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Abstract. Cryptid is a board game in which the goal is to be the first
player to locate the cryptid, a legendary creature, on a map. Each player
knows a secret clue as to which cell on the map contains the cryptid.
Players take it in turns to ask each other if the cryptid could be on a
given cell according to their clue, until one of them guesses the cryptid
cell. This game is great fun, but completely loses its interest if one of the
players cheats by answering the questions incorrectly. For example, if a
player answers negatively on the cryptid cell, the game continues for a
long time until all the cells have been tested, and ends without a winner.
We provide cryptographic protocols to prevent cheating in Cryptid. The
main idea is to use encryption to commit the players’ clues, enabling them
to show that they are answering correctly in accordance with their clue
using zero-knowledge proofs. We give a security model which captures
soundness (a player cannot cheat) and confidentiality (the protocol does
not leak more information than the players’ answers about their clues),
and prove the security of our protocols in this model. We also analyze
the practical efficiency of our protocols, based on an implementation of
the main algorithms in Rust. Finally, we extend our protocols to ensure
that the game designer has correctly constructed the cryptid games, i.e.,
that the clues are well formed and converge on at least one cell.

Keywords: Provable security · Board game · Cryptid · Zero Knowledge Proof

1 Introduction

Cryptid is a deduction game designed by Hal Duncan and Ruth Veevers, and
edited by Osprey Games. This game is based on the theme of cryptozoology:
players are in search of a cryptid, a legendary creature, and try throughout the
game to glean information to locate it on a map. The map is divided into cells,
each with its own type (forest, desert, etc.) and several properties (close to a
hut, animal territory, etc.). Each player receives a secret clue as to where the
cryptid is located, which can take one of two forms: the cell of the cryptid is
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one of several given types, or the cell is at a given distance from something. The
players then take it in turns to ask each other whether a given cell corresponds
to their secret clue or not. As the game progresses, each player accumulates more
and more information about the cryptid’s cell, until one player deduces it and
wins the game.

First released in 2018, the game has since enjoyed international success with
a great reception from the player community and has been translated into mul-
tiple languages, which has earned it numerous festival nominations and even an
award (Palme d’Or 2020 for Best Family Game). An online version of the game is
also available for free on https://www.playcryptid.com/. However, the game
loses all interest if one of the players lies. Accumulating and processing infor-
mation involves a considerable mental effort, and discovering that the game has
been spoiled because a player has answered incorrectly is very frustrating. For
instance, if a cheater answers negatively on the cryptid’s cell, the game can last
until all the cells have been invalidated before the other players become aware of
the cheating, which is long. Worse still, the cheater can get away with winning
the game without being discovered by the others, giving them a substantial ad-
vantage and encouraging dishonest players to cheat. Aware of the problem, the
authors of the game have included a paragraph on honesty in the rulebook:

“Cryptid allows room for misdirection, but the game is completely
dependent on all players [answering] honestly. If that doesn’t sound like
your gaming group, then this might not be the game for you.”

It can be interpreted as an open problem left to cryptographers. In this paper
we address this open problem by proposing a cryptographic version of cryptid to
prevent cheating. We also extend the question to cases where the game designer
is not honest and tries to give an advantage to one player or to design games
where no player can win.

Motivation. Our work offers the possibility to play online such that players
no longer have to trust other players, the game designer, or the server that
manages the games. In addition to this direct application, our motivation is
also pedagogical. Cryptography makes it possible to secure protocols in which
entities interact with sensitive data, even if they do not behave as expected.
The game analogy illustrates this concept: Entities play a game in which each
player has secret values, and cryptography ensures that everyone respects the
rules of the game (i.e., does not cheat) without exposing the secret values. The
playful nature of the games makes it easier to interest the general public in these
topics, and to introduce counterintuitive concepts such as zero-knowledge proofs.
Discovering these powerful tools through fun applications then opens the way
to presenting similar protocols with more concrete societal applications, such as
e-voting [11] or e-cash [9]. Although the general public will be able to understand
the concepts used to secure Cryptid, they will not necessarily have the knowledge
to understand the technical part of our work, but it can attract and stimulate a
more experienced audience (e.g., computer science students who enjoy playing

https://www.playcryptid.com/
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board games) to discover cryptographic protocols, security models, and security
proofs through a playful and relatable example.

Contributions. We begin by giving a formal treatment to the cryptid game and
its security. We define what a cryptographic cryptid protocol is and model two
security properties: soundness, which ensures that a player cannot lie when an-
swering a question, and confidentiality, which ensures that players learn nothing
more than what they are supposed to know according to the rules of the game
through the protocol. We then propose two instantiations of this protocol based
on two ways of encoding the clues. The first requires a large storage capacity
for each clue (linear in the number of cells, i.e., 108 in the original game) but
little computational power from the players, while the second requires moderate
storage capacity and computational power (linear in the number of properties a
cell can have, i.e., 14 in the original game).

We then address the case where the game master (who constructs the maps
and clues) is not honest. Indeed, the game must be designed in such a way that
the clues respect the structure given in the game rules (which allows the clues to
be deduced from the answers to the questions), and that the clues converge on
at least one cell on the board (which ensures that the game can end when this
cell is discovered). In the physical version of the game, players cannot verify this
without knowing each other’s clues. So they have to trust the game designers,
who may have built impossible games to confuse them. Thus, we extend our
model and our second protocol to take into account security against malicious
game masters.

Our three protocols use the same paradigm: the clues are encrypted by the
game master, then we use zero-knowledge proofs on these encrypted clues to
allow the master to prove that the game is well designed and to allow the users to
prove they answer correctly. For each protocol, we prove the security properties
by reduction in our security model, under the assumption that the encryption
scheme we use is IND-CPA and that the proofs are zero-knowledge and sound.
The third protocol additionally requires the use of a partially homomorphic
encryption scheme (we use ElGamal) and the hash function proposed in [5],
which is collision resistant under the discrete logarithm assumption. We also
provide a Rust implementation of the main algorithms used in our protocol,
then we evaluate in practice the size of the cryptographic data generated and
exchanged during a game and the computation time required to produce them.

Related Works. The first cryptographic protocol to enable a secure electronic
version of a board game was mental poker, proposed by Shamir, Rivest, and
Adelman [21]. This protocol enables remote users to play poker with the same
properties as a classic card game. Numerous works have extended this result to
card games in general [1,17,20,23], proposing different security models. However,
these protocols make it possible to play online games that are usually physical,
guaranteeing only the same properties as those of the physical version.

Another line of work focuses specifically on trick-taking games (like Whist or
Bridge), and guarantees more security than the physical version of the game [2,7]:
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in trick-taking games, a player cannot always play any of the cards in their hand,
and if the player decides to cheat, the cheating will only be detected much later,
when the player plays a card they are not supposed to have. Cryptographic trick-
taking game protocols force the player to prove that they are playing correctly
without leaking any information about the player’s cards, thus preventing cases
of cheating that would not have been detected immediately with real cards. Our
work has a similar objective since we aim to play Cryptid while avoiding the
cheating problems that are unavoidable in the physical version, but concerns a
game with a very different structure.

Finally, we could have used generic tools to easily reach our goal, such as
multi-party computation protocols [13] or zero-knowledge proofs for circuits [16].
However, these tools are heavy due to their genericity (in short, they require
the implementation of the function to be evaluated by a boolean or arithmetic
circuit, and the evaluation of each of the operations of this circuit on encrypted
data), and would have been much less efficient than our solutions.

2 Rules of Cryptid

We briefly explain the rules of the Cryptid game. A full version of the rules,
including a description of the physical material of the game, can be found in
Appendix A.

Fig. 1. A section of a cryptid map.

Cryptid is played on a map consisting of hexagonal tiles called “cells”. Each
cell has a type among “forest”, “mountain”, “swamp”, “water ”, and “desert”, rep-
resented by a color. In addition to its type, a cell may contain a “bear territory”
(the cell is circled in dotted lines), a “cougar territory” (the cell is circled in red),
and/or a “structure”. A structure has one color and can be an “abandoned shack ”
(represented by a triangle) or a “standing stone” (represented by an octagon).
For instance, Figure 1 shows a portion of the map with “forest” cells in green,
“desert” cells in yellow, “mountain” cells in gray, and “water ” cells in blue. The
two cells at the top left contain a cougar territory. Three cells contain structures:
a white standing stone, a white abandoned shack, and a green abandoned shack.

Each player is secretly given a clue. This clue can take two forms:
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– the type of cell in which the cryptid is located is one of two given types
(there are therefore 10 =

(
5
2

)
such clues),

– the cell where the cryptid is located is n cells away from a cell with a specific
property.

In the second case, there are 14 different possible clues:
– one cell or less from a cell of a given type (among 5), or of the territory of

any animal (6 cases)
– two cells or less from a stone, a shack, a cougar territory, or a bear territory

(4 cases)
– three cells or less from a blue, white, green, or black structure (4 cases).

The game also offers a difficult mode in which clues can be the negation of
one of the 20 clues mentioned above (we do not consider the difficult mode in
this paper and leave it for future works).

For the sake of formalism, we consider these 14 neighborhood properties
as cell properties directly. For example, the cell at bottom left in Figure 1 is
considered to have the 8 following neighborhood properties: one cell from a
mountain, water, and animal territory, two cells from a stone, shack, and cougar
territory, and three cells from a white and green structure.

Each player in turn asks another player a question as follows: the player
points to a cell, and ask one other player to say whether that cell could be the
cryptid’s or not, according to its clue. When the player thinks they know which
cell the cryptid is on, they can instead ask all the other players to take turns
answering on that cell. If all players answer affirmatively, then the player has
found the cryptid cell and wins the game. However, after each negative answer,
the player must leak a little of their clue by pointing to another cell that has
never been invalidated and revealing that it cannot be the cryptid’s cell.

In its physical version, the game contains material to build 180 maps of 108
cells for 3 to 5 players. With a booklet system, each player can secretly find
their clue for a given map. The 180 game setups are constructed in such a way
that only one of the cells corresponds to the clues of all players. Note that to
ensure that each game ends correctly, it is sufficient to ensure that at least one
cell matches all player’s clues.

3 Cryptographic Background

First of all, here are the notations we will be using throughout this paper. We
denote by JnK the set {0, . . . , n} and JnK∗ the set {1, . . . , n} where n ∈ N. By
x ← y we mean that the variable x takes a value y, by x ← Algo(y) that the
variable x takes a value outputted by the algorithm Algo on input y, and by
r

$← S that r is chosen from the uniform distribution on S. We use the acronym
p.p.t. for probabilistic polynomial time, and s.t. for such that.

We now recall the definition of negligible function, public-key encryption
scheme, ElGamal encryption scheme, and non-interactive proof systems.
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Definition 1 (Negligible function). A function ϵ : N → R is said to be
negligible if for any positive polynomial t, there exists an integer n s.t. for all
integer x > n, |ϵ(x)| < 1

t(x) .

Definition 2 (Public-key encryption scheme). A public-key encryption
scheme Eλ is a tuple of three algorithms (Gen,Enc,Dec) defined as follows:
Gen(λ): takes as input a security parameter λ and returns a public/private key

pair (pk, sk).
Encpk(m): takes as input the public key pk and a message m, and returns a

ciphertext c.
Decsk(c): takes as input the secret key sk and a ciphertext c, and returns a mes-

sage m.
The IND-CPA experiment ExpIND-CPA

Eλ,A,b (λ) of a public-key encryption Eλ is defined
as follows, where A = (A1,A2) is a pair of p.p.t. algorithms: the experiment
generates (pk, sk)← Gen(λ), runs (m0,m1)← A1(pk), computes c← Encpk(mb),
runs b′ ← A2(c), and returns b = b′. Eλ is said to be IND-CPA if for any pair of
p.p.t. algorithms A, there exists a negligible function ϵIND-CPA s.t.:∣∣∣Pr [0← ExpIND-CPA

Eλ,A,0 (λ)
]
− Pr

[
1← ExpIND-CPA

Eλ,A,1 (λ)
]∣∣∣ ≤ ϵIND-CPA(λ).

Definition 3 (ElGamal encryption scheme). Let λ be a security parameter.
The ElGamal encryption ElGamal = (Gen,Enc,Dec) instanciated by a group G
of prime order p generated by g s.t. p > 2λ is defined as follows:
Gen(λ): picks sk

$← Z∗
p, computes pk← gsk, and returns (pk, sk).

Encpk(m): picks r
$← Z∗

p, computes c1 ← gr, computes c2 = pkrm, and returns
c = (c1, c2).

Decsk(c): computes m← c2/(c
sk
1 ) and returns it.

The ElGamal encryption is known to be IND-CPA [22] under the Decisional
Diffie-Hellman assumption [4]. Moreover, by defining the binary operation · be-
tween two ciphertexts c = (c1, c2) and c′ = (c′1, c

′
2) as c · c′ = (c1c

′
1, c2c

′
2), the

following property holds: if m = Decsk(c) and m′ = Decsk(c
′), then mm′ =

Decsk(c · c′). ElGamal is said to be partially homomorphic.

Definition 4 (Non-Interactive Proof system (NIP) [3]). Let R be a binary
relation and L a language depending on a security parameter λ s.t. s ∈ L ⇔
(∃ w, (s, w) ∈ R). A Non-Interactive Proof system (NIP) for the language L is
a couple of algorithms (NIP,Ver) defined as follows:
NIP {w : (s, w) ∈ R}: takes as input a witness w and a statement s s.t. (s, w) ∈
R, and returns a proof π.

Ver(s, π): takes as input a statement s and a proof π, returns a bit b.
A NIP has the following security properties:
Soundness. A NIP is sound if there is no p.p.t. algorithm A s.t. A(L) outputs

(s, π) s.t. Ver(s, π) = 1 and s ̸∈ L with non-negligible probability.
Extractability. A NIP is extractable if for any algorithm A and any statement

s s.t. A(L) outputs π s.t. Ver(s, π) = 1 with non-negligible probability, there
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exists a negligible function ϵ and a p.p.t. algorithm Ext having access to
A(L) as an oracle that outputs w s.t. (s, w) ∈ R with probability 1− ϵ(λ).

Zero-knowledge. A NIP is zero-knowledge if the proof π leaks no information,
i.e., there exists a p.p.t. algorithm Sim (called the simulator) s.t. for any
(s, w) ∈ R, the outputs of the algorithms NIP{w : (s, w) ∈ R} and Sim(s)
follow the same distribution.

4 Cryptographic Cryptid

4.1 Formal Definitions

We begin by giving a formal treatment of a cryptid game, defining the required
algorithms and elements. We define the clues, the map and the algorithm for
answering a question on a cell of the map in accordance with a clue.

Definition 5 (Cryptid Encoding). A cryptid encoding is a tuple (n, C, N,M,
Answer) where n is an integer called the number of players, C is a set called the
clue set, N is an integer called the size of the map, M is a set called the map
set (where each map ∈ M is a vector of N elements map = (celli)i∈JNK∗ and
each celli is called a cell of the map), and Answer is a p.p.t. algorithm defined
as follows:

Answer(map, clue, j): takes as input a map map ∈ M, a clue clue ∈ C and an
index j ≤ N of a cell. It returns A ∈ {maybe, no} the correct answer for the
cell j according to the rules of Cryptid (“maybe” corresponds to bit 1 and
“no” to 0).

We define a cryptographic cryptid as a tuple of algorithms. In particular, a
cryptographic cryptid contains an algorithm GenClue for committing a clue, and
an algorithm Play for proving that the answer of a player on a cell is correct
according to the committed clue. These algorithms can be used in a cryptid
game to provide some security properties.

Definition 6 (Cryptographic Cryptid). A cryptographic cryptid for a cryp-
tid encoding (n, C, N,M,Answer) is a tuple of p.p.t. algorithms (Setup,GenClue,
OpenClue,Play,Verify) defined as follows:
Setup(λ): takes as input the security parameter λ and returns a setup set. This

setup is implicitly used as input in the other algorithms.
GenClue(clue): takes as input clue ∈ C and returns the pair of public/secret clue

key (pc, sc).
OpenClue(pc, sc): takes as input the pair of public/private clue key (pc, sc) and

returns clue ∈ C.
Play(pc, sc,map, j, A): takes as input a public/private clue key pair (pc, sc), a

map map ∈M, an index j, and an answer A ∈ {0, 1} for the cell j in map.
It returns a proof π.

Verify(π, pc,map, j, A): takes as input a proof π, a public clue key pc, a map
map ∈ M, an index j, an answer A, and returns b ∈ {accept, reject}
(“accept” corresponds to bit 1 and “reject” to 0).
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To play the game using cryptographic algorithms, the players use the following
protocol.

Definition 7 (Cryptid Protocol). Let λ be a security parameter. The cryp-
tid protocol for n players is a protocol between n+ 1 parties, called the players
(denoted Playerα for α ∈ JnK∗) and the game master (denoted Master). This pro-
tocol is instantiated by a cryptid encoding (n, C, N,M,Answer), a cryptographic
cryptid (Setup,GenClue,OpenClue,Play,Verify), a map map ∈ M, and n clues
(denoted clueα ∈ C for α ∈ JnK∗). This protocol is defined as follows (where the
setup set used has been generated by the algorithm Setup(λ)).
Cryptid

〈{
Playerα(set,map)}α∈JnK∗ ,Master(set,map, (clueα)α∈JnK∗

)〉
:

– For each α ∈ JnK∗, Master runs (pcα, scα) ← GenClue(set, clueα). Master
then sends scα, and (pcα′)α′∈JnK∗ to each Playerα where α ∈ JnK∗.

– Each player Playerα computes clueα ← OpenClue(pcα, scα).
– Players then play among themselves following ther rules. At the ith play:
• One Playerαi

for some αi ∈ JnK∗ receives an index j < N from an-
other player. Playerαi

runs Ai ← Answer(clueαi ,map, ji), and πi ←
Play(pcαi

, scαi
,map, ji, Ai), then sends (Ai, πi) to everyone.

• For each α ̸= αi, Playerα checks that Verify(πi, pcαi
,map, ji, Ai) = 1 (if

not, Playerα aborts the protocol).
– At the end of the game, each Playerα for α ∈ JnK∗ returns viewα = (clueα, scα,

(pcα′)α′∈JnK∗ , {(αi, Ai, ji, πi)}i∈JtK∗), where t is the number of plays. Master
returns nothing.

We now formally define the two required security properties, namely sound-
ness and confidentiality. Soundness must ensure that players cannot cheat, i.e.,
that they cannot make a valid proof π if they do not answer a question correctly.

Definition 8 (Soundness). Let λ be a security parameter and Π = (Setup,
GenClue,OpenClue,Play,Verify) be a cryptographic cryptid for a cryptid encoding
(n, C, N,M,Answer). Π is said to be sound if for any pair of p.p.t. algorithms
A = (A1,A2), the probability of success of the following experiment is negligible
in λ:

ExpSoundness
Π,A (λ):

set← Setup(λ)
clue← A1(set)
(pc, sc)← GenClue(clue)
(π,map, j, A)← A2(pc, sc)
A′ ← Answer(map, clue, j)
return ((clue ∈ C) ∧ (map ∈M) ∧ (A′ ̸= ⊥)

∧ (A = 1−A′) ∧ Verify(π, pc,map, j, A))

Confidentiality ensures the protection of players’ clues. More precisely, an ad-
versary must not be able to deduce any more information about players’ clues in
the cryptographic version than in the physical version of Cryptid. Note that each
answer leaks some information about the secret clue; this leakage is inherent to
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the game and must be taken into account in our definition. Thus, confidentiality
must ensure that, at any point in the game, a player has no more information
about the clues of others than can be deduced from their answers.

We propose a simulation-based security definition [18]: a cryptographic cryp-
tid is confidential if there exists a polynomial-time simulator that simulates for
a player the cryptid protocol until play t, using only the values known by that
player and the answers of the other players until play t. So, as the player could
have simulated the whole protocol with their own data, we show that they learn
nothing more than they already know during the game.

Definition 9 (Confidentiality). Let λ be a security parameter and Π = (Setup,
GenClue,OpenClue,Play,Verify) be a cryptographic cryptid for a cryptid encoding
CE = (n, C, N,M,Answer). Let Cryptidα∗,t be a protocol defined as the cryptid
protocol instantiated by Π and CE (Definition 7) except that it aborts after t
plays and returns viewα∗ only.

We define a cryptid simulator Sim instantiated by Π and CE as an algorithm
that takes as input a setup set, an integer t, a map map ∈ M, an integer α∗ ∈
JnK∗, a clue clue ∈ C, and a set of t triplets {(αi, Ai, ji)}i∈JtK∗ each containing
an integer αi ∈ JnK∗, a bit Ai and an integer ji ∈ JNK∗, and that returns a tuple
(scα∗ , (pcα)α∈JnK∗ , {πi}i∈JtK∗).

Π is said to be confidential if there exists a negligible function ϵ s.t. for any
p.p.t. algorithms D, any integer t, any α∗ ∈ JnK∗, any map map ∈ M, and any
tuple of clues (clueα)α∈JnK∗ ∈ Cn, there exists a p.p.t. cryptid simulator Sim s.t.,
considering the following experiment:

ExpConfidentiality
Π,D,b (λ):

set← Setup(λ)
viewα∗ ← Cryptidα∗,t⟨{Playerα(set,map)}α∈JnK∗ ,

Master(set,map, (clueα)α∈JnK∗)⟩
parse viewα∗ as (sc0α∗ , (pc0α)α∈JnK∗ , {(αi, Ai, ji, π

0
i )}i∈JtK∗)

(sc1α∗ , (pc1α)α∈JnK∗ , {π1
i }i∈JtK∗)← Sim(set, t,map, α∗, clueα∗ ,

{(αi, Ai, ji)}i∈JtK∗)

b′ ← D(set, t,map, α∗, clueα∗ , scbα∗ , (pcbα)α∈JnK∗ , {(αi, Ai, ji, π
b
i )}i∈JtK∗)

return b = b′

we have:
∣∣∣Pr [0← ExpConfidentiality

Π,D,0 (λ)
]
− Pr

[
1← ExpConfidentiality

Π,D,1 (λ)
]∣∣∣ ≤ ϵ(λ).

4.2 Our Cryptographic Cryptid

We build two cryptographic cryptid schemes based on two different cryptid en-
codings. These two schemes provide two different trade-offs between the size of
the committed clues and the size/efficiency of the proofs generated during the
game. Both schemes are based on the same paradigm: the clues are committed
in ElGamal ciphertexts, and the proofs are built from NIP of correct/incorrect
decryption of these ciphertexts.
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The first encoding we propose, called map-based clue cryptid encoding, frees
the clue encoding from its actual structure (based on cell types and properties):
it gives only the answer the user must give for each of the map cells.

Definition 10 (MBC Cryptid Encoding). The Map-Based Clue (MBC)
cryptid encoding for n players is a tuple (n, C, N,M,Answer) where N = 108,
C = {0, 1}N , map = (celli)i∈JNK∗ where each celli describes the properties of the
corresponding cell (however this information is encoded), and Answer is defined
by:
Answer(map, clue, j): parses clue = (cluei)i∈JNK∗ and returns A = cluej.

Based on this encoding, we can commit the clue by encrypting each of the
answers for each of the cells. So, when a player answers a question concerning a
given cell, they can prove with a NIP that their answer corresponds to the one
encrypted in the ciphertext corresponding to the cell in their committed clue.

Definition 11 (CC1 scheme). The cryptographic cryptid scheme CC1 for the
MBC cryptid encoding (n, C, N,M,Answer) is defined by the following algo-
rithms:

Setup(λ): generates a group G of prime order p generated by g s.t. p > 2λ and
instanciated the ElGamal encryption ElGamal = (Gen,Enc,Dec) by G, and
returns set← (λ,ElGamal).

GenClue(clue): parses clue as (cluei)i∈JNK∗ , generates (pk, sk) ← Gen(λ), com-
putes Ei ← Encpk(cluei) for each i ∈ JNK∗, sets E ← (Ei)i∈JNK∗ , pc ←
(pk, E) and sc← sk, then returns (pc, sc).

OpenClue(pc, sc): parses pc as (pk, (Ei)i∈JNK∗), checks that pk = gsc (otherwise
aborts), computes cluei ← Decsc(Ei) for each i ∈ JNK∗, then returns clue =
(cluei)i∈JNK∗ .

Play(pc, sc,map, j, A): parses (pc, sc) as ((pk, (Ei)i∈JNK∗), sk), computes the proof
π ← NIP {sk : (Decsk(Ej) = A)}, then returns π.

Verify(π, pc,map, j, A): parses (pc, sc) as ((pk, (Ei)i∈JNK∗), sk), verifies the proof
π on the statement (pk, Ej , A), then returns 1 if the proof is valid, 0 other-
wise.

Theorem 1 and 2 claim that CC1 is sound and confidential.

Theorem 1. If the NIP used in CC1 is sound, then CC1 is sound.

Theorem 2. If the NIP used in CC1 is zero-knowledge and ElGamal is IND-CPA,
then CC1 is confidential.

Proofs are given in Appendix B. The computation time of the algorithm Play
and the size of the proof π are in O(1). In return, the computation time of the
algorithm GenClue and the size of each public clue key pc it generates are in
O(N), where N = 108 in the original cryptid game. As these public clue keys
must be produced a priori for each player (between 3 and 5) for each possible
game (180 in the original cryptid game) before acquiring the game, it seems
worthwhile to reduce the size of these elements.
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To this end, we propose another cryptid encoding, called the property-based
clue cryptid encoding, which is closer to the clue structure as presented in the
original game. Each cell is encoded by its type (desert, forest, etc.) and neighbor-
hood properties (one cell from a desert, two cells from a bear’s territory, etc.).
Clues are divided into two kinds: (i) those indicating that the type of the cell is
one of two given types, and (ii) those indicating one of the cell’s neighborhood
properties. We encode them with a triplet (C1, C2, C3) s.t. if the clue is of kind
(i), then C1 and C2 are the two types given by the clue and C3 is undefined, else
if the clue is of kind (ii), then C3 is the neighborhood property, and C1 and C2

are undefined.

Definition 12 (PBC Cryptid Encoding). We denote the set containing the
5 cell types (desert, forest, etc.) by T = {T̄l}l∈J5K∗ and the set containing the 14
neighboring properties (one cell from a desert, two cells from a bear’s territory,
etc.) by P = {P̄l}l∈J14K∗ . In what follows, for any set S, S⊥ denotes S ∪ {⊥},
and P(S) denotes the power set of S. The Property-Based Clue (PBC) cryptid
encoding for n players is the tuple (n, C, N,M,Answer) where N = 108, C =
T⊥ × T⊥ × P⊥, M is the set of all the maps map = (celli)i∈JNK∗ s.t. each
celli ∈ T ×P(P), and Answer is defined as follows:

Answer(map, clue, j): parses each cellj in map as (Tj ,Pj) and the clue as (C1, C2,
C3). If (C1, C2) = (⊥,⊥), then if C3 ∈ Pj returns 1, otherwise 0. Else if
C3 = ⊥, then if C1 = Tj or C2 = Tj returns 1, otherwise 0. Else, aborts.

We build a scheme based on this encoding where each element of the clue
triplet (C1, C2, C3) is committed in a ciphertext. Given a cell on the map, the
type and neighborhood properties of that cell, and their answer on that cell, a
player can prove the validity of this answer based on their committed clue as
follows. If the answer is yes, then they show using a NIP that the type of the cell
is one of the two types C1 or C2 encrypted in the committed clue, or that the
property C3 encrypted in the committed clue is one of the properties of the cell.
Else, if the answer is no, then they show using a NIP that the type of the cell is
not one of C1 and C2 encrypted in the committed clue, and that the property
C3 encrypted in the committed clue is not one of the properties of the cell.

Definition 13 (CC2 scheme). The cryptographic cryptid scheme CC2 for the
PBC cryptid encoding (n, C, N,M,Answer) is defined by the following algorithms:
Setup(λ): generates a group G of prime order p generated by g s.t. p > 2λ and

instantiates the ElGamal encryption ElGamal = (Gen,Enc,Dec) by G. We
denote the set containing the 5 cell types by T and the set containing the
14 neighboring properties by P. This algorithm associates a group element
picked in the uniform distribution on G with each element in T ∪P ∪{⊥} (it
will repeat this process if two different elements are associated with the same
group element, which happens with negligible probability ≤ |T ∪P∪{⊥}|2/p).
In the following, by abuse of notation, each X ∈ T (resp. X ∈ P and ⊥)
will denote both the cell type (resp. the neighboring property and the bottom
symbol) and the group element associated with it, and so T (resp. P) will
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denote both the cell type set (resp. the neighboring property set) and the
set of the group elements associated with all cell types (resp. neighboring
properties). It returns set = (λ,ElGamal, T ,P,⊥).

GenClue(clue): parses clue as (C1, C2, C3), generates (pk, sk) ← Gen(λ), com-
putes Ei ← Encpk(Ci) for each i ∈ J3K∗, sets pc ← (pk, E1, E2, E3) and
sc← sk, then returns (pc, sc).

OpenClue(pc, sc): parses pc as (pk, E1, E2, E3), checks that pk = gsc (otherwise
aborts), computes Ci ← Decsc(Ei) for each i ∈ J3K∗, then returns clue =
(C1, C2, C3).

Play(pc, sc,map, j, A): parses the public/private clue key pair (pc, sc) as ((pk, E1,
E2, E3), sk), map as (celli)i∈JNK∗ and cellj as (Tj ,Pj). If A = 1, this algo-
rithm computes and returns:

π ← NIP

{
sk : Decsk(E1) = Tj ∨ Decsk(E2) = Tj ∨

( ∨
P∈Pj

Decsk(E3) = P

)}
.

Else, if A = 0 it computes and returns:

π ← NIP

{
sk : Decsk(E1) ̸= Tj ∧ Decsk(E2) ̸= Tj ∧

( ∧
P∈Pj

Decsk(E3) ̸= P

)}
.

Verify(π, pc,map, j, A): parses the public/private clue key pair (pc, sc) as ((pk, E1,
E2, E3), sk), map as (celli)i∈JNK∗ , and cellj as (Tj ,Pj). Depending on A,
this algorithm verifies the proof π on the statement (ElGamal, pk, E1, E2, E3,
Tj ,Pj), it returns 1 if the proof is valid, 0 otherwise.

Theorem 3 and 4 claim that CC2 is sound and confidential.

Theorem 3. If the NIP used in CC2 are sound, then CC2 is sound.

Theorem 4. If the NIP used in CC2 are zero-knowledge and ElGamal is IND-CPA,
then CC2 is confidential.

Proofs are given in in Appendix B. The complexity of the proof size and
computation time is linear in the number of neighborhood properties |P| (we
will explain how this proof is instantiated and why its complexity is so later in
this section). Thus, the computation time of the algorithm Play and the size of the
proof π it generates are in O(|P|), where |P| = 14 in the original cryptid game.
In return, the computation time of the GenClue algorithm and the size of each
committed clue pc it generates are in O(1). We therefore obtain much smaller
commitments, at the cost of proofs requiring moderate computing capacity for
the players. Depending on the power of the players’ devices and their storage
capacity, one can choose the most suitable scheme between CC1 and CC2.

4.3 NIP Instantiation

Let G be a group of prime order p and let g ∈ G be a generator. Let (g1, g2) ∈ G2

and x ∈ Z∗
p be. We set y1 = gx1 and y2 = gx2 . An instantiation of the (interactive)

proof of discrete logarithms equality IP{x : y1 = gx1 ∧ y2 = gx2} is given in [10],
and an instantiation of the (interactive) proof of discrete logarithms inequality
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IP{x : y1 = gx1 ∧ y2 ̸= gx2} is given in [8]. These proofs are correct, sound, and
zero-knowledge. Moreover, these proofs are sigma protocols, which means that
these protocols consist of three interactions: the prover sends a commitment,
the verifier sends a challenge chosen at random in a given set, and the prover
sends a response. Consider now an ElGamal public key pk = gsk and an ElGamal
ciphertext c = (c1, c2) = (gr, pkrm). The relation Decsk(c) = m is equivalent to
the relation (pk = gsk∧c2/(csk1 ) = m), which is equivalent to (pk = gsk∧(c2/m) =
csk1 ). Similarly, the relation Decsk(c) ̸= m is equivalent to the relation (pk = gsk∧
(c2/m) ̸= csk1 ). Thus, the proofs IP{sk : Decsk(c) = m} and IP{sk : Decsk(c) ̸= m}
can be instantiated by the discrete logarithms equality proof in [10] and the
discrete logarithms equality proof in [8].

Now let us consider two relations R1 and R2 and two associated proofs
IP{w1 : (s1, w1) ∈ R1} and IP{w2 : (s2, w2) ∈ R2} for some pairs of state-
ment/witness (s1, w1) and (s2, w2), s.t. these two proofs are sigma protocols and
use the same challenge set. The proof IP{(w1, w2) : (s1, w1) ∈ R1∧(s2, w2) ∈ R2}
can be easily obtained by using the same challenge for the two relations in the
two previous proofs. This method can be generalized for any number of rela-
tions, and can therefore be used to prove several correct/incorrect decryptions
of ciphertexts (note that if the ciphertexts use the same public key, it also proves
that the secret keys used to decrypt the ciphertexts are all the same). On the
other hand, the generic transformation given in [12] allows us to build a proof
IP{w : (s1, w) ∈ R1 ∨ (s2, w) ∈ R2} under the same hypothesis (the challenge
used in the resulted proof comes from the same challenge set as for R1 or R2,
and the method can be generalized for any number of relations). Thus, this
method can be used to prove one correct/incorrect decryption of ciphertext out
of several ciphertext decryptions.

These two methods can be used together to produce proofs for boolean re-
lations of correct/incorrect ciphertext decryptions, and thus instantiate all the
proofs used in the schemes CC1 and CC2. Note that the size of these proofs
and the computation time increase linearly with the number of correct/incorrect
ciphertext decryptions in the relation. Finally, since these proofs are also sigma
protocols, they can be turned into non-interactive proofs using the Fiat-Shamir
transformation [14].

4.4 Implementation

To demonstate the practicality of our schemes, we implement the algorithms
GenClue, OpenClue, Play, and Verify in Rust. We use the prime order group
Ristretto with the curve25519_dalek [19] library and we use 255 bits secret keys.
The source code for our implementation is available at [6]. Table 1 describes the
average computation time, measured in milliseconds, of each algorithm for our
two cryptographic crytid schemes, and Table 2 illustrates the average size of the
public clue key pc and the size of the proof π generated by the players. The av-
erages are based on 1000 runs and we used the optimized release mode of Cargo.
Our measurements depend on the player’s answer {maybe, no}, moreover for the
scheme CC2, we differentiate between the two forms of clue. Our experiments
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are not based on the real maps proposed in the original game, but on randomly
generated cells and clues. We have chosen to evaluate our algorithms on cells
that match all the properties together (or all but one in the case where the clue
concerns a neighbouring property and the answer is no), as this maximises the
generation time and the size of the proof in CC2 (it makes no difference for CC1).
The times given are therefore worst-case.

As we had predicted in the theoretical analysis of our schemes, the com-
putation time and the size of the public clues are higher in CC1 than in CC2,
conversely the computation time and the size of the proofs are higher in CC2.
The generation of all public clues is done once by the game editor, and each
occurrence of OpenClue, Play, and Verify is done by the players. Generating a
clue or building a proof takes less than 7 milliseconds in all cases, which is rea-
sonable for playing the game in real time. Opening a clue takes longer in CC1
(less than 4 milliseconds versus 0.11 milliseconds in CC2), but is still efficient
and only needs to be done once per player at the start of the game. On the
other hand, a Cryptid game consists of 180 game setup for 3 to 5 players, so its
cryptographic version requires the download of 180 × 4 = 720 public clue keys,
i.e., about 7 × 720 = 5040 kilobytes for CC1 and 0.25 × 720 = 180 kilobytes
for CC2. In summary, CC1 requires more memory to download and store when
acquiring the game, but has a lower latency during gameplay.

Table 1. Running time in milliseconds for our two cryptographic cryptid scheme. The
results are an average over 1000 executions.

Scheme CC1 CC2
Answer no maybe no maybe
clue (cluei)i∈JNK∗ ∈ {0, 1}N (T̄1, T̄2,⊥) (⊥,⊥, P̄ ) (T̄1, T̄2,⊥) (⊥,⊥, P̄ )

GenClue 6.27 6.27 0.20 0.20 0.20 0.20

OpenClue 3.38 3.38 0.11 0.11 0.11 0.11

Play 0.10 0.10 2.46 2.31 1.26 1.49

Verify 0.20 0.20 2.02 1.90 1.33 1.31
Table 2. Size in bytes for our two cryptographic cryptid scheme. The results are an
average over 1000 executions.

Scheme CC1 CC2
Answer no maybe no maybe
clue (cluei)i∈JNK∗ ∈ {0, 1}N (T̄1, T̄2,⊥) (⊥,⊥, P̄ ) (T̄1, T̄2,⊥) (⊥,⊥, P̄ )

pc 6944 6944 224 224 224 224

π 96 96 1696 1600 1600 1600

5 Cryptographic Cryptid with Dishonest Game Master

We extend our model to check that the game designer (called the game master)
has prepared the clues and the map correctly (i.e., they are honest). The aim is
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to allow players to check from the start of the game that their clues are correctly
formed and that they converge on at least one cell of the map, which guarantees
that the game will end. To do this, we also need to extend our formalism and
security properties. We call this new primitive verifiable cryptographic cryptid.

5.1 Formal Model

We start by giving a new definition of cryptid encoding by adding the algorithm
CorrectClue, which decides whether a clue is well formed.

Definition 14 (Verifiable Cryptid Encoding). A verifiable cryptid encod-
ing is a tuple (n, C, N,M,Answer,CorrectClue) where (n, C, N,M,Answer) is a
cryptid encoding and CorrectClue is defined as follows:
CorrectClue(map, clue): takes as input a map map ∈ M and a clue clue ∈ C. It

returns true or false depending on whether the clue is well-formed or not
according to the rules (“true” corresponds to bit 1 and “false” to 0).

For instance, in the original version of the game, CorrectClue will test whether
the encoded clue corresponds to a clue of the form “the cell is of this or that
type” or of the form “the cell is n cells away from a cell with such-and-such
a property”. We now define verifiable cryptographic cryptids. This primitive
extends cryptographic cryptids by adding a pair of algorithms to prove/verify
that the game (the committed clues and the map) has been built correctly by
the game master.

Definition 15 (Verifiable Cryptographic Cryptid). A verifiable crypto-
graphic cryptid for a verifiable cryptid encoding (n, C, N,M,Answer,CorrectClue)
is a tuple of polynomial time algorithms (Setup,GenClue,OpenClue,ProveGame,
VerifyGame,Play,Verify) where (Setup,GenClue,OpenClue,Play,Verify) is a cryp-
tographic cryptid and ProveGame and VerifyGame are defined as follows:
ProveGame(j, (pcα, scα)α∈JnK∗ ,map): takes as input the index j of the cryptid

habitat, the clue keys (pcα, scα)α∈JnK∗ of the players, a map map, and returns
a proof ρ.

VerifyGame(ρ, (pcα)α∈JnK∗ ,map): takes as input a proof ρ, the public clue keys
of the players, the map map and returns b ∈ {accept, reject} (“accept”
corresponds to bit 1 and “reject” to 0).

It is therefore necessary to extend the notion of the cryptid protocol to in-
clude a phase where the game master proves to the players via the algorithm
ProveGame that the public clue keys have been constructed correctly and that
the game ends. This phase takes place between the clue key distribution phase
and the start of the game phase.

Definition 16 (Verifiable Cryptid Protocol). Let λ be a security parameter.
The verifiable cryptid protocol for n players instantiated by a verifiable cryptid
encoding (n, C, N,M,Answer,CorrectClue) and a verifiable cryptographic cryptid
(Setup,GenClue,OpenClue,ProveGame,VerifyGame,Play,Verify) is defined as the
verifiable cryptid protocol except that after that each player Playerα has computed
clueα ← OpenClue(pcα, scα):
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– Master runs ρ← ProveGame(j, (pcα, scα)α∈JnK∗ ,map), then sends ρ to each
Playerα where α ∈ JnK∗ and j is the index of the cell where the cryptid is.

– Each player Playerα checks that VerifyGame(ρ, (pcα)α∈JnK,map) = 1 (if not,
Playerα aborts the protocol).

– The other steps are identical to those of the cryptographic cryptid protocol.
At the end of the game, each Playerα for α ∈ JnK∗ returns viewα = (clueα, scα,
(pcα′)α′∈JnK∗ , ρ, {(αi, Ai, ji, πi)}i∈JtK∗), where t is the number of plays.

A verifiable cryptid protocol must verify the same properties as a cryptid
protocol (soundness and confidentiality). These properties do not need to be
redefined. In addition, the security model must capture cases where a dishonest
game master tries to give players incorrect clues, or clues that do not converge
on at least one cell of the map. We call this security property game soundness.
More specifically, a verifiable cryptid protocol is game-sound if no adversary is
able to forge a valid proof, even if some clues are incorrect or there is no cell that
matches all the clues. To verify that the adversary has succeeded in its attack,
we need to extract the clues from the players’ public clue keys. To do this, we
need to define an algorithm, not necessarily in polynomial time, to retrieve the
clues from the public keys, but without the secret keys. Note that the fact that
this algorithm is not polynomial time is not a problem, since it will only be used
in the experiment to test the adversary’s success, never by a player.

Definition 17 (Game Soundness). Let λ be a security parameter and let
Π = (Setup,GenClue,ProveGame,VerifyGame,OpenClue,Play,Verify) be a verifi-
able cryptid for a verifiable cryptid encoding (n, C, N,M,Answer,CorrectClue). Π
is said to be game sound if there is a (not necessary p.p.t.) algorithm OpenClue∗

s.t. OpenClue(pc, sc) = OpenClue∗(pc) for any (pc, sc) ← GenClue(clue) and the
probability that the following experiment returns 1 is negligible in λ for any p.p.t.
algorithm A.

ExpGame-Soundness
Π,A (λ):

set← Setup(λ)
(ρ,map, (pcα)α∈JnK∗)← A(set)
∀α ∈ JnK∗, clueα ← OpenClue∗(pcα)
return ((clueα)α∈JnK∗ ∈ C) ∧ (map ∈M) ∧ VerifyGame(ρ, (pcα)α∈JnK∗ ,map)

∧ ((∃α ∈ JnK∗ s.t. 0← CorrectClue(map, clueα))
∨ (∀i ∈ JNK∗,∃α ∈ JnK∗ s.t. 0← Answer(map, clueα, i)))

5.2 Our Verifiable Cryptographic Cryptid

We are now going to build a verifiable cryptographic cryptid. To do this, we will
extend the PBC encoding and the CC2 scheme. Note that the PBC encoding
is much more suitable than the MBC encoding for building a verifiable crypto-
graphic cryptid: indeed, the MBC encoding is not based on the actual structure
of the clue, but on the answers it gives for each cell, and it is tedious to prove
that the structure of the clue is correct just by looking at the answers it gives
for each cell on the map. Note also that even if the game master has proven that
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the game ends, it is also very important for the smooth running of the game
to prove that the clues are well constructed, as this could give a player a huge
advantage and be very difficult for other players to guess. For example, with
MBC encoding in the CC1 scheme, a malicious game master could give a clue to
a player that only answers true on the cryptid cell.

Definition 18 (VPBC Cryptid Encoding). By using the same notation as
in Definition 12, we define the Verifiable Property-Based Clue (VPBC) verifi-
able cryptid encoding for n players as the tuple (n, C, N,M,Answer,CorrectClue),
where (n, C, N,M,Answer) is the PBC and CorrectClue is defined as follows:
CorrectClue(map, clue): takes as input a map map ∈M and a clue clue ∈ C, and

parses clue as (C1, C2, C3). If (((C1, C2) ∈ T 2 ∧C1 ̸= C2 ∧C3 = ⊥)∨ (C1 =
C2 = ⊥ ∧ C3 ∈ P)), then it returns 1 (“true”), else it returns 0 (“false”).

Naive Solution to Prove that the Game Ends. A first idea is to prove that the
game ends directly from the public clues and the map. The game ends when there
is a cell s.t. each player’s clue returns the answer 1 on that cell. We already know
how to show that a player’s clue returns 1 on a cell (see the Play algorithm of
CC2), so we just need to extend this proof to check that a cell in the map verifies
this property for each of the clues. Using the methods given in Section 4.2, we
can build the following proof:

NIP

(skα)α∈JnK∗ :

N∨
i=1

 n∧
α=1

Decskα(Eα,1) = Ti ∨ Decsk(Eα,2) = Ti

∨

( ∨
P∈Pi

Decskα(Eα,3) = P

) 

 ,

where pcα = (pkα, Eα,1, Eα,2, Eα,3) for each α ∈ JnK∗ and where map = {(Ti,
Pi)}i∈JNK∗ . However, the time and size complexity of this proof is O(nN |P|),
which is not very efficient, especially since the full Cryptid game contains 180
games, and so its cryptographic version will contain 180 of such proofs, which
must be downloaded when the game is acquired.

Efficient Game Proof. We propose a solution where the size complexity of the
proof that the game ends and the clues are correct is in O(N+n(|P|+ |T |)). The
time complexity is in O(N |P|+n(|P|+ |T |)), but if we neglect the computation
time of a multiplication in G (a multiplication is much less computationally
expensive than an exponentiation in a prime order group), it goes down to O(N+
n(|P|+|T |)). Since N is the largest parameter, this solution is more efficient than
the previous one, as N has no factors in the time and size complexity expression.

The main idea is to first commit the cryptid cell. To do this, the game master
encrypts the type and each of the neighbourhood properties of the cell in differ-
ent ciphertexts. More precisely, they encrypt the type in a ciphertext E0, and if
the cryptid cell verifies the ith property in P then they encrypt this property in
Ei, otherwise they encrypt the neutral element 1G. The game master constructs
a NIP ρ1 that each Ei correctly encrypts either the ith property or 1G (with
time/size complexity in O(|P|)). The game master then hashes each cell of the
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map by computing the product of the group elements corresponding to the type
and properties of each cell (this operation requires N |P| group element multi-
plications but no exponentiation). This hash function is known to be collision
resistant under the discrete logarithm assumption. This result has been proved
in [5] and is recalled in the following theorem.

Theorem 5. Let n be an integer, λ be a security parameter, and G be a group
of prime order p s.t. p > 2λ and the discrete logarithm assumption holds in G
(i.e., given a random pair (g, h)

$← G2, the probability that any p.p.t. algorithm
outputs logg(h) is negligible). For any p.p.t. algorithm A, there exists a negligible
function ϵn-col(λ) s.t.:
Pr
[
g

$← Gn; (x, y)← A(g); : x, y ∈ {0, 1}n ∧ x ̸= y ∧
∏n−1

i=0 gxi
i =

∏n−1
i=0 gyi

i

]
≤ ϵn-col(λ).

Using the ElGamal homomorphism property, any user can compute the en-
cryption of the hash of the cell committed in the Ei. The game master can then
build a NIP ρ0 that the hash of the committed cell corresponds to one of the
cells on the map (with time/size complexity in O(N)). To prove that the game
ends, the game master just has to prove in ρ2,α using a NIP that each player’s
clue (indexed by α) answers 1 on the committed cryptid cell (with time/size
complexity in O(|P|) for each of the n proofs), in a similar way to the proof of
the Play algorithm.

Finally, the game master proves that each of the n clues is well formed by
showing that either the first two elements of the clue encrypt two different types
in T and the third element encrypts ⊥, or that the first two elements encrypt
⊥ and the last element encrypts one of the properties of P (with time/size
complexity in O(|T |+ |P|) for each of the n proofs).

Definition 19 (VCC scheme). The verifiable cryptographic cryptid scheme
VCC = (Setup,GenClue,ProveGame,VerifyGame,OpenClue,Play,Verify) for the
VPBC cryptid encoding (n, C, N,M,Answer,CorrectClue) is defined as CC2 ex-
cept that Setup, ProveGame and VerifyGame are defined as follows:
Setup(λ): same as in CC2, except that it will repeat the association between the

elements of T ∪ P ∪ {⊥} and the random elements of G process if at least
one element is associated with 1G, which happens with negligible probability
≤ |T ∪ P ∪ {⊥}|/p.

ProveGame(j, (pcα, scα)α∈JnK∗ ,map): parses (pcα)α∈JnK∗ as (pkα, Eα,1, Eα,2,
Eα,3)α∈JnK∗ , (scα)α∈JnK∗ as (skα)α∈JnK∗ , map as (celli)i∈JNK∗ and each celli
as (Ti,Pi), generates (pk, sk)← Gen(λ), computes E0 ← Encpk(Tj), and for
all l ∈ J14K∗:

El =

{
Encpk(P̄l) if P̄l ∈ Pj

Encpk(1G) else ,
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For all i ∈ JNK∗, it sets H(celli) =
∏

P∈Pi

P . It generates the following NIP:

ρ0 ← NIP

{
sk :

∨
i∈JNK∗

Decsk

( ∏
l∈J14K∗

El

)
= H(celli) ∧ Decsk(E0) = Ti

}
,

ρ1 ← NIP

{
sk :

∧
l∈J14K∗

Decsk(El) = P̄l ∨ Decsk(El) = 1G

}
.

Then for each α ∈ JnK∗, it generates the two following NIP:

ρ2,α ← NIP

sk, skα :

Decskα(Eα,1) = Decsk(E0)
∨Decskα(Eα,2) = Decsk(E0)

∨

( ∨
l∈J14K∗

Decskα(Eα,3) = Decsk(El)

)
 ,

ρ3,α ← NIP


skα :


Decskα(Eα,3) = ⊥ ∧ Decskα(Eα,1) ̸= Decskα(Eα,2)

∧

( ∨
T̄∈T

Decskα(Eα,1) = T̄

)

∧

( ∨
T̄∈T

Decskα(Eα,2) = T̄

)


∨

Decskα(Eα,1) = Decskα(Eα,2) = ⊥

∧

( ∨
P̄∈P

Decskα(Eα,3) = P̄

) 


.

Finally, it returns ρ← (pk, (El)l∈J14K∗ , ρ0, ρ1, (ρ2,α)α∈JnK∗ , (ρ3,α)α∈JnK∗).
VerifyGame(ρ, (pcα)α∈JnK∗ ,map): parses ρ as (pk, (El)l∈J14K, ρ0, ρ1, (ρ2,α)α∈JnK∗ ,

(ρ3,α)α∈JnK∗), (pcα)α∈JnK∗ as (pkα, Eα,1, Eα,2, Eα,3)α∈JnK∗ , the map map as
(celli)i∈JNK∗ and each celli as (Ti,Pi). Verifies the proofs ρ0 on the state-
ment (ElGamal, pk,

∏
l∈J14K∗ El, (Ti,H(celli))i∈JNK∗ , E0), ρ1 on the statement

(ElGamal, pk, (El)l∈J14K∗ ,P, 1G), and for all α ∈ JnK∗, ρ2,α on the state-
ment (ElGamal, pkα, Eα,1, Eα,2, Eα,3, pk, (El)l∈J14K) and ρ3,α on the state-
ment (ElGamal, pkα, Eα,1, Eα,2, Eα,3, T ,P,⊥). It returns 1 if proofs are valid,
0 otherwise.

The following theorems claim that VCC is sound, game-sound, and confidential.

Theorem 6. If the NIP used in VCC are sound, then VCC is sound.

Theorem 7. If the NIP used in VCC are extractable, then VCC is game-sound
under the discrete logarithm assumption.

Theorem 8. If the NIP used in VCC are zero-knowledge and ElGamal is IND-CPA,
then VCC is confidential.

Theorem 6 is a direct implication of Theorem 3. The proof of the two other
theorems are given in Appendix C.

5.3 NIP Instantiation

NIP of VCC can be instantiated using the same tools as described in Section 4.2,
except for the proofs that involve the equivalence of two decryptions, i.e., those
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that contain expressions such as Decsk(c) = Decsk′(c
′) (the proofs ρ2,α). Con-

sider two ElGamal public keys pk = gsk and pk′ = gsk
′
, and two ElGamal ci-

phertexts c = (c1, c2) = (gr, pkrm) and c′ = (c′1, c
′
2) = (gr

′
, pk′r

′
m). The relation

Decsk(c) = Decsk′(c
′) is equivalent to the relation (pk = gsk∧pk′ = gsk

′∧c2/(csk1 ) =
c′2/(c

′sk′
1 )), which is equivalent to (pk = gsk∧pk′ = gsk

′∧(c2/c′2) = csk1 (c
′−1
1 )sk

′
). By

renaming the variables, we obtain the relation (y1 = gx1
1 ∧y2 = gx2

2 ∧y = gx1hx2).
We give an extractable zero-knowledge sigma-protocol NIP for this relation,
which can therefore be used in relations containing “or” and “and” operators
as it is the case in ρ2,α.

NIP {x1, x2 : y1 = gx1
1 ∧ y2 = gx2

2 ∧ y = gx1hx2}: picks r1, r2
$← Z∗

p, sets R1 ←
gr11 , R2 ← gr22 , R ← gr1 , and S ← hr2 , then hashes (g1, g2, g, h, y1, y2, y, R1,
R2, R, S) using a random oracle in order to obtain a challenge c ∈ Z∗

p, and
computes z1 ← r1+ cx1, and z2 ← r2+ cx2. It returns π ← (R1, R2, R, S, z1,
z2).

Ver(s, π): parses s as (g1, g2, g, h, y1, y2, y, R1, R2, R, S) and π as (R1, R2, R, S, z1,
z2), and verifies that gz11 = R1y

c
1 and gz22 = R2y

c
2 and gz1hz2 = RSyc.

This NIP is extractable (so sound). Indeed, we can build the following extrac-
tor: runs the prover and simulates the random oracle to the prover in order
to obtain a valid transcript (R1, R2, R, S, z1, z2) for a challenge c, then rewinds
the prover to the challenge step in order to obtain a second valid transcript
(R1, R2, R, S, z′1, z

′
2) having the same commitments (R1, R2, R, S) for another

challenge c′ outputted by the random oracle (tries again if the prover fails).
The witness (x1, x2) can be efficiently extracted from these values by computing
(x1, x2) = ((z1 − z′1)/(c− c′)−1, (z2 − z′2)(c− c′)−1).

This NIP is also zero-knowledge. Indeed, we can build the following simulator:
picks c, z1, z2

$← Z∗
p and S

$← G, and computes R1 = gz11 y−c
1 and R2 = gz22 y−c

2

and R = gz1hz2S−1y−c. Set c as the hash of (g1, g2, g, h, y1, y2, y, R1, R2, R, S)
and returns the transcript (R1, R2, R, S, z1, z2).

5.4 Implementation

We have extended our Rust implementation of CC2 by adding the algorithms
ProveGame and VerifyGame in order to analyse the practicality of VCC. The
table 3 provides an overview of an average computation time, in milliseconds,
of the algorithms ProveGame and VerifyGame of the scheme VCC, and the table
4 describes an average size, in kilobytes, of the proof of the correct game. Our
measurements are based on 1000 runs and depend on the number of players: 3,
4, and 5. Again, we did not evaluate efficiency on real games, but on randomly
generated maps and clues. Since clues of the form “one of two types” are less
common than clues of the form “so many cells away from something”, we decide
to use ⌊n/2⌋ clues of the first type and ⌈n/2⌉ clues of the second type, where n
is the number of players.

The proof that the game is correct takes less than 50 milliseconds and must
be done for the 180 game setups by the game editor. It will therefore take less
than 9 seconds for the whole Cryptid game, bearing in mind that this operation
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is only performed once, a priori, before the game distribution. The verification of
the game takes also less than 50 milliseconds. This operation must be performed
by each player, we remind the reader that it is only done once before the start
of the game.

The size of the proof of each game setup is less than 50 kilobytes, knowing
that these proofs must be downloaded at the same time as the public clue keys
when the game is acquired. Downloading the full game will therefore require less
than 180 + 180× 50 = 9180 kilobytes of storage.

Table 3. Running time in milliseconds for our verifiable cryptographic cryptid scheme.
The results are an average over 1000 executions.

Scheme VCC
Number of player 3 4 5

ProveGame 38.88 45.34 46.18

VerifyGame 28.94 31.15 35.11
Table 4. Size in kilobytes for our verifiable cryptographic cryptid scheme. The results
are an average over 1000 executions.

Scheme VCC
Number of player 3 4 5

ρ 34.05 39.52 44.99

6 Conclusion

We have proposed cryptographic protocols to prevent cheating in the game Cryp-
tid. We have formally defined and proved two security properties for these pro-
tocols: soundness and confidentiality. We give an implementation to show that
they can be used in a practical context. We have also extended one of these
protocols to allow the game designer to prove that the clues are well formed and
converge on at least one cell of the map.

However, the cryptid game has a feature that we did not consider. If the
players get impatient and all agree, they can consult a booklet to get an extra
clue for their game. This clue does not have the same structure as the player’s
clues; for instance, the general clue might be “there is no clue indicating that the
type of the cryptid cell is one of two given types”. It would be interesting to add
a system for committing these clues, so that if the players agree, they can open
these commitments. It would then be necessary for the game designer to prove
that these hidden clues are also well formed and consistent with the other clues
and the map. We leave the design of a protocol that takes these general clues
and the difficult mode (described in Section 2) into account as future works.
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A Full Version of the Rules

Fig. 2. Cryptid materials.

Cryptid is a board game designed in 2018 by Hal Duncan and Ruth Veevers,
and published by Osprey Games, for 3, 4 or 5 players aged 10 and over. Cryptid
is a unique deduction game of honest misdirection in which players must try to
uncover information about their opponents’ clues while throwing them off the
scent of their own. Each player has a clue to help them find the cryptid, and
in their turn they can try to get more information from their opponents. Be
warned, give away too much and your opponents may find the cryptid faster
than you.

The game includes a modular board, five clue books, and a deck of set-up
cards with hundreds of possible set-ups across two difficulty levels, as it is shown
in Figure 2. More precisely, the game contains:

– 60 cards,
– 4 standing Stones (octagon),
– 4 abandoned Shacks (triangles),
– 1 pawn,
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– 5 sets of Player Tokens (cubes and discs in matching colours),
– 5 clue Books (α, β, δ, γ, ϵ),
– 6 tiles for the map.

A.1 Setup of the game

The first step is to choose a card from the 60 cards in the game. On one side
of the card is a description of the map, an example is shown in Figure 3. The
map of a game is made up of 6 numbered tiles, which are assembled to form a 2
by 3 map. The map is made up of hexagonal cells representing terrains, which
can be of 5 types: water (blue), forest (green), desert (yellow), mountain (grey)
and swamp (brown). Depending on the map, some blue, green, white or black
structures (standing stones are represented by octagons and abandoned huts by
triangles) must also be placed on the map. The map may also show some animal
territories: dotted lines around cells indicate bear territories and red lines around
cells indicate puma territories.

Fig. 3. Cryptid example of initial board, represented on one side of the card.
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The other side of the card indicates each player a book and a clue number, and
each player secretly looks up their clue in the book on the line corresponding to
their number. An example is given in Figure 4, where, for a game with 4 players,
the clue of the player with the book β is on the line 73.

Fig. 4. Example of a card of Cryptid. The fist number indicates the number of player
for the map. The others indicate the lines of the clue for each clue book.

For example, if we consider 4 player with the map on Figure 3 and the card
on Figure 4, the clues that players will read in the books are:

– Player 1: The cryptid habitat is 3 cells away from a green structure
– Player 2: The cryptid habitat is 3 cells away from a white structure
– Player 3: The cryptid habitat is on forest or desert
– Player 4: The cryptid habitat is on water or forest

The list of all possible clues, called deduction sheet, is given to the player
(see Figure 6). The game offers two levels of difficulty: the standard mode where
the clues are those on the left of the deduction sheet, and the difficult mode
where we also consider the negation of all the standard clues (on the right of the
deduction sheet). Note that in this work, we only consider the standard version
of the game.

The unique cell that satifies all the clues is shown on Figure 5. To win the
game, a player has to find this cell.

A.2 A turn

When it is their turn, a player has two possible actions: Ask a question or make
a search.

Ask a question. The player puts the black pawn on a cell with no cubes to asks
a chosen player if the cryptid can live there. If the player knows from their clue
that the cryptid can live there, they must put a disc on that cell, otherwise the
player must put a cube on that cell.
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Fig. 5. Cryptid solution of the example in Figure 3.

Search. The player chooses a cell that their clue indicates could be the cell of
the cryptid, and that does not contain a cube. The player puts a disc on the
cell, then the other players in turn put a disc if the cell can be the habitat of the
cryptid according to their clue, otherwise a cube. As soon as a player places a
cube, the search stops. If every player puts a disc, the game ends and the player
wins.

End of the turn. At the end of your turn, if one of your opponents placed a cube
on the map, you must put a cube on a cell of your choice where, according to
your clue, the cryptid cannot live.

A.3 End of the game

The game ends when one player finds the cryptid cell. A free electronic version
of the game is available online at https://www.playcryptid.com/.

https://www.playcryptid.com/
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Fig. 6. Cryptid possible clues.

TERRAIN CLUES
forest or desert forest or desert forest or desert forest or desert

forest or water forest or water forest or water forest or water

forest or swamp forest or swamp forest or swamp forest or swamp

forest or mountain forest or mountain forest or mountain forest or mountain

desert or water desert or water desert or water desert or water

desert or swamp desert or swamp desert or swamp desert or swamp

desert or mountain desert or mountain desert or mountain desert or mountain

water or swamp water or swamp water or swamp water or swamp

water or mountain water or mountain water or mountain water or mountain

swamp or mountain swamp or mountain swamp or mountain swamp or mountain

WITHIN ONE SPACE CLUES
forest forest forest forest

desert desert desert desert

swamp swamp swamp swamp

mountain mountain mountain mountain

water water water water

animal territory animal territory animal territory animal territory

WITHIN TWO SPACES CLUES
a standing stone a standing stone a standing stone a standing stone

an abandoned shack an abandoned shack an abandoned shack an abandoned shack

bear territory bear territory bear territory bear territory

cougar territory cougar territory cougar territory cougar territory

WITHIN THREE SPACES CLUES
a blue structure a blue structure a blue structure a blue structure

a white structure a white structure a white structure a white structure

a green structure a green structure a green structure a green structure

a black structure * a black structure * a black structure * a black structure *

NOT ON TERRAIN CLUES
forest or desert * forest or desert * forest or desert * forest or desert *

forest or water * forest or water * forest or water * forest or water *

forest or swamp * forest or swamp * forest or swamp * forest or swamp *

forest or mountain * forest or mountain * forest or mountain * forest or mountain *

desert or water * desert or water * desert or water * desert or water *

desert or swamp * desert or swamp * desert or swamp * desert or swamp *

desert or mountain * desert or mountain * desert or mountain * desert or mountain *

water or swamp * water or swamp * water or swamp * water or swamp *

water or mountain * water or mountain * water or mountain * water or mountain *

swamp or mountain * swamp or mountain * swamp or mountain * swamp or mountain *

NOT WITHIN ONE SPACE CLUES
forest * forest * forest * forest *

desert * desert * desert * desert *

swamp * swamp * swamp * swamp *

mountain * mountain * mountain * mountain *

water * water * water * water *

animal territory * animal territory * animal territory * animal territory *

NOT WITHIN TWO SPACES CLUES
a standing stone * a standing stone * a standing stone * a standing stone *

an abandoned shack * an abandoned shack * an abandoned shack * an abandoned shack *

bear territory * bear territory * bear territory * bear territory *

cougar territory * cougar territory * cougar territory * cougar territory *

NOT WITHIN THREE SPACES CLUES
a blue structure * a blue structure * a blue structure * a blue structure *

a white structure * a white structure * a white structure * a white structure *

a green structure * a green structure * a green structure * a green structure *

a black structure * a black structure * a black structure * a black structure *

OSPREY and OSPREY GAMES are trademarks of Osprey Publishing, a division of Bloomsbury Publishing Plc. © Ruth Veevers & Anthony Duncan, 2018. © 2018 Osprey Publishing Ltd. All rights reserved.

1 2 3 4 1 2 3 4

When you're sure a player's clue is not the one listed, 
draw a line through the space. When you're sure it is the 
one listed, mark the space, and draw a line through that 
clue in the other players’ columns.

In advanced mode, it is possible to have the inverse 
of the normal mode clues. Advanced mode clues are 
indicated by an * and are not used in normal mode.
In advanced mode, use one column on each side of the 
page for every player.

DEDUCTION SHEET

B Security Proofs of CC1 and CC2

In this section, we give the security proofs of our schemes.

B.1 Proof of Theorem 1

The languages L of the NIP used in the algorithm Play of CC1 verifies s ∈ L ⇔
(∃ w, (s, w) ∈ R) where (s, w) = ((ElGamal, pk, E,A), sk) and (s, w) ∈ R ⇔
Decsk(E) = A.

Let λ be a security parameter. We show that if CC1 is not sound, then the
NIP for one of the two languages L is not sound either. Assume that there exists a
pair of p.p.t. (in λ) algorithm A = (A1,A2) s.t. ϵ(λ) = Pr

[
1← ExpSoundness

CC1,A (λ)
]

is non-negligible. We build a p.p.t. algorithm B that tries to break the Soundness
of a NIP for L.

B(L): runs set ← Setup(λ) and parses set as (λ,ElGamal). It runs clue ←
A2(set), (pc, sc)← GenClue(clue), and (π,map, j, A)← A2(pc, sc). It parses
(pc, sc) as ((pk, (Ei)i∈JNK∗), sk) and returns ((ElGamal, pk, Ej , A), π).

IfA wins its soundness experiment, then π is a valid proof. We show that however
(ElGamal, pk, Ej , A) /∈ L. Since (pc, sc) ← GenClue(clue), we have that Ej ←
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Encpk(cluej), and since Answer(map, clue, j) = 1−A and Answer(map, clue, j) =
cluej , we have that cluej = 1 − A ̸= A, so Decsk(Ej) ̸= A, which implies that
(ElGamal, pk, Ej , A) /∈ L. Thus, B wins its soundness experiment with the same
probability ϵ(λ) as A wins its own, which is non-negligible.

B.2 Proof of Theorem 2

Throughout this proof, we will refer to (G, g, p) as the group G of prime order
p generated by g used in ElGamal. CC2 uses a NIP in the algorithm Play. Since
this proof is assumed to be zero-knowledge, there exists a simulator SimNIP

that simulates valid proofs from any statment. We build the following cryptid
simulator.

Sim(set, t,map, α∗, clueα∗ , {(αi, Ai, ji)}i∈JtK∗): runs (pcα∗ , scα∗)← GenClue(set,
clueα∗) and parses pcα∗ as (pkα∗ , (Eα∗,i)i∈JNK∗). For each α ∈ JnK∗\{α∗},
picks pkα

$← G and (γα,i)i∈JNK∗
$← GN , for all i ∈ JNK∗ computes Eα,i ←

Encpkα(γα,i), then sets pcα ← (pkα, (Eα,i)i∈JNK∗). According to the rules of
Cryptid, the simulator simulates each play i for player Playerαi

(from play
1 to play t) by computing πi ← SimNIP(ElGamal, pkαi

, Eαi,ji , Ai). Finally, it
returns viewα∗ = (clueα∗ , scα∗ , (pcα)α∈JnK∗ , {(αi, Ai, ji, πi)}i∈JtK∗).

Note that this simulator replaces each ciphertext with the encryption of a
random element and simulates each NIP .

To prove this theorem, we use the following sequence of games [22] where the
first game matches the case where the distinguisher receives elements generated
by the real protocol (case b = 0 in the confidentiality experiment), and where the
last game matches the case where the distinguisher receives elements generated
by the simulator (case b = 1 in the confidentiality experiment). By showing that
each of the intermediate games are computationally indistinguishable from the
other, we deduce that the two cases are indistinguishable.

Game G0: D receives as input (set, t,map, α∗, clueα∗ , scα∗ , (pcα)α∈JnK∗ , {(αi, Ai,
ji, πi)}i∈JtK∗) as in the case b = 0 (corresponding to the real protocol) in the
confidentiality experiment, we have:

Pr[D returns 1 in G0] = Pr
[
0← ExpConfidentiality

CC1,D,0 (λ)
]
.

Game G1: This game is the same as G0 except that each proof πi is replaced
by a simulated proof. Since all NIP are zero-knowledge, we have:

Pr[D returns 1 in G0] = Pr[D returns 1 in G1 ].

At this step, the only difference between G1 and the case b = 1 in the confi-
dentiality experiment (corresponding to the simulator) is that in the simulator,
ciphertexts are generated from random messages.
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Game G2: D receives as input (set, t,map, α∗, clueα∗ , scα∗ , (pcα)α∈JnK∗ , {(αi, Ai,
ji, πi)}i∈JtK∗) as in the case b = 1 (corresponding to the simulator) in the
confidentiality experiment, we have:

Pr[D returns 1 in G2] = Pr
[
1← ExpConfidentiality

CC1,D,1 (λ)
]
.

To prove indistinguishability between G1 and G2, we use an hybrid argument [15].
We consider a sequence of games from G1 to G2 in which we progressively replace
each ciphertext in G1 with the encryption of a random element.

Game G1,α (for all α ∈ JnK∗): We define G1,0 as G1, and G1,n as G2. The
game G1,α is the same as G1,α−1 except that if α ̸= α∗, then the challenger

picks pkα
$← G and (γα,i)i∈JNK∗

$← GN , computes Eα,i ← Encpkα(γα,i) for
all i ∈ JNK∗ , then sets pcα ← (pkα, (Eα,i)i∈JNK∗).

Game G1,α,l (for all l ∈ JNK∗): We define G1,α,0 as G1,α−1 and G1,α,N as
G1,α. The game G1,α,l is the same as G1,α,l−1 except that if α ̸= α∗, then it

computes γα,l
$← G and sets Eα,l ← Encpkα(γα,l).

We emphasize that G1,α∗,l−1 = G1,α∗,l. Let ϵIND-CPA(λ) be the IND-CPA advan-
tage of the encryption scheme ElGamal. We claim that, for any α ∈ JnK∗\{α∗}
and l ∈ JNK∗:

ϵIND-CPA(λ) ≥ |Pr[D returns 1 in G1,α,l−1]− Pr[D returns 1 in G1,α,l]| .

We prove this claim by reduction. We build the following two-party p.p.t. algo-
rithm A = (A1,A2) against the IND-CPA experiment on ElGamal:

A1(pk): sets pkα ← pk, parses clueα as (clueα,i)i∈JNK∗ , sets m0 = clueα,l and

picks m1
$← G, and returns (m0,m1).

A2(c): sets Eα,l = c, generates a tuple input = (set, t,map, α∗, clueα∗ , scα∗ ,
(pcα)α∈JnK∗ , {(αi, Ai, ji, πi)}i∈JtK∗) as in G1,α,l−1 except that it uses its own
values pkα and Eα,l in pcα, and runs b′ ← D(input). It returns b′.

We have:

Pr
[
0← ExpIND-CPA

ElGamal,A,0(λ)
]
= Pr[D returns 1 in G1,α,l−1],

Pr
[
1← ExpIND-CPA

ElGamal,A,1(λ)
]
= Pr[D returns 1 in G1,α,l].

Thus, we deduce:

ϵIND-CPA(λ) ≥
∣∣∣Pr [0← ExpIND-CPA

ElGamal,A,0(λ)
]
− Pr

[
1← ExpIND-CPA

ElGamal,A,1(λ)
]∣∣∣

= |Pr[D returns 1 in G1,α,l−1]− Pr[D returns 1 in G1,α,l]| ,

which concludes the proof of the claim. We deduce that:

N(n− 1)ϵIND-CPA(λ) ≥ |Pr[D returns 1 in G1]− Pr[D returns 1 in G2]| .
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Finally:

N(n− 1)ϵIND-CPA(λ) ≥ |Pr[D returns 1 in G0]− Pr[D returns 1 in G2]|

=
∣∣∣Pr [0← ExpConfidentiality

CC1,A,0 (λ)
]

−Pr
[
1← ExpConfidentiality

CC1,A,1 (λ)
]∣∣∣ ,

which concludes the proof of the theorem, since N(n−1)ϵIND-CPA(λ) is negligible.

B.3 Proof of Theorem 3

The languages of the NIP used in the algorithm Play of CC2 depend on the
answer A ∈ {0, 1}. We refer to them respectively as L0 (when A = 0) and
L1 (when A = 1). LA verifies s ∈ LA ⇔ (∃ w, (s, w) ∈ RA) where (s, w) =
((ElGamal, pk, E1, E2, E3, Tj ,Pj), sk) and:

(s, w) ∈ R1 ⇔ Decsk(E1) = Tj ∨ Decsk(E2) = Tj ∨

( ∨
P∈Pj

Decsk(E3) = P

)
.

(s, w) ∈ R0 ⇔ Decsk(E1) ̸= Tj ∧ Decsk(E2) ̸= Tj ∧

( ∧
P∈Pj

Decsk(E3) ̸= P

)
.

Let λ be a security parameter. We show that if CC2 is not sound, then the NIP
for one of the two languages L1 or L0 is not sound either. Assume that there exists
a pair of p.p.t. (in λ) algorithmA = (A1,A2) s.t. ϵ(λ) = Pr

[
1← ExpSoundness

CC2,A (λ)
]

is non-negligible. We build a p.p.t. algorithm Bb that tries to break the Soundness
of a NIP for Lb.

Bb(Lb): runs set ← Setup(λ) and parses set as (λ,ElGamal, T ,P,⊥). It runs
clue ← A2(set), (pc, sc) ← GenClue(clue), and (π,map, j, A) ← A2(pc, sc).
If A ̸= b, Bb aborts, else it parses (pc, sc) as ((pk, E1, E2, E3), sk), map as
(celli)i∈JNK∗ , and cellj as (Tj ,Pj), and returns ((ElGamal, pk, E1, E2, E3, Tj ,
Pj), π).

IfA wins its soundness experiment, then π is a valid proof. We show that however
(ElGamal, pk, E1, E2, E3, Tj ,Pj) /∈ LA:

– If A = 1 then Answer(map, clue, j) = 1−A = 0, so C1 ̸= Tj and C2 ̸= Tj and
C3 ̸∈ Pj , which implies that (ElGamal, pk, E1, E2, E3, Tj ,Pj) /∈ L1. Thus, B1
wins its soundness experiment.

– If A = 0 then Answer(map, clue, j) = 1 − A = 1, so C1 = Tj or C2 = Tj or
C3 ∈ Pj , which implies that (ElGamal, pk, E1, E2, E3, Tj ,Pj) /∈ L0. Thus, B0
wins its soundness experiment.

So one of the two algorithms B0 or B1 wins its soundness experiment with the
same probability ϵ(λ) as A wins its own, which is non-negligible.
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B.4 Proof of Theorem 4

Throughout this proof, we will refer to (G, g, p) as the group G of prime order
p generated by g used in ElGamal. CC2 uses two NIP in the algorithm Play (one
for the case A = 1, the other for the case A = 0). Since these proofs are assumed
to be zero-knowledge, there exists two simulators Sim0 and Sim1 that simulates
valid proofs from any statment. We build the following cryptid simulator.

Sim(set, t,map, α∗, clueα∗ , {(αi, Ai, ji)}i∈JtK∗): runs (pcα∗ , scα∗)← GenClue(set,
clueα∗) and parses the public clue keys pcα∗ as (pkα∗ , Eα∗,1, Eα∗,2, Eα∗,3).

For each α ∈ JnK∗\{α∗}, picks (pkα, γα,1, γα,2, γα,3)
$← G4, for all i ∈ J3K∗

computes Eα,i ← Encpkα(γα,i), then computes pcα ← (pkα, Eα,1, Eα,2, Eα,3).
It parses map as (celli)i∈JNK∗ and cellj as (Tj ,Pj). According to the rules
of Cryptid, the simulator simulates each play i for player Playerαi

(from
play 1 to play t) by computing the simulated zero-knowledge proof πi ←
SimAi(ElGamal, pkαi

, Eαi,1, Eαi,2, Eαi,3, Tji ,Pji). Finally, it returns viewα∗ =
(clueα∗ , scα∗ , (pcα)α∈JnK∗ , {(αi, Ai, ji, πi)}i∈JtK∗).

Note that this simulator replaces each ciphertext with the encryption of a
random element and simulates each NIP .

To prove this theorem, we use the following sequence of games [22] where the
first game matches the case where the distinguisher receives elements generated
by the real protocol (case b = 0 in the confidentiality experiment), and where the
last game matches the case where the distinguisher receives elements generated
by the simulator (case b = 1 in the confidentiality experiment). By showing that
each of the intermediate games are computationally indistinguishable from the
other, we deduce that the two cases are indistinguishable.

Game G0: D receives as input (set, t,map, α∗, clueα∗ , scα∗ , (pcα)α∈JnK∗ , {(αi, Ai,
ji, πi)}i∈JtK∗) as in the case b = 0 (corresponding to the real protocol) in the
confidentiality experiment. we have:

Pr[D returns 1 in G0] = Pr
[
0← ExpConfidentiality

CC2,D,0 (λ)
]
.

Game G1: This game is the same as G0 except that each proof πi is replaced
by a simulated proof. Since all NIP are zero-knowledge, we have:

Pr[D returns 1 in G0] = Pr[D returns 1 in G1].

At this step, the only difference between G1 and the case b = 1 in the confi-
dentiality experiment (corresponding to the simulator) is that in the simulator,
ciphertexts are generated from random messages.

Game G2: D receives as input (set, t,map, α∗, clueα∗ , scα∗ , (pcα)α∈JnK∗ , {(αi, Ai,
ji, πi)}i∈JtK∗) as in the case b = 1 (corresponding to the simulator) in the
confidentiality experiment. we have:

Pr[D returns 1 in G2] = Pr
[
1← ExpConfidentiality

CC2,D,1 (λ)
]
.
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To prove indistinguishability between G1 and G2, we use an hybrid argument [15].
We consider a sequence of games from G1 to G2 in which we progressively replace
each ciphertext in G1 with the encryption of a random element.

Game G1,α (for all α ∈ JnK∗): We define G1,0 as G1, and G1,n as G2. The
game G1,α is the same as G1,α−1 except that if α ̸= α∗, then the challenger

picks (pkα, γα,1, γα,2, γα,3)
$← G4, runs Eα,l = Encpkα(γα,l) for each l ∈ J3K∗,

and sets pcα = (pkα, Eα,1, Eα,2, Eα,3).
Game G1,α,l (for all l ∈ J3K∗): We define G1,α,0 as G1,α−1 and G1,α,3 as G1,α.

The game G1,α,l is the same as G1,α,l−1 except that if α ̸= α∗, then it

computes γα,l
$← G and sets Eα,l ← Encpkα(γα,l).

We emphasize that G1,α∗,l−1 = G1,α∗,l. Let ϵIND-CPA(λ) be the IND-CPA advan-
tage of the encryption scheme ElGamal. We claim that, for any α ∈ JnK∗\{α∗}
and l ∈ J3K∗:

ϵIND-CPA(λ) ≥ |Pr[D returns 1 in G1,α,l−1]− Pr[D returns 1 in G1,α,l]| .

We prove this claim by reduction. We build the following two-party p.p.t. algo-
rithm A = (A1,A2) against the IND-CPA experiment on ElGamal:

A1(pk): sets pkα ← pk, parses clueα as (Cα,1, Cα,2, Cα,3), sets m0 = Cα,l and

picks m1
$← G, and returns (m0,m1).

A2(c): sets Eα,l = c, generates a tuple input = (set, t,map, α∗, clueα∗ , scα∗ ,
(pcα)α∈JnK∗ , {(αi, Ai, ji, πi)}i∈JtK∗) as in G1,α,l−1 except that it uses its own
values pkα and Eα,l in pcα, and runs b′ ← D(input). It returns b′.

We have:

Pr
[
0← ExpIND-CPA

ElGamal,A,0(λ)
]
= Pr[D returns 1 in G1,α,l−1],

Pr
[
1← ExpIND-CPA

ElGamal,A,1(λ)
]
= Pr[D returns 1 in G1,α,l].

Thus, we deduce:

ϵIND-CPA(λ) ≥
∣∣∣Pr [0← ExpIND-CPA

ElGamal,A,0(λ)
]
− Pr

[
1← ExpIND-CPA

ElGamal,A,1(λ)
]∣∣∣

= |Pr[D returns 1 in G1,α,l−1]− Pr[D returns 1 in G1,α,l]| ,

which concludes the proof of the claim. We deduce that:

3(n− 1)ϵIND-CPA(λ) ≥ |Pr[D returns 1 in G1]− Pr[D returns 1 in G2]| .

Finally:

3(n− 1)ϵIND-CPA(λ) ≥ |Pr[D returns 1 in G0]− Pr[D returns 1 in G2]|

=
∣∣∣Pr [0← ExpConfidentiality

CC2,A,0 (λ)
]

−Pr
[
1← ExpConfidentiality

CC2,A,1 (λ)
]∣∣∣ ,

which concludes the proof of the theorem, since 3(n−1)ϵIND-CPA(λ) is negligible.
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C Security Proofs of VCC

In this section, we give the security proofs of our extended scheme.

C.1 Proof of Theorem 7

We define the algorithm OpenClue∗ for VCC as follows:

OpenClue∗(pc): parses pc as (pk, (Ei)i∈J3K∗), computes sc ← logg(pk), and re-
turns the output of OpenClue(pc, sc).

Note that ∀(pc, sc)← GenClue(clue), we have OpenClue(pc, sc) = OpenClue∗(pc)
because pk = gsc.

Let λ be a security parameter. We will show that the probability that any
p.p.t. algorithm A wins the game-soundness experiment on VCC is negligible.
We use the following sequence of games [22] where the first game is the game-
soundness experiment.

Game G0: This game corresponds to the game-soundness experiment, we have:

Pr[A wins G0] = Pr
[
1← ExpGame-Soundness

VCC,A (λ)
]
.

Game G1: This game is the same as G0 except that aborts and returns 0 on
the event F1 = “one element is associated with 1G during the setup process”.
During the setup, each element of T ∪ P ∪ {⊥} is associated with a group
element picking in the uniform distribution on G. Since in VCC we have
|T ∪ P ∪ {⊥}| = 20, we deduce that:

20/p ≥ Pr[F1] ≥ |Pr[A wins in G0]− Pr[A wins G1]| .

Game G2: This game is the same as G1 except that aborts and returns 0 on
the event F2 = “Two different elements are associated with the same group
element during the setup process”. Since 20 group elements are picked in the
uniform distribution on G, we have:

202/p = 400/p ≥ Pr[F2] ≥ |Pr[A wins in G1]− Pr[A wins G2]| .

At this step, each group element associated with one element of T ∪P ∪{⊥}
has been picked in the uniform distribution on G.

Game G3: This game is the same as G2 except that G3 uses the extractors on
each of the 2n + 2 proofs ρ0, ρ1, (ρ2,α)α∈JnK∗ , and (ρ3,α)α∈JnK∗ , and aborts
and returns 0 on the event F3 = “An extractor fails on at least one proof”.
Let ϵext(λ) be the max on the failure probability of the extractors, we have:

(2n+ 2)ϵext(λ) ≥ Pr[F3] ≥ |Pr[A wins G2]− Pr[A wins G3]| .
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G3 extracts the witnesses sk from the proofs ρ0, ρ1, and (ρ2,α)α∈JnK∗ , and the
witnesses (skα)α∈JnK∗ from the proofs (ρ2,α)α∈JnK∗ and (ρ3,α)α∈JnK∗ . We note
that if A wins its game, then these witnesses are correctly extracted, and all the
extracted witnesses sk (resp. skα for all α ∈ JnK∗) are the same, because each
proof implicitly uses the same pk = gsk (resp. pkα = gskα , where pkα is the first
element of pcα). According to the definition of OpenClue∗, for each α ∈ JnK∗ we
have clueα = OpenClue(pcα, skα) = OpenClue∗(pcα). For each α ∈ JnK∗, we parse
clueα as (Cα,i)i∈J3K∗ . If the proofs (ρ3,α)α∈JnK∗ are correctly extracted, then for
each α ∈ JnK∗: Decskα(Eα,3) = ⊥ ∧ Decskα(Eα,1) ̸= Decskα(Eα,2)

∧

( ∨
T̄∈T

Decskα(Eα,1) = T̄

)
∧

( ∨
T̄∈T

Decskα(Eα,2) = T̄

)
∨

(
Decskα(Eα,1) = Decskα(Eα,2) = ⊥ ∧

( ∨
P̄∈P

Decskα(Eα,3) = P̄

))
.

We deduce that ((Cα,1, Cα,2) ∈ T 2 and Cα,1 ̸= Cα,2 and Cα,3 = ⊥)) or (Cα,1 =
Cα,1 = ⊥ and Cα,3 ∈ P). For all α ∈ JnK∗, we have 1 = CorrectClue(map, clueα).

Game G4: We parse map as (celli)i∈JNK∗ , each celli as (Ti,Pi), and the second
element of ρ as (El)l∈J14K. This game is the same as G3 except that G4 aborts

and returns 0 on the event F4 = “ ∃i ∈ JNK∗; Decsk

( ∏
l∈J14K∗

El

)
=

∏
P̄l∈Pi

P̄l

∧ ∃l ∈ J14K∗; ((Decsk(El) = 1 ∧ P̄l ∈ Pi) ∨ (Decsk(El) = P̄l ∧ P̄l /∈ Pi))”,
where sk is the witness extracted from the game G3. We have:

Pr[F4] ≥ |Pr[A wins G3]− Pr[A wins G4]| .

We claim that:
ϵ14−col(λ) ≥ Pr[F4],

where ϵ14−col(λ) is defined in Theorem 5. We prove this claim by reduction.
We build the following p.p.t. algorithm B playing the experiment defined in
Theorem 5:
B
(
(gl)l∈J14K∗

)
: simulates the game G3 to A, except that during the setup

generation, B associates each gl at each P̄l ∈ P, and aborts if one gl = 1G
for some l. This does not disturb the simulation of G3 since, in accordance
with the rules of G2, the elements associated with the P elements come
from the uniform ditribution on G. It parses each celli as (Ti,Pi). It
runs (ρ,map, (pcα)α∈JnK∗)← A(set). If F4 does not occur, then B aborts
its experiment, else it parses the second element of ρ as (El)l∈J14K and
extracts sk from ρ. For each l ∈ J14K∗, it computes Vl ← Decsk(El).
B finds i ∈ JNK∗ s.t.

∏
l∈J14K∗

Vl =
∏

P̄l∈Pi

P̄l and there exists l ∈ J14K∗ s.t.

(Vl = 1 and P̄l ∈ Pi) or (Vl = P̄l and P̄l /∈ Pi). Note that such a i exists
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since F4 occurred. For each l ∈ J14K∗, if Vl = P̄l, then B sets xl ← 1, else
it sets xl ← 0, and if P̄l ∈ Pi, then B sets yl ← 1, else it set yl ← 0.
It sets x = (xl)l∈J14K∗ and y = (yl)l∈J14K∗ , then returns (x, y). Note that
since F4 occurred, then x ̸= y, and B returns (x, y).

If A wins G3 and F4 occurs, then B returns x, y ∈ {0, 1}l s.t. x ̸= y and∏14
l=1 g

xl

l =
∏14

l=1 g
yl

l , which happens with negligible probability ϵ14−col(λ)
under the discrete logarithm assumption according to Theorem 5. We deduce
that:

ϵ14−col(λ) ≥ Pr[F4] ≥ |Pr[A wins G3]− Pr[A wins G4]| ,

which concludes the proof of the claim.

At this step, we show that A has no way to winning because if G4 does not
abort (i.e., F1, F2, F3, and F4 does not occur), then there exists i ∈ JNK∗
s.t. for all α ∈ JnK∗, we have 1 = Answer(map, clueα, i):
Assume that G4 does not abort. For all l ∈ J14K, we set Vl = Decsk(El). ρ0
and ρ1 are valid proofs (since F3 does not occur), and there exists i ∈ JNK∗
s.t. V0 = Ti and

∏
l∈J14K∗

Vl =
∏

P̄l∈Pi

P̄l and ∀l ∈ J14K∗((Vl = 1 and P̄l /∈ Pi) or

(Vl = P̄l ∈ Pi)) (since F4 does not occur).
For each α ∈ JnK∗, ρ2,α is a valid proof (since F3 does not occur), so Cα,1 = V0

or Cα,2 = V0 or there exists l ∈ J14K∗ s.t. Cα,3 = Vl.
We deduce that there exists i ∈ JNK∗ s.t. for each α ∈ JnK∗, we have Cα,1 =
Ti or Cα,2 = Ti or there exists l ∈ J14K∗ s.t. if P̄l ∈ Pi, then Cα,3 = Vl = P̄l,
else Cα,3 = Vl = 1G.
For each α ∈ JnK∗, ρα,3 is a valid proof, so 1 = CorrectClue(map, clueα). We
have for each α ∈ JnK∗, (Cα,1 = ⊥ and Cα,2 = ⊥ and there exists P̄ ∈ P s.t.
Cα,3 = P̄ ) or (Cα,3 = ⊥ and there exists (l1, l2) ∈ J5K∗ s.t. T̄l1 ̸= T̄l2 , and
s.t. Cα,1 = T̄l1 , and Cα,2 = T̄l2).
This implies that there exists i ∈ JNK∗ s.t. for each α ∈ JnK∗, (Cα,1 = Ti or
Cα,2 = Ti or there exists l ∈ J14K∗ s.t. if P̄l ∈ Pi, then Cα,3 = Vl = P̄l, else
Cα,3 = Vl = 1G), and ((Cα,1 = ⊥ and Cα,2 = ⊥ and there exists P̄ ∈ P s.t.
Cα,3 = P̄ ) or (Cα,3 = ⊥ and there exists (l1, l2) ∈ J5K∗ s.t. T̄l1 ̸= T̄l2 , and
s.t. Cα,1 = T̄l1 , and Cα,2 = T̄l2)).
We deduce that there exists i ∈ JNK∗ s.t. for each α ∈ JnK∗:
– Either Cα,1 = Ti and Cα,2 = Ti and there exists l ∈ J14K∗ s.t. Cα,3 =

Vl = P̄l if P̄l ∈ Pi, 1G else, and Cα,1 = ⊥ and Cα,2 = ⊥ and there exists
P̄ ∈ P s.t. Cα,3 = P̄ . We have Ti = ⊥, which is contradicting because
the event F2 does not occur, so this case does not occur.

– Either Cα,1 = Ti and Cα,2 = Ti and there exists l ∈ J14K∗ s.t. if P̄l ∈ Pi,
then Cα,3 = Vl = P̄l, else Cα,3 = 1G, and Cα,3 = ⊥ and there exists
(l1, l2) ∈ J5K∗, s.t. T̄l1 ̸= T̄l2 and Cα,1 = T̄l1 and Cα,2 = T̄l2 . We have
T̄l1 = Ti and T̄l2 = Ti and T̄l1 ̸= T̄l2 , which is contradicting, so this case
does not occur.

– Either Cα,1 = Ti and Cα,2 = Ti and for all l ∈ J14K∗, Cα,3 ̸= Vl and if
P̄l ∈ Pi, then Vl = P̄l, else Vl = 1G, and Cα,1 = ⊥ and Cα,2 = ⊥ and
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there exists P̄ ∈ P s.t. Cα,3 = P̄ . We have Ti = ⊥, which is contradicting
because F2 does not occur, so this case does not occur.

– Either Cα,1 = Ti and Cα,2 = Ti and for all l ∈ J14K∗, Cα,3 ̸= Vl and
if P̄l ∈ Pi, then Vl = P̄l, else Vl = 1G, and Cα,3 = ⊥ and there exists
(l1, l2) ∈ J5K∗, s.t. T̄l1 ̸= T̄l2 and Cα,1 = T̄l1 and Cα,2 = T̄l2 . We have
T̄l1 = Ti and T̄l2 = Ti and T̄l1 ̸= T̄l2 , which is contradicting, so this case
does not occur.

– Either Cα,1 = Ti and Cα,2 ̸= Ti and for all l ∈ J14K∗, Cα,3 ̸= Vl and if
P̄l ∈ Pi, then Vl = P̄l, else Vl = 1G, and Cα,1 = ⊥ and Cα,2 = ⊥ and
there exists P̄ ∈ P s.t. Cα,3 = P̄ . We have Ti = ⊥, which is contradicting
because F2 does not occur, so this case does not occur.

– Either Cα,1 ̸= Ti and Cα,2 = Ti and for all l ∈ J14K∗, Cα,3 ̸= Vl and if
P̄l ∈ Pi, then Vl = P̄l, else Vl = 1G, and Cα,1 = ⊥ and Cα,2 = ⊥ and
there exists P̄ ∈ P s.t. Cα,3 = P̄ . We have Ti = ⊥, which is contradicting
because F2 does not occur, so this case does not occur.

– Either Cα,1 = Ti and Cα,2 ̸= Ti and for all l ∈ J14K∗, Cα,3 ̸= Vl and
if P̄l ∈ Pi, then Vl = P̄l, else Vl = 1G, and Cα,3 = ⊥ and there exists
(l1, l2) ∈ J5K∗, s.t. T̄l1 ̸= T̄l2 and Cα,1 = T̄l1 and Cα,2 = T̄l2 . F1 and F2

do not occur, we have T̄l1 ̸= T̄l2 and for all l ∈ J14K∗, we have P̄l ̸= ⊥,
and ⊥ ̸= 1G. Then, we have Cα,1 = T̄l1 = Ti and Cα,2 = T̄l2 ̸= Ti and
(T̄l1 , T̄l2) ∈ T 2 and Cα,3 = ⊥.

– Either Cα,1 ̸= Ti and Cα,2 = Ti and for all l ∈ J14K∗, Cα,3 ̸= Vl and
if P̄l ∈ Pi, then Vl = P̄l, else Vl = 1G, and Cα,3 = ⊥ and there exists
(l1, l2) ∈ J5K∗, s.t. T̄l1 ̸= T̄l2 and Cα,1 = T̄l1 and Cα,2 = T̄l2 . Since F1 and
F2 do not occur, we have T̄l1 ̸= T̄l2 and for all l ∈ J14K∗, we have P̄l ̸= ⊥,
and ⊥ ̸= 1G. Then, we have Cα,1 = T̄l1 ̸= Ti and Cα,2 = T̄l2 = Ti and
(T̄l1 , T̄l2) ∈ T 2 and Cα,3 = ⊥.

– Either Cα,1 ̸= Ti and Cα,2 ̸= Ti and there exists l ∈ J14K∗ s.t. if P̄l ∈ Pi,
then Cα,3 = Vl = P̄l, else Cα,3 = 1G, and Cα,1 = ⊥ and Cα,2 = ⊥ and
there exists P̄ ∈ P s.t. Cα,3 = P̄ . This implies that Cα,1 = Cα,2 = ⊥
and there exists P̄ ∈ P s.t. Cα,3 = P̄ . Since F1 does not occur, P̄ ̸= 1G,
then P̄ = P̄l ∈ Pi.

– Either Cα,1 ̸= Ti and Cα,2 ̸= Ti and there exists l ∈ J14K∗ s.t. if P̄l ∈ Pi,
then Cα,3 = Vl = P̄l, else Cα,3 = 1G, and Cα,3 = ⊥ and there exists
(l1, l2) ∈ J5K∗, s.t. T̄l1 ̸= T̄l2 and Cα,1 = T̄l1 and Cα,2 = T̄l2 . We have
P̄l = ⊥ or 1G = ⊥, which is contradicting because F1 and F2 do not
occur, so this case does not occur.

– Either Cα,1 = Ti and Cα,2 ̸= Ti and there exists l ∈ J14K∗ s.t. if P̄l ∈ Pi,
then Cα,3 = Vl = P̄l, else Cα,3 = 1G, and Cα,1 = ⊥ and Cα,2 = ⊥ and
there exists P̄ ∈ P s.t. Cα,3 = P̄ . This implies that Cα,1 = Cα,2 = ⊥ and
there exists P̄ ∈ P s.t. Cα,3 = P̄ . We have Ti = ⊥, which is contradicting
because the event F2 does not occur, so this case does not occur.

– Either Cα,1 ̸= Ti and Cα,2 = Ti and there exists l ∈ J14K∗ s.t. if P̄l ∈ Pi,
then Cα,3 = Vl = P̄l, else Cα,3 = 1G, and Cα,1 = ⊥ and Cα,2 = ⊥ and
there exists P̄ ∈ P s.t. Cα,3 = P̄ . This implies that Cα,1 = Cα,2 = ⊥ and
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there exists P̄ ∈ P s.t. Cα,3 = P̄ . We have Ti = ⊥, which is contradicting
because the event F2 does not occur, so this case does not occur.

– Either Cα,1 = Ti and Cα,2 ̸= Ti and there exists l ∈ J14K∗ s.t. if P̄l ∈ Pi,
then Cα,3 = Vl = P̄l, else Cα,3 = 1G, and Cα,3 = ⊥ and there exists
(l1, l2) ∈ J5K∗, s.t. T̄l1 ̸= T̄l2 and Cα,1 = T̄l1 and Cα,2 = T̄l2 . We have
P̄l = ⊥ or 1G = ⊥, which is contradicting because F1 and F2 do not
occur, so this case does not occur.

– Otherwise Cα,1 ̸= Ti and Cα,2 = Ti and there exists l ∈ J14K∗ s.t. if
P̄l ∈ Pi, then Cα,3 = Vl = P̄l, else Cα,3 = 1G, and Cα,3 = ⊥ and there
exists (l1, l2) ∈ J5K∗, s.t. T̄l1 ̸= T̄l2 and Cα,1 = T̄l1 and Cα,2 = T̄l2 . We
have P̄l = ⊥ or 1G = ⊥, which is contradicting because F1 and F2 do
not occur, so this case does not occur.

Finally there exists i ∈ JNK∗ s.t. for each α ∈ JnK∗, (Cα,1, Cα,2, Cα,3) =
(Ti, T̄l2 ,⊥) where (Ti, T̄l2) ∈ T 2 and Ti ̸= T̄l2 or (Cα,1, Cα,2, Cα,3) = (T̄l1 , Ti,
⊥) where (Ti, T̄l1) ∈ T 2 and Ti ̸= T̄l1 or (Cα,1, Cα,2, Cα,3) = (⊥,⊥, P̄l) where
P̄l ∈ Pi.
This implies that there exists i ∈ JNK∗ s.t. for each α ∈ JnK∗, 1 = Answer(map,
clueα, i), which implies that A cannot win G4 even if G4 does not abort.

Finally, we have:

420

p
+ (2n+ 2)ϵext(λ) + ϵ14−col(λ) ≥ |Pr[A wins G0]− Pr[A wins G4]| ,

which concludes the proof of the theorem, since 420
p , (2n+2)ϵext(λ) and ϵ14−col(λ)

are negligible.

C.2 Proof of Theorem 8

Throughout this proof, we will refer to (G, g, p) as the group G of prime order p
generated by g used in ElGamal. VCC uses four NIP in the algorithm ProveGame.
Since these proofs are assumed to be zero-knowledge, there exists four respective
simulators Sim0, Sim1, Sim2 and Sim3 that simulates valid proofs from any
statement for the NIP used to produce ρ0, ρ1, ρ2,α, and ρ3,α where α ∈ JnK∗. We
build the following cryptid simulator:

Simc(set, t,map, α∗, clueα∗ , {(αi, Ai, ji)}i∈JtK∗): runs (pcα∗ , scα∗)← GenClue(set,
clueα∗) and parses pcα∗ as (pkα∗ , Eα∗,1, Eα∗,2, Eα∗,3). For each α ∈ JnK∗\{α∗},
it picks (pkα, γα,1, γα,2, γα,3)

$← G4, then for all i ∈ J3K∗ it computes Eα,i ←
Encpkα(γα,i). This algorithm sets pcα ← (pkα, Eα,1, Eα,2, Eα,3). The simu-

lator parses map as (celli)i∈JNK∗ and each celli as (Ti,Pi). It picks pk
$← G

and (γl)l∈J14K
$← G15, then for all l ∈ J14K it computes El ← Encpk(γl).

For all i ∈ JNK∗, it computes H(celli) =
∏

P∈Pi

P . This algorithm simulates

respectively ρ0 and ρ1 with Sim0 and Sim1, and simulates respectively ρ2,α
and ρ3,α with Sim2 and Sim3 for all α ∈ JnK∗, then it sets ρ ← (pk, ρ0, ρ1,
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(ρ2,α)α∈JnK∗ , (ρ3,α)α∈JnK∗). According to the rules of Cryptid, the simulator
simulates each play i for player Playerαi

(from play 1 to play t) by comput-
ing πi ← SimAi(ElGamal, pkαi

, Eαi,1, Eαi,2, Eαi,3, Tji ,Pji). Finally, it returns
viewα∗ = (clueα∗ , scα∗ , (pcα)α∈JnK∗ , ρ, {(αi, Ai, ji, πi)}i∈JtK∗).

Note that this simulator replaces each ciphertext with the encryption of a
random element and simulates each NIP .

To prove this theorem, we use the following sequence of games [22] where the
first game matches the case where the distinguisher receives elements generated
by the real protocol (case b = 0 in the confidentiality experiment), and where the
last game matches the case where the distinguisher receives elements generated
by the simulator (case b = 1 in the confidentiality experiment). By showing
that each of the intermediate games are computationally indistinguishable from
the other, we deduce that the two cases are indistinguishable. We note that the
Games G0 and G1 are similar as in the Proof of Theorem 4.

Game G0: D receives as input (set, t,map, α∗, clueα∗ , scα∗ , (pcα)α∈JnK∗ , ρ, {(αi,
Ai, ji, πi)}i∈JtK∗) as in the case b = 0 (corresponding to the real protocol) in
the confidentiality experiment. we have:

Pr[D returns 1 in G0] = Pr
[
0← ExpConfidentiality

VCC,D,0 (λ)
]
.

Game G1: This game is the same as G0 except that all the proofs (πi)i∈JtK∗ ,ρ0, ρ1,
(ρ2,α)α∈JnK∗ , (ρ3,α)α∈JnK∗ are replaced by a simulated proof. Since all NIP are
zero-knowledge, We have:

Pr[D returns 1 in G0] = Pr[D returns 1 in G1].

Game G2: This game is the same as G1 except that each encryption of a clue
is replaced by an encryption of a random element. Let ϵIND-CPA(λ) be the
IND-CPA advantage of the encryption scheme ElGamal.
We have already shown in the Proof of Theorem 4 that:

3(n− 1)ϵIND-CPA(λ) ≥ |Pr[D returns 1 in G2]− Pr[D returns 1 in G1]|

Game G3: D receives as input (set, t,map, α∗, clueα∗ , scα∗ , (pcα)α∈JnK∗ , ρ, {(αi,
Ai, ji, πi)}i∈JtK∗) as in the case b = 1 (corresponding to the simulator) in the
confidentiality experiment, we have:

Pr[D returns 1 in G3] = Pr
[
1← ExpConfidentiality

VCC,D,1 (λ)
]
.

To prove indistinguishability between G2 and G3, we use an hybrid argu-
ment [15]. We consider a sequence of games from G2 to G3 in which we
progressively replace each ciphertext in G2 with the encryption of a random
element.

Game G2,l (for all l ∈ J14K): We define G2,−1 as G2 and G2,14 as G3. The

game G2,l is the same as G2,l−1 except that it computes γl
$← G and sets

El ← Encpk(γl).
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We claim that, for any l ∈ J14K:

ϵIND-CPA(λ) ≥ |Pr[D returns 1 in G2,l−1]− Pr[D returns 1 in G2,l]|

We prove this claim by reduction. We build the following p.p.t. algorithm
A = (A1,A2) against the IND-CPA experiment on ElGamal:

A1(pk): parses cellj as (Tj ,Pj), Tj as V0 and Pj as (Vl)l∈J14K where for all
l ∈ J14K∗, if P̄l ∈ Pj , then Vl = P̄l, else Vl = 1G. It sets m0 = Vl and picks

m1
$← G, and returns (m0,m1).

A2(c): sets El = c, builds a tuple input = (set, t,map, α∗, clueα∗ , scα∗ , (pcα)α∈JnK∗ ,
ρ, {(αi, Ai, ji, πi)}i∈JtK∗) as in G2,l−1 except that it uses its own values pk
and El, and runs b′ ← D(input). It returns b′.

We have:

Pr
[
0← ExpIND-CPA

ElGamal,A,0(λ)
]
= Pr[D returns 1 in G2,l−1].

Pr
[
1← ExpIND-CPA

ElGamal,A,1(λ)
]
= Pr[D returns 1 in G2,l].

Thus, we deduce:

ϵIND-CPA(λ) ≥
∣∣∣Pr [0← ExpIND-CPA

ElGamal,A,0(λ)
]
− Pr

[
1← ExpIND-CPA

ElGamal,A,1(λ)
]∣∣∣

= |Pr[D returns 1 in G2,l−1]− Pr[D returns 1 in G2,l]| ,

which concludes the proof of the claim. We deduce that:

15ϵIND-CPA(λ) ≥ |Pr[D returns 1 in G2]− Pr[D returns 1 in G3]| .

Finally:

(3n+ 12)ϵIND-CPA(λ) ≥ |Pr[D returns 1 in G0]− Pr[D returns 1 in G3]|

=
∣∣∣Pr [0← ExpConfidentiality

VCC,A,0 (λ)
]

−Pr
[
1← ExpConfidentiality

VCC,A,1 (λ)
]∣∣∣ ,

which concludes the proof of the theorem, since (3n+12)ϵIND-CPA(λ) is negligible.
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