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COHOMOLOGICAL DIMENSION OF BRAIDED HOPF ALGEBRAS
JULIEN BICHON AND THI HOA EMILIE NGUYEN

ABSTRACT. We show that for a braided Hopf algebra in the category of comodules over
a cosemisimple coquasitriangular Hopf algebra, the Hochschild cohomological dimension,
the left and right global dimensions and the projective dimensions of the trivial left and
right module all coincide. We also provide convenient criteria for smoothness and the
twisted Calabi-Yau property for such braided Hopf algebras (without the cosemisimplic-
ity assumption on H), in terms of properties of the trivial module. These generalize a
well-known result in the case of ordinary Hopf algebras. As an illustration, we study the
case of the coordinate algebra on the two-parameter braided quantum group SLs.

1. INTRODUCTION

The global dimension is an important homological invariant of an algebra, which most
often serves as a good analogue of the dimension of a smooth affine algebraic variety.
However, there are some examples where the global dimension does not match with geo-
metric intuition. Consider for example the first Weyl algebra A;(k) = k(z,y | xy—yz = 1).
If the base field k has characteristic zero, then gldim(A;(k)) =1 [29], while A;(k), being
a filtered deformation of the polynomial algebra k[z,y], should be an object of dimension
2. This often leads us to consider the Hochschild cohomological dimension rather than the
global dimension. Recall that for an algebra A, the Hochschild cohomological dimension
cd(A) is defined to be the projective dimension of A in the category of A-bimodules. The
(left or right) global dimension of A is always smaller than cd(A), while they coincide in
the important case of the coordinate algebra on a smooth affine variety, and for the Weyl
algebra one has cd(A;(k)) = 2, as expected [30)].

It is thus a natural and important question to determine classes of algebras for which
the global dimension and the Hochschild cohomological dimension coincide. Among such
classes that are known, let us mention two important ones.

(1) If A is a graded connected algebra, we have cd(A) = gldim(A), and these coincide
with the projective dimensions of the trivial left and right A-modules. See [5].

(2) If A is a Hopf algebra, we have cd(A) = gldim(A), and these coincide with the
projective dimensions of the trivial left and right A-modules. This follows from [16,
Proposition 5.6], see the appendix in [33].

In this paper we enlarge this list by generalizing the Hopf algebra case to a class of
braided Hopf algebras. Recall [25] that a braided Hopf algebra is a Hopf algebra in a
braided category. Braided Hopf algebras generalize ordinary Hopf algebras, providing a
wider theory of quantum symmetries. They are also very useful, through the bosonization
construction [20,28], in studying certain classes of usual Hopf algebras themselves, see [20].

The primary objective in this paper is to extend a range of homological properties
observed in ordinary Hopf algebras to the case of braided Hopf algebras. In particular,
our main result (Theorem 3.5) is that if A is a Hopf algebra in the braided category of
comodules over a cosemisimple coquasitriangular Hopf algebra H, then we have cd(A) =
l.gldim(A) =r.gldim(A), and these coincide with the projective dimensions of the trivial

left and right A-modules. Our strategy is to extend [16, Proposition 5.6] to a general
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braided context (Corollary 3.4) and then to use comparison results for various projective
dimensions in the setting of separable functors [27].

We then study some more subtle homological properties for braided Hopf algebras, such
as smoothness (an adequate analogue of regularity for noncommutative algebras) and the
twisted Calabi-Yau property (an analogue of Poincaré duality in Hochschild cohomology).
For a Hopf algebra A in the braided category of comodules over a coquasitriangular Hopf
algebra H (no cosemisimplicity assumption on H is needed here), we provide convenient
criteria for smoothness and the twisted Calabi-Yau property, in terms of properties of
the trivial module, see Theorem 4.3 and Theorem 5.2 respectively. Again this generalizes
known results [3] for ordinary Hopf algebras.

We wish to emphasize that while there exist appropriate (co)homology theories for
braided Hopf algebras [3,4, 19] to which some of our considerations apply, our main aim
in this paper is not to study braided Hopf algebras from this internal prespective, but
rather to use the additional structure to study the homological properties of the underlying
algebras.

We illustrate our results by studying an interesting example of a braided Hopf algebra,
the coordinate algebra on the two-parameter braided quantum group SL,. The corre-
sponding algebra 0, ,(SLa(k)), depending on parameters p,q € k*, coincides when p = ¢
with the usual coordinate Hopf algebra on quantum SL,, and in general is a Hopf algebra
in the category of Z-graded vector space endowed with an appropriate braiding. We show
that ¢cd(0,,(SLa(k))) =3 and that &), ,(SLa(k)) is a twisted Calabi-Yau algebra.

A summary of this paper is as follows. Section 2 consists of preliminaries. In Section 3,
we study the relations between categories of modules and bimodules over a braided Hopf
algebra, and then provide the proof of Theorem 3.5. In Section 4 we discuss finiteness
conditions for modules in a tensor category and prove our smoothness criterion (Theorem
4.3). In Section 5 we study the twisted Calabi-Yau property for braided Hopf algebras,
and prove Theorem 5.2. Section 6 provides illustrations of our results on the example of
the coordinate algebra on braided quantum SLs.

Acknowledgements. The second author thanks Rachel Taillefer for her comments on
the proof of Proposition 6.7, and for continuous help and support. She also thanks Julian
Le Clainche for his useful suggestions during discussions.

2. PRELIMINARIES

This section, which also aims at fixing some notation, consists of reminders on monoidal
categories and braided Hopf algebras, together with some preliminary material to be
used in the proof of our comparison of cohomological dimensions for a braided Hopf
algebra. Standard references we use are [22] for ordinary Hopf algebra theory, [10, 14, 20]
for monoidal categories and braided Hopf algebras, and [34] for homological algebra. We
work over a fixed base field k.

2.1. Monoidal and braided monoidal categories. Recall that a monoidal category
(C,®,1,a,l,r) consists of a category C endowed with the following components:

(1) a bifunctor ® : C xC - C, called the tensor product;

(2) an object I, called the unit of the monoidal category;

(3) three natural isomorphisms expressing properties of the tensor product operation:
e a natural isomorphism

axyvz: XY e®Z)~(X®Y)eZ
for all objects X,Y, Z in C, called the associativity constraint;
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e two natural isomorphisms
Ix:I®X~X and ry: Xel=~X.

for any object X of C, called the left and right unit constraints;

satisfying the familiar pentagon and triangle axioms, see [10, Definition 1.1].

The monoidal category C = (C,®,1,a,l,r) is said to be strict if the associativity and
unit constraints a,l,r all are identities of the category.

In this paper the monoidal categories of interest are all categories of vector spaces
endowed with additional structures (most notably categories of comodules over a Hopf
algebra) and with the associativity and unit constraints of vector spaces. In this case
there is no danger in suppressing the associativity and unit constraints, and we follow
this convention, hence considering our monoidal categories as strict monoidal categories.
More generally Mac Lane’s coherence theorem (see e.g. [10, Section 1.5]) states that every
monoidal category is monoidally equivalent to a strict monoidal category, and this justifies
further that we only consider strict monoidal categories.

Working in strict monoidal categories allows us to use the familiar graphical calculus
in monoidal categories: for objects X,Y in C, the identity morphism idy : X - X and a
morphism f: X — Y are denoted by

X X
I and @
X Y

and morphisms in C are equal precisely when the corresponding graphical diagrams are
the same up to isotopy.

A braided monoidal category is a monoidal category endowed with a braiding, i.e a
family of natural isomorphisms

CX7YZX®Y—>Y®X
such that for all objects X,Y, Z in C, we have
cxvez = ([dy ®cx z)o(cxy®idyz), cxevz = (cxz®idy)o(idy ®cyz), cx=idy=crx

A braided monoidal category is said to be symmetric when we have cxy = ¢j'y for any
objects X,Y in C. 7

For objects X and Y of a braided monoidal category C , we denote the braiding iso-
morphism cyy and its inverse C}l,y respectively by

XY Y X
and
Y X XY
The braiding axioms then are
XY Z XY Z
(1) CXYeZ = P and CXQY,Z = ;@i
Y 7 X Z XY

We will use as well the reverse category of a monoidal category: if C is a monoidal
category, then C™" is the monoidal category endowed with tensor product @ defined by
Xe*eY =Y ®X. If C is braided, then so is C**¥, with the braiding defined by ¢y y = ¢y x.
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2.2. Coquasitriangular Hopf algebras. Basic examples of symmetric monoidal cate-
gories are the category ;M of k-vector spaces over our base field k, with the (symmetric)
braiding given by the flip operators, and more generally the category of comodules over
a commutative bialgebra. In this subsection, we recall the structure that produces a
braiding on the category of comodules over an arbitrary bialgebra.

A coquasitriangular bialgebra is a bialgebra H equipped with a convolution-invertible
linear form r: H ® H — k (called a universal r-form) such that, for any z,y,z € H,

(2) yz =r(x1), Y1) T@) Yt (T3), Ys))

(3) r(zy,z) =r(z, z0))r(y, 22)), r(2,92) =r(201), 2)r(22),9)

A coquasitriangular Hopf algebra is a Hopf algebra which is a coquasitriangular bialgebra.
Let H be a coquasitriangular bialgebra with universal r-form r. For right H-comodules
V and W, the linear map ry : VoW — W ® V defined by

(4) I'va(’U ® w) = r(v(l),w(l))w(o) ® V(0)

is an H-colinear isomorphism, and it is an immediate verification that the axioms of an -
form ensure that this procedure defines a braiding on M# | which thus becomes a braided
category, which might be denoted by M#r if we want to remember the braided structure.

Example 2.1. Let I' be an abelian group. Then the universal r-forms on the group
algebra kI correspond to the bicharacters I' x I' » k*, i.e the maps ¢ such that

(ay, z) = (e, 2)¢(y, 2); D(2,y2) = P(e,y)d(e,z)  for ,y,z el

Let us explicitly describe the braiding associated with a such a bicharacter . For this,
recall first that M*T identifies with the category of I'-graded vector spaces as follows: if
V = (V,a) is a right kI'-comodule, put, for g € I', V;, = {v € V | a(v) = v ® g}. Then
V = @yer Vy defines a I'-grading on V. Conversely, if V' = @ Vy is I'-graded, putting
a(v) =v® g for v eV, defines a structure of kI'-comodule on V.

Given a bicharacter 1, the category M*' is braided with braiding:

Cy,w VelW —WeV
veweV,@W,— ¢(g,h)wewv

When I' = Z = (z) is the infinite cyclic group with a fixed generator z, a bicharacter is
uniquely determined by & =(z,z). We denote by M*%¢ the resulting braided category.

2.3. Algebras, modules, coalgebras and comodules in monoidal categories. The
familiar notions of algebras, modules, coalgebras and comodules in vector spaces categories
have direct generalizations in monoidal categories.

Let C be a monoidal category. Recall that an algebra in C is a triple (A, m4,14), where
Aeob(C),and my: A® A— A and n4: I > A are morphisms such that

my o (mA ® idA) =My © (idA ®mA), my o (77A ® idA) =idg=myo (idA ®77A)-
Denoting the multiplication and the unit by

A A

ma= N and -

A

SN
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the above associativity and unit axioms read

A A A AAA A A
= and'\/:I:\/"
A A A

(5) A A

If A, B are algebras in the monoidal category C, an algebra morphism f: A - B is a
morphism in C such that

foma=mpo(f®f) and fona=ng
Graphically, this means

44 A A I I
g - Y57
A
B B A
Let A be an algebra in C. A left A-module M (in C) is an object M in C together with
a morphism p!, : A® M — M, denoted by

A M

=]
M

such that
A A M A A M
My
P RTLg
M M
(6) M M

The category of left A-modules (in C) is denoted 4C, with morphisms the left A-linear
morphisms, defined just as in the classical case. The category C4 of right A-modules is
defined similarly.

An A-bimodule in C is an object M in C which is simultaneously a left and right
A-module and such that

A M A A M A

oL

(7) M M

The category of A-bimodules in C is denoted ACy.

Example 2.2. Let H be a bialgebra. An algebra in the category of right H-comodules
MM is an H-comodule algebra, that is, an ordinary k-algebra A endowed with an H-
comodule structure such that the coaction map A - A® H is an algebra map in the usual
sense. The category 4(MH) of left A-modules in M is the usual category of relative
Hopf modules 4 M# whose objects are vector spaces V' endowed simultaneously with a
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right H-comodule and a left A-module structure and such that for any a € A and v e V,
we have

(a.v)(o) ® (a.v)m = a(0)-V0) ® a(1)V(1)

where we have used Sweedler’s notation in the standard way. Similarly, the categories
(MH) 4 and 4(MH) 4 are the familiar categories M and 4 MH respectively.

The following result is the straightforward adaptation to monoidal categories of the
familiar free module construction, see [3, Proposition 1.6] for example.

Proposition 2.3. Let C be a monoidal category, let A be an algebra in C, and let V' be
an object in C.

(1) Left multiplication endows A®V with a structure of left A-module. This construc-
tion defines a functor C - 4C which is left adjoint to the forgetful functor 4C — C.
A left A-module isomorphic to A®V as above is said to be free.

(2) Right multiplication endows V ® A with a structure of right A-module. This con-
struction defines a functor C — C4 which is left adjoint to the forgetful functor
Ca = C. A right A-module isomorphic to V ® A as above is said to be free.

(8) Left and right multiplications endow A ® V ® A with a structure of A-bimodule.
This construction defines a functor C - 4Ca which is left adjoint to the forgetful
functor 4C4 - C. An A-bimodule isomorphic to A®V ® A as above is said to be
free.

Proof. The proof is similar to the usual one in vector spaces categories. For example, if
X is a left A-module, the map

®:Hom ,c(A®V,X) — Home(V, X)
fr—fe(na®idy)
is an isomorphism with inverse
U : Home(V, X)) — Hom ,c(A® V, X)
g iy o (id4 ®9). O

As in the ordinary case of vector spaces, the definition of a coalgebra in a monoidal
category is dual that of an algebra. More precisely, a coalgebra in the monoidal category
C is a triple (C,A¢,e¢), where Ag : C' - C® C and e¢ : C' — [ are morphisms, denoted
by

C C
N and 4
c C I
satisfying the coassociativity and counit conditions:
C C C o C
N wy-in
c ¢ ¢
(8) c C C c C C

The definition of a coalgebra morphism and of the categories of right or left comodules
over a coalgebra in C (denoted C¢ and ©C respectively) are straightforward adaptations
of the ordinary ones, and we omit them.
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Algebras or coalgebras in a monoidal category are algebras or coalgebras in the reverse
category C*" as well, and there are obvious category isomorphisms

Ca= aC™, AC=CYFY, aCx= ACKY.

2.4. Hopf algebras in braided monoidal categories (braided Hopf algebras).
There is no natural way to formulate the definition of a bialgebra in an arbitrary monoidal
category, but this becomes possible in the presence of a braiding, thanks to the following
construction.

Let C = (C,c) be a braided monoidal category, and let A, B be algebras in C. The
braiding of C gives rise to an algebra structure on the object A ® B with multiplication
given by

ABAB

(9) A B

and unit 74 ®npg. The resulting algebra in C is denoted by A®. B and is called the braided
tensor product algebra of A and B.

The notion of bialgebra in a braided category is then defined as follows: a bialgebra H =
(H,mpg,nu,An,eg) in a braided category C is an algebra (H,my,ny) and a coalgebra
(H,Ap,eg) in C such that Ay : H > H®. H and ey : H — I are algebra morphisms;
that is

H H 1 H

H I HH E I
= ) >\ :II and i ZII ) I :I .
HH HH I T I
(10) H H HH I

A Hopf algebra in a braided category C is a braided biagebra H in C such that there exists
a morphism S : H - H in C (called the antipode of H) with S *idy =ngoeg =idy *S5,
where * is the convolution product (see e.g. [10, Lemma 2.57]), which, in diagrammatic

notation, means that S satisfies
H H
(11) H H

A braided Hopf algebra is a Hopf algebra in an appropriate braided category.

Given an algebra A in a braided category C, the opposite algebra A°P is the algebra
having A as underlying object, multiplication defined by mer = m4 0 c4 4 and the same
unit as A. In case C is a category of ordinary vector spaces, the opposite algebra A°P
above should not be confused with the usual opposite algebra, and in that case A° might
be denoted A°P€ to highlight the dependency on the braiding c. One defines similarly the
co-opposite coalgebra C°P of a coalgebra C in C. The antipode of a Hopf algebra H in C
is then an algebra map H — H°P and a coalgebra map H — HP (see e.g. [10, Proposition

b o
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2.65]), which, in diagrammatic notation, means

HH HH
L
i. = %7 @:L 9
H
(12) H H "
H H I i
SEEE B S
(13) HH wn ! '

If A is a Hopf algebra in a braided category C and M is an object in C, then £ ® idy; :
A® M — M defines a left A-module structure on M, and we denote by .M the resulting
left A-module. If M is a right A-module, then .M, with the left A-module structure
above, becomes an A-bimodule. Similarly, we construct the right A-module M. and the
A-bimodule M, if M is a left A module. For the unit object I of C, we obtain in this way
the trivial left and right A-modules . and I..

2.5. Abelian categories and projective dimensions. In this paper, the abelian cat-
egories we consider are abelian k-linear categories, which means that our categories are
abelian categories in the usual sense and moreover each Hom set is endowed with a
structure of vector space over k, and the composition operation is k-bilinear. The basic
examples of course are module or bimodule categories 4 M, M4 or 4 M 4 over a k-algebra
A.

Let C be an abelian k-linear category. If C has enough projectives, which as usual
means that for every object X of C there is an epimorphism P - X with P projective,
then every object X in C has a projective resolution and the projective dimension of X,
denoted by pds(X), is defined to be the smallest possible length of a projective resolution
of X. An alternative description of pd.(X) is given by the formula

pde(X) =sup{n eN|3Y eob(C),Ext;(X,Y) #{0}} e Nu{oo}
= inf{n e N| Extz*'(X,Y) =0, VY €ob(C)}

where Exts(—, —) are the usual Yoneda Ext-spaces of the abelian category C, which can be
computed using projective resolutions of the first factor when C has enough projectives,
and using injective resolutions of the second factor when C has enough injectives.

The projective dimension of C (still assuming that C has enough projectives) is then
defined by

pd(C) = sup{pde(M), M €ob(C)}.

For a k-algebra A, the projective dimension of a left (resp. right) A-module M is
pds(M) = pd (M) (resp. pdaer(M) = pdy,(M)), and the left and right global di-
mensions of A are respectively defined by

l.gldim(A) = pd(aM), r.gldim(A) = pd(My).

When 1. gldim(A) and r. gldim(A) coincide, the common quantity is denoted gldim(A),
and is called the global dimension of A. Finally, the Hochschild cohomological dimension
of A is defined by

cd(A) = pd 01, (A).
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It is well known (see e.g. [13, Proposition IX.7.6]) that
1. gldim(A) < cd(A), r.gldim(A) <cd(A).
We record, for future use, a well-known useful result (see e.g. [1]).

Proposition 2.4. Let C and D be k-linear abelian categories, and let F' : C - D and
G :D — C be some k-linear exact functors with G right adjoint to F.
(1) If P € ob(C) is projective, then F(P) € ob(D) is also projective. If C has enough
projectives and furthermore G is faithful, then D also has enough projectives.
(2) If P € ob(D) is injective, then G(P) € ob(C) is also injective. If D has enough
injectives and furthermore F' is faithful, then C also has enough injectives.
(8) Suppose that C and D have enough projectives or injectives. Then we have natural
1somorphisms
Exth(F(X),V) ~Extz(X,G(V))
for any X € ob(C) and V € ob(D). In particular, if C and D have enough projec-
tives, then we have pdp(F (X)) < pde(X).

In order that the inequality of projective dimensions in the above result becomes an
equality, we need one more assumption on the functor F'. Let C,D be categories and let
F:C - D be a functor. Then F induces a natural transformation

P Home(-, -) — Homp (F(=), F(-)).
We say that F' is a separable functor [27] if there is natural transformation
M__: Homp (F(—), F(—)) — Home(—, -)

such that M__oP__ = 1gom.(-,-)-
The following result is certainly well known, for a proof we refer the reader to the
obvious adaptation of [, Proposition 14].

Proposition 2.5. Let C and D be k-linear abelian categories having enough projective
objects, and let F' : C - D be a k-linear functor. Assume that F is exact, preserves
projective objects and is separable. Then for any object X in C, we have pd.(X) =

pdp (F(X)).

The main examples of separable functors we consider in this paper are provided by the
following result from [11].

Proposition 2.6. Let H be a cosemisimple Hopf algebra and let A be a right H-comodule
algebra. The forgetful functors ,4MH" - 4 M and M — M4 are separable.

Proof. These are left-right variations on [1 1, Corollary 3.5] or [12, Corollary 24], based on
Rafael’s separability criterion for adjoint functors, see also the direct approach using the
Haar integral in [0, Lemma 20]. O

2.6. Abelian monoidal categories. An abelian k-linear monoidal category is a k-linear
abelian category C endowed with a monoidal category structure such that the bifunctor
—-®—:CxC — C is k-bilinear and such that for any object X in C, the functors X®-:C - C
and - ® X : C - C are exact.

An abelian k-linear braided category is an abelian k-linear monoidal category endowed
with a braiding (and hence is in particular a braided monoidal category).

Notice that exactness of the above tensor product functors in the definition of an abelian
k-linear monoidal category is not always assumed in the literature, but it is convenient,
in order to simplify the terminology, to include these conditions as part of our axioms.
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Proposition 2.7. Let C be an abelian k-linear monoidal category, and let A be an algebra
in C. The categories sC, Ca and 4C are all abelian k-linear, and have enough projective
objects if C has.

Proof. That 4C, C4 and 4C4 are all abelian is proved for example in [2], and that these
categories have enough projective objects if C has follows from the combination of Propo-
sition 2.3 and of Proposition 2.4. O

We now specialize to the abelian k-linear monoidal category M with H a bialgebra.
Let A be a right H-comodule algebra. Then (see [12] or [(]) the forgetful functor Qy :
AMI — 4 M 4 has a right adjoint

R: aMy — aMI
V—VoH

where V ©® H is V ® H as vector space, its H-bimodule structure is given by
r-(v®a) =z vermh, (vea) -x=v-x0)®hrq)

and its H-comodule structure is induced by the comultiplication of H. Similarly, if V' is a
left (resp. right) A-module, when endowing V' ® H with only the above left (resp. right)
A-module structure, we denote it by V'@ H (resp. V& H), and obtain an object in 4 M
(resp. in MH), and this defines a functor 4M — 4 MH (resp. My — MH) which is
right adjoint to the forgetful functor Qp : aAMH7 — 4 M (vesp. Qp : M — M,).

Proposition 2.8. Let H be a bialgebra and let A be a right H-comodule algebra. Then
the categories aMH, MI and 4 M are all abelian k-linear categories having enough
injectives, and have enough projectives if MH has. We have, for any object V in o MH
(resp. in AMH resp. in M) and any A-bimodule (resp. any left A-module, resp. any
right A-module) W, natural isomorphisms

(14) Ext’ v, (Qu(V), W) :Ext:Mg(V,WQH)
(15) (resp. Ext’ p(Qu(V), W) 2 Ext’ v u(V,Wa H))
(16) (resp. Ext}, (Qu(V), W) ~ Extj\/lg(\/, W& H)).

In particular, if H is a cosemisimple Hopf algebra, the categories aMH, M and 4 MH
are abelian k-linear categories having enough projectives, and we have for any object V' in

AMH (resp. in M),
pd, g (V) =pd, m(V), (resp. def(V) =pda, (V).

Proof. Our categories are abelian by Proposition 2.7, and the remaining statements follow,
by Proposition 2.4, from the existence of previous adjoint functors and the fact that the
categories 4MH 4 MH and M have enough injectives, and from Proposition 2.5. O

3. MODULES AND BIMODULES OVER A BRAIDED HOPF ALGEBRA AND PROJECTIVE
DIMENSIONS

In this section we prove our result on the comparison of the global dimension and
the Hochschild cohomological dimension for some braided Hopf algebras. We begin by
examining the relations between modules and bimodules over a braided Hopf algebra.

Proposition 3.1. Let C be a braided category and let A be a bialgebra in C. Let V be
a left A-module in C. Endow V ® A with the right A-module structure defined by right
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multiplication. Then the morphism

MlV@A =
%4 A

provides V ® A with a left A-module structure, hence with an A-bimodule structure in C.
Denoting the resulting A-bimodule by V ® A, this construction yields a functor

L=—A:AC—> ACA
V—VrA.

Proof. We verify that uﬁ,® 4 is indeed a left A-module structure on V' ® A, which means,
NIV®A o(ma®idyga) = :ulV®A o (ida ®N%/®A) :

AAV A A A VA A A VA

J
rj o) 00
\% A
V A V A
A A VA A A VA
J J
S
®) _ .
V A V A

and ,ulv®A o (77A ® idV®A) =idyga :

A VA A VA
J J VA
(10)
Syl o
Vv A V A
Thus, we need only check the compatility of the two structures in order to conclude that

V & A is a well-defined A-bimodule and we leave this verification to the reader. Now, let
f eHom,c(V,W), we see that f ®ids € Hom (V&R A, W R A):

A VA A VA A VA

LAt
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Similarly, we also observe that f®id 4 is a morphism in C4. Consequently, it is a morphism

in 4Cy4, implying that L defines a functor. n
The following is [20, Proposition 3.7.1], we include the proof for the sake of complete-
ness.

Proposition 3.2. Let C be a braided category and A be a Hopf algebra in C. Let M be
an A-bimodule in C, the morphism

endows M with a left A-module structure in C. We then denote by M the resulting left
A-module. This construction defines a functor

RZACA—>AC
M M

Proof. We begin by showing that ,ulﬁo (ma®idsp) = ,ulﬁo (ida ®u§\7) :

AAM A AM A A M
M
i M

A A M A A M A A M
S
M M M



COHOMOLOGICAL DIMENSION OF BRAIDED HOPF ALGEBRAS 13

A A M A A M

|

—~
IR=2)
~—

M
M
M M
M

M
Then, (10) (12) _ | thatis, pboo (na ®idyy) = idyy.

M

M
M M

This finishes our proof. U

Proposition 3.3. Let C be a braided category and A be a Hopf algebra in C. Then the
functor R: ACa —> AC 1is right adjoint to the functor L=-®A: 4C — 4Cax.

Proof. Let V e 4C and M € 4C4. Consider
(V'@ A, M) — Hom ,c(V, 3T
fr—f=fo(idy®na).

We verify that f is well defined as a morphism in 4C, which means “l’z\Zo (ids ® f ) = fo U

q)V,M : HOI’HACA

AV AV AV AV
M
M M M
AV A V AV
AV
(8) (11)
M
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In the above computation, the equality (*) arises from the fact that f is a morphism in
4Ca. We also have the map
Wy Hom o (V, M) — Hom ¢, (V = A, M)
gr— g =y o (g®ida).
where we check similarly that g is a morphism in 4C4. It is then straightforward to check

that ®y.ps and Wy )y, are inverse natural isomorphims, and we conclude that the functor
R is right adjoint to L = -x A. O

We obtain the following generalization of [16, Proposition 5.6].

Corollary 3.4. Let C be an abelian k-linear braided category with enough projectives and
let A be a Hopf algebra in C. There exists a natural isomorphism

Ext*c (A, M) ~ Ext* (.1, M).

ACa

and we have pd o, (A) =pd (1) = pde, (Lc).

Proof. The categories 4C4 and 4C are abelian k-linear by Proposition 2.7, the adjoint
functors in Proposition 3.3 are exact, and we have clearly .I®mA = A. Hence, the announced
natural isomorphisms are obtained from Proposition 2.4, and we get pd ., (A4) <pd (1)
as well.

For a left A-module M, consider the A-bimodule M, as in the end of Subsection 2.4.
Then the morphism M — M. which is the identity in C is an isomorphism in 4C, because

A=

Thus Z\A/[:. ~ M in 4C and we obtain
Ext’c, (A, M.) = Ext* (1, M.) ~ Ext* (.1, M).

ACa
Hence pd o(I) < pd,c,(A), and it follows that pd, ., (A) = pd (I). The equality
pde, (1) = pd ¢, (A) is obtained by applying the left case to the reverse category Crv. [

Theorem 3.5. Let A be a Hopf algebra in the braided category MH of comodules over
a coquasitriangular cosemisimple Hopf algebra H. Then we have

cd(A) =1L gldim(A) =r.gldim(A) = pd4(ck) = pd 4op (k2).

Proof. We have
(1) pd, pz (A) = pd, g (k) by Corollary 3.4;
(2) pd s (k) = pd, o (k) by Proposition 2.8;
(3) pd, i, (A) <pd, g (A) by [0, Corollary 11] (which follows from Proposition 2.4,
because the (exact) forgetful functor oM — 4 M, has an exact right adjoint).

Hence we obtain
Lgldim(A) <cd(A) = pd, v, (A) <pd, pa (A) = pd, pem (k) = pd, (k) <1 gldim(A)

which gives the announced equality for left global dimension, and the one for right global
dimension is obtained similarly. O
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Remark 3.6. Let A be a Hopf algebra in the braided category M of comodules over a
coquasitriangular Hopf algebra H. Then for an object M € 4M¥ . the isomorphisms

Ext’ g (A, M) = Ext’ (k. M)

in Corollary 3.4 are valid without assuming that M*# has enough projectives. This fol-
lows from Proposition 3.3, Proposition 2.8 (the categories 4MH and 4 M have enough
injectives) and Proposition 2.4. In particular, combining this with Proposition 2.8 gives,
for any A-bimodule M, the following description for Hochshild cohomology:

H*(A, M) = Ext’, g, (A, M) = Bxt” i (A, M © H)
~ EXt:MH(ek, M@ H )

4. FINITENESS CONDITIONS AND SMOOTHNESS

In this section we use the previous constructions to obtain a convenient smoothness
criterion for a Hopf algebra in the braided category of comodules over a coquasitriangular
Hopf algebra.

Let us first recall the following standard finiteness condition [9] on a module over an
ordinary k-algebra A: aleft A-module M is said to be of type FP, if it admits a projective
resolution by finitely generated and projective A-modules, and is said to be of type FP
if it admits a finite projective resolution by finitely generated A-modules, which means
that there is an exact sequence of A-modules

O—>Pn—)Pn,1—>"'P2—>P1—>P0—)M—>O

where each P, is a finitely generated and projective A-module. A similar definition holds
for right modules and for bimodules, and an algebra A is said to be smooth if A is of type
FP as an A-bimodule.

To adapt the definition of a module of type FP to a more general monoidal category
C, recall first that an object V in C is said to have a left dual if there exists an object V*
together with morphisms e: V*®@V - [ and 6 : I -V ® V* such that

(ldv ®6) o (5 ® ldv) = idv, (6 ® idv*) o (idv* ®5) =idy«
When C = ;. M, a vector space V has a left dual if and only if it is finite dimensional.

Definition 4.1. Let C be an abelian k-linear monoidal category and let A be an algebra
in C.

(1) A left A-module M is said to be relative projective if M is isomorphic, as an
A-module, to a direct summand of a free A-module AQ V.

(2) A left A-module M is said to be finite relative projective if M is isomorphic, as
an A-module, to a direct summand of a free A-module A ® V', with V' an object
of C having a left dual.

(3) A left A-module M is said to be of type FP,, if it has a resolution by finite relative
projective A-modules.

(4) A left A-module M is said to be of type FP if it has a finite resolution by finite
relative projectives, in the sense that there exists an exact sequence of A-modules

0-FP,-FP, 1> P->P->F,->M-0
where for each i, the A-module P; is finite relative projective.

Of course similar definitions hold for right A-modules and for A-bimodules.
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Proposition 4.2. Let C be a braided category and let A be an algebra in C. The functor
L=-®A: 4C— 4C4 transforms free A-modules into free A-bimodules. If moreover C
is an abelian k-linear braided category, then the functor L transforms objects that are of
type FP (resp of type FP ) in AC into objects that are of type FP (resp. of type FP4, ) in
ACx.

Proof. One has to prove that for an object V of C, the A-bimodule (A®V )= A is isomorphic

to the free A-bimodule A® V' ® A. Consider the linear map f: A9 V@A — (A®V)xA
defined by

A VA
AV A
We first check that fo (ma ®idyga) = M(A®V)®A o(idg®f),
A AV A A AV A A A VA
AV A ( (
A V A

So f is a morphism in 4C and it is not difficult to verify that f is a morphism in C4. Thus
f is indeed a morphism in 4C4. Moreover f is an isomorphism with inverse

A VA

AV A

This means the functor L transforms free A-modules into free A-bimodules, and the
remaining statements follow from the exactness of L. O

We get the announced smoothness criterion.

Theorem 4.3. Let A be a Hopf algebra in the braided category MH of comodules over
a coquasitriangular Hopf algebra H. If .k is of type FP in 4MH, then A is a smooth
algebra.

Proof. We have L(.k) ~ A, hence A is of type FP in oM if .k is of type FP in 4M* by
Proposition 4.2. It follows that A is of type FP in 4 M4, since finite relative projective
objects in 4 M clearly are finitely generated projective A-bimodules. O

Remark 4.4. Let H be a Hopf algebra and let A be a right H-comodule algebra. If A is
(left) Noetherian, then every object in 4 M that is finitely generated as an A-module is
of type FP,, in 4 M*.

Proof. This is similar to the usual argument with ordinary modules: let M be an object
in 4MH" and let V ¢ M be a finite-dimensional subspace that generates M as an A-
module. Then there is a finite-dimensional H-subcomodule W of M that contains V', and
a surjective A-linear and H-colinear map A ® W — M. The kernel is an object of 4 M
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and is finitely generated by Noetherianity of A, so we can repeat the process to get the
desired resolution of M. O

We now use the FP,, condition to construct a comodule structure on certain Ext spaces.
This will be used in the next section and relies on the following observation.

Lemma 4.5. Let H be a Hopf algebra with bijective antipode and let A be an H-comodule
algebra. Let P be a finite relative projective object in oM™ . Then there is a map

0 :Homyu(P,A) — Homu(P,A)® H
f— fo)® fay
such that for all x € P,

(17) fo) (@) ® fay = [(20))0) ® Sg (1)) f(z0)) )

that endows Hom (P, A) with an H-comodule structure, and makes it into an object in
M (Homy (P, A) being endowed with its natural right A-module structure).

Proof. Start with the the map
do : Hom 4 (P, A) — Homa(P,4sA® H)
fr=00(f), 00()(@) = f(2(0))0) ® Si (x)) f(z0) 1)
Let us check that do(f) is indeed A-linear. For a € A and x € P, we have

do(f)(a.x) = f((a.z) @)@ ® Sg ((a-x) 1)) f((a-2) o)) (1)
= f(a@)-2©))© ® Si (amyz)) f(a©) -2 @0) )
= (a0)/ (20))) ) ® St (ayz)) (a0 (2(0)))
= aq) f(20))0) ® Si (a@za))aq) f(z©) )
= a0)f(2(0)) (0) ® St (2(1)) S (ag2))aqy f(z0)) )
=af () ® Si () f () q)-

Since P is finite relative projective in 4 M# it is in particular finitely generated projective
as an A-module and the map

Homy(P,A) ® H — Homu (P, sA® H)
is an isomorphim. The map ¢ is then obtained from the composition of the inverse of this

map and dy. Now we check that ¢ is coassociative. Applying (id ®Ay) to (17), we have,
for all x € P,

foy (@) @ Au(fa)) = ()0 ® ST () ) (@) 1) ® Si (zay) @) f () 2)
= f(z0)) o) ® S (z@) f(z©0)) 1) ® Si (1)) [ (20)) 2)-
On the other hand we have
foyo (@) ® foyw @ fay = foy)(2©)©) ® Si (2w)) foy(z©) ) ® fa)
= [(z0))0) ® Si (x@2)) f(z©0)) 1) ® SH (z1)) f(z(0)) 2)

and this proves the coassociativity. The counit property is an easy verification, and we
have indeed defined the anounced comodule structure on Hom (P, A).
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For a € A, we have

(f-a)oy (@) ® (f-a)a) = (f-a)(z©) o ®Su (z0)(f - a)(z©)q)
= (f(z©))a) o) ® Sy (z)) (f (z@))a) )
= f(20) a0 ® S5 (z@) f(z©0) 1yaq)
= f) - a@(2) ® foyaq)
and this shows that Hom4 (P, A) is indeed an object in M. O

Lemma 4.6. Let H be a Hopf algebra with bijective antipode, and let A be an H-comodule
algebra. Let M be an A-module of type FPo, in AMH. ForneN, the comodule structure
of Lemma 4.5 induces a map

§:Exti(M,A) — Exty(M,A) ® H
[f1— [l @ [flo = [fol® fo
making Ext’y (M, A) into an H-comodule, and an object in MH.

Proof. Let (P,,d,) — M be a projective resolution of M in 4MH such that for each n,
P, is finite relative projective. Each Hom4(P,, A) inherits the H-comodule structure of
Lemma 4.5, and to prove our assertion, it is enough to check that the following diagram
commutes:

Homy(P,, A) ~otn 1 > Homy(Ppy1, A)

s s

Homu (P, A) ® H D% o i (Pany, A) © H

For f €e Homa(P,, A) and z € P,,; we have, using the colinearity of d,,1,

f0) 0 dns1(2) ® f1y = f(dns1(2)(0))0) ® Si (dns1 (2) 1)) f(dns1 (@) (0)) (1)
= f(dn+1($(0)))(0) ® S}}I(x(l))f(dn+1($(o)))(1)
= (fodni1))(x) ® (f odni1)q)

and this concludes the proof of the lemma. O

We conclude this section by a last lemma, that we will use in Section 6.

Lemma 4.7. Let H be a Hopf algebra with bijective antipode, and let A be an H-comodule
algebra. Let M be a A-module of type FP in 4 M having a resolution

0O-PFP, P> P->P->F—->M-0

with each A-module P; finite relative projective and P, = A. Assume moreover that
Ext’y(M, A) is one dimensional. Then the group-like corresponding to the H-comodule
structure on Ext"y (M, A) in Lemma 4.6 is trivial.

Proof. Tt is a straightforward verification that under the identification A ~ Hom (A, A),
the H-coaction of Lemma 4.5 on Homa(A, A) is given by a = a() ® a¢;y. The right
A-module Extj(M,A) is the cokernel of the right A-linear map Homa(P,_;,A) —
Hom4(A, A) ~ A, which is surjective if and only if 14 belongs to its image. The as-
sumption dimy(Ext’y(M,A)) =1 then ensures that the class of 14 generates the vector
space Ext’y (M, A) and our first observation in the proof thus ensures that the H-coaction
is trivial. t
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5. HOMOLOGICAL DUALITY

In this section we provide a convenient criterion that ensures that a braided Hopf
algebra in a comodule category is twisted Calabi-Yau.

5.1. Twisted Calabi-Yau algebras. We begin the section by recalling the concept of
twisted Calabi-Yau algebra. Recall that if R is an algebra and M, N are left R-modules
with IV is a right S-module for another algebra S such that N is a R-S-bimodule, then
the space of right R-linear maps Homg(M, N) carries a natural right S-module structure

defined by

(f-s)(x) = f(x)-s.
This induces a natural right S-module structure on Extp(M,N). In particular the
Hochschild cohomology spaces H*(A, 4A® Ay) = Extae(A, A°) are naturally right Ae-

modules, hence A-bimodules. The following condition appears in [$] under the name rigid
Gorenstein, see for example [24] for the present terminology.

Definition 5.1. An algebra A is said to be twisted Calabi-Yau of dimension n > 0 if A is
smooth and

| 0} if i%n
HZ(A’AA(@AA)z{il} if i=n
) _

as A-bimodules, for an algebra automorphism p € Aut(A), called the Nakayama automor-
phism of A.

The interest in the twisted Calabi-Yau condition comes from the fact that it induces
a duality between the Hochschild homologies and cohomologies [32]: if A is a twisted
Calabi-Yau algebra of dimension n with Nakayama automorphism g, then necessarily
n=cd(A), and if M is an A-bimodule, then we have for any i > 0

Hi(A, M)~ H,_i(A, ;1 M)

We will prove the following result, which generalizes the usual result [3, Corollary 5.2]
for ordinary Hopf algebras.

Theorem 5.2. Let A be a Hopf algebra with bijective antipode in the braided category
M of comodules over a coquasitriangular Hopf algebra H. Assume that the A-module .k
is of type FP in 4JMH and that there is an integer n > 0 such that Ext’y(.k, A) = {0} for
i#n and Exty(.k, A) is one-dimensional. Then A is twisted Calabi-Yau of dimension n,
with Nakayama automorphism defined by

p(a) = Papy) r(ap)ay, Su(apy@)g™)Salap0))

where Y : A — k is the algebra map corresponding to the A-module structure on
Ext (ck, A) and satisfies V¥ (aq))aqy = ¥(a)l for any a € A, and g € H is the group-
like element corresponding to the H-comodule structure on Ext’y(.k, A) from Lemma 4.6.

The rest of the section is devoted to the proof of Theorem 5.2.

5.2. The structure of H*(A, 4A ® As). Theorem 5.2 will be a consequence of the
following result.

Theorem 5.3. Let A be a Hopf algebra in the braided categry MH of comodules over
a coquasitriangular Hopf algebra H. If .k is of type FPy in 4 MH, then there is an
isomorphism of right A¢-modules

H*(A, AA@AA) ~ EXJEZ(EI{?, AA) ®A
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where the right A¢-action on Ext’y(:k, 4A) ® A is defined by

([Alea)-(a®b) = ([f]-ap))) ®ba’SA(ag0)r[apay, Su (e ) Sa(([f]-en)w)]

with the right A-structure on Ext’(ck, aA) induced by right multiplication in A and the
right H-comodule structure being the one of Lemma 4.6.

Taking Theorem 5.3 for granted, the proof of Theorem 5.2 follows easily:

Proof of Theorem 5.2. Let A be a Hopf algebra in the braided categry M*H of comodules
over a coquasitriangular Hopf algebra H. If .k is of type FP in s M*H we know from
Theorem 4.3 that A is smooth. Assuming moreover that Ext’(.k, A) = {0} for i # n,
we obtain from Theorem 5.3 that H*(A, 4A® As) = {0} for i # n. Assume finally that
Ext’y(ck, A) is one dimensional and let ¢ : A — k be the algebra map corresponding to the
A-module structure on Ext"j(:k, A) and g € H be the group-like element corresponding to
the H-comodule structure on Ext’y(.k, A) given by Lemma 4.6. It is easily seen from the
fact that Ext’y(.k, A) is an object in MY (Lemma 4.6) that ¢ satisfies 1 (a(o))a(1) = ¥ (a)l
for any a € A (while there is no such condition on g). Then the right A°-module on the
right term of Theorem 5.3 is

([f1ed)-(a@b) = ([f]-ap)) ) ®ba'S (agy0))r[apiay, Su(api@) ) Sa(([f1-an)m))]
= @/)(am)[ lo) ® b S (agy0))r[ a1y, Sr(ape) ) Su([f1w)]
= [f1®ba'"y(ap))SE(a0)r[ai0): Su(a@e) )™ ]
and therefore Theorem 5.2 follows from Theorem 5.3. U

5.3. Proof of Theorem 5.3. We now fix a coquasitriangular Hopf algebra H and a Hopf
algebra A in the braided category M# for which we use the following Sweedler notation
for the respective comultiplications and coaction of H on A:

AA(CL) =an] ® afa, AH(ZL‘) =2(1) ®Z(2), a(a) = a() ® a(1)-
The H-colinearity of A4 reads, for a € A,
(18) arij(oy ® ag2)(0) ® a[1)(1)a2](0) = A(0)[1] ® A(0)[2] ® A(1)
and, if we apply id4 ® a ® idg to both sides of this equality, we obtain:
(19) arij(o) ® ap2)(0) ® a[2)(1) ® a[1)(1)A2](2) = 4(0)[1] ® A(0)[2](0) ® A(0)[2](1) ¥ A(1)
Since S4 is also H-colinear, we have as well
(20) Sa(a)oy ® Sala)ay =Salawy) ®aq).

The following result, which provides an isomorphism between two natural objects in
AMH | generalizes a known result for ordinary Hopf algebras [8, Lemma 2.2].

Proposition 5.4. Let A be a Hopf algebra in the braided category MH of comodules over
a coquasitriangular Hopf algebra H. We have an isomorphism in 4 MM :

F: (1 A®A)BH — (,A® A)) 0 H
defined by
F(CL ®b® h) = aqo) ° (1 ®b® SH(CL(l))h)
= apj) ® bSalap)0)) ® hey (a0, Su(apymaeie) )hay ) »

with tnverse
G: JARA 0 H — JAABH

given by
G(a®@b® h) = apy) ® bSA(ap) ® hey r (ag), Su(apa)ape)hao)) -
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Proof. Using the left A-module structure from Proposition 3.2, and (2) and (19), we have
F(a®b®h)=aq) - (1®be Su(an)h)
= a0 ® bSa(a)210) ® Gy (Su(ay)h) 4, apin T [aoe) (Sulam)h) 4 |
= a1 @ bSa(amio) ® domm aoee (Su(ew)h) 4, t|eoeim, (Sulam)h) |
= a1 ® bSa(aw)2)0)) ® aq)Su(a@)her [amziw), S (as )]
= ayp) ® bSa(aq)2)0)) ® heyr [aoz10), Sraa)ho) ]
= apo) ® bSa(ap)) ® hayr [ap). Srapmapie)ha -
We obtain the expression of F' as stated. For x € A, we have
F(z-(a®b®h)) = F(x(o)a@) b®:p(1)h)
= (20)a) ) - (18 b® Su((z©)a)))rah)
= (z@)a@) (1808 Su(zyan))ze)
= (a(o) . (1 Rb® SH(a(l))))
=z-F(a®b®h).

Hence F' is A-linear, and it is immediate to check that F' is also H-colinear. It remains
to prove that F' is indeed an isomorphism with inverse G. We have

FoG(a®b®h) = F (apjo) ® bSi(ap)o) ® hey) r (a0, Suapmmapie) )ha))
= a0 ® bSA(ap)0)Sa(anoeo) ® he)
r (apyo 210, Su(aponm enio=ie e ) r(agia), Selapmaeie) Dha))
apjon ® bSA(apy0)Salanozio) ® ke r (apoeia), Su(apa))he)

r (a[2]<1>a Su(apy@)ap)e)ha)) (by using (19) for afij())
= apy(0) ® bSA (ay0))Sa(ap)o)) ® byt (ap)ay, Su(apmap)e)he))
r (ags101), Su(apye)apye)asie ) ha)) (applying again (19) to afi))

= apj(o) ® bSa (ap210)Sa(ags100))) ® hesy ™ (ag101), apsiny) T (ap232)5 hiz))
r (aps), Su(apinyapw)) T (agie): bay) T (apie), So(apie)ape) asi@))

where we have used the fact that S, is an algebra anti-morphism in M# for the last
equality. Using successively the properties of r, we get

FoG(a®b®h)
= a0 ® bSa (ap10)Salami)) ® hey ™ (apiy, apio)) T (e azie) hao))
r (ap)3). Srlapoyapw)) * (@), Srlape apie) apm))
= api)0) ® bSa (apy0)Sala)) ® hyr™ (apie), apie) © (amasa), ha)
r (ap3), Su(apmaiw)) t(ape). Srlane apie)) © (apa, Si(ape))
= apjo) ® 0S4 (a0 Sa(a)0)) ® byt (a)e), apie)) T (apimapia): b))
r (ap3) a1, Sr(apoyap@)) t(ame, Su(ap)s))
= apijo) ® bSa (ap10)Salap)) ® hey ™ (apie), apie) T (a0 amia). ha))
r (a2 a2, Srlapoapi@)) t (ap@, Su(ape)) -
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Now let f : H - k be the linear map defined by f(z) = r(x(l),SH(x(g))) and recall

from [22, Proposition 2.v, p.334] that, for h,k € H, vr=1(h,k) =r(Sy(h),k) and r(h, k) =

r(Sy(h),Su(k)). We have the partial expression

r™" (agai), a1 )7 (agsia), Sw(a1s1))) = (Sm(app3)): apsyes) ) fagsyen)

r (Su(ap)s): asie) f ()

= r(SH(a 21(3)) H(a (4))f( (3))) (by [22, Proposition 3, p.334])
=1 (age), Su (W) fape)

=1 (ap)), S (ape)) r(ame), Su(ape))
=1 (ap)3)ar3)), S (aps)ay))
We finally obtain
FoG(a®b®h) =apo) ®bSa (a0 Salapio)) ® heyr (apmapia): hay)
r(atz]@)a[s(z)aSH(a nmaE)) T (apeape), Si(ape))
= apaj(0) ® bSa (ag10)Sa(ami)) ® hey T (ayapiy, Su(apoyaie amie Vha) )
= aqijo) ® bSa [(a[z] Sa(ags) (0)] ® h2)

[ (aSalam)) oy » n ((aiSa(aa)@) Sulapa Yo | (by (20))

= apj) ® bSa (ealap)) @ byt [1, Sulapay)ha |
=a®b® h.

Similarly, we also have
GoF(a®b®h) =G (anyo ®bSalapo) ® he) r(apo), Sr(ammaze)ho)
= apono ® bSalap0)Si(anoe) ® he) r (apa), Su(apo)aeie )hao))
r (a0, Su(apomo amoee) e )
= a0 ® bSa(ap))) S (api0) ® hey t (apiys Sramaape)he))

r (a[3](1), SH(a[l](z)a[g](3)a[3](2))h(l)) (by using (19) SUCCGSSiVGly)
= ap1)(0) ® bSa [Salagyo))asio)] ® hey v (ap)a), agsiay) T (ap)e), Su(apimagis) ) he)
r (a[3](2), SH(a[l](g)a[g](4)a[3](3))h(l)) ( S, is an antimorphism in M*)
=a®b®h

by applying the same reasoning as in the calculations of F' o G, which completes the
proof. O

The proof of Theorem 5.3 will consist in transporting the right A¢-module structure on
H*(A, 4A® Ay) to Ext’y(k, 4A) ® A using several successive isomorphisms:

H*(A, AA@AA) = EXJEZMA(A, AA@AA)

~ Ext’;Mg (A, JA® Ay 0 H) (by Proposition 2.8)
~ Ext” i (ch, aA® Ay H) (by Remark 3.6)
~ Ext” o (ch, aA®@ ADH) (by Theorem 5.4)
~ Ext’y (ck, aA® A) (by Proposition 2.8)

~ Ext’y (ck, 4A) ® A (ck is of type FP).
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We now proceed with the transportation of the various A¢-module structures, step by
step. We fix an object P be in 4 M.

Lemma 5.5. There is a right A°-module structure on HomAMg(P A AA® Ay 0 H)
defined by

(21) f-(a'@b’)(x@a)zZaia'®b'bi®hi
where f(xr®a)=3Y,a' ®b* ® ht, and such that the natural isomorphism
Hom , yun (PR A, yA® Ay © H) ~Hom 401, (PR A, 4A® Ay)
is A¢-linear.
Proof. The isomorphism is
HomAMi;(PA, 2WA® Ay 0 H) — Hom o, (PRA, 4JA® Ay)
fr— f=(dezy)of
and the verification is immediate. U

Lemma 5.6. There is a right A¢-module structure on Hom , pu (P, sAA® Ay © H), de-
fined by

f-(deb)(z)=) dd bt eh
where f(z) =Y,;a'®b" ® h', and such that the natural isomorphism
Hom , pn (P, aA® Ay © H) = Hom (P8 A, sA® Ay 0 H)
is A¢-linear.
Proof. The isomorphism (from Proposition 3.3) is given by
Hom ,uu (P, aA® Ay © H) — Hom ,pu (PuA, ;A® Ay 0 H)
f — f rzear f(z)a
and again the verification is immediate. U

Lemma 5.7. There is a right A¢-module structure on Hom , yn (P, #/A® A= H) defined
by

[ (@ @1)(x) = X dfoy oy © VY SA(afoyarco)) @ oy [ loizicny Srr oy oy iy
where f(z) =Y,a' ® b ® hi, and such that the isomorphism induced by the isomorphism
of Proposition 5.4

Hom , pu (P, sAA® An H) ~Hom , pu (P, aA® Ay © H)

is A¢-linear.
Proof. The above isomorphism coming from Proposition 5.4 is

Hom , s (P, AA® AB H) — Hom , yu (P, J2A® A, 0 H)
fo— Fof
Gog <« g
The transported A®-module structure on Hom , vz (P, 4A® A H) is defined by

fr(d @) (z)=G((Fof) (a'®b)(2))
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For f(z) =3,a' ® b* ® ht, we have
F(f(x)) = zj:%«» ® b'Sa(afyy0)) ® oy ¥ (g St (afyy 1) tfay) i)
and hence
(Fof)-(d®b)(x)= Zi:afl]m)a’ ® b'b'Sa(alyy ) ® hi, r( o1y St (@ 1y (2))h(1))
We thus have

Fo( @) (x) = G(Fo ) (a o))
= 2 (aby o@D @ UV Salaly)0) 3] (afy0) 0Dz ] @ i

x| afyyny» St (afiyate) i || (@0 @) Sr (@t @) @ty a)ee )i |

Since Ay is an algebra morphism in M# | we have the partial expression

(@ 1302111 ® (@h130) )21 = g0y %1160y ® Ahar00210) U1 T [y 4y

and hence
f-(aeb)(x) = Z(a 1](0)[1 (0))(0) ®b'b' SA(“ (0))SA[(a 1](0)[2](0) @ )(0)] (3)

r[“fl](O)[z]a)’afl](l)] [ 21y S (e []<2>)h2<1>]
r[(ai 1](0)[2 ](0)“[ )(l)vSH((a 1J(0)[ 1]“[1 (o))(l)(a1(o) [2](0)@ [])(2))h22)]
= 2 Al 2o @ VY Salage)SA (4l o @0 920) © M)

7

! 1
r[a[1]<o>[21<3>’a[1]<2>] [ 211> S (@10 <2))h<1>]
i / i 7
r [%1](0)[ 211 Y211y S (4] ]<o>[1]<1>“[1](1)%](0)[2](2)“[2](2))h(2>] :

Using now the properties of r, we get
I+ (@ @ b)) = L aiome He © US540 Si (oo 9ti0) @ e
7 !
d [%11(0)[2](2)7"[11(1)] [ 11> Su (A e <2>)h<1)]

r [“fu(on 21 U211 S (ay <o>[11<1)“f1]<0)[2]<3)“[11(2)“[2](2))hb)] :

Applying the H-colinearity of A,y (19) successively for apijy and apiy then gives

f-(a®b)(r)= Za 1](0)@ (0)®bbSA(a (0))SA( (0)[](0))®h1{3)

r[al[z]@)’“[l](l)] [ 31w Sr(af @) []<4>“fs]<z>)hlkl>]

r[“[ 2)(1) @ (1)75H( (1)@ []<3>a[1]<2>“[2]<2>)h?2>]-
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Using the fact that S4 is an anti-morphism and then successive applications of the prop-
erties of r, we get

f.(a’ ® b’)(x ZCL (0) 11(0) ®b'b SA [SA( 2](0) [ ](0))a’t3](0)] ® h’ég)

r [“fﬂ(l)a[z](l)v“w](l)] [ 2](3)+ & (1)] [a (2)75H 1@ 2)5) (3>)h(1>]
[ Ala)2) 212y St ({110 a1 00) 1) 2) U2 (3>)h?2>]
:Zi:‘fm(m (o>®bbsA[SA( 21021093 (o>] [“Ztﬂ(l)“fz](l)’aﬁ](l)]

"[%21(4)7%](1)] [ 3(2)0 1 ]r[ 8)(3)7 0 “[1](2)%21(6)%3}(4)”
r [afz]@)“fz]@)’ h(2>] [“E](s)“fz 13> Sa (@ ](5)%](2)“{2](4))]
= 2201 0)@ <o>®bbSA[SA(‘“[Z](m“[z](m)afs]<o>]®h<2> [fz](s)afzuswafs](s)]

7

1"[%1(5)7“[11(1)]r[afﬂ(z)“b](z) 3(2)’SH( 1 []<6>)]1"[ai3 <4)7SH(“Zt3J<5>)]
rlafy ) <4)75H(“[11<2)“f21<5>)]r[“E](l) Af9)(1)@ <1)7h<1)]

Considering again the linear form f: H — k defined by f(x) = r(z@),S(2(2)), we obtain,
by [22, Proposition 2.v and Proposition 3, p.334], the partial expression

! [%2](3)“[2](3)7“?3](3)][ 314y S (a3 <5>)] [SH( 21 %21)): Uaie) | (“Zf31<4>)]
=T SH( Alay3) A2)(3) )> St (afsya)) S (al[:ﬂ(s))]

= x a0 oy S (el ) @)

(2
:r:af 13)7[2) (3)>SH(a (5))] [ 51(3)> Sr (A (4))]
:r:af 13 A1) U313 1 (3 (4))]

Hence we have

I (@ @) () = 2ol o)ty © U5 [S4(aha10) a1 afsi | @ iy

r[“@]@) 022312 S (A1) 1) [](6))]1«[@;2](3) a3 U313y S (a3 <4>)]

r{ ajyyaf <4>’5H( 1)@ [](5>)]r[afﬂ(l)afﬂ(l)afz](l)’hl(l)]r[%(fwa[l](l)]
= D A1) ay0) @ D''Sa [SA( 2](0) @ [](0>)af3](0>]®h?2>

r[a[zm) Apa)(1)@ (1)75H( 1) 214 <2>)h<1)]
r{afy 2 (2)75H( 1(2)% [](3)”’“[%21(3)”{1]@)]

= 2 A1)(0)130) ® D0 Sa [SA(G 21(0))S4(a{2)0) ) afs ]<o>] ® higyr[ay ) A2y ]

r[“fz]@) A3 931y St (a1 1) [](5)“?3](29”&1)]
r{ajy sy <3>’5H( 1(2)% [](4)”4“?2](4)”[1](1)]~
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Using once again the properties of r, we then have
f(a" @) (@) = 2 afyyo Uy ® V'S [S4(afa10)) S (afar0) )ty | © iy

rlafy) ), a [](2>]r[“f21(1) a1y A3y St (A1) [2](5)“?31(2))}’?1)] (permute a’ and o)
r{afy) 3 aa13)> St (1)) Ufayay) 7 [%](4)’@[1](1)] :

The partial expression

vl aja 2y a2 [P a2 39 (3)75H(“1(2)%1(4))]1"[“?21(4)7 [1(1)]

7

2)(3) 92 (3)] [a[ 2](2) Y2 (2)’5H(“f1 (2)af21(4>) r[a 2](4)+ @ (1)]

=r[af 2 )
[ 1m® )r[“b 1(2)° H(“f <2)“E2J(4>)]r Uf9)(2)+ SH (“1<3> []<5>)]
( !

¢ !
EH(aQ(Q)) [ (2)7SH Ay @ (3))]

Il
-

[2]
a3y s

enables us to obtain, using again the colinearity of S and (19),

£ o)) = Tafye 110y @ V'S [Sa(afsy o)) (Salaapaly)) )| ® Bl

[ 21 (Salagy)agsy) oy (Salagyags) ) S (Zm(n)hlﬁ)]1"[“fz}@)aSH(“fu(l)“b](s))]

(Since Sy4 is H-colinear)
= 2t ) @ VP S0y Joalaf) @ higy ¥ r{afyy: Sa(afyyafiy dar) i

_ 7 / 111 Q2 ! 7 / 7 ! 7
= Z A0y 8(0y(1) ® V'V S (aloy21(0)) ® Py ¥ [“<0>[2J<1>’ SH(“u)“(l))h(l)]
and this completes the proof. U

Lemma 5.8. Assume that P is finitely generated and projective as an A-module. Then
there is a right A¢-module structure on Hom , p(P, A) ® A such that

(fed)-(a®b)=(f-apny) o ®ba'S3(ap0)) rapiay, Su(ape ) Sa((f-ap)w))]

where the right A-action and H-coaction on Hom ,p(P, A) are induced respectively by
right multiplication in A and by Lemma 4.5. This A®-module structure is such that the
composition of the canonical isomorphisms

Hom , p(P,A) ® A - Hom , (P, 4A® A) > Hom , \m (P, s/ A® AR H)
is A¢-linear, where the right term has the A¢-module structure given in Lemma 5.7.
Proof. The map on the left above is an isomorphism because P is finitely generated

projective, the map on the right is the adjunction isomorphism, and the composition,
that we denote T', is then defined by

T(fea)(r)=[f(ro)®a®xqm).
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It is enough to check that T'((f®a')-(a®b))=T(f®a’) - (a®b), with (f®a’)-(a®b)
defined as above. We have
T((fead) (a®b))(r)
=T [(f - ap) o) ® ba'SA(ap0)] (@) rlagzi), Su(ape)) S ((f - ap)w) ]
= ([ ap)) ) (2(0)) ® ba'SE (aga)0)) ® a1y gy, Suap)e))Su((f - apy)ay)]
= (f - ap)) (@) o) ® ba' S (ap)0) @ 2(2)
r[a[Q](l),SH(a[2:|(2))SH(SI__Il(ZE(l))(f . a[l])(:p(o))(l))] (here, we use Lemma 4.5)
= (f(z@©)ap) o) ®ba' S (a10) @ 2er(ap). Su(are ) Su((f(z0)ap)w)zm]
= f(zo)mano ® ba'Si(apo) ® 2erlapa), Se(apwaeie ) Se(f (20 a)rm ]
On the other hand we have
T(f®ad) (a®b)(r)
= [ (z@) aon ® ba'S3(a@)210)) ® ) a0y, S (f (@) ayaay)zm)]
= f(x0)) a0 ® ba' S (ap)0)) ® T2y r[ag))s Su(f(20)) (myapiayagzie)za ] (by (19))

and the two expressions coincide, which proves our lemma. O

We can now prove Theorem 5.3. Let P, — .k be a resolution of .k by finite rel-
ative projectives in 4 MH. Then the P, are finitely generated projective A-modules,
and P,® A — A is also a resolution of A in 4 M by relative projective objects (by
Proposition 4.2) and hence by finitely generated projective A-bimodules. It follows that
Ext® (A, 4A® Ay) is the homology of the complex Hom , v, (Pr® A, 4A® Ay) (with
the natural right A®-module structure), while Ext’ (ck, 4A) ® A is the homology of the
complex Hom , p( Py, A) ® A, with the A¢-module structure obtained by applications of
Lemma 5.5, 5.6, 5.7 and 5.8, and that these homologies are isomorphic as A¢-modules.

5.4. Bosonization and another approach to Theorem 5.2. In this subsection we
propose another approach to the proof of Theorem 5.2, making use of results of Krahmer
[23]. The only small but important nuance with this approach is that we have not been
able to get relevant information on the group-like g € H in Theorem 5.2, which is important
in view of applications.

To connect Theorem 5.2 and the results in [23], we need the bosonization construction
[20, 28], that we recall now. Let H be a coquasitriangular Hopf algebra and let A be a
Hopf algebra in M#. We retain the previous Sweedler notation:

Ayg(a) =ap®ap), Ap(r)=201)®209), ofa)=aq) ®an).

The bosonization H# A is then the ordinary Hopf algebra that has H ® A as underlying
vector space, has the unit and counit of the ordinary tensor product of algebras and
coalgebras, and comultiplication, product and antipode given by

v#ta - y#b =r(aq),y@))rymy #aobd, A(rfa) = (vqy#Fapio)) © (2e)apjo)#ae))
S(z#a) = (1#Sa(a))) - (Su(raq))#1)

=1 (a), Su(r(1)a@)) Su(r@)a@)#54(aw))
In particular, this gives
S(1#a) = r (aq), Sulae)) Su(am)#54(aw)

and

S*(z#a) =1 (aqy, Sulag))) Sh()#5% (a))
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The algebra embedding A — H#A, a - 1#a, realizes A as a right coideal subalgebra
Ac H#A, since

A(1#a) = (14ap)) ® () #ag))-

The Hopf algebra H# A has bijective antipode since S, is bijective, H# A is free as a right
A-module hence is faithfully flat, while the assumption that .k is of type FP in 4 MH#
ensures by Theorem 4.3 that A is smooth, therefore we can use the results in [23]. In
particular [23, Theorem 6] and the reasoning inside the proof of [23, Theorem 1] (p. 249)
give Hi(A, 4/A® Ax) = {0} for i # n. It then remains to study the A-bimodule structure
of H"(A, AA ® AA)

Let ¢ : A — k be the algebra map corresponding to the A-module structure on the
one-dimensional space Ext’y(ck, A). By [23, Corollary 2], the A-module Ext’;(-k, A) is an
object in a certain category of "twisted” Hopf modules aMIED

A,52
that defines the objects of A MY%A [23) p. 246], we get Y(ay)aa)y = (a)l for any ae A

A,52
(while there is no condition on the group-like g € H corresponding to the H-comodule
structure). Following [23, Lemma 7], we define the algebra map

oc:A— HH#A
a— Y(ap0))S* (apyay #ae))

Inspecting the condition

We have, using the equality 1 (a())an) = ¥(a)l,

o(a) = P(apyo)r (apia), Su(ape)) Sk (ana)) #57 (a)0)
= (ap))r (ap)y, Su(ape)) 1453 (02)0))

so that o defines an automorphism of A (as predicted by [23, Corollary 4]). Consider
now the A-bimodule (H#A),. By [23, Theorem 7], the A-bimodule H"(A, 4/A® Ay) is
isomorphic to the sub-A-bimodule

X ={g#a,aec A} c (H#A),.

It is an immediate verification that X is isomorphic to ,A,, where « is the automorphism
of A defined by a(a) = r(an), 9)a), and hence to A,-1,. Since a!(a) = r(any,g7")a,
it is a direct verification to check that = a~'o has the announced form.

6. EXAMPLE : TWO-PARAMETER BRAIDED QUANTUM SLs
In this section we apply our various results to the coordinate algebra on the two-

parameter braided quantum group SLs.

6.1. Two-parameter braided quantum SL,.

Definition 6.1. Let p,q € k*. The algebra &, ,(SL2(k)) is the algebra presented by
generators a, b, ¢, d subject to the relations

ba = qab, ca = pac,db = qbd, dc = pcd, be = cb
ad —p~tbc =1 = da - gbc.

For p = ¢ the algebra 0, ,(SLa(k)) is the classical coordinate algebra on the quantum
group SLs, and has a well-known ordinary Hopf algebra structure. Generalizing this for
p # ¢, we construct a braided Hopf algebra structure on &, ,(SL2(k)). For this, the
following first piece of structure on 0, ,(SLa(k)) is an immediate verification.



COHOMOLOGICAL DIMENSION OF BRAIDED HOPF ALGEBRAS 29

Proposition 6.2. The algebra 0, ,(SLa(k)) has a kZ-comodule algebra structure whose
coaction is defined by the algebra map

0: Opqg(Sla(k)) — Op4(SLa(K)) @ kZ
a, b, c, d—>a®1, bzt c®z dol
where z is a fixed generator of the infinite cyclic group 7Z.

From now on, we denote A = 0, ,(SLa(k)), and we work in the abelian k-linear braided
category MFZLE with € = p~lq, with its braiding denoted by ¢, see Example 2.1.

Proposition 6.3. There exist algebra morphisms
A:A— A A

a b . a®a+b®c a®b+b®d
c d cR®a+d®c cb+de®d

and

e: A— k, S: A—  A%PC

a b N 10 a b . d —qb
c d 0 1 c d -ple a
that endow A with a Hopf algebra structure in the braided category . *%5.

Proof. 1t is immediate to check that ¢ is a well-defined algebra map, and is a morphism
in .#%2¢, Consider now the algebra map

Ag:k{a,b,c,d) — A®. A

a b . a®a+b®c a®b+b®d
c d c®a+d®c c®b+d®d

where A ®. A is the braided tensor product of the algebra A with itself, see Subsection
2.4. In view of the structure of the braiding of .Z*%< we have, in A ®. A, for arbitrary
elements x,y € A and z,t € {a,b,c,d} with (z,t) ¢ {(b,b), (b, ¢), (¢,b), (¢, c)},

(z®b).(b®y)=plgrbe by
(z®b).(c®y) =pgleceby
(z®c).(b®y)=pglzbecy
(z®c).(c®y)=plegrcecy
(z®2).(tey) =1t 2y

We now have, in A ®, A,

Ag(ba) =(a®b+b®d).(a®a+b®c)
=(a®b).(a®a)+(a®b).(b®c)+(bed).(a®a)+ (b d).(b®c)
=a?>®ba +ptgab® bc+ba ® da + b* ® dc
=qa’ ®ab+p tgab® be + ba ® da + b? ® dec.
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On the other hand,

Ag(ab) =(a®a+b®c).(a®b+b®d)
=(a®a).(a®b)+(b®c).(a®b)+(a®a).(b®d)+(bec).(b®d)
=a’®ab+ba®chb+ab®ad+pg b @ cd
=a’®ab+ba®bc+ab®ad+q b ®dc
=a?®ab+ba®bc+q ba® (da— qbc+pthe) + ¢ 'b* @ de
=a’®@ab+qtha®da+pltab®bc+q b @ de

and hence Ag(ba) = ¢Ag(ab). Next, we also have
Ao(ad —p~toc) = (a®a+b®c).(cob+d®d)-p(a®b+bed).(c®a+d®c)
=(a®a).(c®b)+(a®a).(dod)+(b®c).(ceb)+(b®c).(d®d)

-pHaob).(c®a)-pHaob).(doc)-pt(bed).(cea)-p(bed).(d®c)

=ad®ad+ptqgbc®chb+bd®cd—ad® (ad-1) —p tbc® (1 + gbc) - bd ® cd

=ad®@1l-pthe®l=1®1=Aq(1).
Similar calculations, which we leave to the reader, show that

Ao(ca) = pAo(ac), Ao(db) = qAo(bd), Ao(dc) = pAo(cd), Ao(be) = Ag(cb)
and
Ag(da - gbc) = Ag(1).
Therefore we obtain the announced morphism of algebras A: A - A®. A, which is easily
seen to be a morphism in .#Z*%<.
In A°P< we have for x,y € {a,b,c,d} with (z,y) ¢ {(b,b), (b, ¢), (¢,b),(c,c)},
Ty =yr
while
b-b=plqb?, b-c=pgtbe, c-b=pgtbc, c-c=plqc’.

From this, it is a direct verification to define the algebra map S as in the statement, and
to check that S is a morphism in .#Z*%¢. It is then immediate that A, e, S satisfy the

Hopf algebra axioms on the generators of A, and hence on the whole of A since these are
algebra maps. O

We call the braided Hopf algebra &, ,(SL2(k)) the coordinate algebra on the two-
parameter braided quantum group Sls.

The following are straightforward generalizations of classical resuls in the case p = q.
Proposition 6.4. The set {a'bic* |i,j,k e N} u{bickd' | j,k e N,l € N*} is a vector space
basis of O, 4(SLa(k)).

Proof. The result is obtained using the diamond lemma, as in [22, 4.1.5]. u

Proposition 6.5. The algebra A = 0, ,(SLa(k)) and its quotients A[(b), A/(c) and
A/(b,c) are domains.

Proof. Tt is well-known that A/(b), A/(c) and A/(b,c) ~ kZ are domains. For A, we can
proceed exactly as in [7, I.1]. We consider first the algebra A, , presented by generators
a,b,c,d and relations

ba = qab, ca = pac, bc = cb, db = qbd, dc = ped, ad — da = (p~ - q)be

and remark that A, , is an iterated Ore extension, hence is a domain. Put D, , = ad -

p~tbc = da — gbe. We have D, , € Z(A,,) and O, ,(SLa(k)) = A, 4/(Dp,—1). Consider
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then the localization A, ,[ D, ] with respect to the central regular element D, ,. We then
have an algebra isomorphism
[ Ap,q[D;;lq] — 0,4(SLy(k)) ® k;[z,z‘l]
a,b,c,d—a®z,0®z,c1,d® 1

and since A, ,[D;1] is a domain, so is A = 0, ,(SLa(k)). O

qu]

6.2. Relation with previous literature. To the best of our knowledge, Definition 6.1
seems to be the first formal occurrence of the braided Hopf algebra &, ,(SL2(k)) under
this form in the literature. There are however some related known objects, that we briefly
mention and discuss in this subsection.

First, assume that & = C and, for ¢ € C*, consider C'(SU,(2)), the algebra of continuous
functions on the braided compact quantum group SU,(2) defined by Kasprzak, Meyer,
Roy and Woronowicz in [21]: C'(SU,(2)) is the universal C'*-algebra generated by elements
«, v satisfying the relations

a+y'y=1, aa +|gfyy =1, 97 ="y, ay=ra, oy =gy
For p = g, it is an immediate verification to check that €7 ,(SLy(C)) has a *-algebra
structure given by
a*=d, b*=—=qgc, c*=—-q'b, d* =a
and that there exists a *-algebra map with dense image

01 1(SLa(C)) — C(SU,4(2))

ab}_)a—q*y*
c d vooar |

Hence 01 -1(SLy(C)) might be called the coordinate algebra on the braided compact
quantum group SU,(2), and denoted by &(SU,(2)).

It is shown in [17] that &(SU,(2)) can be constructed from the ordinary Hopf x-
algebra & (SU,(2)) for some ¢’ € R via Majid’s transmutation operation [25]. Similarly
it is also possible to construct &, ,(SL2(k)) from the ordinary Hopf algebra &, (SLy(k))
via transmutation. We will not give the details here, and instead briefly explain how
0,.,(SLa(k)) naturally occurs in the setting of the more familiar Takeuchi’s two-parameter
quantum GLg [31].

Recall [31] that for p,q € k*, the algebra 0,,(GLy(k)) is presented by generators
a,b,c,d, 6" and relations

ba = qab, ca = pac, db=pbd, dc = qgcd, pbc = qcb
da-ad=(p-q")be, (ad—q'bc)d™t =1=56"(ad - q 'be).

To connect 0, ,(SLa(k)) and &, ,(GLa(k)), we use the bosonization construction recalled
in Subsection 5.4.

Proposition 6.6. The bosonization kZ#0, ,(SLa(k)) is isomorphic to O, ,(GL2(k)).

Proof. 1t is a straightforward verification to check that there exists an algebra map

f+ Opo(GLa(k)) — KZ#0) 4 (SLa(F))

a b 1 z#a 24D 1
(c d)’ 0 ’_’(1#c 14d) #
which is an isomorphism, and a coalgebra map as well. O

It follows from this result that &),,(SLa(k)) can be recovered as the subalgebra of
coinvariants associated with a Hopf algebra projection on &), ,(GL2(k)), see [28].
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6.3. Homological properties of &, ,(SLy(k)). In this subsection we compute the coho-
mological dimension of A = &), ,(SL2(k)), prove that A is smooth and twisted Calabi-Yau.
We begin by constructing an suitable resolution for the trivial module, generalizing that
found by Hadfield and Krahmer [15] in the p = ¢ case.

Proposition 6.7. The following is a resolution of -k by free left A-modules:
(P): 0 N RN N E R N I & s 0
where ¢1(x,y,2) =x(a—1) +yb+ zc, ¢p3(x) = x(c,-b,pga — 1) and

b 1-qa 0
¢2(x7yaz) :(l’,y,Z) C 0 1—pCL .
0 c -b

Proof. The maps ¢1, 2, ¢35 are clearly A-linear, and that (P,) is a complex follows from
the matrix computations

b 1-qa 0 a-1 0 b 1-qa 0
c 0 1-pa b |=10|, (¢,-b,pga-1)lc 0 1-pal=1(0,0,0).
0 c -b c 0 0 c -b

The injectivity of ¢3 follows from the fact that A is a domain. Moreover ¢ is surjective
and it is a standard verification that Ker(e) is generated as a left A-module by a -1, b
and ¢, so Ker(e) = Im(¢y).

Let X = (z,y,2) € Ker(¢1), we have x(a—1) +yb+ zc =0 and hence x(a-1) =0 in the
domain A/(b,c), so that x =0 in A/(b,c). By using the relations that define A, we see
that bA = Ab and cA = Ac, hence we can write z = ab+ ¢ for some o, 5 € A. Then we
have

(xaya Z) - ¢2(Oé, Ba 0) = (xaya Z) - (ab + Bca Oé(l - qa’)a 6(1 —p(l))
=0,y -a(l-qa),z - B(1-pa)).
Thus, to show that X € Im(¢,), we can assume that X = (0,y, z) for some y,z € A. Then
we have yb+ zc = 0 which gives yb = 0 in the domain A/(¢). Hence, y = yc and z = —7b for
some v € A. It follows that X = (0,7v¢, —7b) = ¢2(0,0,7), and therefore Ker(¢;) = Im(¢s).
Let X = (z,y,2) € Ker(¢y). Then
xb+yc=0
(22) z(l-gqga)+zc=0
y(1-pa)-2b=0
and z(1 - qa) = 0 in the domain A/(c), hence = = 0 in A/(c¢), which implies x = x'c for
x' e A. Since b +yc=0 and A is a domain, we obtain y = —x’b. We have now
x'c(l-qga)+zc=0
—2'b(1-pa)-2b=0
from which it follows that z = 2/(pga—1) since A is a domain. We get X = z/(¢, -b, pga—1) =
¢3(z"). Therefore, Ker(¢y) = Im(¢3), and we conclude that the sequence (P;) is exact. [

We now use the previous resolution to compute some Ext spaces. For t € k*, it is
straightforward to check that there exists an algebra map

€t3A—>k3

)
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with ¢; = €.

Proposition 6.8. For p,q € k*, put t = (pq)~'. The vector spaces Ext’(:k, k) are
described by the following table.

pg#1,p#1,q#1 | pg#1, 1e{p,q}|pg=1,p#1, q#1|p=q=1
Ext)y (K, - k) {0} {0} k k
Exth (ok, -, k) {0} k k k3
ExtA(Ek,atk) k k2 k i3
Ext’, (K, -, k) k k k k

Moreover, for any algebra map 1 : A — k with ¢ # &,, we have Ext® (.k, ,k) = {0}.

Proof. Applying Homy (-, k) to the resolution in Proposition 6.7, we see, after some
standard identifications, that Ext’(.k, k) is the cohomology of the complex

P LN E RN LNy NN
where fi(z) = ((¢(a)-1)z,9(b)x,¢¥(c)z), f3(x,y,2) = v3p(c) -y (b) + (pgp(a) - 1)z, and

¥(b) (c) 0
fz(.T,y,Z) = (.T,y,Z) 1 —Q¢(a) 0 w(c)
0 1-pip(a) —¢(b)

We thus see that if 1(b) # 0 or 1(c) # 0 or ¥(a) # (pg)~!, we have Ext? (&, 4k) = {O}
Otherwise ¥ = ¢;, and the announced results are immediate.

Corollary 6.9. We have cd(0, ,(SLa(k))) =3 for any p,q € k*.

Proof. We have pd 4(.k) < 3 by Proposition 6.7 and pd 4(-k) > 3 by Proposition 6.8, hence
pd (k) = 3. We conclude by Theorem 3.5. O

We now want to prove that A = 0, ,(SLy(k)) is smooth using Theorem 4.3. For this
we interpret the resolution in Proposition 6.7 as a resolution in 4 M*Z,

Proposition 6.10. Let V, W be the 3-dimensional kZ-comodules with respective bases
(e1,e2,e3) and (e}, €l ek), and coactions defined by

oy:V—VeKZ ow : W — W eKZ

-1

e1,e9,e5—e1 01,0027  e3®2 el eh,e5—e1®27 eh ® z,e5 @ 1.

Then we have a resolution of .k by free A-modules in MFZ

0-AL AeW 2 AeV 25 AS k-0
where
t(r®er+y®es+2z®e3)=x(a—-1)+yb+ zc
p3(r) =zc®e] —xb®e,+x(pga—-1)® el
po(x@e])=xb@er+x(l-qga)®es, ¢a(r®ey)=xc®e;+x(l-pa)®e;
po(r®ey) =xc®es — b @ e3.
In particular .k is of type FP in 4 MFZ.

Proof. After the obvious identifications between A ® V' and A% and between A ® W and
A3, the above sequence is the same as the one in Proposition 6.7, and hence is exact. It
is also an immediate verification that the above maps are kZ-colinear. O



34 JULIEN BICHON AND THI HOA EMILIE NGUYEN

Combining Corollary 6.9, Theorem 4.3 and Proposition 6.10, we obtain that
0,.4(SLy(k)) is smooth, with cd(&, ,(SLa(k))) = 3.
We can also use Proposition 6.10 to compute some Ext spaces in 4 MF*Z.

Proposition 6.11. For p,q e k*, putt = (pq)~'. We have

kifie{2,3}, orie{0,1} and pg=1

Ext’ ko k)
* AMRZ( k) {O otherwise.

Proof. Let ¥ : A - k be an algebra map that is also a map of kZ-comodules. Apply-
ing Hom , prz (=, »k) to the resolution in Proposition 6.10 we see, after some standard
identifications, that Ext’, , (K, k) is the cohomology of the complex

0ok e 2 Borso

where fi(z) = (¢¥(a) - 1)z, fa(x) =0 and f3(x) = (pgio(a) — 1)x. The announced result is
then a direct verification. O

Our next aim is to prove that &, ,(SL2(k)) is a twisted Calabi-Yau algebra.

Proposition 6.12. We have Ext’y(.k, A) = 0 if n # 3, and Ext’(.k, A) = ke, as right

A-modules.

pq)~!

Proof. Applying the functor Hom4 (-, A) to the resolution (P, ) in Proposition 6.7 and us-
ing some standard isomorphisms, we obtain the complex of right A-modules Hom 4(P,, A):

0 s A ¢I>A3 ¢5>A3 i

A

2
=)

~

where ¢7(x) = (a— 1,b,¢)z; ¢3(x,y,2) = cx — by + (pga — 1)z and
b 1-qa 0 2\

¢;($,y,2) = ¢ 0 1__pa Yy
0 c -b z
We have Ext’y(-k, A) ~ Ker(¢?,,)/Im(¢;,) and verifications are straightforward using the
same arguments as in Proposition 6.7, especially the fact that A, A/(b), A/(c) and A/(b,c)
are domains. We leave the verifications to the reader, except for the degree 3 where we
want to obtain explicitely the A-module structure.

Let o € A, then z is a linear combination of elements of the forms a*b/c* and b ckdt. In
A/Im(¢3), we have b=c=0, a = (pg)~'1 and d = (pq)1. Hence (the class of) 1 generates
A/Im(¢3), and we have to check that 1 ¢ Im(¢3). If 1 € Im(¢3), there exists (z,y, z) € A3
such that 1 =czx - by + (pga — 1)z, and we have 1 = (pga — 1)z in the Laurent polynomial
ring A/(b,c) = k[a,a'], which is impossible. Thus 1 ¢ Im(¢3) and hence, Ext® (.k, A) ~ k
as vector spaces, and it is clear from the previous relations that Ext3 (.k, A) ~ k as
right A-modules.

Epg)1

Theorem 6.13. The algebra O, ,(SLa(k)) is twisted Calabi-Yau of dimension 3, with
Nakayama automorphism defined by

pr o Opg(Sha(k))  — Op4(SLa(k))

FRCTHE
¢ d ¢ (pg)d)
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Proof. Proposition 6.10 and Proposition 6.12 enable us to use Theorem 5.2 to conclude
that &, ,(SLa(k)) is twisted Calabi-Yau of dimension 3. Moreover the form of the resolu-
tion in Proposition 6.10 gives, by Lemma 4.7, that the group-like g occurring in Theorem
5.2 is trivial. Hence the Nakayama automorphism is given by

() = S%(212100))e oy (2(1)) T[T (211> Skz (T2)2)) |

and the computation of its values on the generators is immediate. U

We finish the paper by recording some Hochschild cohomology computations for
0,.4(SLa(k)) when the bimodule of coefficients is one dimensional. This has some in-
terest in connection with the probabilistic questions studied in [15]. We begin with a
general observation.

Proposition 6.14. Let A be a Hopf algebra in the braided category MH of comodules
over a coquasitriangular Hopf algebra H. Let M be a left A-module, and endow M with
the trivial right A-module structure. Then we have

H*(A, M,) ~ Ext’y(-k, M).
Proof. Start with an A-bimodule M and recall the isomorphisms
H*(A, M) = Ext” o (k, MO H )
from Remark 3.6. The left A-module structure on M © H is given by
a-(z@h) =r(agye), he) apie-2-Sala) ® apmha)aei)
and if we assume that the right A-module structure on M is trivial this gives
a-(x®h) =apjo)-z @ apyayh.
Hence we have M. ®© H = M @ H. We conclude by Proposition 2.8. U

It follows that the Hochschild cohomology spaces H*(&), ,(SL2(k)), o k), for any algebra
map « : 0, ,(SLa(k)) — k, can now be computed using Proposition 6.7. In particular,
still in connection with [15], we notice that

{0} ifpg#1,p#1,q#1,
H?*(0,4(SLa(k)), k) =3k ifpg=1,p#1,q#1, or 1e{p,q} and pq # 1,
k2 ifp=1=gq.
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