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Abstract Content Based Image Retrieval (CBIR) is the task of finding simi-
lar images from a query one. The state of the art mentions two main methods
to solve the retrieval problem: (1) Methods dependent on visual description,
for example, bag of visual words model (BoVW), Vector of Locally Aggregated
Descriptors (VLAD) (2) Methods dependent on deep learning approaches in
particular convolutional neural networks (CNN). In this article, we attempt
to improve the CBIR algorithms with the proposition of two image signa-
tures based on deep learning. In the first, we build a fast binary signature
by utilizing a CNN based semantic segmentation. In the second, we combine
the visual information with the semantic information to get a discriminative
image signature denoted semantic bag of visual phrase.

We study the performance of the proposed approach on six different public
datasets: Wang, Corel 10k, GHIM-10K, MSRC-V1,MSRC-V2, Linnaeus. We
significantly improve the mean of average precision scores (MAP) between
10% and 25% on almost all the datasets compared to state-of-the-art methods.
Several experiments achieved on public datasets show that our proposal leads
to increase the CBIR accuracy.

Keywords CBIR · Deep learning · Semantic segmentation · Image Retrieval.

1 Introduction

Content Based Image Retrieval(CBIR) is the task of retrieving in a dataset
the images similar to an input query based on their contents. In addition
CBIR is a fundamental step in many computer vision applications such as
pose estimation, virtual reality, remote sensing, crime detection, video analysis
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2 1 INTRODUCTION

and military surveillance. In the medical field and more specifically in medical
imaging, the search for content through the image can help to make a diagnosis
by comparing an x-ray with previous cases being close to it. Current methods
for image retrieval are efficient but can be further improved to have a quick
search on large databases.

The state of the art mentions two main contributions used for image sim-
ilarity: BoVW [15] (Bag of visual words) and CNN descriptors [27]. For re-
trieval, the images must be represented as numeric values. Both contributions
represents images as vectors of valued features. This vector encodes the prim-
itive image such as color, texture, and shape. BoVW encode each image by
a histogram of the frequency of the visual words in the image. Deep learning
is a set of machine learning methods attempting to model with a high level
of data abstraction. Deep learning, learn features from input data (images in
our case) using multiple layers for a specified task. Furthermore, deep learning
has been used to solve many computer vision problems such as image and
video recognition, image classification, medical image analysis, natural lan-
guage processing... . Particularly Convolutional Neural Networks (CNN) have
yielded an improvement on several image processing tasks.

In CNN-based CBIR approaches, the image signature is a vector (feature
map) of N floats extracted from the feature layer (for example, the Fc7 layer
for AlexNet [27]). The similarity between images is computed according the L2
distance between their signatures. When the dataset is large, the approximate
nearest neighbor(ANN) search is used to speed up the computation. CNN
based features used in existing CBIR works have been trained for classification
problems. It is therefore invariant to the spatial position of objects. However
CBIR applications should take care of the spatial position of semantic objects.

Semantic segmentation is a key step in many computer vision applications
such as traffic control systems, video surveillance, video object co-segmentation
and action localization, object detection and medical imaging. In CBIR mod-
els, the raw image should be transformed in a high level presentation. We
argue that semantic segmentation networks, originally designed for other ap-
plication can also be used for CBIR. We propose, in this paper to study how
recent semantic segmentation networks can be used in CBIR context. Deep
Learning based semantic segmentation networks output a 2D-map that asso-
ciates a semantic label (class) to each pixel. This is a high level representation
suitable for encoding a feature vector for CBIR that also encodes roughly spa-
tial positions of objects. Two methodologies based on semantic segmentation
are proposed in this paper with the aim to improve image representation. Our
contributions are as follows:

– The first approach transforms the semantic output (2D-map) into binary
semantic descriptor. The descriptor which encodes the image integrates
at the same time the semantic proportions of objects and their spatial
positions.
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– The second approach builds a semantic bag of visual phrase by combining
the visual vocabulary with semantic information from the output of CNN
network.

To test the performance of our framework we conducted the experimenta-
tion on six different databases. This article is structured as follows: we provide
a brief overview of convolutional neural networks descriptors and bag of visual
words related works in Section 2. We explain our proposals in Section 3. We
present the experimental part on six different datasets and discuss the results
of our work in Section 4.

2 State of the art

Many CBIR systems have been proposed in the last years [19] [1] [63] [42] [13] [9].
The content based image retrieval system (figure 1) receives as input a query
image and returns a list of the most similar images in the database. The frame-
work starts with the detection and extraction of the features and the signa-
ture construction step. Finally, the closest images to the input query found
by the similarity measures between the images signature using L2 distance.
We present a brief overview of approaches based on either visual and learning
features.

Fig. 1 General CBIR System Architecture

2.1 Local visual features

Bag of Visual Words proposed by [15] is the most utilized model to classify the
images by content. This methodology is made out of three principle steps: (I)
Detection and Feature extraction (ii) Codebook generation (iii) Vector quan-
tization. Recognition and extraction of features in an image can be performed
utilizing extractor algorithms. Numerous descriptors have been proposed to
encode the image into a vector. Scale Invariant Feature Transform (SIFT) [32]
and Speeded-up Robust Features (SURF) [7] are the most utilized descriptors
in image retrieval. From another point, parallel descriptors have demonstrated
to be efficient. These descriptors based binary encoding of the features images.
[47] proposes ORB (Oriented FAST and Rotated BRIEF) to speed up the
search. An other work [29] combines two aspects: accuracy and speed because
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of the BRISK (Binary Robust Invariant Scalable Keypoints) descriptor. [22]
presents a discriminant descriptor for image dependent on a mix of contour
and color information.

In an offline stage, the codebook is generated from the collection off all
descriptors from a training dataset. To do this, the K-MEANS approach is
applied on the set of descriptors to obtain the visual words. The center of each
cluster will be used as the visual word. Finally, for each image the histograms
of the frequency of vocabularies or visual words, i.e. the image signature is
created. Because of the limits of visual words approach numerous upgrades
have been proposed for more accuracy. Bag of visual phrases (BoVP) is a sig-
nificant level utilizing more than single word for representing an image. In [39],
the proposed approach formed the phrases using a sequence of n-consecutive
words regrouped by L2 metric. In [21], the authors proposed to link the visual
words based on sliding window algorithm. [45] build an initial graph then
split it into a fixed number of sub-graphs using the N-Cut algorithm. Every
histogram of visual words in a sub-graph is a visual phrase. [12] link the visual
words in pairs using the neighbourhood of each point of interest. Perronnin
and Dance [41] apply Fisher Kernels to visual words represented by means of
a Gaussian Mixture Model (GMM) and introduced a simplification for Fisher
kernel. Similar to BoVW model, the vector of locally aggregated descriptors
(VLAD) [23] affect to each feature or keypoint its nearest visual word and ac-
cumulates this difference for each visual word. Using ACP is frequent in CBIR
applications thanks to its ability to reduce the descriptor dimension without
losing its accuracy.

2.2 Learning-based Features

First CNN models are interested in extracting the vector features or fea-
ture descriptor from the fully connected layer (AlexNet [27], VGGNet [50],
GoogleNet [53] and ResNet [52]). For example, in AlexNet the size of the
descriptor from the fc7 layer is 4,096. Similar to Local visual Feature ap-
proaches, after extracting all descriptors the retrieval is achieved using Eu-
clidean distance between the signatures. Before being used to extract features,
the CNN must be trained on large-scale datasets like ImageNet [16]. Inspired
from VLAD, NetVLAD [3] is a CNN architecture used for image retrieval. [5]
reduce the training time and provides an average improvement in accuracy.
[48] use at the same time a convolutional neural network (CNN) and support
vector machine (SVM) to solve the CBIR problem.

Recently, some networks have been developed especially for the CBIR
task. Different models have been proposed such as generative adversarial net-
works [51] [55] [24], auto-encoder networks [58] [49] [20] and reinforcement
learning networks [62] [60]. In [8] the VGG16 architecture is used for extricating
significant elements and utilizing these components for the image retrieval task.
The method proposed in [25] consists in exploring the use of CNN to determine
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a high dynamic range (HDR) image descriptor. In [44], a method is proposed to
fine-tune CNNs for image retrieval on a large collection of unordered images in
a fully automated manner. In [43] a CBIR system has been proposed based on
transfer learning from a CNN trained on a large image database. The authors
in [61] have used PCA Hashing method in combination with CNN features
extracted by the fine-tuned model to improve the performance of CBIR tasks.
In addition local detectors and descriptors [54] [33] [17] [38] based on CNN for
CBIR task can also replace the classical features detection where each interest
point is described by a vector.

Despite the speed of the approaches based on visual features and their
good results on small datasets, they are still unable to find an image on a
large scale database. Approaches based on deep learning have proven useful
for both large and small datasets in term of accuracy and precision. While Deep
Learning has many advantages, it also has its limits, including a huge need
for computing power to ensure the maintenance of artificial neural networks,
but also to process the very large amount of data required. In this article, we
have tried to combine the discriminative power of two approaches in order to
obtain more relevant results.

3 Contributions

Encoding is the process of converting the data into a specified format for a
specific task. In CBIR, encoding image content has met with great success.
In addition, encoding images offers many advantages and benefits in terms of
searching, retrieving and increasing the accuracy of CBIR system. Many ap-
proaches based on encoding such as BoVW [15], Fisher vector encoding [41],
VLAD [23], CNN [27] achieve excellent performance. Consequently, encoding
image content is a key element which leads to increase the CBIR system per-
formance. Inspired by recent successes of deep learning, we propose two image
signatures based on the use of CNN. In the following sections we will explain
each one in more depth.

3.1 Semantic Binary Signature : SBS

Since the term similar means here with the same semantic content, we propose
to explore in this section, an image signature that uses semantic segmentation
networks, coupled with a binary spatial encoding. Such simple representation
has several relevant properties: 1) It takes advantage of the state of the art
semantic segmentation networks and 2) the proposed binary encoding allows
a Hamming distance that requests a very low computation budget resulting
to a fast CBIR method.

Given a semantic 2D-map, our method (Figure 2) transforms the seman-
tic prediction into a semantic binary signature. The signature construction
comprises two main unsupervised processing units: (i) Encoding of spatial
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information (ii) Encoding of proportion. As shown in the upper part of the
figure 2, given a query image Iq, we obtain the prediction Iseg using the se-
mantic segmentation algorithm described in [57] in an offline stage. Then, we
split the predicted Iseg into 4n blocks Isub. For each block, we encode both
spatial and proportion information into a binary matrix. In order to obtain the
two main components, we concatenate them to perform a discriminative se-
mantic signature. The similarity between the images signatures are computed
by Hamming metric because this distance is fast for the comparison of binary
data.

Fig. 2 Different steps for building semantic binary signature.

3.1.1 Encoding of spatial information

Fig. 3 Illustration of the spatial division. The semantic image divided into 4n blocks.

We propose to encode spatial information using a binary encoding. In a
first stage, the image is divided in a recursive way (see figure 3). For level one,
the image is split into 2 x 2 spatial areas without overlap that are denoted
as blocks. The same operation is then achieved for each block (level 1), and
so on. It results that for n levels, the recursive splitting process generates a
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set of nb = 4n blocks. In a second stage, a binary vector is associated to each
block. It is a simple way to encode spatial statistics and has been used for
histogram based features for example. The binary vector we propose should
provide information from existing semantic classes in the block: if a semantic
class is present in the block, it is assigned a 1, otherwise a 0. We thus obtain
a binary vector for each block that indicates the presence of semantic classes.

Fig. 4 An example of converting a semantic block to a semantic binary vector.

Figure 4 shows a spatial division into four blocks of the semantic image.
A binary vector is assigned to each block to indicate the presence of semantic
classes. Our example here shows by value 1 the presence of semantic classes
such as sky, building, person, ... and by 0 the missing classes. The process
of creating binary vectors stops when we obtain four vectors corresponding
to the four blocks. Finally, we concatenate the binary vectors of all blocks to
obtain the global signature Ss from an input image.

3.1.2 Encoding of proportion information

In the second step, we complete the binary spatial presentation with informa-
tion on the proportion of each semantic class. To do this, we propose to encode
the proportion of semantic classes from the segmented image using the same
spatial division used when encoding spatial information.

Given a segmented image Iseg, we detect the semantic classes present in
each block using the neural network. Then, for each semantic class Ci we
calculate its proportion as a percentage PCi in the block. After assigning the
percentages of all the classes, a binary conversion process is applied to each
PCi

indicated in the equation (2):
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Fig. 5 Example of encoding the proportion information. Given an image divided into 4
blocks, we iteratively select each block to calculate the proportion of the semantic class
inside.


if 0 < PCi

<= 0.25 then BPCi
= [0001]

if 0.25 < PCi
<= 0.5 then BPCi

= [0011]

if 0.5 < PCi
<= 0.75 then BPCi

= [0111]

if PCi > 0.75 then BPCi = [1111]

(1)

For cases where the semantic class Ci is not present in the block, the bit
string BPCi = [0000] is automatically assigned. In order to keep all the scores,
we collect them together in the bit string named BSubj which is a binary
description of the proportion of the classes in the block number j:

BSubj = [BPC1 BPC2 ... BPCM
]

where M is the number of classes that the network has learned to detect.
Finally, we concatenate all the bit strings BSubj to obtain a signature of
global proportion SP corresponding to the segmented input image Iseg where
SP = [BSub1 BSub2 ... BSubnb

]. We start the tests with large blocks, then
we repeat them with smaller blocks. When nb = 1 it means that no spatial
division was applied on the image. Therefore, we only encode the semantic
proportion information of the whole image. Finally, the binary signature S of
an image is the bit string [SS SP ].
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3.2 Semantic bag of visual phrase: SBOVP

Fig. 6 Different steps for building semantic bag of visual phrase signature.

Based on the semantic segmentation output (2D-map), we propose in this part
an efficient image signature combining the bag of visual phrase and seman-
tic segmentation. As shown in Figure 6, we start by constructing the images
signatures for both query and dataset. Our signature join semantic data with
visual features to improve the image representation without prior knowledge.
We compute the similarity between the signature of the query and the sig-
nature of each image in the dataset utilizing the euclidean distance (DL2).
Then, the candidates with lowest distance are considered the most similar to
the input query. We will clarify our methodology in detail in the following.

Fig. 7 Flow-chart of features extraction.



10 3 CONTRIBUTIONS

Fig. 8 Flow-chart of assigning semantic visual words.

Bag of visual phrase is an improved version of bag of visual words model
and a high-level image description utilizing more than one word. Therefore,
a visual phrase is a set of words linked together. Various methods have been
proposed [45] [37] [21] in the state of the art that are able to construct visual
phrases by different manners (Clustering, Graphs, Regions, KNN by metric,
etc). The primary burden of the proposed strategies is that they do not take
into consideration the spatial position of semantic objects.

Fig. 9 Flow-chart of Semantic Bag of Visual Phrase.

The proposed bag of visual phrase algorithm uses deep learning, in partic-
ular semantic segmentation, to link the visual words in the image. We attempt
by the figure 9 to clarify in detail the signature construction steps. We start
by two parallel processes: (1) Extraction of semantic information (2D-map)
using the semantic segmentation algorithm and features detection then ex-
traction (see fig.7) using visual descriptors (KAZE/SURF in our case). Next,
we project the location of keypoints on the 2D-map to assign a class label to
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each keypoint (see fig.8). In parallel, we assign to each keypoint from an image
the visual word VWj with the lowest distance using equation 2.

∥dkpi
− VWj∥L2

=

√√√√dim∑
d=1

(dkpi
(d)− VWj(d))2 (2)

where dim is the dimension of descriptor (64 in our case) and dkpi
is the de-

scriptor of the keypoint number i.

The visual vocabulary or visual words are computed in an offline stage using
the K-MEANS [26] algorithm trained on Pascal Voc dataset. At this point each
keypoint is described by two main components: class label Ci and visual words
VWj . We obtain at this stage a discriminative keypoint description combining
visual and semantic information. Next step, we divide the obtained semantic
visual words into N regions corresponding to the semantic classes predicted
by the trained CNN. We confirm here that the keypoints are grouped by
semantic criteria in which each region represents an object in the image. For
each region, we construct the visual phrases based on the semantic visual
words inside. Then, for each visual word VWi in the region, we link it to its
nearest neighbor using approximate nearest neighbor (ANN) algorithm (LSH
forest [6]) to obtain a visual phrase (VWi,VWj). The main gain of using ANN
algorithm in the signature construction process is to reduce the complexity of
searching time compared to brute force algorithm especially when the region
contains an exponential number of visual words VWi.

In the bag of visual phrase approach, the image signature is an upper
triangular matrix H of dimensions L × L with L the number of visual words
in the codebook. This matrix plays a role similar to the histogram in the bag
of words approach. The matrix H is initialized at zero. Then for each visual
phrase composed of a set of visual words S = {VWi1 , V Wi2 , ..., V Win}, we
increment the values H(ik1 , ik2) for each pair of {VWk1 , V Wk2} ⊂ S. The
last step is to select the candidates from the dataset that are similar to an
input query depending on the distance between their signatures according to
equation 3:

D(H1, H2) =

√√√√ L∑
i=1

L∑
j=i

(H1(i, j)−H2(i, j))2 (3)

4 Experimental Results

4.1 Experimental protocol

4.1.1 Overview

In order to evaluate the results of different methods or parameters, we use the
Mean Average Precision (MAP) score [2]. The evaluation is done on several
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widely used benchmark datasets (described in paragraph 4.1.2). Our methods
both require the use of a semantic segmentation network. We explain our
choice of HRNet in paragraph 4.1.3. Once the network has been chosen, it can
be trained on several training datasets. We select two of them : coco-stuff and
Mseg (with more details given in paragraph 4.1.4) and compare the results
obtained with either of them.

We start by evaluating the performance of our methods and compare the
results obtained by varying their parameters in section 4.2. For the Semantic
Binary Signature (SBS), we study the effect of changing the number of blocks.
For the Semantic Bag Of Visual Phrase (SBVOP), we test the effect of the
length of the phrase and the choice of the feature descriptor (SURF or KAZE).

Then we keep the best method and parameters which is then compared to
state of the art methods in section 4.3.

4.1.2 Benchmark datasets

Name Size ground Query mode
DB / Queries Truth

Corel 1K [56] 1000 / 1000 100 query-in-ground Truth
(Wang)

Corel 10K [56] 10.000 / 10.000 100 query-in-ground Truth
GHIM-10K [56] 10.000 / 10.000 500 query-in-ground Truth
Linnaeus [11] 6000 / 2000 400 queries/

dataset are disjoint
MSRC v1 241 / 241 - query-in-ground Truth
MSRC v2 591 / 591 - query-in-ground Truth

Table 1 Database used to evaluate of approach

In this section, we present the potential of our approach on six different
datasets (Table 1). Our goal is to increase the CBIR accuracy and reduce the
execution time. To evaluate our proposition we test on the following datasets:
• Corel 1K [56] or Wang is a dataset of 1000 images divided into 10 categories
and each category contains 100 images. The evaluation is done by computing
the average precision of the first 100 nearest neighbors among 1000.
• Corel 10K [30] is a dataset of 10000 images divided into 100 categories and
each category contains 100 images. The evaluation is done by computing the
average precision of the first 100 nearest neighbors among 10000.
• GHIM-10K [30] is a dataset of 10000 images divided into 20 categories and
each category contains 500 images. The evaluation is done by computing the
average precision of the first 500 nearest neighbors among 10000.
• MSRC v1 (Microsoft Research in Cambridge) which has been proposed by
Microsoft Research team. MSRC v1 contains 241 images divided into 9 cat-
egories. The evaluation on MSRC v1 is based on MAP score (mean average
precision)
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• MSRC v2 (Microsoft Research in Cambridge) contains 591 images including
MSRC v1 dataset and divided into 23 categories. The evaluation on MSRC v2
is based on MAP score (mean average precision)
• Linnaeus [11] is a new dataset composed of 8000 images of 4 categories
(berry, bird, dog, flower). The evaluation on Linnaeus is based on MAP score
(mean average precision)

4.1.3 Deep learning methodology for semantic segmentation

In the last years, many architectures have been proposed for image segmen-
tation such as Hourglass [35], SegNet [4], DeconvNet [36], U-Net [46], Sim-
pleBaseline [59] and encoder-decoder [40]. The existing approaches propose to
encode the input image as a low-resolution representation by connecting high
to low resolution convolutions in series and then recover the high-resolution
representation from the encoded low-resolution representation. In this work,
we use a novel architecture, namely High-Resolution Net (HRNet) [57]. The
advantage of using HRNet is that the resulting representation is semantically
richer and spatially more exact which allows to maintain high-resolution repre-
sentations. Then, to segment an image we apply the HRNet model pretrained
on multiple datasets cited in table 2 to obtain the class label of each pixel in
the image.

In the training stage HRNet [57] use the SGD optimizer [18] with the base
learning rate of 0.01, the momentum of 0.9 and the weight decay of 0.0005.
The poly learning rate policy with the power of 0.9 is used for dropping the
learning rate. All the models are trained for 120K iterations (epochs) with the
batch size of 12 on 4 GPUs and syncBN. As stated in [57], the inference time
cost is around 0.15 s per batch for an input size 1024× 2048 and a batch size
bs = 1 on a V100 GPU card, which is 2 to 3 times faster than competing
models.

Fig. 10 Illustrating the architecture of HRNet [57].
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4.1.4 Training datasets for semantic segmentation

Many semantic segmentation datasets have been proposed in last years such
as Cityscapes [14], Mapillary [34], COCO [31], ADE20K [64], Coco-stuff [10],
Mseg [28] and others. In this work, we use the recent implementation HRNet-
W48 [57] architecture trained on Coco-stuff [10] and Mseg [28] datasets. The
main advantage of using Coco-stuff [10] and Mseg [28] datasets( Table 2) is
that they are able to handle both thing and stuff objects. Thing objects have
characteristic shapes like vehicle, dog, computer... and stuff objects is the
description of amorphous objects like sea, sky, tree,... .

Dataset Images Merged All Stuff / Thing Year
Classes classes classes

Coco-stuff [10] 164K 172 172 92 / 80 2018
Mseg [28] 220K 194 316 102 / 94 2020

Table 2 Details about semantic dataset used to train the network.

4.2 Evaluation of our methods and selection of parameters

aaaaaaaaaaa

Retrieval
Dataset

Number of
blocks 40 = 1 41 = 4 42 = 16 43 = 64

Semantic Dataset : Mseg [28]
MSRC v1 0.79 0.83 0.81 0.89
MSRC v2 0.64 0.71 0.67 0.73

Linnaeus [11] 0.71 0.78 0.73 0.77
Corel 1K(Wang) [56] 0.77 0.81 0.80 0.86

Corel 10K [30] 0.53 0.56 0.56 0.57
GHIM-10K [30] 0.53 0.53 0.54 0.55

Semantic Dataset : Coco-stuff [10]
MSRC v1 0.75 0.81 0.79 0.83
MSRC v2 0.61 0.62 0.61 0.66

Linnaeus [11] 0.58 0.66 0.64 0.68
Corel 1K(Wang) [56] 0.76 0.78 0.75 0.82

Corel 10K [30] 0.48 0.47 0.46 0.49
GHIM-10K [30] 0.47 0.48 0.46 0.48

Table 3 MAP evaluations for semantic binary signature (SBS) using Mseg and Coco-stuff
datasets

We conducted our experimentation on two different semantic prediction datasets [10]
[28] and six retrieval datasets (Table 1). Table 3 presents the mean average
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precision (MAP) scores for dataset per size of blocks for the semantic binary
signature. We conduct the tests by starting with large blocks then going to
small blocks. When the parameter n = 1, the encoding of semantic spatial
information is not done and we encode only the semantic proportion infor-
mation. We notice that the performance (MAP) increase in table 3, as the
number of blocks increases. The Hamming distance is the similarity metric
used to compute the similarity between the query and dataset for the semantic
binary signature.

aaaaaaaaaaa

Retrieval
Dataset

Number of
blocks 40 = 1 41 = 4 42 = 16 43 = 64

MSRC v1 8.8 9.1 12.8 28.1
MSRC v2 8.5 9.8 13.6 30.6

Linnaeus [11] 9.1 11.3 18.6 37.6
Corel 1K(Wang) [56] 10.1 14.3 29.5 41.6

Corel 10K [30] 10.4 14.5 28.9 42.1
GHIM-10K [30] 11.2 15.4 30.1 44.2

Table 4 Execution time in milliseconds (ms) per image (using a single thread) for all
datasets

In table 5, we present the quantitative MAP results utilizing the semantic
bag of visual phrase signature (SBOVP) on the retrieval dataset (see table 1).
We test after training the semantic segmentation network on two different
semantic datasets (Mseg, Coco-Stuff). In addition, for each semantic dataset
we have utilized two different visual descriptors (KAZE and SURF) to test
our mixture approach among visual and semantic data. We notice that the
prediction obtained using Mseg dataset is better in terms of score than Coco-
stuff.

aaaaaaaaaaa

Retrieval
Dataset

Method

SBOVP(Mseg [28]) SBOVP(Coco-stuff [10])

SURF KAZE SURF KAZE
MSRC v1 0.90 0.91 0.89 0.88
MSRC v2 0.71 0.73 0.74 0.75

Linnaeus [11] 0.79 0.80 0.77 0.78
Corel 1K(Wang) [56] 0.89 0.88 0.87 0.85

Corel 10K [30] 0.61 0.63 0.60 0.61
GHIM-10K [30] 0.57 0.55 0.56 0.54

Table 5 MAP evaluations for semantic bag of visual phrase signature (SBVOP) using Mseg
and Coco-stuff datasets.
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4.3 Comparison with State-of-the-Art

We compare our results with two main categories of approaches: (i) Local
visual Feature: methods based on local features like Surf, Sift included the
inherited methods such as BoVW, Vlad, Fisher. (ii) Learning based features:
methods based on learning the features using deep learning algorithms. In
Table 6 we compare our results with several state of the art methods and we
highlight in bold the best MAP score. As can be seen, our proposed method
present good performance on nearly all datasets.

Methods MSRC v1 MSRC v2 Linnaeus Wang Corel-10K GHIM-10K
BoVW [15] 0.48 0.30 0,26 0.48 0.30 0.39
n-BoVW [37] 0.58 0.39 0.31 0.60 0.34 0.41
VLAD [23] 0.78 0.41 - 0.74 0.38 0.44
N-Gram [39] - - - 0.37 - -
AlexNet [27] 0.81 0.58 0.47 0.68 0.40 0.52
VGGNet [50] 0.76 0.63 0.48 0.76 0.45 0.57
ResNet [52] 0.83 0.70 0.69 0.82 0.59 0.62
SaCoCo [22] - - - 0.54 0.17 0.15
Ruigang [48] - - 0.70 - - -

Ayan[9] - - - 0.79 0.52 -
Chu[13] - - - 0.80 0.45 0.51

Ours(best) 0.91 0.75 0.80 0.89 0.57 0.63

Table 6 Comparison of the accuracy of our approach with methods from the state of the
art (best scores in bold)

For any CBIR system the execution time depends on the time needed for
the signature construction. The main desired objective of the semantic binary
signature is its ability to reduce and minimize the execution time of CBIR. We
compare only the time taken by each method to build its signature. We want
to highlight here that the extraction, detection and semantic segmentation
time are not taken into consideration for all the compared methods. Figure 11
presents a comparison of the time needed for the signature construction for the
state of the art methods and our semantic binary signature method. The low
computation time is a strong advantage of our method. Moreover, the time
required for the computation of the distance between signatures is also very
low because we use the fast Hamming distance.
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Fig. 11 Comparison of execution time between semantic binary signature and the state of
the art.

In Table 7, we comparethe MAP score of the top 20 retrieved image with
the SBVOP method for all categories for Wang dataset. In figure 12 we show
the mean precision (AP) performance of top 20 retrieved image for 10 category
compared to [19][1][63][42] methods.

Methods Top 20
ElAlami [19] 0.76

Guo and Prasetyo [1] 0.77
Zeng et al. [63] 0.80

Jitesh Pradhan [42] 0.81
Proposed method 0.94

Table 7 comparison of MAP for the top 20 retrieved images on the Wang dataset with the
state of the art methods. Our method is the semantic bag of visual phrase.
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Fig. 12 comparison of precision for the top 20 retrieved images for all categories (Corel 1K
(Wang) dataset) using semantic bag of visual phrase method.

Figure 13 clearly indicates how the semantic binary signature is able to
select the similar images to the input query based on the semantic content.
The selection is based on the hamming distance between the query and the
image dataset. Experiments with a single thread for each image, the descriptor
requires 9 ms on average (Table 4).

Fig. 13 From different categories selected from different datasets, we show the queries with
their corresponding segmentation and the three nearest neighbors selected by our method
using HRNet-W48 [57] trained on Mseg dataset

5 Discussion

The results obtained show the interest of the proposed methodologies based
on both semantic segmentation and visual features.

The recovery accuracy is considerably higher than all methods except for
the Corel-10K dataset. These results are obtained thanks to the CNN (High-
Resolution Net (HRNet) [57]) output for which the input size is the same as
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the output. Contrariwise many architectures give a segmented image with re-
duced size which influences the data extraction step and matching process.
In addition, HRNet [57] is able to provide a very high resolution segmented
image. Another point of discussion is the number of classes trained in the
architecture. We get the best performance when training using the Mseg dat-
set [28] because of the high number of trained class (316). By comparison, the
Coco-stuff datset [10] has only 172 classes.

The computation time of the retrieval of binary signatures is clearly less
than the semantic bag of visual phrase due to the binary encoding.The his-
togram construction process takes 5 times less than the state of the art meth-
ods. Compared to the second proposed method it is 3 times less due to the
time taken during the semantic visual vocabulary construction step.

As we obtain an image signature combining semantic and visual features
(SBOVP), the increase in complexity of the construction of the image signature
has an effect in the global retrieval process in terms of time. In addition, the
results are good because of the mix between semantic and visual data. The
time of the signature construction step depends on the number of visual words
that are linked together for obtaining the visual phrase.

Increasing the number of visual words during the visual phrase construction
process affects the accuracy of the algorithm. In figure 14, we show the impact
of the visual phrase length on MAP score. In the definition, the visual phrase
is built by at least two visual words. In the experiments, we test the effect of
visual phrase made when the number n of visual words is comprised between
2 and 4. There is little difference in the MAP score between n = 2 and n = 3.
However, augmenting the value of n to 4 produces noise and negatively affects
the robustness of the constructed visual phrase.

Fig. 14 Investigation of the impact of parameters n, number of visual words in phrases.

The ideal case is when the visual phrase is constructed with two visual
words. In our work the image signatures mainly depends on the semantic
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objects detected by the neural network trained on thousands of labelled objects
in images from a large dataset. Then the key step is converting the semantic
output to numeric values for the retrieval step. In some cases the retrieval
process cannot find the exact results because the test images contain new
objects which were not present in the training dataset.

Finally, we compare our approach against a few state-of-the-art methods in
Table 6. Here we give the results given by the authors when they are available
(with the ’-’ symbol when they are unavailable) or calculated by us. In Table 7,
we have shown that our approach is better than all the methods based on
keypoints. The main reason here is that the combination between semantic
information and visual information improves the robustness of signatures. So,
it is easy to see that our proposed approach largely surpasses well-known
methodologies.

6 Conclusion

We have presented in this paper two different image signatures based on deep
learning. We exhibit that the use of semantic segmentation in the CBIR sub-
ject can improve the recovery of images. In the first contribution, we have
shown that by encoding the image information as binary leads to improve the
CBIR accuracy and reduce the execution time. In the second, we combined
the visual information with the semantic information to build a discriminative
signature. Indeed, even the second signature is better in terms of precision, the
first signature is faster to classify the images based on semantic content. The
experimental evaluation indicates that our approach achieve a better results
in terms of accuracy and time compared to the state of the art methods.
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