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ALGEBRAS OF ”SMALL FUNCTIONS” IN lC AND IN lCp

ALAIN ESCASSUT

Abstract. Small functions were defined in complex analysis and next in ul-
trametric analysis. Order of growth and type of growth were also defined in
complex analysis and have a similar definition in ultrametric analysis. We
compare these two notions in the same way, in lC and on a complete ultra-
metric algebraically closed field IK of characteristic 0 such as lCp. The set of
small functions with regards to an entire function f is a ring. The set of entire
functions with an order of growth strictly inferior to a number t is also a ring.
If t is the order of f , it is included in the previous one when f is regular, but
not always when f is not. If an entire function h is small with regards to an
entire function f , that does not imply that its order of growth is inferior to
this of f . All these statements are the same on lC and on IK. Moreover, in IK,
we have a specific result: if f is clean and the cotype of f is strictly superior
to the cotype of h, while the type of f is less than the type of h, then h is a
small function with regards to f .

Introduction
In complex analysis, a notion of small functions with regards to a ”big” holo-

morphic function was introduced and particularly applied to the Nevanlinna the-
ory [2], [5]. On the other hand, a notion of order of growth was also examined and
led to another kind of small function. These studies suggest symmetric studies in
ultrametric analysis: in the same way, we can define small functions with regards
to a big function, and order of growth of an entire function [1], [3], [4], [6].

Here we mean to compare the two notions for entire functions, in complex
analysis and on an ultrametric field.

Notations and definitions
We denote by Log the Neperian logarithm. We denote by IK a complete alge-

braically closed field of characteristic 0 such as lCp and by A( lC) the lC-algebra
of entire functions in lC and similarly, by A(IK) the IK-algebra of entire functions
in IK.

Let f ∈ A( lC). (resp. let f ∈ A(IK)). According to classical notations [2],
given f ∈ A( lC) and r > 0, we define M(f, r) = sup{|f(x)| | |x| = r} and given
f ∈ A(IK)) we put |f |(r) = sup{|f(x)| | |x| = r} [2].

Next, given f ∈ A( lC), as in [5], [6], we define ρ(f) = lim sup
r→+∞

Log(Log(M(f, r)))

Log(r)
,

ρ̃(f) = lim inf
r→+∞

Log(Log(M(f, r)))

Log(r)
and if 0 < ρ(f) < +∞, we put
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σ(f, r) =
Log(|f |(r)

rρ(f)
,

σ(f) = lim sup
r→+∞

σ(f, r),

σ̃(f) = lim inf
r→+∞

σ(f, r),

ρ(f) is called the order of growth, ρ̃(f) is called the lower order of growth, σ(f)
is called the type of growth, σ̃(f) is called the lower type of growth.

Given t > 0, we denote by At( lC) the set of functions h ∈ A( lC) such that
ρ(h) < t.

A function f ∈ A( lC) (resp. f ∈ A(IK)). is said to be regular if ρ̃(f) = ρ(f)
and it is said to be clean if σ̃(f) = σ(f).

Given f, h ∈ A( lC), h is called a small function with regards to f if

lim
r→+∞

Log(M(h, r))

Log(M(f, r))
= 0 and we denote by Af ( lC) the set of functions h ∈ A( lC)

that are small functions with regards to f .

The same notations and definitions apply in A(IK) just by replacing M(f, r)
by |f |(r).

Results
Theorem 1 Let f(x) ∈ A( lC) (resp. f(x) ∈ A(IK)) be such that σ̃(f) > 0.
Then f is regular.

Proof. Suppose first f(x) ∈ A( lC). Let a = σ̃(f), hence a = lim inf
r→+∞

Log(M(f, r))

rρ(f)
,

then there exists R > 0 such that
Log(M(f, r))

rρ(f)
≥ a

2
∀r > R hence

Log(M(f, r)) > a
2
rρ(f) ∀r > R and hence

Log(Log(M(f, r))

Log(r)
≥ Log(a)− Log(2)

Log(r)
+ ρ(f) ∀r ≥ R.

Thus, ρ̃(f) ≥ ρ(f), which ends the proof when f(x) ∈ A( lC). Suppose now
f(x) ∈ A(IK): we just replace M(f, r) by |f |(r) and have the same proof. □

Theorem 2 Let f(x) ∈ A( lC) (resp. f(x) ∈ A(IK)). Then Af ( lC) is a
lC-subalgebra of A( lC) (resp. Af (IK) is a IK-subalgebra of A(IK)).

Proof. Suppose first f ∈ A( lC) and let g, h ∈ Af ( lC). Consider
Log(M(g + h, r)) ≤ Log(M(g, r) +M(h, r)) ≤ Log(M(g, r)) + Log(M(r, h)).

But by hypotheses,

lim
r→+∞

Log(M(g, r))

Log(M(f, r))
= lim

r→+∞

Log(M(h, r))

Log(M(f, r))
= 0

hence g + h. ∈ Af ( lC).
Next, Log(M(gh, r)) ≤ Log(M(g, r)M(h, r)) = Log(M(g, r)) + Log(M(h, r))

hence

lim
r→+∞

Log(M(gh, r))

Log(M(f, r))
= 0
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which sows that gh ∈ Af ( lC). Consequently, Af ( lC) is a subalgebra of A( lC).
If we set in Af (IK), the proof is identical with |f |(r), |g|(r), |h|(r) instead

of M(f, r), M(g, r), M(h, r), respectively and hence Af (IK) is a subalgebra of
A(IK).

□

Theorem 3 Let t ∈ IR, t > 0. Then At( lC) is a lC-subalgebra of A( lC) (resp.
At(IK) is a IK-subalgebra of A(IK)).

Proof. Let g, h ∈ At( lC). For all r > 0, we put S(r) = max
(
Log(M(g, r)), Log(M(h, r)))

and lim supr→+∞ t− Log(S(r))
Log(r)

= 2b.

Now we have Log(Log(M(g + h, (r))) ≤ Log(Log(M(g, r) +M(h, r)))
≤ Log(Log(M(g, r)+Log(M(h, r))) ≤ Log(Log(M(g, r)))+(Log(Log(M(h, r)))

≤ Log(2S(r). Therefore

Log(Log(M(g + h, r)))

Log(r)
≤ Log(S(r) + Log(2)

Log(r)
∀r ≥ R

and hence ρ(g + h) ≤ t− b, which shows that g + h ∈ At( lC).

Next, Log(Log(M(gh, r))) ≤ Log(Log(Mg, r)M(h, r))) ≤ Log(Log(M(g, r) +
Log(M(h, r))) hence

Log(Log(M(gh, r)))

Log(r))
≤ Log(2S(r))

Log(r)
=
Log(S(r))

Log(r)
+
Log(2)

Log(r)
,

and hence there exists R′ ≥ R such that

Log(S(r))

Log(r)
+
Log(2)

Log(r)
≤ Log(S(r))

Log(r)
+
Log(2)

Log(r)
≤ t− b ∀r ≥ R′.

Consequently, gh ∈ At( lC).

The proof in IK is identical by replacing M(f, r) by |f |(r) and so on. □

Theorem 4 Let f ∈ A( lC), the lC-algebra Aρ̃(f)( lC) is included in Af ( lC),
(resp. let f ∈ A(IK), the IK-algebra Aρ̃(f)(IK) is included in Af (IK).

Proof. There exists R > 0 such that
Log(Log(M(f, r)))

Log(r)
≥ ρ̃(f) − b ∀r ≥ R.

Consequently when r ≥ R, we have

Log(Log(M(f, r)))

Log(r)
≥ ρ̃(f)− b ≥ Log(Log(M(g, r)))

Log(r)
+ b,

hence Log(Log(M(f, r))) ≥ Log(Log(M(g, r)))+bLog(r) therefore Log(M(f, r)) ≥
(Log(M(g, r))rb which leads to

Log(M(g, r))

Log(M(f, r))
≤ r−b.

This proves that g ∈ Af ( lC).
Now, if we are in IK instead of lC, we have exactly the same proof just by

replacing M(f, r) by |f |(r), M(g, r) by |g|(r) etc...
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□

Corollary 1: Let f(x) ∈ A( lC) (resp. f(x) ∈ A(IK)) be regular, then the lC-
algebra Aρ(f)( lC) is included in Af ( lC), (resp. let f ∈ A(IK), then the IK-algebra
Aρ(f)(IK) is included in Af (IK).

Corollary 2: Let f(x) ∈ A( lC) (resp. f(x) ∈ A(IK)) be such that σ̃(f) > 0.
Then Aρ(f)( lC) is a lC-subalgebra of Af ( lC) (resp. Aρ(f)(IK) is a IK-subalgebra of
Af (IK)).

Corollary 3 Let f(x) ∈ A( lC) (resp. f(x) ∈ A(IK)) be clean and such that
σ(f) > 0. Then Aρ(f)( lC) is a lC-subalgebra of Af ( lC) (resp. Aρ(f)(IK) is a
IK-subalgebra of Af (IK)).

Remark 1: Let f ∈ Aρ(f)( lC) (resp. f ∈ Aρ(f)(IK)) be not regular. Then
f does not lie always in Af ( lC) (resp. Af (IK))). Indeed, suppose that ρ(f) −
ρ̃(f) = 2b, with b > 0. We can construct a function h ∈ A( lC) such that ρ(h) ≤
ρ(f)−b and such that there exists a sequence (rn)n∈IN where limn→+∞ rn = +∞,
satisfying

Log(Log(M(f, rn)))

Log(rn)
≤ Log(Log(M(h, rn)))

Log(rn)
≤ Log(Log(M(f, rn)))

Log(rn)
− b

So, we have

Log(Log(M(f, rn))) ≤ Log(Log(M(h, rn))) ≤ Log(Log(M(f, rn)))− bLog(rn)

hence Log(M(f, rn)) ≤ Log(M(h, rn) and hence 1 ≤ Log(M(h, rn)

Log(M(f, rn)
which proves

that h /∈ Af ( lC), although h ∈ Aρ(f)( lC).

Remark 2: Let f ∈ A( lC) and g ∈ Af ( lC). Can we tell that g ∈ Aρ(f)( lC)?.
Suppose that ρ(f) = 1 and consider a function h ∈ A( lC) such that Log(M(h, r))

is of the form ω(r)Log(M(f, r)) with ω(r) ∈ [
a

Log(Log(M(f, r)))
,

b

Log(Log(M(f, r)))
]

and 0 < a < b. Then

Log(Log(M(h, r)))

Log(Log(M(f, r)))
=
Log(ω(r)) + Log(Log(M(f, r)))

Log(Log(M(f, r)))
=

Log(ω(r))

Log(Log(M(f, r)))
+1

and that belongs to[Log(a)− Log(Log(Log(M(f, r))))

Log(Log(M(f, r))))
+1 ,

Log(b)− Log(Log(Log(M(f, r)))

Log(Log(M(f, r)))
+1

]
,

therefore

lim
r→+∞

Log(Log(M(h, r)))

Log(Log(M(f, r)))
= 1,

and hence ρ(h) = ρ(f).
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On the other hand, by definition,

Log(M(h, r))

Log(M(f, r))
= ω(r) ∈

[ a

Log(Log(M(f, r)))
,

b

Log(Log(M(f, r)))

]
,

hence lim
r→+∞

Log(M(h, r))

Log(M(f, r))
= 0 hence h belongs to Af ( lC).

The same reasoning works in IK and is easier because we can more easily
construct a function h ∈ Af (IK) such that Log(|h|(r)) = ω(r)|f |(r), just by
choosing the. zeros of h among the zeros of f , .

In order to prove the following Theorem 5, we must recall some notations and
this Theorem A which only concern analytic functions in IK [3], [4].

Notations: Let f ∈ A(IK). and let d(0, r) be the disk of IK {x ∈ IK | |x| ≤ r}.
We denote by s(r, f) the number of zeros of f in d(0, r) each counted with its
multiplicity.

Assuming that 0 < ρ(f) < +∞, here we put ψ(f, r) =
s(r, f)

rρ(f)
, ψ(f) = lim sup

r→+∞

s(r, f)

rρ(f)
,

which is called the cotype of f and we put ψ̃(f) = lim inf
r→+∞

s(r, f)

rρ(f)
.

Theorem A: Let f ∈ A(IK) be such that 0 < ρ(f) < +∞. Then σ(f) < +∞
if anf only if ψ(f) < +∞. Suppose that these hypotheses are satisfied. Then

ρ(f)σ(f) ≤ ψ(f) ≤ ρ(f)
(
eσ(f)− σ̃(f)

)
and

ρ(f)
(
σ̃(f)− σ(f)

e

)
≤ ψ̃(f) ≤ ρ(f)σ̃(f).

Further, the hypotheses σ(f) = σ̃(f) and ψ(f) = ψ̃(f) are equivalent and if they
are satisfied, then ψ(f) = ρ(f)σ(f).

Theorem 5 Let f ∈ A(IK) be clean and let h ∈ A(IK) be such that ψ(h) <
ψ(f) and σ(h) ≥ σ(f). Then f is regular and h ∈ Af (IK).

Proof. Since f is clean, by Theorem A, we have ψ(f) = ρ(f)σ(f) > ψ(h) ≥
ρ(h)σ(h), hence ρ(f) > ρ(h). Moreover, we notice that ρ(f)σ(f) > 0, hence
σ(f) > 0. But since f is clean, σ(f) = σ̃(f) and hence by Theorem 1, f is
regular. Finally, from the hypothesis, we obtain ρ(h) < ρ(f), therefore. by
Corollary 3, h ∈ Af (IK). □
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