
HAL Id: hal-04615493
https://uca.hal.science/hal-04615493

Submitted on 18 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transferable, Auditable and Anonymous Ticketing
Protocol

Pascal Lafourcade, Dhekra Mahmoud, Gael Marcadet, Charles Olivier-Anclin

To cite this version:
Pascal Lafourcade, Dhekra Mahmoud, Gael Marcadet, Charles Olivier-Anclin. Transferable, Auditable
and Anonymous Ticketing Protocol. Asia Conference on Information, Computer and Communications
Security, Jul 2024, Singapore, Singapore. �hal-04615493�

https://uca.hal.science/hal-04615493
https://hal.archives-ouvertes.fr

Transferable, Auditable and Anonymous Ticketing Protocol
Pascal Lafourcade

Université Clermont-Auvergne, CNRS,

Clermont-Auvergne-INP, LIMOS

Clermont-Ferrand, France

Dhekra Mahmoud

Université Clermont-Auvergne, CNRS,

Clermont-Auvergne-INP, LIMOS

Clermont-Ferrand, France

Gael Marcadet

Université Clermont-Auvergne, CNRS,

Clermont-Auvergne-INP, LIMOS

Clermont-Ferrand, France

Charles Olivier-Anclin

be ys Pay and Université Clermont-Auvergne, CNRS,

Clermont-Auvergne-INP, LIMOS and LIFO, Université

d’Orléans, INSA Centre Val de Loire

Clermont-Ferrand and Bourges, France

ABSTRACT
Digital ticketing systems typically offer ticket purchase, refund,

validation, and, optionally, anonymity of users. However, it would

be interesting for users to transfer their tickets, as is currently done

with physical tickets. We propose Applause, a ticketing system

allowing the purchase, refund, validation, and transfer of tickets

based on trusted authority, while guaranteeing the anonymity of

users, as long as the used payment method provides anonymity.

To study its security, we formalise the security of the transfer-

able E-Ticket scheme in the game-based paradigm. We prove the

security of Applause computationally in the standard model and

symbolically using the protocol verifier ProVerif. Applause relies
on standard cryptographic primitives, rendering our construction

efficient and scalable, as shown by a proof-of-concept. In order to

obtain Spotlight, an auditable version, proved to be secure, users

will remain anonymous except for a trusted third party, which will

be able to disclose their identity in the event of a disaster.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.

KEYWORDS
Ticketing System, Protocol, Auditability, Anonymity, Transfer

ACM Reference Format:
Pascal Lafourcade, Dhekra Mahmoud, Gael Marcadet, and Charles Olivier-

Anclin. 2018. Transferable, Auditable and Anonymous Ticketing Protocol.

In Proceedings of ACM Conference (Conference’17). ACM, New York, NY,

USA, 17 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Electronic tickets (E-Ticket) have become the standard. The ratio-

nale behind the digitization of the ticket industry is both practical

and economical. More sales can be achieved by allowing users to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

purchase tickets from anywhere. The practical aspect of ticket digi-

tization entails significant drawbacks, resulting in a negative impact

on the second-hand market and the protection of users’ privacy.

In a world where privacy is a central concern, it is essential to

preserve the multiple facets of a paper ticket, such as the right to

trade them, and ensure full confidence in their validity. However,

the original property of non-replicable paper tickets is often lost

with the development of E-Tickets. A formal security model for

electronic ticketing is needed to ensure their security, and a system

that combines the best properties of both worlds is necessary.

The research has focused on multiple cryptographic technolo-

gies with properties similar to their physical counterparts. The

subject of e-cash [3, 4, 49], e-coupon [10, 32, 38] (e-coupon are

similar to e-cash with items chosen when redeeming an e-coupon

remains unknown to the service provider) or n-times anonymous
authentication [48, 7] appears to be closely associated with our

issue. Even though they have been studied in the literature, their

design makes them incompatible with being used as a ticketing

system. In numerous electronic cash systems [3, 4, 49], the practice

of double-spending, wherein a coin is spent twice, is mitigated by

a central bank that maintains a record of the spent coins. When

receiving a coin from a merchant, the bank checks to ensure that

it does not belong to the list of spent coins. Therefore, the bank is

able to detect if a coin has been double-spent, and can compensate

the scammed merchant. This mechanism, however, is not suitable

to construct a desirable ticketing system, since a scam would be

left undetected by a second merchant accepting the same coin until

they both reach the bank. This fraud can be generalised to transfer

of coins in transferable e-cash. Putting it in different terms, cheaters

could resell twice a ticket and this would be left undetected un-

til they try to access the event. On the other hand, in e-coupon
systems [10, 32, 38], the transfer may appear unfavorable or even

atypical, as a coupon has been issued by a merchant to a specific

customer with the intention of gaining their loyalty, whereas n-
times anonymous authentication [48], cannot be safely transferred.

With e-tickets, it is imperative to guarantee the validity of a ticket

at any time in order to avoid double-spent tickets. This primary

concern renders every electronic cash system that prevents double-

spending at coin deposit irrelevant to our issue. Additionally, a coin

is validated by the bank during the deposit process in e-cash [4]. In

the case of e-ticketing, a ticket can be validated by one of the many

terminals. All of these disparities substantiate the necessity for a

specific approach to electronic ticketing. E-ticketing systems have

https://orcid.org/0000-0002-4459-511X
https://orcid.org/0009-0002-0555-0581
https://orcid.org/0000-0003-1194-1343
https://orcid.org/0000-0002-9365-3259
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference’17, July 2017, Washington, DC, USA Lafourcade et al.

been studied both in the industry [2, 42] for practical purposes and

in academia for understanding social behaviors regarding ticket

resale and the incentives behind this process [29, 12]. The majority

of the present ticketing systems that have been developed by the

industry are centered on the “standard” functionality of electronic

tickets, which entails the provision and validation of tickets. These

systems are not designed to ensure secure ticket transfer. Hence, an

honest client has high chances of buying a duplicated ticket from a

malicious user. More advanced systems, attempting to address this

issue, provide authentication via a distributed architecture, such as

the blockchain [2, 42]. Even if ticket validity is now ensured dur-

ing a transfer (by checking if the ticket is valid in the blockchain),

it moves away from the current e-ticketing system organization

where the tickets are stored in a database. These methods however,

are in opposition to the currently centralized event organization

and implies a larger energy consumption [13, 46]. Users’ anonymity

in e-ticketing systems has not been considered in the latest pro-

tocols [2, 24, 37, 42]. Nevertheless, anonymity is guaranteed by

physical tickets, and it remains crucial to prevent the event or-

ganizers from collecting the identity of ticket purchasers unless

necessary. Blockchain-based solutions can serve this purpose [2,

42], but for the aforementioned argumentation, we exclude them

from our investigation.

Contribution. Considering the above problems and the lack of

existing formalism, we design an e-ticket scheme with proven secu-

rity. It features three central aspects as it is centralised, transferable
and anonymous, with the latter property that can be mitigated by

auditable feature at need.We discuss the requirements of such a pro-

tocol, its capabilities, and limitations, and encompass it in a model.

We introduce the first security model for E-Ticket Scheme (ETS). The
security is formalised through five experiments, modeling unforge-
ability, ticket privacy, anonymity of users, split in two experiments,

and no-double-spending, preventing to execute a refund, transfer or

validate twice with the same ticket.

Our provably secure E-Ticket scheme is called Applause. It allows
users to purchase, refund, validate tickets, but also transfer their

tickets to another user. During all the interactions, depicted in

Fig. 1, users’ anonymity from the event organiser point-of-view is

ensured. We propose a protocol addressing all the above-mentioned

properties. Its security is proven based on computational proofs,

both in the random oracle and standard model. Moreover, we have

used the protocol verifier tool ProVerif [6] to provide more security

guarantees, see Fig. 2 for a description of ensured properties.

Payments can be made during at least three steps of our process:

the purchase, the refund, and the transfer of tickets. Traditional

payment does not guarantee anonymity, therefore, using it in our

construction would trivially break the anonymity of users. For in-

stance, the most standard payment protocol EMV [17] does not pro-

tect privacy. In our protocol, the payment is modelled as a generic

cryptographic building block, requiring anonymity, a mandatory

assumption only required to ensure full anonymity. More precisely,

our protocol is as anonymous as the payment method in use. We

stress that it is not specific for our protocol but can be applied for

every protocol ensuring anonymity and involving payment. Alter-

native payment protocols that guarantee anonymity of users exist,

ranging from simple anonymous payment method [40] to more ad-

vanced constructions [15, 33], can be used in our protocol. To reveal

the identity of users, reaching auditability, we present Spotlight,
an extended version of Applause, where the identity of every users

can be revealed only by a third-party called the judge, employing

certificates that can be randomised along with the certified keys.

Related Work. Most of the production-ready deployed systems

guarantee the “standard” functionality of ticket payment and deliv-

ery. Our system provides users with the ability to transfer a ticket

to another user, while maintaining anonymity, in addition to the

standard functionalities. All existing systems that allow for addi-

tional functionalities that we identify rely on blockchains [2, 42].

Blockchain-based ticketing systems can easily achieve transfer of a

ticket by checking if the ticket is still valid on the blockchain, and

can achieve anonymity by the design of the blockchain. However,

the blockchain requires the upkeep of a distributed ledger and nu-

merous signatures, which means that numerous servers are needed

to safeguard the validity of the network. Low-consumption and

optimised computation has been a keystone of cryptography. As

shown in [13, 46], blockchains are more computationally demand-

ing than centralised design, but also require large-scale procedures.

Our system is centralised to enhance efficiency and align with the

existing topology of event organization.

Previous works, initiated by [30] in 2001 and followed up by a

number of papers, essentially evaluating either the practicality [26],

the interface design [50] or the security [47] of existing systems in

the public transport. Subsequent works have proposed a novel tick-

eting system. They can be divided into three categories. The first

category focuses on the design of a ticketing system [24, 37], ensur-

ing the validity of a ticket, without considering privacy. The second

category aims to guarantee the privacy of the user, however it does

not permit transfer or auditability. In [28], they study the possibility

of a ticketing system with privacy of users, including the billing

step. The authors of [22, 23] have studied the possibility of using

RFID and NFC while ensuring privacy of users, using unlinkable

certified tokens [35] for public transport ticketing or anonymous

credentials [25] for general purposes tickets. Furthermore, con-

struction of [25] takes a few seconds whereas a full execution of

our constructions requires at most 100 milliseconds and does not

directly scale with the number of emitted tickets. Unlike [25], we

include the payment process in the protocol as well. The third line

of research proposes ticketing systems based on a distributed ledger,

which are less efficient compared to a centralised setting, due to

the number of involved servers and communication time. The first

paper to propose such a system is presented in [31], which is based

on blockchain. Recently, a new ticketing system has been proposed

in [51] based on NFT. For practical and efficiency reasons depicted

above, our work moves away from the distributed approach.

This work is compared to publications in less specialized areas,

such as E-cash [3, 4, 49] and e-coupon [10, 32, 38], in which a trusted

authority generates tokens attached to a value. Due to double-

spending enforcement checked only by the bank, followed by a

compensation process, they miss the guarantees of ticket validity

upon transfer. On the other hand, n-times anonymous authentica-
tion[48, 7] allows a limited number of authentications before leaking

user’s identity, limiting the ticket purchasing, as well as the interest

Transferable, Auditable and Anonymous Ticketing Protocol Conference’17, July 2017, Washington, DC, USA

of this approach for ticketing. In [7], restrictions of the concept

are augmented by time frames that further limit the authentication

process, yet it falls short in ensuring transfer guarantees.

Considerations could also be given to Anonymous Credentials [9,
11, 36] or Attribute-Based Signatures [5, 34]. These mechanisms are

dedicated for authentication based on predicate matching, identify-

ing information about the signer. Yet again, transferability remains

unaddressed as a standalone aspect in this particular work.

2 ELECTRONIC TICKETS SYSTEMS
We move away from the decentralised approach used in previous

work to focus on the currently used and centralised architecture.

Our system divides the ticket handling into three phases and can

be increased with a judges for auditability.

Architecture. A user U willing to purchase a ticket for an event,

contacts the ticket distributor D, which issues a ticket tk toU in

exchange of a payment. OnceU holds a ticket, it can authenticate

itself to a validator terminalV in order to get access to the desig-

nated event. In some cases, an userU1 holding a ticket might not be

able to benefit from its purchase, in such cases our protocol offers

two options: a refund, or a transfer of its ticket to another user e.g.,
to U2. The refund is proceeded between user U1 and the ticket

distributor D. The transfer scenario encompasses both the cases

whereU1 sells its ticket to another userU2 or offers it. The latter

consisting of the same transfer protocol without the payments. The

ticket transfer is modeled as an interaction betweenU1,U2, and a

transfer authority T acting as a guaranty of the exchange. T en-

sures the validity of the ticket toU2, preventsU1 to resell a ticket

for profit by controlling the price, but also preventsU2 to obtain a

ticket without paying it. While ticket sale is a fairly straightforward

process, its transfer can be achieved through multiple scenarios. It

has been shown in [19] that a fair transfer between two users is

impossible without a third party. Also see Appendix B for further

considerations.

Note that the transfer authority T has been modeled as an in-

dependent entity but can be combined with the ticket distributor

into a single entity without any loss of security. To make the desig-

nation of the ticket receiver possible, we assume a communication

betweenU1 andU2 before the transfer of the ticket, allowing them

to exchange keys. Last, to attend to an event, U has to validate

a ticket against a validatorV through an anonymous validation.

At any time during the process, the Judge J can open a tickets to

recovers the associated user’s identity.

Anonymity and Auditability. Anonymity of users is ensured

during every interaction with the system (i.e., the ticket distributor
D, the transfer authority T and the validatorV) and all over the

process. During the protocol, either authentication is not required

or users authenticate themselves using randomised identities i.e.,
randomised keys. If desired, our protocol Applause can be turned

into an auditable version called Spotlight, where an external author-
ity refers as the judge denoted J , recovers the identity ofU. The

auditability setting remains consistent with the one presented for

Auditable Anonymous Credentials in [11]. In a nutshell,U provides

a certificate attesting the validity of its randomised key to D, T
or V . Given such a certificate, kept on a record, J retrieves the

original key, hence the identity of U. The anonymity still holds

againstD, T orV as the certificate is randomised with the keys. If

the judge is compromised, only the users’ anonymity would be at

risk. The tickets remain valid, ensuring that honest individuals can

utilize their tickets without any issues. A compromised judge J
would not have the capability to forge new tickets or alter the valid-

ity status of previously issued tickets. The purpose of auditability is

not to prevent double spending, but rather to fulfill legal mandates

concerning participant identity recovery. This aspect is crucial in

unforeseen circumstances such as force majeure or disasters.

Validation Setting. Large scale events often result in an over-

loaded network due to the number of attendees. Multiple terminals

are needed to validate the tickets simultaneously. Hence, commu-

nications coming to and from the validation terminals are limited

in size and number. One would like to assume that the validator is

offline after an initial setup. As a single ticket should be valid for

any terminal, and without communication between the terminals,

the same ticket could be accepted for each of them, constituting

a forgery for any ticketing system. Hence, the validators must be

online and communicate. In our case, only a single group element

needs to be sent between a terminal and the central server for each

approved verification. For efficiency, we rely on a central authority

instead of a distributed ledger to agree on valid tickets at time 𝑡 .

A validation protocol has to ensure anonymity of users, and thus

cannot authenticate the user. However, an adversary able to relay

all communications between a legitimate user and a validator, can

easily perform what is called a relay attack [43], where the adver-

sary can have the access granted without paying a ticket, by simply

blocking and sending all messages sent by a legitimate user to the

validator, in its own name. As a result, the validator grants the

access to the adversary instead of the legitimate user. Badly, neither

the user or the validator can notice this attack. To prevent this

issue, we have chosen to construct a validation protocol based on

a physical channel (such as QRcode [27] scanned by the validator

or Bluetooth’s password shared verbally [39]) during the last step

of the protocol to prevent relay attacks by an adversary.U gets a

token, compared through this channel to the token sent byV .

3 E-TICKET SCHEME MODEL
Most ticketing systems are designed to allow the sale of a seat at an

event, with each seat being associated with a metadata such as the

seat number. This can be more general, and we consider a scenario

where tickets are characterised by an event identifier ide ∈ IDE ⊂ N
and by a serial number idp ∈ IDP ⊂ N. The set of identifiers and
the set of serial numbers referred to event and seat number, and

are assumed publicly known. Below we define an E-Ticket Scheme
based on a security parameter 1

𝜆
. Note that through this paper,

all algorithms are assumed to run in probabilistic polynomial-time

(PPT). By AO , we denote the adversary having access to a set of

oracles O. By P⟨E1(𝑖1), .., E𝑛(𝑖𝑛)⟩ → E1(𝑜1), .., E𝑛(𝑜𝑛); we denote

the protocol P played between parties E𝑗 , taking as input 𝑖 𝑗 and

outputting 𝑜 𝑗 . For simplicity, we may omit a party in the output

part of the notation if the party does not produce output. .

Conference’17, July 2017, Washington, DC, USA Lafourcade et al.

Transfer Authority TTicket Distributor D ValidatorV

UserU1 UserU2

(3) Refund

(1) Purchase (2a) Pre-Transfer Key Exchange

(2b) Transfer (2b) Transfer

(3) Validate

Figure 1: Representation of the ETS model.

Unforgeability Secrecy No-double-spending Anonymity Auditability

Applause
Spotlight Partial

Figure 2: Security properties.

Definition 3.1 (ETS). An E-Ticket Scheme Π = (DKeyGen, TKeyGen,
VKeyGen, UKeyGen, Purchase, Refund, Transfer, Validate) is a tu-

ple of PPT algorithms:

DKeyGen/TKeyGen/VKeyGen/UKeyGen(1
𝜆

)→ (sk, pk) : Given a

security parameter 1
𝜆
, outputs a key pair.

Purchase⟨U(skU, (ide, idp)),D(skD , st)⟩ → U(tk),D(𝑏, (ide, idp), st)
: UserU purchases the ticket identified by (ide, idp), to the

ticket distributor D. The user obtains the ticket tk, and D
updates st and returns a success bit 𝑏 and (ide, idp).

Refund⟨U(skU, tk),D(skD , st)⟩ → U(𝑏),D(𝑏, tk, st) : Given a ticket

tk and its key skU , U asks the ticket distributor D for a

refund. Both entities output a success bit 𝑏, while D addi-

tionally updates st and returns tk.
Transfer⟨U1(skU1

, pkU2

, tk1),T (skT , st),U2(skU2
, pkU1

, (ide, idp))⟩
→ U1(𝑏),T (𝑏, (ide, idp), tk1, st),U2(tk2): The transfer proto-

col allowsU1 owning a ticket tk1, the public key ofU2 and

key skU1
, to transfer it tk2 holding the public key of U1

and a key skU2
relying on T inputting skT and st. As a re-

sult,U1 and T output a success bit 𝑏, while T also updates

the shared state st and outputs (ide, idp) and tk1. FinallyU2

returns a ticket tk2 for the identifier (ide, idp).

Validate⟨U(skU, tk),V(skV , st)⟩ → U(𝑏),V(𝑏, tk, st): U inputs a

ticket tk and its key skU , and interacts withV inputting its

key skV and a state st in order to validate the ticket tk. The
protocol ends withU andV returning a validation bit 𝑏, a

ticket tk and the state st from the validatorV .

The Shared State. The above model includes a state st, shared
between the ticket distributor D, the transfer authority T and the

validatorV . The shared state allows to synchronize ticket status

among the different entities. It prevents, for instance, a double

validation or a validation after a refund. This shared state could

be seen as a white-list or a blacklist, the latter being used in our

protocol. In our model, this state is not kept secret: all adversaries

have read-only access to the state at any time using an oracle called

OLeakState. This state can be implemented as a dedicated server

maintaining a database. Note that D, T , andV share a common

state while being represented as distinct entities. This modeling

choice aligns with the actual structure of the organization under

consideration, reflecting its physical reality. In an alternate scheme,

these entities might be perceived as independent entities without

shared state. Therefore, our model is more general this way and

remain valid for our purpose.

Security Model. Our security experiments are depicted in Fig. 3

and the associated oracles in Fig. 4. In Fig. 2, we provide a concise

overview of the key security properties required in our model.

The security model for an ETS emulates realistic behaviors ex-

pected from a ticket service. Users possessing a ticket must be

able to attend events or claim a refund, this is referred to as proto-

col correctness. In other properties, formulated as security games,

U = {U𝑘 }𝑘 denote the set of initialized users, potentially empty at

the beginning. Each userU𝑘 is associated with a set TK𝑘 represent-

ing the tickets it owns. By st, we denote the shared state among D,

T , andV , initially empty and gradually populated with elements

corresponding to revoked tickets. The system should withstand

various attack scenarios across multiple executions. To simulate

this, we consider a PPT adversaryA, allowed to call specific oracles.

These oracles, including OCreateUser, OCorruptUser, OPurchase,
OTransfer,OValidate, andORefund, allow the adversary to execute

actions. Depending on the expected security game, the adversary

have access to specific oracles. Oracles in Fig. 4a allows the user to

act as an arbitrary number of users and interact with the oracles

simulating the system. At the opposite, oracles Fig. 4b, indexed

with an additional bit 𝑏 characterizing the execution for one user

among a set of two, allows the adversary playing the roles of the

system (and potentially other users), to interact with the one of

two, of the two users simulated by the security game. For ticket un-

forgeability, ticket privacy and double-spending, we claim security

even if the shared state is leaked. To address security concerns, we

have introduced the OLeakState oracle in Fig. 4a. This read-only

access grants insights into the state shared among D, T , andV .

This section provides a high-level description of the computational

model, further detailed in Fig. 3.

Correctness. Under honest execution of the algorithms, a ticket

tk bought by a userU through Purchase, or Transfer, can be either

refund or validated, i.e., Validate and Refund output a success bit 𝑏

which equals 1.

Transferable, Auditable and Anonymous Ticketing Protocol Conference’17, July 2017, Washington, DC, USA

Unforgeability. The unforgeability of a ticket prevents an adver-

saryA from creating a new valid ticket. This property is described

in ExpUFA . It requires A to produce a ticket such that (1) the ticket

has not been produced by the system i.e., tk ∉ TK, denoted as bit 𝑏0

in the experiment and (2) make it accept either for a refund, a trans-

fer, or a validation, this is denoted as bit 𝑏1 in the experiment. This

property must be ensured for any PPT adversary, with read-only

access to the shared state and the oracles of Fig. 4a corresponding

to possible actions of the users.

Ticket privacy. The ticket privacy prevents from an adversary

A, external to the system, stealing a ticket from a designated user.

The adversary has the capability to generate, manipulate through

oracles of Fig. 4a, and corrupt any user within the system. The ticket

privacy is focused against entities that are external to the system.

In the associated experiment, ExpPRIVA , userU1 is the adversary’s

target.U1 purchases a ticket tk andA wins if (1) the purchase went

through, (2) A outputted a ticket tk∗ such that tk∗ = tk and (3) A
did not corrupt U1. During this process, the adversary has read-
only access to the shared state at any point during the experiment.

The challenger simulates the user purchasing the ticket targeted

for recovery by the adversary, but also D, T , and V , otherwise

making the ticket privacy trivially broken as the system requires

the ticket for verification purposes.

No-double-spending. Once purchased, a ticket should be usable

only once: the ticket can be refund once, transferred once or val-

idated once. In other words, as done in our security model, none

of Refund, Validate or Transfer executed by the challenger against

a corrupted user would accept the same ticket twice. This notion

differs from what has been formalised in e-cash [3]. Taking as ex-

ample the protocol introduced by Baldimtsi et al. [3], their model

allows execution of a function Spend twice for the same coin and

postpone the double spending verification to a second algorithm

call Deposit. Applied to ticketing, since the verification occurs after

the ticket spent, the consequence for users is the possibility to buy

already spent ticket, leading to a ticket rejection (during the second

execution of Deposit of the same ticket). Following our notion, an

honest client should not acquire a already transferred ticket.

The security notion preventing the adversary to double-transfer

a ticket, and more generally to interact twice with the system us-

ing the same ticket is denoted as Double-Spending (DS), and is

formally introduced in experiment ExpDSA : The challenger simu-

lates the system and allows A to invoke actions through oracles of

Fig. 4a, thereby providing a view of the shared state. The adversary

subsequently outputs a ticket tk and two actions, Alg
1
and Alg

2
,

selected from {Purchase,Refund, Transfer}. Remark that the two

specified algorithms Alg
1
and Alg

2
are not required to be the same,

modelling every possible combination of attack. The adversary suc-

ceeds if (1) both algorithm executions are successful, (2) the tickets

tk1 and tk2 presented to the validator match the committed ticket

tk, and (3) the tickets share identical event identifiers ide and serial
numbers idp. Both executions are dependent since the shared state

st is updated after the first execution and used the second time.

Anonymity. To model the properties of non-nominative physical

tickets, an ETS should preserve the anonymity of a ticket holder

U against the system. This is modelled by using two properties,

one ensuring the pseudonymity ofU and, as a complementary, we

ensure unlinkability of the tickets purchased by a single user. This

respectively guarantees that a ticket could not be linked by the

system as coming from the same holder nor be linked to a user.

In both cases, the adversary controls the system i.e., D, T , andV
and thus can generate and control other users. Experiment ExpPSEA
models pseudonymity: the challenger generates two users, denoted

asU0 andU1, represented by their respective public keys pkU0

and

pkU1

. A can invoke oracles OPurchase𝑏 , ORefund𝑏 , OTransfer𝑏 ,
and OValidate𝑏 from Fig. 4b, for a given 𝑏 ∈ {0, 1}. For A to suc-

ceed, it must produce a bit 𝑏∗ that matches the input bit 𝑏 pro-

vided in the oracles. Then determining which one ofU0 andU1

responded to the oracle calls. Experiment ExpUNLA is designed to

model Unlinkability. In this experiment, the challenger once again

simulates the behaviors of two users, denoted asU0 andU1. Ini-

tially, the adversary interacts with both users by making calls to

the oracles presented in Fig. 4b, denoted as OPurchase𝑖 , ORefund𝑖 ,
OTransfer𝑖 and OValidate𝑖 , where 𝑖 ∈ {0, 1} is chosen by the ad-

versary. Following this preliminary phase, the adversary provides

three ticket identifiers {ide𝑖 , idp𝑖 }𝑖∈0,1,2. Each of U0 and U1 per-

forms a purchase and subsequently executes an action from the set

{Validate,Refund, Transfer} for one ticket. Then, a bit 𝑏 is sampled

from {0, 1}, andU𝑏 replicates the same pattern for the third ticket.

The adversary succeeds in the experiment if it can correctly guess

which user performed the last actions.

Wemitigate anonymity by introducingAuditable E-Ticket scheme
enabling user’s identity recovery under the supervision of a judge.

Definition 3.2 (Auditable ETS). An Auditable E-Ticket scheme ETS
is an E-Ticket scheme increased with an audit algorithm:

JKeyGen(1
𝜆

)→ (skJ , pkJ) : Given 1
𝜆
, outputs a key pair.

Audit(skJ , tk)→ pkU : Given a secret key skJ and a state st, re-
turns the public key associated to userU.

Auditable E-Ticket scheme achieves the previous properties but

Audit requests for U0 and U1 are not allowed for the adversary

during the pseudonymity and unlinkability experiments.

4 CRYPTOGRAPHIC TOOLS
Applause is built upon an asymmetric encryption, a signature scheme
and a anonymous payment.

An asymmetric encryption scheme E = (KeyGen, Enc,Dec) en-
sures confidentiality of messages. KeyGen(1

𝜆
) generates the key

pair (sk, pk). Given plaintext 𝑝 , one computes the encryption of 𝑝

using Encpk(𝑝) returning a ciphertext 𝑐 . The ciphertext is decrypted
using algorithm Decsk(𝑐) returning a plaintext 𝑝 . We require the

encryption scheme to achieve Correctness ensuring correct recov-
ery of the plaintext, and Indistinguishability under Chosen Plaintext
Attack (IND-CPA) against any PPT algorithm A. The probability

of breaking IND-CPA for an adversary A is given by AdvIND-CPA

A
and must be negligible.

A signature scheme S = (KeyGen, Sign,Verif) authenticates mes-

sages. Again KeyGen(1
𝜆

) generates the key pair (sk, pk), sk be-

ing used to sign message𝑚, producing an element Signsk(𝑚) = 𝜎

called the signature. A signature is verified using Verifpk(𝑚,𝜎) out-

putting 1 on success, 0 otherwise. We require the signature to

Conference’17, July 2017, Washington, DC, USA Lafourcade et al.

ExpUFA (1
𝜆

)

(skD , pkD), (skT , pkT), (skV , pkV)

← DKeyGen/TKeyGen/VKeyGen(1
𝜆

)

U ← ∅, st← ∅

(tk,Alg)← AO (pkD , pkT , pkV)

𝑏0 ← tk ∉ TK // Ticket not produced by challenger

if Alg ∈ {Refund,Validate} :

sk ← skD if Alg = Refund else sk← skV
Alg⟨A(·, ·), C(sk, st)⟩ → A(·), C(𝑏1, tk0, st)

return 𝑏0 ∧ 𝑏1

else if Alg = Transfer :

Transfer⟨A(·, ·), C(skT , st),A(·)⟩
→ A(·), C(𝑏1, (ide1, idp1

), st),A(·)
return 𝑏0 ∧ 𝑏1

else : return 0

ExpDSA (1
𝜆

)

(skD , pkD), (skT , pkT), (skV , pkV)

← DKeyGen/TKeyGen/VKeyGen(1
𝜆

)

U ← ∅, st← ∅

(tk,Alg
1
,Alg

2
)← AO (pkD , pkT , pkV)

for 𝑘 ∈ {1, 2} :

if Alg𝑘 ∈ {Refund,Validate} :

if Alg𝑘 = Refund : sk ← skD else sk← skV
Algk ⟨A(·, ·), C(sk, st)⟩ → A(·), C(𝑏𝑘 , tk𝑘 , st)

if Alg𝑘 = Transfer :

Transfer⟨A(·, ·), C(skT , st),A(·)⟩
→ A(·), C(𝑏1, (ide𝑘 , idp𝑘), tk𝑘 , st),A(·)

else : return 0

return 𝑏1 ∧ 𝑏2 ∧ ((ide1, idp1
) = (ide2, idp2

))

∧ (tk = tk1 = tk2 ≠⊥)

ExpPRIVA (1
𝜆

)

(skD , pkD), (skT , pkT), (skV , pkV)

← DKeyGen/TKeyGen/VKeyGen(1
𝜆

)

(skU1
, pkU1

)← UKeyGen(1
𝜆

)

st← ∅,U ← U1 = {(skU1
, pkU1

,⊥, 0)}

(ide, idp)← AO (pkU, pkD , pkT , pkV)

Purchase⟨C(skU, (ide, idp)), C(skD , st)⟩
→ C(tk), C(𝑏, (ide, idp), st)

tk∗ ← AO (pkU, pkD , pkT , pkV)

U
𝑝
→ {U𝑘 }𝑘 ,U1

𝑝
→ (skU1

, pkU1

, TK1, corr1),

return 𝑏 ∧ (tk = tk∗) ∧ (corr1 = 0)

ExpUNLA (1
𝜆

)

(skU0
, pkU0

), (skU1
, pkU1

)← UKeyGen(1
𝜆

)

OUNL ← O0 ∪ O1

{ide𝑖 , idp𝑖 }𝑖∈{0,1,2} ← AO
UNL

(pkU0

, pkU1

)

𝑏
$← {0, 1}

for (𝑖, 𝑗) ∈ {(0, 0), (1, 1), (2, 𝑏)} :

Purchase⟨C(skU𝑗
, (ide𝑖 , idp𝑖)),A(·, ·)⟩

→ C(tk𝑖),A(·, ·, ·)

pkA , {Alg𝑖 }𝑖∈{0,1,2} ← AO
UNL

()

for (𝑖, 𝑗) ∈ {(0, 0), (1, 1), (2, 𝑏)} :

if Alg𝑖 ∈ {Refund,Validate} :

Algi ⟨C(skU𝑗
, (ide𝑖 , idp𝑖)),A(·, ·)⟩

→ C(tk𝑖),A(·, ·, ·)
if Alg𝑖 = Transfer :

Transfer⟨C(skU𝑗
, pkA , tk𝑖),A(·, ·),A(·, ·, ·)⟩

→ C(𝑏𝑖),A(·, ·, ·, ·),A(·)
𝑏∗ ← A(𝑏0, 𝑏1, 𝑏2)

return 𝑏 = 𝑏∗

ExpPSEA (1
𝜆

)

(skU0
, pkU0

), (skU1
, pkU1

)← UKeyGen(1
𝜆

)

TK← ∅, 𝑏 $← {0, 1}

𝑏∗ ← AO𝑏 (pkU0

, pkU1

)

return 𝑏 = 𝑏∗

Figure 3: Experiments for Unforgeability ExpUFA , Privacy of a ticket ExpPRIVA and Double-Spending ExpDSA , Unlinkability ExpUNLA
and Pseudonimity ExpPSEA . O equals {OPurchase, ORefund, OTransfer, OValidate, OCreateUser, OCorruptUser, OLeakState} and O𝑏

equals {OPurchase𝑏 , ORefund𝑏 , OTransfer𝑏 , OValidate𝑏 }

Transferable, Auditable and Anonymous Ticketing Protocol Conference’17, July 2017, Washington, DC, USA

OPurchase(U, skD ; 𝑖, skUA , (ide, idp))

U
𝑝
→ {U𝑘 }𝑘 ,U𝑖

𝑝
→ (skU𝑖

, pkU𝑖
, TK𝑖 , corr𝑖)

if corr𝑖 = 1 : // Corrupted user

Purchase⟨A(·, ·), C(skD , st)⟩
→ A(·), C(𝑏, (ide, idp), st)

U𝑖 ← (skU𝑖
, pkU𝑖

, TK𝑖 ∪ {(⊥, (ide, idp), 𝑏)}, corr𝑖)

else : (ide, idp)

$← IDE × IDP // Honest user

Purchase⟨C(skU𝑖
, (ide, idp)), C(skD , st)⟩

→ C(tk), C(𝑏, (ide, idp), st)

U𝑖 ← (skU𝑖
, pkU𝑖

, TK𝑖 ∪ {(tk, (ide, idp), 𝑏)}, corr𝑖)
OValidate(U, skV ; 𝑖, skA𝑖

, tk𝑖 , (ide, idp))

U
𝑝
→ {U𝑘 }𝑘 ,U𝑖

𝑝
→ (skU𝑖

, pkU𝑖
, TK𝑖 , corr𝑖)

if corr𝑖 = 1 : // Corrupted user

Validate⟨A(·, ·), C(skV , st)⟩ → A(·), C(𝑏, tk, st)

U𝑖 ← (skU𝑖
, pkU𝑖

, TK𝑖 ∪ {(tk, (ide, idp), 1 − 𝑏)}, corr𝑖)
else : // Honest user

TK𝑖 → {tk′, (ide, idp), 𝑏}
Validate⟨C(skU𝑖

, tk′), C(skV , st)⟩ → C(𝑏), C(𝑏, tk, st)

U𝑖 ← (skU𝑖
, pkU𝑖

, TK𝑖 ∪ {(tk, (ide, idp), 1 − 𝑏)}, corr𝑖)
ORefund(U, skD ; 𝑖, skUA , tk, (ide, idp))

U
𝑝
→ {U𝑘 }𝑘 ,U𝑖

𝑝
→ (skU𝑖

, pkU𝑖
, TK𝑖 , corr𝑖)

if corr𝑖 = 1 : // Corrupted user

Refund⟨A(·, ·), C(skD , st)⟩ → A(·), C(𝑏, tk, st)

U𝑖 ← (skU𝑖
, pkU𝑖

, TK𝑖 ∪ {tk, (ide, idp), 1 − 𝑏}, corr𝑖)
else : // Honest user

TK𝑖
𝑝
→ {tk′, (ide, idp), 𝑏}

Refund⟨C(skU, tk
′
), C(skD , st)⟩ → C(𝑏), C(𝑏, tk′, st)

U𝑖 ← (skU𝑖
, pkU𝑖

, TK𝑖 ∪ {tk, (ide, idp), 1 − 𝑏}, corr𝑖)

OTransfer(U, skT ; 𝑖, 𝑗, skA𝑖
, skA 𝑗

, tk𝑖 , (ide, idp))

U
𝑝
→ {U𝑘 }𝑘 ,U𝑖

𝑝
→ (skU𝑖

, pkU𝑖
, TK𝑖 , corr𝑖),

U𝑗

𝑝
→ (skU𝑗

, pkU𝑗
, TK𝑖 , corr𝑖)

if corr𝑖 = 1 ∧ corr𝑗 = 1 : // Corrupted users

Transfer⟨A(·, ·), C(skT , st),A(·)⟩
→ A(·), C(𝑏, (ide, idp), st),A(·)

U𝑖 ← (skU𝑖
, pkU𝑖

, TK𝑖 ∪ {(⊥, (ide, idp), 𝑏)}, corr𝑖)
if corr𝑖 = 1 : // Corrupted sender

Transfer⟨A(·, ·), C(skT , st), C(skU𝑗
, (ide, idp))⟩

→ A(·), C(𝑏, (ide, idp), st), C(tk)

U𝑖 ← (skU𝑖
, pkU𝑖

, TK𝑖 ∪ {(tk′, (ide, idp), 𝑏)}, corr𝑖)
if corr𝑗 = 1 : // Corrupted receiver

TK𝑖 → {tk′, (ide, idp), 𝑏′ }
Transfer⟨C(skU𝑖

, tk′), C(skT , st),A(·)⟩
→ C(𝑏), C(𝑏, (ide, idp), st),A(·)

U𝑖 ← (skU𝑖
, pkU𝑖

, TK𝑖 ∪ {(⊥, (ide, idp), 𝑏)}, corr𝑖)
OCreateUser(U; pk)

if pk ≠⊥ : 𝑖 ← |U|,U ← U ∪ {U𝑖 = (⊥, pk,⊥, 1)}
return ⊥

else : 𝑖 ← |U|, (skU𝑖
, pkU𝑖

)← UKeyGen(pp)

U ← U ∪ {U𝑖 = (skU𝑖
, pkU𝑖

,⊥, 0)}
return pkU

OCorruptUser(U; 𝑖)

U
𝑝
→ {U𝑘 }𝑘 ,U𝑖

𝑝
→ (skU𝑖

, pkU𝑖
, TK𝑖 , corr𝑖)

U𝑖 ← {(skU𝑖
, pkU𝑖

, TK𝑖 , 1)}
return (skU𝑖

, pkU𝑖
, TK𝑖)

OLeakState(𝑠𝑡)

return st

(a) Oracles for the experiments ExpUFA , ExpDSA , ExpUNLA and ExpPRIVA .

OPurchase𝑏 (U, skU𝑏
; (ide, idp))

Purchase⟨C(skU𝑏
, (ide, idp)),A(·, ·)⟩ → C(tk|TK|),A(·)

TK← TK ∪ {tk|TK| }
ORefund𝑏 (U, skU𝑏

; 𝑖)

if 𝑖 ≥ |U | : return ⊥

TK
𝑝
→ {tk𝑗 } 𝑗

Refund⟨C(skU𝑏
, tk𝑖),A(·, ·)⟩ → C(𝑏),A(·, ·, ·)

OValidate𝑏 (U, skU𝑏
; 𝑖)

if 𝑖 ≥ |U | : return ⊥

TK
𝑝
→ {tk𝑗 } 𝑗

Validate⟨C(skU𝑏
, tk𝑖),A(·, ·)⟩ → C(𝑏),A(·, ·, ·)

OTransfer𝑏 (U, skU𝑏
; 𝑖, role, pk′U𝑗

, (ide, idp))

if 𝑖 ≥ |U | : return ⊥

if role = sell : TK
𝑝
→ {tk𝑗 } 𝑗

Transfer⟨C(skU𝑖
, pk′U𝑗

, tk′),A(·, ·),A(·)⟩

→ C(𝑏),A(·, ·, ·),A(·)
if role = buy :

Transfer⟨A(·, ·),A(·, ·), C(skA 𝑗
, (ide, idp))⟩

→ A(·),A(·, ·, ·), C(tk|TK|)

TK← TK ∪ {tk|TK| }

(b) Oracles for the experiment ExpPSEA .

Figure 4: In each oracle, arguments provided by the challenger C appear before the ’;’, while arguments specified after are
provided by A.

Conference’17, July 2017, Washington, DC, USA Lafourcade et al.

achieve Correctness of the algorithms, and Existential Unforgeabil-
ity under Chosen Message Attacks (EUF-CMA) against any PPT

algorithm A. The probability of breaking EUF-CMA for an ad-

versary A is given by AdvEUF-CMA

A and must be negligible. We

stress that a signature does not provide access to the associated

message. For both encryption and signature, we require the algo-

rithm RandKey(sk, pk) → (sk′, pk′) allowing to randomise a key

pair. Using discrete log based keys pk← 𝑔sk for some prime order

group generator 𝑔, the randomisable key mechanism can be seen

as RandKey(sk, pk) → (sk · 𝑟, pk𝑟) for a 𝑟 randomly sampled at

uniform (𝑟
$← 𝐺 denotes a uniform sample of 𝑟 from the set 𝐺).In

many cases this is the same as generating a new key.

Ticket purchasing, transferring, and refunding necessitate pay-

ments. However, conventional online payment methods (such as

card payments based on the EMV protocol [17]) disclose the user’s

identity, posing a challenge to ensure user anonymity in a ETS set-

ting. Therefore, the anonymity within a ETS protocol is contingent

on the anonymity provided by the underlying payment protocol.

Rather than omitting the payment process, as observed in [25],

we’ve opted to incorporate the payment protocol. Specifically, to

maintain user anonymity, the incorporated payment, termedAnony-
mous Payment and utilized as a foundational component, must

enable participants to make payments without disclosing their

identities. This building block is voluntary generic to let any anony-

mous payment method, to be plugged in our protocol. Our generic
description for Payment Schemes PS comprises the PPT algorithms:

KeyGen(1
𝜆

) : Generate the key pair (sk, pk).

Pay⟨U1(skU1
),U2(skU2

)⟩ → U1(𝑏),U2(𝑏) : User U1 performs a

payment toU2. At the end, a success bit 𝑏 is returned.

For the sake of our demonstration and to facilitate our security re-

duction without mandating a specific payment method, we employ

two generic definitions for Unlinkability, which ensures that two

transactions from the same payee aren’t linked, and Pseudonymity,
which ensure that payee’s identity remains undisclosed.

Pseudonymity. For any PPT adversary A, it should not be possi-

ble to predict the user U𝑏 , for 𝑏 ∈ {0, 1}, proceeding to a

payment, with a probability significantly different from 1/2.

A has access to a Pay⟨C(sk𝑏 , ·),A(·)⟩ oracle. Anonymous

payment ensures pseudonymity if, for any 1
𝜆
,

| Pr

(sk𝑖 , pk𝑖)𝑖∈{0,1}

$← KeyGen(1
𝜆

)

𝑏
$← {0, 1}

𝑏∗ ← APay⟨C(skU𝑏),A⟩
(pk

0
, pk

1
)

: 𝑏 = 𝑏∗
 −

1

2
|

= AdvPayPseA ≤ negl(𝜆).

Unlinkability. For any PPT adversary A, it should not be possible

to link payment to a user with a probability significantly

different from 1/2. A has access to Pay⟨C(skU𝑖
, ·),A(·)⟩ or-

acle for 𝑖 ∈ {0, 1}. An anonymous payment scheme ensures

Unlinkability if, for any 1
𝜆
,

| Pr

(sk𝑖 , pk𝑖)𝑖∈{0,1}
$← KeyGen(1

𝜆
)

APay⟨C(skU𝑖),A⟩𝑖∈{0,1}
(pk

0
, pk

1
)

𝑏
$← {0, 1}

Pay⟨C(skU𝑏
),A(·)⟩

𝑏∗ ← A()

: 𝑏 = 𝑏∗

− 1

2
|

= AdvPayUnlA ≤ negl(𝜆).

In this paper, we do not cover how to plug anonymous payment

formally, since deciding which payment protocol to use is highly

dependent of the context where our ticketing system is deployed.

One straightforward yet inefficient payment method that maintains

user anonymity is through a one-time payment card like PaySafe-

Card [40], purchasable locally with physical currency. Blockchain

based methods such as Monero [44] provides payment unlinkabil-

ity and pseudonymity using one-time payment identity in a sense

that may differ slightly from our definitions. Another example uses

cash or its digital counterpart like CashApp [8], where payments

are executed using randomly generated identifiers. Anonymous

transferable e-cash [3] also matches our requirements, providing

a solution to exchange anonymously coins between users. EMV

specification for Tokenization [18] provides pseudonymity, but falls

short in providing unlinkability. It is uncertain if the current card

system would allow anonymity. Our protocol, which are fully de-

scribed later, benefits from reductions from their anonymity to the

anonymity of the payment scheme. Therefore, they are as anony-

mous as the payment method used when they are deployed.

5 DESCRIPTION OF APPLAUSE
In the protocol, the participants interact using personal encryption

keys (skE, pkE) and signature keys (skS, pkS) and proceed to pay-

ment using dedicated keys. A shared state st is updated by the ticket
distributor D, the transfer authority T and the validatorV , acting

as a blacklist. To purchase a ticket through Purchase, the user first
selects an event and a free seat (ide, idp), and it also draws a nonce

𝑟𝑐 . It obtains a signature 𝜎𝑐 on the hash of the triple (ide, idp, 𝑟𝑐).

The nonce 𝑟𝑐 and the signature 𝜎𝑐 represent the ticket of the client.

The ticket validation process involves the showing of these two

values to the validator and the agreement on a challenge value

through a physical channel to authenticate the ticket owner. The

first showing is similar to the Refund process before the client is

given back its funds or during the Transfer, as the transfer authority
T refunds the owner of the ticket, and performs the ticket purchase

protocol with the new owner of the ticket.

Our E-Ticket Scheme. In Fig. 5b, we present the diagram for

the Refund protocol. In Fig. 5c, we present the diagram for the

Validate protocol. Finally, in Fig. 6, we present the diagram for the

Transfer protocol. The diagrams present the non-auditable version

of Applause. . We first introduce a KeyGen algorithm:

KeyGen(1
𝜆

): Generates signature keys (skS, pkS)← S.KeyGen(1
𝜆

),

encryption keys (skE, pkE)← E.KeyGen(1
𝜆

), payment keys

(skP, pkP)← P.KeyGen(1
𝜆

), and return (sk← (skS, skE, skP),

pk← (pkS, pkE, pkP)).

We are now ready to introduce the different key generation algo-

rithms for the parties involved in our protocol:

DKeyGen(1
𝜆

): Outputs (skD , pkD)← KeyGen(1
𝜆

).

TKeyGen(1
𝜆

): Outputs (skT , pkT)← KeyGen(1
𝜆

).

UKeyGen(1
𝜆

): Outputs (skU, pkU)← KeyGen(1
𝜆

).

VKeyGen(1
𝜆

): Generates the key pair (skSV , pk
S
V)← S.KeyGen(1

𝜆
),

and an encryption key pair (skEV , pk
E
V) ← E.KeyGen(1

𝜆
).

Queries the signature SignskSD
(pkSV , pk

E
V) → certV to D

Transferable, Auditable and Anonymous Ticketing Protocol Conference’17, July 2017, Washington, DC, USA

U(skU , (ide, idp)) D(skD , st)

𝑟𝑐
$← {0, 1}𝜆

Enc
pkED

(ide, idp, 𝑟𝑐)

𝑐 ← 𝐻 (ide, idp, 𝑟𝑐)

st← st ∪ {𝑐 }
𝜎𝑐 ← Sign

skSD
(𝑐)

𝜎𝑐

Pay⟨U(skPU),D(skPD)⟩

tk ← ((ide, idp, 𝑟𝑐), 𝜎𝑐) st← st \ {𝑐 }

(a) Diagram of Purchase protocol.

U(skU , tk) D(skD , st)

Enc
pkED

(tk)

CheckTk(tk, st, pkSD , pk
S
T)

Pay⟨U(skPU),D(skPD)⟩

(b) Diagram of Refund protocol.

U(skU , tk) V (skV , st)

pkV , certV

CheckCert(pkD , pkV , certV)

(sk′U , pk′U)← RandKey(skU , pkU)

Enc
pkEV

(pk′U , tk)

CheckTk(tk, st, pkD , pkT)

𝑠
$← {0, 1}𝜆

𝜎𝑐 ← Sign
skSV

(𝑠)

𝜓𝑠 ← Enc
pkE
′
U

(𝑠)

𝑠′ ← Dec
skE
′
U

(𝜓𝑠)

𝑠′ ?

= 𝑠

(c) Diagram of Validate protocol. The
dashed line is the physical channel.

Figure 5: Diagram of sequences for Purchase, Refund and Validate protocols.

U1(skU
1
,pkU

2

’,tk1) T (skT , st) U2 (skU
2
,pkU

1

’,(ide, idp))

(sk′U
1

, pk′U
1

)← RandKey(skU
1
, pkU

1

)

𝜎𝑇 ,1 ← Sign
skS
′
U

1

(pk′U
2

, 𝑟𝑐)

(sk′U
2

, pk′U
2

)← RandKey(skU
2
, pkU

2

)

𝜎𝑇 ,2 ← Sign
skS
′
U

2

(pk′U
1

)

𝑝𝑘′U
1

, 𝜎𝑇 ,1, EncpkET
(𝑐, tk) pk′U

2

, 𝜎𝑇 ,2

Verif
pkS
′
U

1

((pk′U
2

, 𝑟𝑐), 𝜎𝑇 ,1)

Verif
pkS
′
U

2

(pk′U
1

, 𝜎𝑇 ,2)

CheckTk(tk, st, pkD , pkT)

𝜎𝑝 ← Sign
skST

(ide, idp, pk′U
2

, pk′U
1

)

𝜎 ′𝑝 ← Sign
skST

(ide, idp, pk′U
1

, pk′U
2

)

𝜎𝑝

Verif
pkST

(ide, idp, pk′U
2

, pk′U
1

), 𝜎𝑝)

Purchase⟨U
2

(skU
2

, (ide, idp)),T(skT , st)⟩
→ (U

2
(𝑏𝑝 , tk2

),T(𝑏𝑝 , st))𝜎 ′𝑝

Verif
pkST

((ide, idp, pk′U
1

, pk′U
2

), 𝜎𝑝′)

Refund⟨U
1

(skU
1

, tk
1

),T(skT , st \ {𝑐})⟩
→ U

1
(𝑏𝑟),T(𝑏𝑟)

Figure 6: Diagram of sequences for the Transfer protocol.

on pkEV . Set and return skV ← (skSV , sk
E
V), pkV ← (pkSV ,

pkEV , certV).

Before purchasing a ticket, a user chooses the event of the ticket

denoted by ide← IDE , and a serial or seat number idp← IDP .

Purchase⟨U(skU, (ide, idp)),D(skD , st)⟩: U samples 𝑟𝑐
$← {0, 1}𝜆 .

Then it sends EncpkED
(ide, idp, 𝑟𝑐) to the ticket distributor

D, which decrypts the message. After checking that the

pair (idp, ide) has not been purchased before, D computes

𝑐 ← 𝐻 (ide, idp, 𝑟𝑐), then sets st← st ∪ {𝑐} and signs 𝜎𝑐 ←
SignskSD

(𝑐), before sending 𝜎𝑐 toU. OnceU verified the sig-

nature,U pays with Pay⟨U(skPU),D(skPD)⟩ → U(𝑏),D(𝑏).

If the payment works (i.e., 𝑏 equals 1) thenU returns 𝑏 and

tk = ((ide, idp, 𝑟𝑐), 𝜎𝑐). Finally, D updates the shared state st:
if 𝑏 = 1, st← st \ {𝑐} and returns 𝑏 and st.

For clarity, we describe the CheckTk subroutine:

CheckTk(tk, st): Parses tk
𝑝
→ ((ide, idp, 𝑟𝑐), 𝜎𝑐) (

𝑝
→ denotes the

parsing), gets 𝑐 ← 𝐻 (ide, idp, 𝑟𝑐) and verifies VerifpkSD
(𝑐,

𝜎𝑐) or VerifpkST
(𝑐, 𝜎𝑐). Checks that 𝑐 is not a blacklisted ticket

(i.e., 𝑐 ∉ st). If all pass, it sets st← st ∪ {𝑐} and returns st.
Refund⟨U(skU, tk),D(skD , st)⟩: U starts by sending EncpkED

(tk)

to D. After the decryption, D checks the validity of the re-

ceived ticket by executing CheckTk(tk, st)→ st. Both partic-

ipants start a refund (i.e., a payment with a negative amount)

using Pay⟨U(skPU),D(skPD)⟩ → U(𝑏),D(𝑏). If 𝑏 = 0, D
reverts its state to st← st \ {𝑐}. Both parties return 𝑏, and

D additionally returns st along tk.
The Transfer protocol assumes that userU1 holds the randomised

public key pk′U2

of userU2 and conversely.

Transfer⟨U1(sk′U1

, pk′U2

, tk1),T (skT , st),U2(sk′U2

, pk′U1

, (ide, idp))⟩:
U1 computes a signature SignskS′U

1

(pk′U2

, 𝑟𝑐) → 𝜎𝑇,1 and

sends (pk′U1

, 𝜎𝑇,1, EncpkET
(𝑐, tk)) to T . In the meantime,U2

signs SignskS′U
2

(pk′U1

) → 𝜎𝑇,2 and sends (pk′U2

, 𝜎𝑇,2) to T .
Once 𝜎𝑇,1 and 𝜎𝑇,2 received, T checks VerifpkS′U

1

((pk′U2

, 𝑟𝑐),

𝜎𝑇,1) and VerifpkS′U
2

(pk′U1

, 𝜎𝑇,2), and halts if it fails. Then, T
checks the validity of the received ticket by executing the

algorithm CheckTk(tk, st)→ st. If st is updated, T signs and

sends the signature 𝜎𝑝 ← SignskST
(ide, idp, pk′U2

, pk′U1

) to

U2. Once 𝜎𝑝 is verified,U2 initiates the purchase of place

(ide, idp) with Purchase⟨U2(skU2
, (ide, idp)),T (skT , st)⟩ →

(U2(𝑏𝑝 , tk2),T (𝑏𝑝 , st)) where T does not check that (ide,idp)
where already attributed. If 𝑏𝑝 equals 0, then T sets st ←
st\{𝑐} (previously added in st during theCheckTk execution)
and halts. Otherwise, on success, 𝜎′𝑝 ← SignskST

(ide, idp,

pk′U1

, pk′U2

) is sent and verified byU1. ThenU1 is refund

by executing Refund⟨U1(skU1
, tk1),T (skT , st \ {𝑐})⟩ →

U1(𝑏𝑟),T (𝑏𝑟) with T . LastU1 returns 𝑏𝑟 , T updates st and
returns 𝑏𝑟 , while U2 returns tk2. Note that between two

honest usersU1 andU2, the secret knowledge tk1 could be

simply transferred without the help of T [1].

Conference’17, July 2017, Washington, DC, USA Lafourcade et al.

The validation protocol requires for its last interaction, a physical

channel, to prevent relay attacks, where an active external adversary

blocks the ticket in the network, and play it in the validation process.

Validate⟨U(skU, tk),V(skV , st)⟩: V starts by providing pkV to

U, which parses the key and runs VerifpkSD
((pkSV , pk

E
V),

certV) → 𝑏. We abort when 𝑏 equals 0. Otherwise, U ex-

ecutes RandKey(skU, pkU) → (sk′U, pk
′
U) and sends the

ciphertext EncpkEV
(pk′U, tk) to V . After decryption, it exe-

cutes the ticket verification CheckTk(tk, st). If checks pass,

V creates a challenge by sampling 𝑠
$← {0, 1}𝜆 and send-

ing 𝜖 ← EncpkE′U
(𝑠) and a signature 𝜎𝑠 ← SignskSV

(𝜖) to U,

who obtains 𝑠′ after decryption and verifying VerifpkSV
(𝜖, 𝜎𝑠).

Then, values 𝑠 and 𝑠′ are compared through a physical chan-

nel (see validation setting in Section 2). If the verification

fails, thenV removes 𝑐 from st i.e., st← st \ {𝑐} and halts.

Otherwise, both parties commonly return 𝑠 = 𝑠′.

6 SECURITY ANALYSIS OF Applause
Security Analysis of Applause in the Computational Model
Six properties are provided through computational arguments:

correctness, unforgeability, ticket privacy, no-double-spending and

anonymity, the latter being divided into pseudonymity and unlinka-
bility. The associated games are sketched in Section 3. Below we

summarise our hypothesis and arguments showing that these prop-

erties hold for Applause. We present the sketch of our proofs in

this section. The full security proofs are presented in Appendix C.

Theorem 5.1. Applause is correct under honest execution.

Theorem 5.2. Instantiated with an EUF-CMA signature, then for
everyPPTA,Applause provides unforgeability and Pr[ExpUFA (1

𝜆
)→

1] ≤ 2 · AdvEUF-CMA

A (1
𝜆

).

Recall that a ticket tk is defined by ide, idp, 𝑟𝑐 , 𝜎𝑐 where 𝑐 is the

hash of ide, idp, 𝑟𝑐 , and 𝜎𝑐 is the signature of 𝑐 under skSD or skST .
Unforgeability of a ticket is ensured by the EUF-CMA property of

the signature and the shared state st composed of invalidate tickets.

Theorem 5.3. Instantiated with statistically indistinguishable ran-
domisable keys, and an anonymous payment scheme, Applause pro-
vides pseudonymity under the following probability | Pr[ExpPSEA (1

𝜆
)→

1] − 1

2
| ≤ AdvPayPseA (1

𝜆
) for every PPT A.

The identity of a user U is represented by its public key. It is

involved in the computations through its randomised key pk′U .
Anonymity is ensured using the statistical indistinguishability of

randomisable keys and an anonymous payment. Moreover, the

numerous messages sent by U are unrelated to its public keys,

hence unrelated to its identity. Our argument for the anonymity of

U relies on all these facts.

Theorem 5.4. Instantiated with an IND-CPA encryption scheme,
for any PPT A, Applause provides privacy under the random ora-
cle model and the upper bound Pr[ExpPRIVA (1

𝜆
) → 1] ≤ 2

−𝜆
+4 ·

AdvIND-CPA

A (1
𝜆

) .

The privacy experiment for a ticket tk states that it is hard for a

external adversary to recover tk from the transcript. In our protocol,

we ensure the confidentiality of tk using an IND-CPA encryption

scheme E. Recall that the adversary A has a read-only access to

the state st using OLeakState. Then, at any time, A has every

𝑐 ← 𝐻 (ide, idp, 𝑟𝑐) associated to each ticket. This property holds

under the Random Oracle Model (ROM) assumption. Under this

assumption the hash 𝑐 is unrelated to (ide, idp, 𝑟𝑐), meaning thatA
cannot learn any of ide, idp or 𝑟𝑐 from 𝑐 . To prove the privacy of

tk, we rely on the secrecy of 𝑟𝑐 the other values are accessible to

the adversary but under the privacy of 𝑟𝑐 a full ticket cannot be

recover nor used. The nonce 𝑟𝑐 is chosen uniformly at random in

{0, 1}𝜆 , the adversary can only be guessed 𝑟𝑐 with probability 2
−𝜆

.

Hence, 𝑟𝑐 cannot be recovered by an adversary or with a negligible

probability, hence the same apply to tk.

Theorem 5.5. Applause provides no-double-spending uncondi-
tionally.

The shared state st contains the hash of all tickets that have been

refunded, transferred or validated, and tickets from other invalid

runs. It is used to prevent a user from running the same algorithm

successfully twice with the same input. The no-double-spending

property is ensured by this state element. For each action, st has to
be updated accordingly to serve as a blacklist. Based on the latter,

the CheckTk function is used to ensure the validity of the provided

ticket tk, it returns 1 under the condition that tk is not in st.

Theorem 5.6. Instantiated with an anonymous payment having
the property of randomisable keys, then for any PPT A, Applause
provides unlinkability under the probability | Pr[ExpUNLA (1

𝜆
)→ 1]−

1

2
| ≤ 3

2
· AdvPayUnlA (1

𝜆
).

The unlinkability ensures that a transaction performed with a ticket

cannot be linked to another transaction, otherwise allowing an

adversary to trace actions performed by a user. In our construction,

a ticket is defined by random elements and signature of eitherD or

T , that are both unlinkable to the user. The usage of randomisable

keys for signature and encryption schemes in Transfer constitute
an argument for the unlinkability since a randomised key cannot be

related to the original one. In the proof, we show that an adversary

A cannot distinguish between playing at experiment ExpUNLA for a

given 𝑏 and playing at experiment ExpUNLA with
¯𝑏. We obtain our

result by replacing key of userU𝑏 with key of userU¯𝑏 . The last

argument used in the proof is the unlinkability property of the

anonymous payment. Without such a property, an attacker could

link a transaction with the payment, breaking our definition of

unlinkability. Hence, we require an unlinkable anonymous payment

to ensure unlinkability.

Standard Instantiation of our Protocol. The security proofs,

given in Appendix C.2, relies on the ROM, due to the usage of a

hash function𝐻 to produce the digest 𝑐 ← 𝐻 (ide, idp, 𝑟𝑐). The hash

function is used to link the pair (ide, idp) identifying the ticket to

the user knowing 𝑟𝑐 . The user being the only one able to open this

commitment under the pre-image resistance of the hash function,

hence the only one to identify himself as the owner of the ticket.

One may prefer a protocol proven secure in the standard model.

Transferable, Auditable and Anonymous Ticketing Protocol Conference’17, July 2017, Washington, DC, USA

This can be easily achieved based on the Pedersen commitment [41]:

consider three generators ℎ,𝑔1, 𝑔2 of a group G of prime order 𝑝

where the discrete logarithm problem is assumed to be hard. Instead

of computing 𝑐 ← 𝐻 (ide, idp, 𝑟𝑐), commit to 𝑐 ← ℎ𝑟𝑐 ·𝑔ide
1
·𝑔idp

2
. This

commitment is perfectly hiding and computationally binding. In our

case, since the committed values ide and idp are already revealed,

this process is computationally hiding and perfectly binding for

𝑟𝑐 under the discrete logarithm problem. Proofs for this version of

Applause can be found in Appendix C.2.

Formal Verification of Applause in Symbolic Model
ProVerif [6] version 2.04 has been used to formally verify the pro-

posed protocol. This tool uses a process description based on the

applied Π-calculus, a process calculus designed for the verification

of cryptographic protocols. It has syntactical extension and is en-

riched with the notion of events, annotations that do not change

the behavior of the protocol and which are inserted at precise lo-

cations to allow reasoning about the protocol’s execution. Events

allow checking reachability and correspondence properties. Reach-

ability allows the investigation of which terms are available to the

attacker and thus to check their secrecy. Correspondence properties

have the following structure: "on every execution trace, the event

𝑒1 is preceded by the event 𝑒2". Authentication is formalised as

correspondence properties. To check our authentication, for each

sub-protocol and every entity E, an event is inserted into the pro-

cess to record the belief that E has accepted to run the protocol

with another entity E′, and another event to record the belief that

E has terminated a protocol run. We refer to the authentication of

E′ to E by E′ → E whenever E believes to complete the protocol

with E′. We then refer to the mutual authentication by E ↔ E′
when E′ → E and E → E′. In addition to that, ProVerif can check

equivalence properties. We model privacy properties as equiva-

lence properties. All along our analysis, we consider the Dolev-Yao

attacker [14] which has a complete control of the network: the at-

tacker eavesdrops, removes, substitutes, duplicates and delays any

messages. ProVerif achieves a proof for anonymity ofU1 andU2

takes less than a minute, while ticket secrecy and mutual authen-

tication are achieved after only one second. Our Proverif formal

verification files are available in [21].

7 AUDITABILITY WITH Spotlight
Applause ensures full anonymity for users.We show how to convert

it into an auditable E-ticket scheme called Spotlight, using auditable
certificates on randomisable keys, whose the construction of [11] is

based on Structure-preserving signatures on equivalence classes [20].
We introduce a generic description of the algorithms for auditable

certificates on randomisable keys:

OKeyGen(1
𝜆

). Outputs certification keys (skc, pkc).
Certify⟨U(sk, pk),J (skc)⟩. Outputs a certificate cert for pk.
CheckCert(pkc, cert). Outputs a bit 𝑏 ∈ {0, 1}.
RandID(sk, pk, cert). Outputs a randomised triple (sk′, pk′, cert′).
Audit(skc, cert). Opens cert based on skc and recovers pk.

Spotlight relaxes user anonymity achieved in Applause. We re-

quires the possibility to randomise certificates with the keys related

to this certificate, as suggested by the algorithm RandID. The main

modification is to append a certificate with the previous elements

of the shared state, it is now composed of a triples (𝑐, cert, 𝑏), where

𝑐 is a hash, cert a certificate and 𝑏 ∈ {0, 1} is a bit describing the

validity of the related ticket.

7.1 Overview of Spotlight
We start by given an highlight on the necessary modifications to

apply on Applause to obtain an auditable version, giving the overall

intuitions of Spotlight. The security analysis in Appendix D.

JKeyGen(1
𝜆

) : Runs and outputs OKeyGen(1
𝜆

)→ (skJ , pkJ).

UKeyGen : Additionally obtains the certificate certU from the cer-

tification algorithm Certify⟨U(skSU, pk
S
U),J (skJ)⟩. It re-

turns it as part of pkU .
Purchase : U updates its signature’s keys using the randomisation

algorithm RandID(skSU, pk
S
U, certU) → (skS

′

U, pk
S′
U, cert

′
U),

and sends pk′U = (pkS
′

U, pk
E′
U), cert′U , 𝜓 = EncpkED

(ide, idp,

𝑟𝑐 , 𝑐) and 𝜎𝜓 = SignskS′U
(𝜓). D executes the certification

verification function CheckCert(pkJ , cert
′
U) and executes

VerifpkSU
(𝜓, 𝜎𝜓). D updates st as st← st ∪ {𝑐, cert′U, 0} and

inverts the bit to obtain {𝑐, cert′U, 1} when the ticket is paid.

CheckTk : Additionally takes as input a certificate cert, executes
CheckCert(pkJ , cert) and checks the state (𝑐, ·, 1) ∈ st in-
stead of 𝑐 ∈ st. If all verification success, then we update

(𝑐, ·, 1) to (𝑐, cert, 0).

Refund : U updates its keys as described in Purchase and sends

pk′U, cert
′
U,𝜓 = EncpkED

(tk), SignskSU
(𝜓) toD as its first mes-

sage. The signature is verified and then CheckTk executed
with cert′U as its additional input. In case of a payment fail-

ure, D reverts (𝑐, ·, 0) to (𝑐, cert′U, 1).

Transfer : BothU1 andU2 respectively send cert′U1

and cert′U2

to

T , and verify cert′U1

and cert′U2

using CheckCert. Eventu-
ally, if Purchase failed, T reverts (𝑐, ·, 0) to (𝑐, cert′U1

, 1).

Validate : U updates its keys and sends EncpkEV
(pk′U, cert

′
U, tk) as

its first message.V inputs cert′U into CheckCert .
Audit(skJ , (·, ·, cert)) Returns Audit(skJ , cert)→ pkU .

Theorem 5.7. Based an anonymous payment, an EUF-CMA signa-
ture with randomisable keys and an IND-CPA encryption scheme, au-
ditable certificates on randomisable keys, Spotlight ensures anonymity,
unlinkability, no-double-spending, unforgeability and ticket privacy.

7.2 Formal Description of Spotlight
We have chosen to present Applause based on the Random Oracle

Model, we stress that the modification to push Applause from the

ROM into the standard model, can be apply in Spotlight in the

standard model as well. To obtain auditability, we have to modify

algorithms UKeyGen, Purchase, Transfer, Refund and Validate. In
order to facilitate the readability, we repeat the definition of all the

algorithm.

KeyGen(1
𝜆

): Generates a signature keys S.KeyGen(1
𝜆

) → (skS,

pkS), an encryption keys E.KeyGen(1
𝜆

) → (skE, pkE), an

payment keys P.KeyGen(1
𝜆

) → (skP, pkP), outputs (sk ←
(skS, skE, skP), pk← (pkS, pkE, pkP)).

Conference’17, July 2017, Washington, DC, USA Lafourcade et al.

JKeyGen(1
𝜆

) : Returns OKeyGen(1
𝜆

)→ (skJ , pkJ).

DKeyGen(1
𝜆

): Returns (skD , pkD)← KeyGen(1
𝜆

).

TKeyGen(1
𝜆

): Returns (skT , pkT)← KeyGen(1
𝜆

).

UKeyGen(1
𝜆

): Computes ((skE
′

U, sk
S′
U), (pkE

′

U, pk
S′
U))← KeyGen(1

𝜆
),

and then obtains a certificate certU from the certification

Certify⟨U(skS
′

U, pk
S′
U),J (skJ)⟩ the certification algorithm

and returns (sk = (skE
′

U, sk
S′
U), pkU = (pkE

′

U, pk
S′
U, certU)).

VKeyGen(1
𝜆

): Generates S.KeyGen(1
𝜆

)→ (skSV , pk
S
V) a signature

key pair, and E.KeyGen(1
𝜆

) → (skEV , pk
E
V) an encryption

key pair. It obtains the signature SignskSD
(pkSV , pk

E
V) →

certV querying D to produce a certificate on its key. Re-

turns skV ← (skSV , sk
E
V), pkV ← (pkSV , pk

E
V , certV).

Purchase⟨U(skU, (ide, idp)),D(skD , st)⟩: U updates its signature’s

keys using the randomization algorithm RandID(skSU, pk
S
U,

certU)→ (skS
′

U, pk
S′
U, cert

′
U). It samples 𝑟𝑐

$← {0, 1}𝜆 . Then
it sends pk′U = (pkS

′

U, pk
E′
U), cert′U , 𝜓 = EncpkED

(ide, idp, 𝑟𝑐)

and 𝜎𝜓 = SignskS′U
(𝜓). D starts by checking that the pair

(idp, ide) has no been purchased. Then, D computes 𝑐 ←
𝐻 (ide, idp, 𝑟𝑐) and executes the certification verification algo-

rithmCheckCert(pkc, cert′U) and also verifiesVerifpkSU
(𝜓, 𝜎𝜓).

D updates its state st ← st ∪ {𝑐, cert′U, 0} signs 𝜎𝑐 ←
SignskSD

(𝑐), before sending 𝜎𝑐 toU. Once the signature veri-

fied,U pays with Pay⟨U(skPU),D(skPD)⟩ → U(𝑏),D(𝑏). If

the payment successful (i.e., 𝑏 equals 1) then U returns 𝑏

and the ticket tk ← ((ide, idp, 𝑟𝑐), 𝜎𝑐), D returns 𝑏 and an

updated state st← st ∪ {𝑐, cert′U, 1}.

CheckTk(tk, st, cert): Parses tk
𝑝
→ ((ide, idp, 𝑟𝑐), 𝜎𝑐), computes 𝑐 ←

𝐻 (ide, idp, 𝑟𝑐) and verifies if the signature is valid by execut-

ing VerifpkSD
(𝑐, 𝜎𝑐) or VerifpkST

(𝑐, 𝜎𝑐) validate. Also verify the

certificate by executing CheckCert(pkJ , cert) Then, checks
that 𝑐 is not a blacklisted ticket i.e., (𝑐, ·, 1) ∈ st. If all passes,
it updates (𝑐, ·, 1) to (𝑐, cert, 0) and returns st.

Refund⟨U(skU, tk),D(skD , st)⟩: U executes RandID(skSU, pk
S
U,

certU) → (skS
′

U, pk
S′
U, cert

′
U) and sends pk′U, cert

′
U,𝜓 =

EncpkED
(tk), SignskSU

(𝜓) to D as its first message. After the

decryption and verification of the signature D checks the

received ticket using CheckTk(tk, st, cert′U)→ st.
Both participants starts a refund (i.e., a payment with a neg-

ative amount) using Pay⟨U(skPU),D(skPD)⟩ → U(𝑏),D(𝑏).

If 𝑏 = 0,D reverts its state by updating (𝑐, ·, 0) to (𝑐, cert′U, 1).

Both parties return 𝑏, and D additionally returns st and tk.
Transfer⟨U1(sk′U1

, tk1, pk′U2

),T (skT , st),U2(sk′U2

, pk′U1

, (ide, idp))⟩:
U1 computes the signature SignskS′U

1

(pk′U2

, 𝑟𝑐)→ 𝜎𝑇,1 and

sends (pk′U1

, cert′U1

, 𝜎𝑇,1, EncpkET
(𝑐, tk)) to T . In the mean-

time, U2 signs SignskS′U
2

(pk′U1

) → 𝜎𝑇,2 and sends the mes-

sage (pk′U2

, cert′U2

, 𝜎𝑇,2) to T . Once it received 𝜎𝑇,1 and 𝜎𝑇,2,
T checksVerifpkS′U

1

((pk′U2

, 𝑟𝑐), 𝜎𝑇,1) andVerifpkS′U
2

(pk′U1

, 𝜎𝑇,2),

and halts any fails. Then T executes the certificate verifi-

cation CheckCert(pkJ , cert
′
U2

) and checks the validity of

the received ticket with CheckTk(tk, st, cert′U1

) → st the
ticket verification algorithm. If st was updated, T signs

𝜎𝑝 ← SignskST
(ide, idp, pk′U2

, pk′U1

). 𝜎𝑝 is transmitted to

U2 and verified. U2 initiates the purchase for the place

(ide, idp) with Purchase⟨U2(skU2
, (ide, idp)),T (skT , st)⟩ re-

sulting to (U2(𝑏𝑝 , tk2),T (𝑏𝑝 , st)) where T does not check

that (ide,idp) where already attributed. If 𝑏𝑝 equals 0, then

T revert the state of 𝑐 from (𝑐, ·, 0) to (𝑐, cert′U1

, 1) (previ-

ously added in st during the CheckTk execution) and halts.

Otherwise, on success, 𝜎′𝑝 = SignskST
(ide, idp, pk′U1

, pk′U2

) is

sent to U1, verified by U1. Refund⟨U1(skU1
, tk1),T (skT ,

st \ {𝑐})⟩ → U1(𝑏𝑟),T (𝑏𝑟) is executed betweenU1 and T .
LastU1 returns 𝑏𝑟 , T update the shared state st and returns

𝑏𝑟 along st, andU2 returns tk2.

Validate⟨U(skU, tk),V(skV , st)⟩: V starts by providing pkV to

U. The latter parses it and runs VerifpkSD
(pkV , certV)→ 𝑏.

On𝑏 equals 0, the protocol is aborted. Otherwise,U executes

RandID(skSU, pk
S
U, certU) → (skS

′

U, pk
S′
U, cert

′
U) and sends

cert′U, EncpkEV
(pk′U, tk) toV . It decrypts themessage and ex-

ecutes CheckTk(tk, st, cert′U). If both checks passes,V sam-

ple a challenge value 𝑠
$← {0, 1}𝜆 and sends 𝜖 = EncpkE′U

(𝑠)

and a signature 𝜎𝑠 = SignskSV
(𝜖) to U who obtain 𝑠′ after

decryption and verifying VerifpkSV
(𝜖, 𝜎𝑠). The values 𝑠 and 𝑠′

are compared through a physical channel (as explained in

Section 2). Both parties commonly return 𝑠 = 𝑠′. If the verifi-
cation has fail theV also removes 𝑐 from st i.e.,st← st \ {𝑐}.

Audit(skJ , (·, ·, cert)): Returns Audit(skJ , cert)→ pkU .

8 CONCLUSION
We presented Applause, a ticketing system that preserves the phys-

ical aspects of paper tickets while ensuring that any user can buy,

refund, validate, or transfer a ticket. The system additionally safe-

guards the privacy of users. Applause achieves unforgeability, no-
double-spending, privacy of the tickets, and anonymity of users. In

particular, anonymity ensured by Applause highly depends on the

anonymity property of the used payment method, that we chosen

to include in a generic fashion. We have also formally verified the

security properties of Applause using ProVerif, proving its security

in the symbolic model for an unbounded number of sessions. We

have additionally extended Applause to obtain an auditable version

called Spotlight, whereby the judge can reveal the identity of all

users, whereas other entities are unable to discern whether a user

has purchased a ticket and for which event.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

constructive comments. This work has been partially the French

BPI project D4N and by the SEVERITAS project ANR-20-CE39-0009.

Transferable, Auditable and Anonymous Ticketing Protocol Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] N. Asokan, Victor Shoup, and Michael Waidner. 1998. Asynchronous protocols

for optimistic fair exchange. English (US). Proceedings of the IEEE Computer
Society Symposium on Research in Security and Privacy, 86–99. Proceedings of
the 1998 IEEE Symposium on Security and Privacy ; Conference date: 03-05-

1998 Through 06-05-1998.

[2] Aventus. 2016. https://aventus.io/. (2016).

[3] Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer, and Markulf Kohlweiss.

2015. Anonymous transferable e-cash. In International Workshop on Public Key
Cryptography. Springer.

[4] Balthazar Bauer, Georg Fuchsbauer, and Chen Qian. 2021. Transferable e-cash:

a cleaner model and the first practical instantiation. In IACR International
Conference on Public-Key Cryptography. Springer, 559–590.

[5] Osman Bicer and Alptekin Kupcu. 2019. Versatile abs: usage limited, revocable,

threshold traceable, authority hiding, decentralized attribute based signatures.

Cryptology ePrint Archive, Paper 2019/203. https://eprint.iacr.org/2019/203.

(2019). https://eprint.iacr.org/2019/203.

[6] Bruno Blanchet. 2014. Automatic Verification of Security Protocols in the

Symbolic Model: The Verifier ProVerif. In Foundations of Security Analysis and
Design VII. Springer. doi: 10.1007/978-3-319-10082-1_3.

[7] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya,

and Mira Meyerovich. 2006. How to win the clonewars: efficient periodic n-

times anonymous authentication. In Proceedings of the 13th ACM Conference on
Computer and Communications Security (CCS ’06). Association for Computing

Machinery, Alexandria, Virginia, USA. doi: 10.1145/1180405.1180431.

[8] CashApp. 2018. CashApp. https://www.cash.app/. (2018).

[9] David Chaum. 1985. Security without identification: transaction systems to

make big brother obsolete. Communications of the ACM, 28, 10, 1030–1044.

[10] Liqun Chen, Matthias Enzmann, Ahmad-Reza Sadeghi, Markus Schneider,

and Michael Steiner. 2005. A privacy-protecting coupon system. In Financial
Cryptography and Data Security: 9th International Conference, FC 2005, Roseau,
The Commonwealth Of Dominica, February 28–March 3, 2005. Revised Papers 9.
Springer, 93–108.

[11] Aisling Connolly, Jérôme Deschamps, Pascal Lafourcade, and Octavio Perez

Kempner. 2022. Protego: efficient, revocable and auditable anonymous creden-

tials with applications to hyperledger fabric. In International Conference on
Cryptology in India. Springer, 249–271.

[12] Yao Cui, Izak Duenyas, and Özge Şahin. 2014. Should event organizers prevent

resale of tickets? Management Science, 60, 9, 2160–2179.
[13] Alex de Vries. 2018. Bitcoin’s growing energy problem. 2, (May 2018), 801–805.

doi: 10.1016/j.joule.2018.04.016.

[14] D. Dolev and A. Yao. 1983. On the security of public key protocols. IEEE
Transactions on Information Theory. doi: 10.1109/TIT.1983.1056650.

[15] YuhaoDong, Ian Goldberg, SergeyGorbunov, and Raouf Boutaba. 2022. Astrape:

anonymous payment channels with boring cryptography. In International
Conference on Applied Cryptography and Network Security. Springer.

[16] Taher ElGamal. 1985. A public key cryptosystem and a signature scheme based

on discrete logarithms. IEEE transactions on information theory.
[17] EMVCo. 2011. Book 1: application independent icc to terminal interface re-

quirements.

[18] LLC EMVCo. 2022. Emv payment tokenisation specification technical frame-

work v2.3. EMVCo: Foster City, CA, USA.
[19] Shimon Even. 1983. A protocol for signing contracts. SIGACT News, 15, 1, (Jan.

1983), 34–39. doi: 10.1145/1008908.1008913.

[20] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. 2019. Structure-

preserving signatures on equivalence classes and constant-size anonymous

credentials. Journal of Cryptology.
[21] [n. d.] Git for transferable, auditable and anonymous ticketing protocol. https:

//gitlab.limos.fr/palafour/asiaccs-24-applause/.

[22] Ivan Gudymenko. 2013. On protection of the user’s privacy in ubiquitous

e-ticketing systems based on RFID and NFC technologies. In PECCS 2013 - Pro-
ceedings of the 3rd International Conference on Pervasive Embedded Computing
and Communication Systems. SciTePress.

[23] Ivan Gudymenko, Felipe Sousa, and Stefan Kopsell. 2014. A simple and secure

e-ticketing system for intelligent public transportation based on NFC. In The
First International Conference on IoT in Urban Space, Urb-IoT. ICST. https://xxdo
i.org/10.4108/icst.urb-iot.2014.257244.

[24] N. Abdul Hamid, M. F. Al A’zhim, and M. L. Yap. 2012. E-ticketing system

for football events in malaysia. In 7th International Conference for Internet
Technology and Secured Transactions, ICITST. IEEE. https://ieeexplore.ieee.org
/document/6470872/.

[25] Jinguang Han, Liqun Chen, Steve Schneider, Helen Treharne, and Stephan

Wesemeyer. 2021. Privacy-preserving electronic ticket scheme with attribute-

based credentials. IEEE Trans. Dependable Secur. Comput. https://xxdoi.org/10.1
109/TDSC.2019.2940946.

[26] Wan Huzaini Wan Hussin, Paul Coulton, and Reuben Edwards. 2005. Mobile

ticketing system employing trustzone technology. In International Conference

on Mobile Business. IEEE Computer Society. https://xxdoi.org/10.1109/ICMB.20

05.71.

[27] International Organization for Standardization. 2006. Information technology

— automatic identification and data capture techniques — qr code 2005 bar code

symbology specification. ISO/IEC 18004:2006. (2006).

[28] Florian Kerschbaum, Hoon Wei Lim, and Ivan Gudymenko. 2013. Privacy-

preserving billing for e-ticketing systems in public transportation. In Proceed-
ings of the 12th annual ACMWorkshop on Privacy in the Electronic Society, WPES
2013. ACM. https://xxdoi.org/10.1145/2517840.2517848.

[29] Phillip Leslie and Alan Sorensen. 2014. Resale and rent-seeking: an application

to ticket markets. Review of Economic Studies, 81, 1, 266–300.
[30] Xiaoshan Li, Zhiming Liu, and Zhensheng Guo. 2001. Formal object-oriented

analysis and design of an online ticketing system. In 8th Asia-Pacific Software
Engineering Conference (APSEC 2001). IEEE Computer Society. https://xxdoi.or

g/10.1109/APSEC.2001.991486.

[31] Xuelian Li, Jie Niu, Juntao Gao, and Yue Han. 2019. Secure electronic ticketing

system based on consortium blockchain. KSII Trans. Internet Inf. Syst. https://x
xdoi.org/10.3837/tiis.2019.10.022.

[32] Weiwei Liu, Yi Mu, and Guomin Yang. 2014. An efficient privacy-preserving

e-coupon system. In International Conference on Information Security and Cryp-
tology. Springer.

[33] AkashMadhusudan, Mahdi Sedaghat, Philipp Jovanovic, and Bart Preneel. 2022.

Nirvana: instant and anonymous payment-guarantees. IACR Cryptol. ePrint
Arch., 872.

[34] Hemanta K Maji, Manoj Prabhakaran, and Mike Rosulek. 2011. Attribute-based

signatures. In Cryptographers’ track at the RSA conference. Springer, 376–392.
[35] Milica Milutinovic, Koen Decroix, Vincent Naessens, and Bart De Decker. 2015.

Privacy-preserving public transport ticketing system. In Data and Applications
Security and Privacy- 29th Annual IFIP WG 11.3 Working Conference, DBSec.
Springer. https://xxdoi.org/10.1007/978-3-319-20810-7%5C_9.

[36] Omid Mir, Daniel Slamanig, and René Mayrhofer. 2023. Threshold delegat-

able anonymous credentials with controlled and fine-grained delegation. IEEE
Transactions on Dependable and Secure Computing.

[37] Lekshmi S. Nair, V. S. Arun, and Sijo Joseph. 2015. Secure e-ticketing system

based on mutual authentication using RFID. In Proceedings of the Third Inter-
national Symposium on Women in Computing and Informatics, WCI 2015. ACM.

https://xxdoi.org/10.1145/2791405.2791573.

[38] Lan Nguyen. 2006. Privacy-protecting coupon system revisited. In Financial
Cryptography and Data Security: 10th International Conference, FC 2006 An-
guilla, British West Indies, February 27-March 2, 2006 Revised Selected Papers 10.
Springer, 266–280.

[39] Johanna Nieminen, Teemu Savolainen, Markus Isomaki, Basavaraj Patil, Zach

Shelby, and Carles Gomez. 2015. IPv6 over BLUETOOTH(R) Low Energy. RFC

7668. (Oct. 2015). doi: 10.17487/RFC7668.

[40] PaySafeCard. 2018. Paysafecard. https://www.paysafecard.com/fr/. (2018).

[41] Torben Pryds Pedersen. 2001. Non-interactive and information-theoretic secure

verifiable secret sharing. In Advances in Cryptology—CRYPTO’91: Proceedings.
Springer, 129–140.

[42] GET Protocol. 2016. GUTS Ticketing. https://guts.tickets/. (2016).

[43] Jason Reid, Juan M Gonzalez Nieto, Tee Tang, and Bouchra Senadji. 2007.

Detecting relay attacks with timing-based protocols. In Proceedings of the 2nd
ACM symposium on Information, computer and communications security, 204–
213.

[44] Nicolas Van Saberhagen. 2013. Monero Research Paper. (2013). https://github.c

om/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf.

[45] Claus-Peter Schnorr. 1991. Efficient signature generation by smart cards. Jour-
nal of cryptology.

[46] Johannes Sedlmeir, Hans Buhl, Gilbert Fridgen, and Robert Keller. 2020. The

energy consumption of blockchain technology: beyond myth. Business & Infor-
mation Systems Engineering, 62, (Dec. 2020). doi: 10.1007/s12599-020-00656-x.

[47] Marc Sel, Stefaan Seys, and Eric R. Verheul. 2008. The security of mass transport

ticketing systems. In ISSE 2008 - Securing Electronic Busines Processes, Highlights
of the Information Security Solutions Europe 2008 Conference. https://xxdoi.org
/10.1007/978-3-8348-9283-6%5C_37.

[48] Isamu Teranishi, Jun Furukawa, and Kazue Sako. 2004. K-times anonymous

authentication (extended abstract). In Advances in Cryptology - ASIACRYPT
2004. Springer.

[49] Hitesh Tewari and Arthur Hughes. 2016. Fully anonymous transferable ecash.

Cryptology ePrint Archive.
[50] Minhui Xie, Mark Tomlinson, and Bobby Bodenheimer. 2004. Interface design

for a modern software ticketing system. In Proceedings of Annual Southeast
Regional Conference. ACM, Huntsville, Alabama. https://xxdoi.org/10.1145/986

537.986566.

[51] Yuan YuanJiang and Ji Ting Zhou. 2022. Ticketing system based on NFT. In

24th IEEE International Workshop on Multimedia Signal Processing, MMSP 2022.
IEEE. https://xxdoi.org/10.1109/MMSP55362.2022.9948706.

https://aventus.io/
https://eprint.iacr.org/2019/203
https://eprint.iacr.org/2019/203
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1145/1180405.1180431
https://www.cash.app/
https://doi.org/10.1016/j.joule.2018.04.016
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1145/1008908.1008913
https://gitlab.limos.fr/palafour/asiaccs-24-applause/
https://gitlab.limos.fr/palafour/asiaccs-24-applause/
https://xxdoi.org/10.4108/icst.urb-iot.2014.257244
https://xxdoi.org/10.4108/icst.urb-iot.2014.257244
https://ieeexplore.ieee.org/document/6470872/
https://ieeexplore.ieee.org/document/6470872/
https://xxdoi.org/10.1109/TDSC.2019.2940946
https://xxdoi.org/10.1109/TDSC.2019.2940946
https://xxdoi.org/10.1109/ICMB.2005.71
https://xxdoi.org/10.1109/ICMB.2005.71
https://xxdoi.org/10.1145/2517840.2517848
https://xxdoi.org/10.1109/APSEC.2001.991486
https://xxdoi.org/10.1109/APSEC.2001.991486
https://xxdoi.org/10.3837/tiis.2019.10.022
https://xxdoi.org/10.3837/tiis.2019.10.022
https://xxdoi.org/10.1007/978-3-319-20810-7%5C_9
https://xxdoi.org/10.1145/2791405.2791573
https://doi.org/10.17487/RFC7668
https://www.paysafecard.com/fr/
https://guts.tickets/
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf
https://doi.org/10.1007/s12599-020-00656-x
https://xxdoi.org/10.1007/978-3-8348-9283-6%5C_37
https://xxdoi.org/10.1007/978-3-8348-9283-6%5C_37
https://xxdoi.org/10.1145/986537.986566
https://xxdoi.org/10.1145/986537.986566
https://xxdoi.org/10.1109/MMSP55362.2022.9948706

Conference’17, July 2017, Washington, DC, USA Lafourcade et al.

A IMPLEMENTATION OF Applause
A proof-of-concept implementation of Applause in Rust is available

in [21]. This implementation showcases the protocol’s complete-

ness and highlights the anticipated low computational cost of the

cryptographic operations within our proposal. In our implementa-

tion, we have measure the impact of up to a thousand participants

event purchasing a ticket. After the purchase, all acquired tick-

ets are transferred to load the shared state while generating the

new (transferred) tickets. Subsequently, the refund and validation

processes are executed with these tickets.

Our analysis specifically focuses on cryptographic operations,

excluding communication time and payment processes. Commu-

nication time is highly dependent on the network infrastructure,

and our protocol allows for multiple anonymous payment meth-

ods to be integrated. These presented execution times should be

considered as a baseline.

We rely on standard cryptographic primitives: we used the

curve25519 curve for ElGamal [16] and Schnorr signatures [45].

To achieve key randomisation for Schnorr scheme, we rely on the

generic algorithm generating a new key pair. Benchmarks over 200

iterations from 1 ticket in the database up to 1000 tickets in it have

highlight the constant time execution of all process. On an Ubuntu

laptop equipped with an Intel i7-12800H processor and 32 GB of

RAM give average execution times of 10 ms for a purchase, 40 ms

for a transfer, 15 ms for a refund and 30 ms for a validation, hence

emphasizing the high efficiency of all cryptographic operations.

Hence, the overhead brought by securing the protocol is acceptable.

Moreover, these timings are within the same order of magnitude

as 1 Round-Trip Time. The overhead introduced by securing the

protocol appears acceptable at any step of the process. Finally, the

measurement of the shared state update shows that it is negligible,

always lower than 1 millisecond. Therefore, our instantiation is

efficient and scalable.

0 200 400 600 800 1,000

0

20

40

60

Number of Handled Tickets

E
x
e
c
u
t
i
o
n
T
i
m
e
(
m
s
)

Purchase Refund

Validate Transfer

Figure 7: Mean execution times (in milliseconds) of the
cryptographic operations in the protocol over 200 iterations,

depending on the number of handled tickets.

UserU2UserU1

Impossible

without trust

UserU2UserU1 transfer authority T

(3) Purchase(2) Refund

(1) Pre-Transfer Key Exchange

Figure 8: Exchange without trust and based on central
transfer authority.

B TRANSFER SETTINGS
While the sale of a ticket is relatively straightforward, ticket transfer

can be realized under multiple scenarios. In e-cash system, only two

entities are typically involved in the transfer, but the verification

is not strong enough to guarantee that, at any time, two entities

does not hold the same coin. This is required in e-ticket. It was
demonstrated in [19] that achieving a fair transfer in the setting

depicted in Fig. 8, between two users without a trusted third party

is impossible. Another way to come to this result, in our context, is

described below.

Property 1. Consider two usersU1 andU2. Assume thatU1 holds a
honestly generated ticket and thatU2 tries to acquire it via a transfer
protocol where it trades it against a payment. Assuming that no
external interaction is executed during the protocol. Their exist no
protocol leading to a secure exchange between U1 and U2 ending
withU2 being the only holder of the exchanged ticket.

Proof. Considering U1 selling its ticket to U2, without any

of the two users interacting with any third party. AsU1 holds at

least the same data as it did before interacting with U2, if it had

probability 𝑝 to execute the exchange protocol withU2, in general,

the same success probability holds for a second execution of the

transfer protocol with another user U3 with inputs distributed

similarly to U2’s inputs. If we assume that 𝑝 is non-negligible,

then, U1 has probability 𝑝2
to sell twice its ticket, which is not

negligible and contradicts the security of the exchange regarding

U2’s perspective. □

To ensure a secure transfer between the two users, we rely on

a transfer authority T . The considered communication setup is

depicted in Fig. 8. In our case the ticket transfer can be viewed as a

purchase of the same ticket forU2, followed by the refund ofU1.

Other architectures based on a trusted third party could be con-

sidered. For example, the above analysis does not prevent only one

of the two usersU1 from contacting the transfer authority, while

U2 contacts onlyU1. Indeed, the security analysis of our protocol

would ensure that such a process can be practically achieved: mes-

sages replayed byU1 fromU2 and then received by T would be

well-formed, and our security proofs guarantee thatU2 does not

need to contact the transfer authority. security proofs guarantee

thatU2’s identity cannot be usurped by another entity in another

execution.

Transferable, Auditable and Anonymous Ticketing Protocol Conference’17, July 2017, Washington, DC, USA

C SECURITY PROOFS OF Applause
We present the security proofs for Applause, with respect to the

security model presented in Section 3. Through this section, we

operate proofs divided into sequences of games. We refer to this

games as G𝑖
A (1

𝜆
) for a given PPT algorithm A and a security

parameter 1
𝜆
. Moreover, we characterise by𝑊𝑖 the winning event

where a PPT algorithm A makes G𝑖
A (1

𝜆
) outputs 1. At first we

present the security proofs of the version of Applause presented in

Section 5, which relies on the Random Oracle Model (ROM). Then

we present the security proofs for the version of Applause in the

standard model. Recall that both versions of Applause differ only
in few points, as explained in Section 6.

C.1 Security Proofs of Applause in Random
Oracle Model

Proof of Unforgeability. Let A be a PPT adversary and as-

sume for contradiction that the following probability Pr[ExpUFA (1
𝜆

)→
1] is non-negligible. This proof relies on the ROM, meaning that

A has access to an oracle Ohash replacing the function 𝐻 and

programmed by the challenger C, which on call on a message𝑚,

samples at random a value ℎ representing the hash associated to𝑚.

This process is repeated if the value is already associated to another

message𝑚′. Then the sampled value ℎ is returned to A.

Game G0. The initial game represents ExpUFA defined in Fig. 3,

we observe that Pr[𝑊0] = Pr[ExpUFA (1
𝜆

)→ 1].

Game G1. In this game, we now reject tickets with valid sig-

natures from D that where not produced by the challenger. To

distinguish such signature from the originally produced ones, C
keeps updated a set SD = {𝑚𝑖 , 𝜎𝑖 } containing all the signature pro-
duced by D during the protocol. A signature is deemed valid if the

message-signature pair is contained in this set, otherwise invalid.

This prevents A from forging a signature, which was previously

possible with probability AdvEUF-CMA

A . Therefore, we obtain the

following bound | Pr[𝑊0] − Pr[𝑊1]| ≤ AdvEUF-CMA

A (1
𝜆

).

GameG2. The same action as inG1
is performed on the signature

produced by T . Hence | Pr[𝑊1] − Pr[𝑊2]| ≤ AdvEUF-CMA

A (1
𝜆

).

In G2
, the adversary A is not able to produce a ticket contain-

ing a forged signature from D or T . A valid ticket is requires to

contain a signature either byD or T as prescribed by the CheckTk
algorithm executed in Validate, Refund or Transfer. A can still

reused a signature produced by the Challenger. Under the ROM,

this implies using the hash 𝑐 ← Ohash(ide, idp, 𝑟𝑐) corresponding

to a random value, already signed by C. Either tk ∉ TK and A
looses the game, otherwise tk ∈ TK and in such case, 𝑐 appears

in the state st of the Challenger C and the ticket will fail to verify

in the last verification of the CheckTk algorithm. This can been

seen by analyzing the inclusion of 𝑐 in st through the processes. In

both cases, a condition of CheckTk is not achieved and the protocol
aborts for C. This shows that Pr[𝑊2] = 0, and then, we obtain

Pr[ExpUFA (1
𝜆

)→ 1] ≤ 2 · AdvEUF-CMA

A (1
𝜆

).

By hypothesis on the EUF-CMA property of the signature S, we
know thatAdvEUF-CMA

A is negligible, leading to a negligible quantity

on the right hand side of the inequation, giving a direct contraction

with the initial hypothesis. Hence, Pr[ExpUFA (1
𝜆

)→ 1] is negligible

and Applause has Unforgeability. □

Proof of Pseudonymity. Assume a PPT algorithmA, we show

that it breaks at least one of the assumed properties of the used

primitives, and that such an algorithm cannot exist under the given

hypothesis. We start by considering an initial game G0
.

Game G0. The initial game corresponds to experiment ExpPSEA .

Observe that Pr[𝑊0] = Pr[ExpPSEA (1
𝜆

)→ 1].

Game G1.We focus on the anonymous payment. At the begin-

ning, the challenger generates a new key pair and uses this key

skPnew instead of using skPayU𝑏
in all payments of the experiment. By

hypothesis, an adversary has a negligible advantage AdvPayPseA (1
𝜆

)

of distinguishing between which one among the two key pairs used

in a payment. This property is directly transferred into our case

and leaves the two key pairs of skPayU0

and skPayU1

unused. Hence, we

obtain the following bound | Pr[𝑊0] − Pr[𝑊1]| ≤ AdvPayPseA (1
𝜆

).

Now, we notice that the user’s key is not used in Purchase
and Refund. Only Transfer and Validate involve the user’s key,

excluding the payment key. Hence, a call to oracles OPurchase𝑏 ,
ORefund𝑏 does not reveal any information on the key pair (skU𝑏

, pkU𝑏
)

in use, ignoring the payment key that we already modified we apply

the following:

Game G2. Instead of randomizing the key pair in Validate, when
A calls OValidate𝑏 , we generate a new signature and encryption

key pairs. The resulting keys are unrelated to the key pair of the user.

Provided with statistically randomizable key pairs, they where al-

ready unrelated after randomization, resulting in Pr[𝑊2] = Pr[𝑊1].

GameG3.On each call ofA toOTransfer𝑏 , the samemodification

is put in place in Transfer. As for the previous modification, games

are therefore statistically indistinguishable. This is again a bridging

step with Pr[𝑊3] = Pr[𝑊2].

In this game G3
, none of (skU0

, pkU0

) or (skU1
, pkU1

) are used

by the challenger during the experiment. Hence, the adversary

has no mean to recover 𝑏 and then no advantage in breaking the

pseudonymity. Hence, we obtain Pr[𝑊3] = 1

2
. Summing up, A is a

PPT algorithm with non-negligible advantage of winning against

G0 i.e., a non-negligible advantage in breaking the anonymity ofU𝑏 .

Hence, we observe that | Pr[ExpPSEA (1
𝜆

)→ 1]− 1

2
| ≤ AdvPayPseA (1

𝜆
).

By hypothesis on the anonymity property of considered anony-

mous payment, we know that AdvPayA is negligible, implying that

no such A could exist. Therefore, pseudonymity holds for our ETS
protocol Applause. □

Proof of Privacy. We prove secrecy of 𝑟𝑐 through this proof.

Assume A has a PPT algorithm. If an adversary A is unable to

recover 𝑟𝑐 , then it is unable to win against ExpPRIVA (1
𝜆

), or at least

with a negligible probability. Notice thatU, the user simulated by

C which has generated tk, cannot be corrupted, otherwiseA would

fail to the experiment under corr1 = 0. The following modification

applied to the oracles are assumed to append only when the ticket

tk is involved during the execution of the oracle.

GameG0.The initial game corresponds to the experiment ExpPRIVA ,

hence Pr[𝑊0] = Pr[ExpPRIVA (1
𝜆

)→ 1].

Conference’17, July 2017, Washington, DC, USA Lafourcade et al.

Game G1. First, we modify the Purchase algorithm happening

in the experiment. When tk is purchased, the challenger sends

a random element as the first message from U1, thus replacing

EncpkED
(ide, idp, 𝑟𝑐 , 𝑐) by a random sampled uniformly from [EncpkED

].

D being also simulated by C it still has access to ide, idp, 𝑟𝑐 , 𝑐 and
then is able to continue the Purchase protocol.

We observe that the difference betweenG0
andG1

occurs only in

the encryption of this message. Under the IND-CPA hypothesis, a

distinguisher would have negligible chances to distinguish between

these two experiments. Hence | Pr[𝑊0]−Pr[𝑊1]| ≤ AdvIND-CPA

A,E (1
𝜆

).

Game G2. The second game replaces the encryption of tk under

the key pkED during a call toORefund by a random element sampled

uniformly from [EncpkED
]. This is the same argument as before, we

directly conclude to | Pr[𝑊1] − Pr[𝑊2]| ≤ AdvIND-CPA

A,E (1
𝜆

).

Game G3. The third game replaces the encryption of tk under

the key pkET during a call to OTransfer by a random element sam-

pled uniformly from [EncpkED
]. As seen in G1

and in G2
, we have

| Pr[𝑊2] − Pr[𝑊3]| ≤ AdvIND-CPA

A,E (1
𝜆

).

Game G4. In the last game, concluding this proof, we replace the

encryption of pk′U, tk, cert
′
U under pkEV by a random element sam-

pled uniformly from [EncpkED
]. Still using the indistinguishability

argument we have | Pr[𝑊3] − Pr[𝑊4]| ≤ AdvIND-CPA

A,E (1
𝜆

).

SinceA has no more advantage, and since 𝑟𝑐 is randomly picked

at uniformly in {0, 1}𝜆 , A has probability 2
−𝜆

to guess correctly,

hence Pr[𝑊4] = 2
−𝜆

. Finally, we observe that: AdvPRIVA (1
𝜆

) =

Pr[ExpPRIVA (1
𝜆

)→ 1] ≤ 4 · AdvIND-CPA

A,E +2
−𝜆

. □

Proof of No-Double-Spending. LetA be aPPT adversary.We

show that the probability Pr[ExpDSA (1
𝜆

)→ 1] is negligible. In the

game ExpDSA ,A is free to take advantage of any sequence of execu-

tion it has chosen. We show that under any chosen sequence, it is

impossible for A to success to the same algorithm twice with the

same ticket tk. The proof relies on the consistency of the state st,
updated by the challenger C during the protocol. We argue that

this state prevent any double spending, indeed acting as a blacklist

containing every ticket tk used in any of the protocols. We proceed

by analyzing the update of the state through the algorithms: In the

Refund protocol, on the reception of tk, D executes the CheckTk
algorithm which checks that 𝜎𝑐 is signed either by D or by T , but
also that 𝑐 is not contained in st. If not, 𝑐 is inserted in st. Suppose
now that A replays the refund protocol again, then the signature

still verifies, but since tk is now contained in st, then the refund fails.
The ticket transfer holds on the same principle. When transferring

tk, algorithm CheckTk is executed, ensuring that tk is not already

contained in st. Exactly as the previous protocols, on the reception

of ticket tk, the validation executes the CheckTk checking that tk
is not contained in st. When the algorithm successfully ends, then

tk is required to be contained in st to notify that the ticket is now

considered as invalid.

All algorithms taking a ticket tk as an input ends with a state st
containing tk. Since the state st is fully controlled by C and cannot

be modified by A, we can directly conclude that for every PPT
adversary, Pr[ExpDSA (1

𝜆
) → 1] is zero, meaning that the double-

spending, in any sequence, is prevented. □

Recall that in our construction, a ticket tk is defined by a the place
(ide, idp), the random 𝑟𝑐 and the signature 𝜎𝑐 . From an information

theory perspective, tk is completely unrelated from any user U.

Then, our proof simply consists to show that at any moment, the

identity of U (e.g.,the public key pkU , a signature using skU) is
used during the communication.

Proof of Unlinkability. Our proof is designed as a sequence

of five games G𝑖
for 𝑖 ranging from 0 to 4, where the initial game

G0
corresponds the game ExpUNLA for a bit 𝑏, and our last game G4

corresponds to the game ExpUNLA with C using 1 −𝑏. We show that

both game are indistinguishable through a sequence of negligible

modifications. We only need to apply the modifications where the

third ticket tk3 (purchased by U𝑏) is involved. Let A be a PPT
adversary, we show that it has negligible probability to succeeds

to ExpUNLA for a probability non-negligible close to 1/2. For more

clarity, let ExpUNLA,𝑏
be the game ExpUNLA except that we set the bit 𝑏

as a parameter instead of being chosen randomly by the challenger.

GameG0.The initial game corresponds to the experiment ExpUNLA,𝑏

with the bit 𝑏 (still chosen randomly outside of the game) is pro-

vided as a parameter. Hence, for every adversary A, we have

Pr[𝑊0] = Pr[ExpUNLA,𝑏
(1
𝜆

)→ 1].

Game G1. We focus on the Validate protocol, where we have

pk′U𝑏
and tk sent fromU𝑏 toV . Since tk is not related toU𝑏 , then

using the statistical indistinguishability of the randomised keys,

we replace pk′U𝑏
by pk′U1−𝑏

. This modification implies that in the

subsequent modification, we have EncpkE′U
1−𝑏

(𝑠) which does not help

A using the statistical indistinguishability of the randomised keys.

Therefore, we have Pr[𝑊0] = Pr[𝑊1].

Game G2. We focus on Refund, which contains only a payment

interaction betweenU𝑏 and D. Again, we replace the secret pay-

ment key skP
𝑏
of U𝑏 with the secret payment key of skP

1−𝑏 . The
difference from the point of view ofA relies on the capacity to link

a payment either toU𝑏 or toU
1−𝑏 , which we quantify as the ad-

vantage AdvPayUnlA . Then, we have | Pr[𝑊1]− Pr[𝑊2]| ≤ AdvPayUnlA .

Game G3.We focus on Transfer, whereA is expected to have as

an input the randomised public key pk′U𝑏
. Using the same strategy

of the gameG1
, we replace pk′U𝑏

with pk′U1−𝑏
. This modification of

the input implies that 𝜎𝑇,1 is now produces with the signature key

skS
′

U1−𝑏
, which is verifiable using pkS

′

U1−𝑏
. Again, using the statistical

indistinguishability of the randomised keys, A cannot notice the

difference. However, Latter in the protocol, we have a call to the

Refund protocol as a subroutine. As shown, Refund involves an

anonymous payment. Since we replace the key U𝑏 with key of

U
1−𝑏 , the secret payment key is replaced as well, which can be

distinguished byA with the advantage of breaking the unlinkability

of the anonymous payment. Hence | Pr[𝑊2]−Pr[𝑊3]| ≤ AdvPayUnlA .

Game G4. In the last game, we focus on Purchase, on which

the two first interactions does not involve the public key pkU .
The third interaction, however, is the anonymous payment. As

in game G2
and G3

, we replace skP
𝑏
by skP

1−𝑏 . The probability for

A to distinguish between G3
and G4

is based on the advantage

to break the unlinkability of the anonymous payment. Hence, we

have | Pr[𝑊3] − Pr[𝑊4]| ≤ AdvPayUnlA .

Transferable, Auditable and Anonymous Ticketing Protocol Conference’17, July 2017, Washington, DC, USA

Remark that in G4
, we have replaced the key pair (skU𝑏

, pkU𝑏
)

with (skU1−𝑏 , pkU1−𝑏), when tk3 is used. This demonstrate that A
is unable to distinguish the experiment ExpUNLA,𝑏′

when 𝑏′ equals 𝑏
or 1 − 𝑏. We can conclude that

| Pr[ExpUNLA,𝑏
(1
𝜆

)→ 1] − Pr[ExpUNLA, ¯𝑏
(1
𝜆

)→ 1]| ≤ 3 · AdvPayUnlA

| Pr[ExpUNLA (1
𝜆

)→ 1] − 1

2

| ≤ 3

2

· AdvPayUnlA

□

C.2 Security Proofs of Applause in the Standard
Model

We present the security proofs of Applause in the standard model,

for which we replace the hash 𝑐 ← 𝐻 (ide, idp, 𝑟𝑐) for a place

(ide, idp) and a random 𝑟𝑐 , by a commitment 𝑐 ← ℎ𝑟𝑐𝑔ide
1

𝑔
idp
2

where

ℎ,𝑔1 and𝑔2 are three generators of a groupG, assumed secure under

the Discrete Logarithm (DL) problem.

Pseudonimity, Double-spending and Unlinkability have already

been shown under standard assumption as the previous proof does

not involve any argument based on the random oracle. We need no

further consideration to guarantee these properties for the standard

model version of Applause, the proof being the same as before. We

only have to modify the proofs for Unforgeability and Privacy.

Proof of Unforgeability. We start with the same sequence

of games as for the proof of Theorem 5.2. We consider G2
, where

the challenger keeps record of the signatures produced by D and

T , and refuses any forged valid signature under pkSD or pkST .
During the execution of the algorithm Alg chosen by A the

CheckTk is always executed, henceA must have transmitted a sig-

nature 𝜎𝑐 for 𝑐 taken from tk returned by A. We recall that in the

current case 𝑐 = ℎ𝑟𝑐𝑔ide
1

𝑔
idp
2

. As a forged signature would be refused

by C, A needs to output a signature generated for another ticket.

It has been produced for this ticket, then tk ∈ TK𝑖 holds true and
the game is lost. Hence A must used a previously made signature

and need to find a triple 𝑟𝑐 , ide, idp such that 𝑐 = ℎ𝑟𝑐𝑔ide
1

𝑔
idp
2

holds

true for one of the signature produced for another ticket tk′. Equiv-

alently, 𝑐 = ℎ𝑟𝑐𝑔ide
1

𝑔
idp
2

= ℎ𝑟
′
𝑐𝑔ide

′
1

𝑔
idp′

2
. Based on such an answer,

we can recover the discrete logarithm of one of the generator based

on the two others. For example, we can obtain ℎ = 𝑔

ide−ide′
𝑟𝑐 −𝑟 ′𝑐

1
𝑔

idp−idp′
𝑟𝑐 −𝑟 ′𝑐

2
.

Now assuming a challenger for the discrete logarithm problem

sending 𝑔,𝑔𝑥 as a challenge, we can sample a random 𝑠
$← Z∗𝑝

and set ℎ = 𝑔𝑥 , 𝑔1 = 𝑔 and 𝑔2 = 𝑔𝑠 , all three are known to be

generators of the prime order group if 𝑔𝑥 ≠ 1. Based on a correct

answer from an adversary winning against game G2
, we recover

𝑔𝑥 = 𝑔

ide−ide′
𝑟𝑐 −𝑟 ′𝑐

1
𝑔

idp−idp′
𝑟𝑐 −𝑟 ′𝑐

2
= 𝑔

ide−ide′
𝑟𝑐 −𝑟 ′𝑐

+𝑠 · idp−idp
′

𝑟𝑐 −𝑟 ′𝑐 . Hence, recovering the

discrete logarithm of 𝑔𝑥 . This allows us to conclude that Pr[𝑊2] ≤
AdvDLA (1

𝜆
). And based on the previous reduction, we observe that:

Pr[ExpUFA (1
𝜆

)→ 1] ≤ 2 · AdvEUF-CMA

A (1
𝜆

)+AdvDLA (1
𝜆

). □

Proof of Privacy. The same sequence of game as in the proof

of Theorem 5.4 can be applied. We follow up on the previous re-

duction. In G4
, among other things, A has to return the value 𝑟𝑐 .

This element is only involved in the computation of 𝑐 , as in this

version of the protocol 𝑐 = ℎ𝑟𝑐𝑔ide
1

𝑔
idp
2

. Using the state leakage,

A can have access to 𝑐 during the game, similarly, ide and idp
are both accessible to A. In order to recover 𝑟𝑐 from the latest, A
is expected to compute a discrete logarithm on 𝑐 · 𝑔ide

1
𝑔
idp
2

= ℎ𝑟𝑐 .

Hence, given a challenger for the discrete logarithm problem send-

ing 𝑋 = 𝑔𝑥 , during the purchase of (ide, idp), the challenger C
replace ℎ𝑟𝑐 by 𝑋 . Receiving the answer from an adversary A, we

can return the value returned for 𝑟𝑐 to the challenger for the dis-

crete logarithm problem. If A has non-negligible chances to break

the privacy of the ticket, it would either break the discrete loga-

rithm problem or the IND-CPA property of the encryption. A ran-

dom guess can still be possible, leading to the following advantage:

Pr[ExpPRIVA (1
𝜆

)→ 1] ≤ 1

𝑞 +4 · AdvIND-CPA

A (1
𝜆

)+AdvDLA (1
𝜆

). □

D SECURITY PROOFS OF Spotlight
The unforgeability of the ticket, its privacy and prevention of double

spending property remains unaffected by the additional authentica-

tion information on this new version of the protocol. The proposed

changes in Section 7, at a high level, adds a certificate that must

to be sent by a user at the beginning of the protocols’ execution.

Since we only add authentication material to the protocol, it is

fairly straightforward to see that the same proof strategies for un-

forgeability, privacy and no-double spending are valid in this latest

version of the protocol. Note that the Judge J does not take part

to the game in this case. The challenger is simulating it instead.

Proof of Pseudonymity. Based on the above described mod-

ifications in the game (the judge is added and controlled by the

challenger), we follow the same sequence of game as in proof of

unforgeability. Let us denote it as Game G1
.

We have assumed statistical randomization of the certificates of

U0 with key pair (skU0
, pkU0

) andU1 with key pair (skU1
, pkU1

)

through the RandID algorithm. Hence, there is no link between the

keys and the identity. Now, let us assume a distinguisher between

G1
with bit 𝑏 and ExpPSEA with bit 1 − 𝑏. Assuming existence of

such a distinguisher, we can directly distinguish two randomised

certificates. Hence, under the above hypothesis, we can conclude

that pseudonymity holds for the auditable version of Applause. We

precise an upper bound: | Pr[ExpPSEA (1
𝜆

)→ 1]− 1

2
| ≤ AdvPayPseA (1

𝜆
).

□

Proof of Unlinkability. The challenger executes the actions

of the judge, hence, the adversary cannot recover the user’s identity

based on the judge’s keys (skJ , pkJ). Only an additional certificate

is shared with the adversary during Purchase, Refund or Transfer.
Even so, this is linked to the user’s public key, that we have assumed

statistically indistinguishable randomization, leading to impossi-

bility of the recovery of the original identity of the user. Then,

| Pr[ExpUNLA (1
𝜆

)→ 1] − 1

2
| ≤ 3 · AdvPayUnlA (1

𝜆
). □

For the auditable version of Applause in the standard model, the

same changes presented in Section C.2 can be applied to the above

proof to show its security.

	Abstract
	1 Introduction
	2 Electronic Tickets Systems
	3 E-Ticket Scheme Model
	4 Cryptographic Tools
	5 Description of Applause
	6 Security Analysis of Applause
	7 Auditability with Spotlight
	7.1 Overview of Spotlight
	7.2 Formal Description of Spotlight

	8 Conclusion
	Acknowledgments
	A Implementation of Applause
	B Transfer Settings
	C Security Proofs of Applause
	C.1 Security Proofs of Applause in Random Oracle Model
	C.2 Security Proofs of Applause in the Standard Model

	D Security Proofs of Spotlight

