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Abstract
Mix-Nets are used to provide anonymity by passing a list
of inputs through a collection of mix servers. Each server
mixes the entries to create a new anonymized list, so that the
correspondence between the output and the input is hidden.
These Mix-Nets are used in numerous protocols in which
the anonymity of participants is required, for example vot-
ing or electronic exam protocols. Some of these protocols
have been proven secure using automated tools such as the
cryptographic protocol verifier ProVerif, although they use
the Mix-Net incorrectly. We propose a more detailed formal
model of exponentiation and re-encryption Mix-Nets in the
applied Π-Calculus, the language used by ProVerif, and show
that using this model we can automatically discover attacks
based on the incorrect use of the Mix-Net. In particular, we
(re-)discover attacks on four cryptographic protocols using
ProVerif: we show that an electronic exam protocol, two elec-
tronic voting protocols, and the “Crypto Santa” protocol do
not satisfy the desired privacy properties. We then fix the vul-
nerable protocols by adding missing zero-knowledge proofs
and analyze the resulting protocols using ProVerif. Again, in
addition to the common abstract modeling of Zero Knowledge
Proofs (ZKP), we also use a special model corresponding to
weak (malleable) ZKPs. We show that in this case all attacks
persist, and that we (re)discover these attacks automatically.

1 Introduction

The concept of Mix-Networks was introduced by David
Chaum in 1981 [10] as a tool for achieving anonymity. The
purpose of a Mix Network is to hide the correspondence be-
tween its input and output vectors. On a high level, a Mix-Net
is run by a set of senders and a collection of mix servers, and
works as follows. Each sender delivers its input to the first
mix server. Each mix server privately shuffles its inputs list,
and forwards the shuffled list to the next server. Unless all
mix servers are corrupted, a Mix-Net should guarantee that
the link between the senders and their associated messages in
the output list remains secret to a third party.

Due to their importance in providing anonymity to the
communicating parties, Mix-Nets play a significant role in
building systems where privacy is a key security requirement,
such as e-voting systems [14, 29] or e-exams [27]. In the
context of voting, they are used to hide the link between voters
and their votes to guarantee the voters’ privacy, as typically
the protocol publishes the list of the decrypted votes at the
end to achieve verifiability. In such a protocol, any possibility
to link a voter to his decrypted plaintext vote immediately
breaks privacy. Voting protocols using Mix-Nets have been
even employed in real political elections, for example in the
Australian state of Victoria [18] or in Norway [28].

Since their introduction, many Mix-Net constructions have
been proposed, analyzed and integrated into various cryp-
tographic protocols. In [37], Park et al. presented the Re-
encryption Mix-Net. These Mix-Nets rely on malleability
properties of the encryption scheme, giving the possibility to
re-encrypt a list of ciphertexts resulting in a new list of cipher-
texts, without knowing or changing the associated plaintexts.
In [30], Haenni et al. presented a different form of a Mix-Net,
the so-called Exponentiation Mix-Net. These Mix-Nets create,
from a list of ElGamal public keys [26], a new shuffled list of
anonymized public keys, which can no longer be associated
to individual parties, but can still be used to verify signed
messages or encrypt data. Exponentiation Mix-Nets are used
in various protocols, notably in electronic voting [30] and
electronic exams [27].

The Remark! [27] exam protocol was analyzed and proven
secure [23] using ProVerif [9], a tool for the formal analysis
of cryptographic protocols in the symbolic model. In the sym-
bolic model the algebraic properties of cryptographic primi-
tives are usually modeled using equations, e.g., the equation
dec(enc(m,k),k) = m can be used to model a simple deter-
ministic symmetric encryption scheme, where the functions
dec and enc represent decryption and encryption, respectively.
These equations can fail to take into account subtle behav-
iors of primitives which can lead to miss certain classes of
attacks. For example, the model of Remark! in [23] abstracts
away completely the implementation of the Mix-Nets. Hence,



they missed an attack on the Mix-Net described in [40] that
exploits the details of the exponentiation process. This attack
was found manually and works as follows: an attacker sub-
mits a modified version of the public key of a targeted user
as their own key to the Mix-Net. This enables the attacker to
link both keys after the mixing, breaking the anonymity of
the targeted user.

Similar attacks on Mix-Nets had already been described
in 1994 [39], long before exponentiation mixnets [30] where
proposed in 2011. Still, it took a decade for [40] to (apparently
independently) discover that these Mix-Nets were insecure.

The goal of this paper is to propose new symbolic models
that capture sufficiently well the mathematical properties of
cryptographic primitives used in Mix-Nets and to automati-
cally find such attacks using automated tools such as ProVerif,
thus helping protocol designers avoiding these and similar
attacks in the future.

Contributions. We show that with the advances of proto-
col verification tools it is now possible to model Mix-Nets
more precisely. This allows us to automatically (re-)discover
previously missed (but known) attacks, to discover new at-
tacks, or to prove verify properties of protocols against a more
powerful attacker that can exploit weaknesses of the Mix-Net.
Our contributions are the following:

• We propose a detailed model of Haenni’s [30] expo-
nentiation Mix-Net, taking into account details of the
exponentiations.

• Our refined model includes a new, more precise model
of ElGamal encryption and signatures, which includes
the exponentiation operations and is of independent in-
terest as it can be used to model more precisely protocols
that use ElGamal encryption or signatures, but no expo-
nentiation Mix-Nets. To the best of our knowledge, until
now symbolic models of ElGamal encryption completely
abstracted away the exponentiations, hence potentially
missing attacks.

• We then show that this new model of the exponentiation
Mix-Net and ElGamal can be used to automatically an-
alyze protocols using this Mix-Net. For this, we model
and analyze three protocols in ProVerif: an e-voting pro-
tocol [30], an e-exam protocol [27], and the Crypto Santa
protocol [42].

– We give a formal model and analysis of the e-voting
protocol from [30]. Our analysis shows that it is
vulnerable to a privacy attack (similar to the one
from [40]) due to a weakness in the Mix-Net, and
the lack of Zero-Knowledge Proofs by the voters.

– We are able to automatically find the attack
from [40] on the exam protocol. Interestingly,
Amin et al. [40], despite identifying this attack
manually, used a simple formal model in ProVerif
which was incapable of detecting the vulnerability.

– We provide the first formal model and analysis of
the Crypto Santa protocol, which turns out to be
not vulnerable due to use of appropriate ZKPs by
the participants.

• To fix the identified attacks we add the lacking ZKPs to
the voting and exam protocols. We check the protocols
again, using the standard symbolic modeling of ZKPs,
and show that the corrected protocols are secure.

• The standard symbolic modeling corresponds to ideal
ZKPs. We propose a model for weaker Zero-Knowledge
Proofs (which are common [19], although they are
known to be vulnerable [7]), and can show that they are
insufficient in this case, as all attacks persist. To the best
of our knowledge, these concrete attacks have not been
described in the literature. Even the Crypto Santa proto-
col becomes vulnerable when using these weak proofs,
yet the protocol does not specify which ZKPs should be
used. Again, the model of weak ZKPs is of independent
interest, as it can be used for any protocol using ZKPs
of ElGamal keys, even if there is no Mix-Net.

• We also propose a refined model for re-encryption Mix-
Nets, and analyze the Estonian e-Vote protocol [1]. As
the protocol does not use any ZKP by the voters, it is
vulnerable to attacks on the Mix-Net, which we can au-
tomatically detect (similar attacks were found manually
before, e.g., [36]). We verify the protocol with added
weak or strong ZKPs, and are able to show that only the
strong ZKPs are sufficient to avoid attacks.

Related work. There exist several automatic protocol veri-
fication tools handling equivalence properties, but we chose
ProVerif as Deepsec [13] cannot handle our equational theory,
and although Tamarin [6] supports Diffie-Hellman exponen-
tiation, the built-in exponentiation operator cannot appear
inside a user defined equation. In the case of exponentiation
Mix-Nets we need to define encryption and signature schemes
using the Diffie-Hellman keys, hence we need to re-use the
exponentiation operator in the equations modeling encryption
and signature. Previous work mostly focused on improving
the modeling of exponentiation in isolation [17], but we need
to connect exponentiation and encryption.

Computational tools such as EasyCrypt [5] or Cryp-
toVerif [8] would be able to detect such attacks, they however
provide a significantly lower level of automation. Instead, this
paper follows a line of work which tries to refine the modeling
of cryptographic primitives in symbolic models and thereby
to reduce the gap to computational models, while keeping
a high level of automation. Similar work has been done
for other primitives, for example for digital signatures [32],
Diffie-Hellman exponentiation in weak groups [17], hash
functions [11] and authenticated encryption with additional
data (AEAD) [16]. In all these papers, the authors proposed
more detailed and more realistic models of cryptographic



primitives in the symbolic framework, to be able to identify
protocol flaws exploiting weaknesses of the cryptographic
primitives.

In [32], the authors refine the existing Tamarin models of
signature schemes so they discover attacks exploiting for ex-
ample the fact that in some schemes a signature potentially
verifies against multiple different keys. In [17], the authors
propose a novel extension of the symbolic model of Diffie-
Hellman groups for Tamarin enabling them to capture a large
family of attacks exploiting weak groups that were previously
outside the symbolic model. In [11], they propose a method-
ology to systematically discover attacks using Tamarin and
ProVerif that exploit weaknesses in widely deployed hash
functions, such as length extension attacks. They automati-
cally find known attacks, but also new variants of these attack
on several protocols. In [16], the authors provide an automated
analysis method in Tamarin for protocols that use AEAD. This
method allows them to systematically find attacks that exploit
the subtleties of the specific type of AEAD used, as different
schemes have different weaknesses.

We propose a refined model for Mix-Nets in ProVerif. Our
new models allow us to automatically re-discover known
attacks on several protocols, but also to discover new attacks
that could not be found using previous models.

Note that in symbolic models, used by the above works,
all negligible probabilities are abstracted away. For exam-
ple, if there is only a negligible probability to generate twice
the same random value, or for the adversary to break an en-
cryption scheme, in a symbolic model this will simply be
impossible. It has been shown that under certain assumptions
this can nevertheless give computational guarantees (an ap-
proach called “computational soundness”, see e.g. [4, 34]).
There are also works on symbolic models that allow non-
negligible probabilities in the control flow, i.e., where agents
can chose among different actions with given probabilities
(e.g., [12]), however there is currently no tool support for this.
As the goal of our work is to automatically identify attacks,
we use standard symbolic models, where mature tools exist.

The first formal model of Mix-Nets was provided by Wolff
et al. [46]. They formalized the Mix-Net and its components
using the CSP process algebra and the FDR model-checker.
The formal analysis was conducted considering a passive at-
tacker, and the Mix-Net model was not specific to a particular
type of Mix-Net, but rather general. At this time, this tool was
only able to deal with simple dedicated equational theory.

In 2014, Stathakidis et al. [43] proposed a formal model for
re-encryption Mix-Net suitable for automation based on CSP
process algebra and the FDR model checker. They model and
analyze the protocol in the presence of an intruder based on
Roscoe and Goldsmith’s perfect Spy [41]. The main security
property analyzed was the robustness of the mix protocol,
which is a functional property. Moreover, they do not model
any mathematical properties of the Mix-Net.

Also in 2014, Küsters et al. [33] provided the first com-

putational formal security analysis of Chaumian Mix-Net
with random partial checking. In their paper, they focus on
accountability, where misbehavior should be detectable and
the responsible of the misbehavior should be blamed. Their
analysis in the computational model is not automated. There
are other works on the verification of Mix-Nets, e.g., in [31],
where the authors provide a mostly manual proof of the Ver-
ificatum Mix-Net, but to the best of our knowledge there is
none targeting exponentiation Mix-Nets.

Our work in the symbolic model using ProVerif allows
us to automatically discover flaws or verify protocols using
Mix-Nets. Compared to previous work in the symbolic model,
we capture more precisely the exponentiation used in the
Mix-Nets to achieve anonymity of the exchanged messages.

Outline. We start by recalling the symbolic models and the
applied Π-Calculus in Section 2. In Section 3, we describe
exponentiation Mix-Nets and detail known attacks against
those types of Mix-Nets in Section 3.1. In Sections 3.2, 3.3,
3.4, and 3.5, we present our new formal models for exponenti-
ation Mix-Nets, ElGamal encryption and ZKPs, respectively.
In Section 3.6, we apply those models to three different proto-
cols using exponentiation Mix-Nets to guarantee the privacy
of the participants. In Section 4, we describe re-encryption
Mix-Nets and detail known attacks against those types of
Mix-Nets. In Section 4.2 we present our new formal model
for re-encryption Mix-Nets. In Section 4.3, we apply those
models to the Estonian e-voting protocol. We conclude and
discuss future work in Section 5.

2 Preliminaries

We provide a formal analysis of re-encryption and exponenti-
ation Mix-Nets in the symbolic model, also called Dolev-Yao
model [22]. In this model, the cryptographic primitives are
represented by function symbols and considered as black-
boxes; the messages are terms built using these primitives,
which may be read, modified, deleted or injected by the ad-
versary who has total control over the network. Under the
assumption of perfect cryptography, the attacker is only able
to perform cryptographic operations when it is in possession
of the right keys. We model Mix-Net protocols in the applied
Π-Calculus [3] and check privacy properties in ProVerif [9].

The applied Π-Calculus is a language for modeling se-
curity protocols. We briefly recall its syntax, semantics and
equivalence relation. For the full details, see [3].

Syntax. A finite signature Σ is a finite set of function sym-
bols each with an associated arity. Given a signature Σ, an
infinite set of names N and an infinite set of variables V ,
the set of terms T is defined as names, variables and func-
tion symbols applied to other terms. Terms are equipped with
an equational theory (a set of equations), which induces an
equivalence relation between terms, denoted =E .

The behavior of a probabilistic asymmetric encryption and



P,Q,R ::=
0 null process
P |Q parallel composition
!P replication
ν n ·P name restriction
if M = N then P else Q conditional
in(c,x) ·P message input
out(c,N) message output

Table 1: Grammar of Processes in the applied Π-Calculus.

A,B,C ::=
P plain process
A |B parallel composition
!A replication
ν n ·A name restriction
ν x ·A variable restriction
{M/x} active substitution

Table 2: Grammar of extended processes.

decryption, for example, is usually modeled by:

dec(penc(m, pk(x),r),x) =E m (1)

where pk is a unary function symbol representing the public
key corresponding to the secret key x, m is the plaintext and r
represents a random variable.

Systems are described as processes. The grammar for pro-
cesses is depicted in Table 1, where M and N are terms, n
is a name, x is a variable and c is a channel name. The null
process 0 does nothing; P |Q is the parallel composition of
P and Q; the replication !P behaves as an infinite number
of copies of P running in parallel. The process ν n ·P makes
a new private name n then it runs P. Finally, c(x) and c⟨N⟩
stand for an input and an output on the channel c respectively.

Processes are also extended with active substitutions. We
write {M/x} for the substitution that replaces the variable
x with the term M. The grammar of extended processes is
given in Table 2. {M/x} is considered as a process and ν x ·
({M/x}|P) corresponds to let x = M in P.

A frame is defined as an extended process built from 0 and
active substitutions by parallel composition and restrictions.
The domain of a frame is the set of variables for which the
frame defines a substitution, and which are not under restric-
tion. An extended process A is closed when its free variables
are all defined by an active substitution.

A context C [·] is defined as a process with a hole, that can
be filled with any process. An evaluation context is a context
whose hole is not under a replication, a condition, an input or
an output. A context C [·] closes A when C [A] is closed.

Semantics and Equivalences.
Internal reduction is the smallest relation on extended pro-

cesses following the rules in Table 3.

COMM c⟨x⟩ ·P | c(x) ·Q→ P |Q
THEN i f N =E N then P else Q→ P
ELSE i f M =E N then P else Q→ P

for ground terms M,N where M ̸=E N

Table 3: Internal reduction in the applied Π-Calculus.

The applied Π-Calculus defines observational equivalence
to model the indistinguishability of two processes by the
adversary. We write A ⇓ a when A can send a message on
channel a.

An observational bisimulation is a symmetric relation R
between closed extended processes with the same domain
such that A R B implies:

1. if A ⇓ a, then B ⇓ a;

2. if A→∗ A′ and A′ is closed, then B→∗ B′ and A′ R B′

for some B′;

3. E[A] R E[B] for all closing evaluation contexts E[ ].

Observational equivalence (≈) is the largest such relation.

3 Exponentiation Mix-Nets

In [30], Haenni et al. have presented the so-called Exponenti-
ation Mix-Nets, which create, from a list of ElGamal public
keys, a new shuffled list of anonymized public keys, which
can no longer be associated to individual parties.

Let us consider the usual ElGamal setup: a group G of
large prime order q with generator g in which the discrete
logarithm problem is hard. We have a list of n public keys
⟨pki⟩= ⟨pk1, . . . , pkn⟩ such that pki = gski and m mix servers
M j. The first mix server M1 takes the original list of public
keys ⟨pki⟩, generates a fresh random r1 ∈ {0, . . . ,q−1} and
computes ⟨pkr1

i ⟩. Then M1 permutes the resulting terms with
a secret shuffled order ⟨pkr1

π1(i)
⟩ where π1 is the permutation

of indexes applied by M1. Then M1 sends ⟨pkr1
π1(i)
⟩ to the

next mix server along with gr1 . The following mix servers
repeat these same steps as required. The last mix server Mm
outputs the list: ⟨gskπ(1)·r,gskπ(2)·r, . . . ,gskπ(n)·r⟩ along with gr

where: π =
m

∏
i=1

πi and r =
m

∏
i=1

ri. Each party in possession of

their secret key ski should be the only one able to identify her
pseudonym from the final list published by the last mix server
by computing (gr)ski = pkr

i .

3.1 Attacks against Exponentiation Mix-Nets
Although exponentiation Mix-Nets were designed by Haenni
et al. [30] to preserve anonymity and unlinkability of voters in
their e-Voting Protocol by attributing anonymous keys, there
is an attack. An attacker A has access to the list of public keys



Figure 1: Attack against Exponentiation Mix-Nets.

⟨pki⟩ of all participants. They want to learn the pseudonym
generated by the mix servers for a specific public key pkk.
A can generate a ∈ {1, . . . ,q− 1}, raise pkk to the power a
and append term (pkk)

a to the list of public keys as their own
public key to be mixed. When the final list of pseudonyms
is published, they raise each pseudonym to the power of a
and look for a match. The attack, as illustrated in Figure 1
for a list of n public keys, exploits the commutative property
of exponentiation: ((gski)a)r = ((gski)r)a. This attack (a more
specific variant of it) was described by Rakeei et al. [40], but
it can be seen as a variant of an attack firstly described by
Pfitzmann [39] in 1994.

3.2 Models of Exponentiation Mix-Nets

We give a formal specification of exponentiation Mix-Nets.

Definition 3.1 (Mix-Net) A Mix-Net is a tuple (S,M,A, ñp)
where S is the process executed by the senders, M is the pro-
cess executed by the Mix-Net servers, A is a process executed
by an authority and ñp is a set of private channel names,
where A can be the null process whenever the protocol does
not involve such an entity.

Definition 3.2 (Exp-mixnet instance) An exp-mixnet in-
stance is a closed process EP = νñ · (Sσid1 σskS1 | . . . |
Sσid j σskS j |Mσm1 | . . . |Mσmk) where ñ is the set of all re-
stricted names, which includes the set of the protocol’s pri-
vate channels; SσidiσskSi are the processes run by the senders
with the substitutions specifying the identity and the secret
key of the ith sender respectively; Mσm j is the process exe-
cuted by the Mix-Net servers with the substitution specifying
in particular their secret exponent.

We write MP{id1,id2}[·] for the Mix-Net instance MP without
the processes for the senders id1 and id2.This allows us to
define anonymity.

Definition 3.3 (Anonymous Shuffling) A Mix-Net ensures
Anonymous Shuffling if for any mixnet processes MP, any
senders id1 and id2 and any private materials p1 and p2 (i.e.,
their keys or messages):
MP{id1,id2}[Sσid1σp1 |Sσid2σp2 ]

≈MP{id1,id2}[Sσid1σp2 |Sσid2σp1 ]

In the case of exponentiation Mix-Nets, this definition re-
quires that the process where id1 has sk1 and id2 has sk2 as
their secret key, is equivalent to the process where id2 has
sk1 and id1 has sk2. This prevents the attacker from obtain-
ing information about the identity of the sender based on the
outcome of the Mix-Net.

As stated above, we consider a Dolev-Yao attacker. They
has complete control of the network, except the private chan-
nels: they can eavesdrop, remove, substitute, duplicate and
delay messages that parties are sending to one another, and in-
sert messages of their choice on the public channels. Depend-
ing on the properties, we also allow the attacker to corrupt
parties. Such corrupted parties cooperate with the attacker
by revealing their secret data and/or taking instructions from
them. We model them using the definition given in [20]: if
the process P is an honest party, then the process Pc1,c2 is its
corrupted version. The latter is a variant of the honest pro-
cess sharing with the attacker channels c1 and c2. Pc1,c2 sends
all its inputs and freshly generated names to the attacker via
channel c1, and receives (via channel c2) messages from the
attacker that will determine its behavior.

Naturally, it is interesting to consider corrupted or dishon-
est senders, as they might be interested in obtaining a link
between the outcome of a Mix-Net and the identity of some
other users. We can do this by replacing honest senders with
corrupted ones. For example, if we assume that candidate id3
is dishonest, we obtain:

MP{id1,id2,id3}[Sσid1σp1 |Sσid2σp2 | (Sσid3σp3)
c1,c2 ]

≈MP{id1,id2,p3}[Sσid1σp2 |Sσid2σp1 | (Sσid3σp3)
c1,c2 ]

3.3 Model and analysis in ProVerif
Exponentiation Mix-Nets have been modeled previously, but
only as part of other, bigger protocols, for example in the
analysis of the E-exam protocol Remark! [23]. However, as
the Mix-Net was only part of a bigger protocol, this model
used a high-level abstraction of the Mix-Net’s functionality,
which completely abstracts the details of the computations.
This explains why some attacks were missed. The following
functions were used to model the Mix-Net’s computations:

• pk(sk) computes the public key associated to the private
key sk,

• pseudo_pub(pk(sk),rce) is the function used by the
Mix-Net servers to compute the public pseudonyms of
the participants based on their public keys pk(sk) and
the random exponent rce,

• pseudo_priv(sk,exp(rce)) is the function used by the
participants to compute their pseudonym from their pri-
vate key sk and the new generator exp(rce) (representing
grce) generated by the Mix-Net.

The equational theory also involves a function checkpseudo
which is a binary function taking as argument two



pseudonyms and returns true when the first argument,
representing the pseudonym computed by the Mix-
Net, matches the second argument which represents
the pseudonym recomputed by the candidate based
on the new basis: checkpseudo(pseudo_pub(pk(sk),rce),
pseudo_priv(sk,exp(rce))) = true.

This modeling is sufficient to represent the Mix-Net func-
tionality, but it is clearly insufficient to capture the attack
described above, as all exponentiations are hidden away by
the functions pseudo_pub and pseudo_priv.

However, recent progress in ProVerif’s development en-
ables us to use a much more precise modeling, which we
describe in the following.

Equational theory. Our new function consists of a single
binary function exp which denotes the operation of exponen-
tiation performed by the participants of the protocol. The
properties of this primitive are captured by:

exp(exp(g,x),y) = exp(exp(g,y),x)

exp(exp(exp(g,x),y),z) = exp(exp(exp(g,x),z),y)
(2)

This equational theory directly models exponentiation, en-
abling us to capture the attack when checking the protocol
against Anonymous Shuffling. Note that in the equations g
is a fixed generator and not a variable, as otherwise the pre-
treatment of equations by ProVerif does not terminate. The
first equation takes into account the equation needed for the
protocol to work but is insufficient to capture attacks against
exponentiation Mix-Nets. This is the reason why we need to
explicitly give an equation for three exponents, as the attack
uses an additional exponentiation. Adding additional expo-
nentiation (more than three) to the equational theory caused
non-termination of ProVerif in our examples.

Model. The process for each Mix-Net server M is given
in Figure 2, the honest sender process is: let S(skS) = out(ch,
(exp(g, skS))). The sender simply outputs their public key.
Each Mix-Net server inputs the list of all keys, checks that
they are distinct, applies their random exponent to all keys
and outputs the list of all keys in random order (modeled
using parallel outputs on the same channel). We note that all
keys should be different. Otherwise a trivial attack consists in
copying the public key to track: the corresponding pseudonym
is the one figuring twice in the list output by the Mix-Net.

In ProVerif, we add dedicated private channels between
the two participants swapping their keys and the Mix-Net to
ensure that both keys take part in the mixing. The keys are
still published, and the attacker can still add a malicious key
to the mixing.

Analysis. The result of the analysis of exponentiation Mix-
Nets is given in Table 4. ProVerif concludes that Anonymous
Shuffling property is not satisfied and finds the exact same
attack depicted in Figure 1.

let M(eN j) =

1: in (ch, pkS1).

2:
...

3: in (ch, pkSk).
4: if (pkS1 <> pkS2)&& . . .&&(pkS1 <> pkSk) then

5:
...

6: if (pkSk <> pkS1)&& . . .&&(pkSk <> pkSk−1) then
7: ( out(ch,exp(pkS1 ,eN j)) ||

8:
...

9: out(ch,exp(pkSk ,eN j)) ).

Figure 2: Mixnet process.

3.4 Refined Model of ElGamal
ElGamal asymmetric encryption is typically modeled the
same way as any other public key encryption schemes: us-
ing a model for an abstract standard probabilistic asymmetric
encryption scheme, as in Equation (1) (e.g., in [15, 24]).

However, when using our equational theory depicted in
Equations (2) to model the Mix-Net operations, the public
keys are of the form exp(·, ·) and not pk(·), so we need to mod-
ify the equational theory used to model ElGamal encryption,
and also the equational theory used to model signatures.

An intuitive approach to modeling ElGamal encryption,
where public keys are the result of the exponentiation oper-
ator, would be as follows: dec(enc(m,exp(g,sk),r),sk) = m
where g is a fixed generator. However, this equation only al-
lows encryption under public keys with the form exp(g,sk).
The attack described in Section 3.6.3 would not be detectable
using this equation as the attacker’s key involves two expo-
nentiations.

Another attempt at modeling ElGamal would be to re-
place the fixed generator g in the aforementioned equation
with a variable to allow encryption with different genera-
tors: dec(enc(m,exp(X ,sk),r),sk) = m. This equation is in-
correct. Consider a dishonest party constructing their pub-
lic key D = exp(H,d) from an honest key H = exp(g,h).
When the dishonest party receive a message m encrypted
with their public key enc(m,exp(H,d),r), they should not
be able to obtain m as when deciphering one should obtain
m ·((gh)d)r ·((gr)d)−1 ̸= m. However, with the latter equation
we have dec(enc(m,exp(H,d),r),d) =m. To avoid this issue,
we include the generator used in the encryption in the equa-
tion, which is consistent with the real cryptographic primitive
(the public key includes the generator as a parameter).

To that end, we use the following equations:

dec(enc(m, X, exp(X, s), r), X, s) = m
getmess(sign(m, X, s)) = m

checksign(sign(m, X, s), X, exp(X, s)) = m
(3)

The first equation models ElGamal probabilistic public key



encryption and decryption. To encrypt a message m one needs
to generate a random r and to use the public parameters of
the receiver: a basis X and the key exp(X ,s) such that s is the
secret key of the receiver. For example, with respect to the
notation given in the previous section, let pkS = exp(g,skS) be
the public key of a sender and exp(pkS,eN) be the pseudonym
created by the Mix-Net. To encrypt a message m into the
ciphertext c, we use the constructor enc with the following
parameters m, exp(g,eN), exp(pkS,eN) and r, respectively.
This works because of the commutativity of the function exp
defined in the first equation of the equational theory given
in Equations (2). Thus, the only way to decrypt c is to apply
the destructor dec using the secret key skS as parameter and
specifying the basis X = exp(g,eN) used for the encryption.

The second and the third equations model a digital signa-
ture algorithm. To sign a message m, one needs to specify
the basis X used in the public parameter exp(X ,s) and the
secret exponent s. Then, sign(m,X ,s) is a digital signature
for the message m. The second equation states that anyone
can extract a message from a signature (we do not assume the
signature scheme to be hiding). The third equation models the
verification of a signature using the corresponding public key
exp(X ,s) and the basis X with respect to the parameters used
by the signer. This model of ElGamal probabilistic public key
encryption is not bound to any protocol, and more precise
than the usual models, as it inherits the algebraic properties
of the exponentiation operation defined in the equational the-
ory given in Equations (2). Obviously, it can also be used in
protocols that do not include exponentiation Mix-Nets. Our
model of the ElGamal encryption has allowed us to find a
subtle attack described later in Section 3.6.3.

3.5 Refined Model of Zero Knowledge Proofs

A Zero Knowledge Proof (ZKP) allows a party to show to
another party that a mathematical statement is true without
revealing anything other than the truth of the statement itself.
A specific class of ZKPs are proofs of knowledge, in which
the prover demonstrates knowledge of the preimage x ∈ X of
a public value y = φ(x) ∈ Y , where φ is supposed to be a one
way function. These proofs are in particular used to prove
knowledge of the discrete logarithm y = gx in a multiplica-
tive finite group Gq with a generator g of order q. Moreover,
interactive proofs between provers and verifiers can be turned
into non-interactive ones using the Fiat-Shamir heuristic [25].

We enriched our model with a non-interactive knowledge
proof (NIZKP) of the discrete logarithm. The sender is re-
quired to transmit its message along with a ZKP proving its
possession of either the secret key skS for the exponentiation
Mix-Nets or the randomness used for encryption for the re-
encryption Mix-Net. Upon a valid verification of the proof
given by the sender, the Mix-Net servers accept the entry.
Otherwise, they reject the message.

Intuitively, adding a ZKP of the possession of the secret in-

formation along with the messages fixes the attack mentioned
above. However, two variants of the Fiat-Shamir transforma-
tion appear in the literature. In [7], Bernhard et al. distinguish
a weaker and a stronger variant. Both variants begin with the
prover making a commitment. The stronger variant hashes
both the commitment and the statement to be proved, while
the weak variant hashes only the commitment.

The latter version is subject to an attack which allows a
malicious party to “fake” a proof as follows [7]. To create a
proof, an honest prover, having as public key pk = gsk, picks
a random a ∈ {1, . . . ,q−1}, computes A = ga and then, they
hash A to create a challenge c = H (A). Finally, they compute
f = a+c · sk. The proof corresponds to the pair (c, f ) and the
verification procedure consists in checking whether c is equal
to H (g f · (pk)−c) or not. For an honestly generated proof the
verification procedure succeeds since we have H (g f · pk−c)=
H (ga+c·sk ·g−sk·c) = H (ga) = c.

However, a dishonest prover can fake a NIZKP as fol-
lows. They pick A′ a random element from Gq, f ′ a ran-
dom exponent, computes c′ = H (A′) and the verification
of the proof (c′, f ′) succeeds for pk′ = (g f ′ · A′−1)c′−1

as
H (g f ′ · pk′−c′) = H (g f ′ · ((g f ′ ·A′−1)c′−1

)−c′) = H (A′) = c′.
The public key depends on the faked proof, i.e., the dishonest
prover must compute the proof before choosing pk′.

Because of this attack, the use of the weak variant may
invalidate the proof of knowledge. The authors of [7] stated
that the weak Fiat-Shamir transformation can safely be used
when the statement (in this example, the public key) is fixed
first (as in the attack the public key depends on the proof).
However, since exponentiation Mix-Net or re-encryption Mix-
Net are carried on as part of other bigger protocols, the list
of inputs is not a priori known. It is therefore interesting to
investigate the impact of the weak variant in our context. Note
also that the weak Fiat-Shamir transformation is widely used
in practice when it comes to non-interactive proof systems:
in [19] the authors examined over 75 different open-source
implementations of proof systems that use the Fiat-Shamir
heuristic and found 36 systems using the weak variant.

In the case of exponentiation Mix-Nets, the use of weak
ZKPs allows for the following attack. Let (c, f )= (H (ga),a+
c · sk) be the proof generated by an honest participant with
public key pk = gsk. An attacker computes c′ = H (Ac−1

),
where A = ga is the commitment of the honest participant,
chooses pk′ = pkc′−1

as public key and computes f ′ = c−1 · f .
The attacker sends (c′, f ′) as a proof along with their public
key pk′ to the Mix-Net. The verification procedure of the ZKP
by the Mix-Net succeeds since we have H (g f ′ · (pk′c

′
)−1) =

H (gc−1·a+sk ·g−sk) = c′.
As the verification of the proof succeeds, the attacker can

then perform the same attack as described in Figure 1 by
raising pseudonyms to the power of c′−1 (instead of a).

Models and analysis. We use two different models, one



Protocol ZKP Result Time

Exponentiation Mix-Nets
without ✗ 2 s
weak ✗ 1 m 6 s
strong ✓ 3 s

Re-encryption Mix-Nets
without ✗ 1 s
weak ✗ 2 s
strong ✓ 1 s

Table 4: Results of our analysis of Anonymous Shuffling, with
and without the added ZKP.

modeling weak ZKPs and the other modeling strong ZKPs.

ck(szkp(A,g,x),g,exp(g,x),h(g,exp(g,x),A)) = true (4)
ck(wzkp(A,X ,x),X ,exp(X ,x),h(A)) = true (5)

These equations state that the verification of a proof of knowl-
edge of a secret key succeeds only if the proof was created
genuinely: it needs to be checked using the same generator,
public key and hash that was used to generate it. The first
argument of both functions (szkp and wzkp) refers to the com-
mitment used in the proof. The hash of the commitment is
used by ck to check the adequacy of the challenge, and in
the case of the strong variant the hash includes the public
key. Moreover, in case of the strong ZKP, the proof is only
valid when using the public generator g, as this is part of the
statement. In the case of a weak ZKP, the hash only includes
the commitment, and the generator is now a variable as it is
no longer part of the statement. The latter allows the attacker
to perform the attack described above, where the public key is
exp(exp(g,x),a) for some x and a. Note that in our ProVerif
code, when the Mix-Net verifies a weak proof, we input the
value X from the network – fixing g would prevent the at-
tacker from using a public of the form exp(exp(g,x),a), as in
the first equation.

With the strong variant ProVerif concludes that Anony-
mous Shuffling is satisfied for exponentiation Mix-Nets (Ta-
ble 4). When using the weak ZKP, ProVerif returns attack
traces on the exponentiation Mix-Net. The ProVerif attack
works in the same way as the one without a ZKP (Figure 3.1):
an attacker builds a new key pk′ = pkα from their victim’s
key pk and bypasses the proof check due to Equation (5),
since ck(wzkp(A, pk,α), pk,exp(pk,α),h(A)) = true. In re-
ality, this attack does not work for any α, but for example
choosing α = c′−1 results in a real attack as described above.
Using this approach, we were able to instantiate all attack
traces found by the tool with real attacks. In fact, ProVerif
cannot find the real attack directly as our equational theory
does not encompass inverses (and adding them is currently not
possible in ProVerif). However, our equations do not induce
false vulnerabilities in the modeled cryptographic primitives
since they represent a real (albeit abstracted) behavior of the
primitive, and the missing values are simple to instantiate.

Examiner Mixnet Authority Candidate

......... ......... ......... .........

skE , pkC, pkM, pkA skM, pkE , pkC, pkA skA, pkE , pkM, pkC skC, pkE , pkM, pkA
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Figure 3: Remark! protocol diagram.

3.6 Applications
We perform formal analysis of three cryptographic protocols
using Exponentiation Mix-Nets for different privacy purposes.
A formal analysis of the electronic exam protocol has been
presented in [23] where the protocol has been proved secure
and no attacks have been found against privacy properties.
Regarding the two other protocols, to the best of our knowl-
edge, we present their first formal analysis. The timings for
the results of the formal analysis given below were done on
macOS with a M1 processor and 16 GB of RAM. All ProVerif
files are available online [2]. We use a public Bulletin Board,
denoted BB. A Bulletin Board is a public append-only (i.e.,
nobody can delete) broadcast message channel. We also as-
sume that the exponentiation Mix-Net behaves correctly. For
simplicity, we have modeled the exponentiation Mix-Nets per-
formed by all servers as a single honest Mix-Net server. All
the aforementioned protocols are analyzed with and without
the proposed fix described in Section 3.5.

3.6.1 Remark! Protocol

We first analyze the Remark! protocol, an electronic exam pro-
tocol, designed by Giustolisi et. al [27] and meant to achieve
multiple privacy properties without relying on trusted parties.
The following description of the protocol is based on [23, 27].

Protocol Description. The Remark! protocol involves four
types of parties: Mix-Net servers, the candidate(s) sitting the
exam, the examiner(s) correcting the answers and marking
them, and an exam authority collecting the answers, dispatch-



ing them for the marking phase and delivering the final marks.
It is assumed that each party is given a pair of public/private
ElGamal keys with a common generator g, i.e., the private
key x and the public key y = gx. The protocol runs in four
phases: Registration, Examination, Marking and Notification.
The protocol’s sequence diagram is depicted in Figure 3.

Registration. The registration phase uses an exponentiation
Mix-Net to generate pseudonyms pkC and pkE for both can-
didates C and examiners E based on their public keys pkC
and pkE as described in Section 3. Let rm and r′m denote the
Mix-Net’s exponents related to candidates and examiners re-
spectively, and let (hC = grm , hE = gr′m ) be the new generators.

Examination. The exam authority begins by signing (us-
ing its secret key skA) and encrypting (with the candidates’
pseudonyms pkC) the questions q and publishes the result on
the bulletin board BB. Then, the exam authority collects the
candidates’ answers a (which are signed with the candidates’
pseudonym keys, and encrypted with the authority’s key pkA),
verifies the signatures, resigns them, encrypts them using the
corresponding candidates’ pseudonyms and publishes them.

Marking. The exam authority encrypts the answers with
examiners pseudonyms pkE and publishes them. Each exam-
iner marks the received tests with a mark mark, signs them
using its pseudonym, encrypts them with the pkA and sends
the marked tests back to the authority.

Notification. The authority receives the marks, verifies the
signatures of the examiners and publishes the signed marks
encrypted with the candidates’ pseudonyms. Finally, the Mix-
Net servers de-anonymize the candidates’ pseudonyms by
revealing the secret exponent rm.

Formal Analysis. Dreier et. al [23] formalized privacy
properties for electronic exams. Here we focus on Anony-
mous Marking and Anonymous Examiner’s informal defini-
tions. An e-exam protocol ensures Anonymous Marking if a
process where two candidates C1 and C2 answer a1 and a2
respectively, is indistinguishable from a process where the
candidates switch their answers. Similarly, it ensures Anony-
mous Examiner if a process where two examiners E1 and E2
grade exam forms f1 and f2 respectively, is indistinguishable
from a process where the examiners switch the forms.

The mentioned properties were proven satisfied with
ProVerif on the model given in [23]. This model uses the
abstract model for the Mix-Net described in the beginning of
Section 3.3. We took the existing ProVerif files and replaced
the abstract model of the Mix-Net with our refined model, and
checked the same properties. Now, ProVerif finds attacks on
Anonymous Examiner and Anonymous Marking. The results
of the analysis are depicted in Table 5.

Anonymous Marking and Anonymous Examiner are not
satisfied because candidates Ci sign their answer ai with their
pseudonyms pkCi , and examiners sign their marks similarly;
while pseudonyms generated by Mix-Net are linkable using
the attack described in Section 3.1. Such vulnerabilities break
the expected fairness of the marking procedure and also might

Protocol ZKP Property Result Time

Remark! [27]

without Anonymous Marking ✗ 3 m 16 s
Anonymous Examiner ✗ 4 m 19 s

weak Anonymous Marking ✗ 9 m 35 s
Anonymous Examiner ✗ 9 m 23 s

strong Anonymous Marking ✓ 11 s
Anonymous Examiner ✓ 7 s

Haenni Voting [30]
without

Vote Privacy
✗ 4 m 35 s

weak ✗ 9 m 35 s
strong ✓ 14 s

Crypto Santa [42] weak Anonymous Shuffling ✗ 4 m 6 s
strong ✓ 9 s

IVXV [1]
without

Vote Privacy
✗ 1 s

weak ✗ 25 s
strong ✓ 8 s

Table 5: Results of our analysis, with and without the added
ZKP. Crypto Santa required a ZKP from the start.

make examiners vulnerable to coercion. The results of the
analysis are depicted in Table 5.

3.6.2 Crypto Santa Protocol

The second protocol we have analyzed is the Crypto Santa pro-
tocol. It is based on a Christmas tradition called Secret Santa.
During this ceremony, the participants are randomly assigned
a person to whom they give a gift. In particular, the identity
of the gift giver is to remain a secret. The Crypto Santa proto-
col is a cryptographic protocol designed by P. Ryan [42] to
cryptographically implement the Secret Santa tradition. The
protocol is designed to protect the anonymity of the gift giver,
and is essentially based on an Exponentiation Mix-Net.

Protocol Description. The participants are n players. Each
player is assumed to have a pair of a public and secret keys
(pki,ski) where pki = gski . The public keys are arranged into
a list L̃ = (pk1, . . . , pkn) such that the key pki belongs to the
player Pi. Given a list L let L[ j] denote the jth term of the list
L. The players take the list of public keys in turns, and each
player i performs an exponentiation with si and shuffling step.

The final output is the list Ln = Πn(Ln−1[1]sn ,
. . . ,Ln−1[n]sn) along with the final generator gs = gs1s2...sn .
Note that the position of each pseudonym in the final
outputted list Ln is relevant, as it determines a player to whom
the gift is offered. If Ln[ j] = pks

i , then Pi presents their gift
gi f ti to the player Pj.

To prevent a player from cheating, the protocol suggests
that each player provides two different Zero-Knowledge
Proofs: a proof that he has performed the shuffle correctly
(based on the specifications from [45]), and a proof of knowl-
edge of their secret key ski using a standard ZK proof of the
discrete log [42]. We do not give further details about the
proof of shuffle since in our model we assume that the shuffle
procedure is performed correctly.

Formal Analysis. In [42] there is no formal definition
of the security properties ensured by Crypto Santa proto-



Player P1 Player P2 Player Pn

......... ......... .........

sk1, pk1 . . . pkn sk2, pk1 . . . pkn skn, pk1 . . . pkn

new s1,Π1 new s2,Π2 new sn,Πn

L1←Π1(pks1
1 , . . . , pks1

n )

L̃1← (L1,gs1)

L̃1

L1

BB

L2←Π2(L1 [1 ]s2 , . . . ,L1 [n ]s2)

L̃2← (L2,(gs1)s2)

L̃2

L2

BB

L̃1

L1

BB

...
L̃n−1

Ln←Πn(Ln−1 [1 ]sn , . . . ,Ln−1 [n ]sn)

L̃n← (Ln,gs1s2...sn)

L̃n

BB

Ln[ jn] = (gs1...sn)skn

gi f tn
Pjn

Ln[ j1] = (gs1...sn)sk1

gi f t1
Pj1

Ln[ j2] = (gs1...sn)sk2

gi f t2
Pj2

Figure 4: Crypto Santa Protocol

col. Nevertheless, they emphasized the fact that the gift giver
should be anonymous. Hence, in the final list, the players’
pseudonyms should be anonymized. Thus, the Crypto Santa
protocol should probably guarantee Anonymous Shuffling
(Def. 3.3). The results of our analysis are depicted in Table 5:
Anonymous Shuffling is satisfied in case of strong ZKPs, but
broken in case of weak ZKPs. Note that the original paper [42]
does not specify which ZKP is to be used, and weak ZKPs
are widely used [19].

3.6.3 Haenni’s Internet Vote Protocol

The next protocol we analyze is an internet vote protocol
designed by Haenni et. al [30]. This paper also introduced
the concept of exponentiation Mix-Nets. The security of this
protocol relies on the anonymity obtained by shuffling the
voters’ public keys. Casting a vote consists in signing the
encrypted candidate choice with the anonymized public key
generated by the Mix-Net. To obtain the election result, votes
carrying a valid signature are decrypted and counted.

Protocol Description. This voting protocol involves four
types of parties: the anonymizers, which are the Mix-Net
servers, the voters, the talliers and an election authority. The
protocol runs in four phases: Registration, Preparation, Vote
Casting and Tallying. We assume an anonymous channel C
between the voters and the Bulletin Board. The protocol’s
sequence diagram is depicted in Figure 5.

Registration. The election authority begins by setting up
a Public Key Infrastructure for the voters. Each voter idVi

Talliers Anonymizers Voter Authority

......... ......... ......... .........

Registration

Preparation

Vote Casting

Tallying

skT , pkVi , pkM, pkA skM, pkT , pkVi , pkA skVi , pkT , pkM, pkA skA, pkT , pkVi , pkM

Certificate request

Cert(pkVi)

Cert(pkVi)BB
C

BB

rm←∏ri

pkVi ← pkrm
Vi

hV ← grm

(pkVi ,hV ) BB

ei←{ci}skT

si←{ei}skVi

Bi← (ei,si,h
skVi
V )

Bi
BB

ci
BB

Results of election
BB

Figure 5: Haenni voting protocol sequence diagram.

is therefore equipped with a key pair (ski, pki = gski) and a
public certificate binding their public key pki to their identity
idVi .

Election Preparation. During this phase the election author-
ity publishes the set C of possible candidates. The authority
has to publish all certificates corresponding to eligible vot-
ers. Let Y = {y1, . . . ,yn} be the list of voters’ public keys.
The anonymizers take as input Y and output the shuffled
list Ỹ = {ỹ1, . . . , ỹn} together with the new generator g̃. The
talliers jointly generate a public key using a threshold encryp-
tion scheme. The talliers jointly generate a public key using a
threshold encryption scheme.

Vote Casting. Let ci ∈C be an eligible candidate. To vote
for ci, a voter vi needs to encrypt ci with the talliers’ public key
y, signs the encrypted vote ei with their private key ski, com-
putes their pseudonym based on the new generator g̃ created
by the anonymizers, and submits the ballot Bi = (ei,si, g̃i

ski)
such that si corresponds to the encrypted and signed vote.

Tallying. Let B=(e,s, ỹ) be a ballot. For a vote to be consid-
ered in the tally, the following conditions have to be satisfied:
ỹ is a valid pseudonym, s is a valid signature for e and B
is the only valid entry for ỹ in BB. The talliers decrypt all
valid votes individually, and determine the final election result
by applying the counting function to the resulting plaintexts.
They also provide proofs of correct decryption.

Formal Analysis. The main security property related to
vote protocols is Vote Privacy. We informally recall the defini-
tion proposed by Delaune et. al [21]. In a nutshell, considering
two voters V1 and V2 and their votes c1 and c2, respectively,
a voting protocol respects vote privacy whenever a process
where V1 votes c1 and V2 votes c2 is observationally equiv-
alent to a process where V1 votes c2 and V2 votes c1. This



means that an attacker is not able to detect whether arbitrary
honest voters V1 and V2 swapped their votes or not. The result
for Vote Privacy is depicted in Table 5. Once again, in the
absence or in the presence of weak ZKPs, there is an attack;
in the presence of strong ZKPs, the property is verified.

The attack found by ProVerif linking the pseudonyms gen-
erated by Mix-Net (which is used by the voters to sign their
votes) and the identities of the voters is quite interesting as it
also relies on our refined model of ElGamal encryption and is
slightly different from the attack described in Section 3. More
precisely, let us consider two voters Vi and Vj with secret keys
skVi and skVj with corresponding public keys pkVi = gskVi

and pkVj = gskV j respectively. An attacker who wants to track
Vi would choose as public key pkVi

s. The outputted list of the
pseudonyms generated by the Mix-Net contains pkVi

rm (the
pseudonym of Vi), pkVj

rm (the pseudonym of Vj) and pkVi
srm ,

the attacker’s pseudonym. To test whether a pseudonym g̃
belongs to the voter Vi, the attacker generates a plaintext m
and encrypts it using their pseudonym h as the public key
and using g̃ as the basis. If the attacker succeeds in decrypt-
ing the ciphertext using their secret key, then the pseudonym
used as the basis for ElGamal encryption corresponds to Vi’s
pseudonym. We can see as follows why this attack works.
Let c be the ciphertext for the plaintext m. Then, c = (c1,c2)
such that c1 = g̃r = (pkVk

rm)r and c2 = m ·hr = m ·(pkVi
srm)r.

Using their secret key s the attacker tries to decrypt c. If k = i
then c2 ·c−s

1 =m. ProVerif was only able to find such an attack
because of our refined model of ElGamal encryption.

4 Re-Encryption Mix-Nets

Re-Encryption Mix-Nets were proposed by Park et al. [37].
In re-encryption Mix-Nets, both the input and output lists
are ciphertexts encrypted within the same public-key en-
cryption scheme. These Mix-Nets rely on homomorphic op-
erations that allow the servers to re-randomize ciphertexts,
thereby re-encrypting the corresponding plaintexts. Consider
the usual ElGamal setup. We have a list of n ciphertexts ⟨Ci⟩=
⟨C1, . . . ,Cn⟩ such that Ci = (gr′i ,mihr′i), where mi a plaintext,
and m mix servers M j. The first mix server M0 takes the origi-
nal list of ciphertexts ⟨Ci⟩, and for each ciphertext Ci generates
a fresh random coin ri ∈ {0, . . . ,q−1} and re-randomizes the
ciphertext with ri to obtain C′i = (gr′i gri ,mihr′i hri). Then M0
permutes the resulting terms using a secret random order and
sends the new list to the next mix server. The following mix
servers repeat these same steps. The last mix server Mm−1
outputs a list of ciphertexts which encrypt the permuted input
messages, initially chosen by the senders, encrypted using
different and secret random values.

4.1 Attacks against Re-Encryption Mix-Nets
Despite the fact that re-encryption Mix-Nets were specifically
designed to guarantee anonymity, Pfitzmann [39] described

A Ĉk
V1,m1 C1

V2,m2 C2
...

Vn,mn Cn

C′2
C′k
C′2...
Ĉ′k

M0 M1 Mm

ma

m2

m2
...

ma
k

mk

Decryption by the vote authority

Figure 6: Attack against Re-encryption Mix-Nets, where Ĉk =
(grk a,(mkhrk)a).

the attack depicted in Figure 6 in the context of electronic
voting. In this case encrypted ballots are sent to a Mix-Net.
Once the ballots are mixed, the authority decrypts all the
mixed encrypted ballots, and publishes the plaintext values
in order to ensure verifiability properties. The attack consid-
ers a malicious voter A participating in the protocol. The
attacker has access to the list of the Mix-Nets’ input ⟨Ci⟩
of all participants. The attacker wants to learn the plaintext
corresponding to a specific ciphertext Ck ∈ ⟨Ci⟩ such that
Ck = (grk ,mkhrk). A can generate a ∈ {1, . . . ,q− 1}, raise
both components of Ck to the power a, and send the ciphertext
Ĉk = (grk a,(mkhrk)a) to the Mix-Net as its vote. When the
output list of encrypted messages is sent to the authority, all
plaintexts mi are published, and A knows that there is one
output value mi that is equal to ma

j . Hence, A looks for this
collision by raising each plaintexts to the power of a and look-
ing for a match with the others. This way A can identify the
plaintext mi of the victim.

Adding zero knowledge proof of possessing the random-
ness would fix the attack described above, as the attacker only
knows a, but not rk. However, when the weak variant is used,
since the first component of the honest ciphertext is grk and
(grk)a for the malicious one, the attacker can construct an
invalid ZKP for a fixed a as it is shown in Section 3.5: let
(c, f ) be the ZKP for grk with the commitment B = gb, then
he can compute c′ = H (Bc−1

) and f ′ = c−1 f , and choose
a = c′−1, and submit the ciphertext ((grk)c′−1

,(mkhrk)c′−1
)

with the proof (c′, f ′). This enables them to bypass the verifi-

cation of the ZKP as H (g f ′ ·((grk)c′−1 c′
)−1)=H (gc−1(b+crk) ·

(grk)−1) = H (gc−1·b+rk ·g−rk) = c′.

4.2 Formal model and analysis using ProVerif
For our formal mode of re-encryption mixnets, we define a
Reenc-mixnet instance, analogous the exp-mixnet instance.

Definition 4.1 (Reenc-mixnet instance) A reenc-
mixnet instance is a closed process RP = νñ ·
(Sσid1σm1 | . . . | Sσid j σm j | Mσr1 | . . . | Mσrk | AσskA)
where ñ is the set of all restricted names, which includes
the set of the protocol’s private channels; Sσidiσmi are the
processes run by the senders with the substitutions specifying



the identity and the plaintext of the ith sender respectively;
Mσm j is the process executed by the Mix-Net servers with
the substitution specifying their secret random; A is the
process run by the decryption authority and σskA specifies the
decryption key.

This definition allows us to apply the same definition of
Anonymous Shuffling (Def. 3.3). Applied to re-encryption
Mix-Nets, Anonymous Shuffling requires that the process
where id1 encrypts m1 and id2 encrypts m2, is equivalent
to the process where id2 encrypts m1 and id1 encrypts m2.
This prevents the attacker from having any information about
which plaintext belongs to which sender.

Equational theory. Re-encryption Mix-Nets relies on the
homomorphic properties of the encryption scheme since Mix-
Net servers need to re-encrypt the list of the inputted cipher-
texts. Therefore, in addition to the encryption equation, we
require an additional equation that models a re-encryption
operation. We use the following equational theory:

dec(enc(m,X ,exp(X ,x),r),X ,x) = m

reenc(enc(m,X ,exp(X ,x),r),r′,X ,exp(X ,x)) =

enc(m,X ,exp(X ,x),sum(r,r′)) (6)
EXP(enc(m,X ,exp(X ,x),r),a) =

enc(exp(m,a),X ,exp(X ,x),mult(r,a))

The first equation corresponds to our refined model of El-
Gamal described in Section 3.4. Let (c1 = gr,c2 = m · (gx)r)
be an ElGamal ciphertext. Re-encrypting the latter cipher-
text consists in generating a new random r′ and multiplying
c1 with gr′ , and c2 with (gx)r′ . The resulting ciphertext is of
the form (gr+r′ ,m · (gx)r+r′). To model the re-encryption op-
eration, we introduce two function symbols sum and reenc.
The binary function sum represents a sum of two exponents
(albeit in a limited way, as sum has no further equations
– ideally sum should be associative and commutative, but
this is not possible in ProVerif). The function reenc takes
as arguments a ciphertext enc(m,X ,exp(X ,x),r), a coin r′,
a basis X and a public key exp(X ,x). It returns the cipher-
text enc(m,X ,exp(X ,x),sum(r,r′)) with a coin representing
the sum of r and r′. The first and the second equations are
needed for the protocol to work as it uses encryption and re-
encryption, but they are insufficient to capture attacks against
re-encryption Mix-Nets. To capture the attack depicted in
Figure 6, we need to augment our equational theory with an
equation that allows for the exponentiation of the ciphertext
with respect to the induced homomorphic properties on the
corresponding plaintext. The third equation uses the binary
function EXP (different from exp) to apply a known expo-
nent a over the plaintext. We introduce the function mult
to represent a multiplication between random coins (again,
in a limited way). When analyzing re-encryption Mix-Nets
using ZKPs to show knowledge of the randomness used for

the encryption, we also added Equations (5) and (4) to the
equational theory.

Model. The process for each Mix-Net server M is similar
to the one defined for exponentiation Mix-Net (as depicted
in Figure 2), but it uses different parameters. Each Mix-Net
server inputs the list of all generated ciphertexts, checks they
are distinct, applies a random coin to each ciphertext in order
to re-randomize it and outputs the list of all new ciphertexts in
random order. The sender simply outputs its ciphertext. Thus,
the sender process is: let S(mS, rS, pk) = out(ch, (enc(mS, g,
pk, rS))).

Analysis. The result of the analysis of re-encryption Mix-
Nets is given in Table 4. ProVerif concludes that Anonymous
Shuffling is not satisfied and finds the attack depicted in Fig-
ure 6 when the protocol is modeled without ZKP. In the case
of the weak ZKP, ProVerif finds (nearly) the same attack, ex-
cept that the attacker need to fake the ZKP as in the attack on
the exponentiation Mix-Net with weak ZKP. In contrast, the
property is verified when the strong ZKP is used instead.

4.3 Application: IVXV Internet Vote Protocol
In this section, we analyze the Estonian internet vote protocol
which uses a re-encryption Mix-Nets [1]. It is used to con-
duct legally binding political elections in Estonia. We use the
equational theory described in Equation (6). The description
of the protocol is based on the one given by Müller in [36].

Protocol Description. The Voting System consists of the
Election Organizer EO, the Vote Collector VC, the Registra-
tion Service RS, the I-Ballot Box Processor IBBP, the Talliers
T and Mix-Nets MS. The protocol runs in four phases: Regis-
tration, Vote Casting, Preparation and Tabulation.

Registration. This scheme requires a Public Key Infrastruc-
ture. Each eligible voter vi is therefore equipped with a key
pair (skvi , pkvi) and a public certificate Certvi binding their
public key pkvi to their identity vi. The EO publishes the set
C = ⟨c j⟩ of possible candidates. The talliers T jointly generate
a public key pkT using a threshold encryption scheme.

Vote Casting. To vote for a candidate c j, a voter vi encrypts
first c j with the Talliers’ public key pkT and a generated coin
rvi. The voter signs the encrypted ballot Bci with their private
key skvi and sends their signed encrypted ballot Bcsi along
with their certificate certvi and their identifier vi to VC. Upon
receiving a valid (Bcsi,certvi ,vi), VC responds with a unique
generated identifier vidi and the RS confirmation regvidi .

Preparing for Tabulation. After the online voting phase,
the VC has a set of digitally signed votes and RS has the set of
registration queries and responses. Both of these sets are trans-
ferred to the IBBP responsible for auditing the voting phase
and pre-processing the votes for tabulation/ IBBP composes
a new list of signed vote envelopes. This list only contains the
latest vote for each voter vi since the protocol allows voters
to revote. IBBP then anonymizes the votes in the list by ex-
tracting only the encrypted ballots. IBBP can then pass the
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Figure 7: Estonian voting protocol sequence diagram.

list ⟨Bci⟩ to the re-encryption Mix-Nets MS. The output set
of the Mix-Nets ⟨B̃ci⟩ is then sent to EO for tabulation.

Tabulation. The EO uses the election private key to decrypt
each choice ci and to compute the result. EO also provides a
proof of correct decryption Πdeci for every plaintext.

Formal Analysis. We analyze Vote Privacy as described in
the previous protocol analysis. The input list to the Mix-Nets
in IVXV protocol is not public, but is given to a third party
performing audits. The re-encryption Mix-Net was added to
the protocol to preserve the privacy of voters with respect
to this third party performing audits. Hence, vote privacy in
the IVXV protocol relies on the anonymity provided by the
shuffling procedure performed by the re-encryption Mix-Net.

We verify vote privacy using our new refined model of the
Mix-Net. The result of the analysis is depicted in Table 5:
ProVerif finds an attack on Vote Privacy. Assuming a mali-
cious third party, the attacker can retrieve the encrypted ballot
Bci of his victim vi from the ballot list and perform the attack
described in Section 4.1. At the end of the election, when the
results are published, the attacker knows to which candidate
c j the voter vi voted. In [36], Müller found that the IVXV
protocol is vulnerable to similar attacks exploiting the mal-
leability of the ElGamal encryption when investigating the
protocol manually. To fix this issue, he added ZKPs proving
that the voter knows the randomness and the plaintext of the
encrypted ballot. We also verified the protocol with an added
weak or strong ZKP showing knowledge of the randomness
(only), using the modeling described in Section 3.5. In the
case of a weak ZKP the attack persists, whereas with a strong
ZKP ProVerif succeeds in proving the property (Table 5).

5 Discussion and Conclusion

In this paper we propose a novel and more precise modeling
of exponentiation Mix-Nets which includes the details of the
exponentiation. Previous models used a high-level abstraction
of the functionality, which lead them to miss attacks based on
a weakness where a user can submit a modified version of a
key of another participant in an attempt to trace them.

Using three case studies (including a voting and an exam
protocol) we show that we can use our improved modeling to
analyze protocols using exponentiation Mix-Nets. In particu-
lar, we are able to (re-)discover known and unknown attacks
on these protocols. Fixing these attacks requires the use of
zero-knowledge proofs. We propose two models: a novel
model for weak ZKPs vulnerable to certain attacks, and a
model for strong ZKPs. We can show automatically that in
our examples the use of weak ZKPs is insufficient, as all
attacks persist. The use of strong ZKPs however fixes the
attacks, and we can verify the protocols.

Moreover, we propose a novel and more precise modeling
of ElGamal encryption where keys are actually the result of ex-
ponentiation operations, which is of independent interest and
can be applied to other protocols, even if they do not use Mix-
Nets. We also propose a refined modeling of re-encryption
Mix-Nets, which allows use to rediscover a known attack on
the Estonian voting protocol. Again, we can automatically
show that the attack persists when adding weak ZKPs, but
disappears if strong ZKPs are used.

As future work, we would like to apply our ElGamal and
ZKP models to other protocols using these primitives, such
as other voting protocols, private set intersection protocols
or password based authentication protocols. Essentially, all
existing ProVerif models of protocols using these primitives
could be extended using our new refined modeling. We hope
that in the future such a modeling will become commonplace.

Moreover, we would like to get rid of some of the remain-
ing limitations of the current model in ProVerif. For example,
in the current equational theories, we use a fixed generator,
which in particular limits the number of exponentiations, and
some attacks need more than three exponentiations [38]. In
general, there are results showing that a fixed number can be
sufficient (e.g., [35]), which are however not directly applica-
ble in this case.

We would also like to propose models capturing other
attacks on weak zero-knowledge proofs.

Finally, we do not consider the scenario of corrupted Mix-
Nets. To model one or more corrupted Mix-Nets, additional
details have to be considered within the model. The assump-
tion of having at least one single honest server among the ones
in Mix-Nets is sufficient to have an honest mixing process,
as stated for example in [27]. However, this assumption is
not always true, as shown in [44]. The fifth and the second
attack required that the first mix-server is corrupted whereas
the third and the fourth ones required that both the first and



the last mix-servers are corrupted.
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