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Abstract: Fermented foods, including cheeses, have garnered increased interest in recent years
for their potential health benefits. This study explores the biological properties of eight French
raw-milk cheeses—goat cheese, Saint-Nectaire, Cantal, Bleu d’Auvergne, Roquefort, Comté, Brie de
Meaux, and Epoisses—on oxidative processes using both in vivo (Caenorhabditis elegans) and in vitro
(human leukocytes) models. A cheese fractionation protocol was adapted to study four fractions
for each cheese: a freeze-dried fraction (FDC) corresponding to whole cheese, an apolar (ApE), and
two polar extracts (W40 and W70). We showed that all cheese fractions significantly improved
Caenorhabditis elegans (C. elegans) survival rates when exposed to oxidative conditions by up to five
times compared to the control, regardless of the fractionation protocol and the cheese type. They
were also all able to reduce the in vivo accumulation of reactive oxygen species (ROS) by up to 70%
under oxidative conditions, thereby safeguarding C. elegans from oxidative damage. These beneficial
effects were explained by a reduction in ROS production up to 50% in vitro in human leukocytes and
overexpression of antioxidant factor-encoding genes (daf-16, skn-1, ctl-2, and sod-3) in C. elegans.

Keywords: raw-milk cheese; Caenorhabditis elegans; human leukocytes; oxidative stress; reactive
oxygen species; antioxidant factors; stress tolerance

1. Introduction

In living systems, various metabolic processes and environmental stresses generate
free radicals, particularly reactive oxygen species (ROS) [1,2]. In animals and humans, low
and moderate amounts of ROS have beneficial effects on several physiological processes,
including tissue repair processes, wound healing, and the killing of pathogens [3]. However,
excessive levels of ROS, produced during oxidative metabolism, can damage the struc-
ture of biomolecules (especially DNA, proteins, lipids, and carbohydrates), modify their
functions, and lead to cellular dysfunction or even cell death [4]. They are associated with
accelerated aging [5] and inflammation [6] and are involved in the pathogenesis of several
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degenerative or chronic diseases such as atherosclerosis, osteoarthritis, cardiovascular or
neurodegenerative diseases, and cancer [7,8].

The resultant imbalance between ROS production and their neutralization leads to a
condition commonly referred to as oxidative stress [9]. To shield cells from ROS-mediated
damage, organisms have several conserved endogenous defense mechanisms, such as
the recruitment of antioxidant enzymes (superoxide dismutase, catalase, glutathione S-
transferase, etc.). Therefore, to prevent oxidation in biological tissues, a variety of antioxi-
dants can be employed. These antioxidants include both synthetic and natural substances
able to neutralize and scavenge free radicals.

Intake of antioxidants through foods rich in these compounds or antioxidant supple-
ments has the potential to protect the body from oxidative stress and associated damages.
Over time, fermented foods have garnered significant attention in research concerning
food sciences, nutrition, and health because, through the natural process of fermentation,
they generate bioactive compounds of interest, including antioxidant compounds [10,11].
To increase food preservation and/or to improve organoleptic properties, fermentation
has been used in a wide variety of food matrices, such as vegetables, cereals, soy, meat,
and milk [12,13]. Such food processing increases the bioavailability of various constituents
(phenolic compounds, bioactive peptides, antioxidant polysaccharides, etc.), which can
exert positive biological effects after consumption. Bioactive peptides generated by fer-
mentation from milk, whey proteins, or casein are studied for their beneficial biological
activities such as antioxidant, anti-microbial, or anti-hypertensive activities [14,15]. Differ-
ent studies have demonstrated that the antioxidant capacity of milk and dairy products is
due to sulfur-containing amino acid cysteine compounds, vitamins (A and E), carotenoids,
enzyme systems (catalase, glutathione peroxidase, superoxide dismutase), and polyphe-
nolic metabolites [16]. In cheeses, these bioactive peptides are attributed to the chemical
composition and the microbiota of the cheese [17–20], which are influenced by the wide
variety of cheese-making processes, milk types, or ripening conditions [21–26]. Antioxi-
dant activities have been reported on different types of cheese, such as white cheese [27],
Parmigiano Reggiano cheese [28], Cheddar cheese [21,29], and Mexican goat cheese [30,31].
France is an important cheese production area, but few studies have been conducted to
estimate the antioxidant activities of French raw-milk cheese using human cell cultures or
animal models. One of our previous studies demonstrated that raw goat milk cheese (the
entire cheese and cheese extracts) increased, at the same time, the capacity of the nematode
Caenorhabditis elegans (C. elegans) to survive on an oxidative medium and decreased ROS
production by human cells [32]. The similarities between C. elegans and human genetics,
the conservation of the antioxidative response’s metabolic pathways, and the transparency
of the body’s nematode make it a reliable experimental model to test the impact of such
cheese fractions on the host [33].

Our study aimed to evaluate the potential antioxidant efficiency of eight raw-milk
cheeses (Goat cheese, Saint-Nectaire, Cantal, Bleu d’Auvergne, Roquefort, Comté, Brie
de Meaux, and Epoisses). Four fractions were prepared from each cheese: whole cheese
and three extracts (one apolar and two polar extracts) to evaluate their impacts on (i) ROS
production by human leukocytes and (ii) ROS accumulation, antioxidant response, and the
survey of Caenorhabditis elegans placed on an oxidative medium.

2. Materials and Methods
2.1. Cheese Selection

Eight French cheeses made from raw milk were selected, considering characteristics
such as the origin of the milk (animal), the type of paste, and the type of rind. The eight
selected cheeses were representative of the main categories of French cheeses and had as
varied characteristics as possible. To ensure the reliability and reproducibility of our study,
we selected cheeses known for their high consistency in production and ample availability
throughout the year. We chose the eight cheeses at their most popular and best-selling
ripened stages (see Table 1).
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Table 1. Characteristics of the different selected French raw-milk cheeses.

Name of the Cheese Cheese-Making
Process Milk Origin Paste Rind Ripening

Goat cheese fresh cheese goat - - 3 weeks

Saint-Nectaire uncooked
pressed cheeses cow soft cheese surface molds 6 weeks

Cantal uncooked cheeses cow hard cheese washed rind 12 to 17 weeks
(“entre-deux”)

Bleu d’Auvergne uncooked
unpressed cheeses cow internal molds

soft cheese - 8 weeks

Roquefort uncooked
unpressed cheeses ewe internal molds

soft cheese - 8 weeks

Comté cooked cheeses cow hard cheese smear rind 17 weeks

Brie de Meaux uncooked
unpressed cheeses cow soft cheese bloomy rind

5 to 6 weeks
(“three-quarters

ripened”)

Epoisses uncooked
unpressed cheeses cow soft cheese washed rind 4 weeks

2.2. Reagents and Solvents

Cyclohexane was purchased from Carlo Erba (Val de Reuil, France). 5-fluoro-2′-
deoxyuridine (FUdR), amphotericin B, agarose, cholesterol, NaCl, MgSO4, CaCl2, NaHCO3,
Na2HPO4, NH4Cl, KH2PO4, EDTA, potassium phosphate buffer, gentamycin, phorbol
12-myristate 13-acetate (PMA), fetal bovine serum (FBS), glutamin, 3-(4,5-Dimethyl-2-
thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and NaOH were obtained from
Sigma-Aldrich (Saint-Louis, MO, USA). Lysogeny Broth (LB, Miller’s Modification), pep-
tone, and agar were purchased from Conda (Madrid, Spain). Yeast extract, Roswell
Park Memorial Institute medium (RPMI-1640), and TRIzol Reagent were acquired from
ThermoFisher Scientific (Waltham, MA, USA). 2′,7′-Dichlorodihydrofluorescein diacetate
(H2DCF-DA) was purchased from Invitrogen (Carlsbad, CA, USA). Dihydrorhodamine
123 (DHR-123) was obtained from Cayman Chemical Company (Ann Arbor, MI, USA).

2.3. Obtention of Cheese Fractions

The cheese fractions were obtained from the eight cheeses as previously described [34].
Each cheese (with its rind) was cut into small slices. They were freeze-dried and crushed to
a fine powder using a mortar and pestle. A part was conserved in waterproof containers as
the first fraction: the freeze-dried cheese (FDC), and stored at −20 ◦C.

The rest of the FDC was mixed with distilled cyclohexane at a ratio of 1/10 (w/w) under
mechanical stirring for 4 h. The solution was filtered with a Büchner funnel. The remaining
filtrate was concentrated by evaporating the solvent under a vacuum to obtain a dry
fraction. The solid resulting from the filtration was dissolved a second time in cyclohexane
(ratio 1/10 (w/v)), mixed for 2 h, and filtered again. The solvent was evaporated from the
solution under a vacuum to obtain a dry fraction, and the remaining solid was dissolved
one last time with cyclohexane (ratio 1/10 (w/v)), mixed for 1 h, and filtered. The solvent
of the solution obtained after filtration was evaporated to obtain a third dry fraction. The
three dry fractions obtained from this process were pooled to obtain the cheese “apolar
extract” (ApE).

The solid remaining from the cyclohexane extraction, which was collected through
filtration, was extracted with HPLC-grade water (ratio 1/10 (w/v)). The mixture was
mechanically agitated for 1 h at two different temperatures (40 ◦C or 70 ◦C) and centrifuged
(15 min, 8000 rpm; Avanti J26S XPI, Beckman Coulter, Brea, CA, USA). The supernatant
was recovered and evaporated under a vacuum. The solid obtained was dried under a
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vacuum. The cheese matrix was exhausted by repeating the same procedure three times
under the same conditions. The resulting dry fractions were combined to form the final
extract, ground using a mortar and pestle, and designated as either W40 (extraction at
40 ◦C) or W70 (extraction at 70 ◦C).

This methodology was applied to the 8 cheeses to obtain 8 freeze-dried cheeses (FDCs),
8 apolar extracts (ApEs), and 16 polar extracts (8 W40 and 8 W70). Each fraction was kept
in waterproof containers at −20 ◦C.

2.4. In Vivo Study on Caenorhabditis elegans
2.4.1. Growth of Escherichia coli and Heat-Killed Preparation

The Escherichia coli (E. coli) OP50 was provided by the Caenorhabditis Genetics Center
(Minneapolis, MN, USA). The bacteria were grown overnight at 37 ◦C on a lysogeny broth
medium as previously described [35]. After centrifugation (4000 rpm, 15 min; Rotofix 32A,
Hettich Zentrifugen, Tuttlingen, Germany), the pellet was washed three times with M9
buffer (per L: 3 g of KH2PO4, 6 g of Na2HPO4, 5 g of NaCl, 1 mL of 1 M MgSO4), and the
microbial suspension was adjusted to a final concentration of 100 mg/mL. The live E. coli
OP50 was kept at 4 ◦C.

To obtain heat-killed (HK) E. coli OP50, the previous solution (E. coli OP50, 100 mg/mL)
was held for 1 h in a water bath at 80 ◦C. The solution was kept at 4 ◦C until use.

2.4.2. Caenorhabditis elegans Maintenance

The nematode Caenorhabditis elegans wild-type strain (N2) was acquired from the
Caenorhabditis Genetics Center.

The growth and maintenance of nematodes were made as previsously described [36]
on nematode growth medium (NGM) plates (per L: 3 g of NaCl; 2.5 g of peptone; 17 g
of agar; 5 mg of cholesterol; 1 mM of CaCl2; 1 mM of MgSO4; 25 mL of 1 M potassium
phosphate buffer at pH 6) supplemented with yeast extract (4 g/L) (NGMY). The NGMY
plates were seeded with live E. coli OP50 as a source of food. The nematodes were kept at
20 ◦C during the maintenance [34,37,38].

2.4.3. Synchronization of Caenorhabditis elegans

Synchronization of nematodes was performed at the beginning of each experiment,
as previously described [34]. The eggs and the gravid worms were collected from NGMY
plates, washed off using M9 buffer, and centrifuged (1500 rpm, 2 min; Rotofix 32A Hettich
Zentrifugen, Tuttlingen, Germany). The worm pellet was resuspended in 5 mL of worm
bleach (3.3 mL of M9 buffer; 700 µL of bleach with 12.5% sodium hypochlorite; 1 mL of
sodium hydroxide 5 M) and vigorously shaken until adult worm bodies were disrupted.
Forty milliliters of M9 buffer were added to block the effect of the worm bleach. The egg
suspension was centrifuged (1500 rpm, 2 min) and washed twice with 20 mL of M9 buffer.
The isolated eggs hatched in 20 mL of M9 buffer under slow agitation at 25 ◦C. After 24 h,
the resulting L1 larvae were transferred onto NGMY plates, seeded with live E. coli OP50
as a food source, and maintained at 20 ◦C until the nematodes reached the L4 stage (young
adult) [34,37,38].

2.4.4. Caenorhabditis elegans Culture Conditions for Assays

An agar medium (per L: 3 g of NaCl and 6 g of agarose) was prepared and stored at
40 ◦C as previously described [32]. The medium was then split into aliquots, individually
supplemented with 1% of cheese fraction (w/v). The aliquots were also supplemented with
a nutritional source (50 µL of HK E.coli OP50 suspension at 100 mg/mL), FUdR (0.12 mM)
to prevent the generation of progenies of C. elegans, and amphotericin B (1.6 µg/mL) to
prevent any significant fungal development. The media for the control condition were the
same, without cheese fraction supplementation. The aliquots were vortexed and poured
into a 24-well plate (500 µL/well). The plate was immediately transferred onto ice to
densify the agar and stored at 4 ◦C until use.
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For experiments, approximately 25 synchronized N2 worms per well were incubated
on the agar medium 24-well plate (NME plate), supplemented or not with cheese fraction,
and kept at 20 ◦C for 5 days.

2.4.5. Survival Rate of Caenorhabditis elegans on Oxidative Medium

The effect of the cheese fractions (FDC, ApE, W40, and W70) on the survival of C.
elegans on an oxidative medium was determined as described in the previous study [32].
After 5 days of incubation on the NME plate, ≈15 worms per well were transferred onto an
agar medium (per L: 3 g of NaCl and 6 g of agarose; “Free condition”) or with hydrogen
peroxide (final concentration 3 mM; “H2O2 condition”) for 3.5 h.

The worm survival rate (
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oxidative medium was solely due to the addition of H2O2 and not anything else. The ex-
periment was only considered valid when the survival rate in the “Free” medium was 
equal to 1 (100%). The nematodes were considered dead in the absence of a response to a 
mechanical stimulus. The effect of the fractions (FDC, ApE, W40, and W70) tested was 
evaluated in comparison with a control condition without cheese fraction 
supplementation. This assay was performed as 6 independent experiments conducted 
simultaneously with the control condition, with 3 wells per condition. 

2.4.6. Quantification of Intracellular ROS in Caenorhabditis elegans under  
Oxidative Conditions 

The effect of cheese fractions (FDC, ApE, W40, and W70) on ROS accumulation in 
nematodes was measured using the probe H2DCF-DA as previously described [39] with 
slight modifications. The lipophilic, non-fluorescent H2DCF-DA is a sensitive cell-perme-
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On the 1140 photos obtained, the lack of contrast, the presence of undesirable ele-
ments (agar fragments, food residues, etc.), and the number of worms present per shot 
make automatic data extraction based on image analysis and pattern recognition difficult. 
We therefore carried out manual clipping on raw images for each worm identified. The 
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The “Free condition” served as a control to ensure that the mortality observed in the
oxidative medium was solely due to the addition of H2O2 and not anything else. The
experiment was only considered valid when the survival rate in the “Free” medium was
equal to 1 (100%). The nematodes were considered dead in the absence of a response to
a mechanical stimulus. The effect of the fractions (FDC, ApE, W40, and W70) tested was
evaluated in comparison with a control condition without cheese fraction supplementation.
This assay was performed as 6 independent experiments conducted simultaneously with
the control condition, with 3 wells per condition.

2.4.6. Quantification of Intracellular ROS in Caenorhabditis elegans under
Oxidative Conditions

The effect of cheese fractions (FDC, ApE, W40, and W70) on ROS accumulation
in nematodes was measured using the probe H2DCF-DA as previously described [39]
with slight modifications. The lipophilic, non-fluorescent H2DCF-DA is a sensitive cell-
permeable redox probe. It crosses the cell membrane and is followed by deacetylation
by cellular esterases in oxidant-sensitive dichlorofluorescein (DCFH). DCFH is oxidized
later by ROS to form highly fluorescent dichlorofluorescein DCF, allowing us to quantify
intracellular ROS levels in vivo.

After 5 days on the NME plate, the worms were washed in M9 buffer, transferred
to a 24-well plate in M9 buffer with H2O2 (final concentration 1.5 mM), and subjected
to continuous shaking at 100 rpm for 30 min. Afterward, H2DCF-DA was added to the
wells (final concentration 50 µM) and incubated for 60 more minutes, protected from light,
with 100 rpm continuous shaking. Following incubation, nematodes were immobilized
using sodium azide (final concentration 0.5 M) and observed under a fluorescence micro-
scope. Pictures of worms were made with a GFP filter (EVOS XL Core Imaging System,
ThermoFisher, Hampton, VA, USA) and saved as PNG files.

On the 1140 photos obtained, the lack of contrast, the presence of undesirable ele-
ments (agar fragments, food residues, etc.), and the number of worms present per shot
make automatic data extraction based on image analysis and pattern recognition difficult.
We therefore carried out manual clipping on raw images for each worm identified. The
resulting 1140 images were analyzed using Python scripts (with PIL—Python Image Li-
brary), which computed indicators such as average fluorescence, variance of fluorescence,
or surface area in mm2 of each worm. The green light intensity in the pictures represents
the accumulation of fluorescent probes in the worms. Rather than attempting to precisely
quantify generated free radicals, our aim here is to compare the fluorescence of worms
under various conditions.

For each condition, this assay was performed in at least 3 independent experiments
with 10 worms per experiment. The fluorescence intensity of all the worms obtained (at
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least 30) gave the average fluorescence intensity per worm for each condition. This average
was compared to the average of the control group.

2.4.7. Quantitative Analyses of the daf-16, skn-1, ctl-2, and sod-3 Gene Expression in
Caenorhabditis elegans

L4-synchronized worms were cultivated for 5 days on NME plates supplemented or
not with FDC (1%, w/v) and then exposed for one hour to M9 buffer with H2O2 (final
concentration 0.75 mM) at slow agitation and room temperature. The mRNA expression
levels of two transcription factors (daf-16 and skn-1) and two antioxidant enzymes (ctl-2
and sod-3) were measured quantitatively by real-time PCR after this exposure, following
the protocol previously described [32]. Worms were collected and washed twice with
M9 buffer. After centrifugation (1500 rpm, 2 min), the supernatant was removed, and
500 µL of TRIzol reagent was added to the worm pellet for RNA isolation. Worms were
disrupted by using a Precellys (Bertin instruments, Montigny-le-Bretonneux, France) with
glass beads (PowerBead Tubes Glass 0.1 mm, Mo Bio Laboratories, Carlsbad, CA, USA)
and a succession of two sessions at 10,000 rpm for 30 s each. A break of 30 s on ice between
the two sessions allowed the tubes to cool down. The tubes were centrifuged (14,000 rpm,
1 min) to remove the beads, and the supernatant was transferred to a new tube with 100 µL
of chloroform. After 30 s of vortexing, the tubes were incubated at room temperature for
3 min. The samples were then centrifuged (12,000 rpm, 15 min, 4 ◦C), and the aqueous
phase was transferred to another tube and treated again with chloroform under the same
conditions. To precipitate the RNA, 250 µL of isopropanol was added to the aqueous
phase, and the tubes were incubated for 4 min at room temperature before centrifugation
(12,000 rpm, 10 min, 4 ◦C). The supernatant was discarded, and the pellet was washed
with 1 mL of 70% ethanol. After centrifugation (14,000 rpm, 5 min, 4 ◦C), the pellet was
dissolved in 20 µL of RNase-free water. The High-Capacity cDNA Archive kit was then
used on 1 µg of RNA to perform a reverse transcription of the samples in accordance
with the manufacturer’s instructions. For the real-time qPCR experiment, each sample
tube contained 2.5 µL of cDNA, 6.25 µL of Rotor-Gene SYBR Green Mix, 1.25 µL of 10 M
primers (Table 2), and 1.25 µL of RNase-free water. Each sample was run in triplicate. This
study was performed using Rotor-Gene Q Series software 2.1.0 (Qiagen GmbH, Hilden,
Germany). The gene Y45F10D.4 was used as the reference [40]. The 2−∆∆Ct method was
used to determine the relative changes in gene expression.

∆∆Ct = [(Cttarget − CtY45F10D.4) Sample] − [(Cttarget − CtY45F10D.4) Control]

Table 2. Targeted C. elegans gene primers for qPCR analysis.

Gene Name Forward Primer (5′-3′) Reverse Primer (5′-3′)

Y45F10D.4 CGAGAACCCGCGAAATGTCGGA CGGTTGCCAGGGAAGATGAGGC

skn-1 GTTCAATCAACAACAGGTGGATCA TGGATGTTGGGAACACTCTGTC

daf-16 TTCAATGCAAGGAGCATTTG AGCTGGAGAAACACGAGACG

ctl-2 TCCCAGATGGGTACCGTCAT TCACTCCTTGAGTTGGCTTGA

sod-3 CAATTGCTCTCCAACCAGCG ACCGAAGTCGCGCTTAATAG

2.5. In Vitro Analyses of Human Leukocytes
2.5.1. Leukocyte Obtention

Blood was collected from healthy human volunteers (n = 83; Etablissement Français
du Sang EFS, Clermont-Ferrand, France). All donors gave their written informed consent
for the use of blood samples for research purposes under EFS contract n◦22-106 (in accor-
dance with the following articles L1222-1, L1222-8, L1243-4, and R1243-61 of the French
Public Health Code). As previously described [41], each blood sample was hemolyzed
with an ammonium chloride solution (155 µM NH4Cl; 12 µM NaHCO3; 0.01 µM EDTA),
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centrifuged (1000 rpm, 10 min, 4 ◦C), and the pellet of leukocytes was resuspended in
Roswell Park Memorial Institute 1640 medium (RPMI-1640) supplemented with 10% (v/v)
heat-inactivated fetal bovine serum (FBS), glutamin (2 mM), and gentamycin (50 µg/mL).
Leukocytes were adjusted to 106 cells/mL.

2.5.2. Kinetics of ROS Production by Leukocytes

As previously described [42], leukocytes were stimulated with PMA to enhance ROS
production in vitro. Only the fractions that were homogeneous in a culture medium or in
DMSO were used to perform this experiment. Therefore, only the cheese extracts (ApE,
W40, and W70) were tested in vitro on human leukocytes. ROS levels were measured using
the DHR123 probe, a non-fluorescent compound integrated by cells and oxidized by ROS
to form rhodamine123, a fluorescent molecule. Leucocytes were incubated with cheese
fractions (W40, W70, or ApE; 0, 25, 50, 100, or 200 µg/mL), PMA (1 µM), and DHR123
(1 µM) in 96-well plates for 2 h at 37 ◦C. Fluorescence (excitation/emission: 485/538 nm)
was recovered every 5 min for 2 h at 37 ◦C using the Spark® reader (TECAN, Lyon, France).
The results were presented as the percentage of ROS production in treated cells relative to
the control cells (set at 100%).

2.5.3. Leukocyte Viability MTT Assay

Leukocyte viability was measured with MTT, which is metabolized in blue formazan
by the mitochondrial dehydrogenase of live cells. The following protocol [43] was used,
with slight modifications: Two hundred thousand cells (200 µL) were incubated in 96-well
plates with PMA (1 µM) and cheese fractions (ApE, W40, or W70) at 37 ◦C in a humidified
5% CO2 incubator. After incubation, plates were centrifuged (1 000 rpm, 6 min), and most
of the media were removed. MTT reagent (0.5 mg/mL) was added to the wells, and the
plates were incubated (4 h, 37 ◦C). The intracellular formazan product was dissolved in
150 µL of dimethyl sulfoxide (DMSO). After incubation (10 min, 37 ◦C), the absorbance of
each well was measured at 540 nm using the Spark® reader (TECAN, Lyon, France).

2.6. Statistical Analysis

Statistical significance was performed with GraphPad Prism version 8.2.1 for Windows
(GraphPad Software, La Jolla, CA, USA). Groups were compared to the control using
a two-tailed Student’s t-test. Differences were considered statistically significant at a
p-value < 0.05. Differences between conditions were determined by using the Kruskal–
Wallis test followed by an uncorrected Dunn’s test [44,45] and were considered statistically
significant at a p-value < 0.05.

3. Results
3.1. Assessment of the Protective Effect of Cheese Fractions in C. elegans under
Oxidative Conditions

To investigate the effect of cheeses on the oxidative process, we conducted survival
assays in worms supplemented with cheese fractions (FDC, ApE, W40, or W70) or without
(CTRL) before exposure to an oxidative medium (Figure 1). The survival rate of C. elegans
was measured after 3.5 h on an H2O2 agar medium and compared to the control survival
rate (CTRL) previously set at the value of 1.

The results revealed that all cheese fractions improved the survival of C. elegans when
exposed to oxidative conditions. Compared to the control, supplementation with each
FDC (Figure 1a) enhanced the survival rate of C. elegans from 2.17 times (Bleu d’Auvergne;
p < 0.001) to 2.35 times (Goat cheese; p < 0.001). The supplementation with ApE (Figure 1b)
improved the survival rate from 3.14 times (Bleu d’Auvergne; p < 0.001) to 5.11 times (Brie
de Meaux; p < 0.001) compared to the control. The same observation was made for each
polar extract (W40 and W70; Figure 1c,d), which increased survival rates from 4.08 (Saint-
Nectaire; p < 0.0001) to 5.33 (Goat cheese; p < 0.0001) for W40 and from 3.32 (Cantal; p < 0.01)
to 4.77 (Bleu d’Auvergne; p < 0.0001) times the control for W70.
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3.2. Effect of Cheeses on ROS Accumulation in C. elegans on Oxidative Condition 
We evaluated the effects of cheese fractions (FDC, ApE, W40, and W70) on ROS ac-

cumulation in C. elegans exposed to an oxidative environment (Supplementary Figures 
S1–S8). As expected, the worms cultivated on a medium without H2O2 (negative CTRL; 
Figure 2a) had less fluorescence intensity compared with the worms in the H2O2 environ-
ment (CTRL; Figure 2b). These results demonstrated that exposure to an oxidative envi-
ronment induced the accumulation of ROS within the worm in vivo. In contrast, prior 

Figure 1. Survival rate of the Caenorhabditis elegans N2 strain on oxidative medium. Worms were
incubated on a standard culture medium (CTRL) or supplemented with FDC (a), ApE (b), W40 (c), or
W70 (d). After 5 days, worms were placed on agar medium with H2O2 for 3.5 h. The survival rate
was measured for each sample and compared to the survival rate of the control (CTRL), fixed at 1.
Results are presented as the mean ± SEM (n = 6); ** = p < 0.01; *** = p < 0.001; **** = p < 0.0001.

3.2. Effect of Cheeses on ROS Accumulation in C. elegans on Oxidative Condition

We evaluated the effects of cheese fractions (FDC, ApE, W40, and W70) on ROS accu-
mulation in C. elegans exposed to an oxidative environment (Supplementary Figures S1–S8).
As expected, the worms cultivated on a medium without H2O2 (negative CTRL; Figure 2a)
had less fluorescence intensity compared with the worms in the H2O2 environment (CTRL;
Figure 2b). These results demonstrated that exposure to an oxidative environment induced
the accumulation of ROS within the worm in vivo. In contrast, prior supplementation with
cheese fractions (FDC, ApE, W40, and W70; Figure 2c–f) resulted in a reduced fluorescence
intensity compared to the control.
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Figure 2. Representative GFP fluorescence microscopy images of ROS accumulation in vivo in
Caenorhabditis elegans from different conditions. A wild-type N2 strain was cultivated for five days
either on a standard culture medium (a,b) or supplemented with FDC (c), ApE (d), W40 (e), or W70 (f).
After that, worms were placed on M9 buffer (a) or under oxidative conditions (b–f) and treated with
H2DCF-DA to assess intracellular ROS levels in vivo. Images were acquired at 100× magnification.

In comparison with the control worms subjected to H2O2 oxidative stress (without
cheese fraction supplementation), we observed a reduction in ROS accumulation with the
FDC (Figure 3a) from 60% for Roquefort (p < 0.001) and up to 72% for the four FDCs: Goat
cheese (p < 0.0001), Cantal (p < 0.0001), Comté (p < 0.0001), and Brie de Meaux (p < 0.0001).

Apolar extract (ApE; Figure 3b) significantly reduced ROS levels by a minimum of
42% for Goat cheese (p < 0.05) and a maximum of 80% for Brie de Meaux (p < 0.0001). W40
polar extract (Figure 3c) contributed to a reduction in ROS accumulation ranging from 54%
for Roquefort (p < 0.01) to up to 70% for the three FDCs: Brie de Meaux (p < 0.0001), Bleu
d’Auvergne (p < 0.0001), and Saint-Nectaire (p < 0.0001). W70 polar extract (Figure 3d)
reduced ROS amounts between 60% for Roquefort (p < 0.001) and 75% for Bleu d’Auvergne
(p < 0.0001) compared with the control.
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Figure 3. Impact of cheeses upon intracellular reactive oxygen species (ROS) accumulation in the N2
Caenorhabditis elegans strain. Worms were cultivated for 5 days on medium supplemented with FDC
(a), ApE (b), W40 (c), or W70 (d). All conditions except the negative control (“Negative CTRL”) were
then placed in the oxidative condition. All were treated with H2DCF-DA to assess intracellular ROS
levels in vivo. Results are presented as the mean fluorescence intensity per worm ± SEM (n = 30).
Samples are compared to the control in the oxidative condition (“CTRL”); * = p < 0.05; ** = p < 0.01;
*** = p < 0.001; **** = p < 0.0001.

3.3. Impact of Cheese Extracts on ROS Production in Human Leukocytes

To investigate the impact of the freeze-dried cheese extracts (ApE, W40, and W70)
upon ROS production in cells, we performed an in vitro quantification experiment using
PMA-stimulated human leukocytes to induce ROS production. Concurrently, cell viability
was assessed using an MTT assay. The impact of the three extracts (ApE, W40, and W70)
from each of the eight cheeses (24 extracts) on ROS production was compared with ROS
production of the PMA-stimulated control (CTRL) cells set at 100% (Figure 4).

Twenty-two of the extracts tested showed a significant reduction in ROS production.
Apolar extract (ApE; Figure 4a) of cheeses decreased ROS production from 16% for Epoisses
(50 µg/mL; p < 0.05) to up to 31% for the five ApEs of Goat cheese (100 µg/mL; p < 0.001),
Saint Nectaire (50 µg/mL; p < 0.001), Bleu d’Auvergne (200 µg/mL; p < 0.001), Roquefort
(50 µg/mL; p < 0.05) and Brie de Meaux (200 µg/mL; p < 0.001), compared to the control.
W40 polar extracts (Figure 4b) were able to mitigate ROS formation from 12% for Brie de
Meaux (50 µg/mL; p < 0.05) to up to 45% for Roquefort (50 µg/mL; p < 0.01) relative to
the control. W70 (Figure 4c) minimized ROS synthesis from 17% for Epoisses (50 µg/mL;
p < 0.01) to up to 50% for the two W70’ extracts of Roquefort (50 µg/mL; p < 0.001) and
Brie de Meaux (50 µg/mL; p < 0.001) in comparison with the control.
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Figure 4. Effect of ApE (a), W40 (b), and W70 (c) upon reactive oxygen species (ROS) production on
human leukocytes. Cells were incubated with fractions (25, 50, 100, or 200 µg/mL) and stimulated for
2 h to enhance ROS production. ROS production in the stimulated control was set to 100%. Results
are presented as the percentage of ROS production in treated cells relative to the control cells (mean
± SEM; n = 6); * = p < 0.05; ** = p < 0.01; *** = p < 0.001.

3.4. Effect of Cheese Supplementation on ROS Elimination in C. elegans through Antioxidant
Pathway Activation

To evaluate the impact of cheeses on ROS elimination in vivo, we examined the
expression of the two transcription factor-encoding genes skn-1 and daf-16, as well as the
expression of the antioxidant enzyme-encoding genes ctl-2 and sod-3. After spending 5 days
on media supplemented with FDC or without it (CTRL), the nematodes were stimulated
with H2O2. The gene expression of each condition was compared to the gene expression of
the control (CTRL), previously set at the value of 1 (Figure 5).

Interestingly, skn-1 expression (Figure 5a) was significantly upregulated by 1.74 (p < 0.05),
2.15 (p < 0.05), and 2.87 (p < 0.05) times compared with the control for worms grown in
media supplemented with Roquefort, Saint-Nectaire, and Comté, respectively. Concerning
the daf-16 gene (Figure 5b), all cheeses, except Cantal, significantly enhanced its expression
from 1.63 for Epoisses (p < 0.05) to 3.13 for Goat cheese (p < 0.01) compared to the control.

Supplementation with Comté and Roquefort upregulated the expression of the ctl-2
gene about two times (Figure 5c), by 2.01 (p < 0.01) and 2.28 (p < 0.05) times, respec-
tively, and Epoisses and Saint-Nectaire about three times, by 2.91 (p < 0.05) and 3.48 times
(p < 0.05), respectively, compared to the control. Worms previously supplemented with
freeze-dried Roquefort, Goat cheese, and Bleu d’Auvergne upregulated the expression
of the sod-3 gene by 2.36 (p < 0.01), 3.8 (p < 0.05), and 5.37 (p < 0.05) times the control,
respectively (Figure 5d).
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Figure 5. Effect of freeze-dried cheese (FDC) on antioxidant gene expression of skn-1 (a), daf-16 (b),
ctl-2 (c) and sod-3 (d). Worms were incubated for 5 days on FDC-supplemented medium or not
(CTRL) before oxidative exposure (with H2O2). Data are expressed as mean ± SEM (n = 5). Samples
are compared to the relative expression of the control exposed to H2O2 (CTRL), fixed at 1; * = p < 0.05;
** = p < 0.01.

4. Discussion

In this study, we aimed to evaluate the biological properties of the oxidative process of
eight French raw-milk cheeses with varied cheese-making processes, milk types, and ripen-
ing (Table 1) to maximize the diversity of their composition and/or microbiota [21–26] and
potentially their bioactive peptides [16–20]. We used both in vivo and in vitro biological
models. We selected the in vivo model Caenorhabditis elegans, which shares approximately
60–80% of genes and 12 signaling pathways with humans [46,47]. This organism is com-
monly used for investigating probiotic effects and screening various molecules or extracts
of interest [36,48–50], but it is also an ideal model for studying the oxidative process. An
exogenous source of ROS, such as hydrogen peroxide, induces a state of oxidative stress in
the nematode, leading to a sub-dead or dead condition [51].

To investigate the effect of cheeses on the oxidative process, we conducted survival
assays in worms supplemented with 1% of cheese fractions (FDC, ApE, W40, or W70) or
without supplementation (CTRL) before exposure to an oxidative medium. These results
demonstrated that a 1% supplementation of the medium with each cheese fraction (FDC,
apolar, and polar extracts) enhanced the survival rate of C. elegans by up to 5.33 times the
control (W40 of Goat cheese), thereby protecting it from an oxidative environment. The
high mortality of the control nematodes in the oxidative environment might be attributed
to an accumulation of oxidative damage, including the presence of ROS in the organism.
We hypothesized that cheese fractions (FDC, ApE, W40, and W70) could mitigate this
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accumulation and associated damage, thereby enhancing the survival of the worms. Our
results demonstrated that all cheese fractions decreased ROS accumulation in vivo in C.
elegans by up to 80% (ApE of Brie de Meaux). As this could be the result of either a
reduction in ROS production within the cells and/or an increase in the elimination of free
radicals through the activation of metabolic response pathways, we investigated whether
our cheeses could influence one or both of these processes.

We conducted an in vitro assay in human cells to determine the effect of the three
extracts (ApE, W40, and W70) obtained from the FDC on ROS production. In humans,
ROS are produced by immune cells such as leukocytes, particularly neutrophils, which
play a role in both host defense and inflammation [52]. We conducted an experiment
using PMA-stimulated human circulant leukocytes in vitro. PMA, a phorbol ester analog,
activates protein kinase C (PKC) and NADPH oxidase (NOX) in neutrophils and enhances
their ROS production [53,54], simulating oxidative stress in vitro. The assay was conducted
on the apolar (ApE) and polar (W40 and W70) extracts of each cheese. Remarkably, at least
one fraction of each raw-milk cheese significantly reduced ROS production, regardless
of the concentration tested. Each ApE reduced ROS production by an average of about
30%, with no dose-dependent effect, suggesting that the maximum effect was reached
at 25 µg/mL. Out of the 24 fractions (W40, W70, and ApE) tested, 22 were effective in
reducing in vitro ROS production by 10% to 54% (W70 of Roquefort).

Another way to protect from ROS accumulation in an oxidative environment is to
enhance ROS elimination in cells through the activation of metabolic response pathways. In
C. elegans, two metabolic pathways are described as having this function: the p38 mitogen-
activated protein kinase (p38 MAPK) pathway and the insulin/insulin-like growth factor-1
signaling (IIS) pathways. The p38 MAPK pathway, regulated by the transcription factor
SKN-1, the mammalian ortholog of Nrf2, is involved in the immune system and oxidative
stress response [55]. When nematodes are stimulated by oxidative stress, SKN-1 is activated
and regulates downstream target genes to manage oxidative stress [56]. Another metabolic
pathway, the insulin/insulin-like growth factor-1 signaling (IIS) pathway, is described to
be involved in immunity, stress resistance, and longevity in C. elegans [57–60]. DAF-16, a
FOXO-family transcription factor, is the core gene of this pathway involved in regulating
stress resistance. When activated, DAF-16 translocates into the nucleus and is responsible
for the regulation of downstream genes implicated in the stress response, such as ctl-2
and sod-3, encoding catalase (CAT) and superoxide dismutase (SOD), respectively, which
are implicated in the detoxification of ROS in the organism. Interestingly, although all
the cheeses had a beneficial effect on protecting C. elegans, they all had different mech-
anisms to modulate the oxidative process (Figure 6). Among all the cheeses, the FDCs
of Saint-Nectaire, Roquefort, and Comté were the only ones that seemed to activate the
two molecular signaling pathways: the IIS pathway via daf-16 overexpression and the
p38 MAPK pathway through skn-1 overexpression. The FDCs of Goat cheese, Roquefort,
and Bleu d’Auvergne appeared to only activate the IIS pathway with the overexpression
of daf-16. Their protective effect seemed to be linked to the activation of SOD, as sug-
gested by the increase in sod-3 expression. We demonstrated that the protective effect of
C. elegans against oxidative conditions by the FDCs of Saint-Nectaire, Comté, Roquefort,
and Epoisses seemed to involve the activation of the IIS pathway and CAT through the
overexpression of daf-16 and ctl-2, respectively. Roquefort seemed to be the only one to
provide protection through the overexpression of both molecular pathways (the p38 MAPK
and the IIS pathways) but also through the two antioxidant enzymes tested (SOD and CAT)
via the overexpression of their genes. Cantal was the only cheese to not overexpress any
of the four tested genes (skn-1, daf-16, sod-3, and ctl-2), suggesting that its protective effect
was provided by other response pathways. Additional research at the protein level could
provide further insights into the effects of raw-milk cheeses on the implications of each of
these factors.
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Since the stress resistance pathways activated in C. elegans are conserved in humans,
and given that cheeses showed a beneficial effect on oxidative processes in human leuko-
cytes, we can expect a similar effect of raw-milk cheeses on these antioxidant enzyme-
encoding genes in human cells. However, further studies are needed to understand the
mechanisms of action involved in human cells.

Each raw-milk cheese tested has a beneficial effect on the oxidative process. However,
they present differences in antioxidant properties. This observation suggested that there
may be variations in the composition of bioactive molecules and their relative concentra-
tions or differences in the effectiveness of molecules between two FDCs. Among the eight
cheeses, the Roquefort FDC was the only one able to enhance the expression of all tested
genes, suggesting activation of both stress response pathways tested. Coupled with its abil-
ity to reduce ROS production in vitro by up to 55% (W70) and ROS accumulation in vivo
by up to 60% (FDC), Roquefort appeared to have the best antioxidant properties among
all raw-milk cheeses tested. It would be highly insightful to analyze and characterize our
cheeses to understand the similarities and differences in their composition and grasp their
biological distinctions.

Each raw-milk cheese was fractionated into three extracts: an apolar (ApE) and two
polar (W40 and W70) extracts. Interestingly, the three fractions (ApE, W40, and W70) from
the same FDC exerted similar protective effects on C. elegans. This observation suggests the
presence of at least two distinct groups of active molecules, polar and apolar, responsible
for protection within each cheese. For all cheeses except Cantal, polar extracts (both W40
and W70) seemed to have higher antioxidant properties than the apolar extract (ApE).
These results suggest that polar extracts could contain more molecules responsible for the
antioxidant effect or have higher efficiency compared with the apolar extract. Although
both polar extracts, W40 and W70, showed different antioxidant properties, W70 extract
was more efficient than W40 for seven out of eight tested cheeses. These differences between
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the two polar extracts suggest that each is composed of a different profile with different
efficiencies or concentrations of bioactive molecules. This observation was expected as
W70 has been water-extracted at 70 ◦C, suggesting a more efficient extraction compared
with the 40 ◦C extraction of W40. The chemical characterization of our polar extracts and
the comparison of the profiles obtained could help elucidate the differences observed and
could lead to a better understanding of the biological activity of these two polar extracts.

Previous studies have suggested that cheese consumption could be involved in
the French paradox by reducing systemic inflammation [62,63] and different markers
of metabolic syndrome [64–67] and may improve cardiovascular health. Our study demon-
strated that all tested raw-milk cheeses possessed antioxidant properties, not only by
reducing ROS production in human leukocytes but also by activating metabolic response
pathways in the C. elegans model, thus limiting ROS accumulation and its associated
damage. These results are consistent with previous in vitro studies on the antioxidant
properties of cheeses [21,29,31,68] and go further by showing the antioxidant effects of
raw-milk cheeses using both in vitro and in vivo model organisms. These new results
highlight the potential of cheese as a key player in the French paradox.

It would be interesting to pursue our study by testing the effects of these raw-milk
cheeses on oxidative stress and inflammation-associated diseases or aging, such as car-
diovascular diseases [69], neurodegenerative diseases [9], or osteoarticular degenerative
diseases [7]. Investigating adipokine signaling might also be of interest, as this pathway is
implicated in all these biological processes [70].

5. Conclusions

To the best of our knowledge, this study is the first to focus on the biologically
comparable effect of French raw-milk cheeses—Goat cheese, Saint-Nectaire, Cantal, Bleu
d’Auvergne, Roquefort, Comté, Brie de Meaux, and Epoisses—on oxidative processes
using both in vitro and in vivo models. All cheeses studied in this work were able to
protect C. elegans from oxidative conditions. These results were explained by the biological
activity of each raw-milk cheese to reduce the accumulation of ROS in vivo, thus limiting
damages associated with both reducing ROS production (in vitro with human leucocytes)
and enhancing gene expression of antioxidant enzymes implicated in the elimination of
ROS (in vivo with C. elegans).

The two types of cheese fractions (apolar and polar) investigated in this study were shown
to present similar levels of antioxidative activity, suggesting their respective contribution to
the global activity found in whole cheeses. In our study, some mechanistic evidence was
shown in the antioxidant gene expression of C. elegans and could be pursued in the future by
elucidating the chemical composition of raw-milk cheese at the molecular level.
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from different fractions of Saint-Nectaire; Figure S3: Representative GFP fluorescence microscopy
images of ROS accumulation in vivo in C. elegans from different fractions of Cantal; Figure S4:
Representative GFP fluorescence microscopy images of ROS accumulation in vivo in C. elegans from
different fractions of Bleu d’Auvergne; Figure S5: Representative GFP fluorescence microscopy
images of ROS accumulation in vivo in C. elegans from different fractions of Roquefort; Figure S6:
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Representative GFP fluorescence microscopy images of ROS accumulation in vivo in C. elegans from
different fractions of Epoisses.

Author Contributions: Conceptualization, A.D., F.C.-C. and L.R.; methodology, A.D., M.B., C.D., P.C.,
S.B., F.C.-C. and L.R.; software, C.P.; validation, C.P., P.C., S.B., F.C.-C. and L.R.; formal analysis, A.D.
and C.P.; investigation, A.D. and M.B.; resources, E.S., P.C., S.B., F.C.-C. and L.R.; data curation, A.D.,

https://www.mdpi.com/article/10.3390/nu16121862/s1
https://www.mdpi.com/article/10.3390/nu16121862/s1


Nutrients 2024, 16, 1862 16 of 19

C.P. and C.C.; writing—original draft preparation, A.D.; writing—review and editing, C.P., M.B., C.C.,
I.R., C.D., J.P., P.C., S.B., F.C.-C. and L.R.; visualization, A.D. and L.R.; supervision, J.P., E.S., P.C., S.B.,
F.C.-C. and L.R.; project administration, L.R.; funding acquisition, J.P., E.S., P.C., F.C.-C. and L.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was financed by La Région Auvergne-Rhône-Alpes (Pack Amibition Recherche
2020–FRIMOB project; P089O002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: The donors of this study gave their written informed consent for the
use of blood samples for research purposes under Établissement Français du Sang contract no. EFS
AURA 22-106 (in accordance with articles L1222-1, L1222-8, L1243-4, and R1243-61 of the French
Public Health Code).

Data Availability Statement: The datasets presented during the current study are available on
request from the corresponding author.

Conflicts of Interest: Authors J.P. and E.S. were employed by the company Dômes Pharma. The
company was a partner in the research project funded by La Région Auvergne-Rhône-Alpes, in which
this study was conducted. J.P. and E.P. participated in the funding acquisition and in the supervision
of this study. The remaining authors declare that this research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative Stress: An Essential Factor in the Pathogenesis of

Gastrointestinal Mucosal Diseases. Physiol. Rev. 2014, 94, 329–354. [CrossRef]
2. Lodovici, M.; Bigagli, E. Oxidative Stress and Air Pollution Exposure. J. Toxicol. 2011, 2011, 487074. [CrossRef]
3. Mittler, R. ROS Are Good. Trends Plant Sci. 2017, 22, 11–19. [CrossRef] [PubMed]
4. Kudryavtseva, A.V.; Krasnov, G.S.; Dmitriev, A.A.; Alekseev, B.Y.; Kardymon, O.L.; Sadritdinova, A.F.; Fedorova, M.S.; Pokrovsky,

A.V.; Melnikova, N.V.; Kaprin, A.D.; et al. Mitochondrial Dysfunction and Oxidative Stress in Aging and Cancer. Oncotarget 2016,
7, 44879–44905. [CrossRef]

5. Gu, Y.; Han, J.; Jiang, C.; Zhang, Y. Biomarkers, Oxidative Stress and Autophagy in Skin Aging. Ageing Res. Rev. 2020, 59, 101036.
[CrossRef] [PubMed]

6. Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do
for Us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [CrossRef]

7. Lepetsos, P.; Papavassiliou, A.G. ROS/Oxidative Stress Signaling in Osteoarthritis. Biochim. Biophys. Acta Mol. Basis Dis. 2016,
1862, 576–591. [CrossRef] [PubMed]

8. Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.;
et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11, 552. [CrossRef]

9. Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity,
Oxidative Stress, and Antioxidants: Chronic Diseases and Aging; Springer: Berlin/Heidelberg, Germany, 2023; Volume 97, ISBN
0123456789.
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