 2)(hn+1 − 1) = 0.

If h is a constant, it is 1, a contradiction. So, we suppose h is not con-
stant. If g lies inM(K), so does h. Now, if g belongs to Mu(d(0, R

−))
or to Mc(D), so does h, respectively. Indeed, suppose that h ∈
Mb(d(0, R

−)). Then clearly we have T (r, (n + 2)(n + 1)(hn+2)g2) ≥
2T (r, g) + O(1), while T (r,−2(n + 3)(n + 1)(hn+2 − 1)g + (n + 3)
(n + 2)(hn+1 − 1)) ≤ T (r, g) + O′1, a contradiction. Similarly, if h
has finitely many zeros and poles, we have the same contradiction.

Let P (x) = (n + 2)2(xn+3)−1)−(n + 3)(n+1)(xn+2−1)2 ∈ K[x].
By Lemma 47.5, P admits 1 as a zero of order 4 and all other zeros
uj (1 ≤ j ≤ 2n) are simple. By change of variable, we can obviously
assume that h − uj has no zero and no pole at 0. Consequently, we
check that
(

g −
(

n+ 3

n+ 2

)(

hn+2 − 1

hn+3 − 1

))2

=
(n+ 3)(h − 1)4

∏2n
j=1(h− uj)

(n+ 2)2(n+ 1)(hn+3 − 1)2
.

Since
(n+3)(h−1)4

∏2n
j=1(h−uj)

(n+2)2(n−+1)(hn+3−1)2 is equal to a square, clearly each zero of

h−uj (1 ≤ j ≤ 2n) has order at least 2. Let J =]0,+∞[ (respectively
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J =]0, R[, respectively J = [R,+∞[). Consequently,

2n
∑

j=1

Z(r, h− uj) ≤ 1

2

2n
∑

j=1

Z(r, h− uj) ≤ 1

2
(2n)T (r, h) +O(1) (r ∈ J).

Suppose first that f and g belong to M(K) or to M(d(0, R−)). Then,
applying Theorem 45.7 to h at the points uj (1 ≤ j ≤ 2n), we obtain

(2n − 1)T (r, h) ≤
2n
∑

j=1

Z(r, h − uj) +N(r, h) − log(r) +O(1)

≤ 1

2

2n
∑

j=1

Z(r, h− uj) +N(r, h) +O(1)

≤ 1

2
(2n)T (r, h) +N(r, h) − log(r) +O(1) (r ∈ J),

and therefore (2n− 1)T (r, h) ≤ nT (r, h) + T (r, h)− log(r) +O(1). If
f, g belong to M(K), we conclude that n ≤ 1. And if f, g belong to
Mu(d(0, R

−)), we conclude that n ≤ 2.
Suppose now that f and g belong to Mc(D). Then we can apply

Theorem 46.13 and we have (2n−1)TR(r, h) ≤ nTR(r, h)+TR(r, h)+
O(log(r)), therefore we have again n ≤ 2, which ends the proof. �

Corollary 47.7. Let P (x) ∈ K[x] have a derivative of the form
c(x − a)n(x − b)2. Then P is a polynomial of uniqueness for
M(K) ∀n ≥ 2 and is a polynomial of uniqueness for Mu(d(α,R

−))
and for Mc(D) for every n ≥ 3.

Theorem 47.8. Let Q(x) = xn+1 − xn. Let a ∈ K and R ∈]0,+∞[.
Then Q is a polynomial of uniqueness for A(K), for Au(d(0, R

−)),
and for Ac(D) for every n ≥ 2.

Proof. Let f, g ∈ A(K) (respectively f, g ∈ Au(d(0, R
−)), respec-

tively f, g ∈ Ac(D). Suppose fn(f − 1) = gn(g − 1). Let h = f
g and

suppose h is not the constant 1. Then we have g =
(

hn−1
hn+1−1

)

. Conse-

quently, if h belongs to K (respectively to Mb(d(0, R
−)), respectively

to M0(D)), so does g, a contradiction. Thus, h belongs to M(K)\K
(respectively to Mu(d(0, R

−)), respectively to Mc(D)).
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Now, since n ≥ 2, by Corollary 36.23, h has to take at least one
of the (n + 1)th roots of 1 other than 1 and such an (n + 1)th root
of 1 cannot be an nth root of 1. Consequently, g admits a pole,
a contradiction. Therefore, h is identically equal to 1 and hence
f = g. �

Now, we must examine the situation in M(D) in order to obtain
a result similar to Theorem 47.8

Theorem 47.9. Let Q(x) = xn+1 − xn. Let a ∈ K and R ∈]0,+∞[.
Then, Q is a polynomial of uniqueness for Ac(D) for every n ≥ 2.

Proof. Let f, g ∈ Ac(D). Suppose fn(f−1) = gn(g−1). Let h = f
g

and suppose h is not the constant 1. Then, we have g =
(

hn−1
hn+1−1

)

.

Consequently, if h does not belong to Mc(D), neither does g, a con-
tradiction. Thus, h belongs to Mc(D)).

Now, since n ≥ 2, by Theorem 39.4, h has to take at least one
of the (n + 1)th roots of 1 other than 1 and such an (n + 1)th root
of 1 cannot be an nth root of 1. Consequently, g admits a pole,
a contradiction. Therefore, h is identically equal to 1, and hence,
f = g. �

We must also note Theorems 47.10 and 47.11:

Theorem 47.10. Let f, g ∈ M(K) satisfy gm + fn = 1, with
min(m,n) ≥ 2, max(m,n) ≥ 3. Then f and g are constant. More-
over, if f, g ∈ A(K) and satisfy gm + fn = 1, with min(m,n) ≥ 2,
then f and g are constant.

Theorem 47.11. Let f, g ∈ M(d(a,R−)) satisfy gm + fn = 1,
with min(m,n) ≥ 3 and max(m,n) ≥ 4. Then f and g belong to
Mb(d(a,R

−)). Moreover, if K has characteristic different from 2,
and if f and g belong to A(d(a,R−)) and satisfy gm + fn = 1, with
min(m,n) ≥ 2, then f and g belong to Ab(d(a,R

−)).

Proof. (Theorems 47.10 and 47.11) We first assume max(m,n) ≥ 3
and that f, g belong to M(K)\K in Theorem 46.3 and belong to
Mu(d(a,R

−)) in Theorem 47.11.
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Let a1, . . . , an be the nth roots of 1. Applying Theorem 45.7 to f
at the points a1, . . . , an, we obtain the following:

(1) (n−1)T (r, f) ≤
n
∑

j=1

Z(r, f−ai) + N(r, f)− log r + O(1), (r ∈ I).

Clearly, each zero of fn − 1 has order ≥ m. Hence, for each
j = 1, . . . , n, each zero of f − aj has order ≥ m. Consequently,

(2) Z(r, f − ai) ≤ 1

m
Z(r, f − ai).

Therefore, in Theorem 47.10, by (1), we have

(n−1)T (r, f) ≤
(

1

m

) n
∑

j=1

Z(r, f−ai) +N(r, f)−log r+O(1) (r ∈ I),

and therefore, we can see that nm < n+m+1, hence max(n,m) ≤ 2,
which contradicts the general hypothesis of Theorem 47.10. Conse-
quently, f and g are constants.

In the proof of Theorem 47.11, without loss of generality, we can
obviously suppose that a = 0. Assuming now that f, g belong to
Mu(d(0, R

−)), Relation (1) holds again, whereas r now is bounded
and hence we now have nm ≤ n+m+ 1, hence max(n,m) ≤ 3 and
min(m,n) ≤ 2, a contradiction to the general hypothesis of Theorem
47.11, therefore f and g belong to Mb(d(a,R

−)).
Now, in Theorem 47.10, suppose that f and g belong to A(K).

Instead of (1), we obtain

(3) (n− 1)T (r, f) ≤
n
∑

j=1

Z(r, f − ai)− log r +O(1) (r ∈ I),

and hence by (2), we derive nm < n+m, a contradiction as soon as
min(m,n) ≥ 2. Hence, f and g are constants.

Finally, in Theorem 47.11, suppose that f and g belong to
Au(d(0, R

−)). Then, by (1) again, we have nm ≤ n + m, therefore
max(m,n) ≤ 2, hence m = n = 2. But then, by Theorem 14.22,
we know that f and g are bounded in d(0, R−). This finishes the
proof. �
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Applications to Curves

Throughout this chapter, the field K is supposed to be of characteris-
tic 0.

We examine particular cases where curves are defined by their
equations so that, for most of them, the p-adic Nevanlinna theory
lets us find easy proofs. Most of results come from [24].

Definition. Let F (x, y) ∈ K[x, y]. A point (a, b) of the alge-
braic curve of equation F (x, y) = 0 is called a singular point if
∂F
∂x = ∂F

∂y = 0. An algebraic curve is said to be degenerate if it admits

a singular point. An algebraic curve of degree 2 (respectively 3) is
called a conic (respectively an elliptic curve).

Throughout this chapter, the field K is supposed to have charac-
teristic 0.

Remark. Let P, Q ∈ K[x]. A point (α, β) ∈ K2 is a singular point
of the curve of equation P (x) = Q(y) if and only if P (α) = Q(β) and
P ′(α) = Q′(β) = 0.

First, Theorem 48.1 is classical:

Theorem 48.1. Let Λ be a non-degenerate conic with a center in K

and let f, g ∈ A(d(a,R−)) be such that
(

f(u), g(u)
)

∈ Λ ∀u ∈ D.

Then f and g belong to Ab(d(a,R
−)). Moreover, if both f and g lie

in A(K), then they are constant.

Proof. If the equation of Λ is of the form ax2 + by2 = t, with
t ∈ K, the proof is provided by Theorem 14.22. Now, we consider the

451
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general case. Since Λ has a center, by a suitable change of variable
of the form u = x−α, w = y−β, we may assume that the equation
is of the form au2 + bw2 + 2cuw = M . Moreover, since Λ is non-
degenerate, we know that M �= 0. We first note that if a = b = 0,
then f and g are invertible in A(K) and therefore are constant. Thus,
since a and b play the same role, we may assume, for instance, b �= 0.
In this way, g is a solution (in A(K)) of the equation bY 2 + (2cf)Y +
(af2 −M) = 0. Thereby, the reduced discriminant f2(c2 − ab) + bM
must be equal to (bg − cf)2. Consequently, putting h = bg − cf , we
check that h2 = f2(c2−ab)+ bM . Thus, f and h satisfy an equation
of the form λf2 + μh2 = l ∈ K. But since bM �= 0, and since h lies
in A(K), we come back to the first case, proving that f and h are
constant and therefore so is g. �

Remark. The p-adic functions sin and cos are bounded inside

d(0, (p
− 1

p−1 )−) when the residue characteristic is p (respectively
inside d(0, 1−) when the residue characteristic is 0) and satisfy
sin2 x + cos2 x = 1. Throughout this chapter, we denote by D an
infinite bounded set included in a disk d(a, r), for some r < R.

The second main theorem gives an easy proof of the impossibility
to parametrize elliptic and hyperelliptic curves.

Theorem 48.2. Let ai ∈ K, i = 1, 2, 3, be pairwise distinct. There do
not exist f, g ∈ M(K)\K and there do not exist f, g ∈ Au(d(a,R

−))
such that (g(x))2 = (f(x)− a1)(f(x)− a2)(f(x)− a3).

Proof. Suppose two functions f, g ∈ M(K)\K satisfy (g(x))2 =
(f(x)−a1)(f(x)−a2)(f(x)−a3). Then each zero of f−ai, i = 1, 2, 3,
must be of order at least 2. And each pole of (f −a1)(f −a2)(f −a3)
is a pole of g2 and hence is of even order, and hence each pole of f is
at least of order 2. Consequently, Z(r, f) ≤ 1

2Z(r, f) and N(r, f) ≤
1
2N(r, f). Now, applying the second main theorem, we have

2T (r, f) ≤
3
∑

i=1

Z(r, f − ai) +N(r, f)− log r +O(1),

and hence 2T (r, f) ≤ 2T (r, f) − log r + O(1), a contradiction when
r goes to +∞. Next, if f, g belong to Au(d(a,R

−)), then assuming
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a = 0, we have

2T (r, f) ≤
3
∑

i=1

Z(r, f − ai) +O(1),

hence

2T (r, f) ≤
∑3

i=1 T (r, f − ai)

2
+O(1),

a contradiction. �

Theorem 48.3. Let P, Q be in K[x] with 2 ≤ deg(P ) ≤ deg(Q) = 3.
There exist non-constant meromorphic functions f, g ∈ M(K) such
that P (f) = Q(g) if and only if P ′ has a zero α and Q′ has a zero β
satisfying P (α) = Q(β).

Proof. Let Λ be the curve of equation P (x) = Q(y). Since Λ is a
curve of degree 3, it is an elliptic curve, and hence by definition, it
has a singular point if and only if there exists (α, β) ∈ Λ such that
P ′(α) = Q′(β) = 0. By results in algebraic geometry, its genus is 0 if
and only if the curve has a singular point. If the curve has genus zero,
then there exist f, g ∈ K(x) such that P (f(t)) = Q(g(t)). If the curve
has no singular point, it is of genus 1, and then by classical results in
algebraic geometry, it is birationally equivalent to a curve of equation
y2 = G(f(t)) with G a polynomial of degree 3 with three distinct
zeros. Consequently, by Theorem 48.2, there exist no non-constant
meromorphic functions f, g ∈ M(K) such that (g(t))2 = G(f(t)),
and therefore, by birational equivalence, there exist no no-constant
meromorphic functions f, g ∈ M(K) such that P (f) = Q(g). �

Theorem 48.4. Let ai ∈ K, i = 1, . . . , q, q ≥ 5, be pairwise distinct,
and let R ∈ R∗

+. Let m ∈ N∗ be ≥ 2 and prime to q. There do not
exist f, g ∈ M(K)\K and there do not exist f, g ∈ Mu(d(0, R

−))
such that (g(x))m =

∏q
i=1(f(x)− ai).

Proof. The proof is similar to that of Theorem 48.2. Suppose two
functions f, g ∈ M(K))\K satisfy (g(x))m =

∏q
i=1(f(x)− ai). Then

each zero of f − ai, i = 1, . . . , q, must be of order at least 2. And
each pole of

∏q
i=1(f(x)− ai)) is a pole of gm. But since m is prime

to q, each pole of f is of order at least 2. Consequently, we have again



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch48 FA1 page 454

454 Value Distribution in Ultrametric Analysis and Application

Z(r, f) ≤ 1
2Z(r, f) and N(r, f) ≤ 1

2N(r, f). Now, applying Theorem
45.7, we have

(q − 1)T (r, f) ≤
q
∑

i=1

Z(r, f − ai) +N(r, f)− log r +O(1),

and hence (q − 1)T (r, f) ≤ ( q+1
2 )T (r, f)− log r +O(1), a contradic-

tion whenever f, g ∈ M(K) or whenever f, g ∈ Mu(d(0, R
−)). �

Corollary 48.5. Let Λ be an algebraic curve on K of genus 1 and
let f, g ∈ M(K) be such that (f(u), g(u)) ∈ Λ ∀u ∈ D. Then f and
g are constants.

Corollary 48.6. Let Λ be an algebraic curve on K of genus 1 or 2 on
K and let f, g ∈ A(d(a,R−)) be such that (f(u), g(u)) ∈ Λ ∀u ∈ D.
Then f and g are bounded.

Proof. (Corollaries 48.5 and 48.6) Indeed, every algebraic curve of
genus 1 is birationally equivalent to an non-degenerate elliptic curve.
So, we can apply Theorem 48.2 to prove Corollaries 48.5 and 48.6.

�
Here we take this opportunity to recall that there exists no param-

eterization of conics with a center, by entire functions, on the field
K. Such a result cannot be extended to bounded analytic functions

as shown by the functions sin and cos defined in d(0, (p
− 1

p−1 )−) when
the residue characteristic of K is p (respectively d(0, 1−) when the
residue characteristic of K is 0).

We now consider more general algebraic equations of curves.

Theorem 48.7. Let P, Q ∈ K[X] be two relatively prime polyno-
mials of degrees s and t respectively, let n be the number of dis-
tinct zeros of Q, let m ∈ N∗, and let g ∈ M(K) (respectively
g ∈ M(d(a,R−))) be a non-constant function all poles of which have
order ≥ m. Suppose that there exists a function f ∈ M(K) (respec-
tively f ∈ M(d(a,R−))) satisfying g(x)Q(f(x)) = P (f(x)) for every
x ∈ D which is not a pole of f or g:

(i) Assume that f ∈ Mu(d(a,R
−)). Then mn ≤ t+ 2m. Moreover,

if s > t, then mn ≤ min(t+ 2m, s+m).
(ii) Assume f, g ∈ M(K). Then mn < t + 2m. Moreover, if s > t,

then mn < min(t+ 2m, s+m).
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Proof. If n < 2, the inequality mn < t + 2m is trivial. So, we
suppose n ≥ 2. Let Q(X) =

∏n
j=1(X − bj)

tj . Since P and Q have no

common zeros, each zero α of Q(f(t)) is a pole of g(t), and therefore,
it is a zero of order at least m of Q(f(t)). As a consequence, for each
zero α of f − bj , we have tjωα(f − bj) ≥ m, hence

(1) Z(r, f − bj) ≤ tj
m
Z(r, f − bj).

But since Z(r, f − bj) ≤ T (r, f) +O(1) (r ∈ I), by (1), we have

(2)

n
∑

j=1

Z(r, f − bj) ≤ t

m
T (r, f) +O(1) (r ∈ I).

Then, by Theorem 45.7, we obtain

(3) (n− 1)T (r, f) ≤ t

m
T (r, f) +N(r, f)− log r +O(1) (r ∈ I).

In particular, this implies

(4) (n− 2)T (r, f) ≤ t

m
T (r, f)− log r +O(1) (r ∈ I).

Suppose that f, g belong to M(d(0, R−)). By Theorem 42.10,
if f does not lie in Mb(d(0, R

−)), we have m(n − 2) ≤ t. And
if f, g lies in M(K), then when − log r tends to +∞, it is seen
that inequality (4) implies (n− 2) < t

m .
Now, suppose that s > t. Then each pole α of f is a pole of

g and therefore satisfies ωα(f)(s − t) = ωα(g), hence N(r, f) ≤
N(r, f)(s−tm ). Consequently, Relation (3) becomes

(5) (n − 1)T (r, f) ≤ t
mT (r, f) + (s−tm )N(r, f) − log r + O(1) (r ∈ I)

and so we have (n − 1) ≤ t
m + s−t

m , thereby mn ≤ min(s +
m, t + 2m). Finally, if in addition, f and g lie in M(K), as r
tends to +∞, inequality (5) becomes strict, and therefore, mn <
min(s +m, t+ 2m), which finishes the proof. �

Examples. (1) Let Λ be the curve of equation y4(x− b′)(x− b′′) =
(x − c)3 (with b′, b′′, c all distinct) and let f, g ∈ M(d(a,R−)) be
such that (f(u), g(u)) ∈ Λ for all u ∈ D. Then, by Theorem 48.7,
f, g ∈ Mb(d(a,R

−)). (2) Let Λ be the curve of equation y3(x −
b′)(x− b′′) = (x− c)3 (with b′, b′′, c all distinct) and let f, g ∈ M(K)
be such that (f(u), g(u)) ∈ Λ for all u ∈ D. Then, by Theorem 48.7,
f, g are constant.

Notation. Henceforth, given two integers m, n, we denote by
g.c.d.(m,n) the greatest common divisor of m and n.
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In the proof of Theorem 48.9, we use the following arithmetical
lemma:

Lemma 48.8. If a, b,m, s ∈ N∗ satisfy sa = mb, then a ≥ m
g.c.d.(s,m) .

Theorem 48.9. Let P (X) = A
∏k
i=1(X − ai)

si , Q(X) =
B
∏n
j=1(X − bj)

tj be two relatively prime polynomials of K[X] of

respective degrees s and t. Let m ∈ N∗ and let f, g ∈ M(K)
(respectively f, g ∈ M(d(a,R−))) satisfy (g(x))mQ(f(x)) = P (f(x))
for all x ∈ D.
(α) Suppose f, g ∈ M(d(a,R−)). If

k + n > 1 +
1

m

(

g.c.d.(m, |s − t|∞) +
k
∑

i=1

g.c.d.(m, si)

+

n
∑

j=1

g.c.d.(m, tj)

⎞

⎠,

then both f and g lie in Mb(d(a,R
−)).

Moreover, if f lies in A(d(a,R−)), and if

k + n > 1 +
1

m

⎛

⎝

k
∑

i=1

g.c.d.(m, si) +

n
∑

j=1

g.c.d.(m, tj)

⎞

⎠,

then f ∈ Ab(d(a,R
−)) and g ∈ Mb(d(a,R

−)).
(β) Suppose both f, g lie in M(K). If

k + n ≥ 1 +
1

m

(

g.c.d.(m, |s − t|∞) +

k
∑

i=1

g.c.d.(m, si)

+

n
∑

j=1

g.c.d.(m, tj)

⎞

⎠,

then both f and g are constant.
Finally, if f, g ∈ M(K)\K and if

k + n ≥ 1 +
1

m

⎛

⎝1 +

k
∑

i=1

g.c.d.(m, si) +

n
∑

j=1

g.c.d.(m, tj)

⎞

⎠,

then f admits at least one pole of order < m.
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Proof. When f, g belong to M(d(a,R−)), we can obviously
assume a = 0. It is clear that if f is constant, so is g. Suppose
that f is not constant. Then we have s =

∑k
i=1 si, t =

∑n
j=1 tj.

For each i = 1, . . . , k, every zero α of f − ai is a zero of g and

therefore is a zero of order ωα(f − ai) =
mωα(g)
si

. But by Lemma

48.8, we have ωα(f − ai) ≥ m
g.c.d.(m,si)

. In the same way, for each

j = 1, . . . , n, every zero β of f − bj is a pole of g and therefore is

a zero of order ωβ(f − bj) =
mωβ(g)
tj

, and by Lemma 48.8, we have
mωβ(g)
tj

≥ m
g.c.d.(m,tj)

. So, we have

(6) Z(r, f − ai) ≤ g.c.d.(m, si)

m
T (r, f) +O(1) (r ∈ I),

(7) Z(r, f − bj) ≤ g.c.d.(m, tj)

m
T (r, f) +O(1) (r ∈ I).

Then, applying Theorem 45.7 to f at the points a1, . . . , ak, b1, . . . , bn
and using (6) and (7), we obtain

(8) (k + n− 1)T (r, f)

≤ 1

m

(
k
∑

i=1

g.c.d.(m, si) +

n
∑

j=1

g.c.d.(m, tj)
)

T (r, f)

+N(r, f)− log r +O(1) (r ∈ I).

We now find an upper bound of N(r, f). Let γ be a pole of f . We
have

(9) (s− t)ωγ(f) = mωγ(g).

In the same way, from (9), we obtain |ωγ(f)|∞ ≥ m
g.c.d.(m,|s−t|∞) ,

and therefore,

(10) N(r, f) ≤ g.c.d.(m, |s − t|∞)

m
N(r, f)

≤ g.c.d.(m, |s − t|∞)

m
T (r, f).
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We prove (11):

(11)

(k + n− 1)T (r, f)

≤ 1

m

⎛

⎝g.c.d.(m, |s − t|∞) +
k
∑

i=1

g.c.d.(m, si) +
n
∑

j=1

g.c.d.(m, tj)

⎞

⎠

×T (r, f)− log r +O(1)(r ∈ I).
If s = t, we just have the inequality N(r, f) ≤ N(r, f) ≤ T (r, f).
Then From (8), we obtain

(k + n− 1)T (r, f) ≤ 1

m

⎛

⎝m+

k
∑

i=1

g.c.d.(m, si) +

n
∑

j=1

g.c.d.(m, tj)

⎞

⎠

×T (r, f)− log r +O(1) (r ∈ I).

But in this case, we have g.c.d.(m, |s− t|∞) = m. So, we obtain (11).
And if s �= t, by (8), we obtain relation (11) again.

Thus, from relation (11), using Theorem 43.10, if f does not lie
in Mb(d(0, R

−)), we can get

(12)

(k + n− 1)

≤ 1

m

⎛

⎝g.c.d.(m, |s − t|∞) +
k
∑

i=1

g.c.d.(m, si) +
n
∑

j=1

g.c.d.(m, tj)

⎞

⎠,

a contradiction with the hypothesis. Hence, if f belongs to
M(d(0, R−)), it must lie in Mb(d(0, r

−)) and so must g.
Now, suppose f, g ∈ M(K). When r tends to +∞, we can see

that the inequality (12) becomes strict. Therefore, if the inequality is
not satisfied, f and g are constant. Conversely, suppose that f is not
constant and that all poles of f have order ≥ m. By (11), we have

(k + n− 1)T (r, f) ≤ 1

m

⎛

⎝

k
∑

i=1

g.c.d.(m, si) +

n
∑

j=1

g.c.d.(m, tj)

⎞

⎠

×T (r, f) +
1

m
T (r, f)− log r +O(1) (r ∈ I),



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch48 FA1 page 459

Applications to Curves 459

which implies k + n − 1 < 1
m(1 +

∑k
i=1 g.c.d.(m, si) +

∑n
j=1 g.c.d.

(m, tj)). Hence, if this inequality is not true, f must admit at least
one pole of order < m.

Finally, suppose f ∈ A(d(0, R−)). Then (8) becomes

(13)

(k + n− 1)T (r, f) ≤ 1

m

⎛

⎝

k
∑

i=1

g.c.d.(m, si) +

n
∑

j=1

g.c.d.(m, tj)

⎞

⎠

×T (r, f)− log r +O(1) (r ∈ I),

and then, if f does not lie in Ab(d(0, R
−)), by Theorem 43.10, we

obtain

k + n− 1 ≤ 1

m

⎛

⎝

k
∑

i=1

g.c.d.(m, si) +

n
∑

j=1

g.c.d.(m, tj)

⎞

⎠,

hence k + n − 1 ≤ 1
m (s + t), a contradiction. That finishes the

proof. �

Examples. (3) Let c′, c′′ ∈ K (with c′ �= c′′) and let Λ be the curve
of equation y3 = (x − c′)2(x − c′′). Let f, g ∈ M(K) be such that
(f(u), g(u)) ∈ Λ for all u ∈ D. If f and g are not constant, then f
admits at least one pole of order 1 or 2. Here the genus is clearly 0,
therefore there exist f, g ∈ K(u) satisfying g3 = (f − c′)2(f − c′′)
and hence f admits at least one pole of order 1 or 2.

(4) Let Λ be the curve of equation y3(x − b)2 = (x − c′)2(x − c′′)
(with b, c′, c′′ all distinct) and let f, g ∈ M(d(a,R−)) be such that
(f(u), g(u)) ∈ Λ for all u ∈ D. Then by Theorem 48.9, f, g ∈
Mb(d(a,R

−)).

(5) Let Λ be the curve of equation y2(x− b′)(x− b′′) = (x− c) (with
b′, b′′, c all distinct) and let f ∈ A(d(a,R−)) and let g ∈ M(d(a,R−))
be such that (f(u), g(u)) ∈ Λ for all u ∈ D. Then by Theorem 48.9,
f ∈ Ab(d(a,R

−)) and g ∈ Mb(d(a,R
−)).

Remark. In [24], it was proved that the equation fm + gn = 1 in
M(K) leads to f, g ∈ K as soon as the least common multiple q
of m and n satisfies 1

m + 1
n + 1

q ≥ 1. Further, if f, g ∈ A(K), that

leads to f, g ∈ K as soon as min(m,n) ≥ 2. Here we are now able to
generalize these conclusions.
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Chapter 49

Branched Values

Throughout this chapter, the field K is supposed to be of characte-
ristic 0.

In complex functions theory, a notion closely linked to Picard’s
exceptional values was introduced: the notion of “perfectly branched
value” [29]. Here we consider the same notion on M(K), on
M(d(a,R−)), and on M(D). Most of results come from [51].

Definition. Let f ∈ M(K) (respectively let f ∈ M(d(a,R−)),
respectively let f ∈ M(D)) and let b ∈ K. The value b is said to
be a perfectly branched value for f if all zeros of f − b are multiple
zeros, except finitely many. And in this book, b is said to be a totally
branched value for f if all zeros of f − b are multiple zeros, without
exception. Similarly, ∞ is called a perfectly branched value for f if
all poles of f are multiple but finitely many and it is called a totally
branched value for f if all poles of f are multiple, without exception.

In C, it is known that a transcendental meromorphic function
admits at most four perfectly branched values and an entire func-
tion admits at most two perfectly branched values. As explained by
K. S. Charak in [29], these numbers, respectively 4 and 2, are sharp.
The Weierstrass function P has four totally branched values (consid-
ering ∞ as a value), and of course, sine and cosine functions admit
two totally branched values: 1 and −1.

Here we do a similar study on p-adic functions and obtain some-
times certain better results. Particularly, an entire function admits
at most one perfectly branched value.

461



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch49 FA1 page 462

462 Value Distribution in Ultrametric Analysis and Application

Lemma 49.1 is immediate:

Lemma 49.1. Let f ∈ M(K) (respectively let f ∈ Mu(d(0, R
−)),

respectively let f ∈ Mc(D)), admitting a perfectly branched value
b �= 0. Then 1

f admits 1
b as a perfectly branched value. If f admits

0 as a perfectly branched value, 1
f admits ∞ as a perfectly branched

value. If f admits ∞ as a perfectly branched value, 1
f admits 0 as a

perfectly branched value.

We have an immediate application of the definition with meromor-
phic functions whose denominator is a small function with respect
to the numerator or vice versa.

Theorem 49.2. Let f, g ∈ A(K) \ K[x] (respectively f, g ∈
Au(d(0, R

−)), respectively f, g ∈ Ac(D)) be such that

lim supr→+∞
T (r,f)
T (r,g) > 2 (respectively lim supr→R−

T (r,f)
T (r,g) > 2, respec-

tively lim supr→+∞
TR(r,f)
TR(r,g) > 2). Then both f

g and g
f have at most

two perfectly branched values.

Proof. Set φ = f
g . Without loss of generality, we can suppose that

f and g have no common zero. Indeed, suppose first that f, g ∈
A(K)\K[x] or f, g ∈ Ac(D). By Lemma 36.3, we can write f and g

in the form f = ˜f . h and g = g̃ . h, where ˜f and g̃ have no common
zero and then Z(r, f) = Z(r, ˜f)+Z(r, h), Z(r, g) = Z(r, g̃)+Z(r, h),

and so much the more, we have T (r,f̃)
T (r,g̃) > 2.

Now, if f, g ∈ Au(d(0, r)
−), we can place ourselves in an alge-

braically closed spherically complete extension to obtain the same
conclusion because the Nevanlinna functions are the same in such an
extension. Therefore, we assume that f and g have no common zero.

Suppose first that f and g belong to A(K)\K[x] or to
Au(d(0, R

−)), Since f, g have no common zero, we have
Z(r, φ) = Z(r, f) and N(r, φ)=Z(r, g), hence T (r, φ)= max(Z(r, f),
Z(r, g))+O(1).

Now, by hypothesis, there exists λ < 1
2 and a sequence (rn)n∈N

such that limn→+∞ rn = +∞ (respectively limn→+∞ rn = R) and
such that

(1) T (rn, g) ≤ λT (rn, f) ∀n ∈ N.
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Suppose that φ has three perfectly branched values bj , j = 1, 2, 3.
Applying Theorem 45.7, we have

(2) 2T (r, φ) ≤
3
∑

j=1

Z(r, φ − bj) +N(r, φ) − log r +O(1).

But here, for each j = 1, 2, 3, we note that Z(r, φ − bj) ≤
Z(r,φ−bj)

2 + qj log(r) with qj ∈ N and Z(r, φ − bj) = Z(r, f −
bjg) ≤ max(T (r, f), T (r, g)). But since T (rn, f) > T (rn, g), we have

T (rn, φ − bj) ≤ T (rn, f) + O(1), hence Z(r, φ − bj) ≤ T (rn,f)
2 +

qj log(rn) +O(1). Now, putting q = q1 + q2 + q3, by (2), we obtain

2T (rn, f) ≤ 3T (rn, f)

2
+ T (rn, g) + 2q log(rn) +O(1),

hence

T (rn, f) ≤ 2T (rn, g) + q log(rn) +O(1),

a contradiction to (1).
Similarly, if f and g belong to Ac(D), we can make the same

reasoning by replacing T by TR, Z by ZR, and N by NR. �

Theorem 49.3. Let f, g ∈ A(K)) be such that +∞ > ρ(f) > ρ(g).
Then,

lim inf
r→+∞

T (r, g)

T (r, f)
= 0.

Proof. Suppose first f, g ∈ A(K)). Let γ = ρ(g)
ρ(f) and let

(rn)n∈N be a sequence in ]0,+∞[ such that limn→+∞ rn = +∞ and

limn→+∞
log(log(|f |(rn)))

− log(R) = ρ(f). By hypothesis, we have

lim
n→+∞

log(log(|g|(rn)))
log(log(|f |(rn))) ≤ γ,

hence

lim
n→+∞

log(T (rn, g))

log(T (rn, f))
≤ γ.
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Take β ∈]γ, 1[. Then when n is big enough, we can get

T (rn, g)

T (rn, f)
≤ (T (rn, f))

β−1.

But since β < 1 and since limn→∞ T (rn, f) = +∞, one sees that
limn→∞(T (rn, f))

β−1 = 0, which ends the proof when f and g belong
to A(K). �

Corollary 49.4. Let f, g ∈ A(K) be such that ρ(f) �= ρ(g). Then

both f
g and g

f have at most two perfectly branched values.

The proof of the following theorems require several basic lemmas.

Lemma 49.6. Let (αi)1≤i≤t, (βi)1≤i≤t be two finite sequences of K

such that |αi| < R, |βi| < R ∀i = 1, . . . , t. Let Θ(x) =
∏t
i=1

(

1−βi
x

1−αi
x

)

.

Then the function
√

Θ(x) is defined and belongs to A(K \ d(0, 4R)).
Moreover, if p �= 2, it belongs to A(K \ d(0, R)).
Proof. By Theorem 29.23, there exists a unique function � ∈
A(d(1, (14 )

−)) with value in d(1, 1−) such that (�(u))2 = u ∀u ∈
d(1, (14 )

−). Moreover, if p �= 2, then � has continuation to a func-

tion � ∈ A(d(1, 1−)) with value in d(1, 1−) again and such that

(�(u))2 = u ∀u ∈ d(1, 1). Here, we put u =
∏t
i=1

(

1−βi
x

1−αi
x

)

. �

Lemma 49.7. Let g, h ∈ A(K) with g
h transcendental and let

Θ(x) =
∏t
i=1

(

1−βi
x

1−αi
x

)

with |αi| < R and |βi| < R ∀i = 1, . . . , t. Then

the function g(x)2 − h(x)2Θ(x) belongs to A(K \ d(0, 4R)) and satis-

fies limr→+∞
|g2−h2Θ|(r)

rm = +∞ ∀m ∈ N.

Proof. We first note that g2 − h2Θ obviously belongs to A(K \
d(0, R)). Let us fix m ∈ N. By Lemma 49.6,

√
Θ is defined in K \

d(0, R) and belongs to A(K \ d(0, 4R)). Let � = √
Θ. Then can write

g2 − h2Θ = (g − h�)(g + h�).
Since g

h is transcendental, g2 − h2Θ is not identically zero. So,
by Theorem 22.22, there exists a > 0 and q ∈ Z such that
|g − h�|(r) ≥ arq ∀r > R.
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Suppose first h is transcendental. Since h is entire and since
|�|(r) = 1 ∀r > R, by Theorem 22.22, we have

(1) ∀m ∈ N, lim
r→∞

|h�|(r)
rm

= +∞.

Consequently, |h�|(r) > |g − h�|(r), and hence |h�|(r) = |g + h�|(r).
Thus,

|g − h�|(r)|g + h�|(r) ≥ arq|h�|(r).

Then the conclusion comes from (1). Suppose now h is not tran-
scendental, hence it is a polynomial and then g is transcendental.
Consequently, when r is big enough, we have |g − h�|(r) = |g|(r) =
|g+h�|(r), and hence |g2−h2Θ|(r) = (|g|(r))2, which yields the same
conclusion. �

Theorem 49.8. Let f ∈ M(K) be transcendental (respectively let
f ∈ Mu(d(a,R

−)), respectively let f ∈ Mc(D)). Then f has at most
four perfectly branched values. Moreover, any function g ∈ M(K)
has at most three totally branched values.

Remark. Let f ∈ M(K). If a ∈ K is a perfectly branched value
for f , then for every b ∈ K, a + b is a perfectly branched value for
f + b. Moreover, if a �= 0, then 1

a is a perfectly branched value for 1
f .

So, we are going to construct a function f ∈ M(K) admitting three

distinct totally branched values. Let � =
∏∞
j=1

(

1− x
aj

)

∈ A(K) with

limj→+∞ |aj | = +∞ and aj �= ak ∀j �= k. Let u =
∏∞
k=1

(

1− x
a2k

)

and let w =
∏∞
k=1

(

1− x
a2k−1

)

. So, both u and w belong to A(K) and

satisfy uw = �. Now, let φ = u2+w2

2 and θ = w2−u2
2 . Then, φ2−θ2 = �2.

Now, let g =
(

φ
�

)2
. Note that g admits 0 and 1 as totally branched

values. Consequently, g+1 admits 1 and 2 as totally branched values
and hence the function f = 1

g+1 admits 1 and 1
2 as totally branched

values. But, on the other hand, all poles of g are multiple, hence so
are those of g+1. Consequently, f also admits 0 as a totally branched
value. Thus, Theorem 49.8 is sharp as far as totally branched values
are concerned for meromorphic functions. One can only ask whether



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch49 FA1 page 466

466 Value Distribution in Ultrametric Analysis and Application

there exist meromorphic functions admitting four perfectly branched
values where some of them are not totally branched values.

Theorem 49.9. Let f ∈ M(K) be transcendental and have finitely
many poles. Then f has at most one perfectly branched value.

Corollary 49.10. Let f ∈ A(K) be transcendental. Then f has at
most one perfectly branched value.

Remark. However, a polynomial can admit two values looking
like “perfectly branched values”. Yet, the definition of a perfectly
branched value does not really apply to a polynomial or a rational
function.

Example. Let P (x) = x3−x2+ 4
27 . Then 0 and− 4

27 are two perfectly
branched values that are not totally branched. Indeed, on one hand,
− 4

27 is perfectly but not totally branched since P (x)− 4
27 = x2(x− 1).

On the other hand, we can check that P (x) =
(

x− 2
3

)2(
x+ 1

3

)

.

Theorem 49.11. Let f ∈ Mu(d(a,R
−)) have finitely many poles.

Then f has at most two perfectly branched values. Let f ∈ Mc(D)
have finitely many poles in D. Then f has at most two perfectly
branched values.

Corollary 49.12. Let f ∈ Au(d(a,R
−)) (respectively let f ∈

Ac(D)). Then f has at most two perfectly branched values.

Theorem 49.8 gives an easy proof of the impossibility to
parametrize elliptic and hyperelliptic curves by meromorphic func-
tions in all K.

Corollary 49.13. Let ai ∈ K, i = 1, 2, 3, be pairwise distinct. There
do not exist f, g ∈ M(K)\K, there do not exist f, g ∈ Au(d(a,R

−)),
and there do not exist f, g ∈ Ac(D) such that (g(x))2 = (f(x)− a1)
(f(x)− a2)(f(x)− a3).

Proof. Suppose two functions f, g ∈ M(K) \K satisfy (g(x))2 =
(f(x)−a1)(f(x)−a2)(f(x)−a3). Then each zero of f−ai, i = 1, 2, 3,
must be of order at least 2. And each pole of (f−a1)(f−a2)(f−a3) is
a pole of g2 and hence is of even order, and hence each pole of f is at
least of order 2. f admits four totally branched values: a1, a2, a3,∞,
what is impossible by Theorem 49.8. �
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Remark. We don’t know whether there exists a function f ∈
Au(d(a,R

−)) admitting two perfectly branched values. The only case
when we can improve Theorem 49.11 is the case when K has residue
characteristic 0.

In the proofs of Theorems 49.8 and 49.9, without loss of generality,
we can obviously assume that all supposed perfectly branched values
of the functions we consider are finite, what we do for simplicity.

Proof. (Theorems 49.8, 49.9, and 49.11.) If f lies inMu(d(a,R
−)),

we assume that a = 0. Suppose f has q perfectly branched values bj
with j = 1, . . . , q. For each j, let sj be the number of simple zeros of
f − bj and let s =

∑q
j=1 sj. Applying Theorem 45.7, we have

(1) (q − 1)T (r, f) ≤
q
∑

j=1

Z(r, f − bj) +N(r, f) − log r +O(1).

But since f − bj has sj simple zeros, we have

Z(r, f − bj) ≤ Z(r, f − bj) + sj log r

2
+O(1) ≤ T (r, f) + sj log r

2

+O(1) ∀j = 1, . . . , q,

hence

(2) (q − 1)T (r, f) ≤ qT (r, f)

2
+ T (r, f) +

(s

2
− 1
)

log r +O(1).

By (2), clearly, we have q ≤ 4 in all cases, which shows the first state-
ment of Theorem 49.8 whenever f ∈ M(K) or f ∈ Mu(d(0, R

−)).
Now, when f ∈ Mc(D), then (2) becomes (q−1)TR(r, f) ≤ qTR(r,f)

2 +
TR(r, f) + (O(log(r))) and we have the same conclusion.

Further, suppose that f lies in M(K) or in K(x) and that
b1, . . . , bq are totally branched values. Then, s = 0, hence by (2),
we have

(3)
(q

2
− 2
)

T (r, f) ≤ − log r +O(1).

In Theorem 49.8, since f is transcendental, we have log r =
o(T (r, f)), hence q ≤ 3.

Consider now the hypotheses of Theorems 49.9 and 49.11. Let t be
the number of poles of f , taking multiplicity into account. We have
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N(r, f) ≤ t log r + O(1), hence by (1), we obtain (q − 1)T (r, f) ≤
q
2T (r, f) + O(log r), and hence q ≤ 2. When f ∈ Mc(D), we just
replace N by NR.

Thus, Theorem 49.11 is proved.
For the proof of Theorem 49.9, without loss of generality, we may

assume that these perfectly branched values are 0 and b. Suppose first
that f has infinitely many zeros of order ≥ 3. Then Z(r, f)−2Z(r, f)
is a function θ(r) such that

(4) lim
r→+∞

θ(r)

log r
= +∞,

therefore

(5) Z(r, f) ≤ T (r, f)− θ(r)

2
.

On the other hand, by (1), with q = 2, we have

T (r, f) ≤ T (r, f)− θ(r)

2
+O(log r),

and then, by (4), we can see a contradiction proving that f cannot
admit 0 and b as branched values.

Suppose now that all zeros of both f and f − b are of order 2
except finitely many. So, there exists S > 0 satisfying the following
properties:

(i) All poles of f lie in d(0, S).
(ii) |f |(r) > |b| ∀r > S.
(iii) All zeros of f and of f − b in K \ d(0, S) are of order 2 exactly.

We can then write f in the form Pg2

V with P, V ∈ K[x], g ∈ A(K)

and deg(P ) = k. Similarly, f − b is in the form Qh2

V with Q ∈ K[x],
h ∈ A(K), where all zeros of P,Q, V lie in d(0, S) and all zeros of
g, h lie in K \ d(0, S) and are simple zeros. Set deg(V ) = t. We note
that g is transcendental.

By (ii), we have |f |(r) = |f − b|(r) ∀r > S. Consequently,
by Lemma 36.20, f and f − b have the same number of zeros in
d(0, S), and hence, deg(P ) = deg(Q). Let P (x) =

∏k
i=1(x− αi) and

Q(x) =
∏k
i=1(x−βi). Let Θ(x) =

∏k
i=1

(

1−βi
x

1−αi
x

)

and let Ξ(x) = V (x)
P (x) .

Of course, limr→+∞
|Ξ|(r)
rt+1 = 0.
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Now, we have

g(x)2 = h(x)2Θ(x) + bΞ(x).

By Lemma 49.7, we can derive

lim
r→+∞

(

|g2 − h2Θ|(r)
)

rm
= +∞ ∀m ∈ N,

a contradiction to limr→+∞
|Ξ|(r)
rt+1 = 0. This completes the proof of

Theorem 49.9. �

Remark. Corollary 49.12 may suggest that Theorem 28.4 is wrong.
Indeed, by Theorem 28.4, given sequences (an)n∈N, (bn)n∈N, (cn)n∈N
in d(0, R−) such that

lim
n→+∞ |an| = lim

n→+∞ |bn| = lim
n→+∞ |cn| = R,

together with
∏∞
n=0

R
|an| = +∞, there exists functions f ∈

A(d(0, R−)) admitting each an as a zero of order 2 and such that
f − 1 admits each bn as a zero of order 2 and such that f − 2 admits
each cn as a zero of order 2. Moreover, since

∏∞
n=0

R
|an| = +∞, we

can check that f ∈ Au(d(0, R
−)).

The explanation is that, given such a function f , either f or f −1
or f − 2 has infinitely many other zeros of order 1, and therefore, at
least one of these three values (0, 1, 2) is not perfectly branched.
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Chapter 50

Exceptional Values of Functions
and Derivatives

Throughout this chapter, the field K is supposed to be of characte-
ristic 0.

This chapter is aimed at studying various properties of deriva-
tives of meromorphic functions, particularly their sets of zeros. Many
important results are due to Jean-Paul Bézivin [10], [11], [12].

We first note a general property concerning quasi-exceptional val-
ues of meromorphic functions and derivatives.

Notation. Let f ∈ M(K) (respectively f ∈ M(d(0, R−))) and let T
be a property satisfied by f at certain points. Let r ∈]0, R[. Assume
that f(0) �= 0, ∞. We denote by Z(r, f | T ) the counting function of
zeros of f in K (respectively in d(0, r)) at the points where f satisfies
T (counting multiplicity) i.e. if (an) is the finite or infinite sequence
of zeros of f in d(0, R−) with respective multiplicity order sn, where
T is satisfied, we put Z(r, f) =

∑

|an|≤r,T sn(log r − log |an|).
And we denote by Z(r, f | T ) the counting function of zeros of

f in K (respectively in d(0, r)) at the points where f satisfies T ,
(ignoring multiplicity).

Similarly, we denote by N(r, f | T ) the counting function of poles
of f in K (respectively in d(0, r)) at the points where f satisfies T
(counting multiplicity) and we denote by N(r, f | T ) the counting
function of poles of f in K (respectively in d(0, r)) at the points where
f satisfies T (ignoring multiplicity).

471
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Given two meromorphic functions f, g ∈ M(K) or f, g ∈
M(d(a,R−)) (a ∈ K, R > 0), we denote by W (f, g) the Wronskian
of f and g: f ′g − fg′.

Theorem 50.1. Let f ∈ M(K) \ K(x) (respectively let f ∈
Mu(d(α,R

−))). If f admits a quasi-exceptional value, then f ′ has
no quasi-exceptional value different from 0.

Proof. Without loss of generality, we may assume α = 0 and that
f has no zero and no pole at 0. Let b ∈ K and suppose that b is a
quasi-exceptional value of f . There exist P ∈ K[x] and l ∈ A(K)\K[x]
(respectively and l ∈ Au(d(0, R

−))) without common zeros, with P ,
such that f = b+ P

l .

Let c ∈ K∗. Remark that f ′ − c = P ′l−P l′−cl2
l2

. Let a ∈ K (respec-
tively let a ∈ d(0, R−)). If a is a pole of f , it is a pole of f ′ − c and
we can check that

(1) ωa(P
′l − Pl′ − cl2) = ωa(l

′) = ωa(l)− 1

because a is not a zero of P .
Now, suppose that a is not a pole of f . Then,

(2) ωa(f
′ − c) = ωa(P

′l − Pl′ − cl2)

Consequently, Z(r, f ′−c) = Z(r, (P ′l−Pl′−cl2) | l(x) �= 0). But,
by (1), we have

(3) Z(r, (P ′l − Pl′ − cl2) | l(x) = 0) < Z(r, l),

and therefore by (2) and (3), we obtain

(4) Z(r, f ′−c) = Z(r, (P ′l−Pl′−cl2) | l(x) �= 0) > Z(r, P ′l−Pl′−
cl2)− Z(r, l).

Now, let us examine Z(r, P ′l − Pl′ − cl2). Let r ∈]0,+∞[
(

respectively let r ∈]0, R[). Since l ∈ A(K) is transcendental
(respectively since l ∈ Au(d(0, R

−))), we can check that when

r is big enough, we have |Pl′|(r) < |c|(|l|(r))2 and |Pl|(r) <

|c|(|l|(r))2, hence clearly |P ′l − Pl′|(r) < |c|(|l|(r))2, and hence
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|P ′l−Pl′−cl2|(r) = |c|(|l|(r))2. Consequently, when r is big enough,
by Theorem 43.2, we have Z(r, P ′l − Pl′ − cl2) = Z(r, l2) + O(1).
But Z(r, l2) = 2Z(r, l), hence Z(r, P ′l−Pl′ − cl2) = 2Z(r, l) +O(1),
and therefore by (4), we check that when r is big enough,

(5) Z(r, f ′ − c) > Z(r, l).

Now, if l ∈ A(K), since l is transcendental, by (5), for every
q ∈ N, we have Z(r, f ′ − c) > Z(r, l) > q log r, when r is big enough,
hence f ′ − c has infinitely many zeros in K. And similarly if l ∈
Au(d(0, R

−)), then by (5), Z(r, f ′ − c) is unbounded when r tends
to R, hence f ′ − c has infinitely many zeros in d(0, R−). �

We now note a property of differential equations of the form y(n)−
θy = 0 that is almost classical.

The problem of a constant Wronskian is involved in several
questions.

Theorem 50.2. Let h, l ∈ A(K) (respectively h, l ∈ A(d(α,R−)))
and satisfy h′l−hl′ = c ∈ K, with h non-affine. If h, l belong to A(K),
then c = 0 and h

l is a constant. If c �= 0 and if h, l ∈ A(d(α,R−)),
there exists φ ∈ A(d(α,R−)) such that h′′ = φh, l′′ = φl.

Proof. Suppose c �= 0. If h(a) = 0, then l(a) �= 0. Next, h and l
satisfy

(1)
h′′

h
=
l′′

l
.

Remark first that since h is not affine, h′′ is not identically zero.
Next, every zero of h or l of order ≥ 2 is a trivial zero of h′l − hl′,
which contradicts c �= 0. So, we can assume that all zeros of h and l
are of order 1.

Now suppose that a zero a of h is not a zero of h′′. Since a is a
zero of h of order 1, h′′

h has a pole of order 1 at a and so does l′′
l ,

hence l(a) = 0, a contradiction. Consequently, each zero of h is a

zero of order 1 of h and is a zero of h′′, and hence, h
′′
h is an element

φ of M(K) (respectively of M(d(α,R−))) that has no pole in K

(respectively in d(α,R−)). Therefore, φ lies in A(K) (respectively in
A(d(α,R−))).
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The same holds for l, and so, l′′ is of the form θl with θ ∈ A(K)

(respectively in A(d(α,R−))). But since h′′
h = l′′

l , we have φ = θ.
Now, suppose h, l belong to A(K). Since h′′ is of the form φh with

φ ∈ A(K), we have |h′′|(r) = |φ|(r)|h|(r). But by Theorem 37.10, we
know that |h′′|(r) ≤ 1

r2
|h|(r), a contradiction when r tends to +∞.

Consequently, c = 0. But then h′l−hl′ = 0 implies that the derivative
of h

l is identically zero, hence h
l is constant. �

Corollary 50.3. Let h, l ∈ A(K) with coefficients in Q also be entire
functions in C, with h non-affine. If h′l − hl′ is a constant c, then
c = 0.

Theorem 50.4. Let θ ∈ M(K) (respectively let θ ∈ M(d(α,R−)))
and let (E) be the differential equations y(n) − θy = 0. Let E be
the subvector space of M(K) (respectively of M(d(α,R−))) of the
solutions of (E):
(i) If n = 1, then the dimension of E is at most 1.
(ii) If θ belongs to A(K) (respectively if θ belongs to Au(d(α,R

−))),
then E = {0}.

(iii) If θ belongs to Ab(d(α,R
−)) and satisfies ‖θ‖d(α,R−) >

1

Rn
, then

E = {0} again.

Proof. In each case, we assume that (E) admits a non-identically
zero solution h. Then h(n) may not be identically zero.

Suppose first that n = 1. Suppose that g ∈ E. Let u = h
g . Since

h′ = θh, we have u′g + ug′ = θug, therefore ug
′
g = uθ = u′ + ug

′
g ,

and hence u′ = 0 i.e. u is a constant. Consequently, E is at most of
dimension 1.

Suppose now that θ lies in A(K). Then |θ|(r) = |h(n)|(r)
|h|(r) is an

increasing function in r in ]0,+∞[, a contradiction to the inequality
|h(n)|(r)
|h|(r) ≤ 1

rn coming from Theorem 37.10.

Now, suppose that θ ∈ Au(d(α,R
−)). Without loss of generality,

we may assume α = 0. Similarly, |θ|(r) is unbounded in ]0, R−[, a
contradiction to |h(n)|(r)

|h|(r) ≤ 1
rn again.



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch50 FA1 page 475

Exceptional Values of Functions and Derivatives 475

In the same way, if θ belongs to Ab(d(0, R
−)) and satisfies

‖θ‖d(0,R−) >
1
Rn , the inequality |h(n)|(r)

|h|(r) ≤ 1
rn is then violated when r

tends to R. �

Remark. The hypothesis θ unbounded in d(α,R−) is indispensable
to show that the space E is of dimension 0 or 1, as shown by the exam-
ple given again by the p-adic hyperbolic functions h(x) = cosh(x) and

l(x) = sinh(x). The radius of convergence of both h, l is p
−1
p−1 when

K has residue characteristic p and is 1 when K has residue charac-
teristic 0. Of course, both functions are solutions of y′′ − y = 0, but
they are bounded.

Theorem 50.5 given in [10] is an improvement of Theorem 50.2.

Theorem 50.5 (J.P. Bézivin). Let f, g ∈ A(K) be such that
W (f, g) is a non-identically zero polynomial. Then both f, g are
polynomials.

Proof. First, by Theorem 50.2, we check that the claim is satisfied
when W (f, g) is a polynomial of degree 0. Now, suppose the claim
holds when W (f, g) is a polynomial of certain degree n. We show it
for n + 1. Let f, g ∈ A(K) be such that W (f, g) is a non-identically
zero polynomial P of degree n+ 1.

Thus, by hypothesis, we have f ′g−fg′ = P , hence f ′′g−fg′′ = P ′.
We can extract g′ and get g′ = (f ′g−P )

f . Now consider the function

Q = f ′′g′ − f ′g′′ and replace g′ by what we just found: we can get

Q = f ′( (f
′′g−fg′′)
f )− Pf ′′

f .

Now, we can replace f ′′g− fg′′ by P ′ and obtain Q = (f ′P ′−Pf ′′)
f .

Thus, in that expression of Q, we can write |Q|(R) ≤ |f |(R)|P |(R)
R2|f |(R) ,

hence |Q|(R) ≤ |P |(R)
R2 ∀R > 0. But by definition, Q belongs to A(K).

Consequently, Q is a polynomial of degree t ≤ n− 1.
Now, suppose Q is not identically zero. Since Q = W (f ′, g′) and

since deg(Q) < n, by the induction, hypothesis f ′ and g′ are polyno-
mials and so are f, g. Finally, suppose Q = 0 meromorphic functions
in K: (E) y′ = θy with θ = P ′

P , whereas y belongs to A(K). By
Theorem 50.4, the space of solutions of (E) is of dimension 0 or 1.
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Consequently, there exists λ ∈ K such that f ′ = λP , hence f is a
polynomial. The same holds for g. �

Then, P ′f ′ − Pf ′′ = 0, and therefore, f ′, P are two solutions of
the differential equation of order 1 for the following:

Remark. In Archimedean analysis, Theorem 50.5 does not hold. For
example, take f(x) = ex, g(x) = e−x. Then, W (f, g) = 2. We can
also consider f(x) = xex, g(x) = e−x. Then, W (f, g) = 2x+ 1.

Lemma 50.6. Let U, V ∈ A(K) have no common zero and let
f = U

V . If f ′ has finitely many zeros, there exists a polynomial

P ∈ K[x] such that U ′V − UV ′ = P ˜V .

Proof. If V is a constant, the statement is obvious. So, we assume
that V is not a constant. Now ˜V divides V ′ and hence V ′ factorizes
in the way V ′ = ˜V Y with Y ∈ A(K). Then no zero of Y can be a
zero of V . Consequently, we have

f ′(x) =
U ′V − UV ′

V 2
=
U ′V − UY

V
2
˜V

.

The two functions U ′V −UY and V
2
˜V have no common zero since

neither have U and V . So, the zeros of f ′ are those of U ′V −UY which
therefore has finitely many zeros and consequently is a polynomial
P , hence U ′V − UV ′ = P ˜V . �

Theorem 50.7. Let f ∈ M(K)\K(x) have finitely many poles of
order ≥ 3 and admit primitives. Then f has no quasi-exceptional
value.

Proof. Suppose that f admits a quasi-exceptional value. Without
loss of generality, we can assume that this value is 0. Let F be a
primitive of f and let F = U

V , with U, V ∈ A(K), having no common
zero. By Lemma 50.7, there exists a polynomial P such that U ′V −
UV ′ = P ˜V . But since f has finitely many poles of order ≥ 3, F has
finitely many poles of order ≥ 2, hence ˜V has finitely many zeros,
hence it is a polynomial. But then P ˜V is a polynomial and then,
by Theorem 50.5, both U, V are polynomials, therefore F ∈ K(x) a
contradiction. �
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Theorem 50.8. Let f ∈ M(K) have finitely many multiple poles
such that for certain b ∈ K, f ′ − b has finitely many zeros. Then, f
belongs to K(x).

Proof. Suppose first b = 0. Let us write f = U
V with U, V ∈ A(K),

having no common zeros. By Lemma 50.7, there exists a polynomial
P ∈ K[x] such that U ′V − UV ′ = P ˜V . Since f has finitely many

multiple poles, ˜V is a polynomial, hence so is U ′V − UV ′. But then
by Theorem 50.5, both U, V are polynomials, which ends the proof
when b = 0. Consider now the general case. f ′ − b is the derivative
of f − bx that satisfies the same hypothesis, so the conclusion is
immediate. �

Theorem 50.9. Let f ∈ M(K) admit primitives. If f has two per-
fectly branched values, it has no quasi-exceptional value. Moreover,
if f has one totally branched value, then it has no exceptional value.

Proof. Suppose that f has two perfectly branched values a and b
and a quasi-exceptional value c. Since f admits primitives, N(r, f)

satisfies N(r, f) ≤ N(r,f)
2 + o(T (r, f)), hence by Theorem 45.7, we

have

2T (r, f) ≤ (Z(r, f − a) + Z(r, f − b) +N(r, f))

2
+ o(T (r, f)),

hence 2T (r, f) ≤ 3T (r,f)
2 + o(T (r, f)), a contradiction.

Suppose now that f has one totally branched and an exceptional
value c. Then N(r, f) satisfies

2T (r, f) ≤ (Z(r, f − a) +N(r, f))

2
− log(r),

a contradiction. �

Notation. For each n ∈ N∗, we set λn = max{ 1
|k| , 1 ≤ k ≤ n}. Given

positive integers n, q, we denote by Cqn the combination n!
q!(n−q)! .

For convenience, in this chapter, log is the Neperian logarithm
and we denote by e the number such that log(e) = 1 and Exp is the
real exponential function.
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Remark. For every n ∈ N∗, we have λn ≤ n because k|k| ≥ 1 ∀k ∈ N.
The equality holds for all n of the form ph.

Lemmas 50.10 and 50.11 are due to Jean-Paul Bézivin [10]:

Lemma 50.10. Let U, V ∈ A(d(0, R−)). Then for all r ∈]0, R[ and
n ≥ 1, we have

|U (n)V − UV (n)|(r) ≤ |n!|λn |U
′V − UV ′|(r)

rn−1
.

More generally, given j, l ∈ N, we have

|U (j)V (l) − U (l)V (j)|(r)

≤ |(j!)(l!)|λj+l |U
′V − UV ′|(r)
rj+l−1

.

Proof. Set g = U
V and f = g′. Applying Theorem 37.10 to f for

k − 1, we obtain

|g(k)|(r) = |f (k−1)|(r) ≤ |(k − 1)!| |f |(r)
rk−1

= |(k − 1)!| |U
′V − UV ′|(r)
|V 2|(r)rk−1

.

As in the proof of Theorem 37.10, we set U = V
(

U
V

)

. By Leibniz
formula again, now we can obtain

U (n) =

n
∑

q=1

CqnV
(n−q)

(U

V

)(q)
+ V (n)

(U

V

)

,

hence

(1) U (n) − V (n)
(U

V

)

=

n
∑

q=1

CqnV
(n−q)

(U

V

)(q)
.

Now, we have

∣

∣

∣

(U

V

)(q)∣
∣

∣(r) = |g(q)|(r) ≤ |(q − 1)!| |U
′V − UV ′|(r)
|V 2|(r)rq−1

and

|V (n−q)|(r) ≤ |(n− q)!| |V |(r)
rn−q

.
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Consequently, the general term in (1) is upper bounded as

∣

∣

∣CqnV
(n−q)

(U

V

)(q)∣
∣

∣(r) ≤ |(n!)((n − q)!)((q − 1)!)|
|(q!)((n − q)!)|

|U ′V − UV ′|(r)
|V |(r)rn−1

≤ λn
|n!||U ′V − UV ′|(r)

|V |(r)rn−1
.

Therefore, by (1), we obtain

∣

∣

∣U (n) − V (n)
(U

V

)∣

∣

∣(r) ≤ |n!|λn |U
′V − UV ′|(r)
|V |(r)rn−1

,

and finally

∣

∣

∣U (n)V − V (n)U
∣

∣

∣(r) ≤ |n!|λn |U
′V − UV ′|(r)

rn−1
.

We can now generalize the first statement. Set Pj = U (j)V −
UV (j). By induction, we can show the following equality that already
holds for l ≤ j:

U (j)V (l) − U (l)V (j) =

l
∑

h=0

Chl (−1)hP
(l−h)
j+h .

Then, the second statement gets just an application of the first. �

Lemma 50.11. Let U, V ∈ A(K) and let r, R ∈]0,+∞[ satisfy
r < R. For all x, y ∈ K with |x| ≤ R and |y| ≤ r, we have the
following inequality:

|U(x+ y)V (x)− U(x)V (x+ y)| ≤ R|U ′V − UV ′|(R)
e(logR− log r)

Proof. By Taylor’s formula at the point x, we have

U(x+ y)V (x)−U(x)V (x+ y) =
∑

n≥0

U (n)(x)V (x)− U(x)V (n)(x)

n!
yn.
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Now, by Lemma 50.9, we have

∣

∣

∣

∣

∣

U (n)(x)V (x)− U(x)V (n)(x)

n!
yn

∣

∣

∣

∣

∣

≤ λn
|U ′V − UV ′|(R)

Rn−1
rn

= λnR|U ′V − UV ′|(R)
( r

R

)n
.

Consequently, limn→+∞
∣

∣

∣

U (n)(x)V (x)−U(x)V (n(x)
n! yn

∣

∣

∣ = 0, therefore we

can define B = maxn≥1{λn
(

r
R

)n
}R|U ′V − UV ′|(R) and we have

|U(x + y)V (x) − U(x)V (x + y)| ≤ B. Now, as remarked above, we
have λn ≤ n. We can check that the function h defined in ]0,+∞[

as h(t) = t
(

r
R

)t
reaches it maximum at the point u = 1

e(LogR−Logr) .

Consequently, B ≤ 1
e(LogR−Logr) , and therefore,

|U(x+ y)V (x)− U(x)V (x+ y)| ≤ R|U ′V − UV ′|(R)
e(LogR− Logr)

. �

Notation. Let f ∈ M(d(0, R−)). For each r ∈]0, R[, we denote by
s(r, f) the number of zeros of f in d(0, r), each counted with its
multiplicity and we set t(r, f) = s(r, 1f ). Similarly, we denote by

β(r, f) the number of multiple zeros of f in d(0, r), each counted
with its multiplicity.

Theorem 50.12. Let f ∈ M(K) be such that for some c, q ∈]0,+∞[,
t(r, f) satisfies t(r, f) ≤ crq in [1,+∞[. If f ′ has finitely many zeros,
then f ∈ K(x).

Proof. Suppose f ′ has finitely many zeros and set f = U
V . If V is

a constant, the statement is immediate. So, we suppose V is not a
constant and hence it admits at least one zero a. By Lemma 50.7,
there exists a polynomial P ∈ K[x] such that U ′V −UV ′ = P ˜V . Next,
we take r,R ∈ [1,+∞[ such that |a| < r < R and x ∈ d(0, R), y ∈
d(0, r). By Lemma 50.11, we have

|U(x+ y)V (x)− U(x)V (x+ y)| ≤ R|U ′V − UV ′|(R)
e(LogR− Logr)

.
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Note that U(a) �= 0 because U and V have no common zero. Now
set l = max(1, |a|) and take r ≥ l. Setting c1 =

1
e|U(a)| , we have

|V (a+ y)| ≤ c1
R|P |(R)|˜V |(R)
LogR− Logr

.

Then taking the supremum of |V (a + y)| inside the disk d(0, r), we
can derive

(1) |V |(r) ≤ c1
R|P |(R)|˜V |(R)
LogR− Logr

.

Let us apply Corollary 22.30, by taking R = r+ 1
rq , after noting that

the number of zeros of ˜V (R) is bounded by s(r, V ). So, we have

(2) |˜V |(R) ≤
(

1 +
1

rq+1

)β((r+ 1
rq

),V )|˜V |(r).

Now, due to the hypothesis, s(r, V ) = t(r, f) ≤ crq in [1,+∞[, we
have

(3)
(

1 + 1
rq+1

)β((r+ 1
rq

),V )
≤
(

1 + 1
rq+1

)[c(r+ 1
rq

)m]

= Exp
[

c(r + 1
rq )

qLog(1 + 1
rq+1 )

]

.

The function h(r) = c(r+ 1
rm )mLog(1+ 1

rm+1 ) is continuous on ]0,+∞[
and equivalent to c

r when r tends to +∞. Consequently, it is bounded
on [l,+∞[. Therefore, by (2) and (3), there exists a constant M > 0
such that, for all r ∈ [l,+∞[, by (3), we obtain

(4) |˜V |
(

r +
1

rq

)

≤M |˜V |(r).

On the other hand,

Log
(

r +
1

rq

)

− Logr = Log
(

1 +
1

rq+1

)

clearly satisfies an inequality of the form

Log
(

1 +
1

rq+1

)

≥ c2
rq+1
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in [l,+∞[ with c2 > 0. Moreover, we can obviously find positive
constants c3, c4 such that

(

r +
1

rq

)

|P |
(

r +
1

rq

)

≤ c3r
c4 .

Consequently, by (1) and (4), we can find positive constants c5, c6
such that |V |(r) ≤ c5r

c6 |˜V |(r) ∀r ∈ [l,+∞[. Thus, writing again

V = V ˜V , we have |V |(r)|˜V |(r) ≤ c5r
c6 |˜V |(r), and hence

|V |(r) ≤ c5r
c6 ∀r ∈ [l,+∞[.

Consequently, by Corollary 22.31, V is a polynomial of degree ≤ c6
and hence it has finitely many zeros and so does V . But then, by
Theorem 50.8, f must be a rational function. �

Corollary 50.13. Let f be a meromorphic function on K such that,
for some c, q ∈]0,+∞[, t(r, f) satisfies t(r, f) ≤ crq in [1,+∞[. If
for some b ∈ K f ′ − b has finitely many zeros, then f is a rational
function.

Proof. Suppose f ′−b has finitely many zeros. Then f−bx satisfies
the same hypothesis as f , hence it is a rational function and so is f .

�

Corollary 50.14. Let f ∈ M(K) \ K(x) admitting primitives and
be such that log(t(r, f)) = O(log r). Then f has no quasi-exceptional
value.

Proof. Indeed, since f admits primitives, all poles are multiple,
hence, given a primitive F of f , we have t(r, F ) ≤ t(r, f). Con-
sequently, by hypothesis, we have log(t(r, F )) ≤ O(log(r)), hence
thanks to Corollary 50.13, F ′ has no quasi-exceptional value. �

Thanks to Theorem 31.5, we can derive Corollaries 50.15 and
50.16:

Corollary 50.15. Let f ∈ M(K) \K(x), admitting primitives, be of
the form g

h and be such that ρ(h) < +∞ and ψ(h) < +∞. Then f
has no quasi-exceptional value.

Corollary 50.16. Let f ∈ M(K) \ K(x), admitting primitives, be
of the form g

h with g, h ∈ A(K) and be such that ρ(h) < +∞ and
σ(h) < +∞. Then f has no quasi-exceptional value.



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch50 FA1 page 483

Exceptional Values of Functions and Derivatives 483

Corollary 50.17. Let f ∈ M(K)\K(x) be of the form g
h with g, h ∈

A(K) and be such that ρ(h) < +∞ and σ(h) < +∞. Then f ′ has no
quasi-exceptional value.

Proof. Let f = g
h with σ(h) < +∞. Then, f ′ = g′h−h′g

h2 and

σ(h2) = 2σ(h). Thus, one can apply Corollary 50.16 to f ′. �

Corollary 50.18. Let f ∈ M(K)\K(x) be of the form g
h with g, h ∈

A(K) and be such that ρ(h) < +∞ and σ(h) < +∞. If f has a quasi-
exceptional value, then it has a non-zero residue.

Example 1. Let (an)n∈N be a sequence in K such that |an| ≤ |an+1|
and limn→+∞ |an| = +∞ and let

f(x) =
∞
∑

n=0

bn
(x− an)sn

with |bn| ≤ 1, sn ≥ 2 ∀n and sn = 2 ∀n ≥ t.

Then the function f(x) =
∑∞

n=0
bn

(x−an)sn admits primitives and has

no quasi-exceptional value by Theorem 50.7.

Example 2. Let (an)n∈N be a sequence in K such that |an| < |an+1|
and limn→+∞ |an| = +∞ and suppose that log(n) = O(log |an|).
Then the function f(x) =

∑∞
n=0

bn
(x−an)sn with |bn| ≤ 1, sn ≥ 2 ∀n,

admits primitives and has no quasi-exceptional value by Corollary
50.14.

Example 3. Let h ∈ A(K) \ K[x] be a function having only zeros

of order 1 and let P (x) ∈ K[x]. Let f(x) = P (x)
h(x)2

. Then f has no

primitive.
Indeed, suppose that f have a primitive F = U

V , where U and
V lie in A(K) have no common zeros. Since the zeros of h are of
order 1, it is seen that all zeros of V are of order 1 and are all the
zeros of h. Consequently, ˜V = 1, V = V, and F ′ = U ′V−UV ′

V 2 admits
no simplification. Therefore, U ′V −UV ′ = P . But then, by Theorem
50.5, U and V are polynomials and V 2 = h2, a contradiction to the
hypothesis h ∈ A(K) \K[x].

Remark 1. In Example 3, the function f certainly has residues
different from 0 because if all residues were null, the function then
would have primitives.
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Remark 2. Let f be a non-rational meromorphic function in C

admitting primitives. Then the second main theorem lets easily show
that f has at most one Picard value [66].

Now, by Theorems 50.7 and 50.9 and Corollary 50.14, it seems
that a function admitting primitives has no quasi-exceptional value.
Actually, as we saw in Theorem 37.12, a meromorphic function in K

admitting primitives is a meromorphic function whose residues are
all null. Thus, the following conjecture appears likely:

Conjecture. A transcendental meromorphic function in K whose
residues are all null has no quasi-exceptional value.
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Chapter 51

Small Functions

Throughout this chapter, the field K is supposed to be of characte-
ristic 0.

Small functions with respect to a meromorphic function are well
known in the general theory of complex functions. Particularly, one
knows the Nevanlinna theorem on three small functions. Here we
construct a similar theory.

Definition and notation. Throughout this chapter, we set a ∈ K

and R ∈]0,+∞[ and we still denote by D the set K\d(0, R−).
For each f ∈ M(K) (respectively f ∈ M(d(a,R−)), respectively
f ∈ M(D)), we denote by Mf (K) (respectively Mf (d(a,R

−)),
respectively Mf (D)) the set of functions h ∈ M(K) (respectively
h ∈ M(d(a,R−)), respectively M(D)) such that T (r, h) = o(T (r, f))
when r tends to +∞ (respectively T (r, h) = o(T (r, f)) when r tends
to R, respectively TR(r, h) = o(TR(r, f)) when r tends to +∞). Sim-
ilarly, if f ∈ A(K) (respectively f ∈ A(d(a,R−)), f ∈ A(D),) we
denote by Af (K) (respectively Af (d(a,R

−)), respectively Af(D))
the set Mf (K) ∩ A(K) (respectively Mf (d(a,R

−)) ∩ A(d(a,R−)),
respectively Mf (D) ∩ A(D)).

The elements of Mf (K) (respectively Mf (d(a,R
−)), respectively

Mf (D)) are called small meromorphic functions with respect to f,
small functions in brief. Similarly, if f ∈ A(K) (respectively f ∈
A(d(a,R−)), respectively f ∈ A(D)), the elements of Af (K) (respec-
tively Af (d(a,R

−)), respectively Af (D)) are called small analytic
functions with respect to f , small functions in brief.

485
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Theorems 51.1 and 51.2 are immediate consequences of Theorems
43.3 and 46.8:

Theorem 51.1. Let a ∈ K and r > 0. Af (K) is a K-subalgebra
of A(K), Af (d(a,R

−)) is a K-subalgebra of A(d(a,R−)), Af (D)
is a K-subalgebra of A(D), Mf (K) is a subfield field of M(K),
Mf (d(a,R

−)) is a subfield of field of M(a,R−), and Mf (D) is a
subfield field of M(D). Moreover, Ab(d(a,R

−)) is a subalgebra of
Af (d(a,R

−)) and Mb(d(a,R
−)) is a subfield of Mf (d(a,R

−)).

Theorem 51.2. Let f ∈ M(K) (respectively f ∈ M(d(0, R−)),
respectively f ∈ M(K)) and let g ∈ Mf (K) (respectively g ∈
Mf (d(0, R

−)), respectively g ∈ Mf (D)). Then, T (r, fg) = T (r, f)+

o(T (r, f)) and T
(

r, fg
)

= T (r, f)+ o(T (r, f)) (respectively T (r, fg) =

T (r, f) + o(T (r, f)) and T (r, fg ) = T (r, f) + o(T (r, f)), respec-

tively TR(r, fg) = TR(r, f) + o(TR(r, f)) and TR
(

r, fg
)

= TR(r, f) +

o(TR(r, f))).

Here we can mention some precisions to Theorem 51.1 that are
useful later:

Theorem 51.3. Let f ∈ A(K) (respectively let f ∈ Au(d(a, r
−)),

respectively let f ∈ A(D)). Let g, h ∈ Af (K) (respectively let
g, h ∈ Af (d(a, r

−)), respectively let g, h ∈ Af (D)) with g and h not
identically zero. If gh belongs to Af (K) (respectively to Af (d(a, r

−)),
respectively to Af (D)), then so do g and h.

Proof. Concerning the claim on f ∈ Au(d(a, r
−)), we can obvi-

ously assume a = 0. By Theorems 43.3 and 46.7, we have T (r, g.h) =
T (r, g) + T (r, h) + O(1). Consequently, T (r, g.h) = o(T (r, f)) if and
only if T (r, g) = o(T (r, f)) and T (r, h) = o(T (r, f)). �

Theorem 51.4. Let f, g ∈ A(K) (respectively let f, g ∈
Au(d(0, r

−)), respectively let f, g ∈ A(D)) and let q ∈ N∗. If fg is not

a qth root of 1, then f q − gq does not belong to Af (K) (respectively
to Af(d(0, r

−)), respectively to Af (D)).

Proof. Concerning the claim on f ∈ Au(d(a, r
−)), we can obvi-

ously assume a = 0. Let h = f
g . Since h is not a qth root of 1, neither

f − g nor the function F (x) =
∑q−1

j=0 f
jgq−1−j is identically zero.
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Suppose that f q − gq ∈ Af(K) (respectively f q − gq ∈ Af (d(0, r
−)),

respectively Af (D)). So, by Theorem 51.3, both f − g and F belong
to Af (K) (respectively to Af (d(0, r

−)), respectively to Af (D)). Let

w = f − g, hence g = f + w. Then, F (x) =
∑q−1

j=0 f
j(f + w)q−1−j .

Thus, we can check that F (x) is of the form f q−1+P (f(x)) with P (Y )
a polynomial in Y of degree at most q−2, with coefficients in Af (K)
(respectively in Af (d(0, r

−)), respectively in Af (D)). Consequently,
by Theorems 43.3 and 46.7, T (r, F (x)) is of the form (q−1)T (r, f)+
o(T (r, f)) because T (r, P (f(x))) ≤ (q− 2)T (r, f)+ o(T (r, f)), which
proves that F does not belong toAf (K) (respectively toAf (d(0, r

−)),
respectively to Af (D)). �

In the proof of Theorem 51.5 and in the sequel, we have to use
the following notation:

Notation. Let h ∈ M(K)\K (respectively h ∈ E(x)\E) and let
Z(h) be the set of zeros c of h′ such that h(c) �= h(d) for every zero
d of h′ other than c. If Z(h) is finite, we denote by Υ(h) its cardinal,
and if Z(h) is not finite, we put Υ(h) = +∞.

Theorem 51.5 is a wide generalization of Theorem 43.8. It con-
sists of the following claim: given a meromorphic function f and a
rational function G of degree n whose coefficients are small functions
with respect to f , then T (r,G(f)) is equivalent to nT (r, f). The
big difficulty consists of showing that T (r,G(f)) is not smaller than
nT (r, f). The proof, based on an elementary property of Bezout’s
theorem, was given in C by F. Gackstatter and I. Laine and was
made in a field such as K by C.C. Yang and Peichu Hu [67].

Theorem 51.5. Let f ∈ M(K) (respectively let f ∈ M(d(0, R−)),
respectively let f ∈ M(D)). Let G(Y ) ∈ Mf (K)(Y ) (respectively
G ∈ Mf (d(0, R

−))(Y ), respectively G(Y ) ∈ Mf (D)(Y )) and let
n = deg(G). Then T (r,G(f)) = nT (r, f) + o(T (r, f)) (respec-
tively T (r,G(f)) = nT (r, f) + o(T (r, f)), respectively TR(r,G(f)) =
nTR(r, f) + o(TR(r, f)).

Proof. Let G = P
Q with P, Q relatively prime in the ring Mf (K)

(respectively Mf (d(a,R
−)), Mf (D)). Suppose first G(Y ) ∈ Mf (K)

[Y ] (respectively G ∈ Mf (d(0, R
−))[Y ], respectively G(Y ) ∈ Mf (D)

[Y ]), hence G = P . Let P (X) =
∑n

j=0 bjX
j with cj ∈ Mf (K)

(respectively cj ∈ Mf (d(0, R)), cj ∈ Mf (D)). By Theorems 43.8
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and 46.7, we have T (r, P (f)) = T (r, b−1
n P (f)) + o(T (r, f)) (respec-

tively T (r, P (f)) = T (r, b−1
n P (f)) + o(T (r, f)), respectively TR(r,

P (f)) = TR(r, b
−1
n P (f)) + o(TR(r, f))). Consequently, without loss

of generality, we may also assume that P is monic.
Let ̂K be an algebraically closed spherically complete extension

of K. Given a ∈ K, we denote by ̂d(a,R−) the disk {x ∈ ̂K |
|x− a| < R}.

Suppose first f ∈ M(K) or f ∈ M(D). We can write f = h
l

with h, l ∈ A(K) having no common zero. Now suppose that

f ∈ M(d(0, R−)). Since f has continuation to a function ̂f mero-

morphic in the disk ̂d(0, R−) of the field ̂K, by Lemma 43.1, we

know that the Nevanlinna function T (r, ̂f) in ̂K is exactly this of
f in K. Consequently, without loss of generality, we may assume
that K is spherically complete. Thus, we can write f in the form
f = h

l with h, l ∈ A(d(0, R−)) having no common zero. Then

P (f) is in the form
∑n

j=0 bjh
j ln−j

Bln with B, bj ∈ Af(K) (respectively
B, bj ∈ Af (d(0, R

−)), respectively B, bj ∈ Af (D)). Clearly, we have

Z
(

r,
∑n

j=0 bjh
j ln−j

ln

)

≤ Z
(

r,
∑n

j=0 bjh
j ln−j

)

and by Theorem 43.8

(respectively by Theorem 43.8, respectively by Theorem 46.7)

Z

⎛

⎝r,
n
∑

j=0

bjh
j ln−j

⎞

⎠ ≤ max
0≤j≤n

Z(r, bjh
j ln−j) ≤ nT (r, f) + o(T (r, f)

(respectively

Z

⎛

⎝r,
n
∑

j=0

bjh
j ln−j

⎞

⎠ ≤ max
0≤j≤n

Z(r, bjh
jln−j) ≤ nT (r, f) + o(T (r, f),

respectively

ZR

⎛

⎝r,

n
∑

j=0

bjh
j ln−j

⎞

⎠ ≤ max
0≤j≤n

ZR(r, bjh
j ln−j)

≤ nTR(r, f) + o(TR(r, f))).
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On the other hand, N(r, P (f)) ≤ nN(r, f) + o(T (r, f)) (respec-
tively N(r, P (f)) ≤ nN(r, f)+o(T (r, f)), respectively NR(r, P (f)) ≤
nNR(r, f) + o(TR(r, f))), hence T (r, P (f)) ≤ nT (r, f) + o(T (r, f))
(respectively T (r, P (f)) ≤ nT (r, f) + o(T (r, f)), respectively TR(r,
P (f))≤nTR(r, f) + o(TR(r, f))).

So, now it remains us to prove the reverse inequality. Indeed,
suppose that inequality does not hold. For simplicity, we first suppose
that f lies either in M(K) or in M(d(0, R−)).

Then there exists ρ ∈]0, 1[ and a sequence of intervals ]r′m, r′′m[ such
that limm→+∞ r′m = +∞ (respectively limm→+∞ r′m = R, respec-
tively limm→+∞ r′m = +∞) and that T (r, P (f)) ≤ ρnT (r, f) ∀r ∈
⋃∞
m=1]r

′
m, r

′′
m[. Particularly, we have N(r, P (f)) ≤ ρnT (r, f) ∀r ∈

⋃∞
m=1]r

′
m, r

′′
m[.

Let us write again P (f) in the form
∑n

j=0 cjf
j. We shall prove

the following

(1) N(r, P (f) ≥ nN(r, f)− n

n
∑

j=0

N(r, cj) = nN(r, f) + o(T (r, f)).

Indeed, let α be a pole of f and suppose it is not a pole of
order ≥ −nωα(f) of P (f). We can check that there must exist
j ∈ {0, . . . , n− 1} such that −ωα(cj) ≥ −ωα(f). Consequently, at α,
we have −ωα(P (f)) ≥ −nωα(f)−maxj=0,...,n−1(−nωα(cj)), hence

N
(

r, f | ωα(P (f)) < nωα(f)
) ≤ n

n−1
∑

j=0

N(r, cj),

hence (1) follows clearly.
Consequently, there exists q ∈ N such that nN(r, f) ≤

ρnT (r, f) ∀r ∈ ⋃∞
m=q]r

′
m, r

′′
m[ and therefore there exists s ∈ N and

λ ∈]0, 1[ such that

(2) N(r,Bln) < nλT (r, f) ∀r ∈
∞
⋃

m=s

]r′m, r
′′
m[.

In particular, there exists t ∈ N such that

T (r, bjh
j ln−j) < λT (r, bnh

n) ∀j = 0, . . . , n − 1,∀r ∈
∞
⋃

m=t

]r′m, r
′′
m[.

Now, since T (r, bnh
n) > T (r, bjh

j ln−j) ∀j = 0, . . . , n− 1,∀r ∈ ⋃∞
m=t]

r′m, r′′m[,wenote that |
∑n

j=0 bjh
jln−j |(r) = |bn|(r)∀r ∈

⋃∞
m=t]r

′
m, r

′′
m[,
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hence

T

⎛

⎝r,
n
∑

j=0

bjh
j ln−j

⎞

⎠ = T (r, bnh
n) ∀r ∈

∞
⋃

m=t

]r′m, r
′′
m[.

Consequently, there exists � ∈]ρ, 1[ and u ∈ N (u ≥ t) such that

(3) T

⎛

⎝r,
n
∑

j=0

bjh
j ln−j

⎞

⎠ > �nT (r, h) ∀r ∈
∞
⋃

m=u

]r′m, r
′′
m[.

Now, by (2), we have T (r, h) = T (r, f) ∀r ∈ ⋃∞
m=u]r

′
m, r

′′
m[ and

T (r, P (f)) = T

⎛

⎝r,

n
∑

j=0

bjh
j ln−j

⎞

⎠ ∀r ∈
∞
⋃

m=u

]r′m, r
′′
m[,

hence finally, by (3), we obtain T (r, P (f)) > �nT (r, f) ∀r ∈
⋃∞
m=u]r

′
m, r

′′
m[, a contradiction which proves the claim when G is

a polynomial.
Similarly, replacing N by NR, T by TR, we can make the same

reasoning when f belongs to M(D).
We now consider the general case G(Y ) ∈ Mf (K)(Y ) (respec-

tively G ∈ Mf (d(0, R
−))(Y )). Without loss of generality, we may

assume deg(G) = deg(P ).
Since P and Q are relatively prime, by Bezout’s theorem in a ring

of polynomials on a field, we can find A, B ∈ Mf (K)[Y ] (respec-
tively A,B ∈ Mf (d(0, R

−))[Y ]) such that AQ + PB = 1. Since

deg(Q) ≤ deg(P ), of course, deg(B) ≤ deg(A), hence deg
(

A
B

)

=
deg(A). Now,

T

(

r,
B(f)

A(f)
+
Q(f)

P (f)

)

= T

(

r,
1

A(f)P (f)

)

= T (r,A(f)P (f)) +O(1).

Consequently, by the theorem already proven when G is a polyno-
mial, we have

T

(

r,
B(f)

A(f)
+
Q(f)

P (f)

)

= (deg(A) + deg(P ))T (r, f) + o(T (r, f)),

and since deg(P ) = deg(G), actually we have

(4) T

(

r,
B(f)

A(f)
+
Q(f)

P (f)

)

= (deg(A) + deg(G))T (r, f) + o(T (r, f)).
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Now, T
(

r, B(f)
A(f) +

Q(f)
P (f)

) ≤ T (r, B(f)
A(f) ) + T

(

r, Q(f)
P (f)

)

+ o(T (r, f), and by

the first inequality already proven above, we obtain

T

(

r,
B(f)

A(f)
+
Q(f)

P (f)

)

≤ deg

(

B

A

)

T (r, f) + T

(

r,
Q(f)

P (f)

)

+ o(T (r, f).

But since deg(B) ≤ deg(A), actually we have

T

(

r,
B(f)

A(f)
+
Q(f)

P (f)

)

≤ deg(A)T (r, f) + T

(

r,
Q(f)

P (f)

)

+ o(T (r, f))

i.e.

(5) T

(

r,
B(f)

A(f)
+
Q(f)

P (f)

)

≤ deg(A)T (r, f) + T (r,G(f)) + o(T (r, f)).

.

Now, by (4) and (5), we can see that deg(G)T (r, f) ≤ T (r,G(f)) +
o(T (r, f)). Similarly, when f belongs to M(D) and G belongs to
Mf (D)(Y ), we can make the same reasoning, as above. This com-
pletes the proof. �

Theorem 51.6. Let a ∈ K and r > 0. Let f ∈ M(K)\K(x) (respec-
tively f ∈ Mu(d(a,R

−)), respectively f ∈ Mc(D)). Then, f is tran-
scendental over Mf (K) (respectively over Mf (d(a,R

−)), respectively
over Mf (D)).

Proof. Suppose there exists a polynomial P (Y ) =
∑n

j=0 ajY
j ∈

Mf (K)[Y ] �= 0 such that P (f) = 0. If f belongs to
Mu(d(a,R

−)), we may obviously suppose that a = 0. By The-
orem 51.5, we have T (r, anf

n) = nT (r, f) + o(T (r, f)) whenever
f belongs to M(K)\K(x) or to Mf (d(0, R

−)) and TR(r, anf
n) =

nTR(r, f) + o(TR(r, f)) whenever f belongs to Mc(K), whereas
T (r,

∑n−1
j=0 ajf

j) = (n− 1)T (r, f) + o(T (r, f)), a contradiction. �

Corollary 51.7. Let a ∈ K and r > 0. Let f ∈ M(K)\K(x) (respec-
tively f ∈ Mu(d(a,R

−)), respectively f ∈ Mc(D)). Then, f is tran-
scendental over K(x).
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A function h ∈ Mb(d(a,R
−)) is obviously small with respect to

any function f ∈ Mu(d(a,R
−)). So, we have the following corollary:

Corollary 51.8. Let a ∈ K and r > 0 and let f ∈ Mu(d(a,R
−)).

Then, f is transcendental over Mb(d(a,R
−)). Let f ∈ Mc(D). Then

f is transcendental over M0(D).

By Corollary 36.23, we know that a meromorphic function f ∈
M(K) or f ∈ M(d(0, R−)) admits at most one quasi-exceptional
value. Here we generalize that statement.

Theorem 51.9. Let a ∈ K and r > 0. Let f ∈ M(K)\K(x)
(respectively f ∈ Mu(d(a,R

−)), respectively f ∈ Mc(D)). There
exists at most one function g ∈ Mf (K) (respectively g ∈
Mf (d(a,R

−)), respectively g ∈ Mf (D)) such that f −g have finitely
many zeros. Moreover, if f belongs to A(K)\K[x] (respectively to
Au(d(a,R

−)), respectively to Ac(D)), then there exists no func-
tion g ∈ Mf (K)\K(x) (respectively g ∈ Mf (d(a,R

−)), respectively
g ∈ Mf (D)) such that f − g have finitely many zeros.

Proof. Concerning claims on Mu(d(a,R
−)), we can obviously

assume a = 0. Suppose that there exist two distinct functions
g1, g2 ∈ Mf (K) (respectively g1, g2 ∈ Mf (d(0, R

−)), respec-
tively g1, g2 ∈ Mf (D)) such that f − gk has finitely many zeros.
So, there exist P1, P2 ∈ K[x] and h1, h2 ∈ A(K) (respectively

h1, h2 ∈ A(d(0, R−))) such that f − gk = Pk
hk
, k = 1, 2, and hence

we note that

(1) T (r, f) = T

(

r,
Pk
hk

)

+ o(T (r, f))

= T (r, hk) + o(T (r, f)) k = 1, 2.

Consequently, putting g = g2 − g1, we have

P1

h1
=
P2

h2
+ g,

and by Theorem 51.1, g belongs to Mf (K) (respectively to
Mf (d(0, R

−))). Therefore, P1h2 − P2h1 = gh1h2, and hence,

(2) T (r, P1h2 − P2h1) = T (r, gh1h2).
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Now, by Theorem 43.3, we have

T (r, P1h2 − P2h1) ≤ max(T (r, P1h2), T (r, P2h1))

≤ max(T (r, h1), T (r, h2)) + o(T (r, f)),

and hence by (1), we obtain

(3) T (r, P1h2 − P2h1) ≤ T (r, f) + o(T (r, f)).

On the other hand, by Theorem 51.2, we have

T (r, gh1h2) = T (r, h1h2) + o(T (r, h1h2)) = 2T (r, f) + o(T (r, f)),

a contradiction to (3).
Now, if f belongs to Mc(D), we can make the same reasoning

with TR instead of T .
Suppose now that f belongs to A(K)\K[x] and that there exists

a function w ∈ Mf (K) such that f − w has finitely many zeros. Set

w = l
t , where l and t belong to Af(K) and have no common zeros.

Thus, f−w = tf−l
t and each zero of tf−l cannot be a zero of t, hence

is zero of f − w. Consequently, since f − w has finitely many zeros,
tf − l has finitely many zeros and hence is a polynomial. But since l
belongs to Af (K), when r is big enough, we have |f |(r) > |l|(r) and
hence |tf |(r) > |l|(r), therefore |tf − l|(r) = |tf |(r). And since f is
transcendental, by Corollary 22.23, for every fixed q ∈ N, |f |(r) > rq

when r is big enough. Similarly, |tf− l|(r) > rq when r is big enough.
Consequently, by Corollary 22.23, tf − l is not a polynomial, which
proves that w does not exist.

Suppose now that f belongs to Au(d(0, R
−)) and that there exists

a function w ∈ Mf (d(0, R
−)) such that f − w has finitely many

zeros. Without loss of generality, we can assume that the field K is
spherically complete because both f and w have continuation to an
algebraically closed spherically complete extension of K where their
zeros are the same as in K. Consequently, we can write w = l

t , where
l and t have no common zeros. Now, the zeros of f − w are those of
tf − l, hence tf − l has finitely many zeros and hence is bounded in
d(0, R−). But since w belongs to Mf (d(0, R

−)), so does l and hence
|tf |(r) > |l|(r) when r tends to R. Consequently, |tf − l|(r) = |tf |(r)
is not bounded in d(0, R−), a contradiction proving again that w
does not exist.
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Suppose finally that f belongs to Ac(D). We can make the same
reasoning as in A(K) by replacing T by TR. �

Theorem 51.10 is known as second main theorem on three small
functions in p-adic analysis [67]. It holds as well as in complex analy-
sis, where it was showed first [67]. Note that this theorem was gener-
alized to any finite set of small functions by K. Yamanoi in complex
analysis [94], through methods that have no equivalent on a p-adic
field.

Theorem 51.10. Let f ∈ M(K) (respectively f ∈ Mu(d(0, R
−)),

respectively f ∈ Mc(D)) and let w1, w2, w3 ∈ Mf (K) (respec-
tively w1, w2, w3 ∈ Mf (d(0, R

−)), respectively w1, w2, w3 ∈ Mf (D))
be pairwise distinct and let S(r) = max(T (r, wj), j = 1, 2, 3).

Then, T (r, f) ≤ ∑3
j=1Z(r, f − wj) + 13S(r), respectively T (r, f) ≤

∑3
j=1 Z(r, f − wj) + 13S(r), respectively TR(r, f) ≤

∑3
j=1 ZR(r, f −

wj) + 13S(r).

Proof. We make the proof when f belongs to M(K) or to

Mu(d(0, R
−)). Let φ(x) = (f(x)−w1(x))(w2(x)−w3(x))

(f(x)−w3(x))(w2(x)−w1(x))
.

By Theorem 45.7, we have

(1) T (r, φ) ≤ Z(r, φ) + Z(r, φ− 1) +N(r, φ) +O(1).

On the other hand, we have T (r, f) ≤ T (r, f − w3) + T (r, w3),
hence

T (r, f) ≤ T

(

r,
1

f − w3

)

+ T (r, w3)

≤ T

(

r,
w3 − w1

f − w3

)

+ T (r, w1 − w3) + T (r, w3) + 0(1),

thereby

(2) T (r, f) ≤ T

(

r,
w3 − w1

f − w3
+ 1

)

+ 3S(r) +O(1)

= T

(

r,
f − w1

f − w3

)

+ 3S(r) +O(1).



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch51 FA1 page 495

Small Functions 495

Now, T
(

r, w2−w1
w2−w3

) ≤ 4S(r)+O(1). Consequently, by writing f−w1

f−w3
=

φ
(

w2−w1
w2−w3

)

, we have T
(

r, f−w1

f−w3

) ≤ T (r, φ) + T
(

r, w2−w1
w2−w3

) ≤ T (r, φ) +

4S(r) +O(1), and finally T (r, f) ≤ T (r, φ) + 7S(r) +O(1). Thus, by
(1), we obtain

(3) T (r, f) ≤ Z(r, φ) + Z(r, φ− 1) +N(r, φ) + 7S(r) +O(1).

Now, we can check that

Z(r, φ) + Z(r, φ − 1) +N(r, φ)

≤
3
∑

j=1

Z(r, f − wj) +
∑

1≤j<k≤3

Z(r, wk − wj)

≤
3
∑

j=1

Z(r, f − wj) + 6S(r),

which, by (3), completes the proof when f belongs to M(K) or to
Mu(d(0, R

−)). When f belongs to M(D), we can make a similar
proof just by replacing T by TR and Z by ZR. �

Theorem 51.11. Let f ∈ M(K) (respectively f ∈ Mu(d(0, R
−)),

respectively f ∈ Mc(D)) and let w1, w2 ∈ Mf (K) (respectively
w1, w2 ∈ Mf (d(0, R

−)), respectively w1, w2 ∈ Mf (D)) be distinct.
Let S(r) = max(T (r, w1), T (r, w2)) (respectively S(r) = max(T (r,
w1), T (r, w2)), respectively S(r) = max(TR(r, w1), TR(r, w2))). Then,
T (r, f) ≤ Z(r, f −w1) + Z(r, f −w2) +N(r, f) + 7S(r), respectively
T (r, f) ≤ Z(r, f −w1) + Z(r, f −w2) +N(r, f) + 7S(r), respectively
TR(r, f) ≤ ZR(r, f − w1) + ZR(r, f − w2) +NR(r, f) + 7S(r)).

Proof. Suppose first f ∈ M(K) or f ∈ Mu(d(0, R
−)). Let g = 1

f ,

hj =
1
wj
, j = 1, 2, h3 = 0. Clearly,

T (r, g) = T (r, f) +O(1), T (r, hj) = T (r, wj), j = 1, 2,

so we can apply Theorem 51.10 to g, h1, h2, h3. So, we have T (r, g) ≤
Z(r, g−h1)+Z(r, g−h1)+Z(r, g)+7S(r). But we note that Z(r, g−
hj) = Z(r, f −wj) for j = 1, 2 and that Z(r, g) = N(r, f). Moreover,
we know that T (r, g) = T (r, f) +O(1). Consequently, when w1w2 is
not identically zero, the claim is proved.
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Now, suppose that w2 = 0. Take λ ∈ K∗, let l = f + λ and
θj = wj + λ j = 1, 2. Thus, we have T (r, l) = T (r, f) + O(1),
T (r, θj) = T (r, wj) + O(1), j = 1, 2, and N(r, l) = N(r, f). We
note that maxj=1,2 T (r, θj) = S(r) +O(1).

By the claim already proved when w1w2 �= 0, we can write
T (r, l) ≤ Z(r, l− θ1) +Z(r, l− θ2) +N(l, r) + 7S(r), hence T (r, f) ≤
Z(r, f − w1) + Z(r, f) +N(f, r) + 7S(r) +O(1).

Suppose now f ∈ M(D). By replacing T by TR, Z by ZR, and N
by NR, we can check that the same reasoning applies. �

Corollary 51.12. Let f ∈ A(K) (respectively f ∈ Au(d(0, R
−)),

respectively f ∈ Ac(D)) and let w1, w2 ∈ Af (K) (respectively
w1, w2 ∈ Af (d(0, R

−)), respectively w1, w2 ∈ Af (D)) be distinct.
Let S(r) = max(T (r, w1), T (r, w2)) (respectively S(r) = max(T (r,
w1), T (r, w2)), respectively S(r) = max(TR(r, w1), TR(r, w2))). Then,
T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + 7S(r) + O(1), respectively
T (r, f) ≤ Z(r, f − w1) + Z(r, f − w2) + 7S(r) + O(1), respectively
TR(r, f) ≤ ZR(r, f − w1) + ZR(r, f − w2) + 7S(r) +O(1)).

Here is now an application of that theory:

Theorem 51.13. Let h, w ∈ Ab(d(a,R
−)) and let m, n ∈ N∗

be such that min(m,n) ≥ 2, max(m,n) ≥ 3. Then the functional
equation

(E) (g(x))n = h(x)(f(x))m + w(x)

has no solution in Au(d(a,R
−)).

Proof. Without loss of generality, we can obviously assume a = 0.
Let F (x) = g(x)n. Thanks to Corollary 51.12, we can write

(1) T (r, F ) ≤ Z(r, F ) + Z(r, F − w) + o(T (r, F )).

Now, it appears that Z(r, F ) ≤ 1
nZ(r, F ). Moreover, since h is

bounded, Z(r, h) is bounded, hence Z(r, hfm) ≤ Z(r, f) + Z(r, h) =
Z(r, f) +O(1), hence

(2) Z(r, hfm) ≤ 1

m
Z(r, hfm) +O(1) =

1

m
Z(r, F ) +O(1).
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On the other hand, Z(r, F ) = Z(r, F −w) +O(1) = T (r, F ) +O(1).
Consequently, by (1) and (2), we can derive

T (r, F ) ≤
(

1

m
+

1

n

)

T (r, F ) + o(T (r, F )).

Therefore, we have 1
m + 1

n ≥ 1, a contradiction to the hypothesis

which implies 1
m + 1

n ≤ 5
6 . �

Theorem 51.14. Let f ∈ M(K) be transcendental (respectively f ∈
Mu(d(0, R

−)), respectively f ∈ Mc(D)) and let wj ∈ Mf (K) (j =
1, . . . , q) (respectively wj ∈ Mf (d(a,R

−)), respectively wj ∈ Mf (D))
be q distinct small functions. Then,

qT (r, f) ≤ 3

q
∑

j=1

Z(r, f −wj) + o(T (r, f)),

(respectively

qT (r, f) ≤ 3

q
∑

j=1

Z(r, f −wj) + o(T (r, f)),

respectively

qTR(r, f) ≤ 3

q
∑

j=1

ZR(r, f − wj) + o(TR(r, f))).

Moreover, if f has finitely many poles in K (respectively in
d(0, R−), respectively in D), then

qT (r, f) ≤ 2

q
∑

j=1

Z(r, f −wj) + o(T (r, f)),

(respectively

qT (r, f) ≤ 2

q
∑

j=1

Z(r, f −wj) + o(T (r, f)),

respectively

qTR(r, f) ≤ 2

q
∑

j=1

ZR(r, f − wj) + o(TR(r, f))).
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Proof. Suppose first that f and wj (j = 1, . . . , q) belong to M(K)
or to M(d(0, R−)). By Theorem 51.10, for every triplet (i, j, k) such
that 1 ≤ i ≤ j ≤ k ≤ q, we can write

T (r, f) ≤ Z(r, f − wi) + Z(r, f − wj) + Z(r, f − wk) + o(T (r, f)).

The number of such inequalities is C3
q . Summing up, we obtain

(1) C3
qT (r, f) ≤

∑

(i,j,k), 1≤i≤j≤k≤q
Z(r, f − wi)

+Z(r, f − wj) + Z(r, f − wk) + o(T (r, f)).

In this sum, for each index i, the number of terms Z(r, f −wi) is
clearly C2

q−1. Consequently, by (1), we obtain

C3
qT (r, f) ≤ C2

q−1

q
∑

i=1

Z(r, f − wi) + o(T (r, f)),

and hence

q

3
T (r, f) ≤

q
∑

i=1

Z(r, f − wi) + o(T (r, f)).

Suppose now that f has finitely many poles. By Theorem 51.11,
for every pair (i, j) such that 1 ≤ i ≤ j ≤ q, we have

T (r, f) ≤ Z(r, f − wi) + Z(r, f − wj) + o(T (r, f)).

The number of such inequalities is then C2
q . Summing up we now

obtain

(2) C2
qT (r, f) ≤

∑

(i,j, 1≤i≤j≤q
Z(r, f −wi)+Z(r, f −wj)+ o(T (r, f)).

In this sum, for each index i, the number of terms Z(r, f −wi) is
clearly C1

q−1 = q − 1. Consequently, by (1), we obtain

C2
qT (r, f) ≤ (q − 1)

q
∑

i=1

Z(r, f − wi) + o(T (r, f)),

and hence

q

2
T (r, f) ≤

q
∑

i=1

Z(r, f − wi) + o(T (r, f)).
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Now, if f and wj (j = 1, . . . , q) belong to M(D), we can make
the same reasoning with TR instead of T and ZR instead of Z. �

Definition. A small function θ with respect to a function f ∈ M(K)
is said to be perfectly branched for f if all zeros of f − θ are multiple
except finitely many.

Theorem 51.15. Let f ∈ M(K) be transcendental and have finitely
many poles. Then f has at most one perfectly branched rational
function.

Proof. Suppose that f has two distinct perfectly branched rational
functions P and Q. Then, f −Q has two distinct perfectly branched
rational functions P − Q and 0. So, without loss of generality, we
can assume Q = 0. Now, let g = f

P . We can see that g satisfies all
hypotheses of Theorem 49.9 and has two perfectly branched values:
0 and 1. Consequently, g is not transcendental and therefore neither
is f , a contradiction. �

Concerning entire functions, it is useful to examine the link
between small functions and order of growth. Let us recall that when
f ∈ A(K), then T (r, f) = Log(|f |(r)).
Theorem 51.16. Let f, h ∈ A(K) be such that ρ(h) < ρ̃(f). Then
h is a small function with respect to f .

Proof. By hypothesis, there exists λ > 0 and R > 0 such that

Log(Log(|h|(r)))
Log(r)

+ 2λ < ρ̃(f) ∀r > R,

and hence there exists R′ > R such that

Log(Log(|h|(r))) + λLog(r) < Log(Log(|f |(r))) ∀r > R′,

therefore rλLog(|h|(r)) < Log(|f |(r)), which proves that

lim
r→+∞

Log(|h|(r))
Log(|f |(r)) = 0. �

Corollary 51.17. Let f, h ∈ A(K), with f regular and such that
ρ(h) < ρ(f). Then h is a small function with respect to f .
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Theorem 51.18. Let f, h ∈ A(K) be such that ρ(h) = ρ(f) and
σ(h) = 0 < σ̃(f). Then h is a small function with respect to f .

Proof. By hypothesis, we have lim
r→+∞

σ(h, r)

σ̃(f, r)
= 0, hence

lim
r→+∞

Log(|h|(r))
Log(|f |(r)) = 0,

therefore h is a small function with respect to f . �

Theorem 51.19. Let f ∈ A(K) and let h ∈ A(K) satisfy |f |(r) >
|h|(r) ∀r ≥ R. Then, ρ(f +h) = ρ(f) and σ(f +h) = σ(f). More-
over, ψ(f + h) = ψ(f).

Proof. By construction, we have ρ(f + h) = ρ(f). Then,

lim sup
r→∞

Log(|f + h|(r))
rρ(f+h)

= lim sup
r→∞

Log(|f |(r))
rρ(f)

= σ(f),

hence σ(f + h) = σ(f).
Now, by Corollary 22.8, the number of zeros of f +h in each disk

d(0, r) equals the number of zeros of f in d(0, r), for every r > R.
Consequently, since ρ(f + h) = ρ(f), we have ψ(f + h) = ψ(f). �

Corollary 51.20. Let f ∈ A(K) and let h ∈ A(K) be a small func-
tion with respect to f . Then, ρ(f + h) = ρ(f) and σ(f + h) = σ(f).
Moreover, ψ(f + h) = ψ(f).
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Chapter 52

Meromorphic Functions Sharing
Some Small Ones

Throughout this chapter, the field K is supposed to be of characte-
ristic 0.

Definition. Two functions f, g defined in a set E are said to share
a function h, ignoring multiplicity if f(x)−h(x) = 0 is equivalent to
g(x) − h(x) = 0.

This kind of problem was considered in [95].

Theorem 52.1. Let f, g ∈ M(K) be transcendental (respectively
f, g ∈ Mu(d(a,R

−)), respectively f, g ∈ Mc(D)), be distinct and
share q distinct small functions ignoring multiplicity. wj ∈ Mf (K)∩
Mg(K) (j = 1, . . . , q) (respectively wj ∈ Mf (d(a,R

−)) ∩ Mg

(d(a,R−)) (j = 1, . . . , q) (respectively wj ∈ Mf (D) ∩ Mg(D) (j =
1, . . . , q)), other than the constant ∞. Then,

q
∑

j=1

Z(r, f − wj) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g)).

Proof. Suppose that f and g belong to M(K), are distinct, and
share q distinct small functions I.M. wj ∈ Mf (K) ∩ Mg(K) (j =
1, . . . , q).

Let b be a zero of f − wi for a certain index i. Then it is also
a zero of g − wi. Suppose that b is counted several times in the
sum

∑q
j=1 Z(r, f −wj), which means that it is a zero of another

501
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function f − wh for a certain index h �= i. Then we have wi(b) =
wh(b) and hence b is a zero of the function wi−wh which belongs to

Mf (K). Now, put ˜Z(r, f − w1) = Z(r, f − w1), and for each j > 1,

let ˜Z(r, f − wj) be the counting function of zeros of f − wj in the
disk d(0, r−) ignoring multiplicity and avoiding the zeros already
counted as zeros of f − wh for some h < j. Consider now the sum
∑q

j=1
˜Z(r, f − wj). Since the functions wi − wj belong to Mf (K),

clearly, we have

q
∑

j=1

Z(r, f − wj) =

q
∑

j=1

˜Z(r, f − wj) = o(T (r, f)).

It is clear, from the assumption, that f(x) − wj(x) = 0 implies
g(x) − wj(x) = 0 and hence f(x)− g(x) = 0. Since f − g is not the
identically zero function, it follows that

q
∑

j=1

Z(r, f − wj) ≤ Z(r, f − g).

Consequently,

q
∑

j=1

Z(r, f − wj) ≤ Z(r, f − g) + o(T (r, f)) + o(T (r, g)).

Now, if f and g belong to M(d(0, R−)) or to M(D), the proof is
exactly the same. �

Theorem 52.2. Let f, g ∈ M(K) be transcendental (respectively
f, g ∈ Mu(d(a,R

−)), respectively f, g ∈ Mc(D)), be distinct,
have finitely many poles, and share three distinct small functions,
ignoring multiplicity. wj ∈ Mf (K) ∩ Mg(K) (j = 1, 2, 3) (respec-
tively wj ∈ Mf (d(a,R

−)) ∩ Mg(d(a,R
−)) (j = 1, 2, 3), respectively

wj ∈ Mf (D) ∩Mg(D) (j = 1, 2, 3)). Then, f = g.

Proof. We put V (r) = max(T (r, f), T (r, g)). Suppose that f and
g are distinct and share q small function I.M. wj (1 ≤ j ≤ q). By
Theorem 51.14, we have

qT (r, f) ≤ 3

q
∑

j=1

Z(r, f −wj) + o(T (r, f)).
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But thanks to Theorem 52.1, we can derive

qT (r, f) ≤ 3T (r, f − g) + o(T (r, f)),

and similarly

qT (r, g) ≤ 3T (r, f − g) + o(T (r, g)),

hence

(1) qV (r) ≤ 3T (r, f − g) + o(V (r)).

Suppose now that f and g have finitely many poles. By Theo-
rems 51.14, Relation (1) gives us

qV (r) ≤ 2V (r) + o(V (r)),

which is obviously absurd whenever q ≥ 3 and proves that f = g
when f and g belong to M(K) as well as when f and g belong to
Mu(d(0, R

−)) or to Mc(D), after replacing T by TR and Z by ZR.
�

By Theorem 51.16, Corollary 52.3 is easy:

Corollary 52.3. Let f, g ∈ A(K) be transcendental, distinct, and
share three distinct functions, ignoring multiplicity, ωj ∈ A(K), j =
1, 2, 3, such that max1≤j≤3 ρ(ωj) < min(ρ̃(f), ρ̃(g)). Then, f = g.

Corollary 52.4. Let f, g ∈ A(K) be transcendental, regular, dis-
tinct, and share three distinct functions, ignoring multiplicity, ωj ∈
A(K), j = 1, 2, 3, such that max1≤j≤3 ρ(ωj) < min(ρ(f), ρ(g)). Then,
f = g.

In the same way, by Theorem 51.18, Corollary 52.5 is easy:

Corollary 52.5. Let f, g ∈ A(K) be transcendental, clean, and
share three distinct functions, ignoring multiplicity, ωj ∈ A(K), j =
1, 2, 3, such that ρ(ωj) = ρ(f) = ρ(g), j = 1, 2, 3, and σ(ωj) = 0 <
min(σ(f), σ(g)). Then, f = g.

After this first result in [56] letting find that two meromorphic
functions sharing seven small functions are equal, Ta Thi Hoai An
and Nguyen Phuong obtained a much better estimation. We denote
by E the disk d(0, R−).
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Lemma 52.6 (Ta Thi Hoai An-Nguyen Phuong [5]). Let f, g
be distinct and belong to M(K) (respectively to Mu(E), respectively
to Mc(D)) sharing q distinct small functions ignoring multiplic-
ity: h1, . . . , hq with q ≥ 5. Then, for every subset {i1, i2, i3, i4} of
{1, . . . , q}, we have

∑

j∈{1,...,q}\{i1,...,i4}
Z(r, f − hj)+Z(r, g − hj)

≤ o(T ((r, f))+= o(T ((r, g))

(respectively

∑

j∈{1,...,q}\{i1,...,i4}
Z(r, f − hj) +Z(r, g − hj) ≤ o(T (r, f)) + o(T (r, g)),

respectively

∑

j∈{1,...,q}\{i1,...,i4}
ZR(r, f − hj)+ZR(r, g − hj)

≤ o(T (r, f))+ o(T (r, g))).

Proof. Let us first suppose f, g ∈ M(K), or f, g ∈ Mu(E).
Clearly, we only have to prove that

q
∑

j=5

Z(r, f − hj) ≤ o(T (r, f)) + o(T (r, g)).

Thus, we assume that

q
∑

j=5

Z(r, f − hj) �= o(T (r, f) + o(T (r, g)).

Given any meromorphic function w ∈ M(K) (respectively in
Mu(E)), we put

L(w) =
(w − h1)(h3 − h2)

(w − h2)(h3 − h4)

and F = L(f), G = L(g).
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Without loss of generality, we may assume that h1 = ∞, h2 = 0,
h3 = 1, and we put h = h4. Now, we set

B =
f ′(h′g − hg′)(f − g)

f(f − 1)(g − h)
− g′(h′f − hf ′)(f − g)

g(g − 1)(f − h)

and

Q = f ′(h′g − hg′)(f − h)(g − 1)− g′(h′f − hf ′)(g − h)(f − 1)

= h′ff ′g2 − h′f ′g − h(h − 1)ff ′g′ − hh′f ′g2 + hh′f ′g

−h′f2gg′ + h′fgg′ + h(h − 1)f ′gg′ + hh′f2g′ − hh′fg′.

Then,

B =
(f − g)Q

f(f − 1)g(g − 1)
.

Suppose first that B is identically zero. Then we have

(1)
f ′(h′g − hg′)(f − g)

f(f − 1)(g − h)
=
g′(h′f − hf ′)(f − g)

g(g − 1)(f − h)
.

If h is a constant, then f = g which contradicts our hypothesis.
Hence, h is not a constant, and then, by (1), we have

(f − 1)(g − h)

g − 1)(f − h)
− 1 =

f ′(h′g − hg′)
g′(h′f − hf ′)

− 1,

therefore

(f − g)(g − h)

(g − 1)(f − h)
=
h′(f ′ − g′)g − (f − g)g′

g′(h′f − hf ′)
,

and hence

(2)
f ′ − g′

f − g
=

(1− h)g′(h′f − hf ′)
h′g(g − 1)(f − h)

+
g′

g
.

Let us fix j ≥ 5, j ≤ q. By (1), there exists a common zero α ∈ K

(respectively α ∈ D) of f − hj and g − hj which is not a zero or a
pole of h, h′, hj − 1, hj − h. Then, α must be a pole of the left-hand
side of (2) but cannot be a pole of the right-hand side of (2). This is
a contradiction showing that B cannot be identically zero.
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Now, let us fix j ≥ 5 such that j ≤ q and suppose that β is a
common zero of f − hj and g − hj but is not a zero or a pole of
h, hj , hj − 1, hj − h. Then it is a zero of f − g and it is not a pole of

Q

f(f − 1)(f − h)g(g − 1)(g − h)
,

and hence it is a zero of B.
Now, since f and g share each hj ignoring multiplicity, we have

(3)

5
∑

j=1

Z(r, g − hj)

=
5
∑

j=1

Z(r, f − hj) ≤ Z(r,B) + o(T (r, f)) + o(T (r, g))

≤ T (r,B) + o(T (r, f)) + o(T (r, g)).

We estimate T (r,B)−N(r,B). By computation, B can be written
as

B =
f ′(h′g − hg′)

(f − 1)g(g − h)
−
(

f ′

f − 1
− f ′

f

)(

h′g − hg′

g − h

)

+
g′(h′f − hf ′)

(g − 1)f(f − h)
−
(

g′

g − 1
− g′

g

)(

h′f − hf ′

f − h

)

=

(

f ′

f − 1

)(

g′

g
− g′ − h′

g − h

)

−
(

f ′

f − 1
− f ′

f

)(

h′ − h(g′ − h′)
g − h

)

+

(

g′

g − 1

)(

f ′

f
− f ′ − h′

f − h

)

−
(

g′

g − 1
− g′

g

)(

h′ − h(f ′ − h′)
f − h

)

.

In this last relation, B appears as a sum of logarithmic derivative,
and hence, by Corollary 43.18, we can see that

(4) T (r,B)−N(r,B) ≤ 0.

Next, we estimate N(r,B). Clearly, the poles of B can only occur
at the zeros of f, g, f −1, g−1, f −h, g−h and at the poles of f, g, h.

Let A be the set of all zeros, 1-points, and poles of h. Then we
first estimate the counting function of poles of B when we are in A.
Recall that f and g share the constants 0, 1, and ∞.
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Let γ be a zero of h. Then we can check that B has no pole at γ.
Let γ be a 1-value of h. If B had a pole, then f − 1 would have a

zero of order s, g− 1 would have a zero of order t, f − g would have
a zero, and Q would have a zero of order s+ t, hence B would have
a zero, not a pole.

Now, let γ be a pole of h of order n.
If f(γ) = 1, then g(γ) = 1 because f and g share h3, hence B has

no pole at γ.
If f has a pole of order s at γ, then g also has a pole of order t

because f and g share h1. We can assume s ≥ t, then B has a pole of
order at most n+2, hence the counting function of poles of B when
γ is a pole of f , g, and h and hence is a pole of B of order n+ 2, is
bounded by thrice the counting function of the poles of h, and hence
is of the form o(T (r, f)) + o(T (r, g)).

Next, suppose that f(γ) �= 1,∞, hence g(γ) �= 1,∞. If f and g
have no zero at γ, it is clear that B has at most a pole of order
n, hence the counting function of poles of B when f(γ) �= 0, 1,∞
(hence g(γ) �= 0, 1,∞) is of the form o(T (r, f)) + o(T (r, g)). Finally,
if f(γ) = 0, then g(γ) = 0 because f and g share h2 and then we
can check that B may admit a pole at γ of order at most 2n + 2.
Consequently, the counting function of poles of B when γ lies in A
and is a pole of h is bounded by thrice the counting function of the
poles of h and hence is of the form o(T (r, f)) + o(T (r, g)).

Thus, the counting function of poles of B when γ lies in A is of
the form o(T (r, f)) + o(T (r, g)).

Consider now the poles of B when γ /∈ A.
Let γ /∈ A be a common pole of f and g of order s1 and t1,

respectively. Then, γ is a pole of Q of order at most 2s1 + 2t1 + 1.
Next, γ is a pole of f − g of order max(s1, t1). Hence, from the
definition of B, γ is a pole of the numerator of B of order at most
2s1 +2t1 +1+max(s1, t1), and on the other hand, it is a pole of the
denominator of B of order 3s1 + 3t1. But since

2s1+2t1+1+max(s1, t1)−3(s1+ t1) = 1+max(s1, t1)−s1− t1 ≤ 0,

it follows that γ is not a pole of B.
Let γ /∈ A be a common zero of f and g of order s2 and t2,

respectively. We can check that γ is a zero of Q of order at least
s2 + t2 + 1 and that γ is a zero of f − g of order at least min(s2, t2).
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On the other hand, we can check that the denominator of B has a
zero at γ of order at most s2 + t2. Consequently, B has no pole at γ.

Suppose now that γ /∈ A is a common zero of f − h and g − h.
Then, γ is a zero of f − g. On the other hand, γ is a pole of order 1

of f ′
f−h and g′

g−h . Consequently, by the definition of B, we can check
that γ is not a pole of B. Similarly, when γ is a common zero of f−1
and g − 1, γ is not a pole of B.

Suppose now that γ /∈ A is a pole of f but is not a pole of g and
is not a zero of g, g − 1, and g − h. Since f and g share h0, that
situation does not occur.

Suppose now that γ /∈ A is a zero of f but is not a pole of g and
is not a zero of g. Since f and g share h0, that situation does not
occur.

Suppose now that γ /∈ A is a zero of f − hi with i = 3, 4 but is
not a pole of g and is not a zero of g, g − 1 and g − h. Then γ is a
pole of B of order at most 1. Similarly, if γ is a zero of g − hi with
i = 3, 4 but is not a pole of f and is not a zero of f, f −1 and f −h.
Then γ is a pole of B of order at most 1. However, since f and g
share h3 and h4, such a situation does not occur.

Suppose now that γ /∈ A is a common zero of f −hi and g−hj for
some 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4 with i �= j and i �= 2, j �= 2. Then γ is
a pole of B of order at most 2. However, in such a situation, since f
and g share hi, then γ is a zero of hi−hj . But since hi and hj are small
with respect to f and g, the counting function of points γ that are
common zeros of f −hi and g− hj for some 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4
with i �= j and i �= 2, j �= 2 is bounded by o(T (r, f)) + o(T (r, g)).

Finally, suppose that γ /∈ A is a zero of f − hi and a pole of g for
some i = 2, 3, 4 or a zero of g−hi and a pole of f for some i = 2, 3, 4.
But since f and g share h2, h3, h4, such a situation is impossible.

In conclusion, we have

N(r,B) ≤ o(T (r, f)) + o(T (r, g)),

and therefore, by (3) and (4), that completes the proof of Lemma 52.6
when f, g ∈ M(K) or f, g ∈ Mu(E). Now, when f, g ∈ Mc(D),
the proof is similar. �

Corollary 52.7. Let f, g be distinct and belong to M(K) (respec-
tively to Mu(E), respectively to Mc(D)) sharing q distinct small
functions ignoring multiplicity: h1, . . . , hq (with q ≥ 5). Then, for
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every subset {i1, i2, i3, i4} of {1, . . . , q}, we have

Z(r, f − hj) + Z(r, g − hj) ≤ o(T ((r, f)) + o(T (r, g)) ∀j = 1, . . . , q

(respectively

Z(r, f − hj) + Z(r, g − hj) ≤ o(T (r, f)) + o(T (r, g)) ∀j = 1, . . . , q

respectively

ZR(r, f −hj)+ZR(r, g−hj) ≤ o(T (r, f))+ o(T (r, g)) ∀j = 1, . . . , q).

Theorem 52.8 (Ta Thi Hoai An-Nguyen Phuong [5]). Let f,
g ∈ M(K) be transcendental (respectively f, g ∈ Mu(E), respectively
f, g ∈ Mc(D)), be distinct, and share five distinct small meromor-
phic functions ignoring multiplicity, wj ∈ Mf (K) ∩ Mg(K) (j =
1, . . . , 5) (respectively wj ∈ Mf (D) ∩Mg(D) (j = 1, . . . , 5), respec-
tively wj ∈ Mf (E) ∩Mg(E) (j = 1, . . . , 5)). Then, f = g.

Proof. Suppose first that f, g ∈ M(K) or f, g ∈ Mu(E). Suppose
that f and g are not identic. Applying Corollary 52.7 with q = 5,
we have Z(r, f − hj) = o(T (r, f)) + o(T (r, g)) and Z(r, g − hj) =
o(T (r, f)) + o(T (r, g)) for every j ∈ {1, . . . , 5}. Therefore,

(1)

5
∑

j=1

Z(r, f − hj) + Z(r, g − hj) = o(Tf, r)) + o(T (r, g)).

Now, by Theorem 51.14, we have

5(T (r, f) + T (r, g))

≤ 3

5
∑

j=1

Z(r, f − hj) + Z(r, g − hj) + o(T (r, f)) + o(T (r, g)),

hence, by (1), 5(T (r, f)+T (r, g)) ≤ 2(o(T (r, f)) + o(T (r, g))), which
is absurd and proves that f = g.

Suppose now that f, g ∈ Mc(D). Replacing each symbol T (r, .)
by TR(r, .) and Z(r, .) by ZR(r, .), we can make the same reasoning
and conclude in the same way f = g. �
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We now show an improvement of Theorem 51.14 in the case when
q ≥ 5.

Notation. Given f ∈ M(K) (respectively let f ∈ Mu(E), respec-
tively f ∈ Mc(D)), we put M(r, f) = T (r, f)−N(r, f).

Lemma 52.9 (Ta Thi Hoai An-Nguyen Phuong). Let f ∈ M
(K) (respectively let f ∈ Mu(E), respectively let f ∈ Mc(D)) be non-
constant and let h1, . . . , h5 be distinct small functions with respect
to f . We have

2T (r, f) ≤
5
∑

i=1

Z(r, f − hi) + S(r, f).

Proof. We first suppose f ∈ M(K), or f ∈ Mu(E). Let g =
(f−h2)(h3−h1)
(f−h1)(h3−h2) . Then it is easily seen that

Z(r, g) = Z(r, f − h2) + o(T (r, f)),

N(r, g) = Z(r, f − h1) + o(T (r, f)),

Z(r, g − 1) = Z(r, f − h3) + o(T (r, f)).

Consequently, in order to prove Lemma 52.9, it is sufficient to
prove the following inequality:

(1) 2T (r, f) ≤ N(r, f) + Z(r, f) + Z(r, f − 1) + Z(r, f − h4)

+Z(r, f − h5) + o(T (r, f)),

where h1 = ∞, h2 = 0, h3 = 1, and h4 and h5 are two small
functions with respect to f different from 0, 1,∞, and h4 �= h5.

If one of the functions h4, h5 is a constant, then (1) is immediate
by Theorem 45.7. Consequently, now we can assume that both h4, h5
are non-constant small functions.

Let

H = det

⎛

⎜

⎝

ff ′ f ′ f(f − 1)

h4h
′
4 h′4 h4(h4 − 1)

h5h
′
5 h′5 h5(h5 − 1)

⎞

⎟

⎠
.
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By a simple computation, we get

(2) H = f(f − 1)h4(h4 − 1)h5(h5 − 1)

×
((

(h′4
h4

− h′5
h5

)(

f ′

f − 1
− h′5
h5 − 1

)

−
(

h′4
h4 − 1

− h′5
h5 − 1

)(

f ′

f
− h′5
h5

))

.

Suppose first that H is identically zero. Since f is not a constant and
since h4, h5 are not identically 0 or 1, it follows from the definition
of H that

(3)

(

h′4
h4

− h′5
h5

)

f ′

f − 1
−
(

h′4
h4 − 1

− h′5
h5 − 1

)

f ′

f

=

(

h′4
h4

− h′5
h5

)

fh′5
h5 − 1

−
(

h′4
h4 − 1

− h′5
h5 − 1

)

h′5
h5
.

We must now distinguish four cases.

Case 1.
h′4
h4

=
h′5
h5
. It follows from (3) that either

h′4
h4−1 =

h′5
h5−1 or

f ′
f =

h′5
h5
. If

h′4
h4−1 =

h′5
h5−1 , then h4 and h5 are constants,

which is excluded by hypothesis. Hence, f
′
f =

h′5
h5

and then
f is of the form c · h5, where c is a constant, which con-
tradicts our hypothesis: h5 is a small function with respect
to f .

Case 2.
h′4
h4−1 =

h′5
h5−1 . Similar to Case 1, we have a contradiction.

Case 3.
h′4
h4

− h′5
h5

= h4
h4−1 − h′5

h5−1 �= 0. It follows from (3) that

f ′

f − 1
− f ′

f
=

h′5
h5 − 1

− h′5
h5
,

which implies

f − 1

f
=
C(h5 − 1)

h5
,

where C is a constant. Thus, we obtain

1

f
= 1− C(h5 − 1)

h5
,
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and hence T
(

r, 1f
)

= o(T (r, f)), which is absurd because

T
(

r, 1f
)

= T (r, f) + o(T (r, f)).
Case 4.

h′4
h4

�= h′5
h5
,

h′4
h4 − 1

�= h′5
h5 − 1

, and
h′4
h4

−h
′
5

h5
�= h′4
h4 − 1

− h′5
h5 − 1

.

Then it follows from (3) that the zeros of f − 1 can only occur

when hj takes value 0 or 1, for j = 4, 5 or when
h′4
h4

− h′5
h5

has a zero.
In the same way, the zeros of f can only occur when hj takes value 0

or 1, for j = 4, 5 and when
h′4
h4−1 − h′5

h5−1 has a zero. Moreover, by (3),
we can see that the poles of f can only occur when hj takes value 1

or when hj has a pole, for j = 4, 5, or when
h′4
h4

− h′5
h5

− h′4
h4−1 +

h′5
h5−1

has a zero. Therefore, we have

(4) N(r, f) + Z(r, f) + Z(r, f − 1) = o(T (r, f)).

Applying the second main Theorem 45.7 to f, we can derive

T (r, f) ≤ Z(r, f) + Z(r, f − 1) +N(r, f)− log(r) = o(T (r, f)),

which is absurd and finishes proving that H �=0.
Now, given r > 0, we put

δ(r) = min(1, |h4|(r), |h5|(r), |h4 − 1|(r), |h5 − 1|(r), |h4 − h5|(r)).
Then we have

log+
(

1

δ(r)

)

≤ log+
(

max

(

1,
1

|h4|(r) ,
1

|h5|(r) ,
1

|h4 − 1|(r) ,

1

|h5 − 1|(r) ,
1

|h4 − h5|(r)
))

≤ log+
(

1

|h4|(r)
)

+ log+
(

1

|h5|(r)
)

+ log+
(

1

|h4 − 1|(r)
)

,

+ log+
(

1

|h5 − 1|(r)
)

+ log+
(

1

|h4 − h5|(r)
)

+ log(6).
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Then, by Theorem 43.2, we have

log+
(

1

δ(r)

)

≤M

(

r,
1

h4

)

+M

(

r,
1

h5

)

+M

(

r,
1

h4 − 1

)

+M

(

r,
1

h5 − 1

)

+M

(

r,
1

h4 − h5

)

+ log(6).

Consequently, we can see that

(5) log+
(

1

δ(r)

)

= o(T (r, f)).

First, we consider the case when |f − hj |(r) > δ(r)
2 for 2 ≤ j ≤ 5.

Then, we have

(6) M

(

r,
1

f

)

+M

(

r,
1

f − 1

)

+M

(

r,
1

f − h4

)

+M

(

r,
1

f − h5

)

≤ 5 log+
(

1
δ(r)

)

+O(1) = s(r, f).

Now, let i be an index such that 2 ≤ i ≤ 5 such that |f −hi|(r) ≤
δ(r)
2 . Then for every j �= i, with 2 ≤ j ≤ 5, we have

δ(r) ≤ |hi − hj |(r) ≤ |f − hi|(r) + |f − hj |(r) ≤ δ(r)

2
+ |f − hj |(r),

hence

δ(r)

2
≤ |f − hj |(r).

Therefore, for i �= j, we have

5
∑

j=2
j �=i

M

(

r,
1

f − hj

)

=

5
∑

j=2
j �=i

log+
(

1

|f − hj |(r)
)

≤ 3 log+
(

1

δ(r)

)

.

Combining (5) and the last inequality, we have

(7)
5
∑

j=2,
j �=i

M

(

r,
1

f − hj

)

= o(T (r, f)).
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On the other hand, for 2 ≤ i ≤ 5, we can write

ff ′ = (f − hi)(f
′ − h′i) + h′i(f − hi) + hi(f

′ − h′i) + hih
′
i

f ′ = (f ′ − h′i) + h′i,

f(f − 1) = f2 − f = (f − hi)
2 + (2hi − 1)(f − hi) + h2i − hi.

And now we put gi = (f − hi)(f
′ − h′i)+ h′i(f − hi) + hi(f

′ − h′i) and
li = (f − hi)

2 + (2hi − 1)(f − hi) and then, thanks to properties of
determinants, we obtain

(8) H = det

⎛

⎜

⎝

g′i f ′ − h′i li

h4h
′
4 h′4 h4(h4 − 1)

h5h
′
5 h′5 h5(h5 − 1)

⎞

⎟

⎠
.

Now, we have log+(δ(r)) ≤ log+(1 + |hi | (r)) ∀i = 2, . . . , 5
because it is obvious from the definition for i = 4, 5 and also for
i = 2 and i = 3 because h2 = 0 and h3 = 1. Consequently, for
every i = 2, . . . , 5, we have log+(δ(r)) ≤ log+(|hi|(r)) + log(2) =
M(r, hi) + log(2) = o(T (r, f)). Then, by (8) and using Lemma 3.5,
we obtain for every i = 2, . . . , 5:

log+
∣

∣

∣

∣

H

f − hi

∣

∣

∣

∣

≤ log+
(∣

∣

∣

∣

f ′ − h′i
f − hi

∣

∣

∣

∣

(r)

)

+ log+(|f − hi|(r))

+O
(

log+(|hi|(r) + log+(|h′i|(r)) + log+(|h4(r))

+ log+(|h′4|(r)) + log+(|h5|(r)) + log+(|h′5|(r))
)

≤ m

(

r,
f ′ − h′i
f − hi

)

+ log+(δ(r)) + o(T (r, f))

= o(T (r, f)).

Hence, for every i = 2, . . . , 5, we obtain

(9) m

(

1

f − hi

)

= log+
(

1

|f − hi|(r)
)

≤ log+
∣

∣

∣

∣

H

f − hi

∣

∣

∣

∣

(r) + log+
∣

∣

∣

∣

1

H

∣

∣

∣

∣

(r)

≤ m

(

r,
1

H

)

+ o(T (r, f)).
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Then, by (6), (7), (8), and (9), we can check that in all cases we
have
(10)

M

(

r,
1

f

)

+M

(

r,
1

f − 1

)

+M

(

r,
1

f − h4

)

+M

(

r,
1

f − h5

)

≤M

(

r,
1

H

)

+ o(T (r, f)).

Now, by Theorem 43.3, we can write

4T (r, f) =M

(

r,
1

f

)

+M

(

r,
1

f − 1

)

+M

(

r,
1

f − h4

)

+M

(

r,
1

f − h5

)

+N

(

r,
1

f

)

+N

(

r,
1

f − 1

)

+N

(

r,
1

f − h4

)

+N

(

r,
1

f − h5

)

+ o(T (r, f)),

hence by (10),

(11) 4T (r, f) ≤M

(

r,
1

H

)

+N

(

r,
1

f

)

+N

(

r,
1

f − 1

)

+N

(

r,
1

f − h4

)

+N

(

r,
1

f − h5

)

+ o(T (r, f))

≤ T (r,H)− Z(r,H) + Z(r, f) + Z(r, f − 1)

+Z(r, f − h4) + Z(r, f − h5) + o(T (r, f)).

Now, given a zero α of order s of any function f − hi (2 ≤ i ≤ 5),
then α is also a zero of H of order at least s − 1. Then, from (11),
we can see that we have

(12) 4T (r, f) ≤ Z(r, f) + Z(r, f − 1) + Z(r, f − h4) + Z(r, f − h5)

+T (r,H) + o(T (r, f)).

Next, by (2), we can check that

M(r,H) ≤ 2m(r, f) + o(T (r, f))

N(r,H) ≤ 2N(r, f) +N(r, f) + o(T (r, f)).
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Consequently,

(13) T (r,H) ≤ 2(T (r, f) +N(r, f) + o(T (r, f)).

Then, by (12) and (13), we obtain

2T (r, f) ≤ N(r, f) + Z(r, f) + Z(r, f − 1) + Z(r, f − h4)

+Z(r, f − h5) + o(T (r, f)),

which finishes proving (1) and hence ends the proof of Lemma 4.1
when f belongs to M(K) or Mu(E). Next, when f belongs to
Mc(D), we have a similar proof, writing corresponding counting
functions TR(r, .) instead of T (r, .), ZR(r, .) instead of Z(r, .), NR(r, .)
instead of N(r, .), etc. �

Theorem 52.10. Let f ∈ M(K) (respectively let f ∈ Mu(E),
respectively let f ∈ Mc(D)) be non-constant and let h1, . . . , hq(q ≥ 5)
be q distinct small functions with respect to f . We have

2q

5
T (r, f) ≤

q
∑

i=1

Z(r, f − hi) + o(T (r, f))

(respectively

2q

5
T (r, f) ≤

q
∑

s=1

Z(r, f − his) + o(T (r, f)),

respectively

2q

5
TR(r, f) ≤

q
∑

s=1

ZR(r, f − his) + o(T (r, f)).

Proof. By Lemma 52.9, for every subset {i1, . . . , i5} of {1, . . . , q}
such that 1 ≤ i1 < · · · < i5 ≤ q, we have

2T (r, f) ≤
q
∑

s=1

Z(r, f − his) + o(T (r, f))

(respectively

2T (r, f) ≤
q
∑

s=1

Z(r, f − his) + o(T (r, f)),
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respectively

2TR(r, f) ≤
q
∑

s=1

ZR(r, f − his) + o(T (r, f))).

The number of such inequalities is C5
q . Summing up over all sub-

sets {i1, . . . , i5} of {1, . . . , q}, we can get

2C5
qT (r, f)

≤
∑

{i1,...,i5}⊂{1,...,q}
1≤i1<···<i5≤q

(

Z(r, f − hi1) + Z(r, hi2) + Z(r, hi3)

+Z(r, hi4) + Z(r, hi5)
)

+ o(T (r, f))

(respectively

2C5
qT (r, f)

≤
∑

{i1,...,i5}⊂{1,...,q}
1≤i1<···<i5≤q

(

Z(r, f − hi1) + Z(r, hi2) + Z(r, hi3)

+Z(r, hi4) + Z(r, hi5)
)

+ o(T (r, f)),

respectively

2C5
qTR(r, f)

≤
∑

{i1,...,i5}⊂{1,...,q}
1≤i1<···<i5≤q

(

ZR(r, f − hi1) + ZR(r, hi2) + Z(R(r, hi3)

+ZR(r, hi4) + ZR(r, hi5)
)

+ o(T (r, f))).

In each one of the last inequalities, we can check that for each
index ik, the term Z(r, f−hik ) (respectively Z(r, f−hik), respectively
ZR(r, f − hik)) intervenes C4

q−1 times. Consequently, we can derive
that

2C5
qT (r, f) ≤ C4

q−1

q
∑

i=1

Z(r, f − hi) + o(T (r, f))
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(respectively

2C5
qT (r, f) ≤ C4

q−1

q
∑

i=1

Z(r, f − hi) + o(T (r, f)),

respectively

2C5
qTR(r, f) ≤ C4

q−1

q
∑

i=1

ZR(r, f − hi) + o(T (r, f))).

Consequently, it follows that

2q

5
T (r, f) ≤

q
∑

i=1

Z(r, f − hi) + o(T (r, f))

(respectively

2q

5
T (r, f) ≤

q
∑

i=1

Z(r, f − hi) + o(T (r, f)),

respectively

2q

5
TR(r, f) ≤

q
∑

i=1

ZR(r, f − hi) + o(T (r, f))).

This completes the proof of Theorem 52.10. �
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Chapter 53

The p-adic Hayman Conjecture

Throughout this chapter, the field K is supposed to be of characteris-
tic 0.

In the 1950s, Walter Hayman asked the question of whether, given
a meromorphic function in C, the function g′gn might admit a quasi-
exceptional value b �= 0 [66]. W. Hayman showed that g′gn has no
quasi-exceptional value, whenever n ≥ 3. Henceforth, the problem
was solved for n = 2 by E. Mues in 1979 [77] and next for n ≥ 1,
in 1995 by W. Bergweiler and A. Eremenko [8] and separately by
H. Chen and M. Fang [30]. See also [95]. The same problem is posed
on the field K, both in M(K) and in a field M(d(a,R−)) (a ∈ K,
R > 0). These are the studies in [52] and [80].

We still denote by D the set K\d(0, R−) and use the sets
A(D),Ac(D),M(D),Mc(D).

The following lemma is immediate.

Lemma 53.1. Let g ∈ M(K) (respectively let g ∈ M(d(a,R−)),
a ∈ K, R > 0, respectively let g ∈ M(D)), set f = 1

g , and let

n ∈ N∗. Then g′gn admits a quasi-exceptional value b ∈ K∗ if and
only if f ′ + bfn+2 has finitely many zeros that are not zeros of f .

Remark. We can also consider the same problem when n = −1
i.e. the question of whether f ′ + bf has infinitely many zeros. We
examine this in p-adic analysis. When n = 0, in C, the well-known
counter-example furnished by the function tan x shows that f ′ − f2

may have no zero. On the field K, we examine the cases n = −1 and
n = 0.

519
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Henceforth, we examine that problem by considering the set of
zeros of f ′ + bfm, with b �= 0. In the field K, two theorems are
specific to p-adic analysis. Both are based on the following lemma.

Lemma 53.2. Let f ∈ M(D) (respectively f ∈ M(d(0, R−)),
R> 0), suppose that f admits infinitely many zeros and sup-
pose that there exists a sequence of intervals [r′n, r′′n] such that
limn→+∞ r′n = +∞ (respectively limn→+∞ r′n = limn→+∞ r′′n = R)
and such that |(f ′+fm)|(r) = |fm|(r) ∀r ∈ ⋃n∈N[r

′
n, r

′′
n]. Let m ∈ N∗

be �= 2. Then f ′ + fm has infinitely many zeros that are not zeros
of f .

Proof. Let J =
⋃

n∈N[r
′
n, r

′′
n]. By Corollary 22.6, we have

ν+(f ′ + fm, log r) = ν+(fm, log r), ν−(f ′ + fm, log r)

= ν−(fm, log r) ∀r ∈ J.

Consequently, when f ∈ M(D), in each annulus Γ(0, R, r) with
r ∈ J , fm and f ′+ fm have the same difference between the number
of zeros and poles. And when f ∈ M(d(0, R−)), in each disk d(0, r)
with r ∈ J , fm and f ′ + fm have the same difference between the
number of zeros and poles.

Now, if m ≥ 3, the poles of f ′ + fm and fm are the same taking
multiplicity into account. And when m = 1, each pole of f is a
pole of f ′ + f with a strictly greater order. Consequently, when f ∈
M(D) for each r ∈ J , the number of zeros of f ′ + fm in when
Γ(0, R, r) is superior or equal to this of fm. And similarly, when
f ∈ M(d(0, R−)), the number of zeros of f ′ + fm in when d(0, r) is
superior or equal to this of fm.

Now, for each n ∈ N, let sn be the number of distinct zeros of
f in Γ(0, R, r) (respectively in d(0, r′′n)). Since f has infinitely many
zeros, the sequence sn is increasing and tends to +∞. On the other
hand, for each zero α of order u of f , either α is not a zero of f ′+fm
(when u = 1) or it is a zero of order u−1. Consequently, the number
of zeros of f ′ + fm in Γ(0, R, r′′n) (respectively in d(0, r′′n)) which are
not zeros of f is at least sn. Thus, we have proved that f ′ + fm has
infinitely many zeros that are not zeros of f . �

Remark. Lemma 53.2 particularly applies to functions f ∈ M(K).
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We prove together Theorems 53.3 and 53.4.

Theorem 53.3. Let f ∈ Mc(D) satisfy lim supr→∞ |f |(r) > 0 and
let b ∈ K∗. Let m ∈ N∗ be ≥ 3. Then f ′ + bfm has infinitely many
zeros that are not zeros of f .

Proof. Without loss of generality, we can assume b = 1. By
hypotheses, there exists a sequence of intervals [r′n, r′′n] such that
limn→+∞ r′n = +∞ and such that, putting J =

⋃

n∈N[r
′
n, r

′′
n], we

have lim inf r→∞,
r∈J

|f |(r) > 0.

We prove that there exists t > 0 such that |f ′ + fm|(r) =

|fm|(r) ∀r ∈ J ∩ [t,+∞[. By Theorem 37.10, we have |f ′|(r) ≤ |f |(r)
r .

Thus, when r ∈ J is big enough, we have r(|f |(r))m−1 > 1,
hence (|f |(r))m > |f ′|(r). Thus, there exists t ≥ s such that
(|f |(r))m > |f ′|(r) ∀r ∈ J ∩ [t,+∞[. Let J ′ = J ∩ [t,+∞[. So we
have |f ′ + fm|(r) = |fm|(r) ∀r ∈ J ′.

We can now conclude. For each n ∈ N, let qn be the number of
zeros of f in Γ(0, R, r′′n). Suppose the sequence (qn)n∈N is bounded.
Then, f has finitely many zeros, hence it is of the form P

h with
P ∈ K[x] and h ∈ A(E). Consequently, we have limr→+∞ |f |(r) = 0,
a contradiction to the hypothesis. Therefore, the sequence (qn)n∈N
which is increasing by definition, tends to +∞. Now, we may apply
Lemma 53.2 showing that f ′+ fm has infinitely many zeros that are
not zeros of f . �

We have a similar version for functions inside a disk d(a,R−).

Theorem 53.4. Let f ∈ Mu(d(a,R
−)) satisfy lim supr→R |f |(r) =

+∞ and let b ∈ K∗. Let m ∈ N∗ be ≥ 3. Then f ′+ bfm has infinitely
many zeros that are not zeros of f .

Proof. Without loss of generality, we can assume b = 1. By
hypotheses, there exists a sequence of intervals [r′n, r′′n] such that
limn→+∞ r′n = limn→+∞ r′′n = R and such that, putting J =

⋃

n∈N
[r′n, r′′n], we have lim sup r→∞,

r∈J
|f |(r) +∞. Thus, we have

|f ′|(r) ≤ |f |(r)
r ≤ |f |(r)

R . Now, when r is close enough to R with r ∈ J ,
we have r(|f |(r))m− 1 > 1, hence (|f |(r))m > |f ′|(r). Thus, there
exists t > 0 such that (|f |(r))m > |f ′|(r) ∀r ∈ [t,+∞[∩J . We can set
J ′ = J ∩ [t, R[ and then we have |f ′ + fm|(r) = |fm|(r) ∀r ∈ J ′.

We can now conclude in Theorem 53.4 as in Theorem 53.3. For
each n ∈ N, let qn be the number of zeros of f in d(0, r′′n). Suppose the
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sequence (qn)n∈N is bounded. Then, f has finitely many zeros, hence
it is of the form P

h with P ∈ K[x] and h ∈ A(d(0, R−)). Consequently,
we have lim supr→+∞ |f |(r) <∞, a contradiction to the hypothesis.
Therefore, the sequence (qn)n∈N which is increasing by definition,
tends to +∞. Now, we may apply Lemma 53.2 showing that f ′+ fm
has infinitely many zeros that are not zeros of f . �

In the case m = 1, we can have a better conclusion in M(K).

Theorem 53.5. Let f ∈ M(K)\K(x). For each b ∈ K∗, f ′ + bf has
infinitely many zeros that are not zeros of f .

Proof. Without loss of generality, we can assume again b = 1. By
Theorem 37.10, we have |f ′|(r) < |f |(r) when r is big enough, and
hence |f ′ + f |(r) = |f |(r) in an interval I = [s,+∞[. Suppose first
that f has infinitely many zeros. We can then apply Lemma 53.2 and
get the conclusion.

Suppose now that f has finitely many zeros. Then f has infinitely
many poles cn of respective order tn. Since K has characteristic zero,
f ′ admits each cn as a pole of order tn + 1 and similarly, f ′ + f also
admits each cn as a pole of order tn+1. Thus, we have N(r, f ′+f) =
N(r, f) +N(r, f). But since |f ′ + f |(r) = |f |(r) holds in I, we have
ν(f ′+f, log r) = ν(f, log r) ∀r ∈ I, and hence Z(r, f ′+f)−N(r, f ′+
f) = Z(r, f)−N(r, f), therefore Z(r, f ′ + f)− (N(r, f) +N(r, f)) =
Z(r, f) −N(r, f), and hence Z(r, f ′ + f) = Z(r, f) +N(r, f). Since
we have supposed that f has finitely many zeros and since f has
infinitely many poles, f ′ + f has infinitely many zeros and all but
finitely many are not zeros of f . �

Concerning functions f ′ + bf2, we can obtain a first conclusion
when f is analytic:

Theorem 53.6. Let f ∈ Ac(D) have infinitely many zeros in D
(respectively let a ∈ K, let R ∈]0,+∞[, and let f ∈ Au(d(a,R

−))).
For each b ∈ K∗, f ′+bf2 has infinitely many zeros that are not zeros
of f .

Proof. Without loss of generality, we can assume b = 1 and a = 0.
Clearly, limr→+∞ |f |(r) = +∞ (respectively limr→R |f |(r) = +∞),
hence when r is big enough, in ]0,+∞[ (respectively in ]0, R[), we
have |f ′ + f2|(r) = |f2|(r), therefore, by Corollary 22.6, f2 and f ′ +
f2 have the same number of zeros in C(0, r) (taking multiplicity
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into account). Let α ∈ C(0, r) be a zero of f of order q. When r is
big enough, it is a zero of order 2q for f2 and it is a zero of order
q−1 for f ′+f2. Consequently, by Corollary 22.6, f ′+f2 has at least
q + 1 zero in C(0, r) that are not zeros of f (taking multiplicity into
account). This is true for every such zeros of f and hence f ′+ f2 has
infinitely many zeros that are not zeros of f . �

Corollary 53.7. Let m ∈ N∗ be ≥ 1, and let f ∈ A(K)\K(x). For
each b ∈ K∗, f ′ + bfm has infinitely many zeros that are not zeros
of f .

Corollary 53.8. Let m ∈ N be ≥ 2, let a ∈ K, let R ∈]0,+∞[, and
let f ∈ Au(d(a,R

−)) (respectively let f ∈ A(D) have infinitely many
zeros in D). For each b ∈ K∗, f ′ + bfm has infinitely many zeros in
d(a,R−) (respectively in D) that are not zeros of f .

Proposition 53.9. Let f ∈ Mc(D) (respectively let a ∈ K and R ∈
R∗
+ and let f ∈ Mu(d(a,R

−))) and let m ∈ N. If m ≥ 5, then for
each b ∈ K∗, f ′ + bfm has infinitely many zeros that are not zeros
of f . If m = 4, if f ∈ M(K)\K(x), and if f admits at least s multiple
zeros and at least t multiple poles, then f ′ + bf4 admits a number of
zeros that are not zeros of f (taken account of multiplicity) which is
strictly superior to s+t

14 .

Proof. For convenience, we denote Z(r, φ) instead of ZR(r, φ) and
N(r, φ) instead of NR(r, φ), when φ ∈ M(D).

By Corollary 22.2, the zeros of f ′ + bfm in K are the same as in
a spherically complete algebraically closed extension ̂K of K. So, for
simplicity, we can suppose that the field K is spherically complete
without loss of generality. We can also suppose that b = 1. Then if
f ∈ Mc(D), we can obviously write f = h

l with h, l ∈ A(D), having
no common zeros, and if f ∈ M(d(a,R−)), since K is spherically
complete, we can also write f = h

l with h, l ∈ A(d(a,R−)), having
no common zeros again.

Let g = 1
f and let n = m − 2. So, by Lemma 53.1, the problem

is reduced to show that g′gn − 1 has infinitely many zeros. Suppose
that g′gn− 1 has finitely many zeros in D (respectively in d(0, R−)).
Then, g′gn − 1 = (l′h−h′l)ln−hn+2

hn+2 , and since h, l have no common
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zeros, this is of the form P
hn+2 , where P is a polynomial of degree q.

Now, set F = (l′h− h′l)ln. Applying Corollary 51.12 to F, we have

(1) T (r, F ) = Z(r, F ) + O(1) ≤ Z(r, F ) + Z(r, F − P ) +
7T (r, P )+O(1).

By (1), we can derive
Z(r, l′h − h′l) + nZ(r, l) ≤ Z(r, l′h − h′l) + Z(r, l) + Z(r, F −P ) +
7T (r, P ) + O(1). Actually, Z(r, F − P ) = Z(r, h), hence we
have nZ(r, l) ≤ Z(r, l) + Z(r, h) + 7T (r, P ) + O(1), and hence
(n − 1)Z(r, l) ≤ Z(r, h) + 7T (r, P ) + O(1). But since T (r, P ) =
q log r +O(1), we have

(2) (n − 1)Z(r, l) ≤ Z(r, h) + 7q log r +O(1).

Consider the hypothesis f ∈ Mc(D). By Theorem 53.3, if
lim infr→+∞ |f |(r) > 0 i.e. if lim infr→+∞Z(r, f)−N(r, f) > −∞,
the claim is proved. Consequently, if the claim is not true, we can
assume lim infr→+∞ Z(r, f)−N(r, f) = −∞ i.e.

(3) lim inf
r→+∞ Z(r, l)− Z(r, h) = +∞.

Since f ∈ Mc(D), by (3) we notice that l ∈ Ac(D), Consequently,
(2) is impossible whenever n ≥ 3, i.e. m ≥ 5.

Consider now the hypothesis f ∈ Mud(0, R
−)). We have the

same reasonings with limits to R− instead of +∞ and h, l ∈
A(d(0, R−)) and we find again relations (2) and (3) with R− instead
of +∞. Then, by Theorem 53.4, if lim supr→R− |f |(r) = +∞, i.e.
if lim supr→R− Z(r, f)−N(r, f) = +∞, the claim is proved. So, we
assume that lim supr→R− Z(r, f)−N(r, f) < +∞. But then (2) is
impossible, whenever n ≥ 3 i.e. m ≥ 5, which ends the proof when
f ∈ Mu(d(0, R

−)).
Now, suppose m = 4 i.e n = 2 and more precisely, suppose

Z(r, l) ≤ Z(r, l))− s log(r)
2 and Z(r, h) ≤ Z(r, h) − t log(r)

2 , hence

(4) (n − 1)Z(r, l) ≤ Z(r, h) +

(

7q − s+ t

2

)

log r +O(1).

Then Relation (3) implies 7q − s+t
2 > 0, and hence f ′fn admits a

number of zeros strictly superior to s+t
14 which ends the proof. �
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Corollary 53.10. Let a ∈ K, R > 0, and let f ∈ Mu(d(a,R
−)).

For every n ∈ N, n ≥ 3, and for every b ∈ K∗, f ′fn− b has infinitely
many zeros.

Corollary 53.11. Let f ∈ M(K)\K(x). Let b ∈ K∗. Then if f has
infinitely many multiple zeros or poles, then f ′ + bf4 has infinitely
many zeros that are not zeros of f .

We now thoroughly examine the situation whenm = 4, i.e. n = 2,
as made in [52]. This requires several basic lemmas.

Lemma 53.12. Let f ∈ M(K) be transcendental and such that f ′

has finitely many multiple zeros. Then f ′′f
(f ′)2 has no quasi-exceptional

value.

Proof. Let g = f
f ′ . A pole of g is a zero of f ′, hence by hypothesis,

g has finitely many multiple poles. Consequently, by Theorem 50.8,
g′ has no quasi-exceptional value. And hence neither has 1− g′. But
g′ = (f ′)2−f ′′f

(f ′)2 = 1− f ′′f
(f ′)2 . Therefore,

f ′′f
(f ′)2 has no quasi-exceptional

value. �

Lemma 53.13. Let f ∈ M(K) be transcendental and have finitely
many multiple zeros. Then f ′′f + 2(f ′)2 has infinitely many zeros
that are not zeros of f .

Proof. Suppose first that f ′ has infinitely many multiple zeros.
Since f has finitely many multiple zeros, the zeros of f ′ are not zeros
of f except at most finitely many. Hence, f ′ has infinitely many
multiple zeros that are not zeros of f . And then, they are zeros of
f ′′, hence of f ′′f + 2(f ′)2, which proves the statement.

So, we are now led to assume that f ′ has finitely many multiple

zeros. By Lemma 53.12, f ′′f+2(f ′)2
(f ′)2 has infinitely many zeros. Let

c ∈ K be a pole of order q of f . Without loss of generality, we can
suppose c = 0. The beginning of the Laurent development of f at

0 is of the form
a−q

xq + ϕ(x)
xq−1 whereas ϕ ∈ M(K) has no pole at 0.

Consequently, f
′′f+2(f ′)2
(f ′)2 is of the form

(a−q)2(3q2 + q) + xφ(x)

(a−q)2(q2) + xθ(x)
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whereas φ, θ ∈ M(K) have no pole at 0. So, the function f ′′f+2(f ′)2
(f ′)2

has no zero at 0. Therefore, each zero of f
′′f+2(f ′)2
(f ′)2 is a zero of f ′′f +

2(f ′)2, and hence f ′′f + 2(f ′)2 has infinitely many zeros.
Now, let us show that the zeros of f ′′f + 2(f ′)2 are not zeros of

f , except maybe finitely many. Let c be a zero of f ′′f + 2(f ′)2 and
suppose that c is a zero of f . Then, it is a zero of f ′, and hence it is a
multiple zero of f . But by hypotheses, f has finitely many multiple
zeros, hence the zeros of f ′′f + 2(f ′)2 are not zeros of f , except at
most finitely many. That finishes proving the claim. �

Lemma 53.14. Let f ∈ M(K) be transcendental and let b ∈ K∗ be
such that f2f ′− b has finitely many zeros. Then, N(r, f) ≤ Z(r, f)+
O(1).

Proof. Let F = f2f ′. Since F −b is transcendental and has finitely

many zeros, it is of the form P (x)
h(x) with h ∈ A(K)\K[x]. Conse-

quently, |F |(r) is a constant when r is big enough, and therefore,
by Theorem 43.2, we have Z(r, F ) = N(r, F ) + O(1) when r is big
enough. Now, Z(r, F ) = 2Z(r, f) + Z(r, f ′) and, by Theorem 43.13,
Z(r, f ′) ≤ Z(r, f) + N(r, f) − log r + O(1). On the other hand, by
Theorem 43.13 again, we have N(r, F ) = 3N(r, f) +N(r, f). Conse-
quently, 3N(r, f)+N (r, f) ≤ 3Z(r, f)+N (r, f)− log r+O(1), which
proves the claim. �

We can now state the solution of the Hayman conjecture in a
p-adic field. Theorem 53.15 was published in [52].

Theorem 53.15. Let f ∈ M(K)\K(x). Then for each b ∈ K∗,
f ′f2 − b has infinitely many zeros.

Proof. Let b ∈ K∗ and suppose that the claim is wrong, i.e. f2f ′−b
has k zeros, taking multiplicity into account. By Proposition 53.9,
we may assume that f has finitely many multiple zeros and finitely
multiple poles. Set F = f2f ′. Then, F ′ = f(f ′′f + 2(f ′)2). By
Lemma 53.13, f ′′f + 2(f ′)2 has infinitely many zeros that are not
zeros of f . Consequently, F ′ admits for zeros: the zeros of f and the
zeros of f ′′f + 2(f ′)2. And by Lemma 53.13, there exists a sequence
of zeros of f ′′f + 2(f ′)2 that are not zeros of f .

Let S = {0, b} and let ZS0 (r, F
′) be the counting function of

zeros of F ′ when F (x) is different from 0 and b. Since F − b has
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finitely many zeros, the zeros c of F ′ which are not zeros of f cannot
satisfy F (c) = b except at most finitely many. Consequently, there
are infinitely many zeros of F ′ counted by the counting function
ZS0 (r, F

′), and hence for every fixed integer q ∈ N, we have

(1) ZS0 (r, F
′) ≥ q log r +O(1).

Let us apply Theorem 45.7 to F . We have

(2) T (r, F ) ≤ Z(r, F ) + Z(r, F − b) +N(r, F ) − ZS0 (r, F
′)

− log(r) +O(1).

Now, we have

(3) Z(r, F ) ≤ Z(r, f) + Z(r, f ′),

(4) N(r, F ) = N(r, f),

and since the number of zeros of F − b is k, taking multiplicity into
account, we have

(5) Z(r, F − b) ≤ k log r +O(1).

Consequently, by (2), (3), (4), and (5), we obtain

(6) T (r, F ) ≤ Z(r, f) + Z(r, f ′) +N(r, f)− ZS0 (r, F
′)

+ (k − 1) log r +O(1).

On the other hand, by construction, T (r, F ) ≥ Z(r, F ) = 2Z(r, f) +
Z(r, f ′), hence by (6), we obtain

(7) Z(r, f) ≤ N(r, f)− ZS0 (r, F
′) + (k − 1) log r +O(1).

Now, by Lemma 53.14, we have N(r, f) ≤ Z(r, f) + O(1), hence by
(7), we obtain 0 ≤ (k−1) log r−ZS0 (r, F ′)+O(1), and hence, by (1),
fixing q > k − 1 we can derive 0 ≤ (k − 1) log r − q log r + O(1), a
contradiction. That finishes the proof of Theorem 53.15. �
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By Lemma 53.1 and Theorems 53.9 and 53.15, we can now state
the general result on the p-adic Hayman conjecture:

Corollary 53.16 (52). Let f ∈ M(K) be transcendental and let
b ∈ K∗. Then for every n ≥ 2, f ′fn − b has infinitely many zeros.
For every m ≥ 4, f ′+bf4 has infinitely many zeros that are not zeros
of f .

Concerning the case m = 3 i.e. n = 1 which remains unsolved,
thanks to Theorem 50.11, Corollary 53.16 has an immediate appli-
cation to the conjecture with additional hypotheses.

Corollary 53.17. Let f ∈ M(K). Suppose that there exists c, q ∈
]0,+∞[ such that N(r, f) ≤ crq ∀r ∈ [1,+∞[. If f ′fn− b has finitely
many zeros for some b ∈ K∗, with n ∈ N, then f ∈ K(x).

Proof. Suppose f is transcendental. By hypothesis, fn+1 satisfies
Z(r, 1

fn+1 ) = ξ(r, fn+1) ≤ c(n + 1)rq ∀r ∈ [1,+∞[, hence by Corol-

lary 53.16 and Theorem 50.11, f ′fn has no quasi-exceptional value
different from 0. �

Corollary 53.17 may be written in another way:

Corollary 53.18. Let f ∈ M(K)\K(x). Suppose that there exists
c, q ∈ ]0,+∞[ such that Z(r, f) ≤ crq ∀r ∈ [1,+∞[. Then for all
m ∈ N, m ≥ 3, and for all b ∈ K, f ′ − bfm admits infinitely many
zeros that are not zeros of f .

Proof. We set g = 1
f . Then by Corollary 53.17, g′gm−2 has no

quasi-exceptional value. Consequently, given b ∈ K∗, g′gm−2 + b has
infinitely many zeros, and hence, f ′ − bfm has infinitely many zeros
that are not zeros of f . Next, if b = 0, by Theorem 50.11, f ′ has
infinitely many zeros. �

Consider now the case m = 3, i.e. n = 1.

Theorem 53.19. Let f ∈ M(K). Suppose that there exists c, q ∈
]0,+∞[ such that s(r, f) ≤ crq ∀r ∈ [1,+∞[. Then, for all b ∈ K,
f ′
f2 − b has infinitely many zeros.

Proof. Set g = 1
f again. Since the poles of g are the zeros of f ,

we have t(r, g) ≤ crq. Consequently, by Corollary 50.12, g′ has no
quasi-exceptional value. �
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Remark. Using Theorem 53.19 to study the zeros of f ′ − bf2 that
are not zeros of f is not so immediate, as we see in the following
because of residues of f at poles of order 1. Of course, if 1

f is an

affine function, f ′ + f2 has no zeros, except if it is identically zero.
And if it is not identically zero, the residue at the pole is not 1 in
the general case.

Lemma 53.20. Let f = h
l ∈ M(K) with h, l ∈ A(K) having no

common zero, let b ∈ K∗, and let a ∈ K be a zero of h′l − hl′ + bh2

that is not a zero of f ′ + bf2. Then a is a pole of order 1 of f and
res(f, a) = 1

b .

Proof. Clearly, if l(a) �= 0, a is a zero of f ′+ bf2. Hence, a zero a
of h′l−hl′+bh2 that is not a zero of f ′+bf2 is a pole of f . Now, when
l(a) = 0, we have h(a) �= 0, hence l′(a) = bh(a) �= 0 and therefore a

is a pole of order 1 of f such that h(a)
l′(a) =

1
b . But since a is a pole of

order 1, we have res(f, a) = h(a)
l′(a) , which ends the proof. �

Theorem 53.21 is not a result specific to p-adic analysis but it is
useful in Theorem 53.23.

Theorem 53.21. Let f ∈ M(K) (respectively let a ∈ K, and let
f ∈ M(d(a,R−))), let b ∈ K∗ and let α ∈ K (respectively let α ∈
d(a,R−)) be a point that is not a zero of f and such that the residue
of f at α is different from 1

b . Then α is a zero of f ′+ bf2 if and only

if it is a zero of f ′
f2 + b. Moreover, if it is a zero of both functions, it

has the same multiplicity with both.

Proof. Suppose first α is a zero of f ′ + bf2. If α is not a pole of f ,

of course it is a zero of f ′
f2

+ b with same multiplicity. Suppose now

that α is a pole of f : since it is not a pole of f ′ + bf2, it must be a
pole of order 1 of f . Without loss of generality, we may assume that
α = 0 (respectively a = α = 0). Consider the Laurent series of f
at 0: f(x) = a−1

x + a0 + a1x+ x2φ(x) with φ ∈ M(K) (respectively
φ ∈ M(d(0, R−)) and φ(0) �= ∞. Then f ′ + bf2 is of the form

f ′(x) + bf(x)2 =
a−1(−1 + ba−1)

x2
+

2ba0a1
x

+ a1 + b(a20 + 2a1a−1)

+xη(x)
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with η ∈ M(K) (respectively η ∈ M(d(0, R−)) and η(0) �= ∞, and
hence, we have a−1(−1 + ba−1) = 0, a0a−1 = 0, a20 + 2a1a−1 = 0.
Since by hypothesis res(f, α) �= −1

b , we have (1 + ba−1) �= 0, hence
a−1 = 0, a contradiction. Consequently, every zero of f ′ + bf2 that

is not a zero of f is a zero of f ′
f2

+ b with the same multiplicity.

Conversely, suppose now that α is a zero of f ′
f2 + b. If α is not a

pole of f , it is a zero of f ′+ bf2, with the same multiplicity, because
by hypothesis it is not a zero of f . Now suppose that α is a zero of
f ′
f2

+ b and is a pole of f . Clearly, it is a pole of order 1, and again,

we may assume that α = 0.
Consider again the Laurent series of f at 0: f(x) =

a−1

x + a0 + a1x+ x2φ(x) with φ ∈ M(K) and φ(0) �= ∞. Then,

f ′

f2
=

−a−1

x2 + a1 + xθ(x)
(a−1)2

x2 + 2a0a1
x + a20 + 2a1a−1 + xη(x)

where both θ, η ∈ M(K) have no pole at 0. Clearly, f ′
f2

is analytic

at 0 and its value is −1
a−1

. But since 0 is a zero of f ′
f2

+ b, we have

a−1 =
1
b , what is excluded by hypothesis. Thus, we have proved that

every zero of f ′
f2 + b is a zero of f ′+ bf2 (that is not a zero of f) with

the same multiplicity, and this ends the proof of Theorem 53.21.
�

Theorem 53.22. Let b ∈ K∗ and let f ∈ M(K) have finitely many
zeros and finitely many residues at its simple poles equal to 1

b and be
such that f ′ + bf2 has finitely many zeros. Then f belongs to K(x).

Proof. Let f = P
l with P ∈ K[x], l ∈ A(K) having no common zero

with P . Then, f ′ + bf2 = P ′l−l′P+bP 2

l2
. By hypothesis, this function

has finitely many zeros. Moreover, if a is a zero of P ′l − l′P + bP 2

but is not a zero of f ′ + bf2, then by Lemma 53.20 it is a pole of
order 1 of f such that res(f, a) = 1

b . Consequently, P
′l−l′P + bP 2 has

finitely many zeros, and hence, we can write P ′l−l′P+bP 2

l2 = Q
l2 with

Q ∈ K[x], hence P ′l− l′P = −bP 2 +Q. But then, by Theorem 50.5,
l is a polynomial, which ends the proof. �
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Remark. If f(x) = 1
x , the function f ′ + bf2 has no zero whenever

b �= 1.

Theorem 53.23. Let f ∈ M(K) be transcendental and have finitely

many zeros of order ≥ 2 and let b ∈ K. Then f ′
f2 + b has infinitely

many zeros. Moreover, if b �= 0, every zero α of f ′
f2 + b that is not a

zero of f ′ + bf2 is a pole of f of order 1 such that the residue of f
at α is equal to 1

b .

Proof. Let g = f ′
f2 + b. Since all zeros of f are of order 1 except

maybe finitely many, g has finitely many poles of order ≥ 3, hence a
primitive G of g has finitely many poles of order ≥ 2. Consequently,
by Theorem 50.8, g has infinitely many zeros.

Now, suppose b �= 0. Let α be a zero of g. If α is not a pole of f ,
it is a zero of f ′ + bf2 and we can see that it is not a zero of f .

Finally, suppose that α is a pole of f . Then it must be a pole of
order 1, and then, by Lemma 53.20, the residue of f at α is 1

b . �

Corollary 53.24. Let f ∈ M(K)\K(x) have finitely many zeros of
order ≥ 2 and finitely many poles of order 1 and let b ∈ K∗. Then
f ′ + bf2 has infinitely many zeros that are not zeros of f .
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Chapter 54

Composition of Meromorphic
Functions

Throughout this chapter, the field K is supposed to be of charac-
teristic 0.

In order to look for meromorphic functions of uniqueness in the
following chapter, here we first examine the composition of mero-
morphic functions which, in the general case, is not a meromorphic
function.

Throughout this chapter, E is an algebraically closed field of char-
acteristic 0 without any assumption on the existence of an absolute
value. The field K is supposed to have characteristic zero.

In each main claim, instead of assuming that the equality
h(f(x)) = h(g(x)) holds in the whole set of definition, thanks to
properties of analytic sets, we check that it is sufficient to have the
equality on a bounded sequence having no cluster point at the poles
of f and g. For that, we use properties of analytic elements on infra-
connected subsets of K.

In the field K (as in C), the composition of two meromorphic
functions h ◦ f is not a meromorphic function, in the general case: a
pole of f is currently narrowed by poles of h◦f coming from the poles
of h. This is why we first have to study general and basic properties
of such functions in the ultrametric context.

Remark and definition. Consider a Laurent series
∑+∞

n=−∞
an(x− α)n converging for 0 < |x− α| < r.

533
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If the Laurent series is a power series, it then defines an analytic
function f(x) in the disk d(α, r−). The point α is called a regular
point for f . Else, α is called a singular point for f .

If the Laurent series is of the form
∑∞

n=−q an(x−α)n with a−q �= 0,

then it defines a meromorphic function in d(α, r−) and α is a pole of
order q of that function.

If α is a singular point but is not a pole, it is called a point of
high singularity for f . This is the case if and only if infinitely many
terms an with n < 0 are not zero.

Notation. Let h ∈ M(K) (respectively h ∈ M(d(a,R−))). We
denote by P(h) the set of poles of h and by C(h) the set of zeros of h.
Let f ∈ M(K) (respectively let f ∈ M(d(a, r−))). We set T (f, h) =
{x ∈ K | f(x) ∈ P(h)} (respectively T (f, h) = {x ∈ d(a,R−) | f(x) ∈
P(h)}) and we denote by S(f, h) the set P(f) ∪ T (f, h).

Proposition 54.1 is classical in C as in the field K:

Proposition 54.1. Let h ∈ M(K) and let f ∈ M(K) (respectively
let f ∈ M(d(a,R−))). Then K\(S(f, h)) is an open subset of K

dense in K (respectively d(a,R−)\(S(f, h)) is an open subset of
d(a,R−) dense in d(a,R−)). For each α ∈ K\P(f) (respectively
α ∈ d(a,R−)\P(f)), h ◦ f(x) is equal to a Laurent series in x − α
in any set of the form d(α, r)\{α} included in K\P(α) (respectively
included in d(a,R−)\(P(f)). If α /∈ T (f, h), the Laurent series in
x−α of h◦f has no terms of negative index. If α ∈ T (f, h), then the
Laurent series of h ◦ f in x− α has finitely many terms of negative
indices (i.e. h ◦ f is meromorphic in a disk of K of center α and has
a pole at α).

Definition. Let h ∈ M(K) and let f ∈ M(K) (respectively let f ∈
M(d(a,R−))). Let α ∈ K\P(f) (respectively α ∈ d(a,R−)\P(f)).
We call Laurent series of h ◦ f at α the Laurent series in x−α equal
to h ◦ f(x) in a neighborhood of α, excepting α when the function
h ◦ f is not defined at α.

Remark. Under the notation of the last definition, if the Laurent
series of h◦f at α is a power series, the series then defines an analytic
function in a disk d(α, r−). The point α is then a regular point for
h ◦ f . Else, α is a singular point for h ◦ f .
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If the Laurent series at α ∈ T (f, h) is of the form
∑∞

n=−q an(x−
α)n with a−q �= 0, then the Laurent series defines a meromorphic
function in a disk d(α, r−) and α is a pole of order q of that function.

Next, by Proposition 54.1, a singular point for h ◦ f which is not
a pole of h ◦ f belongs to P(f) and is a point of high singularity for
h ◦ f .

Proposition 54.2 is immediate:

Proposition 54.2. A point of high singularity for h ◦ f is a pole
of f . Conversely, a pole of f is just a pole for h◦f when h is a (non-
constant) polynomial. And when h is a rational function tending to
a finite limit at infinity, then a pole of f is a regular point for h ◦ f .
Notation. Given a subset A of K and positive numbers t, r ∈]0, t[,
we set D(t, r, A) = d(0, t)\⋃α∈A d(α, r

−).

Lemma 54.3. Let h ∈ M(K), let f ∈ M(K) (respectively let f ∈
M(d(a,R−))). Then for every t > 0 (respectively t ∈]0, R[ ) and
r ∈]0, t[, both P(f) ∩ d(0, t) and T (f, h) ∩ D(t, r,P(f)) are finite,
any cluster point of S(f, h) is a pole of f , the number of holes of
D(t, r,S(f, h)) is finite, and h ◦ f belongs to H(D(t, r,S(f, h))).
Proof. We assume a = 0. Let t > 0 (respectively t ∈]0, R[) be fixed
and let r ∈]0, t[. Let {α1, . . . , αq} be the finite set of all poles of f
and g in d(0, t).

Now consider T (f, h) ∩ D(t, r,P(f)). The set E = D(t, r,P(f))
is a closed bounded infraconnected set with finitely many holes,
hence by Corollary 21.3, f is bounded and takes every value finitely
many times. Consequently, h has finitely many poles in f(E) and
T (f, h) ∩ D(t, r,P(f)) is finite. Therefore, the number of holes of
D(t, r,S(f, h)) is finite.

We note that any cluster point of S(f, h) in d(0, t) is necessarily
one of the αj . Indeed, let α ∈ S(f, h) ∩ d(0, t) with α �= αj ∀j =
1, . . . , q. Then f(α) is a pole of h, hence there exists a disk d(f(α), s)
such that h has no singularity in d(f(α), s) except f(α) i.e. h is of the
form g

(x−f(α))u with g ∈ H(d(f(α), s)). And of course there exists a

disk d(α, �) such that f(d(α, �)) ⊂ d(f(α), s), which shows that h ◦ f
has no singularity other than α in d(α, �), hence α is not a cluster
point of S(f, h). �
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Lemma 54.4. Let h ∈ A(K) and let f ∈ A(K)\K (respectively f ∈
Au(d(0, R

−))). There exists s > 0 (respectively s ∈]0, R[ ) such that
|h ◦ f |(r) = |h|(|f |(r)) ∀r ≥ s (respectively ∀r ∈ [s,R[ ).

Proof. Let b = f(0). By Theorem 22.9, f(d(0, r)) is a disk d(b, t).
Suppose f belongs to A(K)\K, hence it admits a zero α ∈ K. Let
s = |α| and let us take r ≥ s. Then f(d(0, r)) is a disk d(b, t) equal to
d(0, t), hence t = |f |(r). Consequently, |h◦f |(r) = sup{|h(f(x))| | x ∈
d(0, r)} = sup{|h(u)| | u ∈ d(0, |f |(r))}.

Similarly, suppose f belongs to Au(d(a,R
−))\K. Since f is

unbounded, it admits a zero α ∈ d(a,R−). By putting again s = |α|
we can go on as in the previous case. �

Corollary 54.5. Let h ∈ A(K) and let f ∈ A(K) (respectively f ∈
A(d(a,R−))). Then there exists s > 0 (respectively s ∈]0, R[ ) such
that Z(r, h ◦ f)− Z(|f |(r), h) is a constant for all r ≥ s.

Lemma 54.6. Let h ∈ M(K) and let f ∈ A(K) (respectively f ∈
A(d(a,R−))). Then, T (r, h ◦ f) = T (|f |(r), h) +O(1).

Proof. By Lemma 36.3, there exist φ, θ ∈ A(K) with no com-

mon zeros such that h = φ
θ . Then Z(r, φ ◦ f) = Z(r, h ◦ f) and

Z(r, θ◦f) = N(r, h◦f). On the other hand, by Corollary 54.5, we have
Z(r, φ ◦ f) = Z(|f |(r), φ) + O(1), Z(r, θ ◦ f) = Z(|f |(r), θ) + O(1).
Consequently, T (r, h ◦ f) = max(Z(|f |(r), φ), Z(|f |(r), θ)) + O(1).
But now, we have max(Z(|f |(r), φ), Z(|f |(r), θ)) = T (|f |(r), h) +
O(1), which ends the proof. �

Lemma 54.7. Let φ ∈ A(K) satisfy h(0) �= 0, s > 0 (respectively s ∈
]0, R[ ) and let η, υ be increasing continuous functions from ]0,+∞[
(respectively from [0, R[ ) to ]0,+∞[ satisfying limr→+∞ η(r) =
limr→+∞ υ(r) = +∞ (respectively limr→R η(r) = limr→R υ(r) =
+∞) and such that Z(η(r), φ) − Z(υ(r), φ) is a constant in [s,+∞[
(respectively in [s,R[ ). Then log(η(r)) − log(υ(r)) is bounded in
[s,+∞[ (respectively in [s,R[ ). Moreover, if h is not a polynomial
(respectively if φ belongs to Au(d(a,R

−))), then log(η(r))− log(υ(r))
tends to 0 when r tends to +∞ (respectively to R).

Proof. Since Z(η(r), φ) = log(|φ|(η(r))) − log(|φ(0)|) and
Z(υ(r), φ) = log(|φ|(υ(r))) − log(|φ(0)|), we can see that
log(|φ|(η(r)))− log(|φ|(υ(r))) is a constant C in [s,+∞[ (respectively



October 24, 2024 19:32 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch54 FA1 page 537

Composition of Meromorphic Functions 537

in [s,R[). Then by Corollary 22.30, we know that | log(|φ|(η(r))) −
log(|φ|(υ(r))|∞
≥ min(ν+(φ, log(υ(r))), ν+(φ, log(η(r))))| log(η(r)) − log(υ(r))|∞.
Suppose first φ ∈ A(K). If φ is not a polynomial, we have

lim
r→+∞ ν+(φ, log(η(r))) = lim

r→+∞ ν+(φ, log(υ(r))) = +∞,

hence limr→∞ log(η(r)) − log(υ(r)) = 0. And if φ is a polynomial of
degree q, then when r is big enough, we have ν+(φ, log(η(r))) =
ν+(φ, log(υ(r))) = q, hence log(η(r))− log(υ(r)) is constant.

Now, if φ belongs to Au(d(a,R
−)), then

lim
r→R

ν+(φ, log(η(r))) = lim
r→R

ν+(φ, log(υ(r))) = +∞,

hence limr→R(log(η(r))− log(υ(r))) = 0 again. In conclusion,
log(η(r)) − log(υ(r))) is bounded in all cases. �

Lemma 54.8. Let h ∈ M(K) and let f, g ∈ A(K) (respectively
f, g ∈ A(d(a,R−))) satisfy h ◦ f = h ◦ g. Then T (r, f) − T (r, g) is
bounded in any interval [b,+∞[ (respectively [b,R[ ).

Proof. Let φ, θ ∈ A(K) with no common zeros such that h = φ
θ .

Then Z(r, φ ◦ f) = Z(r, h ◦ f) and Z(r, φ ◦ g) = Z(r, h ◦ g). On
the other hand, by Lemma 54.5, there exists s′, s′′ > 0 (respectively
s′, s′′ ∈]0, R[) such that Z(r, φ ◦ f) is of the form Z(|f |(r), φ) + C ′
with C ′ ∈ R whenever r ≥ s′ (respectively whenever r ∈ [s′, R[)
and similarly Z(r, φ ◦ g) is of the form Z(|g|(r), φ) + C ′′ with
C ′′ ∈ R, whenever r ≥ s′′ (respectively whenever r ∈ [s′′, R[).
Consequently, putting s = max(s′, s′′), we have Z(|f |(r), φ) + C ′ =
Z(|g|(r), φ) + C ′′ ∀r ≥ s, hence Z(|f |(r), φ) − Z(|g|(r), φ) is a con-
stant C whenever r ≥ s. Now, since the functions |f |(r), |g|(r) are
continuous strictly increasing functions of r, tending to +∞ when r
tends to +∞ (respectively when r tends to R), then by Lemma 54.7,
log(|f |(r))− log(|g|(r)) is bounded in [b,+∞[ (respectively in [b,R[)
hence so is T (r, f)− T (r, g). �

Lemma 54.9. Let h ∈ A(K)\K and let f ∈ M(K) (respectively
f ∈ M(d(a,R−))). Let α be a pole of f in K (respectively in d(a, r−)).
Then α is a singular point for h ◦ f .
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Let h ∈ M(K)\K(x) and let f ∈ A(K) (respectively f ∈
A(d(a,R−))). Let α be a pole of f in K (respectively in d(a, r−)).
Then α is a point of high singularity for h ◦ f .
Proof. The first statement is immediate. Now suppose that h is
a meromorphic function and is not a rational function. Let us show
the second statement. Let q be the order of the pole α. Without loss
of generality, we can assume that α = 0. Putting u = 1

x and g(u) =
f(x), we can see that g(u) is equal to a Laurent series converging in a
set K\d(0, S). Moreover, by taking S big enough, we have ν(g, μ) =
q ∀μ ≥ log(S), while g has no zero and no pole inside K\d(0, S).
Consequently, g(u) is of the form

∑q
−∞ bnu

n and |g(u)| = |bq||uq|q,
g(C(0, r)) = C(0, |bq|rq).

Suppose that h has a sequence of zeros (respectively poles)
(an)n∈N such that |an| > |bq|Sq, limn→+∞ |an| = +∞. There exists
a sequence (cn)n∈N such that |bq||cn|q = |an| and g(cn) = an. Now,
setting un = 1

cn
, the sequence (un) is a sequence of zeros (respectively

poles) of h ◦ f that converges to 0, which shows that 0 is neither a
regular point nor a pole for h◦ f . Consequently, if h is not a rational
function, h ◦ f admits 0 as a point of high singularity. �

We can now state Proposition 54.10.

Proposition 54.10. Let h ∈ M(K) and let f, g ∈ M(K)
(respectively let f, g ∈ M(d(a,R−))). Let (am)m∈N be a bounded
sequence of K\(S(f, h) ∪ S(g, h)) (respectively a sequence in
d(a,R−)\(S(f, h) ∪ S(g, h)) such that supm∈N |am − a| < R) admit-
ting no cluster point in P(f) ∪ P(g), satisfying further h ◦ f(am) =
h ◦ g(am) ∀m ∈ N. Then, h ◦ f(x) = h ◦ g(x) ∀x ∈ K\(S(f, h) ∪
S(g, h)) (respectively ∀x ∈ d(a,R−)\(S(f, h) ∪ S(g, h))).
Proof. We assume a = 0. Suppose that h ◦ f and h ◦ g are two
distinct functions. Let s = sup |am|. Let t > s (respectively t ∈]s,R[)
be fixed.

We now prove that infinitely many terms of the sequence (am)
belong to d(0, t). Suppose it is not true.

Let us first show that the sequence (am)m∈N does not admit any
point of S(f, h) ∪ S(g, h) as a cluster point. By hypothesis, it may
not admit a cluster point in P(f) ∪ P(g). We show that it does not
admit any b ∈ T (f, h) as a cluster point, either. Indeed, suppose that
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a subsequence of the sequence (am)m∈N converges to b ∈ T (f, h). So,
f(b) is a pole of order q′ of h, and hence, h(f(x)) is equal to a Laurent
series of the form

∑∞
n=q′ λ

′
n(x− b)n in a disk of center b. In the same

way, h(g(x)) is equal to a Laurent series of the form
∑∞

n=q′′ λ
′′
n(x−b)n

in a disk of center b, therefore h(g(x))−h(f(x)) is a Laurent series of
the form

∑∞
n=q λn(x− b)n in a disk d(b, u−) and therefore belongs to

M(d(b, u−)). But since b is a cluster point of the sequence (am), the
meromorphic function h(g(x)) − h(f(x)) admits b as a cluster point
of zeros, a contradiction. Consequently, the sequence (am) does not
admit b as a cluster point of S(f, h). Similarly, it does not admit b
as a cluster point of S(g, h). Thus, the sequence (am) has no cluster
point in S(f, h) ∪ S(g, h).

Now, since the sequence (am) is bounded, by Corollary 2.19, we
can extract from that sequence a subsequence thinner than a circular
filter F . Since F does not converge to a point of S(f, h) ∪ S(g, h),
either the filter converges to a point of d(0, t)\S(f, h) ∪ S(g, h) or it
is a large circular filter secant with d(0, t)\S(f, h) ∪ S(g, h).

If F converges to a point α ∈ d(0, t)\S(f, h)∪S(g, h), the function
h ◦ f − h ◦ g has a sequence of zeros converging at α, hence it is
identically zero in d(0, �). Consider the set E(r, t) := D(t, r,S(f, h))∪
S(g, h) for some r ∈]0, �[. By Lemma 54.3, E(r, t) has finitely many
holes, hence, by Corollary 21.4, it is an analytic subset of K. But
by Lemma 36.1, h ◦ f − h ◦ g belongs to H(E(r, t)). Consequently,
h ◦ f − h ◦ g is identically zero in E(r, t). Since we can choose r
arbitrary small and t arbitrary big (with t < R), we can conclude
that h ◦ f − h ◦ g is identically zero.

Suppose now that F is a large circular filter secant with d(0, t)\
S(f, h) ∪ S(g, h). Then, when r is small enough, F is secant with
D(t, r,S(f, h))∪ S(g, h) which has finitely many holes and hence is an
analytic set, hence h◦ f −h◦ g is identically zero in D(t, r,S(f, h))∪
S(g, h) again so we are led to the same conclusion. �

Proposition 54.11. Let h ∈ M(K)\K and let f, g ∈ M(K)
(respectively f, g ∈ M(d(a,R−))) satisfy h ◦ f(x) = h ◦ g(x) ∀x ∈
K\(S(f, h) ∪ S(g, h)) (respectively h ◦ f(x) = h ◦ g(x) ∀x ∈
d(a,R−)\(S(f, h) ∪ S(g, h))). Moreover, if f or g does not belong
to A(K) (respectively if f or g does not belong to A(d(a,R−))),
we assume that h /∈ K(x)\K[x]. Then f, g satisfy P(f) = P(g),
S(f, h) = S(g, h).
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Proof. First we show that P(f) = P(g). Suppose α is a pole of
f . For this, we obviously suppose that f /∈ A(K) (respectively f /∈
A(d(a,R−))). Consequently, by hypothesis, h /∈ K(x)\K[x]. If h ∈
A(K) (respectively if h ∈ A(d(a,R−))), then by Lemma 54.9, α is
a singular point for h ◦ f , hence for h ◦ g, therefore α is a singular
point for g and hence it is a pole for g. Now suppose that h /∈ A(K),
hence h ∈ M(K)\K(x) (respectively h /∈ A(d(a,R−))), hence h ∈
M(d(a,R−))\K(x). Since h does not lie in K(x), by Lemma 54.9,
α is a point of high singularity for h ◦ f , hence for h ◦ g. But if α
is not a pole for g, it is a regular point for g, hence it is either a
regular point or a pole for h ◦ g, a contradiction. Consequently, α is
a pole for g, and therefore, since f and g play the same role, we have
P(f) = P(g).

Now, suppose α ∈ T (f, h), hence h◦f has a pole at α and so does
h ◦ g, thereby α ∈ T (g, h). Consequently, T (f, h) ⊂ T (g, h) hence
T (f, h) = T (g, h) and therefore S(f, h) = S(g, h), which completes
the proof. �

Remark. In order to avoid the restriction: if f, g do not belong to
A(K) (respectively if f, g do not belong to A(d(a, r−))), we assume
that h /∈ K(x)\K[x], we would like to show P(f) = P(g) when h is a
rational function. But it is hopeless as shows the following situation.
Suppose h ∈ K(x) is not a function of uniqueness for meromorphic
functions and let f, g ∈ M(K) satisfy h ◦ f = h ◦ g and f(c) �= g(c)
for some c ∈ K (respectively c ∈ d(a, r−)). If c is a pole of f , this just
shows P(f) �= P(g). Suppose c is not a pole for f and g. Let b = f(c),
let φ(x) = 1

f(x)−b , let θ(x) =
1

g(x)−b , and let G(u) = h(b+ 1
u). Then

G belongs to K(x) and we can check that G ◦ θ = G ◦ φ and that c
lies in P(φ) but not in P(θ).
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Functions of Uniqueness

Throughout this chapter, K is of characteristic 0.
We want to study sufficient conditions on a meromorphic function

h assuring that if the composition of meromorphic functions of the
form h ◦ f and h ◦ g are equal, then f and g are equal. This kind
of problem follows many other problems of uniqueness studied, par-
ticularly on unique range sets with (or without) multiplicities and
polynomials of uniqueness for analytic or meromorphic functions in
the complex field and in an ultrametric field [3], [47], [93], [98]. Poly-
nomials of uniqueness were introduced and studied in C and in a
p-adic field by X.H Hua and C.C. Yang [98], H. Fujimoto [60], and
P. Li and C.C. Yang [97]. Here most results come from [47].

Throughout this chapter, E is an algebraically closed field of char-
acteristic 0 without any assumption on the existence of an absolute
value. The field K is supposed to have characteristic zero.

In Chapter 41, we have showed that certain polynomials whose
derivative has two distinct zeros are polynomials of uniqueness for
meromorphic functions or for analytic functions in K or inside a
disk. Here we look for a more systematic process in order to obtain
functions of uniqueness.

Previous results obtained in C by H. Fujimoto in C and in K by
T.T.H. An and H.H. Khoai and next by T.T.H. An, J. Wang and
P.-M. Wong concerned polynomials. Here we consider a meromorphic
function h instead of a polynomial P and we only assume that a few
zeros c1, . . . , ck of h′ satisfy h(cj) �= h(d) for every other zero d of h′.
We then examine the situation in four cases in K: f, g entire or

541
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meromorphic functions in the whole p-adic field K or “unbounded”
meromorphic function inside an “open” disk of K. We also consider
the problem for rational functions on the field E.

On the other hand, in each main claim, instead of assuming that
the equality h(f(x)) = h(g(x)) holds in the whole set of definition,
thanks to properties of analytic sets, we check that it is sufficient to
have the equality on a bounded sequence having no cluster point at
the poles of f and g. For that, we use properties of analytic elements
on infraconnected subsets of K.

Notation. In the following, we denote by h a meromorphic function
either in K or inside a disk d(a,R−) and we denote by c1, . . . , cn, . . .
the finite or infinite sequence of zeros of h′.

Lemma 55.1. Let h ∈ M(K)\K and let f, g ∈ M(K) (respectively
f, g ∈ M(d(0, r−))) satisfy h ◦ f(x) = h ◦ g(x) ∀x ∈ K\S(f, h) ∪
S(g, h) (respectively h ◦ f(x) = h ◦ g(x) ∀x ∈ d(0, R−)\S(f, h) ∪
S(g, h)). Moreover, if f, g do not belong to A(K) (respectively if
f, g do not belong to A(d(0, r−)), we assume that h /∈ K(x)\K[x].
Then f, g satisfy P(f) = P(g), S(f, h) = S(g, h).

For each j = 1, . . . , k, let qj = ωcj(h
′). We assume that h(cj) �=

h(cn) ∀j = 1, . . . , k, ∀n �= j. Then f, g satisfy

N(r, f) +

k
∑

j=1

Z(r, f − cj) ≤ Z

(

r,
1

f
− 1

g

)

+

k
∑

j=1

1

qj
Z(r, g′ | f(x) = cj ,

g(x) /∈ C(h′)).
Furthermore, if f, g ∈ A(K) (respectively if f, g ∈ A(d(0, r−))),
then

k
∑

j=1

Z(r, f − cj) ≤ Z(r, f − g) +

k
∑

j=1

1

qj
Z(r, g′ | f(x) = cj ,

g(x) /∈ C(h′)).
Proof. First, we show that P(f) = P(g). Suppose α is a pole of f .
If h ∈ A(K) (respectively if h ∈ A(d(0, R−))), then by Lemma 54.9,
α is a singular point for h ◦ f , hence for h ◦ g, hence α is a singular
point for g, hence it is a pole for g. Now suppose that h /∈ A(K),
hence h ∈ M(K)\K(x) (respectively suppose h /∈ A(d(0, R−)), hence
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h ∈ M(d(0, R−))\K(x)). Since h does not lie in K(x), by Lemma
54.9, α is a point of high singularity for h ◦ f , hence for h ◦ g. But if
α is not a pole for g, it is a regular point for g, hence it is either a
regular point or a pole for h ◦ g, a contradiction. Consequently, α is
a pole for g and therefore, since f and g play the same role, we have
P(f) = P(g).

Now, suppose α ∈ T (f, h), hence h◦f has a pole at α and so does
h ◦ g, thereby α ∈ T (g, h). Consequently, T (f, h) ⊂ T (g, h), hence
T (f, h) = T (g, h), and therefore, S(f, h) = S(g, h).

We now assume that h(cj) �= h(cn) ∀j = 1, . . . , k, ∀n �= j. With-
out loss of generality, we may assume that 0 /∈ C(h′). Indeed, if
0 ∈ C(h′), we can find b ∈ K such that cn + b �= 0 ∀n ∈ N∗.
Setting f(x) = f(x) − b, g(x) = g(x) − b and h(z) = h(z + b),
we have h(f(x) = h(g(x) ∀x ∈ K\S(f , h) (respectively h(f(x)) =
h(g(x)) ∀x ∈ d(0, R−)\S(f , h)), thereby we may process in the same
way with f , g, h. Moreover, we note that if f, g lie in A(K) (respec-
tively in A(d(0, r−))), then so do f, g. Consequently, in order to
simplify a deduction, we assume that cn �= 0 ∀n ∈ N∗.

Let φ = 1
f − 1

g . Since P(f) = P(g), for each pole α of f , we have

φ(α) = 0, therefore

(1) N(r, f) ≤ Z(r, φ | x ∈ P(f)).

Let us fix j ∈ {1, . . . , k} and let α ∈ K (respectively α ∈ d(0, R−))
satisfy f(α) = cj . Suppose first that g(α) lies in C(h′). Thanks to the
hypothesis h(cn) �= h(cj) ∀n �= j, if g(α) �= cj , then h(g(α)) �= h(cj),
a contradiction to h(g(α)) = h(f(α)). So we have g(α) = f(α) = cj
and since cj �= 0, then φ(α) = 0. Consequently,

(2) Z(r, f − cj | g(x) ∈ C(h′)) ≤ Z(r, φ | f(x) = cj),

and similarly if f, g ∈ A(K) or if f, g ∈ Au(d(0, R
−)),

(3) Z(r, f − cj | g(x) ∈ C(h′)) ≤ Z(r, f − g | f(x) = cj).

Consequently, since P(f)∩C(h′) = ∅, in the general case, by (1) and
(2), we can derive

(4) N(r, f) +

k
∑

j=1

Z(r, f − cj | g(x) ∈ C(h′)) ≤ Z(r, φ).
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Similarly, if f, g ∈ A(K) (respectively if f, g ∈ A(d(0, r−))), then
by (3), we have

(5)

k
∑

j=1

Z(r, f − cj | g(x) ∈ C(h′)) ≤ Z(r, f − g).

In order to complete the proof, we will show

(6) Z(r, f−cj | g(x) /∈ C(h′)) ≤ 1

qj
Z(r, g′ | f(x) = cj , g(x) /∈ C(h′)).

Indeed, consider α such that g(α) /∈ C(h′). Since h′(f(α)) =
h′(cj) = 0, we note that f ′(α)h′(f(α)) = g′(α)h′(g(α)) = 0. But
since g(α) /∈ C(h′), we have h′(g(α)) �= 0, hence g′(α) = 0. Conse-
quently, we obtain

(7) Z(r, f − cj | g(x) /∈ C(h′)) ≤ Z(r, g′ | f(x) = cj, g(x) /∈ C(h′)).
On the other hand, since f(α) = cj , we see that ωα(f

′(x)h′(f(x))) ≥
qj, hence

(8) ωα(g
′(x)h′(g(x))) ≥ qj.

But since g(α) /∈ C(h′), we have h′(g(α)) �= 0, hence by (8), ωα(g
′) ≥

qj, and consequently,

(9) Z(r, g′ | f(x) = cj , g(x) /∈ C(h′)) ≤ 1

qj
Z(r, g′ | f(x) = cj ,

g(x) /∈ C(h′))
Thus, by (7) and (9), we obtain (6) which by (4) proves

N(r, f) +
k
∑

j=1

Z(r, f − cj) ≤ Z(r,
1

f
− 1

g
) +

k
∑

j=1

1

qj
Z(r, g′ | f(x) = cj ,

g(x) /∈ C(h′)).

Similarly, by (5) and (6), we have

k
∑

j=1

Z(r, f − cj) ≤ Z(r, f − g) +

k
∑

j=1

1

qj
Z(r, g′ | f(x) = cj ,

g(x) /∈ C(h′)). �
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Theorem 55.2. Let h ∈ M(K)\K, let f, g ∈ A(K)\K, and let
(am)m∈N be a bounded sequence of K\(T (f, h) ∪ T (g, h)) satisfy-
ing h ◦ f(am) = h ◦ g(am) ∀m ∈ N. Then, T (f, h) = T (g, h) and
h ◦ f(x) = h ◦ g(x) ∀x ∈ K\T (f, h). Moreover, if Υ(h) ≥ 2, then
f = g.

Remark. Throughout Corollaries 55.3, 55.4, and 55.11, we apply to
polynomials (respectively rational functions) with coefficients in E

results proven for analytic (respectively meromorphic) functions in
K. Indeed, as it was often previously done, since E has characteristic
0, there exists a finite extension IM of Q containing all coefficients,
zeros, and poles of all functions involved and consequently we can
consider IM as a subfield of Cp.

Corollary 55.3. Let h ∈ M(K) (respectively h ∈ E(x)) satisfy
Υ(h) ≥ 2. Then h is a function of uniqueness for A(K) (respectively
for E[x]).

Notation. Given a meromorphic function f ∈ M(K) or f ∈
M(d(0, R−)), we denote by (F) the hypothesis: the restriction of
f to the set of zeros of f ′ is injective [60], [3], [49], [50].

Thus, particulary, if a function f satisfies Hypothesis (F) and if
f ′ has q zeros, then Υ(f) = q.

Examples. (1) Let h(x) = x(x−1)
x−2 . Hence, h′(x) = x2−4x+2

(x−2)2
. Let√

2 denote a square root of 2 in the field K. The zeros of h′ are
c1 = 2 +

√
2, c2 = 2−√

2. Thus, h(c1) = 3− 2
√
2, h(c2) = 3 +

√
2,

hence h satisfies the hypothesis of Corollary 55.3.

(2) Let b ∈ E∗ be a zero of the polynomial Q(x) =
x5

20 − x3

6 + x
4 + 2

15 and let h(x) = x5

5 − bx4

4 − x3

3 + bx2

2 . Then, h′(x) =
x(x− 1)(x+ 1)(x − b). Now, we note that h(0) = 0, h(1) = 2

15 + b
4 ,

h(−1) = − 2
15 +

b
4 , h(b) = − b5

20 + b3

6 . Since Q(b) = 0, we have h(1) =
h(b) and clearly h(1) �= h(0), h(−1) �= h(1), h(0) �= h(b), h(−1) �=
h(b). Consequently, h′ has four zeros c1 = 0, c2 = −1, c3 = 1, c4 = b
satisfying h(cj) �= h(cl) ∀j = 1, 2, l �= j, 1 ≤ l ≤ 4. Therefore, h sat-
isfies the hypothesis of Corollary 55.3. However, h does not satisfy
Hypothesis (F) because h(c3) = h(c4).

Corollary 55.4. Let P (x) ∈ K[x] be of degree n ≥ 3 and assume
that P ′ has exactly two distinct zeros. Then P is a polynomial of
uniqueness for A(K).
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Proof. Let a1, a2 be the two zeros of P ′, of order s1, s2 respec-
tively. Suppose Υ(P ) < 2. Then, P (a1) = P (a2). Let b = P (a1).
Then, P − b admits each aj as a zero of order sj + 1, j = 1, 2.
Consequently, deg(P ) = deg(P − b) ≥ s1 + s2 + 2, and hence,
deg(P ′) = s1 + s2 + 1, a contradiction since a1, a2 are the only
zeros of P ′. Consequently, Υ(P ) = 2. �

Corollary 55.5. Let P (x) ∈ E[x] be a of degree 3. Then P is a
polynomial of uniqueness for A(K) if and only if it is not of the form
c(x− a)3 + b, a, b, c ∈ K.

Proof. Indeed, P ′ has one or two distinct zeros. On one hand, if P
is of the form c(x− a)3 + b, a, b, c ∈ K, obviously it is not a poly-
nomial of uniqueness for A(K). On the other hand, if P is not of the
form c(x−a)3+ b, a, b, c ∈ K, then P ′ has two distinct zeros, hence
by Corollary 55.4, P is a polynomial of uniqueness for A(K). �

Corollary 55.6. Let h, f, g ∈ A(C) have all coefficients in Q

and also lie in A(Cp) for some prime p. Let (am)m∈N be a bounded
sequence of C satisfying h ◦ f(am) = h ◦ g(am) ∀m ∈ N. Then,
h ◦ f(x) = h ◦ g(x) ∀x ∈ C. Moreover, if Υ(h) ≥ 2, then f = g.

Proof. We know that the identity h◦ f = h◦ g is obvious in A(C),
which means the coefficients of the two functions are the same, hence
the identity also holds in Cp. Therefore, if Υ(h) ≥ 2, by Theorem
55.2, we have f = g in A(Cp) i.e. the coefficients of f, g are the
same, hence this identity obviously holds in A(C). �
Remarks. Conversely, a polynomial of degree 2 is never a function
of uniqueness for any family of functions because through a suitable
translation of the variable, it is possible to put it in the form of an
even polynomial.

The condition Υ(h) ≥ 2 is not a necessary condition to assure that
h is a function of uniqueness for entire or meromorphic functions:
for instance, a linear fractional function has a derivative which has
no zero but obviously is a function of uniqueness for meromorphic
functions in K or in d(a,R−).

The proofs of Theorems 55.7, 55.10, and 55.12 are gathered in the
following:

Theorem 55.7. Let h ∈ M(K)\K, let f, g ∈ Au(d(a,R
−)), and let

(am)m∈N be a sequence of d(a,R−) such that supn∈N |an − a| < R,
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satisfying h◦f(am) = h◦g(am) ∀m ∈ N. Then, S(f, h) = S(g, h) and
h ◦ f(x) = h ◦ g(x) ∀x ∈ d(a,R−)\S(f, h). Moreover, if Υ(h) ≥ 3,
then f = g.

Example. Let h(x) = x3−x2+x−2
x−2 . Hence, h′(x) = 2x3−7x2+4x

(x−2)2 . Let√
17 denote a square root of 17 in the field K. The zeros of h′

are c1 = 0, c2 = 7−√
17

4 , c3 = 7+
√
17

4 . Thus, h(c1) = 1, h(c2) =
73−17

√
17

2 , h(c3) =
73+17

√
17

2 , hence h satisfies the hypothesis of The-
orem 55.7.

Corollary 55.8. Let h ∈ A(K) satisfy Υ(h) ≥ 3. Then h is a func-
tion of uniqueness for Au(d(a,R

−)).

Similar to Corollary 55.6, we can state Corollary 55.9:

Corollary 55.9. Let h, f, g ∈ A(C) have all coefficients in Q and
assume that h also lies in A(Cp) for some prime p and f, g lie
in Au(d(a,R

−)) (with respect to the field Cp). Let (am)m∈N be a
bounded sequence of C satisfying h ◦ f(am) = h ◦ g(am) ∀m ∈ N.
Then, h◦f(x) = h◦g(x) ∀x ∈ C. Moreover, if Υ(h) ≥ 3, then f = g.

Remark. In this chapter, we see that if P is of the form xn−bxn−1+
t (t ∈ K), then it is not a function of uniqueness for M(K) and an
immediate generalization shows that the same holds when P ′ has
exactly two distinct zeros, one of them being of order 1.

Assuming again that the set of zeros S of a polynomial P is
affinely rigid and P satisfies Hypothesis (F), it is shown in [3]
(Theorem 1) that if P ′ has exactly two distinct zeros cj of order
mj (j = 1, 2), then it is a function of uniqueness for M(K) if and
only if min(m1,m2) ≥ 2.

On the other hand, Theorem 47.6 shows that a polynomial such
that Υ(P ) = 2 may be a polynomial of uniqueness for both M(K)
and M(d(0, R−)).

Theorem 55.10. Let h ∈ M(K)\(K ∪ (K(x)\K[x])), let f, g ∈
M(K)\K, and let (am)m∈N be a bounded sequence of K\(S(f, h) ∪
S(g, h)) of diameter < R admitting no cluster point in P(f) ∪P(g),
satisfying further h ◦ f(am) = h ◦ g(am) ∀m ∈ N. Then, S(f, h) =
S(g, h) and h◦f(x) = h◦g(x) ∀x ∈ K\S(f, h). Moreover, if Υ(h) ≥ 3,
then f = g.
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Corollary 55.11. Let h ∈ A(K) (respectively h ∈ E[x]) satisfy
Υ(h) ≥ 3. Then h is a function of uniqueness for M(K) (respectively
for E(x)).

Remark. In [3], it is shown that a polynomial P ∈ E[x] satisfying
(F), whose set of zeros is affinely rigid, is a function of uniqueness for
M(K) if and only if either P ′ has at least three distinct zeros, or P ′
has just two distinct zeros, both of order ≥ 2. By Theorems 55.10,
we can find other polynomials of uniqueness for M(K) having a set
of zeros which is not affinely rigid.

Example. Suppose p �= 3. Let P (x) = x4 − 4x, let j be a cubic root
of 1 different from 1, and let a ∈ K be a cubic root of 4. Then P
has four distinct zeros {0, a, ja, j2a}. Thus, the set of zeros of P
is not affinely rigid (but is centered). Next, the set of zeros of P ′ is
{1, j, j2} and we can check that P satisfies (F), hence Υ(P ) = 3,
therefore P is a function of uniqueness for M(K).

Remark. By Theorem 1.10, given a polynomial P (x) ∈ E[x] of
degree 4, we can check that P satisfies the hypotheses of Theorem
55.10 and Corollaries 55.3 and 55.11, if and only if it is not of the
form [(x− a+ l)(x− a− l)]2 +A with A ∈ E, l ∈ E∗ (which means
P is not an even function, up to some affine change of variable).

Example. P (x) = (x2 − a2)2 + x satisfies the hypotheses of Corol-
laries 55.8 and 55.11.

Now, let P be a polynomial of degree 5 such that P ′ admits four
distinct zeros c1, c2, c3, c4. If Υ(P ) > 0, then Υ(P ) ≥ 2. Indeed,
suppose Υ(P ) = 1. We may assume that P (c1) = P (c2) = P (c3) and
P (c1) �= P (c4). But then, P − P (c1) admits three zeros of order 2, a
contradiction with deg(P ) = 5.

Similarly, if Υ(P ) = 0, then up to a good indexation we have
P (c1) = P (c2) and P (c3) = P (c4).

Theorem 55.12. Let h ∈ M(K)\(K ∪ (K(x)\K[x])), let f, g ∈
Mu(d(a,R

−)), and let (am)m∈N be a bounded sequence of
d(a,R−)\(S(f, h)∪S(g, h)) admitting no cluster point in P(f)∪P(g),
satisfying further h ◦ f(am) = h ◦ g(am) ∀m ∈ N. Then, S(f, h) =
S(g, h) and h ◦ f(x) = h ◦ g(x) ∀x ∈ d(a,R−)\S(f, h). Moreover, if
Υ(h) ≥ 4, then f = g.
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Corollary 55.13. Let h ∈ A(K) satisfy Υ(h) ≥ 4. Then h is a
function of uniqueness for Mu(d(a,R

−)).

Proof. of Theorems 55.2, 55.7, 55.10, and 55.12. By Proposition
54.10, we have h◦ f(x) = h◦ g(x) ∀x ∈ K\(S(f, h)∪S(g, h)) in The-
orems 55.2 and 55.7 and h◦f(x) = h◦g(x) ∀x ∈ d(a,R−)\(S(f, h)∪
S(g, h)) in Theorems 55.10 and 55.12. Suppose that f and g are not
identical.

Then by Lemma 55.1, we have P(f) = P(g) and S(f, h) = S(g, h).
Without loss of generality, we can obviously assume that a = 0 in
Theorems 55.10 and 55.12. Since c1, . . . , ck lie in C(h′), clearly by
applying Theorem 45.7, we obtain in Theorems 55.2 and 55.10

(1)

(k − 1)T (r, f) ≤
k
∑

j=1

Z(r, f − cj) +N(r, f)− Z(r, f ′ | f(x) /∈ C(h′))

− log r +O(1) (r > 0),

(2)

(k − 1)T (r, g) ≤
k
∑

j=1

Z(r, g − cj) +N(r, g) − Z(r, g′ | g(x) /∈ C(h′))

− log r +O(1) (r > 0).

In Theorems 55.7 and 55.12, we have

(1bis)

(k − 1)T (r, f) ≤
k
∑

j=1

Z(r, f − cj) +N(r, f)− Z(r, f ′ | f(x) /∈ C(h′))

+O(1) (r ∈]0, R[ ),

(2bis)

(k − 1)T (r, g) ≤
k
∑

j=1

Z(r, g − cj) +N(r, g) − Z(r, g′ | g(x) /∈ C(h′))

+O(1) (r ∈]0, R[ ).
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Now, let φ = 1
f − 1

g , and for each j = 1, . . . , k, let qj = ωcj(h
′).

By Lemma 55.1, in Theorems 55.2 and 55.10, we obtain

(3) (k − 1)T (r, f) ≤ Z(r, φ) +
k
∑

j=1

1

qj
Z(r, g′ | f(x) = cj ,

g(x) /∈ C(h′))− Z(r, f ′ | f(x) /∈ C(h′))− log r +O(1),

and similarly,

(k − 1)T (r, g) ≤ Z(r, φ) +

k
∑

j=1

1

qj
Z(r, f ′ | g(x) = cj ,

f(x) /∈ C(h′))− Z(r, g′ | g(x) /∈ C(h′))− log r +O(1).

In Theorems 55.7 and 55.12, we obtain

(3bis) (k − 1)T (r, f) ≤ Z(r, φ) +

k
∑

j=1

1

qj
Z(r, g′ | f(x) = cj ,

g(x) /∈ C(h′))− Z(r, f ′ | f(x) /∈ C(h′)) +O(1),

(4bis) (k − 1)T (r, g) ≤ Z(r, φ) +

k
∑

j=1

1

qj
Z(r, f ′ | g(x) = cj ,

f(x) /∈ C(h′))− Z(r, g′ | g(x) /∈ C(h′)) +O(1).

By adding in each case the two inequalities we have respectively
obtained, in Theorems 55.2 and 55.10, by (3) and (4), we obtain

(5)

(k − 1)(T (r, f) + T (r, g)) ≤ 2Z(r, φ) +

k
∑

j=1

1

qj
[Z(r, f ′ | g(x) = cj ,

f(x) /∈ C(h′)) + Z(r, g′ | f(x) = cj , g(x) /∈ C(h′))]
− Z(r, f ′ | f(x) /∈ C(h′))
− Z(r, g′ | g(x) /∈ C(h′))
− 2 log r +O(1),
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and in Theorems 55.7 and 55.12, by (3bis) and (4bis), we have

(5bis)

(k − 1)(T (r, f) + T (r, g)) ≤ 2Z(r, φ) +

k
∑

j=1

1

qj
[Z(r, f ′ | g(x) = cj ,

f(x) /∈ C(h′)) + Z(r, g′ | f(x) = cj , g(x) /∈ C(h′))]
−Z(r, f ′ | f(x) /∈ C(h′))
−Z(r, g′ | g(x) /∈ C(h′)) +O(1).

Now, in each inequality, we note that in the left-side member we
have the term

∑k
j=1

1
qj
[Z(r, f ′ | g(x) = cj, f(x) /∈ C(h′))] −

Z(r, f ′ | f(x) /∈ C(h′)) which is clearly inferior or equal to zero and

similarly
∑k

j=1
1
qj
[Z(r, g′ | f(x) = cj , g(x) /∈ C(h′))−Z(r, g′ | g(x) /∈

C(h′)) ≤ 0. Consequently, in Theorems 55.2 and 55.10, we obtain

(6) (k − 1)(T (r, f) + T (r, g)) ≤ 2Z(r, φ)− 2 log r +O(1), and

in Theorems 55.7 and 55.12, we have

(6bis) (k − 1)(T (r, f) + T (r, g)) ≤ 2Z(r, φ) +O(1).

Now, by Theorem 43.3, in Theorems 55.10 and 55.12, we have
Z(r, φ) ≤ T (r, f) + T (r, g) +O(1). Consequently, in Theorem 55.10,
we have k ≤ 2, and in Theorem 55.12, we have k ≤ 3.

Now, assume the hypotheses of Theorems 55.2 and 55.7. By
Lemma 55.1, we can replace Z(r, φ) by Z(r, f − g). Next, by
Lemma 54.8, T (r, f) − T (r, g) is bounded, and hence, by Theorem
43.8, we derive T (r, f − g) ≤ T (r, f) + O(1) = T (r, g) + O(1). Con-
sequently, in place of (6), in Theorem 55.2, we can obtain

(7) (k − 1)(T (r, f) + T (r, g)) ≤ 2Z(r, f − g)

− 2 log r +O(1) ≤ T (r, f) + T (r, g) − 2 log r +O(1),

and in place of (6bis), in Theorem 55.7, we have

(7bis) (k − 1)(T (r, f) + T (r, g)) ≤ 2Z(r, f − g)

− 2 log r +O(1) ≤ T (r, f) + T (r, g) +O(1).
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Thus, we can conclude that k ≤ 1 in Theorem 55.2 and k ≤ 2 in
Theorem 55.7. �

Example. Let Ω be an algebraic closure of Q. Let R ∈ Q(x),
let C(R′) = {c1, . . . , cq}, and assume that R(cj) �= R(cn) ∀j =

1, . . . , k, ∀n ≤ q. Let h(x) = eR(x). Then, C(h′) = {c1, . . . , cq} and
we check that h(cj) �= h(cn) ∀j = 1, . . . , k, ∀n ≤ q.

Indeed, suppose that h(cj) = h(cl) with j �= l and j ≤ k. Then,
R(cj) − R(cl) is of the form 2imπ with m ∈ Z, which is impossible
because R(cj)−R(cl) lies in Ω.

For instance, let α be a zero of the polynomial D(x) = x4

42 − x2

4 + 2
3

and let P (x) = x7 − 7x5 +
28

3
x3 − 7α

6
x6 +

35α

4
x4 − 14αx2+A (with

A ∈ Ω).
We check that α /∈ Q (because it is a square root of a zero of

u2

42 − u
4 +

2
3). Then, P

′(x) = 7x6−35x4+28x2+7αx5+35αx3−28αx
admits six distinct zeros: c1 = 1, c2 = −1, c3 = 2, c4 = −2 c5 =
0, c6 = α. We note that P (c5) = P (c6) = A. Next, for all j, l, (1 ≤
j < l ≤ 6), P (cj) − P (cl) is of the form s + tα with s, t ∈ Q and
t �= 0, except if j = 5 and l = 6. Consequently, P (cj) �= P (cl) for all
j, l, 1 ≤ j < l ≤ 6 such that j < 5. Therefore, P (playing the role
of h) satisfies the hypothesis of Theorem 55.12. However, P does not
satisfy Hypothesis (F).

Theorem 55.14. Let P ∈ K[x] (respectively P ∈ E[x]) be of degree
4. Then P is not a polynomial of uniqueness for M(K) (respectively
for A(K), respectively E(x), respectively for E[x]) if and only if the
set of zeros of P ′ is of the form {a− l, a, a+ l}.
Proof. Let S be the set of zeros of P ′. Suppose first that P is not
a polynomial of uniqueness for M(K) (respectively for E(x)). Then,
by Corollary 55.11, P we have Υ(P ) < 3, hence P ′ admits two zeros
a, b such that P (a) = P (b). Through an affine change of variable,
we can assume that a = 1, b = −1 and we can also assume that P
is monic and satisfies P (−1) = P (1) = 0. Consequently, P admits 1
and −1 as zeros of order 2 and hence P (x) = (x2 − 1)2. Then the
zeros of P ′ are −1, 0, 1. Thus, due to the affine change of variable
we made, in general, S is of the form {a − l, a, a + l}. Conversely, if
S is of the form {a − l, a, a + l}, then through a similar change of
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variable we can assume S = {−1, 0, 1}, so P (x) = (x2 − 1)2 + C
with C ∈ K and hence P (f) = P (−f)) ∀f ∈ M(K) (respectively
∀f ∈ E(x)). �

Lemma 55.15 is useful for the following theorem. It is an immedi-
ate consequence of properties of zeros of power series (see Corollaries
22.3 and 22.34).

Lemma 55.15. Let h(x) =
∑∞

n=0 anx
n ∈ A(K) satisfy

∣

∣
an
an+1

∣

∣ <
∣

∣

an+1

an+2

∣

∣ ∀n ≥ t and |at|
∣

∣
at
at+1

∣

∣

t ≥ |an|
∣

∣
at
at+1

∣

∣

n ∀n < t. Then

h admits t zeros in d(0,
∣

∣
at
at+1

∣

∣) (taking multiplicities into account),

admits a unique zero of order 1 in each circle C(0,
∣

∣
am
am+1

∣

∣) for each

m > t, and admits no other zero in K.

Theorem 55.16. (1) Let (bn)n∈N be a sequence of K satisfying
b0 = b1 = 0, b2 = 1, |2b4| < |9(b3)2|, |3b3b5| < |4(b4)2|, |4b4| ≥
|5b5|

∣

∣

b4
b5

∣

∣, |4b4| > |nbn|
∣

∣

b4
b5

∣

∣

n−4 ∀n > 5 and such that the sequence
∣

∣

bn
bn+1

∣

∣

n≥2
is strictly increasing of limit +∞. Let h(x) =

∑∞
n=0 bnx

n

and let (cn)n∈N∗ be the sequence of zeros of h′ ordered in such
a way that |cn| ≤ |cn+1|. Then h belongs to A(K) and satisfies
h(ci) �= h(cn) ∀i = 1, 2, 3 ∀n �= i.

(2) Let (bn)n∈N be a sequence of K satisfying b0 = b1 = 0, b2 = 1,
|2b4| < |9(b3)2|, |3b3b5| < |4(b4)2|, |4b4| ≥ |5b5|

∣

∣

b4
b5

∣

∣, |4b4b6| < |5(b5)2|,
|5b5| ≥ |6b6|

∣

∣

b5
b6

∣

∣, |5b5| > |nbn|
∣

∣

b5
b6

∣

∣

n−5 ∀n > 6 and be such that the

sequence
∣

∣

bn
bn+1

∣

∣

n≥2
is strictly increasing of limit +∞. Let h(x) =

∑∞
n=0 bnx

n and let (cn)n∈N∗ be the sequence of zeros of h′ ordered in
such a way that |cn| ≤ |cn+1|. Then h belongs to A(d(0, R−)) and
satisfies h(ci) �= h(cn) ∀i = 1, 2, 3,∀n �= i.

Proof. By construction, we can see that h has a zero of order 2
at 0. For each n ≥ 2, we set rn =

∣

∣

bn
bn+1

∣

∣. By hypothesis, the sequence
(∣

∣

bn
bn+1

∣

∣

)

n≥2
is strictly increasing. Hence, by Lemma 55.15, h has a

unique zero bn in the circle C(0, rn) and this zero is of order 1. This
is true for each n ≥ 1 and h does not admit any other zero in K.

Now, let λ ∈ K and r > 0 be such that |λ| < |h|(r). We know that
Ψ(h−λ, μ) = Ψ(h, μ) ∀μ ≥ log r and ν+(h−λ, μ) = ν+(h, μ), ν−(h−
λ, μ) = ν−(h, μ) ∀μ ≥ log r, hence h − λ admits a unique zero in
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C(0, rn) for each n such that rn ≥ r, this zero being of order 1. And
then h− λ does not admit any other zero in K\d(0, r−).

Next, since |2b4| < |9(b3)2|, we see that
∣

∣
2
3b3

∣

∣ <
∣

∣

b3
4b4

∣

∣r2, hence

|c2| < r3. Similarly, since |3b3b5| < |4(b4)2|, we see that
∣

∣

3b3
4b4

∣

∣ <
∣

∣

4b4
5b5

∣

∣r4, hence |c3| < r4.

Now, suppose that there exist m ∈ N and i ∈ {1, 2, 3} such
that h(cm) = h(ci) with m �= i. We first note that h(cm) �= 0
∀m �= 1 because if h(cm) = 0, then cm is a zero of order 2 of h,
hence cm = 0. Thus, we have m ≥ 3. Suppose cm ≥ r3. Since
|c2| < r3, we have |h(c2)| < |h|r3 , hence as it was seen, h − h(c2)
admits a unique zero of order 1 in each circle C(0, rn) for each
n ≥ 3 and has no other zero in K\d(0, r−3 ), as does h. But if
|cm| ≥ r3, then it is a zero of order 2 for h − h(cm), a contradic-
tion showing that |cm| < r3. Let ρ = max(|c2|, |cm|). So, ρ < r3
and h − h(c2) must admit at least two multiple zeros in d(0, ρ).
But since |b2| = r3, we know that ν+(h, μ) = ν−(h, μ) = 3 ∀μ ∈
]−log(r3),− log(r2)[. On the other hand, when μ < − log(ρ), we have
seen that ν+(h, μ) = ν+(h− h(c3), μ), ν

−(h, μ) = ν−(h− h(c3), μ),
hence ν+(h − h(c3), μ) = 3 ∀μ ∈]− log(r3),− log(ρ)[. Consequently,
h− h(c3) admits at most three zeros in d(0, ρ), taking multiplicities
into account. This is a contradiction to the assumption cm ∈ d(0, r−3 )
and finishes showing that h(cm) �= h(c2) ∀ �= 2. Thus, we have shown
that h(cm) �= h(cj) for j = 1, 2 and m �= j. We now suppose that
there exists m �= 3 such that h(cm) = h(c3). Clearly, as for h(c2), we
have h(c3) �= 0, and by the above, h(c3) �= h(c2), hence m > 3. Since
|c3| < r4, we have |h(c3)| < |h|r4 , hence ν+(h − h(c2), μ) − ν−(h −
h(c2), μ) ≤ 1 ∀μ ≤ − log r4, which shows that cm ∈ d(0, r−4 ). Thus,
in d(0, r−4 ), h

′ admits at least 4 zeros: c1, c2, c3, cm. But by the

hypothesis |4b4| ≥ |5b5|
∣

∣

b4
b5

∣

∣ and |4b4| > |nbn|
∣

∣

b4
b5

∣

∣

n−4 ∀n > 5, we can

see that |4b4|r34 ≥ |5b5|r4 and |4b4|r34 > |nbn|rn−1
4 ∀n > 5. Therefore,

we have ν+(h′,− log r4) ≤ 4 and ν+(h′,− log r) ≤ 3 ∀r < r4. Conse-
quently, h′ admits at most three zeros in d(0, r−4 ), a contradiction to
the existence of a cm ∈ d(0, r−4 ) such that h(cm) = h(c3) with m ≥ 4.
Thus, the first conclusion is now established.

We now assume further that |5b5| ≥ |6b6|
∣

∣

b4
b5

∣

∣, |4b4b6| < |5(b5)2|
and that |5b5| > |nbn|

∣

∣

b4
b5

∣

∣

n−5 ∀n > 6. Suppose that there exists

m �= 4 such that h(cm) = h(c4). By what precedes, we have m > 4.
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Thanks to the hypothesis |4b4b6| < |5(b5)2|, we see that |c4| < r5.
Consequently, |h(cm)| < |h|(r5), hence cm lies in d(0, r−5 ). Therefore,
d(0, r−5 ) contains 5 zeros of h′: c1, c2, c3, c4, cm. But thanks to the

hypotheses |5b5| ≥ |6b6|
∣

∣

b5
b6

∣

∣, |5b5| > |nbn|
∣

∣

b5
b6

∣

∣

n−5 ∀n > 6, we can see

that ν+(h − h(c4),− log(r)) − ν−(h,− log(r)) ≤ 4 ∀r < r5, hence
h − h(c4) admits at most 4 zeros in d(0, r−5 ), a contradiction to the
assumption h(c4) = h(cm) for some m �= 4. This ends the proof of
Theorem 55.16. �
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Chapter 56

Urscm and Ursim

Throughout this chapter, K is of characteristic 0.
We introduce urscm and ursim for p-adic meromorphic functions.

Many studies were made in the eighties and the nineties concerning
functions in C, [7], [59], [77], [78]. Studies were also made in the non-
Archimedean context since the late nineties [3], [4], [21], [22], [27].

Here, we only consider the situation in an ultrametric field.

Definition and notation. Throughout this chapter, E is an alge-
braically closed field of characteristic 0 without any assumption on
the existence of an absolute value and we denote by P1(E) the pro-
jective space of dimension 1 over E and K is also of characteristic 0.

Given a family of functions F defined in K or in a subset of K
(respectively in E or in a subset of E), with values in P1(K) (respec-
tively in P1(E)), a subset S of K (respectively of E) is called an
ursim for F if for any two non-constant functions f, g ∈ F satis-
fying f−1(S) = g−1(S), these functions are equal. This definition
particularly applies to A(K), M(K), Au(d(a,R

−)), Mu(d(a,R
−)),

K[x], K(x), E[x], E(x).

We now define URSCM. Given a subset S of E and f ∈E(x),
we denote by E(f, S) the set in E×N∗:

⋃

a∈S{(z, q)∈E×N∗ | z
a zero of order q of f(x)− a}.

And given a subset S of P1(E) containing {∞} and f ∈ E(x), we
denote by E(f, S) the subset of E×N∗: E(f, S ∩E)∪ {(z, q) |z a pole
of order q of f}.

557
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Consider now meromorphic functions in the field K. For a sub-
set S of K and f ∈ M(K) (respectively f ∈ M(d(a,R−))), we
denote by E(f, S) the set in K×N∗:

⋃

a∈S{(z, q) ∈ K×N∗ | za zero
of order q of f(x)− a}.

And given a subset of P1(K) containing {∞} and f ∈ M(K)
(respectively f ∈ M(d(a,R−))), we denote by E(f, S) the subset of
K×N∗: E(f, S ∩K) ∪ {(z, q) |z a pole of order q of f}.

Similarly, given a subset of P1(E) containing {∞} and f ∈ E(x),
we denote by E(f, S) the subset of E×N∗: E(f, S ∩ E) ∪ {(z, q) |z a
pole of order q of f}.

Let F be a non-empty subset of M(K) (respectively of
M(d(a,R−))). We say that two non-constant functions f, g ∈ F
share S, counting multiplicity if E(f, S) = E(g, S). And the set S is
called a unique range set counting multiplicity (an urscm in brief)
for F if for any two non-constant f, g ∈ F sharing S counting mul-
tiplicity, one has f = g.

Similarly, let F be a non-empty subset of E(x). We say that two
non-constant functions f, g ∈ F share S, counting multiplicity if
E(f, S) = E(g, S). And the set S is called a unique range set counting
multiplicity (an urscm in brief) for F if for any two non-constants
f, g ∈ F sharing S counting multiplicity, one has f = g.

In other words, if we consider a set S = {a1, . . . , at} ⊂ K with
ai �= aj ∀i �= j, we can set P (X) =

∏t
j=1(X − aj) and then the set

S = {a1, . . . , at} is an urscm for F if for any two functions f, g ∈
F such that P ◦ f and P ◦ g have the same zeros with the same
multiplicity, then f = g.

An immediate lemma appears:

Lemma 56.1. If a subset of K (respectively of E) is an ursim for a
family F of functions, it is an urscm for F .

Proof. Indeed, suppose that a subset S of K (respectively of E)
is an ursim for a family F of functions and consider two functions
f, g ∈ F such that E(f, S) = E(g, S). So much the more, we have
f−1(S) = g−1(S), hence f = g. �

Similar definitions were given for meromorphic functions on C

before these questions were examined on the field K. Urscm of only
11 points for complex meromorphic functions in the whole field C

where found in [59] and the same method showed the existence of



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch56 FA1 page 559

Urscm and Ursim 559

urscm of only 7 points for complex entire functions. So far, they are
the smallest known in C.

In the field K, the same method lets us find urscm of 11 points
for Mu(d(a,R

−)) and urscm of 10 points for M(K).
Concerning analytic functions, urscm of 3 points were found for

entire functions and polynomials [22] and urscm of 7 points were
found for unbounded analytic functions in a disk d(a,R−).

Actually, urscm for polynomials in a the field E where character-
ized as the affinely rigid sets of E. And urscm of 3 points for entire
functions in K where also characterized as the affinely rigid sets of 3
points in K. That led to the conjecture: URSCM for entire functions
are the affinely rigid sets in K [22]. The proof is given at the end of
this chapter.

A first basic proposition is useful to understand the role of
URSCM:

Proposition 56.2. Let S = {a1, . . . , an} ⊂ K (respectively
S = {a1, . . . , an} ⊂ E), let a ∈ K, let R ∈ R∗

+, and let
P (x) =

∏n
i=1(x− ai). Then given any two functions f, g ∈ A(K)

(respectively f, g ∈ A(d(a,R−)), respectively in E[x]), then E(f, S) =
E(g, S) if and only if P (f)

P (g) is a constant in K∗ (respectively is an

invertible function in A(d(a,R−)), respectively is a constant in E∗).

Proof. Indeed, given f, g ∈ A(K) (respectively f, g ∈ A(d(a,R−)),
respectively f, g ∈ E[x]), for each α ∈ K (respectively α ∈ d(a,R−),
respectively α ∈ E), f and g share S if and only if we have

ωα(f − f(α)) = ωα(g − g(α)), which means that P (f)
P (g) has no zero

and no pole. Consequently, P (f)
P (g) is a constant in A(K) (respectively

is an invertible element in A(d(a,R−)), respectively is a constant
in E). �

Corollary 56.3. Let S = {a1, . . . , an} ⊂ K (respectively let S =
{a1, . . . , an} ⊂ E) with ai �= aj ∀i �= j and let P (x) =

∏n
i=1(x− ai).

Then P is a polynomial of strong uniqueness for A(K) (respectively
for E[x]) if and only if S = {a1, . . . , an} is an URSCM for A(K)
(respectively for E[x]).

Remark. Let P (x) = x4−4x3 and let j be a primitive third root of 1.
Clearly, C(P ′) = {1, j, j2} and Υ(P ) = 3, hence by Corollary 55.3,
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P is a polynomial of uniqueness for A(K). But P (jf) = jP (f) ∀f ∈
A(K), hence P is not a polynomial of strong uniqueness for A(K) (or
for E[x]).

The equivalence for a subset S = {a1, . . . , at} to be an urscm and
to define a polynomial of strong uniqueness P for A(K) does not
expand to M(K) because given f, g ∈ M(K) such that P (f) and
P (g) have the same zeros, that does not imply that they have the
same poles. However, we can note the following lemma:

Lemma 56.4. Let P (x) =
∏t
j=1(x− aj) with ai �= aj ∀i �= j. If

{a1, . . . , at} is an urscm for M(K), then P is a polynomial of strong
uniqueness for M(K).

Proof. Indeed, let f, g ∈ M(K) be such that P ◦ f = λP ◦ g with
λ �= 0. Then P ◦f and P ◦g obviously have the same zeros. But since
{a1, . . . , at} is an urscm for M(K), we have f = g. �

In the proof of the following theorems, we use Lemma 56.5 that
comes from [59]. It holds in M(K) as well as in M(d(a,R−)).

Lemma 56.5. Let F, G ∈ M(d(a,R−)) (respectively F, G ∈ M(K))

have the same poles, ignoring multiplicity, and let H = F ′′
F ′ − G′′

G′ .
Every pole of H has multiplicity order 1. Let α be a pole of F and
G. If α has same multiplicity for F and G, then H has no pole at α.
Moreover, if α has a multiplicity order 1 for both F and G, then α
is a zero of H.

Proof. Without loss of generality, we can assume α = 0. Since
both F ′′

F ′ ,
G′′
G′ are logarithmic derivative, all their poles are of order

one. Therefore, all poles of H are of order one.
Now, suppose α is a pole of order q for both F ′′

F ′ and
G′′
G′ . Consider the Laurent series of F and G at 0: F (x) =
a−q

xq + · · ·+ a−1

x + a0 +
∑∞

n=1 anx
n and G(x) =

b−q

xq + · · ·+ b−1

x + b0+
∑∞

n=1 bnx
n.

We can check that both F ′′
F ′ ,

G′′
G′ have a residue at 0 equal to −1

q+1 .

Consequently, the residue of F
′′

F ′ − G′′
G′ is null and hence F ′′

F ′ − G′′
G′ has

no pole at 0.
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Suppose now that q = 1. Then F ′′
F ′ is of the form

(

1

x

)(

2a−1 + 2a2x
2 + x3φ(x)

−a−1 + xθ(x)

)

with φ, θ meromorphic functions having no pole at 0. Similarly, G
′′
G′

is of the form
(

1

x

)(

2b−1 + 2b2x
2 + x3υ(x)

−b−1 + xη(x)

)

with υ, η meromorphic functions having no pole at 0. Consequently,
we can check that

H(x) =

(

1

x

)(

2a2x
2 + x3φ(x)

−a−1 + xθ(x)
− 2b2x

2 + x3υ(x)

−b−1 + xη(x)

)

,

and hence H(0) = 0. �

In the proof of the following theorems, we also need the following
lemma:

Lemma 56.6. Let f, g ∈ M(K)) (respectively f, g ∈ M(d(a,R−)))
be two different non-constant functions satisfying f ′′

f ′ = g′′
g′ . Then f

and g are linked by a relation of the form f = ag + b.

Proof. By Theorem 50.4, the space of solutions of the equation
y′g′′ − yg′ is of dimension at most 1. Consequently, f, g satisfy a
relation of the form f ′ = ag′ with a ∈ K, and therefore, f = ag + b
with b ∈ K. �

Notation. Let n ∈ N and let c ∈ E (respectively c ∈ K). We denote
by S(n, c) the set of zeros of the polynomial Pn,c(x) = (n− 1)(n− 2)
xn − 2n(n− 2)xn−1 + n(n− 1)xn−3 + c and let S(n, c) be the set of
zeros of Pn,c in E (respectively in K).

Theorem 56.7. Let f, g ∈ M(K) be two different non-constant
functions satisfying f−1(S(n, c)) = g−1(S(n, c)). Then, n ≤ 15.
Moreover, if f, g ∈ A(K), then n ≤ 8.

Corollary 56.8. Let n ≥ 16. Then S(n, c) is an ursim for M(K).

Corollary 56.9. Let n ≥ 9. Then S(n, c) is an ursim for A(K).
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Theorem 56.10. Let f ∈ Mu(d(a,R
−)) and let g ∈ M(d(a,R−))

be two different non-constant functions satisfying f−1(S(n, c)) =
g−1(S(n, c)). Then, n ≤ 16. Moreover, if f ∈ Au(d(a,R

−)) and if
g ∈ A(d(a,R−)), then n ≤ 9.

Corollary 56.11. Let n ≥ 17. Then S(n, c) is an ursim for
Mu(d(a,R

−)).

Corollary 56.12. Let n ≥ 10. Then S(n, c) is an ursim for
Au(d(a,R

−)).

Theorem 56.13. Let f, g ∈ M(K) be two distinct non-constant
functions satisfying E(f, S(n, c)) = E(g, S(n, c)). Then n ≤ 9. More-
over, if f, g ∈ A(K), then n ≤ 5.

Corollary 56.14. For every n ≥ 10, S(n, c) is an urscm for M(K),
and for every n ≥ 6, S(n, c) is an urscm for A(K).

Remark. In Theorem 47.6, we saw that Pn,0 is a polynomial of
uniqueness for M(K) for every n ≥ 2 and for M(d(a,R−)) for every
n ≥ 3. Here we can add some precisions:

Corollary 56.15. For every n ≥ 10, Pn,c is a polynomial of strong
uniqueness for M(K). And for every n ≥ 6, Pn,c is a polynomial of
strong uniqueness for A(K).

Theorem 56.16. Let f, g ∈ Mu(d(a,R
−)) be two different non-

constant functions satisfying E(f, S(n, c)) = E(g, S(n, c)). Then,
n ≤ 10. Moreover, if f, g ∈ Au(d(a,R

−)), then n ≤ 6.

Corollary 56.17. For every n ≥ 11, S(n, c) is an urscm for
Mu(d(a,R

−)). And for every n ≥ 7, S(n, c) is an urscm for
Au(d(a,R

−)).

Corollary 56.18. For every n ≥ 10, Pn,c is a polynomial of strong
uniqueness for Mu(d(a,R

−)). And for every n ≥ 7, Pn,c is a poly-
nomial of strong uniqueness for Au(d(a,R

−)).

Proof (of Theorems 56.7, 56.10, 56.13, and 56.16). In order
to simplify the notation, we just denote by P the polynomial Pn,c
and by S the set S(n, c). Without loss of generality, we may assume
a = 0 in Theorems 56.10 and 56.16.
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We then consider two distinct non-constant meromorphic func-
tions f, g ∈ M(K) in Theorems 56.7 and 56.16 and f, g ∈
M(d(0, R−)) in Theorems 56.10 and 56.16. And we assume
f−1(S(n, c)) = g−1(S(n, c)) in Theorems 56.7 and 56.10 and
E(f, S) = E(g, S) in Theorems 56.13 and 56.16. Without loss of gen-
erality, we may assume that all functions we consider have no zero
and no pole at 0.

Let F = 1
P (f) , G = 1

P (g) , and H = F ′′
F ′ − G′′

G′ .

We first suppose that H is identically 0. By Lemma 56.6, it is
immediate to derive that there exist A ∈ K∗ and B ∈ K such that
P (f) = P (g)

BP (g)+A . Therefore, by Theorems 43.8, we have

(1) T (r, f) = T (r, g) +O(1) (r ∈]0, R[).
We can check that P (X) + c is of the form bXn−2(X − e1)
(X − e2) + c, with b, e1, e2 ∈ E (respectively b, e1, e2 ∈ K) and
e1e2 �= 0, e1 �= e2.

We have to distinct three cases: (i) B �= 0, (ii) B = 0, A = 1,
(iii) B = 0, A �= 1.

(i) Since AB �= 0, every zero of P (g) + A
B is a pole of P (f) and

therefore is a zero of order at least n of P (g) + A
B . On the other

hand, we check that whenever A, B ∈ K∗, the polynomial P (X)+ A
B

admits at least two distinct zeros b1 and b2 of order 1 and therefore
it admits another zero l of order at most n− 2. Consequently, every
zero of g− b1 or g− b2 has order at least n and every zero of g− l has
order at least 2. By a change of variable, we can obviously assume
that g, g − l, g − b1, g − b2 have neither any zeros nor any poles at
0. Then, by applying Theorem 45.7, we obtain

2T (r, g) −N(r, g) ≤ Z(r, g − l) + Z(r, g − b1) + Z(r, g − b2) +O(1)

≤ 1

2
Z(r, g − l) +

1

n
(Z(r, g − b1) + Z(r, g − b2))

+O(1) (r ∈ J),

which leads to n ≤ 4.

(ii) In this case, we have P (f) = P (g). But by Theorem 47.6, P is a
polynomial of uniqueness, for Mu(d(0, R

−)), hence f = g.

(iii) Let λ = 1
A . We check that at least one of the two polynomials

Q1(X) = (n−1)(n−2)Xn−2n(n−2)Xn−1+n(n−1)Xn−2+c(λ−1)
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and Q2(X) = (n− 1)(n− 2)Xn − 2n(n− 2)Xn−1 + n(n− 1)Xn−2 +
c( 1λ − 1) admits n distinct zeros. Indeed, suppose this not true. We
note that Q′

1(X) = Q′
2(X) = P ′(X) = n(n−1)(n−2)Xn−3(X−1)2.

Consequently, if both Q1 and Q2 admit at least one zero of order
>1, then this must be 1 because it cannot be 0. But then, we have
c(λ − 1) = c( 1λ − 1) = −2. Since c �= 0, and since λ �= 1, this implies
λ = −1 and c = 1, which is excluded by hypothesis.

Now, since λ and 1
λ play symmetric roles, without loss of general-

ity, we can assume that Q1 admits n distinct zeros b1, . . . , bn. Thus,
putting γ(X) = λXn−2(n− 1)((n− 2)X2 − 2n(n− 2)X + n(n− 1)),
we have

(2) Q1(f) = γ(g).

So, applying Theorem 45.7, we obtain

(n− 1)T (r, f) ≤
n
∑

j=1

Z(r, f − bj) +N(r, f) +O(1) (r ∈ J).

On the other hand, we have

n
∑

j=1

Z(r, f − bj) ≤ Z(r,Q1(f)) = Z(r, g) + Z(r, g − e1) + Z(r, g − e2)

≤ 3T (r, g).

But by (2), it is seen that T (r, g) ≤ T (r, f) + O(1) (r ∈ J), hence
finally

(3) (n− 1)T (r, f) ≤ 3T (r, f) +N(r, f) +O(1) (r ∈ J).

Consequently, we have n ≤ 5. Moreover, if f, g ∈ A(d(0, R−)), then
N(r, f) = 0, and then (3) leads to n ≤ 4. This finishes proving the
claims of the theorems when H = 0.

Henceforth, we suppose that H is not identically 0 and apply
Fujimoto’s method [60]. Let α be a zero of f − aj , for some j.
Then both P (f) and P (g) vanish at α. So, by Lemma 43.4, we have
∑n

j=1 Z(r, f − aj) = Z(r, P (f)) = Z(r, P (g)). According to Lemma

56.5, if both P (f), P (g) have a zero of order one, then H also has a
zero. Else, at least one of the two functions P (f) and P (g) admits α
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as a zero of order strictly greater than 1, and then (since all zeros of
P are simple), at least one of the two functions f ′, g′ has a zero at
α, while α is a zero f − ai for some i and a zero of g− aj for some j.
Consequently, we obtain

(3A)
n
∑

j=1

Z(r, f −aj) ≤ Z(r,H)+Z(r, f ′)+Z(r, g′)−ZS0 (r, f ′)−ZS0 (r, g′).

Moreover, in the hypothesis of Theorems 56.13 and 56.16, since
any zero α of f − ai is a zero of certain g − aj with the same multi-
plicity order, we have ωα(f

′) = ωα(g
′). Consequently,we obtain this

improvement of (3A):

(3B)

n
∑

j=1

Z(r, f − aj)

≤ Z(r,H) +
1

2

[

Z(r, f ′) + Z(r, g′)− Z
S
0 (r, f

′)− Z
S
0 (r, g

′)
]

.

By Corollary 43.6, we know that Z(r,H) ≤ N(r,H) +O(1) (r ∈ J),
hence

n
∑

j=1

Z(r, f − aj) ≤ N(r,H) + Z(r, f ′) + Z(r, g′)− Z
S
0 (r, f

′)

− Z
S
0 (r, g

′) +O(1) (r ∈ I)

(respectively r ∈ J) and similarly

n
∑

j=1

Z(r, g − aj) ≤ N(r,H) + Z(r, f ′) + Z(r, g′)− Z
S
0 (r, f

′)

− Z
S
0 (r, g

′) +O(1) (r ∈ I)

(respectively r ∈ J), hence

(4A)
n
∑

j=1

Z(r, f − aj) + Z(r, g − aj)

≤ 2N(r,H) + 2[Z(r, f ′) + Z(r, g′)− Z
S
0 (r, f

′)− Z
S
0 (r, g

′)].
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And in the hypothesis of Theorems 56.13 and 56.16, by (3B), we
obtain

(4B)
n
∑

j=1

Z(r, f − aj) + Z(r, g − aj)

≤ 2N(r,H) + [Z(r, f ′) + Z(r, g′)− Z
S
0 (r, f

′)− Z
S
0 (r, g

′)].

Consider now N(r,H), and let η be a pole of H. Either η is a zero
of F ′G′ or it is a pole of FG. Let ϕ be the counting function of the
poles of H occurring when FG has a pole. So, we have

(5) N(r,H) = Z(r, F ′G′) + ϕ(r).

Suppose first η is a zero of F ′ but is not a pole of FG. Either η is a
zero of f ′, or it is a zero of P ′(f), or it is a pole of f . Consequently, η

is not a zero of P (f) and we have Z(r, F ′)≤Z
S
0 (r, f

′)+Z(r, P ′(f))+
N(r, f). Since

P ′(X) = n(n− 1)(n − 2)(X − 1)2Xn−3,

we have Z(r, P ′(f)) ≤ 2T (r, f), Z(r, P ′(g)) ≤ 2T (r, g), and therefore,

(6) Z(r, F ′) ≤ Z
S
0 (r, f

′) + 2T (r, f) +N(r, f).

Similarly, if η is a zero of G′ but is not a pole of FG, we have

(7) Z(r,G′) ≤ Z
S
0 (r, g

′) + 2T (r, g) +N(r, g).

Suppose now η is a pole of FG. Then η is a zero of P (f) and
P (g) (we note that when η is a zero of P (f), it is a zero of P (g),
and vice-versa), and then by Lemma 56.5, it may not be a pole of H
when it is a zero of the same order of P (f) and P (g). Consequently,
in the hypothesis of Theorems 56.7 and 56.10, ϕ(r) satisfies

ϕ(r) ≤ Z(r, f ′)− Z
S
0 (r, f

′) + Z(r, g′)− Z
S
0 (r, g

′),

and therefore, by (5), (6), and (7), we obtain

N(r,H) ≤ Z
S
0 (r, f

′) + Z
S
0 (r, g

′) + 2T (r, f) + 2T (r, g) +N(r, f)

+N(r, g) + Z(r, f ′)− Z
S
0 (r, f

′) + Z(r, g′)− Z
S
0 (r, g

′),
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hence

N(r,H) ≤ 2T (r, f) + 2T (r, g) +N(r, f) +N(r, g)

+ Z(r, f ′) + Z(r, g′).

Thus, by (4A), in the hypothesis of Theorems 56.7 and 56.10, we
obtain

(8A)

n
∑

j=1

Z(r, f − aj) + Z(r, g − aj)

≤ 4(T (r, f) + T (r, g)) + 2(N (r, f) + 2N (r, g))

+ 4(Z(r, f ′) + Z(r, g′)) +O(1).

Now, in the hypotheses of Theorems 56.13 and 56.16, since the order
of a zero is the same for P (f) and P (g), the counting function ϕ is
identically 0, so by, (5) (6), and (7), we have

N(r,H) ≤ 2T (r, f) + 2T (r, g) +N(r, f) +N(r, g)

+ Z
S
0 (r, f

′) + Z
S
0 (r, g

′),

and therefore, by (4B), we obtain

(8B)
n
∑

j=1

Z(r, f − aj) + Z(r, g − aj)

≤ 4(T (r, f) + T (r, g)) + 2(N (r, f) + 2N (r, g))

+ (Z(r, f ′) + Z(r, g′)) + (Z
S
0 (r, f

′) + Z
S
0 (r, g

′)) +O(1).

Now, applying Theorem 45.7 to f and g at the points aj (1 ≤ j ≤ n),
we have

(n− 1)T (r, f) ≤ N(r, f) +
n
∑

j=1

Z(r, f − aj)− ZS0 (r, f
′)

+O(1)− log r (r ∈ I)
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(respectively r ∈ J)

(n− 1)T (r, g) ≤ N(r, g) +

n
∑

j=1

Z(r, g − aj)− ZS0 (r, g
′)

− log r +O(1), (r ∈ I)

(respectively r ∈ J), hence

(n− 1)(T (r, f) + T (r, g))

≤ N(r, f) +N(r, g) +

n
∑

j=1

Z(r, f − aj) + Z(r, g − aj)− ZS0 (r, f
′)

− ZS0 (r, g
′)− 2 log r +O(1) (r ∈ I)

(respectively r ∈ J), hence by (8A), in the hypotheses of Theorems
56.7 and 56.10, we obtain

(9A) (n− 1)(T (r, f) + T (r, g))

≤ 3(N (r, f) +N(r, g)) + 4(T (r, f) + T (r, g)) + 4(Z(r, f ′)

+Z(r, g′))− 2 log r +O(1) (r ∈ I)

(respectively r ∈ J).
By Corollary 15, we can derive

(n− 1)(T (r, f) + T (r, g))

≤ 3(N (r, f) +N(r, g)) + 4(T (r, f) + T (r, g)) + 4(Z(r, f) + Z(r, g))

+ 4(N (r, f) +N(r, g)) − 10 log r +O(1) (r ∈ I)

(respectively r ∈ J).

Consequently, in Theorem 56.7, we have n ≤ 15, and in Theorem
56.10, we have n ≤ 16. Moreover, if f, g belong to A(K), then in
Theorem 56.7, we have n ≤ 8, and if f, g belong to Au(d(0, R

−)), in
Theorem 56.10, we obtain n ≤ 9.
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By (8B), in the hypotheses of Theorems 56.13 and 56.16, we
obtain

(n− 1)(T (r, f) + T (r, g))

≤ 3(N(r, f) +N(r, g)) + 4(T (r, f) + T (r, g))

+ Z(r, f ′) + Z(r, g′)− 2 log r +O(1) (r ∈ I)

(respectively r ∈ J).
Hence, by Corollary 43.15, we obtain (n− 1)(T (r, f) + T (r, g)) ≤

3(N (r, f) + N(r, g)) + 4(T (r, f) + T (r, g)) + (Z(r, f) + Z(r, g)) +
N(r, f) + N(r, g) − 4 log r + O(1) (r ∈ I) (resp. r ∈ J). Conse-
quently, n ≤ 9 in Theorem 56.13 and n ≤ 10 in Theorem 56.16.
Moreover, if f, g belong to A(K) or to Au(d(0, R

−)), then we obtain
(n−1)(T (r, f)+T (r, g)) ≤ 4(T (r, f)+T (r, g))+(Z(r, f)+Z(r, g))−
4 log r + O(1) (r ∈ J). So, if f, g belong to A(K), we have n ≤ 5,
and if f, g ∈ Au(d(0, R

−)), we have n ≤ 6. �

We now characterize all URSCM for A(K). First, we have to recall
Picard–Berkovich Theorem [9].

Theorem 56.19 ((Berkovich) [9]). Let F (x, y) = 0 be the equa-
tion of an algebraic curve of genus ≥ 1. There exist no functions
f, g ∈ M(K) such that F (f(t), g(t)) = 0.

We also recall a classical theorem in algebraic geometry:

Theorem 56.20 ((Picard) [81]). Let F (x, y) ∈ E[x, y] be irre-
ducible. If the algebraic curve of equation F (x, y) = 0 has genus 0,
there exist rational functions φ, θ ∈ K(t) and R(x, y) ∈ K(x, y) such
that, setting t = R(x, y), we have F (φ(t), θ(t)) = 0 ∀t ∈ E.

We can now explain the method to characterize URSCM for A(K)
in the general case.

Proposition 56.21. Let F (x, y) ∈ K[x, y] and let f, g ∈ A(K) be
non-constant and satisfy F (f(x), g(x)) = 0. There exists h ∈ A(K)
and A, B ∈ K[x] such that f = A(h), g = B(h).
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Proof. There obviously exists an irreducible factor F0(x, y) of F
such that F0(f, g) = 0. Since f, g are not constant, by Theorem
56.19, the curve Λ defined as F0(x, y) = 0 has genus zero. There-
fore, by Theorem 56.20, there exist rational functions φ, θ ∈ K(t)
and R(x, y) ∈ K(x, y) such that, setting t = R(x, y), we have
F0(φ(t), θ(t)) = 0 ∀t. Now, let h = R(f, g). Hence by definition,
h belongs to M(K). Then, f = φ(h), g = θ(h).

Now, since f, g belong toA(K), hmust omit φ−1(∞) and θ−1(∞).
But by Theorem 29.23, h can’t have two exceptional values in K ∪
{∞}. Consequently, φ−1(∞) = θ−1(∞) and this is reduced to a single
point. Therefore, up to a projective linear change in coordinates, we
can assume that φ−1(∞) = θ−1(∞) = {∞} and that h, φ, θ omit ∞.
But then h belongs to A(K) and both φ, θ are polynomials. �

Lemma 56.22. Let h ∈ A(K) be non-constant and let φ, θ, P ∈
K[x], with deg(P ) = n ≥ 1, deg(φ) = t ≥ deg(θ) and t ≥ 1. Suppose
there exists C ∈ K∗ such that P (φ(h)) = CP (θ(h)). Then φ(h) is of
the form Aθ(h) +B, with An = C.

Proof. We can write φ(x) =
∑t

j=0 ajx
j, θ(x) =

∑t
j=0 bjx

j. Let

P (x) =
∑n

k=0 lkx
k and let M = Q[a0, . . . , at, b0, . . . , bt, l0, . . . , ln].

Then, K contains elements υ transcendental over M . Since h is not
constant, we can take z ∈ K such that h(z) = υ. Then, φ(h(z)) =
∑t

j=0 ajυ
j , θ(x) =

∑t
j=0 bjυ

j . Now, we note that all powers of υ

strictly greater than t(n − 1) in
∑t

j=0 ajυ
j involve ln. First, we see

that deg(θ) = t and that
(

at
bt

)n
= C. Let A = at

bt
. By comparing all

powers strictly greater than t(n− 1) in
∑t

j=0 ajυ
j and in

∑t
j=0 bjυ

j ,
we can see that aj = Abj ∀j = 1, . . . , t, which ends the proof. �

Lemma 56.23. Let S be an affinely rigid subset of K. Let g ∈ A(K)
be non-constant and let f = ag + b, with a ∈ K∗ and b ∈ K. If
f−1(S) = g−1(S), then f = g.

Proof. Since f has no exceptional value, we have f(f−1(S)) = S.
Suppose f−1(S) = g−1(S). Then,

(1) f(g−1(S)) = S.

Now, aS + b = ag(g−1(S) + b = f(g−1(S)), and therefore by (1),
aS + b = S. Thus, the similarity φ defined by φ(x) = ax + b pre-
serves S. But since S is affinely rigid, φ is the identity, hence f = g.

�
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We can now present the conclusion of this method due to W.
Cherry and C.C. Yang:

Theorem 56.24 ((W. Cherry and C.C. Yang) [31]). A finite
subset S of K is an URSCM for A(K) if and only if it is affinely
rigid.

Proof. On one hand, it is obvious that a finite subset S of K which
is not affinely rigid is not an URSCM for K[x] and therefore for A(K).
Conversely, let S = {s1, . . . , sn} be a finite affinely rigid subset S
of K and let f, g ∈ A(K) satisfy E(f, S) = E(g, S). Let P (x) =
∏n
j=1(x− sj). Since E(f, S) = E(g, S), P (f) and P (g) have the same

zeros, counting multiplicity. Consequently, P (f)
P (g) belongs to M(K)

but has no zero and no pole. Hence, it is a constant C. Now, setting
F (x, y) = P (x) − CP (y), we have F (f, g) = 0. Consequently, by
Proposition 56.21, there exists h ∈ A(K) and φ, θ ∈ K[x] such that
f = φ(h), g = θ(h). Now, by Lemma 56.22, f is of the form ag + b
with a ∈ K∗ and b ∈ K, satisfying further an = C. Then, since S is
affinely rigid, by Lemma 56.23, we have f = g, which completes the
proof. �

Similarly, we can derive Theorem 56.25:

Theorem 56.25. A finite subset S = {a1, . . . , an} of E is affinely
rigid if and only if it is an urscm for E[x].

Proof. If S is an urscm, of course, it is affinely rigid. Now suppose
S is affinely rigid, let P, Q ∈ E[x] be such that E(P, S) = E(Q,S) and
let F be an algebraic extension of Q containing S and all coefficients
of P and Q. There exists a Q-isomorphism φ from F into Cp and
then we can check that φ(S) is affinely rigid and hence is an urscm in
Cp for A(Cp) and hence for Cp[x]. Consequently, φ(P ) = φ(Q) and
hence P = Q. �

Corollary 56.26. A finite subset S = {a1, . . . , an} of K

(respectively of E) is affinely rigid if and only if the polynomial
P (x) =

∏n
i=1(x− ai) is a polynomial of strong uniqueness for A(K)

(respectively for E[x]).
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Remark. The characterization made in characteristic 0 doesn’t hold
in characteristic p �= 0. The following example is given in [23]. Let
F be an algebraically closed field of characteristic p ≥ 3 and let
P (X) = Xp + (X − 1)p−1. Let f(x) = xp−1 and g(x) = (x − 1)p−1.
Then we can check that P (f(x)) = P (g(x)), hence the set S is not
an URSCM for A(K).

However, S is a set of p distinct points which are the p roots

of 1 of order p + 1, other than 1, because P (X) = Xp+1−1
X−1 . Conse-

quently,
∑

s∈S s = −1. We check that S is affinely rigid. Suppose
there exists a similarity φ, say φ(x) = ax + b, satisfying φ(S) = S.
Then,

∑

s∈S φ(s) =
∑

s∈S s = −1, hence
∑

s∈S as + b = −1. But
∑

s∈S as + b = a
∑

s∈S s + pb = a
∑

s∈S s = −a, hence a = 1. Thus,
φ(s) = s + b, hence (s + b)p+1 = 1, therefore sp+1 + spb + sbp +
bp+1 = 1, and hence

(1) bp + sbp−1 + sp = 0.

This is true for all s ∈ S, so we can add these p relations and
obtain

0 = pbp + bp−1
∑

s∈S
s+

∑

s∈S
sp = −bp−1 +

(

∑

s∈S
s

)p

= −bp−1 + (−1)p.

Thus, bp−1 = −1. Consequently, by (1), we have b = sp − s.
Here we note that −1 belongs to S because p ≥ 3. Let S∗ =

S\{−1}. Then,

(q − 1)b =
∑

s∈S∗
sp −

∑

s∈S∗
s = 0,

hence b = 0, which ends the proof (another argument lets us conclude
when p = 2).
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Chapter 57

Other Urscm, Usim,
and Non-Urscm

Throughout this chapter, K is of characteristic 0.
We denote by E an algebraically closed field of characteristic 0.

The field K is supposed to have characteristic 0.
In Chapter 56, we have constructed sets of n points which are

ursims for p-adic entire functions whenever n ≥ 9 and are ursims for
p-adic meromorphic functions whenever n ≥ 16. Here, we construct
new sets which are ursims of n points for E[x] and for A(K) for
every n ≥ 9 but then, we show that such sets are never urscm and
of course are not ursim for M(K) and for E(x), although they are
not preserved by any Moebius functions, a contradiction to a natural
expectation.

Next, we also construct urscm for unbounded analytic functions
inside a disk d(a,R−), with the use of the the Nevanlinna theory on
three small functions.

Lemma 57.1. Let Q(x) = xn − xm + k ∈ E[x] with m < n,
g.c.d.(m,n) = 1, k ∈ K∗. If Q admits a multiple zero c, then
mm(n−m)(n−m) = nnkn−m.

Proof. Suppose Q admits a multiple zero c. Then c �= 0 and
we have

(1) m = ncn−m.

573
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Since g.c.d.(m,n) = 1, p cannot divide both m and n. Hence, by
(1), p cannot divide m or n. Now, we can derive P (c) = cn − n

mc
n +

k = 0, and hence

(2) (n −m)cm = kn.

Therefore, by (1) and (2), we have

cn(n−m) =
kn−mmn−m

(n−m)n−m
=
mn

nn
,

hence

kn−m =
mm(n −m)n−m

nn
. �

Corollary 57.2. Let P (x) = xn − xm + k ∈ E[x] with m < n,
g.c.d.(m,n) = 1, k �= 0, and mm(n −m)(n−m) �= kn−mnn. Then P
admits n distinct zeros.

Lemma 57.3. Let P (x) = xn − xm + k ∈ E[x] with m < n,
g.c.d.(m,n) = 1, k �= 0 and let c ∈ E\{0, 1}. Moreover, we assume
that

mm(n −m)(n−m) �= nn(1− u)n−mkn−m

for every u ∈ E such that un−m = (−1)n−m. Then one of the poly-
nomials P − ck and P − k

c admits n distinct zeros.

Proof. Suppose that both P − kc and P − kc−1 have a zero of
multiple order. By Corollary 57.2, we have

nnkn−m(1− c)n−m = nnkn−m(1− c−1)n−m = mm(n −m)(n−m),

hence
(

1−c
1−c−1

)

is an (n − m)th root t of 1. Resolving the equation
shows that either c = 1 or c = −t. But c = 1 contradicts the rela-
tion nnkn−m(1 − c)n−m = mm(n − m)(n−m), hence c = −t. But
then, 1 − c = 1 + t. Putting u = −t, we have (u)n−m = (−1)n−m
whereas nnkn−m(1 − u)n−m = mm(n −m)(n−m), which contradicts
the hypothesis. So, one of the two polynomials P −kc and P − k

c has
two distinct zeros. �
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Proposition 57.4. Let P (x) = xn − xm + k ∈ K[x] with m < n be
such that mm(n −m)(n−m) �= kn−mnn(1 − u)(n−m) for every u ∈ K

such that un−m = (−1)n−m. Let f, g ∈ A(K)\K (respectively let
Au(d(a,R

−))) satisfy P (f) = λP (g) with λ ∈ K∗. In the following
two cases, we have λ = 1:

(i) f, g ∈ A(K)\K, m ≥ 2,
(ii) f, g ∈ Au(d(α,R

−)), m ≥ 3.

Proof. Suppose λ �= 1. By Theorem 43.3, we first note that
T (r, f) = T (r, g) + O(1). If f, g ∈ Au(d(α,R

−)), we can obviously
assume α = 0.

By Lemma 57.3, one of the two polynomials xn − xm + k(1− 1
λ)

and xn − xm + k(1 − λ) admits n distinct zeros. Without loss of
generality, we can suppose that the polynomial Q(x) = xn − xm +
k(1 − 1

λ) has n distinct zeros. And by hypothesis, we have λQ(g) =
fn − fm.

Now, Q(x) is of the form
∏n
i=1(x− ei) with ei �= ej ∀i �= j. Then

we have fn − fm = λ
∏n
i=1(g − ei). Consequently,

Z(r,Q(g)) − Z(r,Q(g)) =

n
∑

j=1

Z(r, g − ej)− Z(r, g − ej)

= Z(r, fn − fm))− Z(r, fn − fm),

and of course Z(r, fn−fm))−Z(r, fn−fm) ≥ (m−1)Z(r, f), hence

(1) Z(r,Q(g)) − Z(r,Q(g)) ≥ (m− 1)Z(r, f).

But since f ∈A(K) or f ∈Au(d(0, R
−)), we have Z(r, f)=T (r, f) +

O(1), therefore, by (1), we obtain

(2) Z(r,Q(g)) − Z(r,Q(g)) ≥ (m− 1)T (r, f) +O(1).

On the other hand, by Lemma 43.14, we have Z(r,Q(g)) −
Z(r,Q(g)) ≤ T (r, g) − log r + O(1). Therefore, by (2), (m − 1)
T (r, f) ≤ T (r, g) − log r +O(1). And since T (r, f) = T (r, g) +O(1),
we can derive (m− 1)T (r, f) ≤ T (r, f)− log r+O(1). Hence, if f, g
belong to A(K), we have m ≤ 1, and if f, g belong to Au(d(0, R

−)),
we have m ≤ 2, a contradiction in both cases. Consequently, if f, g
belong to A(K)\K and if m ≥ 2, we can conclude λ = 1. And simi-
larly, if f, g belong to Au(d(0, R

−)) and if m≥ 3, we have λ=1. �



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch57 FA1 page 576

576 Value Distribution in Ultrametric Analysis and Application

Now, we use a slightly different method to consider the problem
P (f) = λP (g) when f, g are meromorphic.

Theorem 57.5. Let P (x) = xn− xm+ k with m < n and let f, g ∈
M(K)\K (respectively let f, g ∈ Mu(d(0, R

−))) be such that P (f) =
λP (g), with λ ∈ K∗. If f, g ∈ M(K)\K and 2m ≥ n + 3, or if
f, g ∈ Mu(d(0, R

−)) and 2m ≥ n + 4, then λ = 1. Moreover, if
f, g ∈ A(K)\K and 2m ≥ n + 2 or if f, g ∈ Au(d(0, R

−)) and
2m ≥ n+ 3, then λ = 1.

Proof. Suppose λ �= 1. By Theorem 43.3, we first note that
T (r, f) = T (r, g) + O(1). If f, g ∈ Mu(d(α,R

−)), we can obvi-
ously assume α = 0. Let F (x) = f(x)n − f(x)m. Applying Theo-
rem 45.7 to F , we have T (r, F ) ≤ Z(r, F ) + Z(r, F − (λ − 1)) +
N(r, F )− log r +O(1), hence nT (r, f) ≤ Z(r, f) +Z(r, fn−m − 1) +
Z(r, g) + Z(r, gn−m − 1) + N(r, f) − log r + O(1). Consequently,
nT (r, f) ≤ (2(n − m + 1) + 1)T (r, f) − log r + O(1). Finally, if
f, g ∈ M(K)\K, we have 2m ≤ n+ 2, and if f, g ∈ Mu(d(0, R

−)),
we have 2m ≤ n+3. Consequently, we have proven that λ = 1 in the
following two cases:

(i) f, g ∈ M(K)\K with 2m ≥ n+ 3,
(ii) f, g ∈ Mu(d(0, R

−)) with 2m ≥ n+ 4.

Particularly, if f, g ∈ A(K)\K, we have 2m ≤ n + 1, and if
f, g ∈ A(d(0, R−)), we have 2m ≤ n + 2. Consequently, we have
proven that λ = 1 in the following two cases:

(i) f, g ∈ A(K)\K with 2m ≥ n+ 2,
(ii) f, g ∈ Au(d(0, R

−)) with 2m ≥ n+ 3. �

Remark. If f, g ∈ A(K)\K and if 2m ≤ n+2, by Proposition 57.5,
we have λ = 1, even if the hypothesis mm(n −m)(n−m) �= kn−mnn
(1 − u)(n−m) for every u ∈ K such that un−m = (−1)n−m is not
satisfied. Similarly, when f, g ∈ Au(d(0, R

−)) with 2m ≥ n + 3,
when mm(n−m)(n−m) �= kn−mnn(1− u)(n−m) for every u ∈ K such
that un−m = (−1)n−m is not satisfied.

Lemma 57.6. Let P (x) = xn − xm + k with k �= 0, m < n, n ≥ 3,
g.c.d.(m,n) = 1. Let f, g ∈ A(K)\K (respectively f, g ∈
Au(d(α,R

−))) satisfy P (f) = P (g). Then, f = g.



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch57 FA1 page 577

Other Urscm, Usim, and Non-Urscm 577

Proof. If f, g belong to Au(d(α,R
−)), we can obviously suppose

α = 0. Let h = f
g and suppose h �= 1. Then, gn−m = hm−1

hn−1 . We note

that if f, g belong to Au(d(0, R
−)), then h belongs to Mu(d(0, R

−))
because Mb(d(0, R

−)) is a field.
Let G be the group of nth roots of 1 and let G′ be the group ofmth

roots of 1. Since g.c.d.(n,m) = 1, G\G′ contains no element different
from 1. So, G has n distinct elements and G\(G ∩ G′) has n − 1
distinct elements. Now, h(x) cannot take a value in G\G′ because
this would be a zero of hn− 1 but not a zero of hm− 1 and therefore
it would be a pole of gn−m that lies in A(K) (resp. in Au(d(0, R

−))).
Since G\G ∩ G′ contains at least two different elements u1 and u2,
h must take at least one of these two values, a contradiction as we
just saw. Consequently, h is identically 1. �

Notation. Given k ∈ K∗ and m, n ∈ N∗, we set Qn,m,k(x) = xn −
xm + k ∈ K[x] and Qn,k(x) = xn − xn−1 + k ∈ K[x], and we denote

by Y (n, k) the set of zeros of Qn,k. Moreover, we put un = (n−1)n−1

nn .

Theorem 57.7. If 2≤m (respectively 3≤m), with g.c.d.(m,n)= 1
and mm(n −m)(n−m) �= kn−mnn(1 − u)(n−m) for every u ∈ K such
that un−m = (−1)n−m, then Qn,m,k is a polynomial of strong unique-
ness for A(K) (respectively for Au(d(α,R

−))).

Proof. By Proposition 57.4, we have λ = 1, therefore, fn − fm =
gn − gm, and then, by Lemma 57.6, f = g. That ends the proof. �

Theorem 57.8. Let k ∈ K\{0, un2 }. Then Yn,k is an ursim for A(K)
for every n ≥ 9. Moreover, Yn,k is an ursim for A(K) for every n ≥ 3,
provided that k �= un whenever 3 ≤ n ≤ 8.

Proof. Suppose first that n ≥ 9, and suppose that f, g ∈ A(K) are
not constant and satisfy f−1(Y (n, k)) = g−1(Y (n, k)). We put F =

1
Qn,k(f)

, G = 1
Qn,k(g)

,H = F ′′
F ′ − G′′

G′ . Then F, G have the same poles,

ignoring multiplicity. Without loss of generality, we may obviously
assume that ω0(F )=ω0(G)= ω0(F

′)=ω0(G
′)=ω0(f)=ω0(g)= 0,

and F (0) �= cj , G(0) �= cj ∀j = 1, 2, 3. Following the same method
as in Theorem 56.7, we can prove that H is identically 0.

So, we may assume H = 0. Then there exist a, b ∈ K such that

Qn,k(f) =
Qn,k(g)

aQn,k(g)+b
, with b �= 0. But, since f, g lie in A(K), a must

be equal to zero. Thus, we have Qn,k(f) =
1
bQn,k(g). Now, let c ∈ K
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satisfy cn = 1
k . Then we have Qn,k(x) = k((cx)n − c(cx)n−1 + 1).

Setting P (y) = yn − cyn−1 + 1, we have P (cf) = 1
bP (cg). But as

n ≥ 9, by Proposition 57.4, we check that b = 1, hence cfn− fn−1 =
cgn − gn−1

Let h = f
g . From this equality, we can easily obtain cg = −hn−1−1

hn−1 .
Clearly, if h is not constant, hn − 1 admits zeros which are not zeros
of hn−1 − 1, a contradiction with the hypothesis g ∈ A(K). Hence, h
is constant and so are f, g, a contradiction with the hypothesis.

Suppose now that f, g ∈ A(K) satisfy E(f, Y (n, k)) =
E(g, Y (n, k)) with n ≥ 3 and that k �= un whenever 3 ≤ n ≤ 8. We
first note that if n ≥ 9, Yn,k is an urscm for A(K), hence by Lemma
56.1, it is an ursim for A(K). Suppose now 3 ≤ n ≤ 8. Then, by
Proposition 56.2, there exists λ ∈ K∗ such that Qn,k(f) = λQn,k(g).
But by Proposition 57.4, λ = 1. Consequently, fn−fn−1 = gn−gn−1,
and hence, by Lemma 57.6, we have f = g. Therefore, Qn,k is a poly-
nomial of strong uniqueness for A(K). Moreover, by Corollary 57.2,
Qn,k has no multiple zero since k �= un. Consequently, by Corollary
56.3, Y (n, k) is an urscm for every n ≥ 3, provided k �= un whenever
3 ≤ n ≤ 8. That finishes the proof of Theorem 57.8. �

Corollary 57.9. Let k ∈ E\{0, un2 }. Y (n, k) is an ursim for E[x]
for every n ≥ 9 and Y (n, k) is an urscm for E[x] for every n ≥ 3
provided that k �= un whenever 3 ≤ n ≤ 8.

Proof. Indeed, there exists a finite extension of Q containing
Y (n, k) and all coefficients of f and g. As we can embed this exten-
sion into Cp so we can transfer results from Cp[x] to E[x]. �

Remarks. Concerning urscm of 3 points forA(K) or for polynomials,
the last statement of Theorem 57.8 provides us with another proof
that every affinely rigid subset of 3 elements in K is urscm for A(K)
(and therefore every affinely rigid subset of 3 elements in E is urscm
for E[x]). Indeed, given a subset of 3 points that is not affinely rigid,
by Corollary 1.7, through an affine transformation, either they are
the zeros of a polynomial of the form x3 − k or they are the zeros of
a polynomial of the form x3 − x which can also be transformed to
3
√
3(u3−u2+ 2

27 ) and then the case k = 2
27 is excluded by hypothesis

on k. Consequently, if a subset of K of 3 elements is affinely rigid, it
is an urscm for A(K), and of course, if a subset of E of 3 elements
is affinely rigid, it is an urscm for E[x]. Recall that more generally,
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in [22], it was proven just by classical techniques that all affinely rigid
subsets of E are urscm for polynomials.

As we saw in Theorem 56.24, urscm for E[x] and for A(K) are
characterized as the affinely rigid sets, similarly, it would be natural
to think that the urscm for E(x) and for M(K) are the sets which
are not preserved by any Moebius function other than the identity.
This is definitely false, as we are going to see [43]. See also [96].

Lemma 57.10. Let f, g ∈ M(K) such that fn(f − a) = gn(g − a)

and let h = f
g . Then, f = a(n+2)

n+1

(

hn+1−1
hn+2−1

)

h and g = a(n+2)
n+1

(

hn+1−1
hn+2−1

)

.

Proof. We have gnhn − gn−1 = gn − gn−1, hence gn(hn − 1) =

gn−1(hn−1 − 1), hence g = hn−1−1
hn−1 and then f = hg. �

Corollary 57.11. Let h ∈ E(x) be non-constant, and let n ∈ N be

such that n ≥ 3. Let g = hn−1−1
hn−1 , and let f = gh. Then, fn(f − 1) =

gn(g−1), E(f, Y (n, k)) = E(g, Y (n, k)). Moreover, f and g have the
same poles, counting multiplicity.

Corollary 57.12. Let k ∈ E\{0, un}. Then Y (n, k) is not an urscm
for E(x) whenever n ∈ N∗.

Remark. Obviously, any set which is not an urscm for E(x) cannot
be an urscm for M(K), cannot be an ursim for E(x), and cannot
be an ursim for M(K). In fact, we do not know any example of an
urscm for a family of functions F which is not also an ursim for F .
For example, as noted in [22], sets of the form {a, a+h, a+3h}, with
a ∈W, h ∈ E∗, are urscm for E[x] but are they also ursims for E[x]?

Theorem 57.13. Let k ∈ E\{0, un}. For every n ≥ 5, there exists
no Moebius function h preserving Y (n, k), except the identity.

Proof. We suppose that a Moebius function h defined as h(x) =
ax+b
cx+d (with ad − bc �= 0) satisfies h(Y (n, k)) = Y (n, k) for some
n ≥ 5. Let R(x) = Qn,k(h(x)). Then R is a rational function of the

form
∑n

j=0 qjx
j

(cx+d)n . Since h(Y (n, k)) = Y (n, k), we note that the set of

zeros of R is Y (n, k) and therefore Y (n, k) is the set of zeros of
∑n

j=0 qjx
j . Consequently, this polynomial is of the form λQn,k, with

λ ∈W ∗. In particular, we have

(1) q1 = q2 = q3 = 0.
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On the other hand, we have
∑n

j=0 qjx
j = (ax+ b)n − (cx + d)(ax +

b)n−1 + k(cx+ d)n, so we obtain

q1 = nabn−1 − (n− 1)abn−2d− bn−1c+ kncdn−1,

q2 =

(

n
2

)

a2bn−2 −
(

(n− 1)
2

)

a2bn−3d− (n− 1)abn−2c

+ k

(

n
2

)

c2dn−2,

q3 =

(

n
3

)

a3bn−3 −
(

(n− 1)
3

)

a3bn−4d−
(

(n− 1)
2

)

a2bn−3c

+ k

(

n
3

)

c3dn−3.

We now compute A = a2q1
n − 4abq2

n(n−1) +
6b2q3

n(n−1)(n−2) and obtain A =

cdn−3k(ad− bc)2. But of course, by (1), we have A = 0. Since k(ad−
bc) �= 0, we must have cd = 0.

First, suppose d = 0. Then, we have

(2) bc �= 0.

But, as q1 = 0, this implies nabn−1 = bn−1c, i.e.

(3) na = c.

And as q2 = 0, we have n(n−1)
2 a2bn−2 = (n− 1)abn−2c, i.e.

(4) na2 = 2ac.

By (3) and (4), we check that ac = 0, hence by (2), a = 0, which
contradicts (2) and (3).

Thus, we are led to the hypothesis d �= 0, c = 0. Then, ad �= 0.
And then by (1) we obtain nabn−1 = (n− 1)abn−2d, i.e.

(5) nbn−1 = (n− 1)bn−2d.

And na2bn−2 = (n− 2)a2bn−3d, i.e.

(6) nbn−2 = (n− 2)bn−3d,
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hence by (5) and (6), (n − 2)bn−2d = (n − 1)bn−2d, and finally,
b = 0. So, h(x) = ax

d . Taking d = 1, we obtain
∑n

j=0 qjx
j =

anxn − an−1xn−1 + k, which must be proportional to Qn,k(x). In

particular, xn − xn−1

a + k
an = xn − xn−1 + k and therefore a = 1.

This finishes showing that the identity is the only Moebius function
preserving Y (n, k). �

Remark. In Theorem 57.13, the hypothesis n ≥ 5 is necessary as
shown in Theorem 57.14:

Theorem 57.14. Every urscm for E(x) or for M(K) has at least
five points.

Proof. Indeed, given any four distinct points α, β, γ, δ ∈ E, there
does exist a Moebius function h, different from the identity, satisfying
h(α) = β, h(β) = α, h(γ) = δ, h(δ) = γ. Indeed, h is of the form

h(x) =
x(αβ − γδ) − αβ(γ + δ) + γδ(α + β)

x(α+ β − γ − δ)− αβ + γδ
.

And of course, every urscm for M(K) has at least five points. �

Conclusion. By Corollary 57.12, the sets Y (n, k) in E are not urscm
for E(x) though, by Theorem 57.13, there exist no Moebius functions
h (different from the identity) preserving Y (n, k) as soon as n ≥ 5.
Thus, the set of finite urscm for E(x) is strictly smaller than the
set of finite sets S such that there exist no Moebius functions h
preserving S. So, it is not easy to imagine a characterization of urscm
for E(x). And a characterization of urscm for M(K) appears even
more difficult.

Next, by Theorem 2 of [83], we know that given a compact A in
C which is not preserved by any non-trivial similarity of the form
ϕ(x) = a + (x − a)eiα and given two monic polynomials F, G of
same degree such that F−1(A) = G−1(A), we have F = G. Now, we
note that, by choosing for h a rational function such as x

x+1 , we can
obtain two rational functions f and g both equal to a quotient of
monic polynomials, satisfying f−1(Y (n, k)) = g−1(Y (n, k)), though
the sets Y (n, k) are not preserved by similarities, at least when n ≥ 4.
Thus, one doesn’t see any clear generalization of Theorem 2 of [83]
to rational functions.
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Example of sets Y (5, k). Let Q(x) = x5 − x4 + 3
32 . Then Q fac-

torizes in Q[x] in the form (x+ 1
2 )(x

4 − 3
2x

3 + 3
22
x2 − 3

23
x+ 3

24
).

In Ωp, we can define

a =

√
2

4
(
√
3
√
7− 1)

√√
3
√
7 + 3, b =

√
2
√
3

√√
3
√
7− 3,

α =
1

8

(

3 + a+ i
√
2

√√
3
√
7− 3a+ 2b

)

,

β =
1

8

(

3− a+ i
√
2

√√
3
√
7 + 3a− 2b

)

.

Then we have T (5,
(

3
32

)

=
{−1

2 , α, α, β, β
}

.

We can check that the derivative of (hm−1)
hn−1 = gn−m is not identi-

cally zero and therefore h′ is not identically zero.
Now, since g.c.d.(m,n) = 1, G′ has m elements and G′\G has

m−1 elements u1, . . . , um−1. Then, for each zero β of h−ui (1 ≤ i ≤
m− 1), β is a zero of hm − 1 and is not a zero of hn − 1. Hence, it is
a zero of gn−m and consequently it is a zero of order at least n−m
of h− ui. Thus, for each i = 1, . . . ,m− 1, we have

(1) Z(r, h − ui) ≤ 1

n−m
Z(r, h− ui).

Now, let us apply Theorem 45.7 to h. Since h′ is not identically zero,
we have

(m− 2)T (r, h) ≤
m−1
∑

i=1

Z(r, h − ui) +N(r, h) − log r +O(1),

hence by (1), we have

(2) (m− 2)T (r, h) ≤
(

m− 1

n−m
+ 1

)

T (r, h) − log r +O(1).

Concerning urscm for A(d(0, R−)), we can improve the results
obtained in Chapter 54 thanks to the Nevanlinna theorem on small
functions.
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Notation. Given k ∈ K∗ and n,m ∈ N∗ with m < n, we set by
Qn,m,k(x) = xn − xm + k and we denote by Y (n,m, k) the set of
zeros of Qn,m,k.

Theorem 57.15. If 2m ≥ n + 3, then Y (n,m, k) is an urscm for
Au(d(a,R

−)) (a ∈ K, k ∈ K∗, R > 0).

Proof. We can obviously assume that a = 0. Suppose Y (n,m, k)
is not an urscm for A(d(0, R−)) and let f, g ∈ Au(d(0, R

−)) be such
that

E(f, Y (n,m, k)) = E(f, Y (n,m, k)).

By Proposition 56.2,
Qn,k(f)
Qn,k(g)

is an invertible function φ ∈
Ab(d(0, R

−)). Consequently, we have f(x)n − f(x)m + k =
φ(x)(g(x)n − g(x)m + k). Set F (x) = f(x)n − f(x)m. By Corollary
50.13, we can obtain

T (r, F ) ≤ Z(r, F ) + Z(r, F − k(φ− 1)) + o(T (r, f).

Now, clearly, Z(r, F ) ≤ Z(r, f) + Z(r, fn−m − 1) + O(1) and
Z(r, fn−m − 1) ≤ (n−m)T (r, f), hence

(1) Z(r, F ) ≤ (n−m+ 1)T (r, f) + o(T (r, f).

And similarly,

(2) Z(r, F − k(φ− 1)) = Z(r, gn − gm) ≤ Z(r, f) + Z(r, fnm − 1).

Of course, since φ is bounded, we have T (r, f) = T (r, g) +
O(1), hence, by (1) and (2), we obtain T (r, F ) ≤ 2(n − m + 1)
T (r, fn−m − 1) + o(T (r, f).

On the other hand, we have T (r, F ) = nT (r, f) + O(1), hence
nT (r, f) ≤ 2(n−m+ 1)T (r, f) + o(T (r, f). That yields 2m ≤ n+ 2,
a contradiction to the hypothesis. �

Corollary 57.16. Y (5, k) is an urscm for Au(d(a,R
−)) (a ∈ K,

k ∈ K∗, R > 0).
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Open question. Do URSCM of 3 or 4 points for Au(d(a,R
−))

exist?
For instance, consider an affinely rigid set of 3 or 4 points, such

as {0, 1, 3}, and let P (X) = X(X − 1)(X − 3). Do functions f, g ∈
Au(d(0, R

−)) exist such that P (f) = P (g)?
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Chapter 58

Nevanlinna Theory in
Characteristic p

Results in characteristic p were published in [25], [26], and [27].

Notation. In this chapter, we denote by p the characteristic of K
and by q its characteristic exponent, i.e. q = p if p �= 0, and q = 1 if
p = 0.

As usual, given a ∈ K and n ∈ N, we denote by pn
√
a the unique

b ∈ K such that b(p
n) = a.

Given m, n ∈ N, we set m ≺ n if m divides n and m ⊀ n if m
does not divide n.

When p �= 0, we denote by S the lFp-automorphism of K defined
by S(x) = p

√
x. More generally, this mapping has continuation

to a K-algebra automorphism of K[X] as S(c∏n
j=1(X − aj)) =

S(c)∏n
j=1(X − S(aj)), c ∈ K.

Lemma 58.1 is easily verified.

Lemma 58.1. Let f ∈ M(d(0, R−)) be such that f ′ is not identically
zero and let α ∈ d(0, R−). We have ωα(f

′) = ωα(f)− 1 if p �≺ωα(f)
and ωα(f

′) ≥ ωα(f) if p ≺ ωα(f).

Proposition 58.2. Suppose p �= 0. Let r > 0 and let f ∈
M(d(a, r−)). Then p

√
f belongs to M(d(a, r−)) if and only if f ′ = 0.

Moreover, there exists a unique t ∈ N such that pt
√
f ∈ M(d(a, r−))

and ( pt
√
f)′ �= 0.

585
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Proof. If f is of the form lp with l ∈ M(d(a, r−)), then of
course we have f ′ = 0. Now, suppose that f ′ = 0. Suppose first
f ∈ A(d(a, r−)). Since f ′ = 0, f(x) is of the form

∑∞
n=0(an)

pxnp.
Put l(x) =

∑∞
n=0(an)x

n. The radius of convergence of l is equal to
that of f . Hence, l ∈ A(d(a, r−)), and of course, we have f = lp. We
now consider the general case when f ∈ M(d(a, r−)). Let (bn, tn)n∈N
be the sequence of poles of f inside d(a, r−) where tn is the multi-
plicity order of bn. By Theorem 27.14, we can find h ∈ A(d(a, r−))
such that ωbn(h) ≥ tn ∀n ∈ N. Clearly, fhp belongs to A(d(a, r−))
and satisfies (fhp)′ = 0. Consequently, fhp is of the form gp, with
g ∈ A(d(a, r−)), therefore f =

( g
h

)p
. On the other hand, by Theorem

29.11, the set of integers s such that ps
√
f belongs to M(d(a, r−))

is obviously bounded and therefore admits a biggest element, which
ends the proof. �
Definition and notation. Suppose p �= 0. Given, f ∈ M(d(a, r−)),
we call ramification index of f the integer t such that pt

√
f ∈

M(d(a, r−)) and ( pt
√
f)′ �= 0.

In the same way, given an algebraically closed field B of char-
acteristic p �= 0 and P (x) ∈ B[x], we call ramification index of P

the unique integer t such that pt
√
P ∈ B[x] and ( pt

√
P )′ �= 0. This

ramification index is denoted by ram(f) for any f ∈ M(d(a, r−)) or
f ∈ M(K) and similarly it is denoted by ram(P ) for any P ∈ B[x].

Remark. Suppose p �= 0 and let f ∈ M(d(a, r−)) have ramifi-
cation index t. For every r′ ∈]0, r[, f has the same ramification
index as an element of M(d(a, r′−)) because of course, on one hand,
pt
√
f ∈ M(d(a, r′−)), and on the other hand, by properties of analytic

functions, ( pt
√
f)′ is not identically zero inside d(a, r′).

Corollary 58.3. Suppose p �= 0 and let f, g ∈ M(d(a,R−))\K
satisfy an equation of the form g(x) = G(f(x)) and G ∈ K(Y ).
Then, ram(g) ≥ ram(f) and, putting t = ram(f), gt = pt

√
g, ft =

pt
√
f, Gt = St(G), they satisfy gt = Gt ◦ ft.

Remark. This property does not hold for meromorphic functions
inside a disk d(a, r−).

Corollary 58.4. Let p �= 0. Let f(x) ∈ M(K), let S be the set of
zeros and poles of f in K, and let d be the g.c.d. of {ωα(f) | α ∈ S}.
Then, ram(f) = − logp(|d|p).
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Notation. In the sequel, I denotes an interval of the form [ρ,+∞[,
with ρ > 0, and J denotes an interval of the form [ρ,R[. Let

f ∈ M(d(0, R−)). The counting functions of zeros and poles of f :
Z(r, f) and N(r, f) are defined as usual and we put again T (r, f) =
max(Z(r, f), N(r, f)).

Next, denoting by E(r, f) the set {a ∈ d(0, r) | ωa(f) > 0,

pram(f)+1 �≺ ωa(f)}, if 0 /∈ E(r, f), we set ˜Z(r, f) =
∑

α∈E(r,f) log
r
|α| ,

and if 0 ∈ E(r, f), we set ˜Z(r, f) = log r +
∑

α∈E(r,f),α�=0 log
r
|α| .

Similarly, we define ˜N(r, f) = ˜Z(r, 1f ).

Now, assume that f ′ is not identically 0.
Let V (r, f) = {a ∈ d(0, r) | ωa(f) < 0, pram(f)+1 ≺ ωa(f)}. We

put

N0(r, f
′) =

∑

α∈V (r,f)

[ωα(f
′)− ωα(f)] log

r

|α| .

Given a finite subset S of K, we put Λ′(r, f, S) = {a ∈
d(0, r) | f ′(a) = 0, f(a) /∈ S} and Λ′′(r, f, S) = {a ∈
d(0, r) | pram(f)+1 ≺ ωa(f − f(a)), f(a) ∈ S}. Then we can define

ZS0 (r, f
′) =

∑

α∈Λ′(r,f,S)

ωα(f
′) log

r

|α|

+
∑

α∈Λ′′(r,f,S)

[ωα(f
′)− ωα(f − f(α))] log

r

|α| .

Remarks. (1) It is easily verified that all the above functions are
positive.
(2) If p = 0, we have Z(r, f) = ˜Z(r, f) and N(r, f) = ˜N(r, f).

Lemma 58.5. Let f ∈ M(d(0, R−)), let t = ram(f), and let g =
qt
√
f . Then, ˜Z(r, f) = ˜Z(r, g) and ˜N(r, f) = ˜N(r, g).

Proof. Let a be a zero of f and let s = ωa(f). Then s is of the
form nt with n ∈ N∗. If n = 1, then a belongs to both E(r, f) and
E(r, g). And if n > 1, then a /∈ E(r, f). But then a is a zero of order
n of g and hence a does not belong to E(r, g). �
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Similar to Lemma 43.4, we have Lemma 58.6:

Lemma 58.6. Let α1, . . . , αn ∈ K be pairwise distinct, let P (u) =
∏n
i=1(u − αi), and let f ∈ M(d(0, R−)). Then, Z(r, P (f)) =

∑n
i=1 Z(r, f − αi) and ˜Z(r, P (f)) =

∑n
i=1

˜Z(r, f − αi).

Lemmas 58.7 and 58.8 are consequences of Lemma 58.1.

Lemma 58.7. Let f ∈ M(d(0, R−)) be such that f ′ �= 0 and let S
be a finite subset of K. Then,

∑

b∈S
(Z(r, f − b)− ˜Z(r, f − b)) = Z(r, f ′)− ZS0 (r, f

′).

Lemma 58.8. Let f ∈ M(d(0, R−)) be such that f ′ �= 0. Let
0 < r < R. Then,

N(r, f ′) = N(r, f) + ˜N(r, f) −N0(r, f
′).

Lemma 58.9. Let f ∈ M(d(0, R−)) be such that f ′ �= 0. Let
0 < r < R. Then,

Z(r, f ′) ≤ Z(r, f) + ˜N(r, f) −N0(r, f
′)− log r +O(1), (r ∈ J).

Proof. Without loss of generality, up to a change of variable, we
can assume that both f, f ′ have no zero and no pole at 0. By
Theorem 43.2, we have Z(r, f) − N(r, f) = Ψ(f, log r) − Ψ(f(0)),
and Z(r, f ′) − N(r, f ′) = Ψ(f ′, log r) − Ψ(f ′(0)). But, by Corollary
36.11, Ψ(f ′, log r) ≤ Ψ(f, log r) − log r, hence we obtain Z(r, f ′) ≤
N(r, f ′)−N(r, f) + Z(r, f)− log r +O(1). And by Lemma 58.7, we

have N(r, f ′) − N(r, f) = ˜N(r, f) − N0(r, f
′), which completes the

proof. �
The previous results enable us to prove the ultrametric Nevan-

linna main theorem in a basic form:

Theorem 58.10. Let α1, . . . , αn ∈ K, with n ≥ 2, and let f ∈
M(d(0, R−)) (respectively f ∈ M(K)) of ramification index t. Let
S = { qt

√
α1, . . . , qt

√
αn}. Then we have

(n− 1)T (r, f)

qt
≤

n
∑

i=1

˜Z(r, f − αi) + Z(r, ( qt
√

f)′)

− ZS0 (r, (
qt
√

f)′) +O(1) ∀r ∈ J

(respectively ∀r ∈ I).
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Moreover, if f belongs to A(d(0, R−)) (respectively f ∈ A(K)),
then

nT (r, f)

qt
≤

n
∑

i=1

˜Z(r, f − αi) + Z(r, ( qt
√

f)′)

− ZS0 (r, (
qt
√

f)′) +O(1) ∀r ∈ J

(respectively ∀r ∈ I).

Now, following the same method as in Theorem 45.7, we can
obtain that classical form of the Nevanlinna inequality where Z and
N are replaced by ˜Z and ˜N .

Theorem 58.11. Let α1, . . . , αn ∈ K, with n ≥ 2, and let f ∈
M(d(0, R−)) (respectively f ∈ M(K)) of ramification index t. Let
S = { qt

√
α1, . . . , qt

√
αn}. Then we have

(n− 1)T (r, f)

qt
≤

n
∑

i=1

˜Z(r, f − αi) + ˜N(r, f) − ZS0 (r, (
qt
√

f)′)

−N0(r, (
qt
√

f)′)− log r +O(1) ∀r ∈ J
(respectively ∀r ∈ I).

Corollary 58.12. Let f ∈ M(d(0, R−)) (respectively f ∈ M(K)) be
such that f ′ �= 0 and let α1, . . . , αn ∈ K, with n ≥ 2. Then we have

n
∑

i=1

Z(r, f − αi)− ˜Z(r, f − αi) ≤ T (r, f) + ˜N(r, f)− ZS0 (r, f
′)

−N0(r, f
′)− log r +O(1) ∀r ∈ J

(respectively ∀r ∈ I).

Remark. In Theorems 45.2 and 45.4 as in Corollaries 45.3 and 45.5,
the field K is not supposed to be of characteristic 0. Consequently,
all those statements apply to fields of characteristic p.

Proof of Theorems 58.10 and 58.11. For convenience, we put
g = qt

√
f , and βi = qt

√
αi for every i = 1, . . . , n. So, S = {β1, . . . , βn}.

By Theorem 29.14, there exist φ, θ ∈ A(d(0, R−)) such that

g = φ
θ , and



November 5, 2024 15:41 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch58 FA1 page 590

590 Value Distribution in Ultrametric Analysis and Application

(1) Z(r, φ) ≤ Z(r, g) + 1,

(2) Z(r, θ) ≤ N(r, g) + 1.

By Theorems 45.2 and 45.4, there exists A ∈ R, and for any r ∈ J
(respectively r ∈ I), there exists l(r) ∈ {1, . . . , n} such that Z(r, φ−
βjθ) ≥ max(Z(r, φ), Z(r, θ)) + A ∀j �= l(r), therefore there exists
B ∈ R such that

(3) Z(r, φ − βiθ) ≥ T (r, g) +B ∀i �= l(r), ∀r ∈ J

(respectively ∀r ∈ I).

We check that D(φ)−D(φθ ) = D(θ)−D( θφ), therefore

D(φ− βiθ) = D(g − βi) +D(θ)−D
(

1

g − βi

)

= D(g − βi) +D(θ)−D
(

1

g

)

.

Then, applying counting functions, we have Z(r, φ − βiθ) =
Z(r, g − βi) + Z(r, θ)−N(r, g), and therefore, by (2), we obtain

(4) Z(r, φ − βiθ) ≤ Z(r, g − βi) + 1.

Then, by (3) and (4), we obtain (n − 1)(T (r, g) + B) ≤
∑

1≤i≤n,
i�=l(r)

Z(r, φ− βiθ) ≤
∑

1≤i≤n,
i�=l(r)

Z(r, g − βi) + n− 1 ∀r ∈ J (respec-

tively ∀r ∈ I).
Putting M = (n− 1)(1 −B), we obtain

(5) (n − 1)T (r, g) ≤
n
∑

i=1

Z(r, g − βi) +M − Z(r, g − βl(r)) ∀r ∈ J

(respectively ∀r ∈ I).
By Lemma 58.7, we have

n
∑

i=1

Z(r, g − βi) =

n
∑

i=1

˜Z(r, g − βi) + Z(r, g′)− ZS0 (r, g
′),
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hence by (5), we obtain

(6) (n − 1)T (r, g) ≤
n
∑

i=1

˜Z(r, g − βi) + Z(r, g′)− ZS0 (r, g
′)

− Z(r, g − βl(r)) +O(1) ∀r ∈ J

(respectively ∀r ∈ I).

Now, since T (r, g) = T (r,f)
qt and since ˜Z(r, g − βi) = ˜Z(r, f − αj)

∀j = i, . . . , n, we obtain

(n− 1)T (r, f)

qt
≤

n
∑

i=1

˜Z(r, f − αi) + Z(r, ( qt
√

f)′)

− ZS0 (r, (
qt
√

f)′) +O(1) ∀r ∈ J

(respectively ∀r ∈ I).
Suppose now that f belongs to A(d(a,R−)) or to A(K). Then so

does g. By Theorem 43.7, we have Z(r, g − βl(r)) = T (r, g) + O(1)
∀r ∈ J (respectively ∀r ∈ I) so, by (6), we obtain

nT (r, g) ≤
n
∑

i=1

˜Z(r, g − βi) + Z(r, g′)

− ZS0 (r, g
′) +O(1) ∀r ∈ J

(respectively ∀r ∈ I), and consequently,

nT (r, f)

qt
≤

n
∑

i=1

˜Z(r, f − αi) + Z(r, ( qt
√

f)′)

− ZS0 (r, (
qt
√

f)′) +O(1) ∀r ∈ J

(respectively ∀r ∈ I).
Now, returning to the general case, we have g′ = (g − βl(r))

′ and
˜N(r, g) = ˜N(r, g − βl(r)). So, by Lemma 58.9, we have

(7) Z(r, g′)− Z(r, g − βl(r)) ≤ ˜N(r, g) −N0(r, g
′)− log r +O(1).
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Finally, by (6) and (7), we obtain

(n− 1)T (r, f)

qt
≤

n
∑

i=1

˜Z(r, f − αi) + ˜N(r, f) − ZS0 (r, (
qt
√

f)′)

−N0(r, (
qt
√

f)′)− log r ∀r ∈ J

(respectively ∀r ∈ I).
That completes the proof. �

Theorem 58.13. Let f ∈ M(K) (respectively f ∈ Mu(d(0, R
−)))

and let u1, u2, u3 ∈ Mf (K) (respectively u1, u2, u3 ∈ Mf (d(0, R
−)))

be pairwise distinct. Let φ(x) = (f(x)−u1(x))(u2(x)−u3(x))
(f(x)−u3(x))(u2(x)−u1(x)) and let t be

the ramification index of φ.

Then, T (r,f)
qt ≤∑3

j=1
˜Z(r, f − uj) + o(T (r, f)).

Proof. By Theorem 58.11, we have

(1)
T (r, φ)

qt
≤ ˜Z(r, φ) + ˜Z(r, φ − 1) + ˜N(r, φ) +O(1).

Next, we follow the same way as in Theorem 47.9. We have
T (r, f) ≤ T (r, u3−u1f−u3 ) + o(T (r, f)), hence

T (r, f) ≤ T

(

r,
u3 − u1
f − u3

+ 1

)

+ o(T (r, f))

= T

(

r,
f − u1
f − u3

)

+ o(T (r, f)).

Now, T (r, u2−u1u2−u3 ) = o(T (r, f). Consequently, by writing f−u1
f−u3 =

φ
(

u2−u1
u2−u3

)

, we have T (r, f−u1f−u3 ) ≤ T (r, φ) + T (r, u2−u1u2−u3 ) ≤ T (r, φ) +

o(T (r, f)) and finally T (r, f) ≤ T (r, φ) + o(T (r, f)). Thus, by (1),
we obtain

(2)
T (r, f)

qt
≤ ˜Z(r, φ) + ˜Z(r, φ − 1) + ˜N(r, φ) + o(T (r, f)).
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Now, we can check that

˜Z(r, φ) + ˜Z(r, φ− 1) + ˜N(r, φ)

≤
3
∑

j=1

˜Z(r, f − uj) +
∑

1≤j<k≤3

˜Z(r, uk − uj)

≤
3
∑

j=1

˜Z(r, f − uj) + o(T (r, f))

which, by (2), completes the proof. �

Similar to Theorem 47.10, we can derive Theorem 58.14.

Theorem 58.14. Let f ∈ M(K) (respectively f ∈ Mu(d(0, R
−))),

let u1, u2 ∈ Mf (K) (respectively u1, u2 ∈ Mf (d(0, R
−))) be distinct,

and let t be the ramification index of f(x)−u1(x)
f(x)−u2(x) . Then,

T (r, f)

qt
≤ ˜Z(r, f − u1) + ˜Z(r, f − u2) + ˜N(r, f) + o(T (r, f)).

Proof. Let g = 1
f , wj =

1
uj
, j = 1, 2, w3 = 0. Clearly,

T (r, g) = T (r, f) +O(1), T (r, wj) = T (r, uj), j = 1, 2,

so we can apply Theorem 58.13 to g, w1, w2, w3. On the other hand,
we note that

(g(x) − w1(x))w2(x)

(g(x) − w2(x))w1(x)
=
f − u1
f − u2

.

Thus, we have T (r,g)
qt ≤ ˜Z(r, g − w1) + ˜Z(r, g − w2) + ˜Z(r, g) +

o(T (r, g)).

But ˜Z(r, g−wj) = ˜Z(r, f −uj) for j = 1, 2 and ˜Z(r, g) = ˜N(r, f).
Moreover, we know that o(T (r, g)) = o(T (r, f)). Consequently, the
claim is proved when u1u2 is not identically zero. Now, we can gen-
eralize exactly like in Theorem 47.10. �
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Next, by setting g = f − u1 and u = u2 − u1, we can write
Corollary 58.15:

Corollary 58.15. Let g ∈ M(K) (respectively g ∈ Mu(d(0, R
−))),

let u ∈ Mg(K) (respectively u ∈ Mg(d(0, R
−))), and let t be the

ramification index of g−u
g .

Then, T (r,g)
qt ≤ ˜Z(r, g) + ˜Z(r, g − u) + ˜N(r, g) + o(T (r, g))).

Corollary 58.16. Let f ∈ A(K) (respectively f ∈ Au(d(0, R
−)))

and let u1, u2 ∈ Af (K) (respectively u1, u2 ∈ Af (d(0, R
−))) be dis-

tinct and let t be the ramification index of f−u1
f−u2 . Then, T (r,f)

qt ≤
Z(r, f − u1) + Z(r, f − u2) + o(T (r, f))).

Corollary 58.17. Let f ∈ A(K) (respectively f ∈ Au(d(0, R
−))) and

let u ∈ Af(K) (respectively u ∈ Af (d(0, R
−))) be non-identically zero

and let t be the ramification index of f−u
f . Then, T (r,f)

qt ≤ Z(r, f) +

Z(r, f − u) + o(T (r, f))).
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Chapter 59

Strong Uniqueness and URSCM
in Characteristic p

Notation. Throughout Chapter 54, K is a field of characteristic
p �= 0, α belongs to K, and R belongs to ]0,+∞[. We try to generalize
the results of Chapters 52 and 53 when the characteristic is p. Many
results come from [22] and [23].

Lemma 59.1. Let P (x) = xn − xm + k with m < n and k �= 0. Let
f, g ∈ A(K)\K (respectively f, g ∈ Au(d(α,R

−))) satisfy P (f) =
λP (g) with λ ∈ K∗. Then f and g have the same ramification index.

Proof. Let s be the ramification index of f and let t be this of g. We
can obviously suppose s ≤ t. Let fs =

ps
√
f , gs = ps

√
g, let ks =

ps
√
k,

let Ps(x) = xn − xm + ks, and let λs = ps
√
λ. Then fs, gs satisfy

Ps(fs) = λsPs(gs), hence f
′
s(n(fs)

n−1 −m(fs)
m−1) = g′s(n(gs)n−1 −

m(gs)
m−1). Since both fs, gs belong to A(K)\K (respectively to

Au(d(α,R
−))), n(fs)n−1 −m(fs)

m−1, n(gs)
n−1 −m(gs)

m−1 are not
identically zero. Now, by definition of the ramification index, f ′s is
not identically zero, hence neither is g′s and therefore t = s. �

Lemma 59.12 is a generalization of Lemma 57.6 when p �= 0:

Lemma 59.2. Let P (x) = xn − xm + k with k �= 0, m < n, n ≥ 3,
g.c.d.(m,n) = 1 and further, m, n satisfy one of the following two
conditions:

(A) n is not a power of p.
(B) (m− 2)(n −m) ≥ n− 1 (respectively (m− 2)(n −m) ≥ n).
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Let f, g ∈ A(K)\K (respectively f, g ∈ Au(d(α,R
−))) satisfy

P (f) = P (g). Then, f = g.

Proof. If f, g belong to Au(d(α,R
−)), we can obviously suppose

α = 0. Now, set n = ptq with g.c.d.(q, p) = 1. Let h = f
g and

suppose h �= 1. Then, gn−m = hm−1
hn−1 . As in Lemma 57.6, we note

that if f, g belong to Au(d(0, R
−)), then h belongs to Mb(d(0, R

−))
because Mb(d(0, R

−)) is a field.
Let G be the group of nth roots of 1 and let G′ be the group of

mth roots of 1. Since g.c.d.(n,m) = 1, G\G′ contains no element
different from 1.

Suppose that Condition (A) is satisfied. Let n = qpt with
g.c.d.(q, p) = 1 and q > 1. Suppose first q > 2. Then G\G′ con-
tains at least two different elements u1 and u2, hence h must take at
least one of these two values, a contradiction as we just saw. Conse-
quently, we must have q = 2 and hence p �= 2. Since n ≥ 3, n is of
the form 2pt and G has two elements: 1 and −1. Therefore, each zero
of hn− 1 = (h2 − 1)p

t
is of order pt. Since −1 /∈ G′, h(x) cannot take

the value −1. Hence, h(x) must take the value 1 at a point β ∈ K

(respectively β ∈ d(0, R−)) and then β is a zero of order pt for hn−1.
But since g.c.d.(n,m) = 1, it is a zero of order 1 for hm − 1, and
hence gn−m admits β as a pole of order pt−1, a contradiction again.
Thus, Condition (A) implies that h is identically 1.

Now, suppose that Condition (B) is satisfied. Since we don’t need
Condition (A), we can assume that n = pt. If p divides n − m, it
divides neither m nor n because g.c.d.(n,m) = 1. Consequently, we
can assume that p divides neither m nor n−m. Let us first assume
that f ′g′ is not identically zero. Since n −m is prime to p, we can
check that the derivative of h

m−1
hn−1 = gn−m is not identically zero and

therefore h′ is not identically zero.
Now, since g.c.d.(m, p) = g.c.d.(m,n) = 1, G′ has m elements

and G′\G has m − 1 elements u1, . . . , um−1. Then, for each zero β
of h− ui (1 ≤ i ≤ m− 1), β is a zero of hm − 1 and is not a zero of
hn − 1. Hence, it is a zero of gn−m, and consequently, it is a zero of
order at least n −m of h − ui. Thus, for each i = 1, . . . ,m − 1, we
have

(1) ˜Z(r, h − ui) ≤ 1

n−m
Z(r, h− ui).
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Now, let us apply Theorem 58.11 to h. Since h′ is not identically
zero, we have

(m− 2)T (r, h) ≤
m−1
∑

i=1

˜Z(r, h − ui) +N(r, h) − log r +O(1),

hence by (1), we have

(2) (m− 2)T (r, h) ≤
(

m− 1

n−m
+ 1

)

T (r, h) − log r +O(1).

Therefore, if f, g belong to A(K), by (2), that yields m − 2 <
n−1
n−m , and if f, g belong to Au(d(0, R

−)), we have m − 2 ≤ n−1
n−m ,

both conditions excluded by hypotheses. Consequently, h = 1 and
therefore f = g.

Suppose now that the ramification index of f is s. By
Lemma 59.11, the ramification index of g is s too. Let ks = ps

√
k,

and let Ps(x) = xn − xm + ks, fs = ps
√
f , gs = ps

√
g. Then,

Ps(fs) = Ps(gs), and we are taken back to the same problem with fs
and gs that satisfy (fs)

′(gs)′ not identically zero. So, we have fs = gs
and therefore f = g. �

Proposition 59.3. Let P (x) = xn − xm + k with 2 ≤ m < n
(respectively 3 ≤ m < n), g.c.d.(m,n) = 1 and a �= 0. Assume

that mm(n −m)(n−m) �= nn(1 − u)(n−m)( ps
√
k)n−m for every s ∈ N

and for every u ∈ K such that un−m = (−1)n−m. Next, we assume
that one of the following two conditions (a) and (b) is satisfied:

(a) n is not a power of p,
(b) (m− 2)(n −m) ≥ n− 1 (respectively (m− 2)(n −m) ≥ n).

Let f, g ∈ A(K) (respectively for f, g ∈ Au(d(α,R
−))) be such

that P (f) = λP (g). Then, λ = 1.

Proof. If f, g ∈ Au(d(α,R
−)), we can assume α = 0. By

Lemma 57.3, P has n distinct zeros, hence its set of zeros S has
n elements. Suppose there exists λ ∈ K∗ such that P (f) = λP (g).

If f ′g′ is not identically zero, we can make a proof that is very
similar to that of in Proposition 57.4.
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Suppose first that f ′g′ is not identically zero. We prove that λ = 1.
Indeed, suppose λ �= 1. Let Q(x) = xn − xm + k − 1

λ . Then,

(1)

Q(g) = P (g)− 1

λ
=

1

λ
(λP (g) − 1) =

1

λ
(P (f)− 1) =

1

λ
(fn − fm).

Similarly, let R(x) = P (x) − λ. Then, R(f) = P (f) − λ =
λ(λ−1P (f) − 1) = λ(P (g) − 1) = λ(gn − gm). Now, by Lemma
57.3, at least one of the two polynomials Q, R has all its zeros
distinct. Without loss of generality, we may assume that Q has
all its zeros distinct. So, Q(x) is of the form

∏n
i=1(x− ei) with

ei �= ej ∀i �= j. Then by (1), we have fn − fm = λ
∏n
i=1(g − ei).

Consequently, by Lemma 58.6, we have Z(r,Q(g)) − ˜Z(r,Q(g)) =
∑n

j=1 Z(r, g− ej)− ˜Z(r, g− ej) = Z(r, fn− fm)− ˜Z(r, fn− fm) and

of course Z(r, fn − fm)− ˜Z(r, fn − fm) ≥ (m− 1)Z(r, f), hence

(2) Z(r,Q(g)) − ˜Z(r,Q(g)) ≥ (m− 1)Z(r, f).

On the other hand, since f ′g′ is not identically zero, by Corollary
58.12, we have Z(r, fn − fm) − ˜Z(r, fn − fm) ≤ T (r, f) − log(r) +

O(1), hence Z(r,Q(g)) − ˜Z(r,Q(g)) ≤ T (r, g) − log r + O(1), and
hence by (2), we obtain

(3) (m− 1)Z(r, f) ≤ T (r, g) − log r +O(1).

But by Theorem 43.8, we have T (r, P (f)) = nT (r, f) + O(1),
and by (1), we have T (r, P (g)) = +O(1) = nT (r, g) + O(1), hence
T (r, f) = T (r, g)+O(1), and hence by (3), we have (m−1)Z(r, f) ≤
T (r, f)− log r+O(1). By Theorem 43.3, this yields (m−1)T (r, f) ≤
T (r, f)− log r+O(1) and therefore m < 2 when f, g belong to A(K).
And if f, g belong to A(d(0, R−)), then m ≤ 2. Consequently, since
m ≥ 2 (respectively m ≥ 3), we have proven in both cases that λ = 1.

Suppose now that f ′ = 0 and let s be the ramification index
of f . Then by Lemma 59.1, this of g is also s. Putting ks = ps

√
k,

Ps(x) = xn − xm + ks, fs =
ps
√
f , gs = ps

√
g, and λs =

ps
√
λ, now we

have P (fs) = λsP (gs) and we are taken back to the same situation
with Ps, fs, gs. On one hand, we note that the zeros of Ps are the
psth roots of those of P . Hence, Ps also admits n distinct zeros. Next,
the conditionmm(n−m)(n−m)( ps

√
k)n−m �= nn(1− u)(n−m) for every

s ∈ N and for every u ∈ K such that un−m = (−1)n−m also applies in
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the same way to Ps. Consequently, we can generalize the reasoning
to the case when the ramification index of f, g is s. That ends the
proof. �

By Lemma 59.2 and Proposition 59.3, we have Corollary 59.4:

Corollary 59.4. Let P (x) = xn − xm + k with m < n and k �= 0,
2 ≤ m < n (respectively 3 ≤ m < n), g.c.d.(m,n) = 1, mm(n −
m)(n−m) �= nn(1 − u)(n−m)( ps

√
k)n−m for every s ∈ N and for every

u ∈ K such that un−m = (−1)n−m. Assume that one of the following
two conditions (a) and (b) is satisfied:

(a) n is not a power of p.
(b) (m− 2)(n −m) ≥ n− 1 (respectively (m− 2)(n −m) ≥ n).

Then P is a polynomial of strong uniqueness for A(K)
(respectively for Au(d(α,R

−))). The set of zeros of P is an urscm
for A(K).

Proposition 59.5. Let P (x) = xn − xm + k with m < n, k �= 0
and let f, g ∈ M(K)\K (respectively let f, g ∈ Mu(d(0, R

−))) be
such that P (f) = λP (g), with λ ∈ K∗. If f, g ∈ M(K)\K and
2m ≥ n+ 3, or if f, g ∈ Mu(d(0, R

−)) and 2m ≥ n + 4, then
λ = 1. Moreover, if f, g ∈ A(K)\K and 2m ≥ n + 2 or if
f, g ∈ Au(d(0, R

−)) and 2m ≥ n+ 3, then λ = 1.

Proof. The proof is the same as that of Theorem 57.5, just by
replacing Z and N by ˜Z and ˜N, respectively. �

Theorem 59.6. Let K have characteristic p �= 2 and let P (x) =
xn − xn−2 + k with k �= 0, n = pt ≥ 7 (respectively n = pt ≥ 8) with
t ∈ N∗ such that (n − 2)n−2 �= nnk2.

Then P is a polynomial of strong uniqueness for A(K)
(respectively for Au(d(α,R

−))). Moreover, the set of zeros of P has
n elements and is an urscm for A(K).

Proof. In order to show that we can apply Corollary 58.4, we show
first thatmm(n−m)(n−m) �= nn(1− u)(n−m)( ps

√
k)n−m, which yields

(1) (n− 2)n−2 �= nn(1− u)2( ps
√
k)n−m for every s ∈ N∗ and for every

u ∈ K such that u2 = (−1)2 i.e. for u = 1 or u = −1.
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Next, we need to have (m − 2)(n − m) ≥ n − 1 (respectively
(m− 2)(n −m) ≥ n) i.e.

(2) 2(n − 4) ≥ n− 1, which is trivial when u = 1 and becomes

(3) 4(n − 2)n−2 �= 4nn(
ps
√
k)2 when u = −1.

On the other hand, since bp = b ∀b ∈ N, we can see that (3) is
equivalent to

(4) (n− 2)n−2 �= nnk2.

Now, we note that by hypothesis, either n = p = 7 with t = 1
or n ≥ 8. Finally, (2) is equivalent to 2(n − 4) ≥ n − 1 (respectively
2(n−4) ≥ n). Thus, (1) and (2) are satisfied and therefore Corollary
59.4 shows the conclusion. �

Theorem 59.7. Let K have characteristic 2, let n = 2s, s ≥ 3, and
let P (x) = xn − xn−3 + k with k �= 0.

Then P is a polynomial of strong uniqueness for A(K) and for
Au(d(α,R

−)). Moreover, the set of zeros of P has n elements and is
an urscm for A(K).

Proof. Indeed, in characteristic 2, all hypotheses of Theorem 59.7
involving nn are trivially satisfied since in K, n = 2s = 0. Next, the
hypotheses n = 2S , m = n− 3, and s ≥ 3 imply (m− 2)(n−m) ≥ n.

�

Theorem 59.8 shows that in characteristic p �= 0, an affinely rigid
set is not necessarily an urscm for A(K) and even for polynomials.

Theorem 59.8. Let E be an algebraically closed field of character-
istic 3. There exists no subset of three elements that is an urscm
for E[x].

Proof. Let S be a subset of E of 3 elements a1, a2, a3. We can
find an affine change of variable h such that the images ei = h(ai)
are the zeros of a monic polynomial P (Y ) of the form Y 3 + bY + c.

Then h(x) is of the form x+m and therefore (
−1
h )(x) = x−m. Let

T = {e1, e2, e3}. Now, let α ∈ E satisfy α2 = −b and consider
f(x) = x and g(x) = x + α. Then we can check that P (f) = P (g).
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Indeed, P (g(x)) = (x+α)3 + b(x+α) + c = x3 +α3 + bx+ cα+ c =

P (x) + α3 + bα = P (f(x) since α3 + bα = 0. Now, let φ = (
−1
h ) ◦ f

and θ = (
−1
h ) ◦ g. Then,

P (f(x) =
3
∏

j=1

(f(x)− ej) =
3
∏

j=1

(h(φ(x) − h(aj))

=

3
∏

j=1

(φ(x) +m− (aj +m)) =

3
∏

j=1

(φ(x) − aj).

Let Q(Y ) =
∏3
j=1(Y − aj). Then, P (f(x)) = Q(φ(x)) and similarly

P (g(x)) = Q(θ(x)). Consequently, Q(φ) = Q(θ). Thus, Q is not
a polynomial of uniqueness for E[x], and hence, by Corollary 56.3,
S is not an urscm for E[x]. �
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Chapter 60

The Functional Equation
P (f) = Q(g)

Throughout this chapter, the field K is supposed to have characteristic
p ≥ 0 and characteristic exponent q. R is a strictly positive number.

Most of results come from [46] and [64].
In the sequel, we use the following basic lemmas:

Lemma 60.1. Let E be a field, and let P ∈ E[x] satisfy deg(P ) = 3
and be such that P ′ has two distinct zeros c1, c2. Then, P (c1) �=
P (c2).

Proof. Suppose P (c1) = P (c2). Without loss of generality, we can
suppose P (c1) = P (c2) = 0. Then P admits two distinct zeros of
order ≥ 2, a contradiction since deg(P ) = 3. �

Henceforth, we look for general results linked to the property
P (a) �= Q(b), where a and b are zeros of P ′ and Q′, respectively. In
order to state and prove our main results (Theorems 60.4 and 60.12),
we need to recall the notion of the so-called Nevanlinna characteristic
function and its associated functions. However, here, for the sake of
convenience, we define counting functions of zeros and poles with-
out multiplicities which, in characteristic p �= 0, are the same as in
characteristic 0, contrary to some other results that require a more
accurate form. Moreover, we use the ramification index for analytic
functions, defined in Chapter 58.

603
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Lemma 60.2. Let f, g be in M(d(0, R−)), let P, Q be in K[x],
and assume that f and g satisfy P (f) = Q(g). Then f belongs to
Mb(d(0, R

−)) if and only if so does g.

Proof. By Theorem 43.10, a function h ∈ M(d(0, R−)) belongs
to Mb(d(0, R

−)) if and only if T (r, h) is bounded in ]0, R[. And by
Corollary 43.12, P (h) belongs toMb(d(0, r

−)) if and only if so does h.
Consequently, the claim is immediate. �

Lemma 60.3. Let P, Q ∈ K[x] satisfy P ′Q′ �= 0. Let f, g ∈ M(K)

satisfy P (f) = Q(g). Then, ram(f) = ram(g) and Pt(
qt
√
f) =

Qt( qt
√
g).

Proof. Clearly, f ′P ′(f) = g′Q′(g). Since P ′Q′ �= 0, either f ′ =
g′ = 0 or f ′g′ �= 0. Suppose f ′ = g′ = 0. By Proposition 58.2, there
exist f1, g1 ∈ M(K) such that (f1)

q = f, (g1)
q = g. Then, we

have P1(f1) = Q1(g1) and therefore we are led to the same prob-
lem with f1 and g1. Thus, by induction, after t similar operations,
we finally obtain Pt(

qt
√
f) = Qt( qt

√
g) with qt

√
f, qt

√
g ∈ M(K) and

( qt
√
f)′( qt

√
g)′ �= 0 and of course t = ram(f) = ram(g). �

Theorem 60.4. Let P, Q be in K[x] with P ′Q′ not identically
zero and let m = deg(P ), n = deg(Q) satisfy 2 ≤ min(m,n).
Assume that there exist k distinct zeros c1, . . . , ck of P ′ such that
P (ci) �= P (cj) ∀i �= j and P (ci) �= Q(�) for every zero � of
Q′ (i = 1, . . . , k). Assume that there exist two functions f, g ∈
Mu(d(a,R

−)) such that P (f) = Q(g) and let t = ram(f). Then,
˜N(r, f) ≥ T (r,f)(kn−m)

qtn + O(1). Moreover, suppose 2m
3 < n. Then,

k ≤ 2. Further, if m �= n, then k = 1, c1 is a simple zero of P ′ and
either n < m or g.c.d.(m,n) = n−m.

Remark. In Corollaries 60.5–60.10, when we assume that one of the
functions f and g belongs to Mu(d(a,R

−)), then by Corollary 59.2,
both f and g belong to Mu(d(a,R

−)).

Corollary 60.5. Let P, Q be in K[x] with P ′Q′ not identically 0
and such that deg(P ) = deg(Q). Assume that there exist two distinct
zeros c1, c2 of P

′ such that P (c1) �= P (c2) and P (ci) �= Q(�) for every
zero � of Q′. If two functions f, g ∈ A(d(a,R−)) satisfy P (f) =
Q(g), then f, g ∈ Ab(d(a,R

−)).
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Proof. Without loss of generality, we can assume a = 0. Let
deg(P ) = deg(Q) and assume that the conclusion is wrong, hence
by Lemma 60.2, f and g are not bounded, hence by Theorem
43.10, limr→+∞ T (r, f) = +∞. Now, by Theorem 60.4, we have

limr→+∞ ˜N(r, f) = +∞. But since f ∈ A(d(0, R−)), this is absurd.
�

Corollary 60.6. Let P, Q be in K[x] where P ′Q′ is not identi-
cally zero, and let m = deg(P ), n = deg(Q) with 3 ≤ m and
n ≥ min(2, m2 ). Assume that there exist two distinct zeros c1, c2
of P ′ such that P (ci) �= Q(�) for every zero � of Q′ (i = 1, 2).
Assume further that, if m ≥ 4, then P (c1) �= P (c2). If two functions
f, g ∈ A(d(a,R−)) satisfy P (f) = Q(g), then f, g ∈ Ab(d(a,R

−)).

Proof. Without loss of generality, we can assume a = 0. If m = 3,
by Lemma 60.1, we have P (c1) �= P (c2), hence that inequality is
satisfied anyway. So, we can apply Theorem 60.4 with k = 2 which
shows that ˜N(r, f) is unbounded (because 2 deg(Q) − m > 0), a
contradiction since f ∈ A(d(0, R−)). �

Corollary 60.7. Let P, Q be in K[x] with P ′Q′ not identically zero
and deg(P ) < deg(Q). Assume that there exists a zero c of P ′ such
that P (c) �= Q(�) for every zero � of Q′. If two functions f, g ∈
A(d(a,R−)) satisfy P (f) = Q(g), then f, g ∈ Ab(d(a,R

−)).

Proof. Without loss of generality, we can assume a = 0. Let m =
deg(P ), n = deg(Q) and assume that f or g is not bounded. By
Lemma 60.2, both f and g are not bounded. We can apply Theorem
59.4 with k = 1, m < n, which shows that ˜N(r, f) is unbounded, a
contradiction since f ∈ A(d(0, R−)). �

We now apply Theorem 59.4 to meromorphic functions in
d(a,R−).

Corollary 60.8. Let P,Q be in K[x] with P ′Q′ not identically zero
and m = deg(P ), n = deg(Q) satisfying m �= n and 2m < 3n.
Assume that there exist two distinct zeros c1 and c2 of P ′ such that
P (c1) �= P (c2) and P (ci) �= Q(�) for every zero � of Q′ (i = 1, 2). If
f, g ∈ M(d(a,R−)) satisfy P (f) = Q(g), then f, g ∈ Mb(d(a,R

−)).

Proof. Let k be the number of zeros ci of P such that P (ci) �=
P (cj) ∀i �= j and P (ci) �= Q(�) for every zero � of Q′ (i =
1, 2). By Lemma 60.2, if one of the functions f and g belongs to
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Mu(d(a,R
−)), then both belong to Mu(d(a,R

−)). So, if f and g
belong to Mu(d(a,R

−)), then by Theorem 60.4 and the assumption
that 2m < 3n, we have k = 1, a contradiction. �

Corollary 60.9. Let P,Q be in K[x] with P ′Q′ not identically zero
and 3 ≤ deg(P ) ≤ 4, deg(Q) ≥ 3, deg(P ) �= deg(Q). Assume that
there exist two distinct zeros c1 and c2 of P ′ such that P (ci) �= Q(�)
for every zero � of Q′ (i = 1, 2). Moreover, if deg(P ) = 4, we assume
that P (c1) �= P (c2). If f, g ∈ M(d(a,R−)) satisfy P (f) = Q(g), then
f, g ∈ Mb(d(a,R

−)).

Proof. Let m = deg(P ), n = deg(Q). We note that the inequality
P (c1) �= P (c2) is assured by Lemma 59.1 whenm = 3 and is assumed
when m = 4 and hence holds in all cases. Assume that one of the
two functions f, g belongs to Mu(d(a,R

−)), hence by Lemma 60.2,
both f and g belong to Mu(d(a,R

−)). By Theorem 60.4, we have
k = 1, a contradiction to the hypothesis. �

Corollary 60.10. Let P,Q be in K[x] with P ′Q′ not identically 0
and m = deg(P ), n = deg(Q), satisfying m < n and n − m �=
g.c.d.(m,n). Assume that there exists a zero c of P ′ such that P (c) �=
Q(�) for every zero � of Q′. If f, g ∈ M(d(a,R−)) satisfy P (f) =
Q(g), then f, g ∈ Mb(d(a,R

−)).

Proof. Assume that one of the two functions f, g belongs to
Mu(d(a,R

−)), hence by Lemma 60.2, both f and g belong to
Mu(d(a,R

−)). Since m �= n, by Theorem 60.4, we have that either
n < m or g.c.d.(m,n) = n − m, both cases that are excluded
from the hypotheses of the corollary. Hence, both f and g belong
to Mb(d(a,R

−)). �

Corollary 60.11. Let P, Q be in K[x] with P ′Q′ not identically zero
and deg(P ) = deg(Q) ≥ 4. Assume that there exist three distinct
zeros c1, c2, c3 of P ′ such that P (ci) �= P (cj) ∀i �= j and P (ci) �=
Q(�) for every zero � of Q′ (i = 1, 2, 3). If f, g ∈ M(d(a,R−))
satisfy f ′ �= 0 and P (f) = Q(g), then f, g ∈ Mb(d(a,R

−)).

Proof. Without loss of generality, we can assume a = 0. Let n =
deg(P ) = deg(Q) and assume that f or g belongs to Mu(d(a,R

−)),
hence by Lemma 60.2, both f and g belong to Mu(d(a,R

−)).



October 24, 2024 19:33 Value Distribution in Ultrametric Analysis. . . 9in x 6in b5491-ch60 FA1 page 607

The Functional Equation P (f) = Q(g) 607

Since f ′ �= 0, we have ram(f) = 0, hence by Theorem 60.4, ˜N(r, f) ≥
T (r, f)

(

3n−n
n

)

+ O(1), therefore limr→+∞ ˜N(r, f) − T (r, f) = +∞,
which is absurd. �

Theorem 60.12. Let P, Q ∈ K[x] with P ′Q′ not identically zero
and let m = deg(P ), n = deg(Q) with 2 ≤ min(m,n). Assume
that there exist k distinct zeros c1, . . . , ck of P ′ such that P (ci) �=
P (cj) ∀i �= j and P (ci) �= Q(�) for every zero � of Q′ (i = 1, . . . , k).
Assume that there exist two non-constant functions f, g ∈ M(K)
such that P (f) = Q(g) and let t = ram(f). Then, q ≤ p and f

satisfies ˜N(r, f) ≥ T (r,f)(kq−p)
qtq + log r + O(1). Moreover, if p

2 < q,

then k = 1 and c1 is a simple zero of P ′.

Corollary 60.13. Let P, Q be in K[x] with P ′Q′ not identically zero
and deg(P ) ≤ deg(Q). Assume that there exists a zero c of P ′ such
that P (c) �= Q(�) for every zero � of Q′. If there exist f, g ∈ A(K)
satisfying P (f) = Q(g), then f and g are constant.

Proof. Letm = deg(P ), n = deg(Q). Assume that f and g are not

constant. Then by Theorem 60.12, we have ˜N(r, f) ≥ T (r, f)
(

n−m
qtn

)

+

log r +O(1) ≥ log r +O(1), hence limr→+∞ ˜N(r, f) = +∞, which is
absurd. �

Corollary 60.14. Let P, Q ∈ K[x] with P ′Q′ not identically zero
and let m = deg(P ), n = deg(Q) with 2 ≤ min(m,n) and m

2 < n.
Assume that there exist 2 distinct zeros c1, c2 of P

′ such that P (c1) �=
P (c2) and P (ci) �= Q(�) for every zero � of Q′ (i = 1, 2). Assume that
there exist two functions f, g ∈ M(K) such that P (f) = Q(g). Then
f and g are constants.

Proof (Theorems 60.4 and 60.12). In Theorem 60.4, without
loss of generality, we can assume a = 0. We first assume that both
f, g have a ramification index equal to 0. Let b = g.c.d.(m,n) and
m = bm̂, n = bn̂. We can clearly assume that a = 0 and that none
of the meromorphic functions to be considered attains 0 or ∞ at
0. We denote by I (respectively J) an interval of the form [u,+∞[
(respectively [u, log r[).

Clearly, mT (r, f) = nT (r, g) +O(1), hence

(1) m̂T (r, f) = n̂T (r, g) +O(1).
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Let α be a pole of f of order k. Then α is a pole of g of order l such
that km̂ = ln̂, hence n̂ divides k, therefore

(2) N(r, f) ≥ n̂ ˜N(r, f).

Since ci is a zero of P ′, P − P (ci) has a factorization of the form
(x− ci)

siRi(x), with Ri ∈ K[x], Ri(ci) �= 0. Consequently,

(3) (f − ci)
siRi(f) = Q(g)− P (ci) (i = 1, . . . , k).

We put S =
∑t

i=1(si − 1). Since by definition we have si ≥ 2 ∀i =
1, . . . , t, then S ≥ t.

Since, by hypothesis, Q−P (ci) does not vanish at any zero of Q′;
this implies that it has no multiple zero and hence it has a factor-
ization in the form

∏q
j=1(x − bi,j), where the bi,j are all distinct for

each fixed i. It follows that

(4) ˜Z(r,Q− P (ci)) =

w
∑

j=1

˜Z(x− bi,j) (i = 1, . . . , t).

On the other hand, we note that bi,j �= bk,l whenever (i, j) �= (k, l).
Indeed, suppose that bi,j = bk,l for some (i, j) �= (k, l). Then i �= k,
hence P (ci) �= P (ck), therefore (Q−P (ci))−(Q−P (ck)) is a constant
different from 0. But since bi,j = bk,l, the point bi,j is a zero of
(Q− P (ci)) − (Q− P (ck)), a contradiction. Thus, all the points bi,j
are distinct (i = 1, . . . , t; j = 1, . . . , w).

Now, by applying Theorem 58.11 to g at the points bi,j, for all
i = 1, . . . , t and j = 1, . . . , w, we have

(5) (nt− 1)T (r, g) ≤
t
∑

i=1

w
∑

j=1

˜Z(r, g − bi,j) + ˜N(r, g) − log r +O(1).

Hence, by (4), we have

(6) (tn− 1)T (r, g) ≤∑t
i=1

˜Z(r,Q − P (ci)).

But by (3) and (6), we obtain

(7) ˜Z(r,Q(g) − P (ci)) ≤ ˜Z(r, f − ci) + ˜Z(r,Ri(f)) +O(1)

≤ (m− si + 1)T (r, f) +O(1)

≤ (m− 1)T (r, f) +O(1), (i = 1, . . . , t).
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On the other hand, it is obvious that ˜N(r, g) = ˜N(r, f). Hence, it
follows from (2) that

˜N(r, g) = ˜N(r, f) ≤ 1

n̂
N(r, f) ≤ 1

n̂
T (r, f).

Next, by (5) and (7), we have ˜N(r, f) ≥ (tn − 1)T (r, g) −
∑t

i=1
˜Z(r, f − ci) + ˜Z(r,Ri(f)) + log r + O(1) ≥ (tn − 1)T (r, g) −

T (r, f)
∑t

i=1(1 +m − si) + log r + O(1) = (tn − 1)T (r, g) − T (r, f)
(tm− S) + log r +O(1), hence

(8) ˜N(r, f) ≥
(

(Sn−m

n

)

T (r, f) + log r +O(1).

Since t ≤ S, the inequality ˜N(r, f) ≥ T (r,f)(tn−m)
n + O(1) is then

proven.
Now by (1), we can write (tn−1)T (r, g) = ( tn−1

n )mT (r, f)+O(1),
hence by (2), (5), (6), and (7), we obtain

(9)

(

tn− 1

n

)

mT (r, f) ≤
( t
∑

i=1

(m− si + 1) +
1

n̂

)

T (r, f)

− log r +O(1).

Therefore, since f, g belong to Mu(d(0, R
−)) in Theorem 60.4

and in M(K) in Theorem 60.12, then by Theorem 43.10, (9) implies

(10) (tn− 1)m ≤ ntm− n

(

t
∑

i=1

si

)

+ nt+ b.

We can then deduce (nt − 1)m̂ ≤ n̂tm − n̂(
∑t

i=1 si) + n̂t + 1. But

since nm̂ = n̂m, we have
∑t

i=1(si − 1)n̂ ≤ m̂+ 1. It follows that

(11) Sn̂ ≤ m̂+ 1.

Thus, in Theorem 60.4, by (11), we see that either n ≤ m or
n̂ = m̂+ 1, hence g.c.d.(m,n) = n−m and then S = 1 = t.

In Theorem 60.12, both f and g belong to M(K). By (8),

we have already shown ˜N(r, f) ≥ (nt−m
n )T (r, f) + log r + O(1).
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Moreover, since log r tends to ∞ with r, by (9), we obtain ( tn−1
n )m <

∑t
i=1(m− si + 1) + 1

n̂ , hence Sn̂ < m̂+ 1, i.e.

(12) Sn̂ ≤ m̂.

Thus, in Theorem 60.12, by (12), we have n ≤ m.
Now assume the hypotheses of Theorem 60.4 hold and suppose

that m < 3n
2 . So we have m̂ < 3n̂

2 in Theorem 60.4. Therefore, by
(11), we obtain

(13) 2
3Sm̂ < m̂+ 1,

hence S ≤ 2.
Suppose S = 2. By (13), we have m̂ = 1 or 2. If m̂ = 2, since

Sm̂ ≤ m̂ + 1, and since g.c.d.(m̂, n̂) = 1, we are led to n̂ = 1, a
contradiction to the hypothesis m ≤ 3n

2 . Consequently, m̂ = 1, and
then m = n = 1. Thus, if m �= n, we have S = 1, hence t = 1, s1 = 2,
therefore c1 is a simple zero of P ′. This also completes the proof of
Theorem 60.4.

Now, in Theorem 60.12, assuming m
2 < n, by (12), we see that

the inequality S ≥ 2 is impossible, hence S = t = 1, therefore c1 is a
simple zero of P ′.

We must now consider the general case when the ramification
index of one of the two functions f, g is not 0. By Lemma 60.3, f and
g have the same ramification index h and satisfy Ph(

qh
√
f) = Qh( qh

√
g).

Moreover, one can easily verify that all hypotheses on the degrees
satisfied by P and Q are also satisfied by Ph and Qh. And of course,
qh
√
f , qh

√
g lie in Mu(d(0, R

−)) in Theorem 60.4 and in M(K)\K
in Theorem 60.12. Consequently, putting f(h) = qh

√
f, g(h) = qh

√
g,

we have

˜N(r, f(h)) ≥
T (r, f(h))(tn−m)

n
+O(1).

Actually, ˜N(r, f(h)) = ˜N(r, f) and T (r, f(h)) = T (r,f)
qh

, thereby the

inequality ˜N(r, f(h)) ≥ T (r,f(h))(tn−m)

qhn
+ O(1) is established. Now,

suppose 2m
3 < n. Then we can check that all statements on t, m, n,

true for Ph, Qh, hold for P, Q. Similarly, we can conclude in Theorem
60.12, when m

2 < n. �
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Henceforth, we suppose that the characteristic of K is null
and we consider functional equations of the form P (x)(g(x))n =
Q(x)(f(x))m + S(x), where S is a small function with respect to f
and g and we show that the equations have no solutions f, g when
f, g are transcendental or are unbounded inside a disk.

Theorem 60.15. Let P, Q, S ∈ K(x) and suppose that two
functions f, g ∈ M(K) have finitely many poles and satisfy
P (x)(g(x))n = Q(x)(f(x))m + S(x) ∀x ∈ K with min(m,n) ≥ 2.
Then, f and g belong to K(x).

Proof. Let F (x) = Q(x)(f(x))m+S(x). Then F belongs to M(K)
and has finitely many poles. Since P (x)(g(x))n = F (x), 0 is a per-
fectly branched value for F . On the other hand, F (x) − S(x) =
Q(x)(f(x))m, hence Q(x) is a perfectly branched polynomial for F .
But then by Theorem 49.9, F is not transcendental and hence belongs
to K(x) and then so does (f(x))m. But since the entire function f is
algebraic over K(x), actually by Corollary 51.7, it belongs to K(x).
But then, so does gn and similarly, so does g. �

Corollary 60.16. Let P, Q, S ∈ K[x] and suppose that two
entire functions f, g ∈ A(K) satisfy P (x)(g(x))n = Q(x)(f(x))m +
S(x) ∀x ∈ K with min(m,n) ≥ 2. Then, f and g belong to K[x].

In Theorem 29.23, we saw that the function q
√
. is defined in

d(1, 1−) when q is prime to p and that
√
. is defined in d(1, (12 )

−)
if p = 2.

Theorem 60.17. Let h ∈ A(K) have all its zeros of order multiple
of q ≥ 2 and let w ∈ K[x] be non-identically 0. Then the functional
equation

(E) (g(x))q = h(x)(f(x))q + w(x)

has no solution f, g ∈ A(K)\K[x].

Proof. Let f, g ∈ A(K) satisfy (E). If h ∈ K[x], by Corollary
60.16, both f and g are polynomials. Now suppose that h /∈ K[x]. By
Theorem 29.7, there exists φ ∈ A(K) such that φq = h. Consequently,
since w is not 0, we have w(x) = (g(x))q − (φ(x)f(x))q , and hence,
by Theorem 50.4, (g(x))q − (φ(x)f(x))q does not belong to Af (K), a
contradiction to the hypothesis (g(x))q − h(x)(f(x))q = w(x). �
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We can now consider analytic functions inside a disk d(a,R−).

Theorem 60.18. Let q ∈ N∗ be prime to p and let R ∈]0,+∞[. Let
h ∈ A(d(a,R−)) be such that that all zeros of h are of order multiple
of q and let w ∈ Ab(d(a,R

−)). Then the functional equation

(E) (g(x))q = h(x)(f(x))q + w(x)

has no solution in Au(d(a,R
−)).

Similarly, we can prove Theorem 60.19:

Theorem 60.19. Suppose K has residue characteristic 2. Let a ∈ K

and R ∈]0,+∞[ and let h, w ∈ Ab(d(a,R
−)) be such that that all

zeros of h are of even order. Then the equation (E) g2 = hf2 + w
has no solution f, g ∈ Au(d(a,R

−)).

Proof of Theorems 60.18 and 60.19. We can obviously suppose
a = 0. Suppose that (E) has solutions f, g ∈ Au(d(0, R

−)). By
Theorem 29.23, we can apply the root function q

√
. to the function

h in both Theorems 60.18 and 60.19. Therefore, there exists φ ∈
Ab(d(0, R

−)) such that φq = h. Consequently, we have gq−(φf)q = w
(with q = p = 2 in Theorem 60.19). But by Theorem 50.4, gq− (φf)q

is not bounded, which ends the proof. �

By Theorem 60.18, we can also derive the following corollary:

Corollary 60.20. Suppose K has residue characteristic p �= 2. Let
R ∈]0,+∞[, and let h, w ∈ Ab(d(a,R

−)) be such that h(x) �= 0
∀x ∈ d(a,R−). Then the equation (E) g2 = hf2 + w has no solution
f, g ∈ Au(d(a,R

−)).
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Chapter 61

Yoshida’s Equation in the Field KKK

Throughout this chapter, the field K has characteristic p ≥ 0.
We call Yoshida’s equation a differential equation of the form (E)

(y′)m = F (x, y) (with F (x, y) ∈ K(x, y)\K). Several results were
obtained in characteristic 0 and in characteristic p �= 0, for mero-
morphic functions in the whole field K or inside a disk d(a,R−).
In [24], it was shown that if (E) admits solutions in M(K)\K(x),
then F ∈ K(x)[y] and degy(F ) ≤ 2m. Moreover, it was shown that
if F ∈ K(y), then any solution of the equation lying in M(K) is a
rational function with a very specific form. That was generalized in
characteristic p �= 0 in [27]. Theorems 61.1 and 61.2 were proven
when the ground field is Cp. They have an immediate generalization
in any algebraically closed field complete for an ultrametric absolute
value, such as K.

Theorem 61.1. Let F, G ∈ K(x, Y ) be irreducible. If the differential
equation F (x, y(n)) = G(x, y) admits a solution f(x) ∈ M(K)\K(x),
then deg(G) ≤ (n + 1) deg(F ).

Proof. Suppose the given equation admits a solution f(x) ∈
M(K)\K(x). Let w = deg(F ), � = deg(G).

By Theorem 51.5, we have T (r,G(x, f(x)))= �T (r, f)+ o(T (r, f))
and T (F (x, f (n)(x))) = wT (r, f (n)) + o(T (r, f)). Now by Corol-
lary 43.15, we have T (r, f (n)) ≤ (n + 1)T (r, f) + O(1). Conse-
quently, �T (r, f) ≤ w(n + 1)T (r, f) + o(T (r, f)). Thus, since T (r, f)
is unbounded, � ≤ (n+ 1)w. �

613
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Notation. Let F (x, y) ∈ K(x, y). We denote by degx(F ) (respec-
tively degy(F )) the degree of F as a rational function that belongs
to K(y)(x) (respectively to K(x)(y)).

Theorem 61.2 comes from [24] in characteristic 0 and from [27] in
characteristic p �= 0.

Theorem 61.2 (Yoshida). Let F (x, y) ∈ K(x, y)\{0} and suppose
that there exists a non-constant solution f ∈ M(K)\K(x) of the
differential equation

(E) (y′)m = F (x, y).

Then, F belongs to K(x)[y] and degy(F ) ≤ 2m.

Proof. Let us write G(x, y) in an irreducible form P (x,y)
Q(x,y) with

P, Q ∈ K[x, y], deg(P ) = s, deg(Q) = t. Let α ∈ K be such that
P (x, α) is not identically zero and set z = 1

y−α . Equation (E) is
equivalent to

(E ′) (z′)n = R(x, z),

where R(x, z) is an irreducible rational function that we may write in

the form
∑s

j=0 aj (x)z
2n−j

∑t
j=0 bj(x)z

−j , with aj ∈ K[x], (0 ≤ j ≤ s), bj ∈ K[x], (0 ≤
j ≤ t). We note that a0(x) = P (α) �= 0.

Suppose first s− 2n ≥ t. Then,

G(x, z) = (−1)n
∑s

j=0 aj(x)z
s−j

∑t
j=0 bj(x)z

s−2n−j .

So, degz(R(x, z)) = s. By Theorem 61.1, we have s ≤ 2n, hence t = 0
and therefore G belongs to K[x, y].

Suppose now s− 2n < t. We may write R(x, z) in the form

(−1)n
∑s

j=0 aj(x)z
2n+t−j

∑t
j=0 bj(x)z

t−j .

Thus, we can see that degz(R) = 2n + t, hence by Theorem 61.1,
we have 2n ≥ 2n+ t, thereby t = 0 again. �
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Theorem 61.3. Let F (Y ) ∈ K(Y )\K and let (E) be the equation
(y′)m = F (y). Then there exists non-constant solutions f ∈ M(K)
of (E) if and only if F is of the form B(Y −c)� (0 ≤ � ≤ 2m), whereas
m− � divides m. If those hypotheses are satisfied, then the solutions

are the functions of the form f(x) = c+ (ax+ φ(xp))
m

m−� , where a
satisfies
(

am
m−�

)m
= B when m > �,

(

am
m−�

)m
= (−1)mB when m < �

and

φ is a constant when p = 0,
φ(u) ∈ M(K) when p �= 0.

Proof. Suppose first that a solution f is such that f ′ = 0. Then
we have F (f(x)) = 0. Therefore, f must be equal to one of the zeros
of F for every x ∈ K, and finally, f is a constant. Consequently, a
solution f is such that f ′ is not identically 0. Therefore, ram(f) = 0.

We first verify that F is a polynomial of degree � ≤ 2m. Let
f ∈ M(K)\K be a solution of the equation (E). Let b be a pole of
F (X) and β be a zero of f − b. Then β is a pole of F ◦ f , hence by
equation (E), β is a pole of f ′, a contradiction since f has no pole
at β. Consequently, f must avoid any pole of F (X). Therefore, by
Corollary 36.23, F (X) admits at most one pole b and hence is of the

form Q(X)
(X−b)s , with Q(X) ∈ K[X], Q(b) �= 0 and s ∈ N. Suppose s ≥ 1.

Since f must avoid any pole of F , f is of the form f = b + 1
h with

h ∈ A(K)\K and hence h′ �= 0. From (E), we derive that h satisfies
(h′)m = (−1)mh2m+sQ(b+ 1

h). Since h ∈ A(K) and is not a constant,
h admits at least one zero γ and then we can find M ∈ R such that
M ≥ Ψ(γ) and Ψ(h, μ) > −Ψ(b) ∀μ ≥ M . Then, Ψ(b + 1

h , μ) =

Ψ(b) ∀μ ≥M , hence Ψ(Q(b+ 1
h)) = Ψ(Q(b)) ∀μ ≥M . Since h′ �= 0,

we obtain mΨ(h′, μ) = (2m + s)Ψ(h, μ) + Ψ(Q(b)) ∀μ ≥ M . But
by Theorem 37.10, we have Ψ(h′, μ) ≤ Ψ(h, μ) − μ ∀μ ∈ R, hence
m
(

Ψ(h, μ)− μ)
) ≥ (2m+ s)Ψ(h, μ) + Ψ(Q(b)) and therefore

(1) (m+ s)Ψ(h, μ) +mμ+Ψ(Q(b)) ≤ 0.

Now, since M ≥ Ψ(γ) and since h belongs to A(K), the function
m(Ψ(h, μ) + μ) + Ψ(Q(b)) is strictly increasing and tends to +∞
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with μ, a contradiction to Relation (1). Consequently, F (X) has no
pole and hence is a polynomial a0 + a1X + · · ·+ a�X

�. By Theorem
43.8, we have T (r, F ◦ f) = �T (r, f) + O(1), (r ∈ J), so, then,
using the inequality T (r, f ′) ≤ 2T (r, f), we can derive from (E) that
� ≤ 2m.

Now, let c be a zero of F (X) of order n and let α be a zero of
f − c of order w such that p /≺w. We check that

(2) w =
m

m− n
and m > n.

So, all zeros of f − c are multiple, and, if their order is not a multiple
of p, they have the same multiplicity order. Furthermore, we have
m

m−n ≥ 2.

If we consider a pole of f of order t such that p /≺t, we have

(3) t =
m

�−m
and m < �.

So, all poles of f are multiple and the poles whose order is not mul-
tiple of p have the same multiplicity order.

Let c1, . . . , ck be the distinct zeros of F and for each j = 1, . . . , k,
and let nj be the order of cj as a zero of F . Let us apply Theorem
58.11 to f . Since ram(f) = 0, we have

(k − 1)T (r, f) ≤
k
∑

j=1

˜Z(r, f − cj) + ˜N(r, f)− log r +O(1),

and then, by (2) and (3), we can derive

(k − 1)T (r, f) ≤ (Tr, f)

⎛

⎝

k
∑

j=1

(

m− nj
m

)

+
�−m

m

⎞

⎠− log r +O(1),

hence

(k − 1)T (r, f) ≤
(

∑k
j=1(m− nj)

)

+ �−m

m
T (r, f)− log r +O(1).

But
∑k

j=1 nj = �, so we obtain

(k − 1)T (r, f) ≤ (k − 1)T (r, f)− log r +O(1),

which is impossible whenever k ≥ 2. That shows that k = 1. There-
fore, F (X) is of the form B(X− c)�. Now, by (2) and (3), we can see
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that f − c can’t have simultaneously a zero and a pole whose order
is not multiple of p.

So, by (2) and (3), either m > � and then f belongs to A(K) and
admits at least a zero, or � > m and then f has no zero but admits
at least a pole and is of the form c+ 1

h with h ∈ A(K). And since f ′
is not identically zero, we note that f must have at least one zero or
one pole, therefore f is not a constant.

(A) Supposem > � and hence f belongs to A(K). Let γ be a zero of
f − c. Then mωγ(f

′) = �ωγ(f − c). Let ρ = g.c.d.(m, �) and set m =
σρ, � = τρ. Then σωγ(f

′) = τωγ(f−c). Now, since σ, τ are relatively
prime, σ divides ωγ(f − c) for every zero γ of f − c, and therefore,
by Theorem 27.7, there exists g ∈ A(K) such that g� = f − c. On
the other hand, from the given equation (f ′)σρ = C2(f − c)τρ, the

function θ(x) = (f ′)σ
C2(f−c)τ is a meromorphic function such that θρ = 1.

Then by Lemma 36.1, θ is a constant. Consequently, (f ′)σ is of the
form C3(f − c)τ , with (C3)

ρ = C2, hence (f ′)� = C3g
τ�, therefore

f ′ = C4g
τ with Cσ4 = C3. But f

′ = σg′gσ−1, hence σg′gσ−1 = C4g
τ

and finally g′gσ−τ−1 = C4
σ . Now, since we have noted that � < m,

we have σ − τ − 1 ≥ 0. Consequently, since g ∈ A(K), the only
solution is that both g′ and gσ−τ−1 are constant i.e. g(x) is of the
form ax + υ(x) with σ = τ + 1, with a ∈ K∗ and υ ∈ M(K) has a
null derivative i.e. if p = 0, then υ is just a constant b ∈ K, and if
p �= 0, then υ is of the form φ(xp), whereas φ(u) belongs to M(K).

More precisely, we note that σ = m
m−� because σ = τ + 1.

Consequently, f(x) = c+ (ax+ υ)
m

m−� and therefore f ′(x) = am
m−�

(ax+ υ)
�

m−� . Now, since f is solution of (E) and since υ′(x) is iden-
tically zero, we can derive

(

am

m− �

)m

(ax+ υ(x))
m�
m−� = B(ax+ υ(x))

m�
m−� ,

therefore
(

am
m−�

)m
= B.

(B) Suppose �>m and hence f is of the form c+ 1
h with h∈A(K).

Then h satisfies h′m = (−1)mBh2m−�. Thus, we are lead to the same
problem with 2m − � instead of � and a polynomial G(Y ) of the
form (−1)mBY 2m−� instead of F . Consequently, h is of the form

(ax + υ(x))
m

�−m with υ of the form φ(xp), whereas φ(u) belongs to
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M(K) and with
(

am
�−m

)m
= (−1)mB. So, f(x) = c+ (ax+ υ(x))

m
m−�

with
(

am
�−m

)m
= (−1)mB.

Conversely, suppose that m− � divides m and suppose that F (Y )

is of the form B(Y − c)�. Let f(x) = c+ (ax+ φ(xp))
m

m−� , where a
satisfies the following:

(

am
m−�

)m
= B whenm > �,

(

am
m−�

)m
= (−1)mB

when m < � and satisfies further the following: φ is a constant when
p = 0, φ(u) ∈ M(K) when p �= 0. Then we can check that f is a
solution of (E). �
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Chapter 62

Yoshida’s Equation Inside a Disk

Here we want to consider Yoshida’s equation for meromorphic func-
tions inside a disk d(a,R−) [23]. Several methods look like parts of
the proof of Theorem 61.3. However, we do not obtain a result as
general as in Chapter 61.

Throughout this chapter, K has characteristic 0.

Proposition 62.1. Let F (Y ), G(Y ) ∈ Mb(d(a,R
−))(Y ) be irre-

ducible as rational functions. If the differential equation F (y(n)) =
G(y) admits a solution f ∈ Mu(d(a,R

−)), then deg(G) ≤ (n + 1)
deg(F ).

Proof. Suppose there exists f ∈Mu(d(a,R
−)) such that F (f (n))=

G(f(x)).
On one hand, by Corollary 43.15, we have T (r, (f (n))) ≤ (n + 1)

T (r, f) + O(1). Hence, by Theorem 51.5 and Corollary 43.15, we
have T (r, F (f (n))) ≤ (n + 1) deg(F )T (r, f) + o(T (r, f)). On the
other hand, by Theorem 51.5, we have T (r,G(f)) = deg(G)T (r, f)+
o(T (r, f)). Now, since T (r, f) is unbounded, the conclusion is clear.

�

Theorem 62.2. Let m ∈ N∗ and let F ∈ Mb(d(a,R
−))(Y ).

If the differential equation (E) (y′)m = F (y) admits a solu-
tion f ∈ Mu(d(a,R

−)), then F belongs to Mb(d(a,R
−))[Y ] and

deg(F ) ≤ 2m.

Proof. Let us write f(Y ) =
∑k

i=0 ci(x)Y
i

∑l
i=0 bi(x)Y

i
and suppose that (E)

admits a solution f ∈ Mu(d(a,R
−)). Let us take α ∈ K such

619
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that
∑k

i=0 ci(x)α
i is not identically zero and let g = 1

f−α . Let

G ∈ Mb(d(a,R
−))(Y ) be defined by F (Y ) = G( 1

Y −α). Then g satis-
fies an equation

(g′)m = G(g) (1)

with G(Y ) of the form (−1)m
∑k

i=0 ci(x)Y
2m−i

∑l
i=0 ei(x)Y

−i
and c0 =

∑k
i=0 ci(x)α

i.

Suppose first k − 2m ≥ l. Then, G(Y ) = (−1)m
∑k

i=0 ci(x)Y
k−i

∑l
i=0 ei(x)Y

k−2m−i
.

So, the degree of G is k. Then by Proposition 62.1, we have 2m ≥ k,
hence l = 0 and hence F is a polynomial of degree k ≤ 2m. Suppose

now k − 2m < l. We have G(Y ) = (−1)m
∑k

i=0 ci(x)Y
2m+l−i

∑l
i=0 ei(x)Y

l−i
. So, G

is of degree 2m + l and then, by applying Proposition 62.1 to (1),
we obtain l = 0 and hence k < 2m i.e. F is a polynomial of degree
k < 2m. �

Notation. In proofs of Theorems 62.3 and 62.4, we have to consider
a spherically complete extension ̂K of K and the disk ̂d(a,R−).

Theorem 62.3 looks like Theorem 61.3 when we assume that F is
a polynomial with a unique zero.

Theorem 62.3. Suppose K is of characteristic 0. Let F (Y ) ∈ K[Y ]
be of the form B(Y − c)�. The solutions f ∈ M(d(a,R−)) of (E) are
the functions of the form c+ (ax+ b)

m
m−� such that

either m > � and then B =
( am

m− �

)m

or m < � and then (−1)mB =
( am

m− �

)m
.

Proof. Suppose (E) admits a solution f ∈ Mu(d(a,R
−)). Let α be

a zero of f − c of order s. So, we have

(1) s =
m

m− �
and m > �.

Consequently, all zeros of f − c are multiple and of same order. Now,
let β be a pole of f of order t. Then we have

(2) t =
m

�−m
with m < �.
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So, all poles are of same order. Moreover, we note that f cannot have
both zeros and poles.

Consequently, either m > � and f belongs to Au(d(a,R
−)) or

m < � and f is of the form c+ 1
h with h ∈ Au(d(a,R

−)).
Suppose first thatm > �. Then f belongs to Au(d(a,R

−)). By (1),
every zero α of f − c is of order s = m

m−� , hence α is a zero of f ′ of
order �

m−� . By Theorem 36.12, there exists g ∈ A(d(a,R−)) such that

gs = f − c. Then, by Equation (E), we have (sg′)m(g)m(s−1) = Bgs�

which, by (1), yields (sg′)m = B. Consequently, since K is of charac-
teristic 0, by Lemma 36.1, g′ is a constant and hence g(x) is of the
form (ax + b). So, f − c = (ax + b)s and (similar to Theorem 61.3)

we obtain s = m
m−� , B =

(

am
m−l

)m
, and f(x) = c+ (ax+ b)

m
m−� .

Suppose now that m < � and then f is of the form c + 1
h with

h ∈ Au(d(a,R
−)). Then h satisfies

(3) (h′)m = (−1)mBh2m−�

and by (2) every zero β of h is of order t = m
�−m . Consequently,

β is a zero of h′ of order t − 1 = 2m−d
�−m . Consider again a function

g ∈ A(̂d(a,R−)) such that gt = h. In the same way as in the previous
case, we can check that g′ is a constant and therefore, since K is
of characteristic 0, f is of the form c + 1

(ax+b)t and the conclusion

follows as in Theorem 61.3. �

Proposition 62.4. Suppose K is of characteristic 0. Let F (Y ) ∈
K[Y ] have at least two distinct zeros. Then the differential equation
(E) (y′)m = F (y) does not admit solutions f ∈ Au(d(a,R

−)) or of
the form c+ 1

h with h ∈ Au(d(a,R
−)).

Proof. Let F (Y ) = B
∏k
j=1(Y − cj)

�j with k ≥ 2, ci �= cj ∀i �= j

and let � = deg(F ). Suppose first that a solution f of (E) belongs to
Au(d(a,R

−)). Since, by Corollary 18.3, |f ′|(r) ≤ |f |
r ∀r ∈]0, R[, we

note that m ≥ �, therefore �j < m ∀j = 1, . . . , k.
For each j = 1, . . . , k, let tj = g.c.d.(m, �j) and set m = tjqj, �j =

tjwj. So, qj and wj are relatively prime. For each pair (i, j), i �= j,
since ci �= cj , f − ci and f − cj have no common zero. So, if α
is a zero of f − cj , we have mωα(f

′) = �iωα(f − ci) and therefore
qiωα(f

′) = wiωα(f − ci). Thus, qi divides ωα(f − ci), (1 ≤ i ≤ k).
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Now, by Theorem 36.12, there exists gi ∈ Au(̂d(a,R
−)) such that

f − ci = (gi)
qi .

We note that if qi = 1, then m must divide �i, which is excluded
because �j < m. Consequently, qi ≥ 2 ∀i = 1, . . . , k. Next, for any
pair (i, j) of two distinct integers among 1, . . . , k, we have (gi)

qi −
(gj)

qj = ci − cj �= 0. But since min(qi, qj) ≥ 2, by Theorem 47.11,
both gi, gj are bounded a contradiction since f is unbounded.

Suppose now that f = c+ 1
h with h ∈ Au(d(a,R

−)). At most one
of the ci is equal to c. So, we can assume ci �= c ∀i = 1, . . . , k − 1.
Set aj = c− cj ∀j = 1, . . . , k and � =

∑k−1
j=1 �j . Then f must satisfy

(1) (h′)m = (−1)mBh2m−�∏k
i=1

(

c− ci +
1
h

)�i

= (−1)mBh2m−�
(

ak +
1

h

)�k k−1
∏

i=1

(

ai +
1

h

)�i

.

Now, since h is unbounded, when r is close enough to R, we have

(|h′|(r))m = |B|(|h|(r))2m
(∣

∣

∣

∣

ak +
1

h

∣

∣

∣

∣

(r)

)�k k−1
∏

i=1

(∣

∣

∣

∣

ai +
1

h

∣

∣

∣

∣

(r)

)�i

= |B|(|h|(r))2m
(∣

∣

∣

∣

ak +
1

h

∣

∣

∣

∣

(r)

)�k k−1
∏

j=1

|aj|�j .

Set C = |B∏k−1
i=1

(|ai|
)�i . By Corollary 18.3, when r is close enough

to R, we obtain

C
(|h|(r))2m

(∣

∣

∣

∣

ak +
1

h

∣

∣

∣

∣

(r)

)�k

≤ C

( |h|(r)
r

)m

,

therefore Crm(|h|(r))m(|ak + 1
h |(r)

)lk ≤ 1 and hence

Crm(|h|(r))m−lk ≤ 1 when r tends to R. But since m < �k, that
inequality is impossible when r tends to R. �

By Theorems 62.3 and 62.4, we have the following corollary:

Corollary 62.5. Suppose K is of characteristic 0. Let F (Y ) ∈ K[Y ]
and let m ∈ N∗. Then the differential equation (E) (y′)m = F (y) does
not admit any solution f ∈ Au(d(a,R

−)) or of the form c + 1
h with

h ∈ Au(d(a,R
−)).
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Definition. In Theorem 62.6, we have to present Equation (E) when
it is in the form (y′)mq = (F (y))q, where q ∈ N∗. We say that (E) is
a qth power of the equation (y′)m = (F (y)) and an equation (E) is
said to be irreducible if it is not a qth power of another equation of
the form (E), for some q > 1.

Remark. According to Theorems 62.3 and 62.4, we have character-
ized all solutions of (E) that either belong to A(d(a,R−)) or admit an
exceptional value. In Theorem 62.6, we examine the form of Equation
(E) when a solution is not of the form as shown in Theorem 62.3.

Theorem 62.6. Suppose K is of characteristic 0. Let F (Y ) ∈ K[Y ]
and let m ∈ N∗. Suppose the differential equation (E) (y′)m = F (y)
admits a solution f ∈ Mu(d(a,R

−))\A(d(a,R−)) that has no excep-
tional value in K. Then (E) is a power of one of the following forms:

(E1) (y′)2 = A(y − c1)(y − c2)(y − c3),

(E2) (y′)2 = A(y − c1)(y − c2)(y − c3)(y − c4),

(E3) (y′)3 = A(y − c1)
2(y − c2)

2,

(E4) (y′)3 = A(y − c1)
2(y − c2)

2(y − c3)
2,

(E5) (y′)6 = A(y − c1)
3(y − c2)

4(y − c3)
5,

(E6) (y′)4 = A(y − c1)
2(y − c2)

3(y − c3)
3,

(E7) (y′)6 = A(y − c1)
4(y − c2)

5,

(E8) (y′)4 = A(y − c1)
3(y − c2)

3,

(E9) (y′)6 = A(y − c1)
3(y − c2)

5,

(E10) (y′)4 = A(y − c1)
2(y − c2)

3,

(E11) (y′)6 = A(y − c1)
3(y − c2)

4.

Proof. Let F (Y ) = A
∏k
i=1(Y − ci)

�i with ci �= aj ∀i �= j and

� =
∑k

i=1 �i. We can note that each zero of f − ci is a zero of f ′ and
hence is a zero of order m

m−�i ≥ 2. Particularly, we have

(1)
m

2
≤ �i ≤ m− 1

and hence km
2 ≤∑k

i=1 �i ≤ k(m− 1) i.e. km
2 ≤ � ≤ k(m− 1). In the

same way, for each pole β of f, we have ωβ(f) = m
�−m ≥ 1,
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hence m+ 1 ≤ � ≤ 2m, therefore

(2) max

[

m+ 1,
km

2

]

≤ � ≤ min[2m,k(m − 1)],

and hence

(3)
m+ 1

m− 1
≤ k ≤ 2�

m
≤ 4.

Let u =
m

�−m
and ui

m

m− �i
, i = 1, . . . , k.

Then,

(4)
1

m
≤ 1

ui
≤ 1

2
.

By (2), we have

(5) max

[

1

m
,
k − 2

2

]

≤ 1

u
≤ min

[

1,
k(m− 1)

m
− 1

]

.

On the other hand, by definition of u and ui, we also note that

(6)
1

u
+

k
∑

i=1

1

ui
= k − 1.

(A) First, suppose m = 2. By (1), (2), and (3), we have k = � = 3
or 4 and �i = 1 ∀i = 1, . . . , k. This leads to Equations (1) and (2).

(B) Now, suppose m ≥ 3. Since m − 1 does not divide m, that
yields �i ≥ 2 ∀i = 1, . . . , k. Consequently, we have

(7) max
[m

2
, 2
]

≤ �i ≤ m− 1.

Hence, (2) becomes

(8) max

[

m+ 1,
km

2
, 2k

]

≤ � ≤ min[2m,k(m − 1)].

So, we have m+1
m−1 ≤ k ≤ min

(

m, 2dm
]

. And since 1 < m+1
m−1 ≤ 2 ∀m ≥ 3,

Relation (3) becomes

(9) 2 ≤ k ≤ min

[

m,
2�

m

]

≤ 4.
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Now, by (7), we obtain 1
m ≤ m−�i

m ≤ min
[

m−2
m , 12

]

i.e.

(10)
1

m
≤ 1

ui
≤ min

[

m− 2

m
,
1

2

]

,

and by (5) and (8), we can derive

(11) max

[

1

m
,
k − 2

2
,
2k −m

m

]

≤ 1

u
≤ min

[

1,
k(m− 1)

m
− 1

]

.

(B1) Suppose m = 3. By (7) and (8), we have �i = 1 ∀i = 1, . . . , k
and max

[

4, 3k2 , 2k
] ≤ d ≤ min[6, 2k]. Consequently, either � = 4,

k = 2, or � = 6, k = 3. This leads to Equations (3) and (4).

(B2) m ≥ 4. In that subcase, we have to consider three subcases.

(B2a) k = 4. By (6), (9), (10), and (11), we obtain � = 2m ≥ 8,
1
m ≤ 1

ui
≤ 1

2 , u = 1,
∑4

i=1
1
ui

= 2. Consequently, ui = 2
and �i =

m
2 ∀i = 1, 2, 3, 4. That leads to the equation

(y′)m = A(y − c1)
m
2 (y − c2)

m
2 (y − c3)

m
2 (y − c4)

m
2 with m ≥ 4, m

multiple of 2.
That is the mth power of Equation (E2):

(B2b) k = 3. Thanks to (6), (7), (8), and (10), we obtain

m

2
≤ �i ≤ m− 1,

3m

2
≤ � ≤ 2m, 2 ≤ ui ≤ m,

1 ≤ u ≤ 2,
1

u
+

4
∑

i=1

1

ui
= 2.

We can assume that 2 ≤ u1 ≤ u2 ≤ u3 ≤ m i.e. 1
m ≤ 1

u3
≤ 1

u2
≤

1
u1

≤ 1
2 .

(B2b)(i) Suppose first u = 1. The only possible values for 1
u1
, 1
u2
, 1
u3

are
(

1

2
,
1

3
,
1

6

)

,

(

1

2
,
1

4
,
1

4

)

,

(

1

3
,
1

3
,
1

3

)

.

Consequently, the only possible values for (�1, �2, �3) are respectively
(

m

2
,
3m

2
,
5m

6

)

,

(

m

2
,
3m

4
,
3m

4

)

,

(

2m

3
,
2m

3
,
2m

3

)

.
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That leads to the following equations, respectively:

(y′)m=A(y − c1)
m
2 (y − c2)

m
3 (y − c3)

5m
6 with m≥ 4, m multiple of 6.

(y′)m=A(y − c1)
m
2 (y − c2)

3m
4 (y − c3)

3m
4 withm≥ 4,mmultiple of 4.

(y′)m=A(y− c1)
2m
3 (y− c2)

2m
3 (y− c3)

2m
3 withm≥ 4,mmultiple of 3.

Such equations are respectively the mth power of (E5), (E6), (E4).
(B2b) (ii) u = 2. The only possible value for

(

1
u1
, 1
u2
, 1
u3

)

is
(

1
2 ,

1
2 ,

1
2

)

. Consequently, the only possible value for (�1, �2, �3) is
(

m
2 ,

m
2 ,

m
2

)

. That leads to the equation (y′)m = A(y− c1)
m
2 (y− c2)

m
2

(y − c3)
m
2 with m ≥ 4, m multiple of 2.

Thus, that equation is the mth power of (E1).
(B2c) k = 2. Thanks to (7), (8), (10), and (11), we can write

m

2
≤ �i ≤ m− 1, m+ 1 ≤ � ≤ 2m− 2,

2 ≤ ui ≤ m, (i = 1, 2)
m

m− 2
≤ u ≤ m.

Particularly, 2 ≤ u ≤ m. By (6), we then obtain 1
u1

+ 1
u2

= u−1
u i.e.:

(12)
1

u1
+

1

u2
+

1

u
= 1.

Suppose u > 6. By (12), we have 1
u1

+ 1
u2
> 5

6 . But by (12), u1 =

u2 = 2 is impossible. And if (u1, u2) �= (2, 2) we can see that
1
u1

+ 1
u2

≤ 5
6 . Consequently, u ≤ 6. Moreover, if u = 5, by (12), we

have 1
u1

+ 1
u2

= 4
5 . If ui ≥ 3, i = 1, 2, then 1

u1
+ 1

u2
≤ 2

3 . Suppose

u1 = 2. If u2 = 3, 1
u1

+ 1
u2

= 5
6 . And if u2 ≥ 4, then 1

u1
+ 1

u2
≤ 3

4 .
Consequently, u �= 5 and hence u can only take the values 2, 3, 4,
and 6. We consider those 4 cases.

(B2c) (i) u = 2. The only possible values for
(

1
u1
, 1
u2

)

are
(

1
3 ,

1
6

)

and
(

1
4 ,

1
4

)

. Consequently, the only possible values for (�1, �2)
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are respectively
(

2m
3 ,

5m
6

)

and
(

3m
4 ,

3m
4

)

. They correspond to the
equations

(y′)m = A(y − c1)
2m
3 (y − c2)

5m
6 with m ≥ 4 and m multiple of 6,

(y′)m = A(y − c1)
3m
4 (y − c2)

3m
4 with m ≥ 4 and m multiple of 4,

which are the mth power of (E7) and (E8).
(B2c) (ii) u = 3. The only possible values for

(

1
u1
, 1
u2

)

are
(

1
2 ,

1
6

)

and
(

1
3 ,

1
3

)

. Consequently, the only possible values for (�1, �2) are respec-

tively
(

m
2 ,

5m
6

)

and
(

2m
3 ,

2m
3

)

. They correspond to the equations

(y′)m = A(y − c1)
m
2 (y − c2)

5m
6 with m ≥ 4 and m multiple of 6,

(y′)m = A(y − c1)
2m
3 (y − c2)

2m
3 with m ≥ 4 and m multiple of 3,

which are the mth power of (E9) and (E3).
(B2c) (iii) u = 4. The only possible value for

(

1
u1
, 1
u2

)

is
(

1
2 ,

1
4

)

. Con-

sequently, the only possible value for (�1, �2) is
(

m
2 ,

3m
4

)

. This cor-

responds to the equation (y′)m = A(y − c1)
m
2 (y − c2)

3m
4 with m≥ 4

and m multiple of 4 and this is the mth power of (E9) and (E10).
(B2c) (ii) u = 6. The only possible value for

(

1
u1
, 1
u2

)

is
(

1
2 ,

1
3

)

. Con-

sequently, the only possible value for (�1, �2) is
(

m
2 ,

2m
3

)

. This cor-

responds to the equation (y′)m = A(y − c1)
m
2 (y − c2)

2m
3 with m≥ 4

and m multiple of 6 and this is the mth power of (E9) and (E11).
That finishes the proof of Theorem 62.6. �

Corollary 62.7. Suppose K is of characteristic 0. Let F (Y ) ∈
K(Y )\K and let m ∈ N∗. If one of the following hypotheses is sat-
isfied, there exists no solution f ∈ Mu(da,R

−) for the irreducible
equation (E) (y′)m = F (y):

(1) F (Y ) ∈ K[Y ] and deg(F ) ≥ 2m+ 1,
(2) F (Y ) ∈ K[Y ] has at least five zeros, ignoring multiplicity,
(3) m = 2, F (Y ) ∈ K[Y ] has at least one multiple zero,
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(4) m = 3, F (Y ) ∈ K[Y ] has at least four distinct zeros,
(5) m = 3, F (Y ) ∈ K[Y ] has at least one zero of order s �= 2,
(6) m = 4, F (Y ) ∈ K[Y ] has four distinct zeros,
(7) m = 5,
(8) m = 6, F (Y ) ∈ K[Y ] has at least four distinct zeros,
(9) m ≥ 7.
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des Sciences de Bordeaux.
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Definitions

Chapter 1
centered similarity,
center of a centered similarity,
non-centered similarity,
translation,
affinely rigid set,
centered affinely rigid set,
non-centered affinely rigid analytic set,
Condition (F).

Chapter 2
valuation ring, valuation ideal,
residue class, residue class field, residue characteristic,
circle of center a, or radius r, classes of a circle,
diameter of a set, codiameter of a set,
hole of a set,
infraconnected set, infraconnected component,
affinoid set,
empty annulus of a set.

Chapter 3
filter thinner than another one,
sequence thinner than a filter,
filter secant with a set, with another filter,
increasing distances sequence, decreasing distances sequence,
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monotonous distances sequence,
equal distances sequence,
increasing filter of center a and diameter r,
decreasing filter of center a and diameter r,
decreasing filter with no center of diameter r, of canonical
basis (Dn),

monotonous filter,
body of a monotonous filter, beach of a monotonous filter,
spherically complete field,
pierced monotonous filter,
circular filter of center a and diameter r,
peripheral of a bounded set,
circular filter with no center, of diameter diameter r,
of canonical basis (Dn),

large circular filter, punctual circular filter,
F-affinoid.

Chapter 4
Gauss norm.

Chapter 5
quasi-monic polynomial.

Chapter 6
p-adic absolute value.

Chapter 7
Eisenstein polynomial,
uniformizer of an extension of Qp,
ramification index of an extension of Qp.

Chapter 8
principal ultrafilter,
incomplete ultrafilter,
immediate extension of an ultrametric field.

Chapter 9
transcendence order ≤ τ over Qp,
weak transcendence order ≤ τ over Qp, infinite order,
algebraic number in Cp, transcendental number in Cp,
denominator of an algebraic number.
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Chapter 10
transcendence type ≤ τ in Cp,
infinite transcendence type.

Chapter 11
analytic element on D,
invertible element of a space H(D),
pole of order q of an element f ∈ H(D),
polynomial of poles of an element of H(D) in D\D,
residue of an element f ∈ H(D) at a pole a.

Chapter 12
bianalytic element from A onto B.

Chapter 13
punctual semi-norms of H(D).

Chapter 14
radius of convergence,
entire function,
power series, Laurent series,
zero of multiplicity order q.

Chapter 15
f -hole, Mittag-Leffler term of f associated with a hole Tn,
principal term of f ,
Mittag-Leffler series of f on the infraconnected set D,

specific circular filter of a hole, of ˜D,
residue of an analytic element on a hole.

Chapter 16
polynomial of zeros of an analytic element on a subset A,
semi-invertible analytic element,
quasi-invertible analytic elements,
quasi-minorated analytic element.

Chapter 17
analytic element vanishing along a filter F ,
analytic element properly vanishing along a filter F .

Chapter 18
piercing of a subset,
well pierced subset.
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Chapter 20
analytic element strictly vanishing along a monotonous filter F ,
analytic element collapsing along a monotonous filter F .

Chapter 21
analytic set.

Chapter 23
strictly injective analytic element,
strictly injective analytic function,
bianalytic function.

Chapter 28
divisor on K, divisor on a disk d(a, r−),
bounded divisor in a disk,
divisor of a function,
Euclidean division by a polynomial.

Chapter 29
index of an analytic element,
pure factor associated to a hole,
Motzkin factor in a hole,
Motzkin index,
f -supersequence,
Motzkin factorization,
principal factor.

Chapter 30
order of growth of an entire function,
cotype of growth of an entire function.

Chapter 31
type of growth of an entire function.

Chapter 33
order of growth of an analytic function inside a disk,
type of growth of of an analytic function. inside a disk,
cotype of growth of of an analytic function inside a disk.

Chapter 34
contiguous filters,
quasi-invertible analytic function inside a disk.
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Chapter 35
regular sequence,
regular ultrafilter,
coroner filter,
multibijective Banach algebra.

Chapter 36
meromorphic function in K, in a disk d(a,R−),
pole of order s of a meromorphic function,
meromorphic function holomorphic at a point α,
divisor of a meromorphic function in K, in a disk d(a,R−),
divisor of the poles of f ,
exceptional value,
pseudo-exceptional value,
quasi-exceptional value.

Chapter 37
residue of a meromorphic function at a point a,
analytic element meromorphic in a hole,
singular part at a point b,
polynomial of the poles in a hole.

Chapter 39
exceptional value,
pseudo-exceptional value,
quasi-exceptional value,
Motzkin factor,
Motzkin index.

Chapter 40
circular filter surrounding another circular filter,
circular filter surrounding a monotonous filter,
monotonous surrounding a circular filter,
monotonous surrounding another monotonous filter,
D-bordering filter,
strictly D-bordering filter,
δ-topology,
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