
HAL Id: hal-04628170
https://uca.hal.science/hal-04628170v1

Submitted on 15 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

ROBUSfT : Robust real-time shape-from-template, a C
++ library

Mohammadreza Shetab-Bushehri, Miguel Aranda, Erol Özgür, Youcef
Mezouar, Adrien Bartoli

To cite this version:
Mohammadreza Shetab-Bushehri, Miguel Aranda, Erol Özgür, Youcef Mezouar, Adrien Bartoli.
ROBUSfT : Robust real-time shape-from-template, a C ++ library. Image and Vision Computing,
2024, 141, pp.104867. �10.1016/j.imavis.2023.104867�. �hal-04628170�

https://uca.hal.science/hal-04628170v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

ROBUSfT: Robust Real-Time Shape-from-Template, a C++ Library

Mohammadreza Shetab-Bushehri, Miguel Aranda, Youcef Mezouar, Adrien Bartoli, Erol Özgür

Abstract— Tracking the 3D shape of a deforming object
using only monocular 2D vision is a challenging problem.
This is because one should (i) infer the 3D shape from a
2D image, which is a severely underconstrained problem, and
(ii) implement the whole solution pipeline in real-time. The
pipeline typically requires feature detection and matching,
mismatch filtering, 3D shape inference and feature tracking
algorithms. We propose ROBUSfT, a conventional pipeline based
on a template containing the object’s rest shape, texturemap
and deformation law. ROBUSfT is ready-to-use, wide-baseline,
capable of handling large deformations, fast up to 30 fps, free of
training, and robust against partial occlusions and discontinuity
in video frames. It outperforms the state-of-the-art methods
in challenging datasets. ROBUSfT is implemented as a publicly
available C++ library and we provide a tutorial on how to
use it in https : //github.com/mrshetab/ROBUSfT.

Keywords: monocular Non-rigid reconstruction, mis-
match removal, SfT, validation procedure.

I. INTRODUCTION

Problem and challenges. Tracking the 3D shape of a de-
forming object has important applications in augmented
reality [1], [2], computer-assisted surgery [3]–[7] and
robotics [8]–[10]. However, the existing solutions are im-
practical. This is because of the following challenges: (C1)
real-time implementability and (C2) robustness. Challenge
C1 is hard to achieve because the solution usually involves
a computationally demanding multi-step pipeline. Challenge
C2 is hard to maintain because of noises, occlusions, invisi-
ble object, large deformations and fast motions. Furthermore,
in numerous applications of augmented reality, computer-
assisted surgery and robotics, a 2D camera is the de facto
sensor owing to its light weight, small size, and low cost.
The camera’s perspective projection introduces an additional
challenge, (C3) recoverability of shape’s depth from a 2D im-
age. Challenge C3 becomes extremely difficult for deforming
objects.

Shape-from-Template. Different priors and constraints have
been proposed to resolve challenge C3. The most common
ones are the object’s 3D rest shape, texturemap, deformation
law and the camera intrinsics. These form the ingredients
for a variety of methods. Among these methods, we are par-
ticularly interested in Shape-from-Template (SfT). SfT has

MR. Shetab-Bushehri, Y. Mezouar, A. Bartoli, and E. Özgür
are with the CNRS, Clermont Auvergne INP, Institut Pascal,
Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
(e-mail: m.r.shetab@gmail.com; youcef.mezouar@sigma-clermont.fr;
adrien.bartoli@gmail.com; erolozgur@gmail.com). M. Aranda is with
Instituto de Investigación en Ingenierı́a de Aragón (I3A), Universidad de
Zaragoza, E-50018 Zaragoza, Spain (e-mail: miguel.aranda@unizar.es).

been well studied for isometrically deforming objects [11]–
[13] and has been shown to uniquely resolve the depth of
each object point [14]. It uses a template formed by the
abovementioned priors. SfT’s input is a single image of a
deformed object, and its output is the object’s 3D shape
seen in the image. We adopt a conventional SfT pipeline
shown in Figure 1 to solve the 3D shape tracking problem of
deforming objects. The pipeline involves keypoint extraction
and matching, mismatch filtering, warping and 3D shape in-
ference steps, respectively. We successfully made it real-time
and robust by integrating seamlessly both novel and state-of-
the-art algorithms at different steps. We next overview the
strengths and weaknesses of current SfT methods.

State-of-the-art SfT methods. SfT can be broken down into
two main parts: registration and 3D shape inference. Fol-
lowing this, we categorize existing SfT methods into two
groups: (G1) shape inference methods and (G2) integrated
methods. G1 methods only cover the 3D shape inference
part [10]–[12], [14]–[18]. In contrast, G2 methods cover
both the registration and 3D shape inference parts [6], [19]–
[23]. We also overview Deep Neural Network (DNN) based
SfT methods, as the third group (G3), which have been
recently introduced. G3 methods cover both the registration
and 3D shape inference parts [24]–[28]. The majority of
G1 methods are wide-baseline. However, they barely run in
real-time. Furthermore, a complete solution with registration
shall be even slower. The majority of G2 methods require an
initialization close to the solution. This makes them short-
baseline. Subsequently they often fail against occlusions, fast
motions and large deformations. Once failed, they need to be
reinitialized. G3 methods are wide-baseline and run in real-
time. However, they are object-specific. They require a huge
amount of training data and proper computational resources
for each new object. These make them difficult to consider as
a general and ready-to-use solution. We therefore conclude
that there does not exist an SfT method that is complete,
real-time, robust and easily applicable to new objects.

Contributions. We list our contributions in three parts.
a) Contribution to SfT: We propose ROBUSfT, a com-

plete real-time robust SfT pipeline for monocular 3D shape
tracking of isometrically deforming thin-shell objects with
matchable appearance. It can track up to 30 fps using 640×
480 images on off-the-shelf standard consumer hardware.
It does not require initialization and implements tracking-
by-detection. It is wide-baseline and robust to occlusions,
invisible object, large deformations and fast motions. It does
not require training. It is thus directly applicable in many

ar
X

iv
:2

30
1.

04
03

7v
3

 [
cs

.C
V

]
 1

3
D

ec
 2

02
3

Fig. 1: Overview of ROBUSfT.

industrial and research contexts. ROBUSfT outperforms the
state-of-the-art methods in challenging datasets.

b) Contribution to mismatch removal: We introduce
myNeighbor, a novel mismatch removal algorithm. It han-
dles deforming scenes and a large percentage of mismatches.
It is lightning fast, reaching 200 fps.

c) Contribution to experimental validation: We design
a novel type of validation procedure, called Fake Realistic
Experiment (FREX). It allows us to automatically generate
semi-synthetic datasets with ground-truth. This eases the
quantitative evaluation of 2D and 3D shape tracking algo-

rithms for deforming objects to a great extent.

Paper structure. Section 2 reviews previous work. Section
3 explains ROBUSfT. Section 4 presents FREX. Section 5
describes myNeighbor, conducts a series of experiments
and evaluates the results of myNeighbor in comparison to
previous work. Section 6 validates ROBUSfT through FREX

and real data experiments, and compares the results with
previous work. Finally, Section 7 concludes and suggests
future work.

II. PREVIOUS WORK

We review the methods for monocular shape inference of
isometrically deforming objects, following the above three
categories, namely, (G1) shape inference methods, (G2)
integrated methods, and (G3) DNN-based SfT methods. For
each category, we describe the assumptions, main character-
istics, and limitations. We finally compare ROBUSfT to these
methods.

A. (G1) Shape inference methods

These methods cover the 3D shape inference part. They
assume that the registration between the template and the
image was previously computed. For instance, they typically
use keypoint matches between the template and the image,
with generic mismatch removal methods [16], [29], [29]–
[31]. In fact, very few methods in this category could form
a complete SfT pipeline by adding an existing registration
solution [1], [16]. Three general groups are found in existing
3D shape inference methods; (i) methods using a convex re-
laxation of isometry called inextensibility [11], [12], [17], (ii)
methods using local differential geometry [14]–[16], and (iii)
methods minimizing a global non-convex cost function [10],
[17], [18]. The methods in (iii) are the most precise ones
but also computationally expensive and require initialization.
The first two groups of methods are often used to provide
an initial guess for the third group.

In the first group, Salzmann et al. [12] suggested a closed-
form solution to non-rigid 3D surface registration by solving
a set of quadratic equations accounting for inextensibility.
Later, they replaced equality constraints with inequality and
thus sharp deformations could be better recovered [11].
Brunet et al. [17] formulated two shape inference methods
based on point-wise and continuous surface models as Sec-
ond Order Cone Programs (SOCP). In the second group,
Bartoli et al. [14] showed that in addition to keypoint 2D co-
ordinates in the image, their first-order differential structure
can be used to estimate the depth. Instead of calculating the
warp globally, which is time-consuming, Famouri et al. [16]
estimated the depth locally for each match pair with respect
to both local texture and neighboring matches. In each frame,
the most recognizable matches were selected based on offline
training. The execution speed of their algorithm is claimed to
be up to 14 fps only for the 3D shape inference. In the third
group, Brunet et al. [17] proposed a refining isometric SfT
method by reformulating the isometric constraint and solving
as a non-convex optimization problem. The method required
a reasonably accurate 3D shape of the deforming surface
as the initializing guess. Özgür and Bartoli [18], developed
Particle-SfT, which handles isometric and non-isometric de-
formations. A particle system is guided by deformation and
reprojection constraints which are applied consecutively to
the particle mesh. Similar to [17], this algorithm needs an
initial guess for the 3D position of the particles, however,
for [18], sensitivity to this initial guess is very low. The closer
the guess to the true 3D shape, the faster the convergence.
Aranda et al. [10] improved this algorithm in terms of
execution speed and occlusion-resistance and used that in

real-time shape servoing of isometrically deforming objects.
They used the 3D shape estimated in one frame as the initial
guess for the next frame and thus improved the convergence
speed of the algorithm to a great extent. They showed that
their algorithm can track a paper sheet covered with markers
and being manipulated by a robotic arm. To this end, they
only needed to track a handful of markers. Knowing the
3D coordinates of several mesh points also has a significant
effect on the convergence speed of the algorithm. The last
step of ROBUSfT uses the same method to infer the 3D shape,
as explained in Section III.

B. (G2) Integrated methods

These methods handle registration and 3D shape inference
at the same time. They minimize a non-convex cost function
in order to align the 3D inferred shape with image features.
These features can be local [20], [21] or at the pixel-level [6],
[22].

Ostlund et al. [20] and later Ngo et al. [21] used the Lapla-
cian formulation to reduce the problem size by introducing
control points on the surface of the deforming object. The
process of removing mismatches was performed iteratively
during optimization by projecting the 3D estimated shape on
the image and disregarding the correspondences with higher
reprojection errors. Using this procedure, they could reach
up to 10 fps using 640×480 input images and restricting the
maximum number of template and image keypoints to 500
and 2000, respectively.

As for pixel-level alignment, Collins and Bartoli [22]
introduced a real-time SfT algorithm which could handle
large deformations and occlusions and reaches up to 21 fps.
They combined extracted matches with physical deformation
priors to perform shape inference. Collins et al. [6] later
extended this algorithm and used it for tracking organs in
laparoscopic videos. For achieving better performance, they
also exploited organ boundaries as a tracking constraint.

These methods are fast and can handle large deformation.
Their main drawback, however, is to be short-baseline. In
case of tracking failure, they should be re-initialized precisely
with a wide-baseline method. This restrict their usage to
video streams.

C. (G3) DNN-based methods

DNN-based SfT methods have been introduced in the
recent years, which coincides with the tendency to use
deep learning to solve many computer vision problems.
These methods are wide-baseline, fast, and cover both the
registration and shape inference steps [24]–[28]. We group
these methods based on their type of output, which may be
sparse or dense. The methods of the first group represent
the SfT solution as the 3D coordinates of a regular mesh
with a predefined size [24]–[26]. The usage of these methods
is limited to thin-shell objects with rectangular shapes. The
second group of methods gives a pixel-level depthmap as
output [27], [28]. They also apply a post-processing step
based on the As-rigid-as-possible (ARAP) model [32] to
the resulting depthmap. This step recovers the whole object,

Category Method Registration Real-time Wide-baseline General
geometry

Needless of
training for
new objects

Public access
code

G1

Salzmann et al. [12] × NA ✓ ✓ ✓ ×
Brunet et al. [17] × × ✓ ✓ ✓ ✓
Bartoli et al. [14] × NA ✓ ✓ ✓ ✓

Ozgur et Bartoli [18] × × ✓ ✓ ✓ ×
Famouri et al. [16] × ✓ ✓ ✓ ✓ ✓
Aranda et al. [10] × ✓ ✓ ✓ ✓ ×

G2

Ostlund et al. [20] ✓ ✓ × ✓ ✓ ×
Ngo et al. [21] ✓ ✓ × ✓ ✓ ×

Collins and Bartoli [22] ✓ ✓ × ✓ ✓ ×
Collins et al. [6] ✓ ✓ × ✓ ✓ ×

G3

Pumarola et al. [24] ✓ × ✓ × × ×
Golyanik et al. [25] ✓ ✓ ✓ × × ×

Fuentes-Jimenez et al. [27] ✓ ✓ ✓ ✓ × ×
Shimada et al. [26] ✓ ✓ ✓ × × ×

Fuentes-Jimenez et al. [28] ✓ ✓ ✓ × ✓ ×
ROBUSfT ✓ ✓ ✓ ✓ ✓ ✓

TABLE I: Comparison of the state-of-the-art SfT methods and ROBUSfT.

including the occluded parts, as a mesh. The method in [27]
reconstructs the shape of the object with different geometries
and texturemaps that the network is trained for. In [28],
however, the proposed method can be applied to objects with
new texturemaps unseen to the network. The geometry of
the objects is, nevertheless, limited to flat paper-like shapes.
All the aforementioned methods in this category are object-
specific. This means that they merely work for the object that
they were trained for. An exception is [28], as it works for
unseen texturemaps but the applicability is still limited to flat
rectangular objects. On the other hand, in order to use the
DNN-based methods for a new object, the network should
be fine-tuned for it. This demands proper computational
resources and potentially a huge amount of training data,
which are challenging to collect for deformable objects.

D. Positioning ROBUSfT compared to previous work

Existing methods all have one or several limitations,
including not covering the whole pipeline, not being wide-
baseline, being limited to specific texture or geometry,
requiring fine-tuning for a new object, being slow, and
lacking public code access. This information is summarized
in Table I. In contrast, ROBUSfT covers the whole pipeline
and due to the fast execution can be used to develop real-time
shape tracking applications. It can be instantly used for each
deforming object without training. Only a template contain-
ing information regarding the object’s geometry, appearance,
and deformation law as well as intrinsic parameters of the
monocular camera is necessary, but this need is common to
all existing and future SfT methods, by definition. In the next
section, we describe ROBUSfT and all its steps.

III. ROBUSfT

A. Overview of the pipeline

The overview of our pipeline is presented in Figure 1. The
pipeline is divided into an offline and an online sections.
The offline section deals with the template. The online
section includes four main steps: keypoint extraction and
matching, mismatch removal, warp estimation, and 3D shape

inference. The images coming directly from the camera
are used as the inputs for the first step. In this step, the
keypoints are extracted and matched with the ones that
were previously extracted from the template’s texturemap.
Then, the mismatches are detected and removed using our
new mismatch removal algorithm myNeighbor. The list of
estimated correct matches is then transferred to the next step
where a warp is estimated between the template’s texturemap
and the image. This warp transfers the template’s registered
mesh to the image space, which is finally used as input for
the 3D shape inference algorithm. This process is repeated
for each image, the analysis of each image being performed
independently in a tracking-by-detection manner.

In the following, both the offline and online sections of the
pipeline are described in detail. Afterwards, an implementa-
tion permitting a fast execution of the pipeline is given.

B. Offline section: creating a template

We create a template for the surface of the deforming
object that we want to track. We call this surface the tracking
surface. The template of the tracking surface consists of the
following elements:

• MT : the triangular mesh covering the tracking surface
at rest shape.

• P: the texturemap of the tracking surface.
• M : the alignment of MT to P .

The first step in creating the template is to generate the
3D model of the tracking surface. The 3D model is in fact
the textured 3D geometry of the tracking surface in real
dimensions in rest shape. We form MT by triangulating this
3D geometry. The resolution of MT should be high enough
to be well aligned to the shape of the tracking surface. The
next step is to take an image from the 3D model of the
tracking surface while it is positioned perpendicular to the
camera’s optical axis in a simple texture-less background.
In this image, P is formed by the projection of the texture
of the tracking surface and M by the projection of MT . For
simple rectangular thin-shell objects like a piece of paper, the
whole process is straightforward. For other objects, including

thin-shell objects with arbitrary shape, such as a shoe sole,
and also volumetric objects, 3D reconstruction software like
Agisoft Photoscan [33] can be used.

Next, we extract keypoints on P . These keypoints will be
matched with the ones that will be extracted from the input
image in the online section. We use SIFT [34] for extracting
keypoints but any other feature descriptor could be swapped
in. As the final step, we initialize the pose of MT in 3D
space. This initial pose can be arbitrarily chosen as it will
be used only once by Step 4 of the online section of the
pipeline for the first input image. It will then be replaced by
the inferred 3D shape in the next images.

In order to use the ROBUSfT C++ library, first, an ob-
ject of the class ROBUSfT should be created. The whole
process of forming the template for this object is handled
by the member function build template(). This function
possesses parameters for creating templates for rectangular
and non-rectangular thin-shell objects as well as the tracking
surface of volumetric objects. Regarding thin-shell objects,
the process of forming the template is automatic by just
receiving a handful of inputs from the user. For the tracking
surface of volumetric objects, however, MT , M , and P
should be prepared by the user and imported into the library.

C. Online section: shape tracking
Step 1: keypoint extraction and matching. The first step of

the online section of the pipeline is to extract keypoints in
the input image I. To do so, we use the PopSift library [35],
which is a GPU implementation of the SIFT algorithm.
We then match these keypoints with the ones that were
previously extracted from P by comparing descriptors, using
winner-takes-all and Lowe’s ratio test. Inevitably, a number
of mismatches will be formed between P and I. The
mismatch points in I can be located on the surface of the
deforming object or even in the background. This is shown as
red lines in the Matching step of Figure 1. These mismatches
will be eliminated in Step 2 thanks to myNeighbor which
can cope with a large percentage of mismatches. As a result,
in this step, the images coming from the camera can be
used directly without pretraining on either the image for
segmenting the object from the background, or the matches
for preselection of the most reliable ones. In the library, the
member function extract keypoints GPU() handles the
keypoint extraction in I. Then, the member function match()
performs matching.

Step 2: mismatch removal. To remove the possible mis-
matches introduced in Step 1, a new mismatch removal
algorithm, myNeighbor, was developed. The main principle
used in this algorithm is the preservation of the neighborhood
structure of correct matches on a deforming object. In other
words, if all of the matches were correct, by deforming
the object, the neighbor matches of each match should be
preserved. On the contrary, mismatches lead to differences
in the neighboring matches of each matched point in I
in comparison to P . This was used as a key indication
to detect and remove mismatches. The whole process of
myNeighbor is explained in Section V. In the library, the

Fig. 2: Implementation of ROBUSfT on the CPU and GPU.
A pure CPU implementation is also available.

member function mismatch removal algorithm() handles
the mismatch removal process. The output is a list of
estimated correct matches.

Step 3: warp estimation. We use the estimated correct
matches to estimate a warp W between P and I. We then use
W to transfer M to I and form M̂ . The mesh points in M̂
will be used as sightline constraints in the 3D shape inference
algorithm in Step 4. The precision of warping depends on the
number of matches, their correctness, and their distribution
all over P . Warp W can be estimated in the most precise way
if all the matches are correct between P and I. However,
due to the smoothing nature of the warping algorithms, the
transferring process can cope with a small percentage of
mistakenly selected mismatches. It should be noted that W
cannot be extremely precise in areas without matches. As a
result, in these areas, the shape of M̂ might not be aligned
well to the shape of the deforming object in I. This is worse
when the matchless area is located near the boundaries of
P as the alignment cannot be guided by the surrounding
matches. Hence, in order to use just well-aligned transferred
mesh points of M̂ as the input for the 3D shape inference
step, an assessment is performed over all of the mesh points
and only the qualified ones are passed to Step 4. For this,
we check M cell-by-cell. Only the mesh vertices for cells
containing at least one correct match will be qualified as

Fig. 3: Flowchart of FREX.

salient mesh points. The indices of these mesh points and
their coordinates in M̂ are passed to Step 4. The other mesh
points are disregarded.

Representing and estimating W can be done with two
well-known types of warp, the Thin-Plate Spline (TPS) [36]
and the Bicubic B-Spline (BBS) warps [37], which we both
tested. The former is based on radial basis functions while the
latter is formulated on the tensor-product. Having the same
number of matches as input, the TPS warp proved to be
more precise than the BBS warp; nevertheless, its execution
time rises exponentially with increasing number of matches.
The execution time, however, remains almost constant for
the BBS warp regardless of the number of matches. Thus,
considering the criterion of fast execution of the code, the
BBS warp was chosen as the warp function in this step and
also in the mismatch removal step discussed in Section V. In
the library, the process of warp estimation is performed by
the function warp() that calls two functions BBS Function()
and BBS Evaluation(). The former estimates the warp W

while the latter uses W to transfer M and form M̂ . The
process of selecting the salient mesh points is done by the
member function set sightlines().

Step 4: 3D shape inference. We use Particle-SfT [18] as
improved for tracking in [10]. In this algorithm, a particle
system is defined from the points and edges in MT . Then,
the sightline and deformation constraints are applied con-
secutively on the particles until they converge to a stable
3D shape. As described in [10], in order to increase the
convergence speed of the algorithm, the stable 3D shape
for an image is used as initial guess for the next image.
It should be noted that Particle-SfT can work even without a
close initial guess. If the object is invisible in one or several

images, the last inferred 3D shape can be used as the initial
guess for the upcoming frame containing the object. This
results in a slightly longer computation time in that image.
For the next upcoming images the normal computation time
is resumed. This capability brings about two of the major
advantages of our pipeline, which are being wide-baseline
and robust to video discontinuities. In the library, the whole
process of shape inference is handled by the member function
shapeInference().

As mentioned in [10], one of the optional input data
that can significantly improve the convergence of Particle-
SfT is the existence of 3D known coordinates of one or
several particles. This is shown in Figure 1. The known 3D
coordinates can be fixed in space, or can move on a certain
trajectory. The latter happens when the deforming object is
manipulated by tools with known poses in 3D space like
robotic end-effectors.

D. Implementation

In order to optimize the implementation of ROBUSfT, it
was coded in C++ in two parallel loops: one on the GPU, and
one on the CPU. The GPU loop handles keypoint extraction
in the images. These keypoints are transferred to the CPU
loop where the rest of the steps of the pipeline are taken. A
pure CPU implementation is also available. This is shown
in Figure 2. Any arbitrary resolution can be considered
for the captured images, nevertheless, we obtained the best
performance by using 640× 480 images. The code runs on
a Dell laptop with an Intel Core i7 2.60 GHz CPU and a
Quadro T1000 GPU.

IV. FAKE REALISTIC EXPERIMENT (FREX)

We introduce a novel experimental protocol, which we
used for evaluating myNeighbor and ROBUSfT in compar-
ison to the state-of-the-art methods. A single execution of
this protocol provides a large collection of scenes of an
isometrically deforming object in various conditions, with
known 2D and 3D ground truth. This collection can be
used to evaluate, compare, train, and validate new algorithms
regarding isometrically deforming objects such as mismatch
removal, 2D image registration, and isometric 3D shape
inference. In contrast to other artificially generated scenes of
an isometrically deforming surface, the generated images in
our protocol are the result of real object deformations. Being
formed of successive images with continuous deformation,
it can also be used for algorithms which exploit feature and
shape tracking. In addition, object occlusion and invisibility
can be easily simulated, by dropping frames or pasting an
occluder.

The protocol flowchart is shown in Figure 3. First, we form
the Aruco template by randomly distributing a set of Aruco
markers all over a blank image. We then print the Aruco
template on a standard A4 paper. These markers should be
big enough to be recognizable by the user’s camera in the de-
sired distance. In order to improve recognition, there should
be white space between the markers on the paper. In our
experiments, we used 100 markers with a width of 1.4 cm.
The OpenCV library was used to identify the markers. These
markers were recognizable by a 720p RGB camera from an
approximate distance of 0.6m. The next step is to deform
the printed Aruco template in front of the camera. In each
frame, the 2D and 3D coordinates of the markers’ centers
are estimated. Because each marker has its own unique id,
they can be used as correspondences between the Aruco
template and each image of the video. We exploit the 2D
coordinates of these recognized correspondences to estimate
a warp with which we can transfer an arbitrary texturemap
to the video image space. This is done firstly by resizing the
arbitrary texture to the size of the Aruco template. In order
to keep the aspect ratio of the arbitrary texturemap, white
margins can also be added before resizing. Then, an inverse
warping process with bilinear interpolation is used to transfer
the pixel color information from the arbitrary texturemap to
their corresponding pixels in the video images. The whole
procedure results in a scene with the arbitrary texturemap
being deformed exactly on top of the Aruco template. It is
also possible to add further modifications; for instance, one
can transfer the arbitrary texturemap to another scene with
any different background. Besides, as in [38], an artificial
lighting can also be added to form different variations of the
scene.

For evaluating algorithms, one can use the 2D and 3D
ground truth estimated in each frame of the video. Regarding
the 2D ground truth, the estimated warp can be used to
identify the 2D corresponding point of each pixel of the
arbitrary texturemap in the image. As for the 3D ground
truth, one can exploit the 3D estimated coordinates of the

Aruco markers in each frame which can be achieved using
the OpenCV library.

V. myNeighbor

We describe myNeighbor, our novel mismatch removal
algorithm. It works based on two main principles:

• Having an image of a textured surface and another
image of that surface undergoing a deformation, to
estimate a sufficiently accurate transfer function be-
tween them with which one can judge the correctness of
matches, there is no need to remove all the mismatches
from the list of matches. Instead, a set of correct
matches would be sufficient to estimate the transfer
function.

• This set of correct matches can be extracted considering
that in reality, under a deformation, the neighborhood
structure among the points on a deforming surface is
preserved.

We show that by using these two principles, the mis-
matches can be detected and removed in a fast and efficient
way. The proposed algorithm is illustrated in Figure 4. It
consists of three steps. First, a set of matches which are
highly probable to be correct are selected. This selection is
done by forming two triangulations using match points, one
in P and one in I, and then choosing matches with high
similarity in the list of their neighbors. Second, a small per-
centage of possible mismatches among the selected matches
are identified and removed. This is done by transferring the
selected match points from P to I and then removing those
with large distances from their correspondences in I. Third,
we transfer all the match points from P to I using a warp
estimated based on the clean set of selected matches from the
second step. The distance between the transferred template
match points and their correspondences in I is used as the
criterion to distinguish estimated mismatches from estimated
correct matches.

In order to analyze the performance of myNeighbor and
calibrate the parameters in the different steps, we used
synthetic data experiments. In the following section, we
describe the design of these experiments. Afterwards, we
describe in detail the different steps of myNeighbor.

A. Synthetic data experiments for calibrating parameters

These experiments are conducted by synthetically forming
two images of a mesh MT and a series of matches between
the two images. The first image shows MT in its flat rest
shape with all its keypoints on it. We call this image IF .
In IF , the keypoints can be considered as the extracted
keypoints from P and the 2D mesh is equivalent to M . The
second image simulates I and shows MT having undergone
a random 3D deformation. We call this deformed mesh MG.
The keypoints in this image can be positioned in their correct
locations on the mesh (correct matches) or being displaced
in the image area (mismatches).

We consider MT as a regular triangular mesh with 10× 6
points in 3D space. In order to deform MT , we use the
same method as in [10]. This is done by applying two 3D

Fig. 4: Flowchart of myNeighbor.

deformations containing random translations and rotations
to two mesh cells at both sides of MT . The deformation
is calculated in an iterative process based on position-based
dynamics [39], [40]. As for generating keypoints, we first
randomly place keypoints in the inner area of M in IF .
In order to create the matches between IF and I, we then
transfer the keypoints from IF to I using a three-step
process: calculating barycentric coordinates of the keypoints
in M , transferring the keypoints to the 3D deformed mesh
using the barycentric coordinates and the new 3D mesh
points of the deformed MT , and eventually projecting the
transferred keypoints to I. To generate mismatches, an arbi-
trary percentage of the transferred keypoints were corrupted
by randomly distributing them all over the area of I. Two
samples of the generated images for 100 and 1000 matches
each with 30% mismatches can be observed in the two first
columns of Figure 5.

B. Methodology

The algorithm myNeighbor is applied on Nm matches
denoted as Cp ↔ Cq between P and I, with:

Cp = {p1, ..., pNm
}, pi = (xi, yi) (1)

Cq = {q1, ..., qNm
}, qi = (ui, vi) (2)

A pair (pi, qi) of points with the same index forms a match
pi ↔ qi. We define the set of correct matches Sin as the
collection of matches pi ↔ qi where pi and qi point to
the same location on the deforming surface in P and I.
On the contrary, when the pointing locations of the match
points are different, they are categorized as mismatches Sout.
The goal of myNeighbor is to form and remove the subsets
Op ⊂ Cp and Oq ⊂ Cq which have the largest possible
number of matches belonging to Sout and smallest possible
number of matches belonging to Sin. We explain the steps
of our algorithm to fulfill this goal.

1) Step I – Neighbor-based correct match selection: We
select subsets Cps ⊂ Cp and Cqs ⊂ Cq which are highly
probable to form correct matches. We start by defining WG

as the groundtruth warp between P and I that can transfer
all the match points Cp from P to their correct locations in
I. With this definition, we have the set of correct matches
Sin as:

Sin = {(pi, qi) | i ∈ R}, (3)

where:
R = {i | ∥WG(pi)− qi∥ < ϵ}, (4)

where ϵ is a very small positive number. Warp WG is an un-
known composition of isometric deformation and perspective
projection mappings. The isometric deformation mapping
preserves the geodesic distances among the points and their
topological structure on the object’s surface. However, with
the addition of perspective projection mappings, only the
topological structure of points remains preserved in visible
areas. This implies that by applying WG, the neighborhood
structure among the points on the object in P and I
should be preserved. We exploit this characteristic of WG

Fig. 5: Two sample results of the steps for synthetic data experiments. The first row is an experiment with 100 matches
and a mismatch percentage of 30%. The second row is an experiment with 1000 matches and a mismatch percentage of
30%. The first and second columns represent IF and I with correct matches in green and mismatches in red. The third
column is the result of Step I. The wrongly chosen mismatches are shown in red. The fourth column is the result of Step
II. The mismatches along with a small percentage of correct matches are removed. The fifth column is the separation of the
estimated correct matches and the estimated mismatches from Step III. The transferred meshes M̂1, M̂2, and M̂3 are shown
in orange, yellow, and cyan for the three steps.

to estimate R̂ as the set of indices of highly probable correct
matches Cps

↔ Cqs . To do so, first, we form two Delaunay
triangulations, Tp = D(Cp) in P , and Tq = D(Cq) in I.
Then, for each match i, we calculate two sets of first-order
neighbors Qp(i) and Qq(i) in P and I, respectively. We then
define the Mismatch Factor (MF) criterion for match i as:

MF (i) =
|Qp(i) ∪Qq(i)−Qp(i) ∩Qq(i)|

|Qp(i) ∪Qq(i)|
× 100 (5)

For each match, MF represents the difference in the neigh-
bor points between P and I as a percentage. Ideally, we
expect that for all the matches MF = 0, which implies that
there is no difference in the neighbors of each match during
a deformation. However, in practice, there are two reasons
which rather put MF values in a range from 0 to 100: the
presence of mismatches and variations in triangulation. The
presence of mismatches can affect the value of MF in two
ways. First, when the match point i in I is a mismatch
and thus located in a wrong location. And second, when
the match point i in I is a correct match but one, several,
or all of its neighbors are mismatches. Both of these cases
result in different neighbors in I in comparison to P . As
for the two triangulations, it should be noted that even in

the absence of mismatches, the neighborhood structures in
Tp and Tq do not necessarily coincide. This is because of
surface deformation, change in viewpoint, and occlusions.

Calculating MF for all the matches, we can have a fair
estimation regarding the state of the matches. The lower
values of MF (i) indicate that the match i is surrounded by
similar matches in P and I and has a higher probability to be
placed in its correct location and thus be a correct match. On
the contrary, the higher values of MF (i) can stem from the
wrong location of the match i in comparison to its neighbors
which strengthens the possibility of it being a mismatch. The
basic idea in this step is to form Cps ↔ Cqs by selecting
pairs of highly probable correct matches ps ↔ qs. This is
done by choosing the matches with lower values of MF .
We examined the validity of this reasoning by evaluating
three different synthetic data experiments, each with 1000
matches and different rates of correct matches (30%, 60%,
and 90%). Figure 6 shows the histogram of MF for each
case. We observe that the dispersion of MF spans a wider
range as the value of the correct match rate grows. For higher
numbers of correct matches, there are more similarities in
the neighbor lists of each match and, consequently, MF de-
creases. Furthermore, regardless of the values of the correct

Fig. 6: Histogram of MF values for three sample synthetic
data experiments with 1000 matches and 30%, 60% and 90%
of correct matches.

match rate, the majority of the mismatches are accumulated
in the top bins of the graphs that correspond to higher values
of MF . This is shown in more detail for the case with the
correct match percentage of 30% by expanding the last two
bins of the graph in Figure 6.a. This validates our prior
reasoning that by selecting the matches with MF below
a certain threshold MFth, we can have a set of matches
which are highly probable to be correct. To quantify the
appropriateness of this selection, we define two criteria,
based on the following two quantities. The first quantity is
ns, which is the percentage of the selected matches compared
to the total number of matches:

ns =
|Cs|
Nm

× 100, (6)

where Cs = {(pi, qi) | i ∈ R̂} is the set of selected matches.
The second quantity is AoS, which is the Accuracy of

Selection, defined as:

AoS =
|Cs ∩ Sin|

|Cs|
× 100. (7)

Our goal is to choose the value of MFth in the way that we
have both of these criteria to be as high as possible, which
means selecting a high percentage of matches with high
accuracy. However, practically, these two criteria work in
reverse. By choosing a higher value for MFth, more matches
are selected (higher ns) but with less accuracy (lower AoS)
and vice versa. In order to choose the proper value for MFth,
we analyzed the behavior of these two criteria for a series
of synthetic data experiments. We consider three scenarios
for these experiments based on the number of matches, i.e.,
Dense, Moderate, and Sparse with in turn 1000, 200, and 50
total number of matches. The experiments were done in a
wide range of correct match percentages (10% to 100%) for
each scenario. Two different values of the criterion MFth

were studied; mean and 0.9 × mean where mean is the
mean of all MF values in each experiment. The results are
presented in Figure 7.a and 7.b. Each point in the graph is
the average result of 1000 trials. The first point that should
be noted here is that, generally, the proposed match selection
method in this step is more reliable as the number of total
matches grows. This can be deduced by comparing the higher
values of AoS in the Dense case with the ones in the
Moderate and Sparse cases. As for choosing MFth, it should
be noted that setting MFth = 0.9 × mean leads to higher
values of AoS in comparison to the case with MFth =
mean. Nevertheless, as shown in Figure 7.a, this sacrifices
a high percentage of matches by dropping ns significantly,
which is undesirable. Hence, in this step, we choose mean
as the value of MFth and form R̂ as the set of indices of
probable correct matches. While this choice implies a higher
number of selected mismatches (lower AoS), we note that
these mismatches can be removed in Step II.

As the final operation in this step, we estimate the warp
W1 between P and I using the selected matches Cps

↔
Cqs . We then exploit this warp to transfer M to I. We call
this new mesh M̂1. As can be seen in the third column of
Figure 5, the mesh M̂1 (shown in orange) may not be totally
faithful to the deformation of MG in I, which is due to the
inaccuracies in the calculation of the warp W1. This stems
from two main reasons; the existence of mismatches in our
selection (shown as red dots), and the insufficient number of
correct matches in some areas. In the next step, we exploit
the transferred mesh M̂1 to remove the possible remaining
mismatches from the selected matches.

2) Step II – Removing mismatches from the list of selected
matches: We remove the possible mismatches from the
selected matches Cps

↔ Cqs . We first form the set Cq̂s by
transferring Cps to I. This is done by finding the barycentric
coordinates of each selected match psi ∈ Cps with respect
to M and applying them on the transferred 2D mesh M̂1

from Step I. We then use the following decision criterion to
identify and remove possible mismatches one by one from

Fig. 7: Results of applying the first two steps of the algorithm myNeighbor in synthetic data experiments in three different
scenarios; Dense (1000 matches), Moderate (200 matches), and Sparse (50 matches). Each curve is the average result of
1000 trials. The first row gives ns and AoS from Step I for two different values of MFTH . The second row gives the
results of Step II in comparison to the results of Step I with MFth = mean(MF).

Fig. 8: ROC curves resulting from the algorithm myNeighbor in synthetic data experiments in three scenarios; Dense (1000
matches), Moderate (200 matches), and Sparse (50 matches). Each point is the average result of 1000 trials calculated with
a specific value of d3th .

the selected matches Cps
↔ Cqs :∣∣∣d2(i)− median
(
{d2(j)}

)∣∣∣ ⩾ 2.5MAD, (8)

where d2(i) = ∥q̂si − qsi∥ with i ∈ R̂. MAD (Median of
Absolute Deviations from Median) is calculated as:

MAD = k median
({∣∣∣d2(i)− median

(
{d2(j)}

)∣∣∣}), (9)

where k = 1.4826 is a constant number. The values of d2
are relatively larger for mismatches in comparison to correct
matches. This stems from two reasons. First, the small
percentage of mismatches compared to the great majority of

correct matches coming from Step I and thus lesser influence
of mismatches in the estimation of warp W1. Second, the
inconsistent location of mismatches in P and I. The decision
criterion in equation (8) is chosen due to the distribution type
of d2, with the presence of just a small percentage of large
values among the majority of small values. Figure 7.c and d
illustrate the result of this step. As can be seen, unlike the
previous strategy of choosing a smaller MFth, this method
results in improvement of AoS without losing a considerable
percentage of selected matches. This can be clearly observed
by comparing ns in Figures 7.a and c.

As the last operation in this step, warp W2 is calculated

Fig. 9: Performance evaluation of our mismatch removal method myNeighbor in comparison to the state-of-the-art methods
using the FREX protocol. The first row shows the Aruco template and three selected images (14, 47, 60) of the deformation
of the printed Aruco template. The following rows show five datasets of generated scenes with the texturemap in the first
column, three generated images corresponding to the first row in the next columns, and the ROC curves of the mismatch
removal algorithms in the last column. For each of the images M̂3 from myNeighbor is overlaid.

Method Average run-time (s)

myNeighbor 0.0139
Tran et al. [31] 0.0206

Pizarro et al. [29] 1.8925
Famouri et al. [16] 0.0171

TABLE II: Comparison of the average run-time of the
mismatch removal algorithms for processing all the images
of all the datasets.

using the purified selected matches Cps
↔ Cqs . This warp

is then used to transfer M to the image space and form
M̂2. The result of removing possible mismatches in this step
along with the transferred mesh M̂2 are shown in the fourth

column of Figure 5. As can be observed, in comparison to
M̂1, M̂2 has a better compliance to MG.

3) Step III – Extracting mismatches from the list of all the
matches: In this step, we exploit the transferred mesh M̂2

to extract the mismatches Op ↔ Oq from the total matches
Cp ↔ Cq . The process is similar to Step II except that this
time all of the matches are checked. We first transfer the
template match points Cp to the image space and form the
set Cq̂ . This is done by calculating barycentric coordinates of
all the match points Cp with respect to M and applying them
on the new transferred mesh M̂2. We define the following
decision criterion to detect and remove mismatches:

d3(i) = ∥q̂i − qi∥ ⩾ d3th (10)

Unlike Step II where we used the MAD criterion to remove
just a small rate of mismatches, this time we use a constant

Fig. 10: Applying myNeighbor on four real cases: a cushion, a Spiderman poster, a shoe sole, and an elastic shirt. The
first column shows the texturemaps. The second column shows Step I. All the matches are shown in this column while the
selected matches in Step I are shown in green. These selected matches are transferred to column three that shows Step II.
In this column, those matches which are chosen as possible mismatches are shown in red. The last column is the distinction
between the estimated correct matches (in green) and the estimated mismatches (in red) in Step III. The meshes M̂1, M̂2,
and M̂3 are overlaid to illustrate the computed warps.

threshold d3th . This is due to the higher percentage of
mismatches compared to Step II. In order to make this
distinction method more robust, we consider d3th as the
multiplication of a sample length ls and a constant coefficient
αs. The sample length ls is a measure of the size of the
object in the image in pixels and is calculated as the average
distance between all the mesh points in the transferred mesh
M̂2. To choose a proper value for the constant coefficient αs,
a series of synthetic data experiments with the same three
scenarios as before (Dense, Moderate, and Sparse) and four
different correct match rates was performed. The results are
presented as ROC (Receiver Operating Characteristic) curves

in Figure 8.a-c. Each point represents the average TPR (True
Positive Rate) versus the average FPR (False Positive Rate)
computed in 1000 trials using a specific value of αs in the
range of [0, 1]. TPR is calculated as the number of selected
true mismatches over the number of all true mismatches,
and FPR is calculated as the number of true correct matches
mistakenly selected as mismatches over the number of all
true correct matches. Ideally, all the mismatches should
be discarded (TPR=100%) without discarding any correct
matches (FPR=0%). Hence, the most favorable αs in a single
ROC curve is the one that results in the maximum possible
TPR leaving the FPR below a reasonable value. We choose

Fig. 11: Comparing the accuracy of the 3D shape inference methods with Particle-SfT with three datasets obtained by FREX.
The 3D shape inference methods are Brunet et al. [17], Chhatkuli et al. [41], Bartoli et al. [14], Ostlund et al. [20], and
Salzmann et al. [19].

αs = 0.15 which keeps TPR above 90% while FPR remains
below 10% for most of the cases. The last column of Figure 5
illustrates the estimated correct matches (in green) and the
estimated mismatches (in red) for each case. We also use the
estimated correct matches to estimate warp W3 and transfer
M to I and form M̂3 (shown in cyan). As can be seen,
there is a high compliance between M̂3 and MG. It should
be noted that estimating W3 and M̂3 is not necessary in
myNeighbor and we merely estimate them just to visually
present the effectiveness of the algorithm in removing the
mismatches. However, considering myNeighbor as a step
in ROBUSfT, due to the fact that the final estimated correct
matches are passed from this step to Step 3 of ROBUSfT

which is warping, W3 and M̂3 can also represent W and M̂
in the warping step, respectively.

C. Mismatch removal results

In this section, we demonstrate the efficiency of
myNeighbor by evaluating its performance through various
tests. We first compare the results of the algorithm with
the state-of-the-art algorithms in the literature by testing
them through FREX. The experiment includes 60 frames of
continuous deformation of the Aruco template in front of
the camera. Five datasets were generated in this experiment
each with an arbitrary texture with a challenging pattern.
Three different types of backgrounds were also considered

for these five cases, specifically two original backgrounds,
two white backgrounds, and a background with a pattern
similar to one of the texturemaps. We apply all the mismatch
removal algorithms on all datasets. For each dataset, the
corresponding arbitrary texture was used as the texturemap
for the mismatch removal algorithms. The matches between
the texturemap and each image of the dataset are extracted
using SIFT. The results are presented in Figure 9. The first
row illustrates the Aruco template and also three selected
original images of its deformation in front of the camera.
The lower rows represent the five datasets generated by FREX.
Each row shows the arbitrary texture of the dataset in the first
column, the three selected generated images, and eventually
the resulting ROC curves for all the mismatch removal
algorithms on the dataset. In the ROC curves, for a certain
algorithm and a certain dataset, each point is the average
value of TPR and FPR over all 60 images of that dataset
using a specific value for the threshold used in the algorithm.
As can be seen, in all cases, our algorithm outperforms the
other algorithms. In order to show the performance of our
algorithm visually, for each dataset, we overlaid M̂3 for the
three selected frames. As can be observed, the transferred
meshes are visually well-aligned to the 2D deformed shape
of the object. In some cases, a small number of irregularities
can be observed in certain areas (for example in the Matrix
poster). This is because of the presence of a small number

Fig. 12: Comparison between ROBUSfT and the methods
presented by Famouri et al. [16] and Ngo et al [21] on
the public dataset provided in [38]. (a) Mean absolute 3D
error between the inferred shape and the groundtruth. (b)
Execution time in milliseconds.

of mismatches in our list of estimated correct matches and
the lack of matches in those areas. As for comparing the
execution speed of different mismatch removal algorithms,
the process run-times for all the frames of all datasets
were averaged and tabulated in Table II. It shows that our
algorithm is faster than the others. It should be however noted
that our algorithm is implemented in C++ while the others
are in Matlab.

After validating the efficiency of myNeighbor in com-
parison to the state-of-the-art algorithms in the literature,
we evaluate its performance in real cases. To this end,
we applied our algorithm to four real deforming objects
as shown in Figure 10. We chose these cases in such a
way that each one is challenging in a special way. The
cases include a cushion with non-smooth surface and severe
deformation, a Spiderman poster deformed in a scene with
background covered with almost the same posters, a shoe
sole with an almost repetitive texture, and a shirt with
elastic deformation. The texturemaps are shown in the first
column of Figure 10. The second to fourth columns show the
results of Step I to Step III of myNeighbor. In each step,
the alignment of the corresponding transferred mesh to the
2D shape of the deforming object can be considered as an

indication of the correctness and abundance of the estimated
correct matches. Like in the synthetic data experiments, this
alignment improves progressively in different steps of our
algorithm. One point that should be noted here is that the
shirt (the last case in Figure 10) is elastic. We exert a non-
isometric deformation on it by pulling from both sides, and
myNeighbor still works. This is due to the fact that we did
not make any assumption regarding isometry. In fact, the only
assumption that we made is the preservation of neighborhood
structure in the deforming object. As a result, myNeighbor
also works with non-isometric deformations which preserve
neighborhood structure.

VI. EXPERIMENTAL RESULTS

We evaluate the performance of ROBUSfT on different
deforming objects in various conditions. We divide this
section into two main parts; first, comparing the results with
the state-of-the-art methods and then evaluating ROBUSfT in
several other challenging cases.

A. Comparison to the state-of-the-art methods

We compare ROBUSfT with the state-of-the-art methods
through two different tests. The first test is conducted among
the shape inference methods (G1). The second test is carried
out among the integrated methods (G2).

We use FREX to conduct the first test. To this end, the
same 60 images of deforming Aruco marker paper sheet are
used. We create three different datasets using three arbitrary
texturemaps and apply a white background to all the scenes.
The arbitrary texturemaps include a painting, the Joker
poster, and a paper sheet filled with basic geometric shapes.
These images are shown in Figure 11. In each dataset, we
compare the result of the last two steps of ROBUSfT (warp
estimation and 3D shape inference) with five other shape
inference methods from Brunet et al. [17], Chhatkuli et
al. [41], Bartoli et al. [14], Ostlund et al. [20], and Salzmann
et al. [19]. A similar comparison was made in [18] on another
dataset. However, in [18], a random 3D shape was used as the
initial guess for Particle-SfT algorithm in each image of the
video; in contrast, we use the 3D inferred shape of the object
in each image as the initial guess for the next image. In each
dataset, the matches between P and each image are extracted
using SIFT. We then separate the correct matches and use
them as the input for all the methods. If required by a shape
inference method, a BBS warp is estimated based on these
correct matches and used as the input to that shape inference
method. The results for all three datasets are presented in
Figure 11 as the average 3D error between the 3D inferred
shapes and the ground truth. As can be observed, Particle-
SfT provides the lowest value of 3D error in comparison
to the other methods. This is more apparent in the datasets
with lower number of matches. In the last dataset, there are
several discontinuities in the 3D error graph of state-of-the-
art methods. This is due to the failure of shape inference in
those images of the video by those methods. Particle-SfT,
however, succeeds to infer the 3D shape of the object in all
of the images with a reasonable error.

Fig. 13: Evaluating ROBUSfT in three real data experiments; a Spiderman poster, a chopping mat, and a t-shirt. The
texturemaps of the templates are shown in the first column. For each case, four images are shown. Below each frame,
the reconstructed 3D shape of the deforming object with the estimated 3D coordinates of the estimated correct matches
(red particles) as well as their ground truth (green particles) are shown. The 2D projections of the 3D inferred shapes are
also overlaid on the image. For each image, the median Euclidean distance between the estimated 3D coordinates of the
estimated correct matches and their ground truth is given below the reconstructed shape.

Fig. 14: Evaluating ROBUSfT in a real data experiment with
two robotic arms; soft constraints are applied to bind the
constrained mesh points to the grippers. Each row shows
three images: the original camera view, the projection of
the 3D reconstructed mesh on the camera view, and the 3D
reconstructed mesh with the robots in the RViz environment.

For the second test, we ran ROBUSfT on the public dataset
provided in [38]. The dataset includes the 2D correspon-
dences as well as 3D Kinect data of 193 consecutive images
of a deforming paper. The paper is planar and no occlusion
appears in the series of images. We compared our results with
the results of Famouri et al. [16] and Ngo et al. [21] which
were presented in their papers. This is shown in Figure 12-
a and Figure 12-b. As can be observed, ROBUSfT is both
faster and more precise. It should be noted that ROBUSfT

used directly images as the input and covered the whole
process from extracting keypoints to 3D shape inference. In
contrast, the other two algorithms used the already available
correspondences in the dataset. Another relevant point is
that in this test we use a serial CPU-GPU architecture
instead of a parallel one. This is done to make sure that the
captured image that we analyze and the ground truth that
we compare to are for the same image. This consequently
reduces the execution speed of our code compared to the
parallel architecture. In the next series of tests we use the
parallel architecture.

B. Evaluation of ROBUSfT

We first evaluate the efficiency of ROBUSfT in three real
cases. These cases are shown in Figure 13. The tested objects
are a Spiderman poster, a chopping mat, and a t-shirt. In each
case, the object is deformed in front of a 3D camera with
which we capture both RGB image and the depth of each
point on the object. We use the measured depth as ground
truth for evaluating the reconstructed 3D shape. We use the
Intel RealSense D435 depth camera and built-in libraries
for aligning the depth map to the RGB image. For each
case, four images of the experiment are shown in Figure 13.
In the first case, we set the resolution of the camera to
640 × 480. In the second and third cases, we increased it
to 1280 × 720 due to the insufficient number of detected
keypoints using the previous resolution. Below each image,

the reconstructed 3D shape of the deforming object along
with the 3D coordinates of the estimated correct matches (red
particles) as well as their ground truth (green particles) are
shown. The 3D coordinates of the estimated correct matches
are estimated by calculating their barycentric coordinates
in P with respect to M and applying these coordinates
on the 3D reconstructed mesh of the object. The number
written below each frame is the median distance between
the reconstructed 3D coordinates of the estimated correct
matches and their ground truth. The median is chosen due
to the probable existence of mismatches among the list of
estimated correct matches. In 3D space, the ground truth of
these mismatches can be located in the background and not
on the object itself. This significantly increases the 3D shape
error. Using the median gives a better estimate of the 3D
shape error considering the existence of this small percentage
of mismatches with large 3D errors.

As can be observed, the pipeline succeeds to infer the
3D shape of the object in all of the cases. This success
is more visible in the second and third cases due to the
relative scarcity of keypoints and existence of repetition in
their patterns. Regarding the Spiderman poster case, it should
be noted that there are self-occlusions in the first and third
illustrated images. In these images, the 3D shape of the
object in the occluded areas is estimated by the deformation
constraints implemented in Particle-SfT. These constraints
preserve the geodesic distance between each pair of mesh
points as its initial value in MT . Regarding the runtime, using
the parallel architecture and 640 × 480 captured frames as
the input (as in the Spiderman poster case), the execution
speed reaches 30 fps.

The last experiment is a practical use case with robots.
The experiment aims at highlighting the advantage of using
known 3D coordinates in ROBUSfT. As mentioned in Step
4 and shown in Figure 14, these known coordinates are an
optional input to the last step of ROBUSfT. Their usage can
increase the robustness of the tracking process. The setup
of this experiment is the same as in [42], where we applied
ROBUSfT in a robotic case, specifically, controlling the shape
of deformable objects. The setup consists of two robotic
arms grasping and manipulating the Spiderman poster from
both sides and a top camera facing the manipulation area.
The 3D positions of the two robotic grippers are known
in camera coordinates thanks to the known pose of each
gripper in the robots’ coordinate frames and also the external
calibration between the robots and the camera. For each
gripper, we consider the closest mesh point to the gripper
as a constrained mesh point. These mesh points should be
bound to their corresponding gripper and move with it. As
described in [42], this binding is performed using a soft
constraint. In this soft constraint, for each gripper, a sphere
with a small radius centered at the gripper’s 3D position
is considered. Then, in each iteration of Particle-SfT, if the
corresponding mesh point is outside this sphere, it will be
absorbed to the closest point on the sphere surface. This
soft constraint has two main advantages over rigidly binding
the constrained mesh points to the grippers: first, they let

the position-based dynamic equations in Particle-SfT that
preserve the distances between the mesh points be applied
on the constrained mesh points, which leads to a smoother
reconstructed shape. Second, by applying soft constraints,
we can cope with small possible errors in robot-camera
calibration. In fact, a wrong robot-camera calibration leads
to a wrong transfer of the grippers’ 3D coordinates to the
camera coordinate frame which eventually results in wrong
coordinates of the constrained mesh points. By using the
soft constraint and considering a sphere rather than a rigid
bind, we give a certain degree of flexibility to the constrained
mesh points to move in close proximity to the gripper’s
coordinates. This can compensate for slightly inaccurate
coordinates of the grippers.

VII. CONCLUSION

We have proposed ROBUSfT, a new pipeline that can effec-
tively reconstruct the 3D shape of an isometrically deforming
object using a monocular 2D camera. The proposed pipeline
addresses the well-known challenges in this area. These
challenges include ambiguities in inferring the 3D shape of
the deforming object from a single 2D image and real-time
implementation. We have introduced myNeighbor, a novel
mismatch removal algorithm for deforming objects, which
works based on the preservation of the neighborhood struc-
ture of matches. We validated the efficiency of myNeighbor
in comparison to the state-of-the-art algorithms in numerous
experiments. In order to compare ROBUSfT and myNeighbor

with the state-of-the-art methods in the literature, we have
presented a novel type of experimental protocol called FREX

(Fake Realistic Experiment). This protocol is executed once,
but it provides a large number of resulting scenes of an
isometrically deforming object in various conditions with 2D
and 3D ground truth. This collection can be used to evaluate,
compare, and validate algorithms regarding isometrically de-
forming objects. In addition, the provided 2D and 3D ground
truth may be used for training learning-based algorithms. In
contrast to other artificially made scenes of an isometrically
deforming surface, the generated images in our protocol are
the result of real isometric deformations.

Possible directions for future work include (i) exploiting
the silhouette of the object in the image for improving 3D
shape inference in challenging cases such as weakly-textured
objects, (ii) extending ROBUSfT to volumetric objects and
(iii) adding self-occlusion reasoning.

ACKNOWLEDGMENTS

This work was supported by project SOFTMANBOT,
which received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No 869855.

REFERENCES

[1] J. Pilet, V. Lepetit, and P. Fua, “Fast non-rigid surface detection, regis-
tration and realistic augmentation,” International Journal of Computer
Vision, vol. 76, no. 2, pp. 109–122, 2008.

[2] N. Haouchine, J. Dequidt, M.-O. Berger, and S. Cotin, “Single view
augmentation of 3D elastic objects,” in 2014 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pp. 229–236,
IEEE, 2014.

[3] M. Hu, G. P. Penney, D. Rueckert, P. J. Edwards, F. Bello, R. Casula,
M. Figl, and D. J. Hawkes, “Non-rigid reconstruction of the beating
heart surface for minimally invasive cardiac surgery,” in International
Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 34–42, Springer, 2009.

[4] T. Collins, B. Compte, and A. Bartoli, “Deformable shape-from-
motion in laparoscopy using a rigid sliding window.,” in MIUA,
pp. 173–178, 2011.

[5] A. Malti, A. Bartoli, and T. Collins, “Template-based conformal shape-
from-motion-and-shading for laparoscopy,” in International Confer-
ence on Information Processing in Computer-Assisted Interventions,
pp. 1–10, Springer, 2012.

[6] T. Collins, A. Bartoli, N. Bourdel, and M. Canis, “Robust, real-time,
dense and deformable 3D organ tracking in laparoscopic videos,” in In-
ternational Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 404–412, Springer, 2016.

[7] J. Lamarca, S. Parashar, A. Bartoli, and J. Montiel, “DefSLAM: Track-
ing and mapping of deforming scenes from monocular sequences,”
IEEE Transactions on Robotics, vol. 37, no. 1, pp. 291–303, 2020.

[8] Y. Li, Y. Wang, M. Case, S.-F. Chang, and P. K. Allen, “Real-time
pose estimation of deformable objects using a volumetric approach,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1046–1052, IEEE, 2014.

[9] B. Frank, C. Stachniss, R. Schmedding, M. Teschner, and W. Burgard,
“Learning object deformation models for robot motion planning,”
Robotics and Autonomous Systems, vol. 62, no. 8, pp. 1153–1174,
2014.

[10] M. Aranda, J. A. Corrales Ramon, Y. Mezouar, A. Bartoli, and
E. Özgür, “Monocular visual shape tracking and servoing for isometri-
cally deforming objects,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 7542–7549, 2020.

[11] M. Salzmann and P. Fua, “Reconstructing sharply folding surfaces: A
convex formulation,” in 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1054–1061, IEEE, 2009.

[12] M. Salzmann, F. Moreno-Noguer, V. Lepetit, and P. Fua, “Closed-form
solution to non-rigid 3D surface registration,” in European Conference
on Computer Vision, pp. 581–594, Springer, 2008.

[13] M. Perriollat, R. Hartley, and A. Bartoli, “Monocular template-based
reconstruction of inextensible surfaces,” International Journal of Com-
puter Vision, vol. 95, no. 2, pp. 124–137, 2011.

[14] A. Bartoli, Y. Gérard, F. Chadebecq, T. Collins, and D. Pizarro,
“Shape-from-template,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 37, no. 10, pp. 2099–2118, 2015.

[15] A. Chhatkuli, D. Pizarro, A. Bartoli, and T. Collins, “A stable
analytical framework for isometric shape-from-template by surface
integration,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 5, pp. 833–850, 2016.

[16] M. Famouri, A. Bartoli, and Z. Azimifar, “Fast shape-from-template
using local features,” Machine Vision and Applications, vol. 29, no. 1,
pp. 73–93, 2018.

[17] F. Brunet, A. Bartoli, and R. I. Hartley, “Monocular template-based 3D
surface reconstruction: Convex inextensible and nonconvex isometric
methods,” Computer Vision and Image Understanding, vol. 125,
pp. 138–154, 2014.

[18] E. Özgür and A. Bartoli, “Particle-SfT: A provably-convergent, fast
shape-from-template algorithm,” International Journal of Computer
Vision, vol. 123, no. 2, pp. 184–205, 2017.

[19] M. Salzmann and P. Fua, “Linear local models for monocular re-
construction of deformable surfaces,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 5, pp. 931–944, 2010.

[20] J. Östlund, A. Varol, D. T. Ngo, and P. Fua, “Laplacian meshes for
monocular 3D shape recovery,” in European Conference on Computer
Vision, pp. 412–425, Springer, 2012.

[21] D. T. Ngo, J. Östlund, and P. Fua, “Template-based monocular
3D shape recovery using Laplacian meshes,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 38, no. 1, pp. 172–
187, 2015.

[22] T. Collins and A. Bartoli, “[POSTER] Realtime shape-from-template:
System and applications,” in 2015 IEEE International Symposium on
Mixed and Augmented Reality, pp. 116–119, IEEE, 2015.

[23] Q. Liu-Yin, R. Yu, L. Agapito, A. Fitzgibbon, and C. Russell,
“Better together: Joint reasoning for non-rigid 3D reconstruction with
specularities and shading,” arXiv preprint arXiv:1708.01654, 2017.

[24] A. Pumarola, A. Agudo, L. Porzi, A. Sanfeliu, V. Lepetit, and
F. Moreno-Noguer, “Geometry-aware network for non-rigid shape
prediction from a single view,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4681–4690, 2018.

[25] V. Golyanik, S. Shimada, K. Varanasi, and D. Stricker, “HDM-
Net: Monocular non-rigid 3D reconstruction with learned deformation
model,” in International Conference on Virtual Reality and Augmented
Reality, pp. 51–72, Springer, 2018.

[26] S. Shimada, V. Golyanik, C. Theobalt, and D. Stricker, “IsMo-GAN:
Adversarial learning for monocular non-rigid 3D reconstruction,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pp. 0–0, 2019.

[27] D. Fuentes-Jimenez, D. Pizarro, D. Casillas-Pérez, T. Collins, and
A. Bartoli, “Deep shape-from-template: Single-image quasi-isometric
deformable registration and reconstruction,” Image and Vision Com-
puting, vol. 127, p. 104531, 2022.

[28] D. Fuentes-Jimenez, D. Pizarro, D. Casillas-Perez, T. Collins, and
A. Bartoli, “Texture-generic deep shape-from-template,” IEEE Access,
vol. 9, pp. 75211–75230, 2021.

[29] D. Pizarro and A. Bartoli, “Feature-based deformable surface detection
with self-occlusion reasoning,” International Journal of Computer
Vision, vol. 97, no. 1, pp. 54–70, 2012.

[30] T. Collins, P. Mesejo, and A. Bartoli, “An analysis of errors in
graph-based keypoint matching and proposed solutions,” in European
Conference on Computer Vision, pp. 138–153, Springer, 2014.

[31] Q.-H. Tran, T.-J. Chin, G. Carneiro, M. S. Brown, and D. Suter, “In
defence of RANSAC for outlier rejection in deformable registration,”
in European Conference on Computer Vision, pp. 274–287, Springer,
2012.

[32] O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,” in
Symposium on Geometry processing, vol. 4, pp. 109–116, 2007.

[33] Agisoft, “Agisoft PhotoScan.” https://www.agisoft.com.

[34] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2,
pp. 91–110, 2004.

[35] C. Griwodz, L. Calvet, and P. Halvorsen, “Popsift: A faithful SIFT
implementation for real-time applications,” in Proceedings of the 9th
ACM Multimedia Systems Conference, MMSys ’18, (New York, NY,
USA), pp. 415–420, ACM, 2018.

[36] F. L. Bookstein, “Principal warps: Thin-plate splines and the decom-
position of deformations,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 11, no. 6, pp. 567–585, 1989.

[37] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and
D. J. Hawkes, “Nonrigid registration using free-form deformations:
application to breast MR images,” IEEE Transactions on Medical
Imaging, vol. 18, no. 8, pp. 712–721, 1999.

[38] A. Varol, A. Shaji, M. Salzmann, and P. Fua, “Monocular 3D recon-
struction of locally textured surfaces,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 34, no. 6, pp. 1118–1130,
2012.

[39] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based
dynamics,” Journal of Visual Communication and Image Representa-
tion, vol. 18, no. 2, pp. 109–118, 2007.

[40] J. Bender, M. Müller, M. A. Otaduy, M. Teschner, and M. Macklin, “A
survey on position-based simulation methods in computer graphics,”
in Computer Graphics Forum, vol. 33, pp. 228–251, Wiley Online
Library, 2014.

[41] A. Chhatkuli, D. Pizarro, and A. Bartoli, “Stable template-based
isometric 3D reconstruction in all imaging conditions by linear least-
squares,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 708–715, 2014.

[42] M. Shetab-Bushehri, M. Aranda, Y. Mezouar, and E. Özgür, “As-rigid-
as-possible shape servoing,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 3898–3905, 2022.

	Introduction
	Previous Work
	(G1) Shape inference methods
	(G2) Integrated methods
	(G3) DNN-based methods
	Positioning ROBUSfT compared to previous work

	ROBUSfT
	Overview of the pipeline
	Offline section: creating a template
	Online section: shape tracking
	Implementation

	Fake Realistic Experiment (FREX)
	myNeighbor
	Synthetic data experiments for calibrating parameters
	Methodology
	Step I – Neighbor-based correct match selection
	Step II – Removing mismatches from the list of selected matches
	Step III – Extracting mismatches from the list of all the matches

	Mismatch removal results

	Experimental Results
	Comparison to the state-of-the-art methods
	Evaluation of ROBUSfT

	Conclusion
	References

