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HOPF-GALOIS OBJECTS OVER BICROSSED PRODUCT HOPF
ALGEBRAS AND TWISTING MAPS

JULIEN BICHON AND AGUSTÍN GARCÍA IGLESIAS

Abstract. We describe Hopf-Galois objects over bicrossed product Hopf algebras. More pre-
cisely, we show that any right Hopf-Galois object over a bicrossed product of Hopf algebras is
obtained from Hopf-Galois objects over the two factors and a certain twisting map, while the
unique Hopf algebra making it into a bi-Galois object is again a bicrossed product.

1. Introduction

Hopf-Galois extensions, introduced in [27], are the natural analogues in noncommutative
algebra of principal homogeneous spaces or torsors in algebraic geometry. The case with trivial
base, called a Hopf-Galois object, is already of great interest, because of its use in the study of
tensor categories of comodules [39, 32], classification questions for pointed Hopf algebras [4, 6],
homological algebra questions [8, 42, 41, 9], or for example, with the recent connection found
with quantum information theory [14].

The question of the classification of Hopf-Galois objects over a given Hopf algebra is thus an
important one and has been much studied in the past 30 years. While the case of group algebras
or of enveloping algebras of Lie algebras is easily expressed in terms of second cohomology
groups calculations, there is no general scheme, and even the case of coordinate algebras on
affine algebraic groups is yet not fully understood, see [23] for several particular classes.

The starting point of this paper was the fact that the Weyl algebra A1(k) is a Hopf-Galois
object over the polynomial algebra k[x, y], that we have noticed in [11], but was certainly well-
known before, and at least was known from [23, Example 4.8]. Since A1(k) is, in characteristic
zero, the algebra of differential operators on the additive algebraic group k, this leads to the
question whether algebras of differential operators on affine algebraic groups always are Hopf-
Galois objects. We observe (Proposition 2.5) that this is indeed the case, combining a classical
result of Heyneman-Sweedler [31] together with the generalized quantum double construction
of Doi-Takeuchi [20]. It results, for an affine group scheme G, that Diff(G), the algebra of
differential operators on G, is a right Hopf-Galois object over the tensor product Hopf algebra
O(G)cop ⊗ D(G), where O(G) is the commutative Hopf algebra corresponding to G and the
algebra D(G) ⊂ O(G)∗ is the Hopf algebra of distributions on G (see Section 2 for more details).

Hopf-Galois objects over tensor products of Hopf algebras, or more generally over generalized
Drinfeld doubles, have been described by Schauenburg [34, 33]. Therefore the natural next
step seems to study the case of a general bicrossed product of Hopf algebras (the generalized
Drinfeld double case being the one when the bicrossed product comes from a pairing), and this
is precisely the contribution of this paper. We show that the Hopf-Galois objects over a Hopf
algebra that is a bicrossed product of two Hopf algebras are described by Hopf-Galois objects
over the two factors together with certain twisting maps. Our results and methods are illustrated
by a complete study of a bicrossed product that is not produced by a pairing.

The paper is organized as follows. We start in Section 2 by recalling some basic notions
about Hopf Galois objects and pairings, from which we deduce, via Proposition 2.3, that for an
affine group scheme G, the algebra Diff(G) is a Hopf-Galois object. In Section 3 we recall the
notions of twisting map for a pair of algebras and of bicrossed product of Hopf algebras. We
then discuss the relevant notion of (skew) pairing in the bicrossed product context and generalize
Proposition 2.3 to this context (Proposition 3.8), obtaining in this way an interesting source of
Hopf-Galois objects for Hopf bicrossed producs. In Section 4, we study the relation between the
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bicrossed product of two Hopf algebras and the appropriate twisted tensor products of a pair
of Hopf-Galois objects for them. This leads to a description of the right Hopf-Galois objects
(Theorem 4.2) and of the corresponding Hopf algebras over which these are left Hopf-Galois
(Theorem 4.6), which are shown to be bicrossed products as well. Section 5 provides a detailed
analysis of an example of bicrossed product Hopf algebra not arising from a pairing. In the
final Section 6 we restrict our previous results to the case of a the semi-direct product of Hopf
algebra. This allows us to provide a more precise presentation of the Hopf-Galois objects in this
case in Theorem 6.3. We discuss in particular the case of unrolled Hopf algebras.

We work over a fixed base field k, over which all the tensor products are taken. We write k×
for the units in k.

2. Hopf-Galois objects and pairings

2.1. Hopf-Galois objects. Recall that a (right) Hopf-Galois object A over a Hopf algebra H
[27] is a (right) comodule algebra A over H with trivial coinvariants AcoH = k and such that
the Galois map

can: A⊗A→ A⊗H, can(a⊗ b) = ab(0) ⊗ b(1), a, b ∈ A

is bijective. Along the text, we will consider the map

κ : H −→ A⊗A, h 7−→ h(1) ⊗ h(2) := can−1(1A ⊗ h);(2.1)

hence we have that:

h(1)(h(2))(0) ⊗ (h(2))(1) = 1⊗ h, h ∈ H.(2.2)

As well, we have, see [37, Remark 3.4 2 (b)]:

a(0)(a(1))
(1) ⊗ (a(1))

(2) = 1⊗ a, a ∈ A.(2.3)

Similarly, there is a notion of left Hopf-Galois object, and a notion of bi-Galois object [32].
Schauenburg [32, Theorem 3.5] has shown that, given a right Hopf-Galois object A over H,
there exists a unique, up to isomorphism, Hopf algebra L = L(A,H) such that A is an L-H-bi-
Galois object. The Hopf algebra L(A,H) is defined by L(A,H) = (A ⊗ Aop)coH , and the left
coaction λA : A→ L⊗A is given by λA(a) = a(0) ⊗ κ(a(1)).

2.2. Hopf 2-cocycles. Let H be a Hopf algebra. Recall that a (left) 2-cocycle on H is a
convolution invertible linear map σ : H ⊗ H → k such that σ(x, 1) = ε(x) = σ(1, x) for any
x ∈ H, and we have, for any x, y, z ∈ H,

σ(x(1), y(1))σ(x(2)y(2), z) = σ(y(1), z(1))σ(x, y(2)z(2)).

There are several algebras naturally associated to such a 2-cocycle.
• The algebra σH has H as underlying vector space, and product defined by

x.y = σ(x(1), y(1))x(2)y(2).(2.4)

The comultiplication of H then endows σH with the structure of a right H-comodule algebra,
making it into a right H-Galois object [13, 19]. Notice that the 2-cocycle condition is equivalent
to the fact that the above product is associative and has 1 as unit.
• The Hopf algebra Hσ [18] has H as underlying coalgebra, and product defined by

x.y = σ(x(1), y(1))σ
−1(x(3), y(3))x(2)y(2).(2.5)

The comultiplication of H then endows σH with the structure of a left Hσ-comodule algebra,
making it into a left Hσ-Galois object, and hence an Hσ-H-bi-Galois object [32].

2



2.3. Cogroupoids. We briefly recall here part of the terminology and results from [8] on
cogroupoids. We refer the reader to loc. cit. for details.

We start by recalling that a cocategory consists of a set of objects ob C, a k-algebra C(X,Y )
for each X,Y ∈ ob C and algebra morphisms, for every X,Y, Z ∈ ob C

∆Z
X,Y : C(X,Y )→ C(X,Z)⊗ C(Z, Y ), εX : C(X,X)→ k

satisfying compatibility axioms that mimic those of a coassociative coalgebra, namely

(∆T
X,Z ⊗ idC(Z,Y )) ◦∆Z

X,Y = (idC(X,T )⊗∆Z
T,Y ) ◦∆T

X,Y ,

(idC(X,Y )⊗εY ) ◦∆Y
X,Y = idC(X,Y ) = (εX ⊗ idC(X,Y )⊗εY ) ◦∆X

X,Y .

for every X,Y, Z, T ∈ ob C. The cocategory C is called connected if C(X,Y ) 6= 0 for all X,Y ∈
ob C. In turn, a cogroupoid is a cocategory C together with linear maps

SX,Y : C(X,Y )→ C(Y,X), ∀X,Y ∈ ob C
subject to the natural axioms of the antipode on a Hopf algebra. It follows from the definitions
that a bialgebra is a cocategory with a single object; and C(X,X) is a Hopf algebra for any
object X in a cogroupoid C. We use Sweedler’s notation ∆Z

X,Y (aX,Y ) = aX,Z(1) ⊗ aZ,X(2) for an
element aX,Y ∈ C(X,Y ).

If C is a connected cogroupoid, then C(X,Y ) is a C(X,X) − C(Y, Y ) bi-Galois object for
all X,Y ∈ ob C, see [8, Proposition 2.8]. Conversely, for any Hopf algebra H and a left H-
Hopf-Galois object A, there exists a cogroupoid C and X,Y ∈ ob C so that H = C(X,X) and
A = C(X,Y ), [8, Theorem 3.11]. We shall also use [8, Lemma 2.14], which shows that ∆Z

X,Y

induces a C(X,X)− C(Y, Y )-bicomodule algebra isomorphism

C(X,Y ) ' C(X,Z)�C(Z,Z)C(Z, Y ).(2.6)

If C is a connected cogroupoid, then [8, Theorem 2.12] presents a k-linear equivalence of
monoidal categories

MC(X,X) '⊗MC(Y,Y ), V 7→ V�C(X,X)C(X,Y )

for every pair (X,Y ) of objects in C. The monoidal constraint is given by the isomorphism

(V�C(X,X)C(X,Y ))⊗ (W�C(X,X)C(X,Y ))→ (V ⊗W )�C(X,X)C(X,Y )

(
∑
i

vi ⊗ aX,Yi )⊗ (
∑
j

wj ⊗ bX,Yj ) 7→
∑
i,j

vi ⊗ wj ⊗ aX,Yi bX,Yj
(2.7)

for all V,W ∈MC(X,X), see [8, Remark 2.16].
Subcocategories, respectively subcogroupoids, C′ ⊆ C are defined as expected. In particular,

we make the following remark, which is clear from the definitions and [8, Proposition 2.13].

Lemma 2.1. Let C be a connected cogroupoid, X ∈ ob C and let H ⊆ C(X,X) be a Hopf
subalgebra. Consider, for Y,Z ∈ ob C, the algebra

CH(Y, Z) = {aY,Z ∈ C(Y,Z) : aY,X(1) ⊗ a
X,X
(2) ⊗ a

X,Z
(3) ∈ C(Y,X)⊗H ⊗ C(X,Z)}

This defines a connected subcogroupoid CH of C (with ob CH = ob C and the natural restrictions
of the maps ∆, ε and S).

Remark 2.2. Notice that

CH(Y,Z) ' C(Y,X)�C(X,X)H�C(X,X)C(X,Z)

and in particular

CH(X,Y ) ' H�C(X,X)C(X,Y ), CH(Y,X) ' C(Y,X)�C(X,X)H.(2.8)

As well, we have CH(X,X) = H and

CH(X,Y ) = {aX,Y ∈ C(X,Y ) : aX,X(1) ⊗ a
X,Y
(2) ∈ H ⊗ C(X,Y )},
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CH(Y,X) = {aY,X ∈ C(Y,X) : aY,X(1) ⊗ a
X,X
(2) ∈ C(Y,X)⊗H}.

2.4. Pairings. Let A and U be Hopf algebras. Recall that a pairing between A and U consists
of a linear map τ : A⊗ U −→ k such that for any a, b ∈ A, x, y ∈ U , we have:

τ(a, 1) = ε(a), τ(1, x) = ε(x),

τ(ab, x) = τ(a, x(1))τ(b, x(2)) τ(a, xy) = τ(a(1), x)τ(a(2), y)

A skew-pairing between A and U is a pairing between Acop and U .
Doi-Takeuchi have shown [20, Proposition 1.5] that if τ : A⊗ U → k is a skew-pairing, then

τ̂ : A ⊗ U ⊗A ⊗ U −→ k, a⊗ x⊗ b⊗ y 7−→ τ(b, x)ε(a)ε(y)

is a 2-cocycle on A ⊗ U . We thus obtain, via the constructions of Subsection 2.2, the algebra
τ̂(A ⊗U) and the Hopf algebra (A ⊗U)τ̂ . The Hopf algebra (A⊗U)τ̂ is denoted Dτ (A,U) and
is called a generalized Drinfeld double.

2.5. Smash products. Let U be a Hopf algebra and let A be an algebra. A left U -module
algebra structure on A consists of a linear map

U ⊗A −→ A x⊗ a 7−→ x.a

making A into a left U -module, and such that, for any x ∈ U and a, b ∈ A, we have

x.(ab) = (x(1).a)(x(2).b), x.1 = ε(x)1.

If A is left U -module algebra, the associated smash product algebra A#U is the algebra having
A⊗ U as underlying vector space, and whose product is defined by

a#x · b#y = a(x(1).b)#x(2)y.

2.6. Hopf-Galois structure on smash products arising from pairings. Let A and U be
Hopf algebras and let τ : A⊗ U −→ k be a pairing. The pairing then provides a map

U ⊗A −→ A x⊗ a 7−→ x.a = τ(a(2), x)a(1)

that endows A with the structure of a left U -module algebra structure. We thus can form the
smash product algebra A#U , that we denote A#τU to keep track of τ , whose product is:

a#x · b#y = a(x(1).b)#x(2)y = τ(b(2), x(1))ab(1)#x(2)y.

It is a simple verification that the above product coincides with the one on τ̂(A
cop ⊗ U) as in

Subsection 2.2, and thus the considerations in subsections 2.2 and 2.4 yield the following result.

Proposition 2.3. Let A and U be Hopf algebras and let τ : A ⊗ U −→ k be a pairing. Then
the smash product algebra A#τU is a Dτ (Acop, U)− (Acop⊗U)-bi-Galois object, whose left and
right coactions are induced by the comultiplication of the tensor product coalgebra Acop ⊗ U .

For the purpose of future generalizations, it is worth to record the equivalent skew-pairing
version of the previous proposition. So again let A and U be Hopf algebras and let τ : A⊗U −→ k
be a skew-pairing. The pairing then provides a map

U ⊗A −→ A x⊗ a 7−→ x.a = τ(a(1), x)a(2)

that endows A with the structure of a left U -module algebra structure. We thus form the smash
product algebra A#U , that we denote A#τU to keep track of τ (viewing our skew-pairing as a
pairing between Acop and U , this is the previous Acop#τU), whose product is defined by

a#x · b#y = a(x(1).b)#x(2)y = τ(b(1), x(1))ab(2)#x(2)y.

Again, the above product coincides with the one on τ̂(A⊗ U) as in Subsection 2.2, yielding, as
before, the following result.

Proposition 2.4. Let A and U be Hopf algebras and let τ : A ⊗ U −→ k be a skew-pairing.
Then the smash product algebra A#τU is a Dτ (A,U)− (A⊗U)-bi-Galois object, whose left and
right coactions are induced by the comultiplication of the tensor product coalgebra A⊗ U .
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2.7. Application to differential operators on affine group schemes. The first Weyl al-
gebra A1(k) = k〈x, y | xy − yx = 1〉 can be described as the smash product k[y]#k[x], where
k[x] and k[y] have the Hopf algebra structure making x and y primitive, and the smash prod-
uct structure is obtained as in Subsection 2.6 via the pairing τ : k[x] ⊗ k[y] → k defined by
τ(x, y) = 1.

The structure of Hopf-Galois object over k[x, y] of A1(k) is a particular instance of Proposition
2.3. The Weyl algebra is, in characteristic zero, the algebra of differential operators on the
additive algebraic group k. This leads to the question whether algebras of differential operators
on algebraic groups always are Hopf-Galois objects. As we shall see soon, a classical result of
Heyneman-Sweedler [31] together with Proposition 2.3 provide a positive answer.

Let G be an affine group scheme, with corresponding commutative and finitely generated
coordinate Hopf algebra O(G). The algebra of differential operators on G, denoted Diff(G), is
defined as the algebra of differential operators on the commutative algebra O(G), in the usual
manner, see e.g. [30]. Denote by D(G) the algebra of distributions on G (this is D(O(G))
in [31], see [17, 26] as well). This is a Hopf subalgebra of the Hopf dual O(G)◦, isomorphic,
in characteristic zero, with U(g), the enveloping algebra of g, the Lie algebra of G. Now [31,
Theorem 2.4.5] establishes an algebra isomorphism

O(G)#D(G) ' Diff(G)

where the smash product is associated to the pairing coming from the inclusion D(G) ⊂ O(G)◦.
Combining Proposition 2.3 with the above isomorphism, we get:

Proposition 2.5. Let G be an affine group scheme. Then Diff(G) is a right Hopf-Galois object
over the Hopf algebra O(G)cop ⊗D(G).

3. Twisting maps and bicrossed products of Hopf algebras

In this section we review the notions of a twisted tensor product of algebras and of a bicrossed
product of Hopf algebras, and we provide the first generalization of Proposition 2.4.

3.1. Twisting maps. Let A, R be algebras. Recall that a twisting map for A, R consists of a
linear map

θ : R⊗A→ A⊗R
such that the map

A⊗R⊗A⊗R idA⊗θ⊗idR−−−−−−−−→ A⊗A⊗R⊗R mA⊗mR−−−−−−−→ A⊗R
makes A⊗R into an associative algebra, with 1⊗1 as a unit. The resulting algebra can be denoted
A⊗θR or A#θR, and is called a twisted tensor product of A and R. This construction has been
studied in many papers, see [40, 15] for example, where the following equivalent conditions are
established, for a, a′ ∈ A, r, r′ ∈ R:

θ ◦ (mR ⊗ id)(r ⊗ r′ ⊗ a) = (id⊗mR) ◦ (θ ⊗ id) ◦ (id⊗ θ)(r ⊗ r′ ⊗ a),

θ ◦ (id⊗mA)(r ⊗ a⊗ a′) = (mA ⊗ id) ◦ (id⊗ θ) ◦ (θ ⊗ id)(r ⊗ a′ ⊗ a),

θ(1⊗ a) = a⊗ 1, θ(r ⊗ 1) = 1⊗ r.
(3.1)

Example 3.1. The very first non-trivial example of a twisted tensor product comes from smash
products: if U is a Hopf algebra and A is a U -module algebra, then the map

U ⊗A −→ A⊗ U x⊗ a 7−→ x(1).a⊗ x(2)

is a twisting map, and the resulting twisted tensor product is the smash product algebra of
Subsection 2.5.

The twisted tensor product generalizes the braided tensor product of algebras (typically the
braided tensor product of Yetter-Drinfeld algebras) as well. If we write

θ(r ⊗ a) = r ⇀ a⊗ r ↼ a
5



then the above conditions become 1 ⇀ a⊗ 1 ↼ a = a⊗ 1, r ⇀ 1⊗ r ↼ 1 = 1⊗ r and

(rr′ ⇀ a)⊗ (rr′ ↼ a) = r ⇀ (r′ ⇀ a)⊗ (r ↼ (r′ ⇀ a))(r′ ↼ a),

(r ⇀ aa′)⊗ (r ↼ aa′) = (r ⇀ a)((r ↼ a) ⇀ a′)⊗ (r ↼ a) ↼ a′,
(3.2)

for any r, r′ ∈ R, a, a′ ∈ A. These equations will become handy further on.
Conversely, starting with an algebra E having two subalgebras such that the restricted mul-

tiplication A ⊗ R → E is bijective, then there exits a twisting map θ : R ⊗ A → A ⊗ R
such that E ' A#θR, where the twisting map is obtained as the composition of the restricted
multiplication R⊗A→ J with the flip map. See [15, Theorem 2.10] for example.

It is in general a difficult task to classify the twisted tensor product of two algebras, see e.g.
[7] for a recent paper on this question.

3.2. Bicrossed products of Hopf algebras. Recall that a Hopf algebra E factors through
two Hopf subalgebras ι : H ↪→ E and j : U ↪→ E if the multiplication m ◦ (ι⊗ j) : H ⊗ U '−→ E
is bijective. This is equivalent, see [29, Theorem 7.2.3], to have a pair (H,U) of Hopf algebras
together with coalgebra maps

/ : U ⊗H → U, . : U ⊗H → H,

so that (U, /) is a leftH-module coalgebra, (H, .) is a right U -module coalgebra and the following
compatibilities hold, for every x, y ∈ U , a, b ∈ H:

x . 1H = εU (x)1H , 1U / a = εH(a)1U ,

x . (ab) = (x(1) . a(1))((x(2) / a(2)) . b),

(yx) / a = (y / (x(1) . a(1)))(x(2) / a(2)),

y(1) / a(1) ⊗ y(2) . a(2) = y(2) / a(2) ⊗ y(1) . a(1).

(3.3)

A quadruple (H,U, ., /) as above is called a matched pair of Hopf algebras and the bicrossed
product Hopf algebra H ./ U := E, often called a double crossed (as pointed out in [1], the
name bicrossed product fits better with the bicrossed product of groups), is the coalgebra H⊗U
with multiplication

(a ./ x)(b ./ y) = a(x(1) . b(1)) ./ (x(2) / b(2))y, a, b ∈ H,x, y ∈ U.

In particular, this defines a twisting map and a coalgebra morphism:

ω./ : U ⊗H → H ⊗ U, x⊗ h 7→ x(1) . h(1) ⊗ x(2) / h(2).(3.4)

We say that one of the actions, say /, is trivial, if x / a = ε(a)x for all x ∈ U, a ∈ H.

Example 3.2. Examples of this construction are:
(1) The tensor product Hopf algebra H ⊗ U , where both actions / and . are trivial.
(2) Smash products of Hopf algebras H#U , where one of the actions, namely / : U⊗H → U

is trivial. We will come back to this situation in more detail in Section 6.
(3) Group algebras kΓ, arising from a matched pairs of groups (F,G, ., /), so that G,F ≤ Γ,

G ∩ F = {e} and Γ = GF .
(4) Bicrossed products U(Ξ) ' U(g) ./ U(m) associated to a matched pair of Lie algebras

(g,m) as in [29, Definition 8.3.1]. Here Ξ = g⊕m as vector spaces and the bracket [ , ]Ξ
is written in terms of [ , ]g, [ , ]m and the actions defining the matched pair.

(5) The generalized Drinfeld doubles Dτ (A,U) = (A ⊗ U)τ̂ associated to skew pairings
τ : A⊗ U → k as in §2.4. Here, Dτ (A,U) ' A ./ U with

(1 ./ x)(a ./ 1) = τ(a(1), x(1))a(2)x(2)τ
−1(a3, x(3)), x ∈ U, a ∈ A.

In this setting we write A ./τ U to remark the existence of this pairing.
6



We have not been able to found in the literature an example not belonging to any of these
groups. In particular, we observe that in the ongoing program of classifying bicrossed products
of Hopf algebras by Agore et. al., see [1, 2, 3], all the examples fall into one of the categories
above (most notably into the fourth). The same holds for [12] and [28]. The Galois objects in
this setting have been described in [34]. We present in Section 5 below a case essentially different
to those above, and that corresponds to the scope of the present article.

First, we remark that when the antipodes SH and SU ofH and U are invertible (or equivalently
when SE is), then this construction can be flipped over, in the sense that the roles of H and U
can be interchanged. This is the content of the next result.

Lemma 3.3. Let (H,U, ., /) be a matched pair of Hopf algebras. Assume that the antipodes SH
and SU are bijective. Then there are coalgebra maps

t
/ : H ⊗ U → H,

t
. : H ⊗ U → U

so that (H,
t
/) is a right U -module coalgebra, (U,

t
.) is a left H-module coalgebra and the compat-

ibilities (3.3) hold for
t
/ and

t
.. More explicitly,

a
t
. x = SU (S−1

U (x) / S−1
H (a)), a

t
/ x = SH(S−1

U (x) . S−1
H (a)).

The bicrossed product Hopf algebras coincide, as H ./ U ' U
t
.
t
/ H and the following identities

hold:

ax = [(a(1)
t
. x(1)) . (a(3)

t
/ x(3))][(a(2)

t
. x(2)) . (a(4)

t
/ x(4))],

xa = [(x(1) . a(1))
t
. (x(3) / a(3))][(x(2) . a(2))

t
/ (x(4) / a(4))].

(3.5)

Proof. It is clear that (H,
t
/) is a right U -module coalgebra, (U,

t
.) is a left H-module coalgebra

and the compatibilities (3.3) hold, since these facts follow from the corresponding properties of
/ and .. As well, observe that, for b = S−1

H (a) and y = S−1
U (x), we have:

ax = SH(b)SU (y) = SE(yb) = SE((y1 . b1)(y2 / b2)) = SU (y2 / b2)SH((y1 . b1))

= SU (S−1
U (x(1)) / S

−1
H (a(1)))SH(S−1

U (x(2)) . S
−1
H (a(2))) = (a(1)

t
. x(1))(a(2)

t
/ x(2)),

which shows H ./ U ' U t
.

t
/ H. Finally, to check (3.5), we use the definition of H ./ U in:

ax = (a(1)
t
. x(1))(a(2)

t
/ x(2)) = [(a(1)

t
. x(1)) . (a(3)

t
/ x(3))][(a(2)

t
. x(2)) / (a(4)

t
/ x(4))].

The other identity follows from the definition of H
t
.

t
/ U :

xa = (x(1) . a(1))(x(2) / a(2)) = [(x(1) . a(1))
t
. (x(3) / a(3))][(x(2) . a(2))

t
/ (x(4) / a(4))].

The lemma follows. �

3.3. Skew-pairings over bicrossed products. We now provide a generalization of skew pair-
ing to the setting of bicrossed products.

Definition 3.4. Let (H,U, ., /) be a matched pair of Hopf algebras and let E := H ./ U be the
corresponding bicrossed product. A skew H ./ U -pairing is a convolution invertible linear map
τ : H ⊗ U → k such that, for all g, h ∈ H, x, y ∈ U :

τ(h, 1) = ε(h), τ(1, x) = ε(x),

τ(h, xy) = τ(h(1), y(1))τ(y(2) . h(2), x), τ(gh, x) = τ(g(1), x(1))τ(h, x(2) / g(2)).
(3.6)

In particular, any skew H ./ U -pairing is determined by its values on the generators and is
extended using (3.6) via the rule, for g, h ∈ H, x, y ∈ U :

(3.7) τ(gh, xy) = τ(g(1), y(1))τ(h(1), y(2) / g(2))τ(y(3) . g(3), x(1))

τ((y(5) / g(5)) . h(2), x(2) / (y(4) . g(4))).
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Of course we can interpret the usual skew-pairing as in Section 2 as skew H ⊗ U -pairings.
Condition 3.6 appears in [10, Definition 4.1]. The definition is motivated by the following lemma.

Lemma 3.5. Let (H,U, ., /) be a matched pair of Hopf algebras and let τ : H ⊗ U → k be a
linear map. Consider the map

θτ : U ⊗H −→ H ⊗ U x⊗ h 7−→ τ(h(1), x(1))x(2) . h(2) ⊗ x(3) / h(3).(3.8)

Then θτ is a twisting map if and only if τ satisfies Condition (3.6).

Proof. We have, for x, y ∈ U , h ∈ H:

θτ (xy, h) = τ(h(1), x(1)y(1))x(2)y(2) . h(2) ⊗ x(3)y(3) / h(3).

On the other hand, we have, using the axioms of a matched pair

(idH ⊗mU ) ◦ (θτ ⊗ idU ) ◦ (idU ⊗θτ )(x⊗ y ⊗ h)

= τ(h(1), y(1))(idH ⊗mU ) ◦ (θτ ⊗ idU )(x⊗ y(2) . h(2) ⊗ y(3) / h(3))

= τ(h(1), y(1))τ(y(2) . h(2), x(1))x(2) . (y(3) . h(3))⊗ [x(3) / (y(4) . h(4))] · y(5) / h(5)

= τ(h(1), y(1))τ(y(2) . h(2), x(1))x(2) . (y(3) . h(3))⊗ x(3)y(4) / h(4)

= τ(h(1), y(1))τ(y(2) . h(2), x(1))x(2)y(3) . h(3) ⊗ x(3)y(4) / h(4),

and this shows that the equivalence of the first axiom for a twisting map is equivalent to
τ(h, xy) = τ(h(1), y(1))τ(y(2) . h(2), x). The rest of the proof is similar and straightforward,
and is left to the reader. �

Lemma 3.6. Let (H,U, ., /) be a matched pair of Hopf algebras and let τ : H ⊗ U → k be a
skew H ./ U -pairing. Then

τ̂ : H ⊗ U ⊗H ⊗ U −→ k g ⊗ x⊗ h⊗ y 7−→ τ(h, x)ε(g)ε(y)

is a 2-cocycle on H ./ U , and the algebras H#θτU and τ̂(H ./ U) are isomorphic.

Proof. First it is clear that τ̂ is convolution invertible since τ is. In the algebra H#θτU , we have

g#x · h#y = τ(h(1), x(1)) g(x(2) . h(2))#(x(3) / h(3))y

while for the product in τ̂(H ./ U) we have

g ./ x · h ./ y = τ̂(g(1) ./ x(1), h(1) ./ y(1))g(2)(x(2) . h(2))#(x(3) / h(3))y(2)

= τ(h(1), x(1)) g(x(2) . h(2))#(x(3) / h(3))y

Hence the two products coincide, which shows simultaneously that τ̂ is a 2-cocycle on H ./ U
and that H#θτU ' τ̂(H ./ U). �

Lemma 3.7. Let (H,U, ., /) be a matched pair of Hopf algebras and let τ : H ⊗ U → k be a
skew H ./ U -pairing. Then the maps

/τ : U ⊗H → U, .τ : U ⊗H → H

defined by

x .τ h = τ(h(1), x(1))τ
−1(h(3), x(3))x(2) . h(2), x /τ h = τ(h(1), x(1))τ

−1(h(3), x(3))x(2) / h(2)

define a matched pair of Hopf algebras (H,U, .τ , /τ ). We denote by H
τ
./ U the corresponding

bicrossed product.

Proof. It is clear that (U, /τ ) is a left H-module coalgebra and (H, .τ ) is a right U -module
coalgebra. Next we check the conditions in (3.3) for /τ and .τ ; using this condition for / and .,
together with (3.6). We have that, for x ∈ U and a, b ∈ H,

(x(1) .τ a(1))((x(2) /τ a(2)) .τ b) = τ(a(1), x(1))τ
−1(a(3), x(3))τ(a(4), x(4))τ

−1(a(8), x(8))

τ(b(1), x(5) / a(5))τ
−1(b(3), x(7) / a(7))(x(2) . a(2))(x(6) / a(6)) . b(2)

(3.3)
= τ(a(1), x(1))τ

−1(a(6), x(6))τ(b(1), x(2) / a(2))τ
−1(b(3), x(5) / a(5))(x(3) . a(3))(x(4) / a(4)) . b(2)
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(3.6),(3.3)
= τ(a(1)b(1), x(1))τ

−1(a(3)b(3), x(3))x(2) . (a(2)b(2)) = x .τ (ab).

Similarly one checks that (yx) / a = (y / (x(1) . a(1)))(x(2) / a(2)) for y, x ∈ U , a ∈ H. Finally, if
y ∈ U, a ∈ H:

y(1)/τa(1) ⊗ y(2) .τ a(2) = y(2) /τ a(2) ⊗ y(1) .τ a(1)

as this property holds for /, τ and the cancellation of the proper τ and τ−1 factors. �

We conclude with the announced generalization of Proposition 2.4.

Proposition 3.8. Let (H,U, ., /) be a matched pair of Hopf algebras and let τ : H ⊗ U → k be
a skew H ./ U -pairing. Then the twisted tensor product H#θτU is a H

τ
./ U -H ./ U -bi-Galois

object, whose left and right coactions are induced by the comultiplication of the tensor product
coalgebra H ⊗ U .

Proof. As H#θτU ' τ̂(H ./ U) by Lemma 3.6, then H#θτU is a (H ./ U)τ̂ -H ./ U -bi-Galois
object, whose left and right coactions are induced by the comultiplication of the tensor prod-
uct coalgebra H ⊗ U . Moreover, the algebra (H ./ U)τ̂ is unique with this property, up to
isomorphism.

To end the proof, we observe that H
τ
./ U ' (H ./ U)τ̂ , in a similar computation to that of

the proof of Lemma 3.6, as the products coincide, see (2.5). �

4. Hopf-Galois objects for bicrossed product Hopf algebras

The case in which the Hopf-Galois objects for Hopf algebra bicrossed products are bicleft were
already studied in [35, 10]. The relevant result there is the Kac exact sequence, which, when
the two factors are cocommutative, contains all the information about Hopf-Galois objects over
the bicrossed product. In this section we discuss Hopf-Galois objects over bicrossed products of
Hopf algebras in full generality.

4.1. General setting. Recall from (3.4) that given a matched pair of Hopf algebras (H,U, ., /),
the associated twisting map U⊗H → H⊗U is denoted by ω./, so ω./(x, a) = x(1).a(1)⊗x(2)/a(2).

Lemma 4.1. Let (H,U, ., /) be a matched pair of Hopf algebras and let E = H ./ U be the
associated Hopf algebra bicrossed product. Let A, resp. R, be a right H-Galois object, resp. U -
Galois object. Let θ : R ⊗ A → A ⊗ R be a twisting map. Then A#θR is a right E-comodule
algebra with coaction ρ# := ρA⊗R:

ρA⊗R : A#θR→ A#θR⊗H ./ U a#r 7→ a(0)#r(0) ⊗ a(1) ./ r(1)

if and only if the following diagram commutes:

R⊗A θ //

ρR⊗A
��

A⊗R
ρA⊗R
��

R⊗A⊗ U ⊗H θ⊗ω./ // A⊗R⊗H ⊗ U

(4.1)

This amounts to the fact that θ is a morphism of H ⊗U -comodules, where the H ⊗U -comodule
structure on R⊗A is given by (idR⊗A⊗ω./) ◦ ρR⊗A (recall that ω./ is a coalgebra map) and the
one of A⊗R is given by ρ# = ρA⊗R.

Explicitly, A#θR is a right E-comodule algebra if and only if

θ(r(0) ⊗ a(0))⊗ (r(1) . a(1) ./ r(2) / a(2)) = ρ# (θ(r ⊗ a)) .(4.2)

Proof. We look for sufficient and necessary conditions so that ρ# : A#θR −→ A#θR ⊗H ./ U
is an algebra map. It is enough to see that

ρ#(1#r)ρ#(a#1) = ρ# (θ(r ⊗ a)) , r ∈ R, a ∈ A,
9



as θ(r, a) = (1#r)(a#1). It readily follows that:

ρ#(1#r)ρ#(a#1) = (1#r(0) ⊗ 1 ./ r(1))(a(0)#1⊗ a(1) ./ 1)

= θ(r(0) ⊗ a(0))⊗ r(1) . a(1) ./ r(2) / a(2).

Thus ρ# is an algebra map if and only if (4.2) holds. �

Using the notation as in (3.2), equation (4.2) becomes

(r(0) ⇀ a(0))#(r(0) ↼ a(0))⊗ (r(1) . a(1) ./ r(2) / a(2))

= (r ⇀ a)(0)#(r ↼ a)(0) ⊗ (r ⇀ a)(1) ./ (r ↼ a)(1).

We arrive to the description of the right Galois objects over E = H ./ U .

Theorem 4.2. Let (H,U, ., /) be a matched pair of Hopf algebras and let E := H ./ U be the
corresponding bicrossed product.

(1) Let A, resp. R, be a right H-Galois object, resp. U -Galois object, and assume there is
a twisting map θ : R ⊗ A → A ⊗ R such that (4.1) commutes. Then A#θR is a right
H ./ U -Galois object, with the tensor product comodule structure ρ# as in Lemma 4.1.

(2) Let A,A′, resp. R,R′, be right H-Galois objects, resp. U -Galois objects, and assume that
there are twisting maps θ : R ⊗ A → A ⊗ R and θ′ : R′ ⊗ A′ → A′ ⊗ R′such that (4.1)
commutes. Then the above right H ./ U -Galois object A#θR and A′#θR

′ are isomorphic
if and only if there exist a right A-comodule algebra isomorphism f : A→ A′ and a right
U -comodule isomorphism g : R→ R′ such that (f ⊗ g) ◦ θ = θ′ ◦ (g ⊗ f).

(3) Conversely, any right E-Galois object arises as A#θR for some A, R and θ : R ⊗ A →
A⊗R as above.

Proof. (1) The associated canonical map is as follows:

γ : A#θR⊗A#θR −→ A#θR⊗H ./ U

a#x⊗ b#y 7−→ a(x ⇀ b(0))#(x ↼ b(0))y(0) ⊗ b(1) ./ y(1).

To construct an inverse to γ, we consider the maps κH(h) = h(1) ⊗ h(2) ∈ A ⊗ A, h ∈ H, and
κU (x) = x(1) ⊗ x(2) ∈ R⊗R, x ∈ U , see (2.1), and define

γ′ : A#θR⊗H ./ U −→ A#θR⊗A#θR

a#r ⊗ h ./ x 7−→ (a#r)θ(x(1) ⊗ h(1))⊗ h(2)#x(2).

To see that γ′ ◦ γ = id and γ ◦ γ′ = id, it is enough to check that

γ′ ◦ γ(1#1⊗ b#y) = 1#1⊗ b#y, γ ◦ γ′(1#1⊗ h ./ x) = 1#1⊗ h ./ x.

We have γ′ ◦ γ = id, since:

γ′ (γ(1#1⊗ b#y)) = γ′(b(0)#y(0) ⊗ b(1) ./ y(1))

= (b(0)#y(0))θ((y(1))
(1) ⊗ (b(1))

(1))⊗ (b(1))
(2)#(y(1))

(2)

= (b(0)#y(0))(1#(y(1))
(1))((b(1))

(1)#1)⊗ (b(1))
(2)#(y(1))

(2)

= (b(0)#y(0)(y(1))
(1))((b(1))

(1)#1)⊗ (b(1))
(2)#(y(1))

(2)

(2.3)
= (b(0)(b(1))

(1)#1)⊗ (b(1))
(2)#y

(2.3)
= 1#1⊗ b#y.

Similarly, we have γ ◦ γ′ = id, since:

γ
(
γ′(1#1⊗ h ./ x)

)
= γ(θ(x(1) ⊗ h(1))⊗ h(2)#x(2))

= θ(x(1) ⊗ h(1))((h(2))(0)#(x(2))(0))⊗ (h(2))(1)#(x(2))(1)

= (x(1) ⇀ h(1)#x(1) ↼ h(1))((h(2))(0)#(x(2))(0))⊗ (h(2))(1)#(x(2))(1)

= ((x(1) ⇀ h(1))((x(1) ↼ h(1)) ⇀ (h(2))(0))#((x(1) ↼ h(1)) ↼ (h(2))(0))(x
(2))(0))
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⊗ (h(2))(1)#(x(2))(1)

(3.2)
= (x(1) ⇀ h(1)(h(2))(0))#(x(1) ↼ h(1)(h(2))(0))(x

(2))(0) ⊗ (h(2))(1)#(x(2))(1)

(2.2)
= (x(1) ⇀ 1)#(x(1) ↼ 1)(x(2))(0) ⊗ (h#(x(2))(1)

= 1#x(1)(x(2))(0) ⊗ h#(x(2))(1)
(2.2)
= 1#1⊗ h ./ x.

(2) An isomorphism of H ./ U -Galois objects A#θR → A′#θ′R
′ induces an isomorphism

between the H and U -coinvariant parts, where the respective H and U -comodule structures are
induced by the coalgebra surjections πH = idH ⊗ U : E → H and πU = ε ⊗ idU : E → U .
Hence our isomorphism has the form f ⊗ g for f and g as in the statement. The condition
(f ⊗ g) ◦ θ = θ′ ◦ (g ⊗ f) comes from the fact that f ⊗ g is an algebra map. The converse is an
immediate verification.

(3) Follows as [34, Lemma 3.1]. We reproduce the details for completeness. Recall that both
H and U identify with Hopf subalgebras of E, and moreover we have the coalgebra surjections
πH = idH ⊗U : E → H and πU = ε⊗ idU : E → U that are respectively left H-linear and right
U -linear. Let J be an E-Galois object and let us set

A := JcoU = {z ∈ J : z(0) ⊗ z(1) ∈ F ⊗H} ' J�EH,
R := JcoH = {z ∈ J : z(0) ⊗ z(1) ∈ F ⊗ U} ' J�EU.

It follows that A is an H-Galois object by [37, Remark 3.11 (2), p.186]; the same holds for R
as an U -Galois object. Now, we consider J as a Hopf module in the category MU

R, with the
U -comodule structure induced by πU (this is indeed a Hopf module by the U -linearity of πU )
and thus [37, Theorem 3.7] gives an isomorphism (via the multiplication):

A⊗R = JcoU ⊗R ' J.

Therefore, there is a twisting map θ : R ⊗ A → A ⊗ R such that J ' A#θR (see the end of
Subsection 3.1) and since multiplication is E-colinear, the E-coaction on A⊗R has the form as
in Lemma 4.1, so that θ satisfies the conditions there. �

Remark 4.3. Consider the maps κH : H → A⊗ A and κU : U → R ⊗ R as in Subsection 2.1:
κH(h) = h(1) ⊗ h(2) ∈ A⊗ A, h ∈ H, and κU (x) = x(1) ⊗ x(2) ∈ R ⊗ R, x ∈ U , see (2.1). Then
the proof of the above theorem shows that

κH./U (h ./ x) = θ(x(1) ⊗ h(1))⊗ h(2)#x(2) = (x(1) ⇀ h(1))#(x(1) ↼ h(1))⊗ h(2)#x(2).(4.3)

4.2. The cleft setting. Assume that the Galois-objects A and R from Theorem 4.2 are cleft.
In particular, there are Hopf 2-cocycles σ ∈ Z2(H) and τ ∈ Z2(U) so that A ' σH, R ' τU .
Set E = H ./ U . Now, any E-colinear map θ ∈ HomE(R⊗A,A⊗R) ' HomE(U ⊗H,H ⊗ U)
is determined by a linear map ψ : H ⊗ U → k in such a way that θ = θψ, where

θψ(x, h) = ψ(h(1), x(1))x(2) . h(2) ⊗ x(3) / h(3), x ∈ U, h ∈ H.(4.4)

Notice that this also reads: θψ(x, h) = ψ(h(1), x(1))x(2) ./ h(2). As well, recall the notation
t
/,

t
.

from Lemma 3.3.

Lemma 4.4. Let θ ∈ HomE(R⊗A,A⊗R) ' HomE(U ⊗H,H ⊗ U) be as in (4.4). Then θ is
a twisting map if and only if

τ(x(1), y(1))ψ(h, x(2)y(2)) = ψ(h(1), y(1))ψ(y(2) . h(2), x(1))τ(x(2) / (y(3) . h(3)), y(4) / h(4)),

σ(h(1), t(1))ψ(h(2)t(2), x) = ψ(h(1), x(1))ψ(t(1), x(2) / h(2))σ(x(3) . h(3), (x(4) / h(4)) . t(2)),
(4.5)

for all h, k ∈ H, x, y ∈ U .
Assume that SH , SU are invertible. If ψ is convolution invertible, then θ is invertible with

θ−1(h, x) = ψ−1(h(1)
t
. x(1), h(3)

t
/ x(3))h(2)

t
. x(2) ⊗ h(4)

t
/ x(4) x ∈ U, h ∈ H.(4.6)
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Proof. The identity in (3.1) corresponding to mR = τ ∗mU , becomes, using (3.3) with particular
emphasis on the fourth identity:

τ(x(1), y(1))ψ(h(1), x(2)y(2))x(3)y(3) . h(2) ⊗ x(4)y(4) / h(3)

= ψ(h(1), y(1))ψ(y(2) . h(2), x(1))τ(x(3) / (y(4) . h(4)), y(6) / h(6))

x(2)y(3) . h(3) ⊗ (x(4) / (y(5) . h(5)))(y(7) / h(7)),

(3.3)
= ψ(h(1), y(1))ψ(y(2) . h(2), x(1))τ(x(3) / (y(4) . h(4)), y(5) / h(5))

x(2)y(3) . h(3) ⊗ (x(4) / (y(6) . h(6)))(y(7) / h(7)),

= ψ(h(1), y(1))ψ(y(2) . h(2), x(1))τ(x(3) / (y(4) . h(4)), y(5) / h(5))

x(2)y(3) . h(3) ⊗ (x(4)y(6)) . h(6),

(3.3)
= ψ(h(1), y(1))ψ(y(2) . h(2), x(1))τ(x(2) / (y(4) . h(4)), y(3) / h(3))

x(3)y(5) . h(5) ⊗ (x(4)y(6)) . h(6).

Similarly, the identity in (3.1) corresponding to mA = σ ∗mH is:

σ(h(1), t(1))ψ(h(2)t(2), x(1))x(2) . h(3)t(3) ⊗ x(3) / h(4)t(4)

= ψ(h(1), x(1))ψ(t(1), x(4) / h(4))σ(x(2) . h(2), (x(5) / h(5)) . t(2))

(x(3) . h(3))((x(6) / h(6)) . t(3))⊗ (x(7) / h(7)) / t(4)

(3.3)
= ψ(h(1), x(1))ψ(t(1), x(3) / h(3))σ(x(2) . h(2), (x(4) / h(4)) . t(2))

x(5) . h(5)t(3) ⊗ x(6) / h(6)t(4).

Next we check (4.6). Notice that, if we write h ⊗ x = y ./ t, y ∈ U, t ∈ H, then this is
θ−1(h, x) = γ(y, t), for

γ(y, t) = ψ−1(t(1), y(1))y(2)
t
.

t
/ t(2).

Indeed, if we identify U ⊗H = H
t
.

t
/ H, then we have that

γθ(x, h) = ψ(h(1), x(1))γ(x(2) ./ h(2)) = ψ(h(1), x(1))ψ
−1(h(2), x(2))x(3)

t
.

t
/ h(3) = x⊗ h,

θγ(h, x) = θγ(y, t) = ψ−1(t(1), y(1))θ(y(2)
t
.

t
/ t(2)) = ψ−1(t(1), y(1))ψ(t(2), y(2))y(3) ./ t(3)

= y ./ t = h⊗ x.
This ends the proof. �

By (4.5), if we assume that the values of σ, τ are known, then it is enough to define ψ on the
generators of U ⊗H and extend it via:

ψ(ht, xy) = σ−1(h(1), t(1))τ
−1(x(1), y(1))ψ(h(2), y(2))ψ(y(3) . h(3), x(2))

ψ(t(2), y(6) / h(6))ψ((y(7) / h(7)) . t(3), x(3) / (y(4) . h(4)))

τ((x(4) / (y(5) . h(5))) / ((y(8) / h(8)) . t(4)), y(9) / (h(9)t(5)))

σ((x(5)y(10)) . h(10), ((x(6)y(11)) / h(11)) . t(6)).

In general, the determination of the values of a Hopf cocycle σ is a hard work; nevertheless there
instances in which task has been performed and characterized, see e.g. [21, 22].

We the conclude the subsection with a useful remark.

Remark 4.5. When one of the cocycles σ, τ is trivial, then (4.5) become simpler and we can
deduce further properties of ψ:
(a) Assume that τ = ε. If the antipode S = SU is invertible, then the first equation in (4.5) is

ψ(h, xy) = ψ(h(1), y(1))ψ(y(2) . h(2), x)

and then ψ is convolution-invertible, with

ψ−1(h, x) = ψ(x(1) . h, S
−1(x(2))).
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Indeed, let ϕ(h, x) = ψ(x(1) . h, S
−1(x(2))). Then

ψ ∗ ϕ(h, x) = ψ(h(1), x(1))ψ(x(2) . h(2), S
−1(x(3))) = ψ(h, S−1(x(2))x(1)) = ε(h)ε(x).

On the other hand, letting y = S−1(x):

ϕ ∗ ψ(h, x) = ψ(x(1) . h(1), S
−1(x(2)))ψ(h(2), x(3)) = ψ(S(y(3)) . h(1), y(2))ψ(h(2), S(y(1)))

= ψ(S(y(5)) . h(1), y(2))ψ(y(3) . (S(y(4)) . h(2)), S(y(1)))

= ψ((S(y(3)) . h)(1), (y(2))(1))ψ((y(2))(2) . (S(y(3)) . h)(2), S(y(1)))

= ψ(S(y(3)) . h, S(y(1))y(2)) = ε(h)ε(y) = ε(h)ε(x).

(b) On the other hand, if σ = ε and SH is invertible, then ψ is invertible. The second equation
in (4.5) becomes

ψ(hk, x) = ψ(h(1), x(1))ψ(k, x(2) / h(2))

and we get that:
ψ−1(h, x) = ψ(SH(h(2)), x / h(1)).

In this setting, the inverse S−1 of S = SH is used in the verification, arguing as in the
previous case. Indeed, if we now set ϕ(h, x) = ψ(S(h(2)), x / h(1)) it is straightforward to
check that ψ ∗ ϕ = ε, while, for k = S−1(h):

ϕ ∗ ψ(h, x) = ψ(S(h(2)), x(1) / h(1))φ(h(3), x(2)) = ψ(k(2), x(1) / S
−1(k(3)))ψ(S−1(k(1)), x(2))

= ψ(k(2), x(1) / S
−1(k(5))))ψ(S−1(k(1)), x(2) / (S−1(k(4))y(3)))

= ψ(k(2), (x / S
−1(k(4)))(1)))ψ(S−1(k(1)), (x / S

−1(k(4)))(2) / y(3))

= ψ(k(2)S
−1(k(1)), x / S

−1(y(3))) = ε(k)ε(x) = ε(h)ε(x).

4.3. The left bicrossed product Hopf algebra. We recall the notation and results on
cogroupoids from §2.3; in particular the subcogroupoid CH ⊂ C from Lemma 2.1 associated
to a cogroupoid C, an object X ∈ ob C and a sub Hopf algebra H ⊆ C(X,X).

Theorem 4.6. Let (H,U, ., /) be a matched pair of Hopf algebras.
(1) Let L,Q be Hopf algebras and let A, resp. R, be an (L,H)-Galois object, resp. (Q,U)-

Galois object. Assume there is a twisting map θ : R ⊗ A → A ⊗ R such that (4.1)
commutes. Then the associated left Hopf algebra F = L(A#θR,H ./ U) is a bicrossed
product L IJ Q for some actions I : Q⊗L→ L and J : Q⊗L→ Q making the following
diagram commute:

R⊗A θ //

λR⊗A
��

A⊗R

λA⊗R
��

Q⊗ L⊗R⊗A ωIJ⊗θ// L⊗Q⊗A⊗R

(4.7)

where λA⊗R and λR⊗A denote the diagonal left coactions induced by those of A and R.
(2) Let F be a Hopf algebra such that there exists an (F,H ./ U)-bi-Galois object. Then

F ' L IJ Q for some Hopf algebras L, Q as above.

Proof. (1) We use [8, Theorem 2.11] to consider a cogroupoid C with two objects X,Y such that

C(X,X) = H ./ U, C(Y,X) = A#θR,

so that H,U become Hopf subalgebras of C(X,X) and the we have a bijective multiplication

m : H ⊗ U → C(X,X).(4.8)

Consider the subcogroupoids CH , CU ⊆ C as in Lemma 2.1; we have CH(Y,X) ' A, CU (Y,X) '
R, and CH(Y, Y ) ' L, CU (Y, Y ) ' Q by uniqueness of left Hopf algebras in [32, Theorem 3.5].
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We need to show that the multiplication map m : CH(Y, Y )⊗CU (Y, Y )→ C(Y, Y ) is bijective.
We will do so by fitting it into the following commutative diagram with bijective arrows, where
� = �C(X,X) and the bijectivity of each arrow corresponds to the label on top:

CH(Y, Y )⊗ CU (Y, Y )
OO

(2.8)
��

m // C(Y, Y )
OO

(2.6)

��

(C(Y,X)�H� C(X,Y ))⊗ (C(Y,X)�U� C(X,Y ))
OO

(2.7)
��

C(Y,X)�(H� C(X,Y ))⊗ (U� C(X,Y )))
ll

(2.7) ,,

C(Y,X)� C(X,X)� C(X,Y )
OO

(4.8)
��

C(Y,X)� ((H ⊗ U)� C(X,Y )) .

This shows that F is a bicrossed product L IJ U of L ' CH(Y, Y ) and Q ' CU (Y, Y ).
The commutation of (4.7) will follow from the obvious left version of that of (4.1) in Lemma

4.1, provided we show that the left L IJ Q-coaction on A#θ R has the appropriate form. We
identify L ' L(A,H) = (A⊗Aop)coH and Q ' L(R,U) = (R⊗Rop)coU , so that

λA(a) = a(0) ⊗ κH(a(1)) = a(0) ⊗ (a(1))
(1) ⊗ (a(1))

(2)

and similarly λR(r) = r(0) ⊗ (r(1))
(1) ⊗ (r(1))

(2).
In the same spirit, we identify L IJ Q ' L(A#θR,H ./ U) = (A#θR ⊗ (A#θR)op)coH./U ,

and we have

λA#θR(a#r) = a(0)#r(0) ⊗ κH./U (a(1) ./ r(1))

(4.3)
= a(0)#r(0) ⊗ θ((r(1))

(1) ⊗ (a(1))
(1))⊗ (a(1))

(2)#(r(1))
(2)

[(a(0)#1⊗ (a(1))
(1)#1)⊗ (a(1))

(2)#1][(1#r(0) ⊗ 1#(r(1))
(1))⊗ 1#(r(1))

(2)]

where the last product between the terms in square brackets [, ] is taken in the algebra

A#θR⊗ (A#θR)op ⊗A#θR.

This shows that the following diagram commutes:

A#θR
λA#θR //

λA⊗R
��

(A#θR⊗ (A#θR)op)coH./U ⊗A#θR

(A⊗Aop)coH ⊗ (R⊗Rop)coU ⊗A⊗R.
ξ⊗idA⊗R

22

Here ξ is, as at the end of Subsection 3.1, the composition of the multiplication in A#θR ⊗
(A#θR)op together with the inclusion map

ιA⊗ιR : (A⊗Aop)coH⊗(R⊗Rop)coU → (A#θR⊗(A#θR)op)coH./U⊗(A#θR⊗(A#θR)op)coH./U

where ιA and ιR are the canonical inclusions

ιA : (A⊗Aop)coH −→ (A#θR⊗ (A#θR)op)coH./U a⊗ b 7−→ a#1⊗ b#1,

ιR : (R⊗Rop)coU −→ (A#θR⊗ (A#θR)op)coH./U r ⊗ s 7−→ 1#r ⊗ 1#s.

Since we know that L IJ Q ' (A#θR ⊗ (A#θR)op)coH./U , the map ξ is a Hopf algebra
isomorphism, and it follows in particular that λA⊗R is an algebra map, so the left analogue of
Lemma 4.1 applies, and the diagram (4.7) commutes.

(2) This follows by the uniqueness of the left Hopf algebra associated to a right Galois object
and the previous results. Indeed, if J is a (F,H ./ U)-bi-Galois object, then J = A#θR for
some right Galois objects A and R over H and U respectively by Theorem 4.2. If L = L(A,H)
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and Q = L(R,U) are the corresponding left Hopf algebras so that A is (L,H)-bi-Galois and R
is (Q,U)-bi-Galois, then J is (L IJ Q,H ./ U)-bi-Galois by (1) and thus L IJ Q ' L(J,H ./
U) ' F . �

Corollary 4.7. With the notation of Theorem 4.6, assume that A and R are cleft.
Let ψ : H ⊗ U → k be such that θ = θψ as in (4.4). If ψ is invertible, then

ωIJ(x, h) = ψ(h(1), x(1))ψ
−1(h(4), x(4))x(2) . h(2) ⊗ x(3) / h(3).

Proof. In this setting, R ' U as U -comodules and A ' H as H-comodules, so we may assume,
without loss of generality, that R = U and A = H in (4.7). By following the arrows, we get

ωIJ(x(1), h(1))⊗ ψ(h(2), x(2))x(3) . h(3) ⊗ x(4) / h(4)

= ψ(h(1), x(1))x(2) . h(2) ⊗ x(3) / h(3) ⊗ x(4) . h′(4) ⊗ x(5) / h(5).

We apply idH ⊗ idU ⊗εH ⊗ εU and obtain

ψ(h(2), x(2))ωIJ(x(1), h(1)) = ψ(h(1), x(1))x(2) . h(2) ⊗ x(3) / h(3)

from where the result follows. �

Remark 4.8. In the case of a tensor product E = H ⊗ U , [34, Proposition 3.7] describes the
Hopf-Galois objects with θ arising from a skew pairing τ : Q⊗L→ k, so that L IJ Q ' L ./τ Q.
In the general situation of Theorem 4.2 and Theorem 4.6, we do not see how to reach such a
simple and elegant statement as [34, Proposition 3.7], since it seems to us that there is no
canonical bicrossed product L IJ Q to start with.

5. A complete example

In this section we illustrate the previous results with an example of a bicrossed product that
does not fall into the classes of bicrossed products mentioned in Example 3.2.

5.1. The Hopf algebra E = H ./ U . Throughout the section, let U,H be the graded pointed
Hopf algebras given by the smash products (also called bosonizations in this context) H =
k[b, c]#kZ, Z = 〈h〉 and U = k[a]#kZ, Z = 〈g〉. Here k[a], k[b, c] are polynomial algebras. Each
smash product is defined so that hb = −bh, hc = −ch, ga = −ag.

The comultiplication is such that g ∈ U, h ∈ H are group-like elements and

∆(a) = a⊗ 1 + g2 ⊗ a, ∆(b) = b⊗ 1 + h2 ⊗ b, ∆(c) = c⊗ 1 + h2 ⊗ c.(5.1)

Definition 5.1. Let E be the smash product k[a, b, c]#kZ2, i.e. the k-algebra generated by
a, b, c, h±1, g±1 with gh = hg and commutation:

ha = −ah, hb = −bh, hc = −ch, ga = −ag, gb = −cg, gc = −bg,(5.2)

together with the quadratic identities

ab− ba = 0, ac− ca = 0, bc− cb = 0.(5.3)

It is easy to see that E is a Hopf algebra with coalgebra structure given by that of H ⊗ U .
Moreover, it also follows that E factors through H and U via the canonical injections ι : H ↪→ E
and j : U ↪→ E. Hence E ' H ./ U .

Next remark shows that the bicrossed product E ' H ./ U above is neither a smash product
(both actions are nontrivial) nor it comes from a pairing between H and U . It also establishes
some properties of the actions involved, that will become useful further on.

Remark 5.2. With the notation we make the following observations:
(a) Both actions / : U ⊗H → U and . : U ⊗H → H are non-trivial as

ah = −ha⇒ a / h = −a, gb = −cg ⇒ g . b = −c.
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(b) The bicrossed product H ./ U does not come from a pairing. Indeed, for any pairing
τ : U ⊗H → k, we get, by (2.5):

g.b = τ(g, b(1))b(2)gτ
−1(g, b(3)) = τ(g, b)g + τ(g, h2)bg + τ(g, h2)h2gτ−1(g, b).

Hence g.b ∈ k{g, bg, h2g} while in H ./ U we have gb = −cg /∈ k{g, bg, h2g}.
(c) Observe that a . _ = 0 and _ / b = 0, same for c. We write down the tables with the

actions . and / in terms of the generators:

. b c h
a 0 0 0
g −c −b h

/ b c h
a 0 0 −a
g 0 0 g

Furthermore, notice that both H =
∑

i≥0Hi and U =
∑

j≥0 Uj are coradically graded
Hopf algebras; here Hi = k[bncm : n + m = i]#kZ and Uj = k[aj ]#kZ. It is thus easy
to check that a . H = 0 and U / b = U / b = 0, using (3.3). Moreover, this extends to

U>0 . H = 0, U / H>0 = 0.(5.4)

We now introduce some notation that will become handy to deal with examples.

Notation. Let H, and U as above and consider the decomposition H =
∑

i≥0Hi and U =∑
j≥0 Uj in Remark 5.2 (c). We shall write, for f ∈ Hn, u ∈ Un:

∆(f) = f ⊗ r(f) + `(f)⊗ f + f(1) ⊗ f(2), ∆(u) = u⊗ r(u) + `(u)⊗ u+ u(1) ⊗ u(2)(5.5)

with r(f), `(f) ∈ 〈h〉 such that

f(1) ⊗ f(2) = ∆(f)− f ⊗ r(f) + `(f)⊗ f ∈
n−1∑
i=1

Hi ⊗Hn−i.

Similarly, r(u), `(u) ∈ 〈g〉 and u(1) ⊗ u(2) ∈
∑n−1

i=1 Ui ⊗ Un−i.

5.2. Deformations. In this part we introduce two families of algebras, obtained by deforming
the relations of the Hopf algebra E.

Definition 5.3. Let us fix α, β ∈ k and λ ∈ k× scalars with the following restrictions:

α(1 + λ4) = 0, β(1− λ2) = 0.(5.6)

(a) Let Eλα,β be the k-algebra generated by a, b, c, h±1, g±1 with relations gh = hg and:

ha = −λ2ah, hb = −bh, hc = −ch, ga = −ag, gb = −λ2cg, gc = −λ2bg,(5.7)

together with the identities

ab− λ4ba = β(1− g2h2), ac− λ4ca = β(1− g2h2), bc− cb = α(1− h4).

(b) Let Aλα,β be the k-algebra generated by a, b, c, h±1, g±1 with relations gh = λhg and (5.7),
together with the identities

ab− λ4ba = β, ac− λ4ca = β, bc− cb = α.(5.8)

We remark that (5.6) above forces αβ = 0; moreover α = β = 0 whenever λ 6= ±1 or λ4 6= −1.

It is easy to see that Eλα,β is a Hopf algebra with comultiplication (5.1). Moreover, it can be
checked that the algebras Aλα,β are (E,Eλα,β)-biGalois objects. This is indeed the content of this
part, as the result of applying the ideas in Sections 3 and 4.

We refer to Corollary 5.12 for a general picture summarizing our results.
16



5.3. Skew H ./ U-pairings. We now discuss the skew H ./ U -pairings for the matched pair
of Hopf algebras (H,U, /, .) in §5.1. We construct two such maps in Examples 5.5 and 5.6 and
then show that these exhaust all the skew H ./ U -pairings in Proposition 5.8. Along the way
we describe the corresponding Galois objects and left Hopf algebras.

We observe that in this setting, using (5.4), conditions (3.6) become:

τ(f, uu′) = τ(f(1), u
′)τ(r(u′) . f(2), u), τ(ff ′, u) = τ(f, u(1))τ(f ′, u(2) / r(f)),(5.9)

for any f ∈ Hs, f ∈ Ht, u ∈ Un, u′ ∈ Um, s, t, n,m ≥ 0.

We begin with a quick remark.

Remark 5.4. (1) Any linear map τ : H ⊗ U → k is convolution invertible if and only if it is
invertible in the coradical E0 = H0⊗U0 ' k〈g, h〉 of E: that is if and only if λ := τ(g, h) 6= 0.

(2) Conditions (3.6) restricted to H0 ⊗ U0 are equivalent to stating that τh = τ(h,−) : 〈g〉 → k
and τ g = τ(−, g) : 〈h〉 → k are algebra maps and thus they are determined by λ.

Our first example is rather straightforward and it does not lead to interesting consequences.
We include it for completeness, see Proposition 5.8 below.

Example 5.5. For each λ 6= 0, set τ = τλ : H ⊗ U → k be the linear map so that

τ(hp, gq) = λpq, τ|Hi⊗Uj = 0, i+ j > 0.

Then τ is skew H ./ U -pairing. As well, H
τ
./ U ' Eλ0,0 and H#θτU ' Aλ0,0.

Proof. First, Remark 5.4 shows that τ is convolution invertible and identities (3.6) hold on
H0 ⊗ U0. Next, if either f ∈ H>0 f

′ ∈ H>0 or u ∈ U>0, we have that τ(ff ′, u) = 0. On the
other hand, the left hand side of the corresponding equation in (3.6) is τ(f, u(1))τ(f ′, u(2) /r(f))
by (5.9). Again, if f ∈ H>0, f ′ ∈ H>0 or t ∈ U>0, then this is also zero by definition. The other
identity in (3.6) follows similarly.

Notice that the corresponding cocycle τ̂ is concentrated in the coradical Z2. We thus get that
the deformation H

τ
./ U ' (H ./ U)τ̂ becomes the k-algebra Eλ0,0 in Definition 5.3. In turn,

H#θτU ' τ̂(H ./ U) is the algebra Aλ0,0 as stated. �

Next we produce a more involved pairing (which includes the previous one).

Example 5.6. Fix β ∈ k and ξ ∈ {±1}. Consider the linear map τβξ : H ⊗ U → k given by:

τβξ (brcshp, angq) = δr+s,n(−1)qnξpqn!βn,(5.10)

for every r, s, n ∈ N, p, q ∈ Z. We write τβ± := τβ±1. Then τ = τβξ is a skew H ./ U -pairing.

It follows that H
τ
./ U ' E±0,β and H#θτU ' A±0,β .

Remark 5.7. If β = 0, then this is Example 5.5 with λ = ξ. In particular, we can unify
Examples 5.5 and 5.6 in a single pairing τβλ , where λ ∈ k

× and β ∈ k are subject to the second
restriction in (5.6); namely β = 0 if λ /∈ {±1}.

Proof. Observe first that τ|Hi⊗Uj = 0 for i 6= j and τ(g, h) = ξ = ±1. In particular, it is
convolution invertible. We start with the second identity (5.9): We proceed by induction on
σ := s+ t+ n ≥ 0, for f ∈ Hs, f ∈ Ht, u ∈ Un.

The case σ = 0 or s = t = n = 0 follows since this defines algebra maps τh and τ g as in
Remark 5.4. Now assume σ > 0. Then τ(ff ′, u) = 0. As for the right hand side of the equation,
we have two cases: s + t = n and s + t 6= n. We start with the later. If s = 0 (so t 6= n), we
may assume f ∈ 〈h〉 and then

τ(f, u(1))τ(f ′, u(2) / r(f)) = τ(f, u(1))τ(f ′, u(2) / f).

If n = 0 then t > 0 and τ(f ′,−) = 0.
If n > 0, then τ(f, u(1))τ(f ′, u(2) / f) = τ(f, `(u))τ(f ′, u / f) = 0 since τ(−, u / f) = 0. Now,

if s > 0, then τ(f,−) = 0 and thus τ(f, u(1))τ(f ′, u(2) / r(f)) = 0.
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Let us now assume that s+ t = n, f = bs1cs2hp1 , f ′ = bt1ct2hp2 , u = angq, with s1 + s2 = s,
t1 + t2 = t and p1, p2, q ∈ Z. We have that

τ(ff ′, u) = (−1)p1t(−1)qnξ(p1+p2)qn!βn.(5.11)

On the other hand,

τ(f, u(1))τ(f ′, u(2) / r(f)) = τ(f, (an)(1)g
q)τ(f ′, (an)(2) / h

p1gq).

The component of ∆(an) = (an)(1)⊗ (an)(2) =
∑n

i=0

(
n
i

)
aig2(n−i)⊗ an−i in the right component

Us ⊗ Ut is precisely
(
n
s

)
asg2t ⊗ at. So the above equation is(

n

s

)
τ(f, asg2tgq)τ(f ′, at / hp1gq) =

n!

s!t!
(−1)qsξ(2t+q)p1s!βs(−1)p1t(−1)qtξqp2t!βt

= n!(−1)q(s+t)ξ(p1+p2)q(−1)p1tβs+t

which coincides with (5.11). As for the first identity, if u = angq, u′ = amgr and f = bscthp,
then the left hand side is

τ(f, uu′) = (−1)qmτ(bscthp, an+mgq+r) = (−1)qm(−1)(q+r)(n+m)δs+t,n+mξ
p(q+r)(n+m)!βn+m

= (−1)qn+rn+rmδs+t,n+mξ
p(q+r)(n+m)!βn+m,

while as ∆(f) = ∆(bs)∆(ct)(hp ⊗ hp) =
∑s

i=0

∑t
j=0

(
s
i

)(
t
j

)
bicjh2(s+t−i−j)+p ⊗ bs−ict−jhp, then

we get that τ(f(1), u
′)τ(r(u′) . f(2), u) = τ(f(1), u

′)τ(gr . f(2), u) equals:
s∑
i=0

t∑
j=0

(
s

i

)(
t

j

)
δi+j,m(−1)rmξprm!βm(−1)r(i+j)δs+t−i−j,n(−1)qnξpqn!βn

=

s∑
i=0

t∑
j=0

(
s

i

)(
t

j

)
δi+j,mm!n!δs+t,n+m(−1)qn+rn+rmξp(q+r)βn+m.

This coincides with the expression for the left hand side computed above as the coefficient∑s
i=0

∑t
j=0

(
s
i

)(
t
j

)
δi+j,m counts the number of subsets of size i+ j = m in a set of size s+ t (by

choosing i from a subset of size s and j from the complement of size t), namely this coefficient
is
(
s+t
m

)
. Now

(
s+t
m

)
m!n!δs+t,n+m = (m+n)! and both sides coincide. Thus the first part follows.

Now, the corresponding cocycle τ̂ = τ̂β± : H ./ U ⊗H ./ U → k can be computed explicitly
using (5.10), via the definition in Lemma 3.6. In particular, it is concentrated on U ⊗H, and,
for our purposes, it is enough to determine its values on the generators {a, g} × {b, c, h}. We
easily get:

τ̂(a, b) = τ̂(a, c) = β, τ̂(g, h) = ±1, τ̂(a, h) = τ̂(g, b) = τ̂(g, b) = 0.

Therefore, we obtain that H
τ
./ U ' (H ./ U)τ̂ is the k-algebra E±0,β from Definition 5.3. Indeed,

this is a standard computation for the multiplication in (H ./ U)τ̂ , see (2.5):

a.b = σ(a(1), b(1))a(2)b(2)σ
−1(a(3), b(3)) = σ(a, b)1 + σ(g2, h2)ab+ σ(g2, h2)g2h2σ−1(a, b)

= β + ab− βgh = β(1− g2h2).

As b.a = ba, we obtain the first (deformed) quadratic relation for E±0,β . The others follow
similarly.

As well, we can analogously describe the Hopf-Galois object H#θτU ' τ̂H ./ U , with
multiplication (2.4): we obtain the k-algebra A±0,β . Notice that in this setting b.a = ab and
a.b = σ(a(1), b(1))a(2)b(2) = σ(a, b)1 + σ(g2, h2)ab = β + ab. This concludes the example. �

Next we show that these are indeed all the skew-parings for H ./ U .

Proposition 5.8. Let τ : H ⊗ U → k be a H ./ U -skew-paring. Then there is λ 6= 0 so that
τ = τλ or there is β ∈ k so that τ = τβ±.
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Proof. Let λ = τ(g, h). Then λ 6= 0 since τ is convolution invertible. Following (5.9), we get:

τ(bh, a) = τ(b, a), τ(hb, a) = −λ2τ(b, a).

and we see that λ2 = 1 or τ(b, a) = 0, since bh = −hb. On the other hand,

τ(b, ag) = −λ2τ(c, a) = −τ(c, a), τ(b, ga) = τ(b, a).

As ag = −ga we get that τ(c, a) = τ(b, a). In particular have that either

λ2 = 1 and τ(c, a) = τ(b, a) or τ(b, a) = τ(c, a) = 0.

Similarly, if n > 0 and p, q ∈ Z, then we easily deduce from (5.9) that τ(hp, angq) =
λpqτ(hp, an) and τ(hp, gqan) = λpqτ(hp, an). As ga = −ag, this implies that τ(hp, an) = 0.
This idea can be repeated to show that, more generally:

τ|H0⊗Un+Hn⊗U0
= 0, n > 0.(5.12)

But now (5.9) implies τ|Hi⊗Uj = 0 when i 6= j.
Hence we deduce that when τ(b, a) = τ(c, a) = 0 we have that τ = τλ as in Example 5.5.
Otherwise, we have that τ(g, h) = λ is such that λ2 = 1. We set ξ = λ ∈ {1,−1}, β =

τ(b, a) = τ(c, a). We can use (5.9) to check that, for r + s = n ∈ N:
τ(bn, an) = τ(cn, an) = τ(brcs, an) = n!βn.(5.13)

Fix now f = f(b, c) ∈ k[b, c] of degree n ∈ N (notice r(f) = 1, `(f) = h2n) and p, q ∈ Z. Then
τ(fhp, angq) = τ(f, (an)(1)g

q)τ(hp, (an)(2)g
q) = τ(f, angq)τ(hp, gq) = ξpqτ(f, angq)

= ξpqτ(f(1), g
q)τ(gq . f(2), a

n) = ξpqτ(h2n, gq)τ(gq . f, an) = ξpqξ2qnτ(fq, a
n).

Here fq = f(bq, cq) ∈ k[b, c], for bq =

{
b, q even,
c, q odd,

and cq =

{
c, q even,
b, q odd.

Now, by (5.13), we have τ(fhp, angq) = ξpqξ2qnτ(fq, a
n) = (−1)qnξpqn!βn. Therefore τ = τβ±

is as in (5.10) in Example 5.6, according to ξ = ±1. The lemma follows. �

5.4. Hopf-Galois objects. We now describe the Hopf-Galois objects over E = H ./ U .
The cleft objects A for H that produce a non-trivial left Hopf algebra, namely L(A,H) 6'

H, are the (pairwise isomorphic) algebras Hα, α 6= 0; here Hα is the k-algebra generated by
{b, c, h±1} with relations

hb = −bh, hc = −ch, bc− cb = α.(5.14)

The Hopf algebra Lα = L(H,Hα) is the deformation generated by {b, c, h±1} with relations

hb = −bh, hc = −ch, bc− cb = α(1− h2).(5.15)

In turn, there are no Hopf deformations of U , hence there are no cleft objects for U in this sense.
We shall look, however, into non-trivial cocycles for U in §6.2 at the end of this monograph, in
a different setting. As well, we analyze the case α = 0 in Remark 5.11 below.

For any α ∈ k, the cocycle σα : H ⊗H → k which determines the deformation Hα is

σα(bncmhp, brcshq) = δn,sδm,r(−1)m(−1)p(n+m)n!m!
(α

2

)n+m
,(5.16)

for n,m, r, s ≥ 0, p, q ∈ Z. We shall provide some insight for this formula on Remark 5.9,
whereas we refer to [21] for more details.

We will be primarily interested in the following consequences for σ = σα:
σ|Hi⊗Hj = 0, i 6= j, σ|H0⊗H0

= ε⊗ ε,

σ(bhp, chq) = −σ(chp, bhq) = (−1)p
α

2
, σ(bhp, bhq) = σ(chp, chq) = 0,

(5.17)

As well, we have that σ is skew-linear with respect to 〈g〉, as:
σ(gq . f, gq . f ′) = (−1)qnσ(−,−), f, f ′ ∈ Hn.(5.18)

19



Remark 5.9. The recipe for the full computation of σ is as follows: let us set V = k{b, c},
Z = 〈h〉: consider the Z-invariant map η′ : V ⊗ V → k:

η′(b, c) = α/2, η′(c, b) = −α/2, η′(b, b) = η′(c, c) = 0

and extend it to an ε-derivation η : H ⊗H → k via:

η(v1h
p, v2h

q) = η(v1, h
p · v2), v1, v2 ∈ V, p, q ∈ Z, η|Hi⊗Hj = 0, (i, j) 6= (1, 1).

Then σ arises as the exponential eη =
∑
n≥0

1
n!η
∗n; here η∗n stands for the nth power of the

convolution product ∗, namely η ∗ · · · ∗ η︸ ︷︷ ︸
n times

. The formula follows from the projection onto V ⊗n+m

of the iteration ∆(n+m−1)(bncm).

Next we investigate the maps ψ : H ⊗ U → k that satisfy (4.5), in order to compute the
corresponding twisting maps θ = θψ.

Notice right away that as one of the cocycles is trivial and both antipodes are invertible, then
any such ψ is convolution invertible, by Remark 4.5. Moreover, the bijectivity of the antipodes
implies that θψ is invertible as well. Recall the notation r(−), `(−) in (5.5). Now, arguing as in
§5.3 we use once again (5.4) to simplify (4.5) into:

ψ(f, uu′) = ψ(f(1), u
′)ψ(r(u′) . f(2), u),(5.19)

σ(f(1), f
′
(1))ψ(f(2)f

′
(2), u) = ψ(f(1), u(1))ψ(f ′(1), u(2) / r(f(1)))σ(r(u(2)) . f(2), r(u(2)) . f

′
(2)),

for every f ∈ Hs, f ∈ Ht, u ∈ Un, u′ ∈ Um, s, t, n,m ≥ 0.

We obtain similar results as in §5.3, though more restrictive; see Remark 5.11 below.

Lemma 5.10. Fix ζ ∈ k, with ζ4 = −1.
(1) Let ψ = ψζ : H ⊗ U → k be the linear map

ψ(hp, gq) = ζpq, ψ|Hi⊗Uj = 0, i+ j > 0.

Then ψ satisfies (4.5) and θζ := θψ : U ⊗Hα → Hα ⊗ U is such that

θζ(g ⊗ h) = ζ h⊗ g, θζ(g ⊗ b) = −ζ2c⊗ g, θζ(g ⊗ c) = −ζ2b⊗ g,
θζ(a⊗ h) = −ζ2h⊗ a, θζ(a⊗ b) = ζ4b⊗ a, θζ(a⊗ c) = ζ4c⊗ a.

(2) Conversely, if ψ : H ⊗ U is a linear map satisfying (4.5), then ψ = ψζ .

It follows that Hα#θζU is Aζα,0 and Lα IJ U ' Eζα,0.

Proof. The lemma is essentially analogous to Example 5.5, combined with a partial Proposition
5.8. The current setting only forces the restriction ζ4 = −1 on the map concentrated on degree
zero. We sketch a proof, following the ideas in the cases just mentioned.

(1) The first equation in (5.19) follows automatically as the corresponding (5.9) in Example
5.5. As for the second, let e, e′ ∈ k[b, c] be homogeneous elements of degree d ≥ 0, r, s ∈ Z and
u = gq ∈ U0 (if u ∈ U>0, then both sides are zero). Set f = ehr, f ′ = e′hs. Then this equation
is equivalent to

σ(f, f ′)ψ(hr+s, u) = (−1)qdψ(h2d+r, gq)ψ(h2d+s, gq)σ(f, f ′),(5.20)

namely 1 = (−1)qdζ4qd, ∀ d ∈ N; which holds when (and only if) ζ4 = −1.
As for (2), this is a consequence of the skew-linearity of σ as in (5.18). We start by imitating

the first part of Proposition 5.8. Indeed, let ψ : Hα⊗U → k satisfying (5.19). As σ|H0⊗H+H⊗H0
=

ε⊗ ε, we can follow the first lines of loc.cit. to conclude that ζ := ψ(h, g) 6= 0. As well, we get
once again that either ζ2 = 1 and ψ(b, a) = ψ(c, a) or else ψ(b, a) = ψ(c, a) = 0. For this last
case we deduce that τ = τζ as in (1), as we have observed above that the identity ζ4 = −1 is
necessary.
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Otherwise, τ(g, h) = ζ, with ζ2 = 1. We can look at equation (5.20) in this context for u = g;
which still represents the second condition in (5.19). If we set f = b, f ′ = c we obtain the
contradiction σ(b, c) = −σ(b, c). This shows (2).

In turn, recall that Q = L(U,U) ' U and Lα = L(Hα, H) is as in (5.15). In this setting we
get that Lα IJ U becomes the k-algebra Eζα,0 in Definition 5.3. �

We obtain more examples if we let α = 0, as we return to the case in the previous section.
We include them to make the twisting map explicit following the lines of this section.

Remark 5.11. If we choose α = 0, namely Hα = H is the trivial cleft object, then σ = ε is
trivial as well and equations (4.5) become (3.6); namely ψ : H⊗U → k is a H ./ U -skew-paring.
Hence we recover Examples 5.5 and 5.6, by setting ψλ := τλ and ψβ± := τβ±. Namely:

(1) The first is an unrestricted ψ = ψλ, and the corresponding θλ, from Lemma 5.10, as the
condition λ4 = −1 comes from the fact that α 6= 0 therein. As for the Galois objects, if we
set θ = θλ, then H IJ U ' H ./ U is the k-algebra Aλ0,0.

(2) As for the second, if ψ = ψβ±, then the twisting map θβ± := θψ : U ⊗H → H ⊗ U is:

θβ±(g ⊗ h) = ±h⊗ g, θβ±(g ⊗ b) = −c⊗ g, θβ±(g ⊗ c) = −b⊗ g,

θβ±(a⊗ h) = −h⊗ a, θβ±(a⊗ b) = β 1⊗ 1 + b⊗ a, θβ±(a⊗ c) = β 1⊗ 1 + c⊗ a.

The corresponding algebras H#θU naturally coincide with those in Examples 5.5 and 5.6. In
turn, if θ = θβ±, then H IJ U ' E±0,β .

5.5. Conclusions. We summarize the results in this section in the following statement. Recall
the definition of the algebras Eλα,β and Aλα,β be as in Definition 5.3. As well, recall the examples
τλ and τβ± of skew-pairings H ⊗ U → k from Examples 5.5 and 5.6, respectively.

We recall as well the Hopf cocycles σα : H ⊗ H → k as in (5.16) and the corresponding
deformations Hα in (5.14) and Lα in (5.15); in particular H0 = L0 = H. Finally, we shall
consider the maps ψζ : H ⊗ U → k as in Lemma 5.10, with ζ4 = −1.

Corollary 5.12. Let E = H ./ U be as in Definition 5.1.

(1) Let τ : H ⊗ U → k be a skew-pairing; then τ = τλ or τ = τβ±.
(a) If τ = τλ, then H

τ
./ U ' Eλ0,0 and H#θτU ' Aλ0,0.

(b) If τ = τ±β , then H
τ
./ U ' E±0,β and H#θτU ' A±0,β.

(2) Let ψ : H ⊗ U → k be a map satisfying (4.5) for σ = σα and τ = ε⊗2
U .

(a) If α 6= 0, then ψ = ψζ . We get Lα IJ U ' Eζα,0 and Hα#θζU ' A
ζ
α,0.

(b) If α = 0 then ψ is a skew-pairing τβλ . Hence Lα IJ U ' E
λ
0,β and Hα#θU ' Aλ0,β.

In the language of Definition 5.3, we could further condense the information in the examples
from this section by saying that algebras in the case β 6= 0 come from skew-pairings and the
case α 6= 0 comes from linear maps and cocycles in the cleft setting.

Proof. The first assertion in (1) is Proposition 5.8. Then (a) and (b) therein follow from the
corresponding Examples 5.5 and 5.6. In turn, (2)(a) is Lemma 5.10 and (b) is Remark 5.11. �

6. Hopf-Galois objects over a semi-direct product Hopf algebra

We specialize the results of the previous section to the semi-direct product Hopf algebra case,
i.e. when one of the actions in the matched pair is trivial. We will see that in that case, we can
make Theorem 4.2 and Theorem 4.6 much more precise, at least when we assume that all the
Galois objects over the Hopf algebra U are cleft.
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6.1. General results. The framework in this section is that of a matched pair of Hopf algebras
(H,U, ., /) with / trivial. The matched pair conditions become thatH is a left U -module algebra
together with

x(1) ⊗ x(2) . a = x(2) ⊗ x(1) . a, x ∈ U, a ∈ H.(6.1)

The resulting Hopf algebra is denoted HoU . As an algebra it is just a smash product as before,
but to stress out the Hopf structure, we will call it a semi-direct product Hopf algebra.

In view of the above condition (6.1), the most interesting semi-direct products (i.e. those with
. non trivial) will occur with U cocommutative, and hence in particular with U having the
property that any Galois object is cleft, an assumption that will be made in the main results of
the section.

We begin with a basic construction. This is certainly well-known, and the straightforward
proof is left to the reader.

Lemma 6.1. Let U be a Hopf algebra, let σ : U ⊗U → k be a 2-cocycle and let A be a U -module
algebra. Then the map

θ : σU ⊗A→ A⊗ σU x⊗ a 7→ x(1) · a⊗ x(2)

is a twisting map. The resulting algebra A#σU is called a twisted smash product. �

We need one more preparatory result. Again the proof is an immediate verification, that we
leave to the reader.

Lemma 6.2. Let E = H o U be a semi-direct product Hopf algebra, let σ : U ⊗ U → k be a
2-cocycle and let A be a U -module algebra and a right H-comodule algebra. Then the twisting
map θ : σU ⊗A→ A⊗ σU in Lemma 6.1 makes Diagram (4.1) commute (with R = σU) if and
only if the right coaction ρA : A→ A⊗H is left U -linear. �

Theorem 6.3. Let E = H o U be a semi-direct product Hopf algebra.
(1) Let σ : U ⊗ U → k be a 2-cocycle and let A be a right H-Galois object. Assume that

U acts on A as a U -module algebra and that the right coaction ρA : A → A ⊗H is left
U -linear. Then the twisted smash product A#σU is a right E-Galois object.

(2) Conversely, assuming that any right U -Galois is cleft, any right E-Galois object is iso-
morphic to a twisted smash product A#σU as above.

Proof. The first assertion is a direct consequence of Lemma 6.2 and of (the first part of) Theorem
4.2. Let J be a right E-Galois object. By the second part of Theorem 4.2, we have J ' A#θR
where A is a right H-Galois object, R is a right U -Galois object, and θ : R ⊗ A → A ⊗ R is a
twisting map making Diagram (4.1) commute. By our assumption on U , we can assume that
R = σU for some 2-cocycle σ : U ⊗ U → k. The commutativity of Diagram (4.1) implies that

θ : U ⊗A→ A⊗ U

is right U -colinear (where U ⊗ A and A ⊗ U have the comodule structure induced by the
comultiplication of U). A standard argument then shows that there is a linear map µ : U⊗A→ A
such that

θ = (µ⊗ idU ) ◦ αU⊗A
with αU⊗A(x⊗ a) = x(1) ⊗ a⊗ x(2). Thus if we denote µ(x⊗ a) = x · a, we have:

θ(x⊗ a) = x(1) · a⊗ x(2), x ∈ U, a ∈ A.

Since θ is a twisting map we get that µ defines a left U -module algebra structure on A. Then,
again, the commutativity of Diagram (4.1) ensures, by Lemma 6.2, that the right coaction
ρA : A→ A⊗H is left U -linear, and this finishes the proof. �

Theorem 6.4. Let E = H o U be a semi-direct product Hopf algebra, with U cocommutative.
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(1) Let L be a Hopf algebra, let A be an (L,H) bi-Galois object, and let σ : U ⊗U → k be a
2-cocycle. Assume that U acts on A as a U -module algebra and that the right coaction
ρA : A→ A⊗H is left U -linear, so that A#σU is right H o U -Galois object. Then the
associated left Hopf algebra F = L(A#σU,H o U) is a semi-direct Hopf algebra Lo U ,
where the action of U on L is such that the left coaction λA : A→ L⊗A is left U -linear.

(2) Conversely, any Hopf algebra F such that there exists an F − H o U bi-Galois object
satisfies F ' Lo U , for U acting on L as above.

Proof. (1) We know from Theorem 4.6 that F ' L IJ Uσ and we have to prove that the right
action J : Uσ ⊗ L→ Uσ is trivial. Recall also from Theorem 4.6 that the following commutes:

U ⊗A θ //

λU⊗A
��

A⊗ U
λA⊗U
��

U ⊗ L⊗ U ⊗A ωIJ⊗θ // L⊗ U ⊗A⊗ U
where we omit the σ subscripts since only coalgebras and comodules structures are involved in
the diagram. We thus have, for x ∈ U and a ∈ A,

ωIJ(x(1) ⊗ a(−1))⊗ x(2) · a(0) ⊗ x(3) = (x(1) · a)(−1) ⊗ x(2) ⊗ (x(1) · a)(0) ⊗ x(3)

and hence

x(1) I a(−2) ⊗ x(2) J a(−1) ⊗ x(2) · a(0) ⊗ x(3) = (x(1) · a)(−1) ⊗ x(2) ⊗ (x(1) · a)(0) ⊗ x(3).(6.2)

Applying the counit to the first factor, this gives

x(1) J a(−1) ⊗ x(2) · a(0) ⊗ x(3) = x(2) ⊗ x(1) · a⊗ x(3).

Applying the antipode of U on the right term and making it act on the middle one, gives by the
cocommutativity of U

x J a(−1) ⊗ a(0) = x⊗ a.
For l ∈ L, let

∑
i ai ⊗ bi ∈ A ⊗ A be such that l ⊗ 1 =

∑
i ai(−1) ⊗ ai(0)bi (A is left A-Galois).

We then have

x J l ⊗ 1 =
∑
i

x J ai(−1) ⊗ ai(0)bi =
∑
i

x⊗ aibi = ε(l)x⊗ 1

and this proves that the right action J is indeed trivial. Another glance at Equation 6.2 then
shows that the left coaction λA : A→ L⊗A is left U -linear, as claimed.

(2) follows from Theorem 6.3, from the first assertion, and from the uniqueness of the left
Hopf algebra associated to a right Galois object. �

In the situation with a trivial cocycle, Theorem 6.3 gives:

Corollary 6.5. Let E = H oU be a semi-direct product Hopf algebra, let A be a L-H-bi-Galois
objets and assume that U acts on A and L as U -module algebras and that the right coaction
ρA : A→ A⊗H is left U -linear and the left coaction λA : A→ L⊗A is left U -linear. Then the
smash product A#U is a Lo U -H o U -bi-Galois object.

Example 6.6. Let U = k〈t|t2 = 1〉 be the group algebra of the cyclic group C2 and consider
matrices p = (pij),q = (qij) ∈ Mn(k) with pii = 1 = qii and pijpji = 1 = qijqji for every
1 ≤ i, j ≤ n. The algebra Op,q = Op,q(GLn(k)) associated to such a pair of matrices p,q is
defined by n2 generators xij , yij , 1 ≤ i, j ≤ n and relations

xklxij = pkiqjlxijxkl, yklyij = pk,iqjlyijykl, yklxij = pikqljxijykl,

together with
∑n

k=1 xikyjk = δi,j =
∑n

k=1 xkiykj .
In this way Op := Op,p and Oq := Oq,q are Hopf algebras and Op,q is a (Op,Oq)-bi-Galois

object [8, 3.4], with comultiplication, resp. coaction, induced by the comatrix comultiplication

xij 7→
n∑
k=1

xik ⊗ xkj , yij 7→
n∑
k=1

yik ⊗ ykj .
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The antipode in these Hopf algebras is determined by S(xij) = yji, S(yij) = xij .
Then U acts as an U -module algebra on all H = Oq, A = Op,q and L = Op by switching

xij ↔ yij , and it is immediate that the involved coactions are U -linear. Hence Op,q#U is a
Op o U -Oq o U -bi-Galois object

6.2. Unrolled Hopf algebras. A particular instance where a semidirect product H oU as in
Theorem 6.3 is considered is the setting of unrolled Hopf algebras: here H is a Hopf algebra and
U = U(g), where g is a Lie algebra acting on H by k-biderivations (i.e. by endomorphisms that
are both derivations and co-derivations); see [5] for details.

We may re-brand Theorem 6.3 into the following.

Corollary 6.7. Let H and g as above and assume there is a right H-Galois object on which g
acts by k-biderivations. Let F = L(A,H) and let σ : U(g)⊗ U(g)→ k be a 2-cocycle. Then the
left Hopf algebra L(A#σU,H oU) is an unrolled Hopf algebra F oU(g). Conversely, any Hopf
algebra F for which there is an F −H o U(g) bi-Galos object is an unrolled Hopf algebra. �

We now specialize to the context of unrolled quantum sl2 in [16], where H is (a cover of) the
small quantum group uq(sl2) and U = k[X] (namely dim g = 1). As an illustration, we revisit
this situation within our setup.

We fix 1 < ` ∈ N and q ∈ k a primitive 2`th root of 1. We consider the Hopf k-algebra
H := Ūq(sl2) generated by E,F,K±1 and relations

K±1K∓1 = 1, KE = q2EK, KF = q−2FK, EF − FE =
K −K−1

q − q−1
, E` = 0, F ` = 0.

Let U = k[X] denote the polynomial algebra on a variable X (or the enveloping algebra of
the one-dimensional Lie algebra g = k) and let k[X] act on H via

X .K±1 = 0, X . E = 2E, X . F = −2F.(6.3)

This defines a semidirect product Hopf algebra H o k[X], with commutators:

[X,K] = 0, [X,E] = 2E, [X,F ] = −2F.

This algebra is denoted ŪXq (sl2) in [16] and called the unrolled quantum group of sl2.
We observe that the algebra H = Ūq(sl2) fits into a chain of quotients

Uq(sl2)� H � uq(sl2)

as H = Uq(sl2)/〈E`, F `〉 and uq(sl2) = H/〈K2` − 1〉. The cleft objects for the left and right
ends of this sequence were computed in [25, Lemma 16] and [25, Lemma 25], respectively.

The same tool developed therein, particularly [25, Theorem 8] together with its systematiza-
tion [4, §5], shows that the cleft objects for H are the algebras A(a,b,c), a, b, c ∈ k, generated by
e, f, g±1 so that

g±1g∓1 = 1, ge = q2eg, gf = q−2fg, ef − fe = ag − 1

q − q−1
g−1, e` = b, f ` = c.

The coaction ρ : A(a,b,c) → A(a,b,c) ⊗ H is as expected. Now [25, Theorem 12], also [4, §5.5],
shows that the associated left Hopf algebra L(a,b,c) := L(A(a,b,c), H) is the algebra generated by
K±1, E, F with commutation K±1K∓1 = 1, KE = q2EK, KF = q−2FK and the liftings:

EF − FE = a
K −K−1

q − q−1
, E` = b(1−K2`), F ` = c(1−K2`).

We remark that L(a,0,0) ' H when a 6= 0 and L(0,0,0) ' k[E,F ]#kZ is graded.
It is easy to check that for each λ 6= 0, the assignment Xn ⊗Xm 7→ δn,mn!λn defines a Hopf

cocycle σ = σλ : U ⊗ U → k; moreover these are all such cocycles. The associated cleft object

σU is the vector space k[X] with multiplication XrXs =
min{r,s}∑
i=0

λi
(
r
i

)(
s
i

)
i!Xr+s−2i.

The following is a direct consequence of Theorem 6.3 and Corollary 6.7.
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Example 6.8. Let us set H = Ūq(sl2) and U = k[X], as above.
(1) An H-Galois object A(a,b,c) is an U -module algebra in such a way that the coaction

ρ : A(a,b,c) → A(a,b,c) ⊗H is U -linear if and only if b = c = 0. The action is

X · g±1 = 0, X · e = 2e, X · f = −2f.

(2) The associated smash product algebra AX(a,0,0) = A(a,0,0)#σU is a right ŪXq (sl2)-Galois
object and L(AX(a,0,0), Ū

X
q (sl2)) is a semidirect product LX(a,0,0) = L(a,0,0) ok[X], for k[X]

acting on L(a,0,0) via (6.3).
It follows that LX(a,0,0) ' Ūq(sl2)X when a 6= 0.

Proof. Remember that the coinvariants AcoH
(a,b,c) = {a ∈ A : ρ(a) = a ⊗ 1} are trivial, namely

AcoH
(a,b,c) ' k. This implies that there is µ ∈ k so that X · g±1 = ±µg±1. This fact, together with

the linearity of ρ, sets X ·e = 2(µ+1)e and X ·f = −2(µ+1)f . As X ·e` = 2`(µ+1)e, similarly
for f , we get that either µ = −1 or b = c = 0. However, as X · (ef − fe) = 0, we get that µ = 0
and therefore (1) follows. (2) is Corollary 6.7. �
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