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On The Importance of The Mathematical
Formulation to Get PINNs Working

Brahim EL MOKHTARI, Cédric CHAUVIERE, Pierre BONNET

Abstract—Physics-informed neural networks (PINNs) are a
powerful approach that combines deep learning with physical
principles to solve complex problems. However, like any method,
they do have some drawbacks. The first one is hyperparameter
sensitivity such as learning rates, network architectures and
activation functions. Many researchers have devoted their time
and energy to design efficient neural network models by searching
optimal hyperparameters. In this article, we follow another path
by showing that the mathematical formulation of the problem
to be solved, has a critical influence on the performance of the
model. Electrostatic examples illustrate this.

Index Terms—PINN, Poisson Equation, meshless method.

I. INTRODUCTION

S INCE the seminal work of Raissi et al. in 2017 [1],
[2], later published in a merged version [3], PINNs have

attracted the attention of an increasing number of researchers
over the last few years. Yet, there are still many obstacles
that need to be addressed before PINNs get competitive in
comparison with well established numerical methods such
as finite difference or finite elements methods, for example.
Numerical stability is probably the main issue. Indeed, PINNs
involve solving linear and nonlinear partial differential equa-
tions (PDEs) numerically, which can lead to stability issues. In
the context of machine learning models, stability issues usually
means that the learning process does not proceed as expected.
In this case, the optimisation procedure required to compute
the parameters of the model converges to a local minima
that lead to a wrong solution [4]. Careful consideration of
numerical methods is essential for accurate and reliable results
when PINNs are used [5], [6], since they may lead to solutions
that look good but are still highly inaccurate. This is a major
difference compared with standard numerical methods that
tend to diverge roughly when things go wrong. Training PINNs
can also be computationally expensive, especially for large-
scale problems or complex physics simulations and this can
limit their applicability in real-time or resource-constrained
environments. Despite these drawbacks, the use of PINNs
continues to advance, and researchers are actively working on
addressing these challenges to enhance their practicality and
effectiveness. In the jungle of newly proposed PINNs methods
to treat these issues, Lawal et al. [7] conveniently classify them
into three families: extended PINNs [8]–[10], hybrid PINNs
[11], [12] and minimized loss techniques [13], [14].
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In spite of the drawbacks cited above, PINNs come with sev-
eral advantages that make them a valuable tool in various sci-
entific and engineering applications. The possibility to embed
prior knowledge is one of the main benefits of PINNs. Indeed,
they can seamlessly integrate existing physical knowledge (i.e.
experimental data points) and partial differential equations
into a single learning process. Since neural networks have the
capacity to model highly complex and nonlinear relationships,
this flexibility enables PINNs to capture intricate patterns
and behaviors in physical systems that may be challenging
for traditional methods. This is why they are well-suited for
handling multi scale problems [15] where phenomena occur at
different spatial or temporal scales. For the same reason, they
have the potential to automatically discover hidden patterns or
relationships within the data. This can lead to new insights
and discoveries in scientific research, particularly in cases
where the underlying physics may not be fully understood
[16]. Furthermore, when the learning procedure is performed
with all the proper rules (i.e. with training, validation and test
data), PINNs can exhibit resilience to noisy or incomplete data.
The incorporation of physics-based constraints [17] helps the
model generalize well, even in the presence of uncertainties or
measurement errors. Since most of the computations required
by the training procedure consist in matrix-matrix products,
training neural networks can make effective use of GPU cards
and be parallelized efficiently, making it feasible to handle
large-scale problems. This scalability is advantageous for
applications in various fields such as antennas and propagation
[18], fluid dynamics [19], structural mechanics [20] or mate-
rials science [21], to quote a few. Last but not least, as PINNs
is a meshless methods, the possibility to get a solution without
having to mesh the computational domain is a great advantage
over traditional numerical techniques. This also comes with
a disarmingly simple way to get a solution at points that
do not belong to the training points, without the recourse
to complex interpolation. Overall, the advantages of PINNs
make them a valuable tool for solving challenging problems
in science and engineering, providing a bridge between data-
driven approaches and physical principles.

Therefore, it is not surprising that in computational elec-
tromagnetic, PINNs have been utilized in several ways. It
has been employed both in the frequency domain [22], [23]
and in the time domain [18], [24] to deal with complex
electromagnetic phenomena. These phenomena involve intri-
cate interactions between electromagnetic fields and various
components, and PINNs can capture these interactions effec-
tively. PINNs can also predict the electromagnetic performance
of systems [25] by simulating their behavior under different
operating conditions. The same idea applied to electromagnetic



IEEE TRANSACTIONS ON EMC, OCTOBER 2024 2

compatibility (EMC) could help engineers identify potential
problems early in the design phase and take necessary mea-
sures to mitigate them. Not only PINNs can be used for direct
problems, but also in electromagnetic inverse problems by
training a neural network to infer material properties [23]
or object properties from measured electromagnetic field data
for example [26]. Despite this tremendous promise of PINNs
application, one should not think that the technology is yet
advanced enough to solve any type of problem. This is very
well explained in the context of fluid simulation in [27], but
generalizes to many other fields, including electromagnetism.
Although many articles describe solving Poisson or Laplace
equations, the success of their method is mainly due to
the fact that their problem is formulated in a very specific
way [28]–[31]. In all articles cited, the charges inside the
domain are not treated under the form of interior boundaries
conditions, as is often done in finite difference methods. More
specifically, the only boundaries conditions are the outer ones
of the computational domain. We found that in order to get
PINNs working for the Poisson or Laplace equation, it was
necessary to have no inside boundaries conditions. Note that
numerical resolution of the Poisson (or Laplace) equation is
often an important first step in solving cable EMC problems
by calculating their Per-Unit-Length parameters [32], [33].

In this article, we strive to compute, by mean of standard
PINNs, the electrostatic potential in a given computational
domain regardless the boundary condition and the geometry.
We show that the formulation used to model the problem has a
dramatic influence on the solution provided by a trained PINN.
For each formulation a centred finite difference solution was
computed as reference solution to compare with the PINNs
solution using the same formulations.

The paper is structured as follows. In the first section,
we introduce three possible mathematical formulations of
the electrostatic potential model in a general computational
domain. In the second section, our PINN solver is introduced
to serve as benchmark solver for our problem. Then, we apply
it to each formulation and we show that only one of them lead
to the right solution. In section V, using the right formulation,
we solve a complex problem that would be challenging to
tackle with standard method due to the intricate shape of
the charge distribution. Finally, in section VI, we draw some
conclusions.

II. POSSIBLE FORMULATIONS OF THE PROBLEM

To make matters simple, assume that we want to compute
the electrostatic potential V generated by any distribution
of charges into a two-dimension domain denoted by Ω =
[0, 1]× [0, 1] (see Fig. 1) with the condition V = 0 at infinity
(i.e. outside of Ω). The procedure described above can easily
generalize to more complex problems. Let Γ1 and Γ2 denote
two rectangular area supporting surface charge distribution ρs.
In the case where Γ1 (respectively Γ2) is a conductive plate,
this distribution reduces to linear charge distribution ρl on ∂Γ1

(respectively ∂Γ2).
Two equivalent mathematical formulations can be used to

calculate the electric potential V over Ω. The first one imposes
a constant electric potential V0 over Γ1 and −V0 over Γ2 :

Fig. 1. Representation of the studied problem


∆V (x, y) = 0, (x, y) ∈ Ω

V (x, y) = 0, (x, y) ∈ ∂Ω

V (x, y) = V0, (x, y) ∈ Γ1

V (x, y) = −V0, (x, y) ∈ Γ2

(1)

In this configuration, Γ1 and Γ2 are supposed to be perfectly
electric conductors since V is equipotential on the two rect-
angular area. Obviously, Γ1 and Γ2 define a planar capacitor
in this case. Since there always exist a linear electric charge
density ρl(x, y) for (x, y) ∈ ∂Γ1 ∪ ∂Γ2 which induces an
equivalent electric potential, the problem can be reformulated
as :∆V (x, y) = −ρl(x, y)

ϵ0
1∂Γ1∪∂Γ2

(x, y), (x, y) ∈ Ω

V (x, y) = 0, (x, y) ∈ ∂Ω
(2)

where ϵ0 is the electric permittivity in vacuum.
Although traditional numerical method, such as finite dif-

ference, have no difficulties solving this problem using either
formulation, PINNs fail to train properly. Such behaviour is
well documented in the literature and maybe sometimes cured
using adaptive loss balance, extensive hyper-parameter tuning
or experimentation with different neural network architectures.
It turned out that none of these patches lead to a correct
solution (see Fig. 2 and Fig. 5 for typical solutions of a PINN
that failed to train using either formulation and Fig. 4 for a
correct solution).

On the other hand, the following mathematical formulation
below, was not plagued with PINN failure mode, even for very
simple structures of neural networks:∆V (x, y) = −ρs(x, y)

ϵ0
1Γ1∪Γ2

(x, y), (x, y) ∈ Ω

V (x, y) = 0, (x, y) ∈ ∂Ω
(3)

Note that this formulation is very similar to the previous
one, with the exception of the rectangular plates, where the
electric charges distributions ρs are now set over surfaces
Γ1 ∪ Γ2 instead of lines ∂Γ1 ∪ ∂Γ2. Here we no longer
consider perfectly electric conductors. Contrary to formulation
(1), formulation (3) has a great advantage of not requiring
imposing boundaries conditions at the plates, alleviating the
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need to treat loss balancing. This advantage is even more
glaring when there are numerous electrically charged surfaces
in the computational domain. If one want to recover the
solution to equivalent problem (1) or (2), then two neural
networks may be built using formulation (3) : one with slightly
deflated plates capacitors (Γ1\δΓ1) ∪ (Γ2\δΓ2), giving the
neural network model NN1(x, y); and one with the original
plates capacitor Γ1 ∪ Γ2, giving the neural network model
NN2(x, y). Since we consider linear problems, according to
the principle of superposition, one can recover the solution
sought as NN(x, y) = NN2(x, y)−NN1(x, y).

In the section IV, we’ll present numerical results with PINNs
using the formulation (3).

III. THE PINN SOLVER

Although generating points for PINNs usually involves a
combination of known data points (e.g., from experimental
measurements or simulations) and randomly sampled points
within the domain of interest, here we only use the latest.
Accordingly, the data-driven loss that ensures that the neural
network solution matches the known data points and penalizes
the difference between the predicted solution at specific points
and the corresponding measured values is not taken into
account. Here, only the Physics-Informed loss that enforces the
neural network solution to satisfy the governing equations of
the problem is used. It is formulated by taking the differential
equations (e.g., Poisson/Laplace equations) and substituting
the neural network solution and its derivatives into them. The
residuals of these equations represent the discrepancy between
the predicted solution and the true solution. Minimizing these
residuals ensures that the neural network solution satisfies the
physics of the problem. Here, two type of points are generated:
points along the boundaries of the domain to enforce boundary
conditions and points within the interior of the domain to
capture the behavior of the system away from the boundaries.
This is a great advantage of PINNs solver as they belong to
meshless methods.

Let denote by NNθ(x, y) ≈ V (x, y) a neural network
parameterised by θ that approximates problem (3). The pa-
rameters of the model are obtained by minimization of the
loss function LPINN , i.e.

θ∗ = argmin
θ

(LPINN ), (4)

The PINN loss consists of two parts: LBC for the boundaries
conditions on ∂Ω and LPDE for the PDE. They are balanced
by a parameter α ∈ R+∗ according to

LPINN = LBC + αLPDE , (5)

where

LPDE =
1

NPDE

∑
i

(
∇NNθ(xi, yi) +

ρ(xi, yi)

ϵ0

)2

, (6)

for (xi, yi) ∈ Ω; and

LBC =
1

NBC

∑
i

(NNθ(xi, yi))
2
, (7)

for (xi, yi) ∈ ∂Ω.

Note that the standard formulations (1) would require ad-
ditional loss terms for the boundary conditions on ∂Γ1 and
∂Γ2. As a consequence, the balance of the different terms
accounting to the total loss, would also be trickier.

IV. NUMERICAL RESULTS USING PINNS

A. Building a reference solution.

Since there is no exact solution to the proposed problem we
need to build a reference solution. This solution is computed
with a centred finite difference method using a fine mesh and
employing the same mathematical formulation as for PINNs.
To ensure that it can be used as a reference solution, we
conduct a convergence study for all three formulations. Four
distinct uniform grids on Ω = [0, 1] × [0, 1] with 100 × 100,
200×200, 400×400, and 800×800 points are used to compute
solutions. For all of these grids, let Ṽ (k) k ∈ {1, 2, 3, 4} be
the discrete respective solutions. The mean square error (MSE)
between Ṽ (k) k ∈ {1, 2, 3} and Ṽ (4) is computed in order to
conduct the convergence analysis. Results are shown in Table
I for all three formulations. We see that the MSE decreases
with mesh refinement up to 10−6. Therefore the solution on
the 800 × 800 mesh can serve as reference solution to asses
the accuracy of the PINNs result.

TABLE I
CONVERGENCE STUDY OF THE FINITE DIFFERENCE SOLUTIONS

100× 100 vs 800× 800 200× 200 vs 800× 800 400× 400 vs 800× 800

MSE formulation (1) 3.908× 10−4 7.482× 10−5 8.531× 10−6

MSE formulation (2) 3.435× 10−5 6.293× 10−6 7.004× 10−7

MSE formulation (3) 1.199× 10−4 2.211× 10−5 2.465× 10−6

B. Using formulation (1) or (2)

Whereas extensive trials with different neural network archi-
tecture, hyper-parameters search, regularization techniques and
loss balance were carried out, to the best of our knowledge,
none of them led to an acceptable neural network model when
the formulation (1) or (2) were used. Typical failed solution
with equations (1) is shown in Fig. 2 for V0 = +1V .

In Fig. 3, we see that the loss drops quickly to about 0.3
and stays around this value, even when the number of epochs
is set at a large value.

When formulation (2) is used, although the solution looks
plausible (see Fig. 5), the maximum point wise absolute error
reaches unacceptably high values. This can be seen in Fig.
6, where the color bar indicates errors up to 0.63 around the
plates.

A closer look on the absolute error between the failed PINN
solution and a finite difference solutions (see Fig. 6 and Fig.
4) reveals that the major part of the error is located around the
plates. However, we found that stacking more points around
the plates did not cure the problem. This observation led us
to treat interior boundary conditions in a different way, as
described by equations (3).
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Fig. 2. Plot of the wrong electric potential obtained with PINN and
formulation (1).
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Fig. 3. Plot of the training loss and validation loss with formulation (1).
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Fig. 4. Point wise absolute error between PINN and finite difference result
obtained with formulation (1).
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Fig. 5. Electric potential using the PINN with formulation (2).

Fig. 6. Point wise absolute error of the electric field between PINN result
and the finite difference result with formulation (2).

C. Using formulation (3)

When the formulation (3) was used, even for an extremely
simple neural network with three dense layers and 32 neurons
in each layer, the learning process went smoothly and led to
a good PINN solution. In this case, the training loss goes
down to 1.5 × 10−3 (5 × 10−3 for the validation loss), see
Fig. 7. Here, at the beginning of the training, we notice a
plateau phenomenon which refers to a situation where the loss
function shows very little change. This can happen when the
optimizer encounters a flat region (a ”plateau”) in the loss
landscape, making it difficult for the model to find directions
for improvement. Hopefully, in our case, the optimizer which
is based on the stochastic gradient descent escape from the
plateau.

The model accounted for a total of 2241 parameters and
the hyperbolic tangent was used as activation function in each
layers, excepted for the last one that was left as a linear layer.
The learning rate was kept constant during the learning process
and taken equal to 10−3. The parameter α to balance the two
parts of the loss is set such that the boundary loss is weighted
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Fig. 7. Plot of the training loss and validation loss with formulation (3).

500 times larger than the PDE loss. The parameters of the
neural network are computed using the Adam [34] optimiser.

The numerical experiments are carried out with three differ-
ent meshes built by generating random points on Ω = [0, 1]×
[0, 1]. The points are generated with the uniform probability
low on [0, 1]× [0, 1] and extra point are also randomly stacked
around the plates to ensure a better resolution in that part of
the domain. A total of 10000, 40000 and 160000 points serve
to build the three PINNs models. Amongst them, 400 points
(respectively 1600 and 6400) are specifically set on ∂Ω (red
points) and 100 are set on ∂Γ1 ∪ ∂Γ2 (contour of the blue
points), see Fig. 8. In all cases, 80% of points are training
points and the remaining 20% are validation points. Results
for the point wise absolute error are shown on Fig. 11-13.
We see that the maximum point wise absolute error decreases
slowly as the mesh is refined (from 0.063 for 10000 points
mesh to 0.036 for 160000 points mesh). The mean square
error between the finite difference solution (which can be
considered as an exact solution) and the PINN solution is equal
to 6.43×10−4 for the 10000 points mesh, 2.16×10−4 for the
40000 point mesh and 2.21×10−4 for the 160000 points mesh.
Those results show that increasing the number of training point
from 40000 to 160000 points does not bring any accuracy
improvement when the mean square error is considered.

If we look at the pointwise error between the formulation
(1)-(2) and the formulation (3) , by comparing the Fig. 4 and
Fig. 6 with the Fig. 11-13 that the maximum error is no longer
located around the plates, and it has been reduced by a factor
of around 10.

Having successfully tested this formulation on a simple
example, we investigate its potential on a more complex
problem in the next section.

V. FORMULATION (3) APPLIED TO A COMPLEX PROBLEM

We now extend the use of the PINN method described
by formulation (3) to solve the Poisson equation with a
complex charge distribution represented in Fig. 14. The charge
distribution was built such that it can generate an electric
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Fig. 8. PINNs training collocation point randomly drawn into the domain.
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Fig. 9. Plot of the electric potential obtained with PINN and formulation (3).
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Fig. 10. Plot of the electric potential obtained with the finite difference
method.

potential representing the ”EMC” letters (see Fig. 15). This
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Fig. 11. Pointwise absolute error of the electric field (PINN model trained
with 10000 points).
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Fig. 12. Pointwise absolute error of the electric field (PINN model trained
with 40000 points).

charge distribution was generated on a 500x500 uniform grid.
It is this grid that we’ll use for both the reference solution
(using the finite difference method) and the PINN grid. This
problem is particularly interesting, since the magnitude of
the charge distribution over the domain is now quite large
compared to the previous example (see values of the color bar
in Fig. 14).

Comparing the PINN results of Fig. 16 with the finite
difference reference solution of Fig. 17, we clearly see that
the learning process does not fall into a failure mode. To be
more precise, the pointwise absolute error does not exceed
1.2 × 10−1 over the entire computational domain Ω, as can
be seen in Fig. 17. It should be noted that, as for the previous
example, we simply use a basic neural network made of dense
layers. We have not carried out extensive search for optimized
hyperparameters since the purpose of the article was simply
to assess the importance of the mathematical formulation to
ensure that the model does not converge to a wrong solution.

Two points should be emphasized for the results presented in
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Fig. 13. Pointwise absolute error of the electric field (PINN model trained
with 160000 points).
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Fig. 14. Electric charge distribution normalised by vacuum electrical permit-
tivity ϵ0.
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Fig. 15. Electric potential using PINN for the charge distribution of Fig. 14.
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Fig. 16. Electric potential using the finite difference method for the charge
distribution of Fig. 14.
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Fig. 17. Pointwise absolute error of the electric field between PINN result
and the finite difference result.

this section. First, the solution provided by the finite-difference
method is plagued with some errors, due to the intrinsic
approximations of the scheme, particularly the staircasing
discretization of the structure’s geometry. Secondly, this last
point could be alleviated by refining the mesh, but at the cost of
a significant computational overhead. The meshless nature of
PINN avoids this drawback. This property, combined with the
ability of neural networks to handle nonlinear problems, will
undoubtedly be key factors in the success of PINNs applied
to the numerical simulation of large-scale high-complexity
nonlinear EMC problems [35], [36].

VI. CONCLUSION

PINNs are a still a new paradigm to solve partial differential
equations and, sometimes, they fail to converge to the right
solution. When this occurs, one is usually tempted to cure the
problem by optimizing the hyperparameters of the neural net-
work, or by using more complex layers such as convolutional

layers or long short-term memory layers. However, this does
not always successfully treats the problem.

In this article we endeavored to demonstrate the importance
of the mathematical formulation to get PINNs working. This
is illustrated on Poisson’s equation by first showing that a
formulation which does not pose a problem with the finite
difference method gets PINNs reluctant to converge to the
right solution. We then propose an alternative formulation for
which PINNs converge without having to resort to complex
neural networks or advanced hyperparameters optimization.
Numerical examples show that the proposed formulation is
also able to solve problems with complex charge distribution.
Taking advantage of the proposed stable formulation, next step
will be dedicated to improve the accuracy of PINNs for EMC
applications.
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