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HIGHLIGHTS

e Models could predict H, production, HPR and H2 yield with high accuracy (R? > 0.98).

o Their application in the management of bioH2 production systems is discussed.

e Mixed fermentations should consider using acetate and butyrate as control parameter.
¢ Total VFA is recommended to be used in processes using pure cultures.
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ABSTRACT

The biological production of biohydrogen through dark fermentation is a very complex
system where the use of an artificial neuron network (ANN) for prediction, controlling and
monitoring has a great potential. In this study three ANN models based on volatile fatty
acids (VFA) production and speciation were evaluated for their capacity to predict (i)
accumulated H, production, (ii) hydrogen production rate and (iii) H, yield. Lab-scale bio-
hydrogen and VFA production kinetics from a previous study were used for training and
validation of the models. The input parameters studied were: time and acetate and buty-
rate concentrations (model 1), time and lactate, acetate, propionate and butyrate concen-
trations (model 2), time and the sum of all VFA (model 3) and time and butyrate/acetate
(model 4). All models could predict biohydrogen accumulated production, hydrogen pro-
duction rate and H, yield with high accuracy (R?> > 0.987). VFA¢ is the input parameter
indicated for processes using pure cultures, while for complex/mixed cultures a model
based on acetate and butyrate is recommended.
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Introduction

Artificial Neuron Network (ANN) is an artificial intelligence
tool supported mainly in algorithmic implementations that
uses non-physical systems “computer programs” [1]. The ANN
is characterized as a mathematical presentation that mimics
the learning process of the human brain using artificial neu-
rons [2], and have been successfully used as a problem reso-
lution algorithm in regression, modeling [3], multivariate data
analysis [4], optimization, process control [5], classification,
clustering [6] and others.

In recent years, ANN gained importance in bioprocessing
for being more reliable than the classical statistical models
(such as the response surface methodology) [7,8] and espe-
cially due to the non-linearity observed in fermentative and
controlling process. In fact, according to Mikulandric [1] arti-
ficial intelligence systems are widely accepted as modelling
systems that satisfy non-linear processes and are mainly
useful in complex systems such as dark fermentation.
Because these systems include core functions of different
degrees of non-linearity and flexibility in the model, they are
also noise-tolerant and even value-constrained because they
are derived from advanced statistics [9]. The main advantages
of ANN are that it can be approximated to any type of non-
linear function and does not require prior specification of
the adjustment function, while the designs of response sur-
faces are limited to square order approximations only [2].
Whiteman & Gueguim [3] showed that ANN more accurately
simulates dark fermentation than response surface method.
The first showed an imprecision of 15% while the second
reached 119%.

The foundations of the neural networks are the artificial
neurons or processing elements. The neurons of the first layer
have only the function of distributing the input signals for the
next layers. After the input layer, the signals flow through the
hidden layers (S;) until the output layer. Considering a neuron
“i" of the layer “k", it receives information from the previous
layer, pondered by the weight of the connections. The neuron
generates a summation of these pondered inputs and the
resulting value is added to an internal activation limit or bias,
WS‘O). The resulting signal of the neuron “i” produces a
response Xi“‘) in agreement with the activation function or
transfer function f(e). Mathematically it can be expressed by
equations (1) and (2).

(1)
k k k k-1
=l + 3wl 0
=1

X =5(s") @

Multilayer Perceptron (MLP) is a neural network structure
composed of one input layer, one or more hidden layers of
sigmoidal hidden neurons and a layer of linear output neu-
rons. One hidden layer architecture is the most used structure
because it possesses nonlinear processing capabilities and
universal approximation property [10,11]. Previous research
has revealed optimal hidden neurons should be below 20 due
to overfitting and loss of performance [12]. Few random input
and output values are then used to train the model through a

standard backpropagation learning algorithm [13] based on a
gradient descendent method. During this “training” process,
the correlations between input and output values are defined
in form of a mathematical model. ANN can, thus, be defined as
mathematical models capable of learning and adapting,
recognize, classify and organize data through fast time-
variable information processing.

The biological production of biohydrogen through dark
fermentation is a very complex system where the use of an
artificial neuron network (ANN) for prediction, controlling and
monitoring has a great potential. Fermentative hydrogen
processes and technologies are being widely developed in
laboratory scale. Scaling up, however, is being a difficult task
and requires extensive knowledge at the lab scale level [14].
The technology faces economic viability issues and process
modelingis considered one critical requirement for improving
our ability to predict the biohydrogen yield [15]. In this
context, even little gains may be significant and process
optimization/modeling should consider those parameters
that cause low effect on the response variable (those generally
rejected in traditional statistical optimization tools). To date,
the use of ANN in biohydrogen studies mainly focused on the
prediction of biohydrogen production based on process con-
ditions such as pH, temperature, substrate concentration,
inoculum age [3,7,15—17]. This is different from the Modified
Gompertz Model (which uses lag time, H, production potential
and H, production rate to calculate the cumulative hydrogen
production and that cannot be used as a predictive model) and
especially important because ANN allows to discern syner-
gistic effects of multiple variables (n > 3) [18].

Biohydrogen production through dark fermentation occurs
concomitantly with the formation of volatile fatty acids (VFA)
in the liquid phase, which speciation is closely related to
biohydrogen yield. Among the wide range of by-products from
diverse anaerobic microbial metabolism, the two pathways
producing hydrogen from carbohydrates are associated with
acetate and butyrate, resulting in 4 and 2 mols of H, per mol of
glucose, respectively. The presence of more reduced metab-
olites (propionic and lactic acids and ethanol, for example)
results in lower H, production and they are, thus, undesirable.
Reduced products can be avoided by controlling process con-
ditions, such as substrate concentration, hydraulic retention
time (HRT), H, partial pressure, and micronutrients, among
others.

One important step in scaling up biohydrogen process is
process monitoring and production prediction. Monitoring is
generally based on online measurements such as biogas pro-
duction (gas meter) and offline measurements such as biogas
characterization (gas chromatography), substrate consump-
tion (colorimetric methods) and VFAs production (HPLC or gas
chromatography) [19]. The prediction of production is gener-
ally based on process conditions that should be maintained
constant. However, it is not uncommon to have failures in
process control (especially in large volumes systems) that
causes some kind of turbulence. The time period between the
identification of the turbulence and the resolution of the
problem can significantly (or definitely) affect the bioprocess.
In these cases the prediction of the expected volume of bio-
hydrogen will no longer follow the previously method based
on the operating conditions. There must therefore exist a way
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of performing this prediction, which will also help in decision-
taking on the continuation or interruption of the process. All
these become more complex when microbial consortia or
mixed cultures are used instead of pure cultures.

The fermentative hydrogen production process has a spe-
cific relation between the VFAs and the biohydrogen produced
that can be used as a parameter for process monitoring and
biohydrogen prediction. In this work we have used process
data from our previous work [20] where biohydrogen and VFAs
were produced by an identified microbial consortium [21] in a
medium composed of sugarcane vinasse to develop an ANN
model that correlates biohydrogen production to the profile of
VFAs generated with possible application as a prediction tool
in process monitoring.

Material and methods
Dark fermentation process

The anaerobic fermentation process for the production of
bioH, from sugarcane vinasse was described in a previous
work [20]. Shortly, pure vinasse was supplemented with sug-
arcane juice to reach a final concentration of 12 g/L of carbo-
hydrates and the initial pH was 7.0. Dark fermentation was
carried in 2L bioreactors with working volume of 1.5L in batch
mode at 37 °C for 5 days. The procedure for promoting an
anaerobic culture was based on the Balch technique [22]. The
removal of oxygen was achieved by boiling the medium under
an anoxic ambient (CO, atmosphere). Bicarbonate was added
at the temperature of 85 °C and cysteine—HCI at 65 °C as
reducing agents to lower the redox potential of medium. The
inoculum was a microbial consortium originated from a
sample of fruit bat feces.

Samples were withdrawn regularly (10 samples/day),
centrifuged (10* xg), filtered (Milipore 0.2 um) and analyzed for
VFAs. Shimadzu Liquid Chromatograph was equipped with an
Aminex® HPX-87H 300 x 7,8 mm (Bio-Rad) column and a
refractive index detector (RID-10A). The column was kept at
60 °C and a 5 mM H,SO, at 0.6 ml/min was used as the mobile
phase. Gas was measured by the water displacement tech-
nique. Gas analysis was carried in a Thermo Gas Chroma-
tographer equipped with Petrocol DH150 (50 m x 0.25 mm),
DC 200 (1.8 m) and Porapak-N (2.0 m x 1/8"), which were placed
in bypass series flow path of gas chromatograph system. The
columns were connected to a TCD detector (block tempera-
ture: 120 °C, transducer temperature: 120 °C, filament tem-
perature: 190 °C). This system allowed the measurement of
oxygen (O,), nitrogen (N,), carbon dioxide (CO,) and methane
(CH,). Hydrogen (H,) content was then considered as the
amount to reach 100%.

ANN model development

In this study, multi-layer perceptron (MLP) architecture of
ANNs with one hidden layer of neurons was used with back-
propagation (BP) training algorithm implemented in
FORTRAN. Models were developed by varying the amount of
neurons in the intermediate layer (3—5) and by using 70% of
the available data for model training and the remaining 30%

for validation. The number of neurons in the intermediary
layer was determined considering the model accuracy.

All models used fermentation time (days) as input
parameter. Models differed from the input VFA data. ANN
model 1 used acetate and butyrate production (g/L); ANN
model 2, the concentration of all the VFA produced fermen-
tation (lactate, acetate, propionate and butyrate); ANN model
3, the sum of VFAs (VFA7); and ANN model 4, the Butyrate/
Acetate ratio. The output parameters evaluated were (i)
accumulated biohydrogen production (Luo/Lmedium), (ii)
Hydrogen production rate (HPR) (Lys/Lmedium/h) and (iii) H,
yield. For each model different architectures were tested and
the number of intermediary neuron in the best found archi-
tecture is presented in Fig. 1.

The range of acetate, butyrate, lactate and propionate used
were 0.000—1.331, 0.000 to4.616, —0.268 to 1.945 and —0.960 to
0.184 g/L, respectively (negative values means that the VFA
was consumed during the fermentation, in comparison to the
non-fermented medium).

Results and discussion

Very good agreement in the trends between forecasted and
validation data was observed for models 1, 2 and 3, where the
determination coefficient (R?) was always higher than 0.987
(Fig. 2). This means that biohydrogen accumulated produc-
tion, HPR and H, yield could be mathematically predicted from
the produced acetate and butyrate (model 1), VFA (model 3)
and from the concentration of each VFA produced (model 2).
The weights between the input layer and the hidden layer and
the hidden layer and the output layer presented in Table 1
represent the strength of the connection between units.

The correlation coefficient (R?) observed in this study is
higher than most of the published studies that used ANN as a
prediction tool for biohydrogen processes (Table 2). This re-
inforces the utility of such tool in controlling and monitoring
systems. The accuracy of the ANN models proposed can be
explained by process uniformity and the close stoichiometric
relation between VFAs and biohydrogen production and yield.
Although the existence of these correlations is known from a
theoretic perspective, the practical mathematical correlation
between them had not been explored until then. In a lab - or
industrial - scale process where operational parameters are
controlled, process turbulences can cause metabolic shift,
alteration in the microbial population or process contamina-
tion in a way that prediction systems based on operational
conditions will lose their consistency. This is especially
important in mixed cultures or consortium-based processes
where a stable anaerobic microbial community is critical for
hydrogen bioproduction [23].

Considering the different parameters used as input values
for models 1, 2, 3 and 4, VFAt (model 2) is the most simple, fast
and cost-effective strategy in daily routine analysis. However,
the choice of the input parameters in developing ANN models
for biohydrogen prediction is a specific case and should be
chosen carefully. VFAt is widely quantified by titration [28] in
biogas plants, while VFA speciation can only be identified and
quantified through chromatographic methods (Gas or high-
pressure liquid chromatography). The titration method is

https://reader.elsevier.com/reader/sd/pii/S036031991933939...2962DB00427E7C60757004B5F383A5DF1A6CB69BB7B484695CA049E7DD

06/02/2020 08:15

Page 3 sur 8



Development of short chain fatty acid-based artificial neuron netw...ools applied to biohydrogen production | Elsevier Enhanced Reader 06/02/2020 08:15

5178 INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 45 (2020) 5175-5181

ANN model 1 ANN model 2

ANN model 3 ANN model 4

Fig. 1 — Architecture of each ANN model proposed for the prediction of accumulated biohydrogen production. The input and
output parameters and the number of neurons in the hidden layer are presented.
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Fig. 2 — ANN models and validation dataset for (i) biohydrogen production, (ii) hydrogen production rate and (iii) H, yield
from (a) acetate and butyrate concentrations (model 1), (b) every individual VFA produced (model 2), (c) VFAT (model 3) and
acetate/butyrate (model 4). The kinetics of substrate consumption and VFA production is also presented (e).
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Table 2 — Comparative modeling studies using ANN for biohydrogen prediction with focus on the correlation coefficient

(®?).

Input parameters Output parameter(s) Topology R? Reference

Recycle ratio, HRT, sucrose, biomass, pH, Hydrogen production rate 12-20-1 0.906 [24]
alkalinity, ORP, ethanol, acetate, butyrate, propionate

Time, COD, pH, VFAT Hydrogen production rate 4-20-1 0.870 [25]

Inoculum type, temperature, pH, Hydrogen production rate 5-7-7-1 0.900 [26]
substrate types, substrate concentration

ORP, pH, dissolved CO, Hydrogen production rate = 0.96 [27]

PH, substrate concentration, inoculum, temperature, time Hydrogen production rate 5-6-4-1 0.98 [15]

HRT, immobilized cell volume, temperature Biohydrogen yield 3-4-4-2 0.99 [8]

Time, iron, vitamin, molybdenum, light intensity, pH Biohydrogen production rate 6-9-1 0.939 [12]

Time, acetate, butyrate Biohydrogen production rate 3-3-1 0.999 This study

Time, acetate, butyrate, propionate, lactate Biohydrogen production rate 5-5-1 0.999 This study

Time, VFAT Biohydrogen production rate 2-5-1 0.998 This study

less precise than chromatographic ones because interference
can be caused by some possible components of the medium
(ammonia, sulfide, phosphate, bicarbonate) [29].

The use of VFAr as input parameter in ANN models for
biohydrogen prediction is indicated to pure culture where the
metabolic pathway involved is well determined and there is
little VFA profile variation (process turbulence may not affect
definitely VFA speciation). When this is not the case, Butyrate/
Acetate (B/A) ratio, VFA speciation and production should be
considered. Among the VFAs produced during fermentation,
acetate and butyrate pathway results in the production of Hy,
while propionate and lactate do not. For this reason, the
similarity between model 2 and 3 were expected. A prediction/
controlling/monitoring model based on acetate and butyrate
concentrations in the fermentation liquid phase is then more
suitable due to its lower complexity and cost of analysis. The
B/A ratio is another parameter often used as indicator of
biohydrogen production but controversial results are
described in the literature [31]; it must be considered that
some homoacetogens can produce acetate from H, and CO,,
lowering H, yield. Moreover, B/A ratio should not be consid-
ered by itself because in the case of a proportional reduction in
acetate and butyrate and increase of more reduced VFAs, B/A
is maintained constant but H, release is significantly
decreased.

In a hypothetical scenario where a temperature increase/
PH drop/redox imbalance, variation in the feed rate (in the
case of continuous fermentation of complex substrate, hy-
draulic retention time adjustments) occurs and is controlled, a
definitive metabolic shift (for example due to changes in the
microbial community) will affect VFA production and speci-
ation and alter H, production. At this moment, maintaining
operational process in the original conditions does not guar-
antee process correction. If the correlation between VFAs and
biohydrogen production is known, one can predict how the
turbulence will modify the expected production and decide
whetheritis worth keepingit running (or if it is worth trying to
recover it). Having an adaptive and non-linear control system
is, thus, an interesting option for biological process control
and can be used as a predictive controller and monitoring
parameter for management and operation of biohydrogen
production systems.

The perception of the need to valorize the VFAs and the
development of technologies for their application in

integrated industrial systems will likely make VFA analyzes
routine and the application of VFA-based ANN models for
process control and monitoring will be strategic.

Conclusion

The proposed ANN models based on VFA speciation and
quantity could predict with high accuracy the accumulated
biohydrogen production, HPR and H, yield. Although the data
presented in this work indicate that it is possible to develop an
ANN biohydrogen prediction tool based on VFA production
and profile, especially applied after the occurrence of turbu-
lences to the bioprocess, future studies evaluating the adapt-
ability of ANNSs to process turbulences are needed to pave the
way for its use in realistic scale. The choice of input parame-
ters is crucial for the construction of the model and must
consider the metabolic pathways followed by the microor-
ganism(s) and VFAs speciation. VFAT is the input parameter
indicated for processes using pure cultures, while for com-
plex/mixed cultures a model based on acetate and butyrate is
recommended.
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