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Abstract Appearance changes are one of the most challenging problems for
the visual localization of an autonomous vehicle in outdoor environments. Data
association between the current image and the landmarks in the map can be
difficult if the map was built with different environmental conditions. This
paper presents a solution to build and use multi-session maps incorporating
sequences recorded in different conditions (day, night, fog, snow, rain, change
of season, etc.). During visual localization, we exploit a ranking function to
extract the most relevant information from the map. This ranking function is
designed to take into account the pose of the vehicle and the current environ-
mental condition. In the mapping phase, covering all conditions by constantly
adding data to the map leads to a continuous growth in the map size which
in turn deteriorates the localization speed and performance. Our map man-
agement strategy is an incremental approach that aims to limit the size of the
map while keeping it as diverse as possible. Our experiments were performed
on real data collected with our autonomous shuttle as well as on a widely used
public dataset. The results demonstrate that our approach has significantly
improved localization performance in different challenging conditions.
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1 Introduction

Autonomous navigation in dynamic environments is becoming a central is-
sue in robotic research field. Accurate localization in such environment is a
must for mobile robots to ensure reliable and safe navigation. Simultaneous
localization and mapping (SLAM) offers a decent solution for mobile robots
to perform localization and mapping without any prior knowledge of the en-
vironment. SLAM is a process in which an autonomous robot models its own
environment using different kinds of sensors, while simultaneously, predicting
its own position in this map.

Recently, cameras are becoming one of the most commonly used types of
sensors in SLAM thanks to their cheap setup requirements and their efficiency.
Visual-SLAM (SLAM using cameras as sensors) has widely drawn attention
of researchers and it is seeing a growing number of real-time applications in
different disciplines. Appearance change remains a major challenge for visual-
SLAM, re-localization in previously mapped areas can be a hard task since the
appearance of the environment is changing ceaselessly and such phenomenon
can result in inaccurate or erroneous localization. In some applications like self-
driving cars, the pose estimation part of the SLAM process is very delicate
and must be taken very carefully because even a small error in estimating the
pose of the vehicle can result in a dangerous accident. To ensure a secure and
safe life-long navigation in dynamic environments, autonomous vehicles must
cope with such challenge.

In this work, we are developing a SLAM system for autonomous shuttles. In
such context, shuttles are frequently revisiting the same place in different times
and different environmental conditions. In some of our previous works [29], we
employed a driverless shuttle for three months on an industrial site, totaling
nearly 1500 km of autonomous travel. During this experience, we identified
some long-term difficulties for autonomous navigation. Operating in dynamic
environments for long period can considerably impact localization performance
over time. Localization in such scenario using a primitive mapping system
where no map management is involved will result in a continuous growth of
the map. Therefore, a large memory space is needed to store such map resulting
in an exponential increase of the time required to retrieve relevant information
for localization.

This paper is an extension of our previous work published in a conference
paper [2] in which we presented a keyframe retrieval technique able to retrieve
relevant data from a multi-session map that incorporates multiple environ-
mental conditions. In this present paper, we introduce two new contributions
compared to our previously published work:

– an extended evaluation of the keyframe retrieval algorithm on a much larger
dataset.
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– a map management algorithm which builds a multi-session map targeted
at optimal localization performance with a bounded memory constraint.

We will recall the keyframe retrieval approach in this paper for a better
understanding of the new evaluations. In this keyframe retrieval approach,
we proposed a localization approach able to take advantage of a visual land-
mark map composed of N sequences gathered at different times. Generally,
basic SLAM algorithms retrieve the keyframes that are used for localization
based on their geometric distance to the vehicle pose. However, this technique
has shown a weakness in long-term localization because it doesn’t take into
account environmental changes. This incents us to develop a new strategy
for keyframe retrieval in order to adapt our SLAM algorithm [15], [29] for
long-term operation. During the localization process, we aim to maximise the
number of matched points (i.e. ameliorate the localization performance) by
retrieving relevant experiences from a map that integrates numerous environ-
mental conditions. Our proposed keyframes retrieval approach takes advantage
of statistics gathered in the first few meters of a traversal in a given location
to compute a probabilistic ranking function. This ranking function is used in
the rest of the traversal to retrieve from the map the most relevant keyframes,
taking into account the current environmental conditions. In order to ensure
our ranking function consistency, we keep updating it regularly throughout
the trajectory.

The second contribution of this paper consists of a map management ap-
proach. In this approach, we aim to extend the keyframe retrieval technique by
adding a complementary algorithm that is designed to reduce the size of the
map. This algorithm is based on some fundamentals proposed in the keyframe
retrieval approach. The aim of the map management approach is to maintain
a reliable map with a fixed size throughout the frequent runs. In this part,
we exploit the scores of resemblance between the traversals in the map. These
scores were computed in the keyframe retrieval part and will be used to de-
termine which traversal has the highest similarity to the others to remove it
eventually.

In Figure 1, we present a diagram explaining the operating mechanism of
both processes and the link between them. This diagram is constituted from
two main parts, the keyframes retrieval part (recalled in Section 3), and the
map management part explained in Section 4. Our system uses a multi-session
map that incorporates multiple traversals recorded in different environmental
conditions. Each time a new image arrives, the keyframes retrieval algorithm
has to extract from the map relevant data to the current environmental con-
dition. These retrieved data are then used to compute the vehicle pose. After
the end of the localization session, our map management algorithm will be in-
voked offline to update the map by adding new data or removing superfluous
information.

We evaluated our approaches on the Oxford RobotCar dataset [19] and a
new dataset recorded on our vehicle that we make available to the community.
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Fig. 1: A diagram representing the operating mechanism of the approach proposed in this
paper.

Our dataset is called IPLT1(Institut Pascal Long-Term) dataset and it con-
tains, at the moment, 109 sequences recorded over a 16 months period in which
the vehicle has followed the same path around a parking lot with slight lateral
and angular deviations. This dataset contains various environmental condi-
tions due to changes in luminance, weather, seasons and in parked vehicles
and each sequence is around 200 m length (see Figure 2).

Fig. 2: Example of 6 sequences recorded in a parking lot.

Our experiments demonstrated that our approach has significantly in-
creased localization performance and allowed us to successfully localize in
challenging conditions.

1 To download our dataset please visit http://iplt.ip.uca.fr/datasets/ and enter the
following username/password for a read-only access to our ftp server: ipltuser/iplt_ro

http://iplt.ip.uca.fr/datasets/
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2 Related work

Substantial efforts were made in visual recognition of places in static scenes or
with few moving objects, but it is only recently that attempts have been made
to extend localization performance in changing environments (for example,
day-to-night or season-to-season correspondence).

Traditional feature-based comparison techniques are not suitable for long-
term operations due to their weakness to changing conditions. An image based
approach was proposed by Murillo and Kosecka [24] to improve localization
in dynamic environments by representing a place by a global descriptor cal-
culated with the entire image. In this approach, recognizing a place requires a
deep search in the database to find the corresponding image, which is costly
in large-scale environments. Milford and Wyeth [21] proposed to enhance the
performance of global image descriptors for places recognition by matching se-
quences («SeqSLAM») of images instead of unique images and they achieved
impressive results on various seasonal datasets. Although «SeqSLAM» has
shown excellent performance in some situations, it remains sensitive to view-
point changes. Pepperell et al. [27] extended the classic SeqSLAM structure
that uses linear image databases. They integrated an oriented graph struc-
ture to represent the roads. They also used panoramic images to minimize
the variance of viewpoints. Despite all these improvements, the global image
methods still remain sensitive to significant variations in viewpoint. Moreover,
these methods cannot provide a 6DoF (Degrees of Freedom) estimation of the
vehicle pose. Recently, new deep learning approaches such as [25], [30], [28]
were proposed to improve localization robustness in challenging conditions.
However, high-end GPUs are required to achieve real-time localization and
most of these approaches do not allow to estimate the 6DoF pose of the vehi-
cle. Some other works like LIFT [34], NID-SLAM [26], LUIFT [10] and SOS-
Net [32] highlighted descriptors effect in localization with brightness changes
and proposed new descriptors which are more robust in such conditions than
SIFT [17] and SURF [1]. These works can be combined with other map man-
agement approaches to improve the robustness of localization against changes
in environmental conditions.

Muhlfellner et al. [22] proposed a landmark selection approach, in which,
a score is assigned to each landmark based on the number of times it was
observed. Those scores are used in the localization phase to choose the most
relevant landmarks. Bürki et al. [5] exploited statistics calculated in past
traversals to create a ranking function that helps to select only the relevant
landmarks for a given environment condition. However, this approach reaches
its limits on maps containing different conditions at the same time. In more
recent works of Burki et al. [4], landmarks which are used in localization are
updated if the localization performance exceeds a predefined threshold, oth-
erwise, new points are added to the map. Both in [4] and in the proposed
approach of Dymczyk et al. [11], the size of the map is controlled by perform-
ing an offline map maintenance process which aims to produce a reliable map
with a fixed size. More recently, Bürki et al. [3] exploited some popular infor-
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mation retrieval methods from other fields like document retrieval approaches
using text queries to search for relevant landmarks to the current environment
conditions. MacTavish et al. [18] have also addressed problem of long-term
localization in a similar way, they used a collaborative filtering based approach
that identifies experiences based on the landmark matching history.

In order to build multi-session map, Churchill and Newman [7] proposed
an approach in which a place can have different appearances. They developed
a mapping system based on a "plastic" map (a compromise between adapting
to new models and preserving old models). This structure allows to memorize
different experiences for each place rather than trying to match different ap-
pearances between seasons and/or brightness changes. They also proposed a
similar approach [8] in which they added new experiences whenever a localiza-
tion failure occurred in some mapped area. However, in both [7], [8], the size
of the map varies according to the variations of the scene and the query image
must be matched to all experiences to find the best match. More recently, the
works of Linegar et al. [16] were devoted to reduce computational costs of [8].
To do so, they exploited past experiences of successful localizations to recall
similar experiences under the current environmental condition. This approach
is computationally inexpensive because it does not directly take into account
the appearance information. However, it cannot effectively select future expe-
riences unless there are enough past experiences stored in the history.

We approach the problem of long-term localization in another way. We
exploit information collected in the beginning of the traversal to compute a
ranking function that retrieves relevant landmarks taking into account both
environmental conditions and geometric distance to the closest keyframes in
the map. This ranking function is also used in an offline map management
step in which we first calculate a similarity matrix that stores the resemblance
scores between all the traversals in the map. Then, we analyze all this stored
scores in order to remove similar traversals so we can produce a reliable map
with a bounded size.

3 Keyframes retrieval

It is difficult to estimate the probability of matching features between two
images with different viewpoints and which were not taken under the same
environmental condition. We developed a re-localization process able to per-
form on a global map consisting of N traversals (experiences) recorded in
different conditions. For example, the map presented in the Section 6.1.1 was
built with the 10 traversals shown in Figure 7. The map was generated with an
experience-based mapping framework [15], [29] based on keyframes and local
features and it is very similar to some well-known frameworks such as ORB-
SLAM [23] and Maplab [31]. The mapping phase of our system starts with
interest points detection and matching. We extract a keyframe from the video
flow every ∼ 1 meter, and for each keyframe, we compute its 6DoF pose and
the set of its related 3D points through triangulation. Therefore, a keyframe
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is added to the map by storing its extracted features and its corresponding
6DoF pose (similarly, a keyframe is retrieved from map by retrieving its cor-
responding features and 6DoF pose). All the stored features will be linked
with their corresponding 3D points in the map. To make sure that we build
an experience-based map, all keyframes belonging to a same run are grouped
in a same structure called traversal. This will make easier the access to the
features recorded in a particular run (benefits of experience-based mapping).
Moreover, our mapping system also involves an online loop-closure operation
which detects and closes loops in the map. In the localization phase, our system
consists, in a first step, in predicting the current pose using the last computed
pose and the odometry input. Afterwards, the most relevant keyframe accord-
ing to the predicted pose will be retrieved from the map to perform a 2D/3D
matching with the detected interest points from the current input image. Fi-
nally, we use RANSAC and PnP (Perspective-n-Point) to compute the current
pose of the vehicle which will be optimized in the last step.

In order to retrieve only relevant information for localization, we designed
a ranking function that is partially built with offline data. The role of this
function is to retrieve from the map the most relevant keyframes taking into
account two main factors:

– The geometric distance between the vehicle pose estimation and the pose
associated to the keyframe Kj which is used for localization

– The environmental conditions of the keyframe Kj (lighting, weather, sea-
son. . . ).

The ranking function is computed during the first few meters of the tra-
jectory. After that, it will be used to estimate the probability that a point pt
extracted from the current image Ii finds a match in the keyframeKj retrieved
from the map. The ranking function is described by the Equation (1):

P (pt ∈ Ii,Kj) = fdist(Ii,Kj) · fc(Ii,Kj) (1)

fdist(Ii,Kj) is a function defining a score for matching the current image
Ii with the keyframe Kj retrieved from the map by supposing that both of
them were taken in similar conditions (weather, lighting. . . ). This implies that
computing this score depends only on the geometric distance between the two
images. On the other hand, fc(Ii,Kj) supposes that the poses of the two
images are identical; hence it takes into account only the appearance changes
to assign the score of matching between the two images Ii and Kj .

fdist was computed offline with the use of some data collected specifically
for this purpose. The calculation of P (pt ∈ Ii,Kj) and the calculation/update
of fc are performed online during the re-localization process.

In Figure 3, we present a diagram that explains the localization process us-
ing the proposed ranking function. The ranking function (P (pt ∈ Ii,Kj)) takes
as input the current image (and its corresponding predicted pose according to
the odometry data) to retrieve from the multi-session map the keyframe (and
its associated landmarks) that have the highest similarity score. A new pose
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will be computed by matching the current image and the retrieved keyframe.
To ensure the consistency of fc with the environmental condition changes, it
will be updated along the traversal. For this task, we retrieve from the map
another keyframe (each time from a different traversal in a circular way) and
use it to update fc (will be described in more details in Section 3.2.3). The
following sections present details on both offline and online computations.
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Fig. 3: A diagram representing the operating mechanism of the localization part.

3.1 Offline computation of fdist

We have recorded some sequences specifically for this step. These sequences
were recorded successively in a short time period to avoid variation in lighting
because fdist(Ii,Kj) assume that Ii and Kj are taken under the same environ-
mental conditions. The sequences were also taken at the same place and the
vehicle has followed a slightly different path with some lateral and angular de-
viation between each pair of sequences. In Figure 4, we present some examples
of sequences used for the calculation of fdist.

Fig. 4: Example of 4 sequences used for the calculation of fdist. These sequences were
recorded the same day at 15:16, 15:22, 15:23 and 15:24.
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We have used 7 sequences for this calculation. For each pair of sequences
<SeqA, SeqB>, we use SeqA to generate a map using our SLAM algorithm,
then we use SeqB to perform re-localization on the produced map. While per-
forming re-localization with SeqB, for each current pose pi, we pick the 20 clos-
est keyframes from the map built with SeqA: K1, . . . , K20 and we match each
of them (Kl, l ∈ [1, 20]) to our current image Ii and calculate its corresponding
pose pl in order to calculate the inlier rate: inliers/(inliers+ outliers). Then,
we compute the longitudinal, lateral and angular gap between pl and the cur-
rent pose pi. Therefore, for each pose pl, we record a quadruplet consisting of
the percentage of inliers, the longitudinal, lateral and angular distance.

fdist is defined as the function that computes the percentage of inliers
giving the longitudinal, lateral and angular distance between the poses. We
have chosen to define it as a linear combination of Gaussians as in Equation (2):

fdist(I,K) =

ng∑
h=1

ahGh, with:

Gh = e
−
dx(I,K)2

b2h
−
dy(I,K)2

c2h
−
dr(I,K)2

d2h

(2)

dx(I,K), dy(I,K), dr(I,K) are respectively the longitudinal, lateral and
angular (yaw angle) distances between the pose of the image I and the pose
of the keyframe K. The parameters ah, bh, ch and dh are computed with a
non linear Least-Squares minimization to fit fdist to the data points. ng is
the number of Gaussians in the model and it was chosen to have the lowest
residual error. In Table 1 we show the mean residual error with respect to ng.

Table 1: Mean of residual errors from fitting fdist.

n 1 2 3 4

Mean 0.090 0.075 0.074 0.074

According to the table, we retained ng=3 as the number of Gaussians in
our model. Figure 5 presents the result of fitting the function fdist to the
collected data with ng = 3.

The shape of the data collected is dependant on the key-points detector
and the features descriptor. In our experiments, we use Harris corner detec-
tor [13] for extracting key-points which are matched with ZNCC — Zero-mean
Normalized Cross-Correlation — computed on 11×11 pixel windows around
each key-point. However, our method can still be applied in the same way
using other descriptors.
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(a) fdist with dr = 0 (b) fdist with dy = 0

(c) fdist with dx = 0

Fig. 5: Each sub-figure presents the surface of the 4D function fdist. In (a), the inliers rate
surface is plotted according to longitudinal and lateral distance while the angular distance
dr is set to 0. The same for (b) and (c), dy and dx are set to 0 respectively.

3.2 Online computations

3.2.1 Calculating fc

We compute the function fc during the re-localization process. As explained
previously, fc(Ii,Kj) does not depend on the acquisition location of the images
Ii and Kj , but only takes into account the condition of the environment to
estimate the score of matching between Ii and Kj . Accordingly, we deduce
that fc is traversal dependent, this means that the value of fc between Ii
and any image belonging to the same traversal as Kj will have the same
value as fc(Ii,Kj) (in the normal case where there is no sudden change in the
weather or in the lighting condition). Therefore, it is more suitable to design
the function fc as a 2D matrix Fc which have the shape of [N × N ] (with
N is the number of traversals existing in the map). The matrix Fc can be
formalized as follows: fc(Ii,Kj) = Fc(trav(Ii), trav(Kj)), where the function
trav(X) refers to the index of the traversal where the image X belongs (since
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Ii is the current image, trav(Ii) refers to the current traversal). The value of
Fc(trav(Ii), trav(Kj)) corresponds to the score of similarity (which depends
on the environmental conditions) between the traversal which contains Ii and
the traversal which contains Kj . Thus, Equation (1) becomes:

P (pt ∈ Ii,Kj) = fdist(Ii,Kj) · Fc(trav(Ii), trav(Kj)) (3)

In order to define and calculate the matrix Fc, we use our global map (which
is composed of N sequences having different environmental conditions) as a
reference map to perform a re-localization. During this re-localization phase,
we devote the beginning of the trajectory to the calculation of the function.
According to Equation (3), we have:

Fc(trav(Ii), trav(Kj)) =
P (pt ∈ Ii,Kj)

fdist(Ii,Kj)
(4)

Our idea consists in calculating the matrix Fc at the start of the trajectory
according to Equation (4). Since the ranking function is not yet defined, we
measured the inlier rate by matching the image Ii to the keyframe Kj and
used it to replace P (pt ∈ Ii,Kj) in the Equation (4). In the first few meters of
the re-localization, we follow the steps described by Algorithm 1 to initialize
the values of the matrix Fc.

Algorithm 1: Calculation of the Fc matrix in the first few meters

1: c← N + 1 (the index of the current traversal)
2: Initialize the buffers: P[l]← ∅, ∀l ∈ [1, N ]
3: Compute the initial pose p0 by localizing the image I0 within the map using bag-of-

words.
4: for each current image Ii in the first few meters do
5: Predict the pose p̂i of Ii using the last computed pose pi−1 and the wheel odometry

data.
6: for each traversal l in the map do
7: Pick from the traversal l the 3 closest keyframes to p̂i: Kl

j , j ∈ [1, 3]

8: for each picked keyframe Kl
j do

9: Match Ii to Kl
j and compute the inlier rate P (pt ∈ Ii,Kl

j)

10: Calculate x such as: x←
P (pt ∈ Ii,Kl

j)

fdist(Ii,K
l
j)

11: P[l]← P[l] ∪ {x}
12: end for
13: end for
14: Calculate pose pi by matching Ii and the keyframe with the highest number of inliers

among the keyframes {Kl
j}, j ∈ [1, 3], l ∈ [1, N ]

15: end for
16: for each traversal l in the map do
17: Fc(c, l)← mean(P[l])
18: end for
N is the number of traversals existing in the map.
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3.2.2 Calculating the ranking function P (pt ∈ Ii,Kj)

The classic method for keyframes retrieval which consists in picking out the
keyframes from the map only according to their geometric distance to the
vehicle pose is not suitable for long-term operation. For example, if we perform
a re-localization in the day while the closest keyframe to our current vehicle
pose was taken during the night, the matching is extremely difficult; therefore,
we have proposed to implement a ranking function which is able to consider
other important criteria such as environmental conditions for the retrieval of
keyframes.

We have calculated the matrix Fc in the beginning, the goal in the rest of
the trajectory is to find the keyframe K∗ that maximizes the probability of
matching defined in Equation (3):

K∗ = argmax
K

P (pt ∈ Ii,K) (5)

Searching for K∗ in the whole map is costly. From each traversal, we pick
the keyframe Kl, l ∈ [1, N ] which has the minimum geometric distance to
the current vehicle pose estimation. For all keyframes {Kl}, l ∈ [1, N ], we
calculate the probability of matching with Equation (3) to retrieve the one
with the highest score (K∗) with Equation (5). K∗ will be used for further
matching and pose calculating and optimizing.

In Section 6.1.2, we are comparing results obtained by the classic ranking
function τ1 = fdist(Ii,Kj) (The score will be assigned based on the geometric
distance between the two images as demonstrated in Figure 5) with results
obtained by our proposed ranking function τ2 = P (pt ∈ Ii,K) (Equation (3)).

3.2.3 Update of Fc(trav(Ii), trav(Kj))

It is interesting to update the values of the matrix Fc regularly after the
first few meters of the trajectory. Indeed, this update can be useful when the
state of the environment changes between the beginning and the end of the
sequence. This update process works in parallel with the keyframes retrieval
process. For this reason, we aim to avoid slowing down the localization by
updating Fc for a single traversal at each iteration. Algorithm 2 describes the
update process of the matrix Fc and the keyframe retrieval mechanism using
our ranking function which has already been computed in the first few meters
of the trajectory.

4 Map management

In this section we address the map update paradigm. We extended the mapping
system of the aforementioned framework to adapt its maps to achieve long-
term operations. The idea is to reduce the size of the map while keeping it as
diverse as possible to cover the maximum number of different environmental
conditions.
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Algorithm 2: Keyframe retrieval and update of Fc

1: Parameters: The update rate α← 0.1
2: Steps:
3: c← N + 1 // the index of the current traversal
4: l← 1 // the index of the first traversal
5: for each current image Ii do
6: Predict the pose p̂i of Ii using the last computed pose pi−1 and the wheel odometry

data.

// Update of Fc:
7: Pick from traversal l the closest keyframe to p̂i: Kl

8: Match Ii to Kl and compute the inlier rate: P (pt ∈ Ii,Kl)

9: Calculate x such as: x←
P (pt ∈ Ii,Kl)

fdist(Ii,Kl)
10: Update Fc: Fc(c, l)← (1− α)Fc(c, l) + αx
11: l← l + 1
12: if l > N then
13: l← 1
14: end if

// Keyframe retrieval and pose calculation:
15: Retrieve from the map the keyframe K∗ which has the highest score assigned by the

ranking function:
K∗ = argmax

K
P (pt ∈ Ii,K)

16: Calculate the pose pi by matching Ii and K∗

17: end for

Our proposed map management procedure consists in limiting the total
number of traversals in the map (N) to a predefined number of traversals N̂ .
When the number of traversals in the map N exceeds the predefined number
N̂ (N = N̂ + 1), our algorithm has to choose a traversal to remove from the
map. The choice depends mainly on the matrix Fc defined in Section 3.2.1. In
view of the fact that Fc is updating regularly along the traversal (as explained
in Section 3.2.3), in the end of each traversal, we compute its average:

F̄c =
1

n

n∑
i=1

F i
c (6)

where n is the total number of images in the trajectory and F i
c is the value of

the matrix Fc at iteration i.
Our approach consists in using this matrix F̄c to select the traversal which

has the most resemblance to the others and then removing it from the map.
We used the hierarchical clustering algorithm to classify F̄c in order to

select the traversal to remove as explained in Figure 6.
Figure 6 shows the different steps of the traversal selection:

(a) We use the matrix F̄c calculated with Equation (6) as the input of our
hierarchical clustering algorithm.
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(a) F̄c (b) D (c) Clustering D (d) searching for min

Fig. 6: Steps for the selection of the traversal to remove.

(b) To perform hierarchical clustering on the matrix F̄c, we first need to convert
it into a distance matrix. Since F̄c is symmetric and its values are included
between 0 and 1/max(fdist), we can get a distance matrix by normalizing
it as follows:

D = J − F̄c ·max(fdist) (7)

J is a matrix of all ones with the same dimension as F̄c ([N × N ]). The
resulting matrix D is a distance matrix with zero diagonal and its values
belong to [0, 1].

(c) We classify D into N−1 classes using the hierarchical clustering algorithm
(N = 5 in this example), this will result in classifying the two traversals i
and j having the highest similarity in the same class (i = 3 and j = 4 in
this example).

(d) In this step, we want to remove a traversal from the map while maintaining
it as diverse as possible. To do so, we have to remove either the traversal i
or the traversal j. To choose which one to remove, we search which one of
them has more similarity to the other traversals. This is why we search for
the minimum value in the ith and jth rows of the matrix while ignoring the
diagonal and the elements with coordinates (i, j) and (j, i) (the hatched
area in the figure). After finding the minimum, we remove its corresponding
traversal (traversal 3 in the example).

5 Datasets

Intensive work on SLAM algorithms has produced a large number of related
datasets such as KiTTi [12], Cityscapes [9]. . . . The vast majority of these
datasets are designed for localization in static environments with very small
environmental change. However, datasets with many environmental conditions
are required for applications that aim for long-term localization in dynamic
environments. Datasets like Oxford RobotCar [19], NCLT [6] and UTBM [33]
are widely used datasets for long-term localization applications since they
include different environmental conditions. Both of the last two mentioned
datasets contain only a few number of different sequences, which makes it
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difficult for us to test our approach on them. For this reason, we are using
only Oxford RobotCar and our own dataset on the test phase.

In Oxford RobotCar dataset, the itinerary and the direction of traversal
followed during individual recordings vary between the different sequences.
Accordingly, we have identified 20 sequences passing on the same route of
∼1.6km length. All these sequences are day-time sequences with only one
dusk-time and 2 night-time sequences. The dusk-time sequence was recorded
at the very beginning of the sunset time (16:34) and it was not possible for us to
use it to properly localize the night-time sequences in a map built by day-time
sequences. Moreover, we are interested to test the effect of lateral and angular
deviation between sequences on the localization performance. However, the
Oxford RobotCar dataset does not provide sequences with such criteria. This
is the main reason that led us to record our own dataset.

The IPLT dataset was created from recorded images of two gray-scale 100◦

FOV cameras mounted on our experimental vehicle (one front and one rear
camera) and wheel-odometry.

For Oxford RobotCar dataset, we have used only day-time sequences (with
varying weather conditions) due the lack of intermediate dusk sequences to
match day-time and night-time sequences. We used the visual odometry to-
gether with both front left and right cameras in our mapping framework.

6 Experiments and results

6.1 Keyframes retrieval

6.1.1 Experiments

We divide each dataset into mapping sequences and test sequences. We first
proceeded to a mapping phase in which we built a global map consisting of N
traversals from the mapping sequences with varying environmental conditions.
We used the generated global maps as reference maps in our experiments
in order to perform re-localization with the test sequences. This allowed us
to evaluate the effectiveness of our algorithm in different conditions. We are
also comparing results obtained while using τ1 = fdist(Ii,Kj) (which takes
into account only the geometric distance as a criterion to assign scores to
keyframes) with results obtained while using our proposed ranking function
τ2 = P (pt ∈ Ii,Kj) = fdist(Ii,Kj) · Fc(trav(Ii), trav(Kj)) (which takes into
consideration the geometric distance and the environmental conditions of the
keyframes).

We present the average number of inliers observed in each sequence as well
as the number of localization failures as criteria for the comparison. Practically,
we found that the localization can be counted as reliable when there are at least
30 points matched between the current image and the database, below this
threshold, we consider a localization failure. This is a conservative threshold
to ensure the security of our autonomous shuttle [29].
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The number of meters m required to initialize the matrix Fc (in the start
of the trajectory) was chosen experimentally to minimise the distance between
the value of Fc calculated after m meters and its mean F̄c along the trajectory.
In Table 2, we illustrate an example of this distance (|Fc − F̄c|) for different
value of m.

Table 2: Value of |Fc − F̄c| with respect to the choice of m.

m (meters) 5 10 20 30

|Fc − F̄c| 0.985 0.066 0.027 0.024

According to Table 2, we have chosen to fix the parameter m to 20 meters.
Thus, we devote the first 20 meters of the trajectory for the calculation of the
matrix Fc.

IPLT dataset From this dataset, we have selected 103 sequences with varying
day-times, weather conditions (rain, snow, fog. . . ) and some lateral and angu-
lar deviations, 10 of them were used for construction of the first global map
(see Figure 7).

2020-01-15-11-15-
33

2019-10-02-15-03-
40

2019-10-01-16-54-
55

2019-10-22-15-01-
25

2020-02-05-17-53-
21

2020-02-05-18-19-
19

2020-02-05-18-37-
10

2020-01-15-13-23-
09

2020-01-22-10-22-
06

2020-01-31-16-07-
34

Fig. 7: An overview of images from IPLT dataset used for the construction of the first
global map. For each sequence we are indicating the acquisition date and symbolizing the
environmental condition by a small icon. Please refer to Table 3 for more details about the
designation of condition icons used in this paper.

It is difficult to perform re-localization using night-time sequences on a
map containing only day-time sequences, hence, we added a dusk sequence to
the map to work as an intermediate between day and night sequences. This
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Table 3: Designation of condition icons.

Condition Sunny Dusk Night Cloudy Rainy Foggy Snowy

Icon

allowed the SLAM algorithm to find matches linking all the traversals so all
the poses have been optimized in the same bundle adjustment. We verified
manually the map to make sure that all the poses are geometrically coherent.
This means that there is no differential drift between the traversals. This
global map contains sequences having different environmental conditions, it
also includes some lateral and angular deviations between the sequences as
illustrated in Figure 2.

Oxford RobotCar dataset We picked 8 sequences from this dataset to build
our second global map (the Oxford map) while we used 12 other sequences for
our tests. Figure 8 illustrates an overview of images taken from the sequences
used for the construction of the Oxford map.

2014-06-24-14-47-45 2014-06-26-09-53-
12

2014-12-05-11-09-10 2015-02-20-16-34-06

2015-07-08-13-37-
17

2014-07-14-14-49-
50

2014-11-25-09-18-32 2015-05-19-14-06-
38

Fig. 8: An overview of images from Oxford RobotCar dataset used for the construction of
the Oxford map.

6.1.2 Results

In this section, we demonstrate the efficiency of our keyframes retrieval ap-
proach by analyzing results obtained after performing re-localization with dif-
ferent sequences. As we mentioned in the previous section, we performed our
tests on the two global maps obtained from the two datasets.
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IPLT dataset We are using 93 sequences having different environmental con-
ditions from IPLT dataset for this test phase. In Figure 9 we present an illus-
tration of images extracted from some of these sequences.

2019-10-01-17-19-57 2019-10-02-15-08-
10

2019-10-22-14-57-27 2020-01-15-13-25-22

2020-01-16-14-05-24 2020-01-20-10-15-
30

2020-01-31-16-00-
24

2020-02-05-18-41-39

Fig. 9: An overview of images recorded with the front camera for some of the sequences of
IPLT dataset used in our tests.

In Figure 10, we present a comparison between localization performance
on the IPLT map while using τ1 and τ2 as ranking functions. This figure

Fig. 10: A comparison between the two ranking functions τ1 and τ2 on the IPLT map using
the 93 test sequences from IPLT dataset. The comparison is done according to two criterion:
the average number of inliers per image and the average number of localization failures per
sequence. Each box represents the mean value + and - the standard deviation of inliers
(or localization failures) recorded while performing re-localization using all the sequences of
the corresponding class on the global map. The color of the boxes indicates which ranking
function was used to record these values. For better readability of localization failures values,
we plot the average number of localization failures in the bottom x-axis.
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was generated using all the 93 test sequences. These sequences were classified
manually into 5 different classes according to their environmental condition.
These 5 classes (sun, overcast, rain, dusk and night) are containing respec-
tively 13, 39, 12, 17 and 11 sequences. The "global" class regroups all the 93
sequences. For each class, we show the average number of inliers observed on
the sequences of this class. We also present the average number of localization
failures experienced on these sequences.

Overall, we note that our proposed keyframes retrieval approach has signif-
icantly increased the number of inliers observed during re-localization for all
classes. We also notice that with our approach, we have successfully reduced
the number of bad localizations per sequence from 12.25 to only 0.03.

In Figure 11, we demonstrate that our ranking function τ2 depends on both
environmental conditions and geometric distance to assign scores to keyframes
which helps to retrieve good keyframes for localization. We performed a re-
localization on the IPLT map with the test sequence 2020-02-05-18-41-39 .
The global map contains a sequence recorded a few minutes before this test
sequence (2020-02-05-18-37-10 ) and both of them have similar environment
conditions.

In segments A, B and C, the two sequences have some lateral and angular
deviations (Figure 11a), thus, τ1 was not able to retrieve keyframes from traver-
sals with similar environmental condition in those zones (Figure 11b), while
our proposed ranking function τ2 has successfully retrieved good keyframes
even with the deviation (Figure 11c).

In Section 3.2.3, we presented the update paradigm of the matrix Fc, how-
ever, the sequences used in the previous tests are quite short and they don’t
contain significant changes in the environmental condition and consequently
they can’t prove the interest of this update. For this reason, we recorded a
long sequence (2019-12-05-16-43-56) which has multiple loops in the parking
lot starting from 16:44 until 17:54 and it includes day, dusk and night condi-
tions. In Figure 12, we inspect the update process of the matrix Fc. We plot
the values located in the last row (or column) of the matrix Fc along a local-
ization session using this long sequence. The last row (with index N+1) of this
matrix is referring to the current traversal (the sequence 2019-12-05-16-43-56).
Therefore, this row contains the similarity scores between the current images
(images of the current traversal) and the closest keyframe from each one of
the N traversals in the map.

We observe that in the start of the trajectory (before the dusk), the curve
representing the traversal 2020-02-05-17-53-21 (the pink curve) is at the
top. This means that this traversal has the highest similarity with the current
environmental conditions. Therefore, keyframes from this traversal will be used
for localization (we want to point that P (pt ∈ Ii, Kj) is also taking into
account the geometrical distance. Even though the advantage of this traversal
according to Fc, our ranking function can still prefer retrieving keyframes from
other traversals if fdist is assigned low scores for keyframes of this traversal).
In the dusk time, we notice a decrease in the values of the pink curve and
an increase in the yellow one (2020-02-05-18-19-19 ). This means that Fc is



20 Youssef Bouaziz et al.

(a) Path traveled for the sequence 2020-02-
05-18-37-10 and the sequence 2020-02-05-18-
41-39.

(b) Values assigned to keyframes by τ1 while
re-localizing with the sequence (i).

(c) Values assigned to keyframes by τ2 while
re-localizing with the sequence (i).

Fig. 11: Effect of lateral and angular deviations on the two ranking functions τ1 and τ2. In
sub-figure (a), the green path represents the sequence 2020-02-05-18-37-10 from the map,
while the dashed path represents the sequence (i) from the test sequences. The two sequences
have similar environmental conditions but with some deviations between them. The choice
of the ranking function is illustrated in sub-figure (b) and (c). Each traversal in the map
is represented by a curve with a different color. For each traversal, the curve indicates
the computed probability of matching the current image with the nearest keyframe of this
traversal. The colors of the curves in sub-figure (c) are the same as in sub-figure (b).

indicating that there are more resemblance with the traversal represented by
the yellow curve (which was recorded in the dusk). Finally, at the beginning of
the night-time, we consider a notable decrease in all the curves except for the
dark green one (2020-02-02-18-37-10 ). This is the only traversal recorded
in the night, and accordingly, Fc is recommending retrieving keyframes from
this traversal.

Oxford RobotCar dataset To evaluate the performance of our approach on the
Oxford RobotCar dataset, we used 12 test sequences with varying environmen-
tal conditions. These 12 sequences were classified into 4 classes: sun, overcast,
rain and snow. The sun class contains 5 sequences, the overcast contains 4
sequences, the rain contains 2 sequences and the snow class contains only 1
sequence. In Figure 13, we are comparing the re-localization performance of τ1
and τ2 with respect to the average number of inliers and localization failures
as we did for IPLT dataset.
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Fig. 12: The values of Fc along a one hour and 10 minutes sequence containing day, dusk
and night conditions. Each curve corresponds to a traversal in the map (N curves for N
traversals), and the values in each curve are indicating the similarity scores between the
images of the current traversal and their closest keyframes that belong to the traversal
represented by this curve. These curves were smoothed for better readability.

Fig. 13: A comparison between the two ranking functions τ1 and τ2 on the Oxford global
map using the 12 test sequences from Oxford RobotCar dataset.

According to the figure, τ2 has managed to increase the number of inliers
and decrease the number of localization failures from more than 14 failures per
sequence to less than 1. In this dataset, we consider a less significant increase in
term of inliers compared to the increase observed on IPLT dataset (Figure 10).
This is due to the fact that the IPLT dataset contains more sequences with
more changes in environmental conditions and it incorporates some sequences
with lateral and angular deviations that seriously impact the performance of
τ1.

We also note that this dataset contains a significant number of overexposed
images especially in sunny sequences [14] (thus the 9 localization failures for
τ2 in the sun class). We present some examples of these images in Figure 14.
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2014-11-18-13-20-
12

2015-02-06-13-57-
16

2015-05-29-09-36-
29

2015-07-29-13-09-
26

Fig. 14: Example of extremely overexposed images that led to localization errors.

6.2 Map management

6.2.1 Experiments

We have tested our map management approach on the same datasets used in
the previous section. We also have used the same division for the mapping
sequences and test sequences.

As we mentioned in the Section 4, we aim to limit the number of traversals
used to build the global map to a predefined number N̂ . We call an N̂ -session
map a map constituted from N̂ traversals. In other words, our approach has
to choose the best N̂ -session map from a total of N traversals (N = 10 for the
Oxford global map and N = 8 for the IPLT global map).

To evaluate the efficiency of our approach, we first proceed to build all
possible maps constituted of N̂ traversals (N̂ = 3 or N̂ = 4 in our tests). This
will result in obtaining n different N̂ -session maps:

n = NCN̂ =
N !

(N − N̂)! N̂ !
(8)

The goal is to determine if there exists a small map that can be used to
localize every test sequence without significantly increasing the failure rate of
the localization compared to the map which contains all the traversals. It will
also allow to rank all the possible N̂ -session maps, which means that we can
position the result of our approach among all the n possibilities. Thus we’ll be
able to compare the result of our incremental approach with the global optimal
N̂ -session map. Of course, this is possible only for an evaluation purpose, the
exhaustive search of the global optimum is intractable for real use cases with
hundreds of traversals.

In order to compute localization error, the n generated N̂ -session maps are
evaluated by performing re-localization with the test sequences. Since we do
not possess the ground-truth poses to compute the error in the IPLT dataset,
for each test sequence, we create the corresponding ground-truth poses by
performing re-localization on the global map while retrieving from the map the
4 keyframes which have the highest probability of matching P (pt ∈ Ii, Kj).
The landmarks of these 4 retrieved keyframes are matched to the current
image to calculate the ground-truth pose using PnP+RANSAC. The Oxford
RobotCar dataset is providing the RTK ground-truth poses [20]. However, we
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deplore a lack of ground-truth poses for some of the sequences used in this
paper (either a total or a partial lack, e.g. 2014-11-18-13-20-12, 2014-12-16-09-
14-09, 015-02-03-08-45-10, etc.). Also, the ground-truth poses provided by this
dataset comprehend a large error margin (∼15 cm in latitude and longitude)
which is an order of magnitude higher than the local accuracy usually given
by visual localization in such applications. Therefore, we decided to proceed
to the same way of ground-truth calculation as we did for the IPLT dataset.

To compute the localization error, we perform re-localization with the test
sequences on all the n N̂ -session maps. For each N̂ -session map, we compute
the average of localization errors of all the test sequences. The localization
errors correspond to the euclidean distance between the ground-truth poses
calculated on the global map and the poses computed while re-localizing on
the N̂ -session maps.

Afterwards, we proceed to an incremental search step. In this step, we
employ our map management approach to build a map from N̂ traversals
among N traversals. Considering the fact that the order in which the traversals
are added to the map can influence the resulting map, we test our approach
with 100, 000 different orders of the N traversals.

6.2.2 Results

In this section, we show the efficiency of our map management approach. As
in the keyframes retrieval approach, we test our map management with two
datasets.

IPLT dataset We evaluated our approach on the IPLT dataset using the global
map presented in Figure 7 using two different values of N̂ to demonstrate its
efficiency on different setups: N̂ = 3 and N̂ = 4.

In Figure 15, we present the result of our map management approach which
consists of the average of localization error of all the n N̂ -session maps com-
posed from N̂ traversals. We also point to the N̂ -session maps that are selected
by our approach.

This figure shows that the localization error has decreased globally when
we passed from N̂ = 3 to N̂ = 4 (which is clear by the red curve in the
two sub-figures). In the first sub-figure (15a), N̂ is equal to 3. According to
Equation (8), the number of all possible N̂ -session maps composed from 3
traversals is n = 120. In the second sub-figure (15b), N̂ is equal to 4, ac-
cordingly n = 210. As visible in both sub-figures, our approach has produced
multiple results as consequence of using 100,000 different permutations of the
N traversals as input.

In order to evaluate the influence of the map compression in the localization
performance, we compare the performance of localization on the initial global
mapM0 which is composed of N traversals with performance of localization on
the most reproduced N̂ -session mapM∗ (the biggest dot in each sub-figure). In
Figure 16 we present the average number of inliers per image and the average
number of localization failures per sequence recorded while re-localizing on
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(a) N̂ = 3 (b) N̂ = 4

Fig. 15: Average localization errors for the IPLT dataset global map. The red curve designates
the average of localization errors obtained while performing re-localization with the test
sequences on the n N̂ -session maps. All the N̂ -session maps are sorted in ascending order
according to their corresponding errors. The blue dots are pointing to the results of our map
management approach on 100,000 different permutations of the N traversals. We specify
the number of times each result has been reproduced by our approach with the size of its
corresponding dot and with the annotations on the figures.

the initial map M0 and on both N̂ -session maps (M∗
N̂=3

and M∗
N̂=4

). We also
present a comparison with the state-of-the-art "Summary Maps" approach
proposed by Muhlfellner et al. [22]. In their approach, Muhlfellner et al. are
scoring landmarks according to the number of different localization sessions in
which they appear and they are removing the landmarks with the lowest scores
in an offline process. To guarantee a fair comparison with their solution, we
remove the landmarks having the lowest scores from M0 until we get a map
Msm having the desired size. This means M∗

N̂=3
and Msm

N̂=3
have the same

number of landmarks and thus both maps have approximately the same size.
The same thing is valid for M∗

N̂=4
and Msm

N̂=4
.

It is clear from the figure that the localization performance has slightly
degraded after limiting the map to N̂ = 4 traversals and has degraded more
for N̂ = 3 traversals. However, even with this degradation, the localization
can still be considered as reliable especially for N̂ = 4 as the number of
localization failures (0.24 localization failures per sequence, i.e. 22 failures in
total, for M∗

N̂=4
) remains insignificant. This means that after compressing the

map, only 22 images among all the 93 sequences (which incorporate a total of
159,074 images) where matched with less than 30 inliers. The mapM∗

N̂=4
does

not include any dusk sequences, thus, we consider a slight degradation in term
of localization failures for the dusk sequences (from 0 failures per sequence for
M0 to 1.12 for M∗

N̂=4
).

In the other hand, the map Msm has shown a major weakness in localiza-
tion especially with night sequences. This can be explained by the fact that
our first global map M0 contains only one night sequence (Figure 7) which
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(a) N̂ = 3

(b) N̂ = 4

Fig. 16: Localization performance comparison on M0, M∗ and on the map Msm generated
with the Summary Maps approach [22] using the 93 test sequences from IPLT dataset. Sub-
figures (a), (b) represent the localization performance when choosing 3 and 4 respectively
as values for the parameter N̂ .

means that landmarks observed in the night will have a low score since they
have appeared only in one session.

In Table 4, we plot the memory occupancy and the number of landmarks
included in each map used to evaluate our approach on the IPLT dataset.

Table 4: Memory occupancy and number of landmarks in each map built using IPLT dataset.

map M0 M∗
N̂=4

Msm
N̂=4

M∗
N̂=3

Msm
N̂=3

Memory occupancy (MB) ∼ 450 ∼ 165 ∼ 185 ∼ 120 ∼ 135

Number of landmarks (×106) ∼ 1.25 ∼ 0.5 ∼ 0.5 ∼ 0.36 ∼ 0.36

According to this table, M∗
N̂=4

was obtained after compressing the map
M0 with more than 0.5 compressing rate. Despite this compression, we note
that M∗

N̂=4
was able to achieve a very competitive level of performance with

the uncompressed map M0. We also note that our approach has remarkably
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outperformed a map with a similar compression rate that was generated with
another approach (Msm

N̂=4
).

Oxford RobotCar dataset As in the previous section, we evaluate our approach
on the Oxford RobotCar dataset. The global map used here is the same as in
Section 6.1.1 (Figure 8). In Figure 17, we present the average of localization
error of all the n N̂ -session maps composed of N̂ = 3 traversals (according to
Equation (8), n = 56). Since this global map is built only by N = 8 traversals,
we exhibit the result of our approach on the all possible permutations of 8
traversals (8! = 40320 permutations).

Fig. 17: Average localization errors of the the Oxford RobotCar dataset global map with
N̂ = 3.

In Figure 18 we present a comparison between M0, M∗
N̂=3

and Msm
N̂=3

in
term of inliers average and localization failures average. This figure shows

Fig. 18: Localization performance comparison on M0, M∗
N̂=3

and on Msm
N̂=3

using the 12
test sequences from Oxford RobotCar dataset.
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that the performance of localization on Oxford RobotCar dataset has slightly
degraded when using our approach with N̂ = 3. This kind of degradation is
expected after compressing the map from 8 traversals to only 3. According
to the figure, there is a remarkable gap between localization performance on
M∗

N̂=3
and on Msm

N̂=3
.

In Table 5, we present the memory occupancy and the number of landmarks
included in each map used to evaluate our approach on the Oxford RobotCar
dataset.

Table 5: Memory occupancy and number of landmarks in each map built using Oxford
RobotCar dataset.

map M0 M∗
N̂=3

Msm
N̂=3

Memory occupancy (MB) ∼ 970 ∼ 330 ∼ 430

Number of landmarks (×106) ∼ 14 ∼ 5 ∼ 5

7 Conclusion

In this paper we have presented an algorithm which can be used for long-term
localization process. Our proposed algorithm is composed of two complemen-
tary processes. The first process is used to retrieve keyframes based on their
euclidean distance to the current image and the environmental condition. This
keyframes retrieval consists of using probabilistic ranking function that ex-
ploits information collected during the first few meters of the trajectory to
determine whether or not a keyframe is suitable for localization. Our second
process aims to bound the map’s size to avoid its continued inflation. Our
experiments demonstrated, on two different datasets, that our ranking func-
tion was able to retrieve good keyframes in different environmental conditions
which in turn helped to improve localization performance. We have also shown
that the localization performance has not decreased significantly after reduc-
ing the size of the map with our proposed map management approach. Finally,
we have presented a new dataset that contains challenging environmental con-
ditions which we make available to the community in the hope that it will be
useful to other people working in this field.
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