
HAL Id: hal-04615393
https://uca.hal.science/hal-04615393v1

Submitted on 18 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Unified Symbolic Analysis of WireGuard
Pascal Lafourcade, Dhekra Mahmoud, Sylvain Ruhault

To cite this version:
Pascal Lafourcade, Dhekra Mahmoud, Sylvain Ruhault. A Unified Symbolic Analysis of WireGuard.
Usenix Network and Distributed System Security Symposium, Feb 2024, San Diego (CA), United
States. �10.14722/ndss.2024.24364�. �hal-04615393�

https://uca.hal.science/hal-04615393v1
https://hal.archives-ouvertes.fr

A Unified Symbolic Analysis of WireGuard

Pascal Lafourcade∗†, Dhekra Mahmoud∗† and Sylvain Ruhault‡
∗Université Clermont Auvergne

†Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes
‡Agence Nationale de la Sécurité des Systèmes d’Information

Abstract—WireGuard [22], [21] is a Virtual Private Network
(VPN), presented at NDSS 2017, recently integrated into the
Linux Kernel [57] and paid commercial VPNs such as NordVPN,
Mullvad and ProtonVPN [56]. It proposes a different approach
from other classical VPN such as IPsec [29] or OpenVPN [48]
because it does not let users configure cryptographic algorithms.
The protocol inside WireGuard is a dedicated extension of
IKpsk2 protocol from Noise Framework [49]. Different analyses
of WireGuard and IKpsk2 protocols have been proposed, in
both the symbolic and the computational model, with or without
computer-aided proof assistants. These analyses however consider
different adversarial models or refer to incomplete versions
of the protocols. In this work, we propose a unified formal
model of WireGuard protocol in the symbolic model. Our model
uses the automatic cryptographic protocol verifiers SAPIC+,
PROVERIF and TAMARIN. We consider a complete protocol
execution, including cookie messages used for resistance against
denial of service attacks. We model a precise adversary that can
read or set static, ephemeral or pre-shared keys, read or set
ecdh pre-computations, control key distribution. Eventually, we
present our results in a unified and interpretable way, allowing
comparisons with previous analyses. Finally thanks to our models,
we give necessary and sufficient conditions for security properties
to be compromised, we confirm a flaw on the anonymity of
the communications and point an implementation choice which
considerably weakens its security. We propose a remediation that
we prove secure using our models.

I. INTRODUCTION

During the last decades several complex cryptographic
protocols have been constructed to offer more security and
more services to the users. In the same time, automated
analysis has made its way into mainstream security practice
and many tools for automatic formal verification of crypto-
graphic protocols have been designed and are in continuous
progress [4]. For instance, the design of TLS 1.3 took several
years and many formal security analyses have been done on
the subject [7]–[10], [17], [19], [28], [30], [41], [42], [47],
[50]. Still some attacks exist on TLS 1.3 [13], [46], [47].
The same story also occurs with IKE [11], [14], [18], [27],
[36]. These two examples show that security assessment of
cryptographic protocols is a process, in which all works are
used as basis for the following ones, which are more precise.
Tools such as PROVERIF and TAMARIN, used to assess these
protocols, are given an abstract description of the protocol
and its security properties, and give a proof that no attack

exists within their model or find an attack violating the security
properties. Symbolic verification tools do not directly operate
on the cryptographic definition of cryptographic primitives but
on an approximation and consider abstract definitions of their
behaviors. Those abstractions make some attacks impossible
to capture for some tools, because sometimes the tool is
not able to deal with some algebraic properties which let
those attacks hidden. Likewise, the symbolic model of the
protocol itself or the modeling of the security property may
not be precise enough and therefore the tool cannot find
attacks. All these successive works constitute important steps
to have more secure communication protocols as it is shown
in [47]. In this paper we focus on WireGuard, a recent VPN,
largely deployed, used and formally analyzed. Our aim is to
propose a new symbolic model that aggregates and enriches
all existing models, in terms of messages, adversaries and
properties modeling.

A. Our Contribution

Previous analyses assessment and new model proposal.
We first review previous analyses of WireGuard and IKpsk2
and we point disparities between assessed properties, modeled
protocols and adversary models: symbolic analyses involve
different models and different proof assistants (PROVERIF and
TAMARIN), computational analyses are manual or use proof
assistant (CRYPTOVERIF). This allows to identify the most
complete analyses: although incomplete, model from [43] is
the closest to WireGuard protocol and threat model from [31]
captures the largest number of adversarial capabilities. We
propose a new symbolic model that enriches these analyses
with a more complete protocol execution and more precise
adversaries. We use the tool SAPIC+: our model is fully based
on processes and all properties are verified in PROVERIF and
in TAMARIN. Our adversaries can read or set static, ephemeral
or pre-shared keys, read or set ecdh pre-computations, and
control key distribution.

Methodology and tools. We designed a dedicated metho-
dology and developed dedicated tools to automatically assess
all models and all key compromise combinations and to
combine all results into compact formulas. We use GNU
parallel [55] to assess all PROVERIF queries and Python scripts
based on SymPy package [54] to compute symbolic formulas.

Anonymity. Our models allow us to confirm a flaw on
WireGuard related to anonymity. This flaw has previously been
identified in a computational analysis of the protocol [43], our
contribution is to prove it in a new symbolic analysis, based on
observational equivalence, on a more precise protocol model.
Importantly, this flaw allows an attacker to identify a VPN
user even if this user hides behind an access point, because

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24364
www.ndss-symposium.org

this flaw is related to protocol design and does not rely on
network mechanisms.

Pre-computation. When setting an interface, Wire-
Guard implements a pre-computation of ecdh products
between static keys to speed up message consump-
tion. Peers have a specific field that contains pre-
computed ecdh products (e.g., in Linux Kernel, this
field is named precomputed_static_static and in
user-land Go implementation [23], this field is named
precomputedStaticStatic): at interface setting, all
peers public keys are read and ecdh product between interface
private key and public key is computed and field’s value is set
with computation’s result. This implementation optimization
increases attack surface as it allows an adversary to potentially
get access to ecdh pre-computation and therefore requires a
clear assessment.

uguvgv

(a) Safe environment.

uguvgv

(b) Unsafe environment.

Fig. 1: Potential vulnerability against Wireguard.

To illustrate importance of pre-computation assessment,
we describe in Fig.1 a potential vulnerability against one
WireGuard implementation. Default storage for static private
keys is in configuration file. Hence an attacker that accesses
these files compromises static private keys. To mitigate the
risk, static private keys can be generated and stored in smart
card which can perform ecdh operations. An example of
such card is OpenPGP embedded in YubiKey [45]. Security
objective in this context is to protect against an attacker that
has access to files and memory of the WireGuard process,
but shall not be able to compromise static keys stored in
smart card. In this implementation, OpenPGP on YubiKey
is used to generate and store a static private key, because a
support for ecdh is mandatory, as recent YubiKey has. Then
Go version of WireGuard is used, which provides a full user-
space implementation. Such an architecture aims at mitigating
memory leakage, as static key is protected by the smart card.
Once interface is mounted, an attacker could however access
ecdh product in process memory, due to pre-computation.
Precisely, we consider an Initiator of static private key u,
embedded in a smart card , which uses a WireGuard client

and a network configuration that contains Responder’s
public key gv . When the smart card is plugged and WireGuard
interface is mounted, ecdh product guv is pre-computed in
memory . In a safe environment, depicted in Fig.1a, this
pre-computation is not compromised, however, in an unsafe
environment, depicted in Fig.1b, an attacker can corrupt
memory and pre-computed ecdh product guv , while private
key u in smart card remains safe. Our contribution is
to consider a symbolic adversary model that enhances model
from [31] with pre-computations, adapted to a complete pro-
tocol model of WireGuard. Note that compromise of ecdh
pre-computation is weaker than compromise of private static

keys: if adversary has access to a private key, adversary knows
ecdh product, however, the opposite is false. We show that in
contradiction with this, an adversary that has access to pre-
computation is as powerful as an adversary that has access to
static private keys.

Necessary and sufficient conditions. We assess agree-
ment, secrecy, perfect forward secrecy and anonymity proper-
ties and we prove we obtain necessary and sufficient conditions
for each property to be compromised.

Mitigation. We finally propose and prove recommenda-
tions that counter the attack against anonymity and enhance
security of protocol implementation.

B. Responsible Disclosure

We responsibly disclosed and reported our finding to Wire-
Guard stakeholders through our national CSIRT.

C. Availability of Our Models and Tools

All our models and tools are available on a public repos-
itory [38]. Appendix A gives all details to independently
reproduce our results from a fresh Ubuntu Server 22.04.3 LTS,
installed from ISO image. Note that some experiments require
the use of a dedicated server, with at least 256 cores of CPU
1.5 GHz and 512 Go of RAM, as we use parallel computation.

D. Related Work

WireGuard. Computer-aided cryptography has allowed
the analysis of a large number of protocols, in both the
symbolic and the computational models [4]. In line with this,
assessment of WireGuard through rigorous security analysis is
at the core of the product: WireGuard has itself been analyzed
in the symbolic model with TAMARIN [24], in the computa-
tional model with CRYPTOVERIF [43] and a (non computer-
aided) analysis has been proposed in [25]. WireGuard uses a
dedicated protocol that relies on an ecdh key exchange from
the Noise framework [49], named IKpsk2. Protocols from
this framework have also been analyzed in the symbolic model:
complete analyses have been proposed with PROVERIF [35]
and with TAMARIN [53], which allowed to confirm claimed
security properties from the framework. A complementary
analysis is proposed in [31], also with TAMARIN. In line
with the (non computer-aided) analysis done on WireGuard,
an analysis of Noise protocols in the computational model
is presented in [26]. In [2] proposes a slight modification
of WireGuard. In [33] presents a new protocol Post-Quantum
secure, based on WireGuard original specification, and revisits
symbolic analysis of [24] and computational one of [25].

SAPIC+. This is a new tool, unifying the use of PROVERIF
and TAMARIN for symbolic analyses that has recently been
used to assess EDHOC protocol [34]. Our contribution is to
propose a new model of WireGuard protocol in SAPIC+ that
enriches all previous symbolic models and allows to verify
security properties in both PROVERIF and TAMARIN. We
propose a methodology which combines all tools and benefits
from the strength of each.

2

E. Outline

Section II proposes an overview of symbolic model, in-
cluding insights related to the applied Π-Calculus, SAPIC+,
PROVERIF and TAMARIN provers. Section III provides a high
level overview of WireGuard. In Section IV we assess previous
analyses and finally in Section V we describe our new model.
In Section VI, we present our results. In Appendix A we give
all guidelines to independently reproduce our results from our
public repository.

II. SYMBOLIC MODEL

In the symbolic model, as explained in [12], [16], crypto-
graphic primitives are considered as perfect, modeled by func-
tion symbols in an algebra of terms, possibly with equations.
Messages are terms on these primitives and the adversary can
symbolically compute new terms only using these primitives
(and equations that model them). In particular, an adversary
can decipher an encrypted term only if it has access to
the corresponding secret key. In this model, the attacker is
considered to have complete control of the network: he can
eavesdrop, remove, substitute, duplicate and delay messages
that the parties are sending one another, and insert messages
of his choice on the public channels (Dolev-Yao attacker [20]).

Several tools exist for verifying security protocols in the
symbolic model [4]. The applied Π-Calculus, an extension of
the Π-Calculus, is among the most used languages for mod-
eling security protocols and constitutes the input language of
many tools. For the full details about its syntax and semantics,
see [1]. The protocol verifier SAPIC+ [15] takes as input a
protocol description in (a variant of) the applied Π-Calculus
similar to PROVERIF and security properties specifications ex-
pressed exactly as in TAMARIN. Through its exports, SAPIC+

supports the union of the theories supported by TAMARIN and
PROVERIF.

In PROVERIF protocols are described in the applied Π-
Calculus. The grammar supports events which are annotations
that do not change processes’ behavior, but are inserted at
precise locations to allow reasoning about protocols’ exe-
cutions. For instance, to express that, whenever the process
accepts a key k, then k must have been honestly generated,
we write query as in Fig.2. It requires that each occurrence of
the event Accept is preceded by an earlier occurrence of the
event Honest on every execution trace. The tool can handle
many cryptographic primitives (encryption, signature, hash
function, Diffie-Hellman Key agreement) specified as rewrite
rules or equations. PROVERIF can also handle an unbounded
number of sessions and an unbounded message space. It
is able to prove Traces properties: Secrecy (as reachability
properties: the adversary cannot obtain the secret), Agreement
(as correspondence properties: if an event has been executed,
then other events have been executed as well) and Equivalences
between processes (as observational equivalence: the adversary
cannot distinguish two processes).

In TAMARIN protocols are described using multiset rewrite
rules. Since the protocols’ states are defined by a number of
facts, the latter rules describe how the states evolve. Therefore,
when applying rewrite rules, a transition system is established
whereby certain facts will be eliminated and new facts will be
added in accordance with the rules. In TAMARIN the transitions

are labeled with actions which are facts that annotate rules, and
will be used to specify properties.

query k; event(Accept(k)) =⇒ event(Honest(k))

lemma A: ”All k #i.Accept(k)@i =⇒ Ex #j.Honest(k)@j & j < i”

Fig. 2: PROVERIF query and TAMARIN lemma.

The tool uses a temporal logic to reason about security
properties with regard to the protocol executions expressed as
sequence of actions generated by the multiset rewrite rules. For
instance, to express the same property stated in the previous
paragraph, we write lemma as in Fig.2. It requires that if an
Accept action was raised for k at any time point i of the
trace, then the Honest action must have been raised for the
same value k at a previous time point j. Trace properties
are expressed as lemmas that must be valid on all traces.
Equivalences between processes are expressed as observational
equivalence as well.

III. WIREGUARD DESCRIPTION

We present WireGuard [21] and also assess the link be-
tween WireGuard and Noise protocols [49].

A. WireGuard Protocol

Notations. Bistrings are delimited with square brackets
[· · ·], ∅ is the empty bitstring, of length 0, if A and B are
bitstrings, [A∥B] is the concatenation of A and B, |A| is the
length of A and {A} is an encryption of A; 0,1,2,3,4 denote
bitstrings that correspond to bytes 0, 1, 2, 3 and 4, respectively;
if n is an integer, An is the n-bytes concatenation [A∥ · · · ∥A].

Overview. WireGuard involves two actors: Initiator and
Responder, also referred to as peers. The protocol is com-
posed of two phases: a key exchange phase and a trans-
port phase. Key exchange phase involves two messages,
InitHello and RecHello, transport phase involves one
message, TransData. WireGuard involves a fourth message
CookieRep, for protection against denial of service attacks.

WireGuard does not define the notions of client and server,
peers can indifferently play the role of Initiator or Responder, a
peer that starts a session is considered as an Initiator, the other
peer the Responder. Key exchange is considered complete after
the first message from the transport phase (which must be a
message from Initiator), hence the protocol involves a 1.5-RTT
key exchange. Also explained in [21], protocol requires an out
of band data share, not considered as part of the protocol. A
session between two peers refers to a successful key exchange
and the use of this key for data transport, a new exchange
means a new session.

Cryptographic Primitives. WireGuard uses a cyclic group
G, of generator g and a closed set of cryptographic prim-
itives: a hash function h, two message authentication codes
hmac and mac, three key derivations kdf1, kdf2, kdf3, two
authenticated encryption algorithms aead and xaead and a
padding scheme pad. Initiator and Responder use the following
material: u, U = gu is Initiator static key pair, x,X = gx is
Initiator ephemeral key pair, v, V = gv is Responder static
key pair, y, Y = gy is Responder ephemeral key pair, ts is a

3

timestamp, psk is an optional pre-shared key and C, I and M
are public constants. In WireGuard, these are instantiated as
follows:

• G is the group of points of curve Curve25519 [6], [39].
• h ← h(I) is the computation of a 32-byte fingerprint h

from input I with hash function Blake2s [3].
• M ← hmac(K, I) is the computation of a 32-byte

message authentication code M from key K and input
I with hash function Blake2s as described in [32].

• M ← mac(K, I) is the computation of a 16-byte message
authentication code M from input I and key K with
Blake2s hash function, as described in [52].

• τ1 ← kdf1(K, I), (τ1, τ2) ← kdf2(K, I) and (τ1, τ2, τ3)
← kdf3(K, I) are key derivations from [37]. They com-
pute 32-byte t-uples from key K and input I:
◦ τ0 = hmac(K, I); τ1 = hmac(τ0,1), kdf1(K, I) = τ1;
◦ τ2 := hmac(τ0∥τ1,2), kdf2(K, I) := (τ1, τ2);
◦ τ3 := hmac(τ0∥τ1∥τ2,3), kdf3(K, I) := (τ1, τ2, τ3).

• (C, T) ← aead(K,N,P,A) is the encryption algorithm
AEAD_CHACHA20_POLY1305 from [40], which itself
combines ChaCha20 and Poly1305 algorithms. From a
key K, a 12-byte nonce N , a plaintext P and an au-
thentication data A, it computes a ciphertext C of length
|P | bytes and a 16-bytes authentication tag T , hence its
total byte-length is |P |+16. The 12-bytes nonce N is 04

followed by a 8-byte counter.
• (C, T)← xaead(K,N,P,A) is the encryption algorithm
AEAD_XCHACHA20_POLY1305 which is a variant of
AEAD_CHACHA20_POLY1305 where the nonce N is a
random 24-bytes string.

• P∥016⌈|P |/16⌉−|P | ← pad(P) is the padding algorithm.

Messages content. Messages of WireGuard protocol
are depicted in Fig.3 and Fig.4. InitHello message is
[1∥03∥si∥X∥{U}∥{ts}∥maci1∥maci2], where 1 and 03 are
constant bitstrings, si is a random session identifier, X is
Initiator ephemeral key, {U} is encrypted Initiator’s static
public key, {ts} is an encrypted timestamp, maci1 is a first
message authentication code. Depending on CookieRep
message, maci2 takes two values: either 016 or a sec-
ond message authentication code. Message RecHello is
[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥macr2], where 2 and 03 are con-
stant bitstrings, sr, si are session identifiers, Y is Re-
sponder ephemeral key, {∅} is an encryption of empty
string, macr1 and macr2 are similar as for InitHello
message. Message TransData from Initiator to Respon-
der is [3∥03∥sr∥ik∥{pad(Pik)}], from Responder to Initiator
is [3∥03∥si∥rk∥{pad(Prk)}], where 3 and 03 are constant
bitstrings, si and sr are session identifiers, {pad(Pik)} and
{pad(Prk)} are padded and encrypted payloads. Finally, mes-
sage CookieRep is [4∥03∥si∥ρ∥{τ}], where 4 and 03 are
constant bitstrings, si is a session identifier, ρ is a random
nonce and {τ} is an encrypted cookie.

Message computation. To compute InitHello,
Initiator uses public values C and I, generates a random
session identifier si, computes successive hash values ht, key
values kt and chaining values ct: ck = h(C), h0 = h(ck∥I),
h1 = h(h0∥V), c0 = kdf1(ck,X), h2 = h(h1∥X),
(c1, k1) = kdf2(c0, g

xv), {U} = aead(k1, 0, h2, U),
h3 = h(h2∥{U}), (c2, k2) = kdf2(c1, g

uv), {ts} =

G, u, U = gu, x,X = gx, ts G, v, V = gv, y, Y = gy

U

V

[1∥03∥si∥X∥{U}∥{ts}∥maci1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥016]

[3∥03∥sr∥0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik)}] [3∥0∥si∥rk∥{pad(Prk)}]

Fig. 3: WireGuard (without cookies).

aead(k2, 0, h3, ts), h4 = h(h3∥{ts}). Finally, a message
authentication code is appended to the message, computed
on the bitstring [1∥03∥si∥X∥{U}∥{ts}], with key
h(M∥V) (i.e., key is derived from public value M
and Responder public key V) and InitHello =
[1∥03∥si∥X∥{U}∥{ts}∥mac(h(M, V), [1∥ · · · ∥{ts}])∥016].
At reception, Responder performs the necessary computations
to obtain the same hash and key values, decrypts {U}, checks
that U is legitimate and decrypts {ts}.

To compute RecHello, Responder generates a random
session identifier sr, computes the next hash values ht,
key values kt and chaining values ct: c3 = kdf1(c2, Y),
h5 = h(h4∥Y), c4 = kdf1(c3, g

xy), c5 = kdf1(c4, g
uy),

(c6, hrt, k6) = kdf3(c5, 0) if psk = ∅, (c6, hrt, k6) =
kdf3(c5, psk) if psk ̸= ∅, h6 = h(h5∥hrt), {∅} =
aead(k6, 0, h6,∅), h7 = h(h6∥{∅}). Similarly as for
InitHello, a message authentication code is appended to
the message, computed on the bitstring [2∥03∥sr∥si∥Y ∥{∅}],
with key h(M, U) (i.e., key is derived from public value
M and Initiator public key U). Finally, RecHello =
[2∥03∥sr∥si∥Y ∥{∅}∥mac(h(M, U), [2∥ · · · ∥{∅}])∥016]. At
reception, Initiator performs the necessary computations to
obtain the same hash and key values, decrypts {∅} and checks
that the obtained value is ∅.

After InitHello and RecHello, both Initiator and
Responder share a common session key k6. From this key
they derive two keys (Ci, Cr) = kdf2(k6,∅) and use these
keys, respectively, to protect data from Initiator to Responder
and from Responder to Initiator.

To compute TransData, Initiator takes received Respon-
der session identifier sr, current counter value ik, computes
{pad(Pik)} = aead(Ci, ik, pad(Pik),∅) where Pik is the
plaintext sent at this step and pad(Pik) is the padded plaintext.
Responder performs same computation with Initiator session
identifier si, current counter value rk and plaintext Prk .
Note that first transport message is always from Initiator to
Responder. For WireGuard, counter maximal value is 260 (i.e.,
at most 260 transport messages are encrypted with same session
key).

WireGuard protocol embeds a protection against de-
nial of service, based on CookieRep messages. To
build such message, WireGuard uses information from
transport layer, as messages are transported in UDP

4

G, u, U = gu, x,X = gx, ts G, v, V = gv, y, Y = gy

U

V

[1∥03∥si∥X∥{U}∥{ts}∥maci1∥016]

[4∥03∥si∥ρ∥{τ}]

G, u, U = gu, x̄, X̄ = gx̄, t̄s

[1∥03∥si∥X̄∥{U}∥{t̄s}∥māci1∥māci2]

[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥016]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik)}] [3∥03∥si∥rk∥{pad(Prk)}]

Fig. 4: WireGuard (with cookies).

datagrams [51]: InitHello message is transported in
packet [IPi∥IPr∥Porti∥Portr∥InitHello] where IPi

and Porti are public IP and port for Initiator and IPr

and Portr are public IP and port for Responder. Re-
sponder generates a random value Rm, uses IPi and
Porti from incoming packet and computes the cookie
value τ = mac(Rm,IPi∥Porti). This cookie is then en-
crypted: Responder generates a random nonce ρ and computes
{τ} = xaead(h(V),maci1, ρ, τ), where maci1 is extracted
from InitHello message. At reception, Initiator decrypts
τ , generates a new InitHello message, with same ses-
sion identifier si, a new ephemeral key pair x̄, X̄ = gx̄,
a new timestamp t̄s and a new authentication code māci1
as before, except that now it appends a second authentica-
tion code to the message, computed on the first 7th fields
[1∥03∥si∥X̄∥{U}∥{t̄s}∥māci1], with key the cookie value τ .
At reception, Responder verifies this additional authentication
code and continues the protocol as before.

B. WireGuard and Noise Protocols

The Noise framework [49] defines a set of key exchange
protocol, among which are the protocols IK, KK, IKpsk2
and KKpsk2, presented in Fig.5. These four protocols are
referenced in WireGuard documentation and source code as
the basis for the key exchange protocol inside WireGuard.

WireGuard uses IKpsk2 (and not IK, nor KK, nor
KKpsk2). At first glance, as pointed in [2], it seems that
WireGuard is closer to KKpsk2 than IKpsk2 because of
the initial out of band public keys exchange. However, in
KKpsk2, Initiator knows to whom it sends InitHello mes-
sage and Responder knows from whom it receives it, whereas
in IKpsk2, Initiator knows to who it sends InitHello
message but Responder does not know from whom it receives
it. An application built upon KKpsk2 shall ensure both parties
know to whom they communicate before starting key ex-
change, whereas an application built upon IKpsk2 can accept
Responder does not know a priori who sends an InitHello
message, but Responder shall be able to assess if received
message is acceptable. This is exactly the path followed by

G, u, U = gu, x,X = gx G, v, V = gv, y, Y = gy

U

V

[X∥{m0}]

[Y ∥{m1}]

[ik∥{pad(Pik)}] [rk∥{pad(Prk)}]

(a) KK and KKpsk2.

G, u, U = gu, x,X = gx G, v, V = gv, y, Y = gy

V

[X∥{U}∥{m0}]

[Y ∥{m1}]

[ik∥{pad(Pik)}] [rk∥{pad(Prk)}]

(b) IK and IKpsk2.

Fig. 5: KK, KKpsk2, IK and IKpsk2 protocols, where blue
bold denotes optional fields.

WireGuard: each party has a set of acceptable peers (a list
of acceptable public keys), but discovers who initiates a key
exchange and checks it is acceptable during key exchange.
WireGuard lets peers use an optional pre-shared key that shall
be shared beforehand. When this option is not chosen (which is
described as psk = ∅), WireGuard still implements IKpsk2:
a difference between IK and IKpsk2 is that for IKpsk2
ephemeral keys X and Y are included in the derivation of the
session key, which is not the case for IK. This corresponds
to the computation of chaining values c0 = kdf1(ck,X) and
c3 = kdf1(c2, Y) (see below) which are specific to IKpsk2.
As a consequence, the protocol from Noise framework we
compare to WireGuard is IKpsk2. We need however to point
similarities and differences.

Similarities between WireGuard and IKpsk2. Defi-
nition of IKpsk2 uses the same set of abstract algorithms
as WireGuard (a cyclic group G, of generator g, a hash
function h, message authentication codes hmac and mac,
key derivations kdf1, kdf2, kdf3, authenticated encryption algo-
rithms aead and a padding scheme pad) except that IKpsk2
does not instantiate them. It is up to the application based
on IKpsk2 to choose cryptographic primitives, as Wire-
Guard does. Computation of keys for IKpsk2 is similar
to WireGuard: with message m0, Initiator computes succes-
sive hash values ht, key values kt and chaining values ct
as follows: ck = h(C), h0 = h(ck∥I), h1 = h(h0∥V),
c0 = kdf1(ck,X), h2 = h(h1∥X), (c1, k1) = kdf2(c0, g

xv),
{U} = aead(k1, 0, h2, U), h3 = h(h2∥{U}), (c2, k2) =
kdf2(c1, g

uv), {ts} = aead(k2, 0, h3,m0), h4 = h(h3∥{m0}).
Similarly, with message m1, Responder computes the next
hash values ht, key values kt and chaining values ct as
follows: c3 = kdf1(c2, Y), h5 = h(h4∥Y), c4 = kdf1(c3, g

xy),

5

c5 = kdf1(c4, g
uy), (c6, hrt, k6) = kdf3(c5, 0) if psk = ∅,

(c6, hrt, k6) = kdf3(c5, psk) if psk ̸= ∅, h6 = h(h5∥hrt),
{m1} = aead(k6, 0, h6,m1), h7 = h(h6∥{m1}).

IKpsk2 relies on an initial out of band pre-message from
Responder to Initiator in which Responder sends its static
public key and conversely Initiator sends its static public key
in first message. IKpsk2 does not specify how these keys
are validated: indeed, Noise specification states it’s up to the
application to determine whether the remote party’s static
public key is acceptable. WireGuard specification is similar as
it states WireGuard rests upon peers exchanging static public
keys with each other.

Differences between WireGuard and IKpsk2. Wire-
Guard involves a 1.5-RTT key exchange: after messages
InitHello and RecHello are correctly sent and received,
a first TransData shall be sent from Initiator. After this first
TransData message any peer can send other TransData
messages. This feature is however not mandatory in Noise
protocols and hence in IKpsk2: in IKpsk2, after handshake,
transport messages can be either from Initiator to Responder or
from Responder to Initiator. This feature is captured differently
in previous analyses.

IKpsk2 first message is [X∥{U}∥{m0}], whereas Wire-
Guard InitHello message is [1∥03∥si∥X∥{U}∥{ts}
∥maci1∥maci2], where maci2 can equal 016. Hence with
m0 = ts, messages are similar, however they differ:
InitHello has header [1∥03], embeds session identifier
si and fields maci1 and maci2. Similarly, IKpsk2 second
message is [Y ∥{m1}], whereas WireGuard RecHello is
[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥macr2]. Hence with m1 = ∅,
messages are similar but differ due to header, session identifiers
and macr1 and macr2 fields. Finally transport messages also
differ as WireGuard TransData includes header, session
identifier and transmits counter in clear. Note that Noise
specification [49] allows this clear counter transmission.This
transmission is captured differently in previous IKpsk2 anal-
yses. Due to these differences, we consider IKpsk2 as an
incomplete version of WireGuard.

IV. PREVIOUS ANALYSES ASSESSMENT

In this section we present the security properties analyzed
in previous studies, modeled protocols and adversary models.

A. Security Properties of Previous Analyses

WireGuard. Symbolic analyses of WireGuard are pro-
posed in [24] and in [33] (for Post-Quantum WireGuard), both
with TAMARIN prover. These two analyses are close as the one
from [33] is an update of the one from [24] to account for Post-
Quantum version. First [24] symbolically defines Correctness,
Key Agreement, Key Secrecy, Session Uniqueness and Identity
Hiding, Key Secrecy and weak Perfect Forward Secrecy as trace
properties. With a model updated from [24], [33] symbolically
defines Session Key Secrecy, Perfect Forward Secrecy,Session
Key Uniqueness, Entity Authentication, Identity Hiding and
Denial of Service Protection, also as trace properties. Dif-
ference between weak Perfect Forward Secrecy (from [24])
and Perfect Forward Secrecy (from [33]) is that the former
is defined for a passive adversary while the latter is for an
active adversary. Session Key Secrecy and Key Secrecy refer to

the same property, which means that the session key is not
known to the adversary. Similarly, Session Uniqueness and
Session Key Uniqueness refer to the same property, which
means that different sessions will have different keys. Each
security property is tested against a unique key compromise
scenario, for which the test succeeds, however this has the
strong limitation that other key compromise scenarios are not
included in the analyses. Our contribution is to provide an
assessment for a large set of key compromise scenarios.

IKpsk2. Symbolic analyses of IKpsk2 are proposed
in [35] (with PROVERIF prover) and [31] (with TAMARIN
prover). [35] symbolically defines agreement and secrecy to
fit properties that are informally described in [49], as trace
properties. This leads to a restricted analysis as the resulting
definitions are only tested against a specific key compromise
scenario, hence this analysis shares the same default as [24]
and in [33]. As opposed to all previous analysis, [31] pro-
poses a different approach: analyze protocols from the Noise
framework against security properties which are not the ones
informally defined in [49] but are precise standard properties:
secrecy of payloads, non-injective agreement and injective
agreement on messages as defined in [44], and anonymity.
Secrecy and agreement are modeled as trace properties while
anonymity is modeled with observational equivalence. Further-
more, this analysis assesses a large set of key compromise
scenarios, including a fine-grained assessment of perfect for-
ward secrecy, which depends on both static keys but also on
pre-shared key. We use this analysis as a reference for our
WireGuard model in SAPIC+ and we enhance it to assess ecdh
pre-computation.

B. Models Assessment

We point disparities between previous models: different
protocols are modeled, that all correspond to incomplete ver-
sion of WireGuard. Fig.6 describes these models. Fig.6a de-
scribes our model that unifies and enriches all existing models.
Note that on left side of Fig.6, all models include initial key
distribution (which can be potentially compromised), while on
right side, all models assume a safe initial key distribution.

Fig.6b models a protocol composed of three messages:
two first messages InitHello, RecHello and a transport
message that does not correspond exactly to WireGuard as
the encrypted data is ∅, from Initiator to Responder. This
protocol is used in computational analysis of [25]. Fig.6c
models a protocol with pre-messages for static keys (U and V)
distribution, two first incomplete messages as they correspond
to InitHello and RecHello messages without message
authentication codes, a first transport message that is in one
direction and then transport messages TransData that can be
in either direction, with counter in clear. This model is used
in computational analysis of [43]. Fig.6d models a protocol
composed of three messages used in symbolic analysis of [24]:
two first messages that do not correspond exactly to WireGuard
as message authentication codes in both InitHello and
RecHello are replaced by constant bitstrings MAC1 and
MAC2, followed by the original WireGuard transport message
TransData, from Initiator to Responder. Fig.6e concerns
IKpsk2: it models a protocol with pre-messages for static
keys (U and V) distribution, two first messages and transport
messages that can be in either direction, with counter in

6

G, u, U = gu, x,X = gx G, v, V = gv, y, Y = gy

U

V

[1∥03∥si∥X∥{U}∥{ts}∥maci1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥016]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik)}] [3∥03∥si∥rk∥{pad(Prk)}]

(a) Our WireGuard Model.

G, u, U = gu,V, x,X = gx G, v, V = gv,U, y, Y = gy

∅∅∅

∅∅∅

[1∥03∥si∥X∥{U}∥{ts}∥maci1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥016]

[3∥03∥sr∥0∥{∅∅∅}]

∅∅∅ ∅∅∅

(b) WireGuard Model from [25].

G, u, U = gu, x,X = gx G, v, V = gv, y, Y = gy

U

V

[1∥03∥si∥X∥{U}∥{ts}∥∅∅∅∥∅∅∅]

[2∥03∥sr∥si∥Y ∥{∅}∥∅∅∅∥∅∅∅]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik)}] [3∥03∥si∥rk∥{pad(Prk)}]

(c) WireGuard Model from [43].

G, u, U = gu,V, x,X = gx G, v, V = gv,U, y, Y = gy

∅∅∅

∅∅∅

[1∥03∥si∥X∥{U}∥{ts}∥MAC1∥MAC2]

[2∥03∥sr∥si∥Y ∥{∅}∥MAC1∥MAC2]

[3∥03∥sr∥0∥{pad(Pi)}]

∅∅∅ ∅∅∅

(d) WireGuard Model from [24].

G, u, U = gu, x,X = gx, ts G, v, V = gv, y, Y = gy

U

V

[∅∅∅∥∅∅∅∥∅∅∅∥X∥{U}∥{m0}∥∅∅∅∥∅∅∅]

[∅∅∅∥∅∅∅∥∅∅∅∥Y ∥{m1}∥∅∅∅∥∅∅∅]

∅∅∅

[∅∅∅∥∅∅∅∥∅∅∅∥ik∥{pad(Pik)}] [∅∅∅∥∅∅∅∥∅∅∅∥rk∥{pad(Prk)}]

(e) IKpsk2 Model from [31].

G, u, U = gu,V, x,X = gx G, v, V = gv,U, y, Y = gy

∅∅∅

∅∅∅

[∅∅∅∥∅∅∅∥∅∅∅∥X∥{U}∥{m0}∥∅∅∅∥∅∅∅]

[∅∅∅∥∅∅∅∥∅∅∅∥Y ∥{m1}∥∅∅∅∥∅∅∅]

∅∅∅

[∅∅∅∥∅∅∅∥∅∅∅∥∅∅∅∥{pad(Pik)}] [∅∅∅∥∅∅∅∥∅∅∅∥∅∅∅∥{pad(Prk)}]

(f) IKpsk2 Model from [35].

Fig. 6: Comparison with other models, where for each model, blue bold denotes part of the protocol that is precisely defined in
our model but not in the model, hence for each model, differences with our model are highlighted.

clear. It is used in symbolic analysis of [31]. Fig.6f concerns
IKpsk2 limited to the two first messages (without initial
key distribution) and transport messages that can be in either
direction, without counters. It is used in analysis of [35].

It appears that the most precise model is the computational
model of [43], which is however still incomplete. Our contribu-
tion is an enriched model, more precise than the computational
one, for symbolic analysis.

C. Adversary Models

We also point disparities between adversary models in
Table I. [24], [35] and [25] all capture security against key
leakage and do not consider key modification, [31] and [43]
capture key leakage and key modification.

Finally [35] captures static and pre-shared key compro-
mise while all others [24], [25], [31], [43], capture static,
ephemeral and pre-shared keys compromise. Symbolic model
from [31], adapted to IKpsk2, is the most precise as it

7

Reference [24] [35] [31] [25] [43] [33] This work
WireGuard ✓ ✓ ✓ ✓ ✓

Noise IKpsk2 ✓ ✓

Model
Symbolic ✓ ✓ ✓ ✓ ✓

Computational ✓ ✓ ✓

Adversary model
Static private key access ✓ ✓ ✓ ✓ ✓ ✓ ✓

Static private key modification ✓ ✓ ✓

Ephemeral private key access ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ephemeral key modification ✓ ✓

Pre-shared key access ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pre-shared key modification ✓ ✓ ✓

Key distribution compromise ✓ ✓ ✓

Pre-computation access ✓

Pre-computation modification ✓

Proofs techniques
Manual ✓ ✓

CRYPTOVERIF ✓

PROVERIF ✓ ✓

TAMARIN ✓ ✓ ✓ ✓

SAPIC+ ✓

TABLE I: Adversary Models and Proofs Techniques.

captures key corruption through leakage and modification. We
enrich this model with new adversarial capabilities related to
pre-computation.

V. OUR SYMBOLIC MODEL

We propose a more detailed formal model of WireGuard
in the applied Π-Calculus, the language used by the automatic
cryptographic protocol verifier SAPIC+ [15].

A. Adversary Model

We adopt the methodology from [5] with some adaptations
to our protocol. An adversary model, as defined in [5], is a
combination of adversarial compromise. To outline our model,
we consider four dimensions of adversarial compromise: which
kind of data is compromised, whose data it is, when the
compromise occurs and which type of compromise it is.
All combinations of capabilities have been considered in our
analysis. Some irrelevant combinations were discarded (See
Section VI).

The adversary initially knows the name of all agents
belonging to the set agent and their corresponding long term
public static keys. Since WireGuard is a 2-party protocol, we
distinguish, without loss of generality, two types of agents:
an Initiator I and a Responder R. The set agent is reduced
to {I,R} thereof. Let ltkX and ekX be respectively the long
term private key and the ephemeral private key of agent X ∈
agent. Let psk be the pre-shared key between I and R and
let pre be the pre-computation described in Section IV-C. We
define the set data as the set of data subject to a compromise
in our model, that is, long term keys, ephemeral keys, pre-
shared key and pre-computation. Thus, let d ∈ data. We
consider three kind of d compromise in our model. Rd refers
to the case when d is generated or computed honestly yet it
is revealed to the adversary. Md refers to when d is generated
dishonestly or modified by the attacker and Dd refers to a
dishonest distribution of d when d is a long term public key.
Compromises can occur any time during protocol execution.
For example, RltkX represents the private long term key reveal

of the agent X ∈ agent. This compromise may appear too
strong but the intuition is that a protocol may still function as
long as the long term key of the other partner is not revealed.
The same argument applies to all other data compromise.
Compromise can also occur at the end of the protocol. For
this type of compromise, we only consider a reveal-type
compromise and we refer to it as R∗

d for relevant data d.
Let A be the set of all atomic adversarial capabilities. Our
adversary model involves the largest set of atomic compromise
for all data in data combined with the Dolev-Yao’s adversarial
capabilities [20].

B. Our Methodology

We evaluate security properties with regard to adversarial
compromise. Our final results are of the form property is
guaranteed unless the adversary compromises D1 or D2

or ... where property is a security property and Di is a
set of data included in data. We search for necessary and
sufficient conditions of adversarial compromise under which
each security property is violated.

We begin with a search for necessary conditions of all
compromise scenarios under which the property is no longer
verified. To motivate our formulation, let us first consider
secrecy properties. SAPIC+ supports reachability properties ex-
pressed in the same logic as TAMARIN. As stated in Section II,
in TAMARIN we write lemmas to reason about trace properties.
To express that x is a secret unless a key ke is revealed, we
require that whenever the action fact Secret(x, ke) occurs and
the attacker knows x, then a Reveal(ke) action must have been
performed. This can be written as:

All x ke #i #j. Secret(x, ke)@i & K(x)@j =⇒
Ex #k. Reveal(ke)@k & (#k<#j)

More precisely, we require that if a Secret event was raised
for x and ke at any time point i of the trace and the attacker
knows x at j, then the event Reveal must have been raised
for the value ke at a previous time point k. We note that the
action fact K is a built-in TAMARIN action fact allowing us
to reason about the Dolev-Yao adversary’s knowledge. In a
similar fashion, the latter lemma is translated to the following
query in PROVERIF:

event(Secret(x, ke))@i && attacker(x)@j =⇒
event(Reveal(ke))@k && (k<j)

In order to simplify the notation and prevent semantic
imprecision for the fact K and the predicate attacker, we use
the symbol att to reason about the adversary’s knowledge.

Let Ps be a secrecy property with regard to a secret value
s. We say that Ps is not satisfied when an adversary gets access
to s (i.e., Ps is not satisfied when att(s) is true). To search for
necessary conditions for which Ps is not satisfied, we conduct
a thorough examination of all possible compromise scenarios
C in A such that the statement att(s) =⇒ C is true.
For example, we suppose that a property Ps is satisfied for a
given protocol in a presence of a standard Dolev-Yao attacker.
We also assume that our adversary model is a combination
of RltkI , Rpsk and that we get the following results for the
secrecy property Ps:

8

• att(s) is true,
• att(s) =⇒ Rpsk is true,
• att(s) =⇒ RltkI is false,
• att(s) =⇒ Rpsk or RltkI is true.

The first equation indicates that the property is not satisfied in
the presence of our adversary. The second equation shows that
on every execution trace of the protocol, if there is an attack,
then the key psk is disclosed to the attacker. Thus, Rpsk is
a necessary condition for an attack on Ps. The third equation
asserts that an attack does not entail the reveal of the key ltkI
on every execution trace. The last equation is merely a logical
implication of the second one; hence, it can be omitted from
the analysis. Moreover, if, for instance, we prove that Rpsk

suffices for an attack on the property (i.e., Rpsk =⇒ att(s)
is true), we establish that Rpsk is a necessary and sufficient
condition for the property to be compromised.

We test all possible combinations of adversarial compro-
mise present in our adversary model and we compute sufficient
combinations among all the necessary combinations for which
the property is not true.

VI. ANALYSIS OF WIREGUARD WITH SAPIC+

We consider 34 security properties; 4 agreement properties:
agreement of RecHello message (from Responder to Initia-
tor), agreement of first TransData message (from Initiator to
Responder), agreement of next TransData messages (from
Initiator to Responder and from Responder to Initiator); 12
secrecy properties: secrecy and PFS of session key before
derivation (named k6 in protocol description), from Initiator’s
and Responder’s view, secrecy and PFS of derivated keys
(named Ci and Cr), from Initiator’s and Responder’s view;
anonymity, for WireGuard with or without cookies.

For each property, for each protocol version (with or
without cookies), our adversary model implies up to 221 =
26+6+7+2 = 2097152 cases of key compromises, as our
adversary can:

• Read Initiator (resp. Responder) static private key u
(resp. v), Initiator (resp. Responder) ephemeral private
key x (resp. y), pre-shared key psk, ecdh pre-computation
before protocol execution (26 cases).

• Read Initiator (resp. Responder) static private key u (resp.
v), Initiator (resp. Responder) ephemeral private key x
(resp. y), pre-shared key psk, ecdh pre-computation after
protocol execution (26 cases).

• Modify Initiator (resp. Responder) static private key u
(resp. v), Initiator (resp. Responder) ephemeral private
key x (resp. y), pre-shared key psk, ecdh pre-computation
for Initiator or Responder (27 cases).

• Modify Initiator’s static public key U (resp. Responder
static public key V) distribution (22 cases).

We first analyze WireGuard without cookie, using our
methodology depicted in Fig.7. Our main idea is to capture
key modification and key distribution modification through
different models and key reveal through queries. This allows
to drastically decrease the number of resolutions. Then we
proceed the same way as in [34]: we use SAPIC+ to generate
all PROVERIF files, which model all cases, we keep all queries
that are satisfied (✓) and combine them (this combination is

explained below, it is based on Conjunctive Normal Form and
Disjunctive Normal Form computation). From this combina-
tion, we deduce a single lemma that we finally assess with
TAMARIN, in one file generated with SAPIC+.

29 models26 queries

4860 queries

PROVERIF ✓✗

CNF

DNF

1 lemma

TAMARIN ✓SAPIC+

Fig. 7: Methodology.

We consider a first set of adversarial capabilities: key reveal
before protocol execution (26 cases), key modifications (27
cases) and key distribution modifications (22 cases). This set
is used to assess all agreement and secrecy properties.

Then we consider a second set: key reveal after protocol
execution for static keys and pre-shared key (with key reveal
before protocol for other keys), key distribution modifications
(22 cases). This allows to capture precisely Perfect Forward
Secrecy (PFS) and also current WireGuard implementation,
where a single configuration file contains both private static
key and pre-shared key.

Finally, we consider anonymity for key reveal, which we
do not combine with key modification nor key distribution
modification.

Once all assessments are done for WireGuard without
cookie, we obtain a set of compact formulas for each security
property. We then reuse directly these formulas for the model
of WireGuard with cookie and we prove that these formulas
defines necessary and sufficient conditions for each property
to be compromised: the same results apply for agreement,
secrecy and anonymity. We also reuse these formulas to assess
the two fixes we propose as modifications of WireGuard to
guarantee anonymity. Our fixes ensure the same security level
for agreement and secrecy.

A. Agreement, Secrecy and Perfect Forward Secrecy

We model agreement as trace property for RecHello
message, first TransData message from Initiator to Respon-
der and next TransData messages which can be either from
Initiator to Responder or from Responder to Initiator. We
model the following notion: if a message has been received
by a peer, then it must have been sent by the other peer. With
notations from Section III-A, we model key secrecy as trace
property for keys k6, C

i, Cr, from Initiator’s and Responder’s
views.

For these properties, we start with a reference model,
of which an extract is depicted in Fig.8 (up left). In this
reference model, keys generated in the main process are:
Initiator and Responder static private keys, (˜ltkI, ˜ltkR)
and pre-shared key (˜psk). Keys are passed as arguments to
two sub processes, Initiator and Responder. Process

9

Reference process
... new ˜ltkI;new ˜ltkR;new ˜psk;new empty;
out(<’initiator’,’g’ˆ˜ltkI>); out(<’responder’,’g’ˆ˜ltkR>);

((! Initiator(˜ltkI, ’g’ˆ˜ltkI, ’g’ˆ˜ltkR, ˜psk, ...))
| (! Responder(˜ltkR, ’g’ˆ˜ltkI, ’g’ˆ˜ltkR, ˜psk, ...))
| RevealPsk(˜psk)
| RevealLtki(˜ltkI)
| RevealLtkr(˜ltkR) | RevealPre(˜ltkI, ˜ltkR))

let Initiator(˜ltkI, pkI, pkR, ˜psk, ...) =
... new ˜ekI; ... let pekI = ’g’ˆ˜ekI in
(...) | (RevealEki(˜ekI))

let Responder(˜ltkR, pkI, pkR, ˜psk, ...) =
... new ˜ekR; ... let pekR = ’g’ˆ˜ekR in
(...) | (RevealEkr(˜ekR)) ...

Adversary sets x and y and psk
... new ˜ltkI; new ˜ltkR;in(˜psk);new empty;
out(<’initiator’,’g’ˆ˜ltkI>); out(<’responder’,’g’ˆ˜ltkR>);

((! Initiator(˜ltkI, ’g’ˆ˜ltkI, ’g’ˆ˜ltkR, ˜psk, ...))
| (! Responder(˜ltkR, ’g’ˆ˜ltkI, ’g’ˆ˜ltkR, ˜psk, ...))
// | RevealPsk(˜psk)
| RevealLtki(˜ltkI)
| RevealLtkr(˜ltkR) | RevealPre(˜ltkI, ˜ltkR))

let Initiator(˜ltkI, pkI, pkR, ˜psk, ...) =
... in(˜ekI); ... let pekI = ’g’ˆ˜ekI in
(...) // | (RevealEki(˜ekI))

let Responder(˜ltkR, pkI, pkR, ˜psk, ...) =
... in(˜ekR); ... let pekR = ’g’ˆ˜ekR in
(...) // | (RevealEkr(˜ekR)) ...

query i:time,j:time, pki:bitstring, pkr:bitstring, peki:bitstring, pekr:bitstring, psk:bitstring, ck:bitstring;
(event(eRConfirm(pki, pkr, peki, pekr, psk, ck))@i) ==> (((event(eIConfirm(pki, pkr, peki, pekr, psk, ck))@j) && (j < i)))
...
query i:time,j:time, pki:bitstring, pkr:bitstring, peki:bitstring, pekr:bitstring, psk:bitstring, ck:bitstring,
j1:time, j2:time, j3:time, j4:time, j5:time, j6:time;
(event(eRConfirm(pki, pkr, peki, pekr, psk, ck))@i) ==> (((event(eIConfirm(pki, pkr, peki, pekr, psk, ck))@j) && (j < i))
||((event(eRevPri(pki))@j1) && (j1 < i)) || ((event(eRevPri(pkr))@j2) && (j2 < i))
||((event(eRevPri(peki))@j3) && (j3 < i)) || ((event(eRevPri(pekr))@j4) && (j4 < i))
||((event(eRevPre(pki, pkr))@j5) && (j5 < i)) || ((event(eRevPsk(psk))@j6) && (j6 < i))).

Queries

Fig. 8: SAPIC+ Processes and Queries, where blue bold denotes differences between reference process and modified process.

Initiator has arguments ˜ltkI (its own static private
key), pkI = ’g’ˆ˜ltkI (its own static public key), pkR =
’g’ˆ˜ltkR (Responder static public key), ˜psk (pre-shared
key), empty (a public term used in WireGuard RecHello
message, ’zero_1’ (a public term used to model counter
used in TransData messages). Responder has similar argu-
ments. Initiator generates its ephemeral private key (˜ekI),
Responder also (˜ekR). Five processes model key compro-
mise: RevealPsk for pre-shared key, RevealLtki and
RevealLtkr for static keys and RevealPre for pre-
computation, RevealEki and RevealEkr for ephemeral
keys. Initiator and Responder processes are called in paral-
lel with these compromise processes and replicated. Inside
Initiator and Responder processes, computation is parallel
to compromise of ephemeral private key. Fig.8 (up right)
describes how a model is derived from reference model on
a sample: Adversary can modify pre-shared key psk, Initiator
and Responder ephemeral keys x and y. In derived model, in-
structions new ˜psk, new ˜ekI and new ˜ekR are replaced
by in(˜psk), in(˜ekI) and in(˜ekR), respectively. Fur-
thermore, as adversary sets these values, assessing their access
is not necessary, hence instructions (RevealPsk(˜psk)),
(RevealEki(˜ekI)) and (RevealEkr(˜ekR)) are re-
moved. This allows to define 29 models. Fig.8 (bottom)
describes how queries are derived: key combinations are added
in the query as disjunctions. This allows to define up to
26 queries. Finally, for each derived model, we keep only
the necessary queries, involving keys that adversary does not
modify. For each agreement and secrecy properties, we obtain
a set of 4860 queries to evaluate.

For PFS properties, the methodology is the same.
In addition, to capture temporal key compromise, we
use the notion of phase in the generated PROVERIF
files: (RevealPsk(˜psk)) is replaced with (phase 1:
RevealPsk(˜psk)). We add the same modification for
RevealLtki and RevealLtkr. In PROVERIF, phase 0
denotes protocol execution and phase 1 allows to set key

compromise after protocol execution. For each PFS properties,
we obtain a set of 64 queries to evaluate.

Once all queries are assessed, we obtain a set of results
that we need to combine. We process them in a manner similar
to [31] and we use symbols to model key compromise:

• Rx (resp. Ry) Initiator’s (resp. Responder’s) ephemeral
key is revealed,

• Mx (resp. My) Initiator’s (resp. Responder’s) ephemeral
key is modified,

• Ru (resp. Rv) Initiator’s (resp. Responder’s) static key is
revealed,

• Mu (resp. Mv) Initiator’s (resp. Responder’s) static key
is modified,

• R∗
u (resp. R∗

v) Initiator’s (resp. Responder’s) static key is
revealed after protocol execution.

• Rs pre-shared key is revealed,
• Ms pre-shared key is modified,
• R∗

s pre-shared key is revealed after protocol execution.
• Rc pre-computation is revealed,
• Mi (resp. Mr) Initiator’s (resp. Responder’s) pre-

computation is modified,
• Du (resp. Dv) Initiator’s (resp. Responder’s) static key is

compromised during initial distribution.

With these symbols, the set of all 29 models corre-
sponds to the conjunction:

∧
α∈{u,v,x,y,s,i,r} Mα

∧
β∈{u,v} Dβ .

Similarly, the set of all 26 queries corresponds to the dis-
junction:

∨
γ∈{u,v,x,y,c,s} Rγ . Similarly, for PFS, a smaller

number of models and queries is involved:
∧

β∈{u,v} Dβ and∨
γ∈{u,v,s} R

∗
γ . Note that this set of compromises is similar

to the one in [31], with two exceptions: we model pre-
computation compromise and [31] gathers Du and Dv in a
single compromise named Dpki (which models ”key distribu-
tion is compromised”). After assessment with PROVERIF, we
consider all queries which are proven true in the model. To
illustrate, consider the model Ms∧Mx, where adversary can set
pre-shared key and Initiator private ephemeral key. For agree-

10

ment of third message, in this model, there are 5 disjunctions
that correspond to true queries (among 16): Ru ∨ Rv ∨ Ry ,
Ru∨Rv∨Rc, Ru∨Ry∨Rc, Ru∨Rv∨Ry∨Rc, Ru∨Ry . We
then compute the conjunction Ms∧Mx∧(Ru∨Rv∨Ry)∧(Ru∨
Rv∨Rc)∧(Ru∨Ry∨Rc)∧(Ru∨Rv∨Ry∨Rc)∧(Ru∨Ry) and
we reduce it to its Conjunctive Normal Form (CNF), equal to
Ms∧Mx∧ (Ru∨Rv)∧ (Ru∨Rv ∨Rc) and to its Disjunctive
Normal Form (DNF), equal to (Ms∧Mx∧Ru)∨ (Ms∧Mx∧
Rc ∧Ry) ∨ (Ms ∧Mx ∧Rv ∧Ry).

We repeat this process for all models and once all models
are evaluated, we obtain a set of 29 CNFs and DNFs: each DNF
gives an interpretation at model level and all CNFs considered
together provide a result for the evaluated security property.
To this aim, we compute the disjunction of all CNFs and
the DNF of the result, which gives us an interpretable result,
at property level. This final result is comparable with results
from previous analyses. Obtained DNFs, labeled DNFx, are
detailed in Table II. We also compute a simplified version
of these DNFs as some compromises are implied by others.
These simplified DNF are labeled DNFx⋆. At last step, we
translate DNFx⋆ to a lemma that we assess with TAMARIN.
Note that DNFx⋆ show security properties are all breakable
with read access to cryptographic keys, as key modification
is not involved. Results for versions of WireGuard with or
without cookies are the same.

Results. DNF for agreement of RecHello and transport
message from Responder to Initiator are equal (DNF1 and
simplified version DNF1⋆) and DNF for agreement of first
and second TransData message, from Initiator to Responder,
are equal (DNF2 and simplified version DNF2⋆). For secrecy,
DNFs contains key compromises for two phases, as we model
static keys (u and v) and pre-shared key leakage first during
protocol execution, then after protocol execution, to capture
perfect forward secrecy. To distinguish these two compromises,
the first refers to Ru, Rv and Rs while the later refers to
R∗

u, R
∗
v and R∗

s : DNF for secrecy of k6, Ci, Cr from Initiator’s
view are all equal (DNF3 and simplified version DNF3⋆); DNF
for secrecy of k6, Ci, Cr from Responder’s view are all equal
(DNF4 and simplified version DNF4⋆).

Our results show that for DNF1, ephemeral key y (from
Responder) does not appear, whereas ephemeral key x (from
Initiator) appears. This is due to our model as we only consider
active adversary: compromise (Rs ∧Rv ∧Ry) also breaks the
property, but for DNF computation, (Rs ∧Rv ∧Ry) ∨ (Rs ∧
Rv) simplifies to (Rs ∧Rv). Hence if adversary is active and
has compromised Responder’s static key v and pre-shared key,
then adversary can generate its own ephemeral key and send
messages to Initiator, while if adversary is passive, adversary
needs to compromise all keys from Responder to break security
property. The same analysis holds for DNF2.

B. Anonymity

We model anonymity with observational equivalence in
the following context: two Initiators, of public keys U1

and U2, can establish a WireGuard session with a common
Responder, of public key V . The property is satisfied if
an adversary, which has access to these public keys and
to exchanged messages, cannot assess which Initiator has
established a session. We found that, as opposed to initial

G,u∗,U∗ = gu∗ , V, x,X = gx, ts, psk G, v, V = gv,U1,U2, y, Y = gy, psk

[1∥03∥si∥X∥{U}∥{ts}∥maci1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr1∥016]

mac(h(M, U1), [2∥ · · · ∥{∅}])
?
= macr1mac(h(M, U1), [2∥ · · · ∥{∅}])
?
= macr1mac(h(M, U1), [2∥ · · · ∥{∅}])
?
= macr1

mac(h(M, U2), [2∥ · · · ∥{∅}])
?
= macr1mac(h(M, U2), [2∥ · · · ∥{∅}])
?
= macr1mac(h(M, U2), [2∥ · · · ∥{∅}])
?
= macr1

Fig. 9: Attack against Anonymity, where blue bold de-
notes attacker computation: attacker captures mac1 field from
RecHello message, then compares with two possible values,
computed with public keys U1 and U2.

claims of original specification [21] and to symbolic analysis
with TAMARIN [24], and in accordance with computational
analysis with CRYPTOVERIF [43], this property is not sat-
isfied: Fig.9 depicts an attack against anonymity, identified
on our model with SAPIC+ prover. An Initiator, of public
key U∗ ∈ (U1, U2), establishes a session with Responder.
They exchange a RecHello message whose 7th field equals
mac(h(M, U∗), [2 ∥ · · · ∥ {∅}]), where [2 ∥ · · · ∥ {∅}] are the
first 6 fields of RecHello message and M is a public con-
stant. Adversary, which knows U1 and U2, can then compute
mac(h(M, U1), [2∥· · ·∥{∅}]) and mac(h(M, U2), [2∥· · ·∥{∅}])
and assess which public key U1 or U2 has been used in
message authentication code by comparison with transmitted
value mac(h(M, U∗), [2 ∥ · · · ∥ {∅}]). Finally, adversary can
distinguish between the two Initiators.

Anonymity in previous analyses. Analysis from [24]
proposes a proof with TAMARIN prover of a property named
identity hiding, modeled as a trace property. As noticed in Sec-
tion IV-B, it does not include compliant message authentication
codes in InitHello and RecHello messages. Result from
this analysis can be adapted with symbols from Section VI-A:
identity hiding has DNF Ru ∨ Rv ∨ Rx. Similarly, analysis
from [31] models and proves anonymity for IKpsk2 with
observational equivalence with TAMARIN prover. We can adapt
its results with symbols from Section VI-A: anonymity for
Initiator has DNF Rv ∨Ru and anonymity for Responder has
DNF Rv ∨Ru. Finally, analysis from [43] describes the same
attack as the one we identified and propose a proof of identity
hiding property with CRYPTOVERIF prover of the protocol,
without message authentication codes in InitHello and
RecHello messages. The property is however different as
ours it is modeled as a secrecy property. We can adapt its result
as before: this property has DNF Ry . These three results cannot
directly apply to WireGuard as all do not consider message
authentication codes in the two first messages, which is exactly
the reasons why adversary can break anonymity.

Proposed fixes. We propose original fixes that ensure
anonymity and does not change messages content. For this,
we remark that message authentication codes in InitHello
and RecHello messages only involve as keys data potentially
known by an adversary: public value M and public keys of
Initiator and Responder, hence allowing to attack anonymity, as
these authentication codes leak used public key. To counter this
attack, we propose a modification of message authentication
code computation to ensure the key for message authenti-
cation code is only known by Initiator and Responder. For
this, we propose to use as key for message authentication

11

code in RecHello message either the value h(U∥guv) or
the value h(U∥psk) (instead of the value h(M∥U) currently
used). We modeled the modified protocol and anonymity with
observational equivalence in the same context as before. Our
modified protocol reaches anonymity and we computed the
associated DNF. For message authentication key h(U∥guv),
DNF is Ru ∨ Rv ∨ Rx ∨ Rc; for message authentication
key h(U∥psk), DNF is Rv ∨ Rs ∨ Rx. We finally remark
that we could complete results from [31]: removing mac
computations from InitHello and RecHello messages
leads to a key exchange close to IKpsk2. We also verified
that this other protocol modification reaches anonymity, with
DNF Ru ∨Rv ∨Rx ∨Rc.

For each fix, we proceed sequentially to compute the DNF.
We start with an empty DNF. We test anonymity with 6
different adversary model that each has one atomic capability
Ri such that i ∈ R = {u, v, x, y, s, c}. When an attack is
found in the model with Rj , we append the DNF with Rj ,
and we discard it from R. Subsequently, we test anonymity
with adversaries possessing two distinct atomic capabilities Rj

and Ri ∈ R. If an attack is found, we append the DNF with
Ri∧Rj , and so forth, until we have exhausted all possibilities.

C. Necessary and Sufficient Conditions

We prove that simplified DNF versions DNF1⋆, DNF2⋆

DNF3⋆ and DNF4⋆ exposed in Table II express necessary
and sufficient conditions for each security property to be
compromised. In a first stage, we verify that when the property
is compromised then the attacker has the atomic capabilities
expressed by the DNF (hence DNF is necessary), then, in a
second stage, we verify that each conjunctive clause within
the DNF implies an attack on the property (hence DNF is
sufficient).

To illustrate, consider RecHello agreement, of DNF
DNF1⋆ = (Dv ∧Rs) ∨ (Rs ∧Rv) ∨ (Rc ∧Rs ∧Rx) ∨ (Rs ∧
Ru ∧ Rx). To ease the reading we denote att(RecHello)
the fact that attacker has compromised agreement of rechello
message property. We recall that Dv refers to a compromised
distribution of the public key corresponding to v. This is
not compatible with other disjunctions of the formula, hence
we model the first disjunction in a separate model. Then,
we verify separately att(RecHello) ⇒ (Dv ∧ Rs) and
att(RecHello)⇒ (Rs∧Rv)∨(Rc∧Rs∧Rx)∨(Rs∧Ru∧Rx)
(i.e., query is true for PROVERIF and lemma is satisfied for
TAMARIN). These verifications show that att(RecHello)⇒
DNF1⋆ defines a necessary condition for RecHello agree-
ment to be compromised.

To prove that DNF1⋆ ⇒ att(RecHello), we consider
the four following statements: (Dv ∧Rs)⇒ att(RecHello),
(Rs ∧ Rv) ⇒ att(RecHello), (Rc ∧ Rs ∧ Rx) ⇒
att(RecHello), (Rs ∧ Ru ∧ Rx) ⇒ att(RecHello).
PROVERIF finds attacks on RecHello with regard to each
adversary model, e.g., if (Dv ∧ Rs) then att(RecHello) is
true it means that RecHello property is false for PROVERIF
in the model (Dv ∧ Rs). Using the PROVERIF outputs, we
individually check that these attacks are not false attacks. We
conclude that (Dv ∧ Rs) ⇒ att(RecHello). Combining all
results, it shows DNF1⋆ ⇒ att(RecHello) meaning that
DNF1⋆ defines a sufficient condition for attacking RecHello
agreement property.

D. Performances

We evaluated our models on a dedicated server, equipped
with 256 cores of CPU 1.5 GHz, on which we ran in parallel all
PROVERIF queries. Agreement, secrecy and PFS are verified
with PROVERIF in around 15 minutes (for each property) and
anonymity is verified with PROVERIF in around 9 hours for
fix based on guv and 2 hours for fix based on psk. We tested
our result for trace properties (agreement, secrecy, PFS) with
a lemma in TAMARIN for a full version of the protocol and
TAMARIN confirmed properties are satisfied in around 5 hours.
For anonymity, it is important to note that SAPIC+ does not
currently provide support for the translation of equivalence
properties into TAMARIN. Our experiments are fully detailed
in Appendix A.

E. Comparison with Previous Analyses

We compare our results with symbolic results on Wire-
Guard [24] and on IKpsk2 ([35] and [31]). In addition to
ecdh pre-computation, we give here other insights.

Comparison with [24]. This analysis only assesses one
specific case, for which the evaluated property is satisfied.
Adapting its results with our notations, these are: agreement on
RecHello holds unless (Rs∧ (Rv ∨ (Ru∧Rx))), agreement
on first TransData message holds unless (Rs∧ (Ru∨ (Rv ∧
Ry))), secrecy holds unless (Rs ∧ ((Ru ∧Rx) ∨ (Rv ∧Ry)),
weak PFS holds unless (R∗

s ∧ ((R∗
u ∧ Rx) ∨ (R∗

v ∧ Ry)).
For secrecy, the modeled property is different to ours as it
is conditioned on agreement: if Initiator and Responder agrees
upon a key, then this key shall be secret, while we model
secrecy of key on both Initiator and Responder’s view. We
compute DNFs for agreement results of [24], and compare
them in Table II: our results extend them. For secrecy, results
are not directly comparable as modeled properties are different,
however we note that (R∗

s∧((R∗
u∧Rx)∨(R∗

v∧Ry)) has DNF
(R∗

s ∧ R∗
u ∧ Rx) ∨ (R∗

s ∧ R∗
v ∧ Ry), which is a combination

we capture in our results.

Comparison with [35]. This analysis also assesses one
specific key compromise scenario, for IKpsk2, for which
the evaluated property is satisfied. Adapting these results
with our notations, these are: agreement on second message
holds unless (Rs∧Rv), agreement on transport message from
Initiator to Responder holds unless (Rs ∧ Ru), agreement on
transport message from Responder to Initiator holds unless
(Rs∧Rv). For secrecy, the modeled property is different than
ours as it concerns PFS of payloads (and not secrecy of keys).
With our notations, obtained results are: PFS of payload of
second message and of transport message from Responder to
Initiator holds unless (R∗

s ∧R∗
u), PFS of payload of transport

message from Initiator to Responder holds unless (R∗
s ∧R∗

v).
We confirm these results related to agreement and secrecy,

Comparison with [31]. As explained in Section IV-A, this
analysis assesses all possible key compromises and results
are already DNFs for each property. Adapting these results
with our notations, these can be summarized as follows (note
that [31] does not distinguish which key is compromised
during distribution, but refers to one global compromise termed
Dpki, furthermore, active refers to an active adversary):

• Agreement on second message and on transport message
from Responder to Initiator hold unless (active ∧ Ry ∧

12

Results Properties: RecHello agreement, Next TransData (R to I).
[35] (Rs ∧Rv) (for IKpsk2 with PROVERIF)
[24] (Rs ∧Rv) ∨ (Rs ∧Ru ∧Rx) (for WireGuard with TAMARIN)
[31] (Dv ∧Rs) ∨ (Ms ∧Rv) ∨ (Mv ∧Rs) ∨ (Rs ∧Rv) ∨ (Rs ∧Ru ∧Rx) (for IKpsk2 with TAMARIN)
DNF1 (Dv ∧Ms) ∨ (Dv ∧Rs) ∨ (Ms ∧Mv) ∨ (Ms ∧Rv) ∨ (Mv ∧Rs) ∨ (Rs ∧Rv) ∨ (Mi ∧Ms ∧Mx) ∨ (Mi ∧Ms ∧Rx)

∨(Mi ∧Mx ∧Rs) ∨ (Mi ∧Rs ∧Rx) ∨ (Mr ∧Ms ∧Mx) ∨ (Mr ∧Ms ∧Rx) ∨ (Mr ∧Mx ∧Rs) ∨ (Mr ∧Rs ∧Rx)

∨(Ms ∧Mu ∧Mx) ∨ (Ms ∧Mu ∧Rx) ∨ (Ms ∧Mx ∧Rc) ∨ (Ms ∧Mx ∧Ru) ∨ (Ms ∧Rc ∧Rx) ∨ (Ms ∧Ru ∧Rx)

∨(Mu ∧Mx ∧Rs) ∨ (Mu ∧Rs ∧Rx) ∨ (Mx ∧Rc ∧Rs) ∨ (Mx ∧Rs ∧Ru) ∨ (Rc ∧Rs ∧Rx) ∨ (Rs ∧Ru ∧Rx)

DNF1⋆ (Dv ∧Rs) ∨ (Rs ∧Rv) ∨ (Rc ∧Rs ∧Rx) ∨ (Rs ∧Ru ∧Rx)

Results Properties: First TransData agreement, Next TransData (I to R).
[35] (Rs ∧Ru) (for IKpsk2 with PROVERIF)
[24] (Rs ∧Ru) ∨ (Rs ∧Rv ∧Ry) (for WireGuard with TAMARIN)
[31] (Ms ∧Ru) ∨ (Mu ∧Rs) ∨ (Rs ∧Ru) ∨ (Rs ∧Rv ∧Ry) (for IKpsk2 with TAMARIN)
DNF2 (Du ∧Ms) ∨ (Du ∧Rs) ∨ (Ms ∧Mu) ∨ (Ms ∧Ru) ∨ (Mu ∧Rs) ∨ (Rs ∧Ru) ∨ (Mi ∧Ms ∧My) ∨ (Mi ∧Ms ∧Ry)

∨(Mi ∧My ∧Rs) ∨ (Mi ∧Rs ∧Ry) ∨ (Mr ∧Ms ∧My) ∨ (Mr ∧Ms ∧Ry) ∨ (Mr ∧My ∧Rs) ∨ (Mr ∧Rs ∧Ry)

∨(Ms ∧Mv ∧My) ∨ (Ms ∧Mv ∧Ry) ∨ (Ms ∧My ∧Rc) ∨ (Ms ∧My ∧Rv) ∨ (Ms ∧Rc ∧Ry) ∨ (Ms ∧Rv ∧Ry)

∨(Mv ∧My ∧Rs) ∨ (Mv ∧Rs ∧Ry) ∨ (My ∧Rc ∧Rs) ∨ (My ∧Rs ∧Rv) ∨ (Rc ∧Rs ∧Ry) ∨ (Rs ∧Rv ∧Ry)

DNF2⋆ (Du ∧Rs) ∨ (Rs ∧Ru) ∨ (Rc ∧Rs ∧Ry) ∨ (Rs ∧Rv ∧Ry)

Results Properties: Secrecy of k6, C i, Cr from Initiator’s view, including PFS.
DNF3 (Dv ∧Ms) ∨ (Dv ∧Rs) ∨ (Ms ∧Mv) ∨ (Ms ∧Rv) ∨ (Mv ∧Rs) ∨ (Rs ∧Rv) ∨ (Mi ∧Ms ∧Mx) ∨ (Mi ∧Ms ∧Rx)

∨(Mi ∧Mx ∧Rs) ∨ (Mi ∧Rs ∧Rx) ∨ (Mr ∧Ms ∧Mx) ∨ (Mr ∧Ms ∧Rx) ∨ (Mr ∧Mx ∧Rs) ∨ (Mr ∧Rs ∧Rx)

∨(Ms ∧Mu ∧Mx) ∨ (Ms ∧Mu ∧Rx) ∨ (Ms ∧Mx ∧Rc) ∨ (Ms ∧Mx ∧Ru) ∨ (Ms ∧Rc ∧Rx) ∨ (Ms ∧Ru ∧Rx)

∨(Mu ∧Mx ∧Rs) ∨ (Mu ∧Rs ∧Rx) ∨ (Mx ∧Rc ∧Rs) ∨ (Mx ∧Rs ∧Ru) ∨ (Rc ∧Rs ∧Rx) ∨ (Rs ∧Ru ∧Rx)

∨(R∗s ∧R∗u ∧Rx) ∨ (R∗s ∧R∗v ∧Ry) ∨ (R∗c ∧R∗s ∧Rx ∧Ry)

DNF3⋆ (Dv ∧Rs) ∨ (Rs ∧Rv) ∨ (Rc ∧Rs ∧Rx) ∨ (Rs ∧Ru ∧Rx) ∨ (R∗s ∧R∗u ∧Rx) ∨ (R∗s ∧R∗v ∧Ry) ∨ (R∗c ∧R∗s ∧Rx ∧Ry)

Results Properties: Secrecy of k6, C i, Cr from Responder’s view, including PFS.
DNF4 (Du ∧Ms) ∨ (Du ∧Rs) ∨ (Ms ∧Mu) ∨ (Ms ∧Ru) ∨ (Mu ∧Rs) ∨ (Rs ∧Ru) ∨ (Mi ∧Ms ∧My) ∨ (Mi ∧Ms ∧Ry)

∨(Mi ∧My ∧Rs) ∨ (Mi ∧Rs ∧Ry) ∨ (Mr ∧Ms ∧My) ∨ (Mr ∧Ms ∧Ry) ∨ (Mr ∧My ∧Rs) ∨ (Mr ∧Rs ∧Ry)

∨(Ms ∧Mv ∧My) ∨ (Ms ∧Mv ∧Ry) ∨ (Ms ∧My ∧Rc) ∨ (Ms ∧My ∧Rv) ∨ (Ms ∧Rc ∧Ry) ∨ (Ms ∧Rv ∧Ry)

∨(Mv ∧My ∧Rs) ∨ (Mv ∧Rs ∧Ry) ∨ (My ∧Rc ∧Rs) ∨ (My ∧Rs ∧Rv) ∨ (Rc ∧Rs ∧Ry) ∨ (Rs ∧Rv ∧Ry)

∨(R∗s ∧R∗u ∧Rx) ∨ (R∗s ∧R∗v ∧Ry) ∨ (R∗c ∧R∗s ∧Rx ∧Ry)

DNF4⋆ (Du ∧Rs) ∨ (Rs ∧Ru) ∨ (Rc ∧Rs ∧Ry) ∨ (Rs ∧Rv ∧Ry) ∨ (R∗s ∧R∗u ∧Rx) ∨ (R∗s ∧R∗v ∧Ry) ∨ (R∗c ∧R∗s ∧Rx ∧Ry)

TABLE II: Computed DNFs for WireGuard and comparisons with results from [35], [24] and [31] for agreement properties
(secrecy properties are not directly comparable and anonymity is not reached for WireGuard).

Rv ∧Rs)∨ (active∧Rx ∧Ru ∧Rs)∨ (My ∧Rv ∧Rs)∨
(Mv ∧Dpki ∧Ry ∧Rs) ∨ (My ∧Mv ∧Dpki ∧Rs).

• Agreement on first TransData message from Initiator
to Responder holds unless (active ∧Rx ∧Ru ∧Rpsk) ∨
(active∧Ry ∧Rv ∧Rpsk)∨ (Dx ∧Ru ∧Rpsk)∨ (Du ∧
Rx ∧Rpsk) ∨ (Dx ∧Du ∧Rpsk).

Hence, agreement of second message and transport message
from Responder to Initiator relies on conjunction (My ∧Mv ∧
Dpki∧Rc

s), which is captured in our results through a simpler
conjunction (Dv∧Rs). Term Dpki however does not appear in
DNF of agreement of first transport message, while conjunc-
tion (Du∧Rs) appears in our results. Furthermore, our model
only considers active adversary, hence simplifications occur in
DNFs: e.g for DNF1, (Ms ∧ Rv) ∨ (Mv ∧ Rs) ∨ (Rs ∧ Rv)
corresponds to (active∧Rc

y∧Rc
v∧Rc

s) in [31] (same approach
for DNF2). For secrecy, as for [35], the modeled property is
different than ours as it concern secrecy and PFS of payloads
(and not secrecy of keys), [31] obtains:

• Secrecy and PFS of payload of second message and
of transport messages from Initiator’s view holds unless
(Ry ∧R∗

v ∧R∗
s) ∨ (Rx ∧R∗

u ∧R∗
s) ∨ (My ∧Ry ∧Rs) ∨

(Mv ∧Dpki ∧Ry ∧Rs) ∨ (My ∧Mv ∧Dpki ∧Rs).
• Secrecy and PFS of payload of second message and of

transport messages from Responder’s view holds unless
(Rx ∧R∗

u ∧R∗
s) ∨ (Ry ∧R∗

v ∧R∗
s) ∨ (Dx ∧Ru ∧Rs) ∨

(Du ∧Rx ∧Rs) ∨ (Dx ∧Du ∧Rs).

The difference for secrecy is the same as for agreement:
simplification due to DNFs computation and refinement on
key distribution compromise.

F. Results Interpretation

Our results show message agreement and key secrecy
are reached whereas anonymity cannot currently be reached.
Below we propose recommendations, one is structural as it

13

implies a protocol modification, the two others are aimed at
WireGuard users, in particular against active adversaries.

Importance of ecdh pre-computations. We include ecdh
pre-computation in our analysis as current implementations
propose it as optimization when InitHello messages are
received: we estimate it gives a new attack path for an
adversary, e.g when Yubikeys are used to protect static keys.
Now DNF1⋆ in Table II contains combinations (Rc ∧ Rs ∧
Rx) ∨ (Ru ∧ Rs ∧ Rx) and DNF2⋆ contains combinations
(Rc∧Rs∧Ry)∨(Rv∧Rs∧Ry): these mean that an adversary
with access to ecdh pre-computation has the same power than
an adversary with access to static private key. As explained in
Section IV-C, this contradicts ecdh property as adversary with
access to pre-computation shall not be so powerful. We there-
fore recommend to remove this implementation optimization
and to compute ecdh at InitHello reception.

Anonymity We proved that including guv or psk in key
for message authentication code guarantees this property is
reached, hence we recommend to update computation in this
direction. Note that this implies that at InitHello reception,
order of operation shall be adapted : currently at InitHello
reception, authentication code is checked, then {U} is de-
crypted, then U is checked. With our proposed fix based on
guv , order of operations shall be: {U} is decrypted, then U is
checked, then authentication code is checked.

Importance of pre-shared key psk. As we consider active
adversary, DNFs contain combinations with two keys: (Dv ∧
Rs)∨ (Ms ∧Rv)∨ (Mv ∧Rs)∨ (Rs ∧Rv) and (Du ∧Rs)∨
(Ms ∧ Ru) ∨ (Mu ∧ Rs) ∨ (Rs ∧ Ru). These combinations
involve psk which appears to have an important role. However
psk is optional in WireGuard: if psk = ∅, security against an
active adversary only relies on static keys. We recommend that
WireGuard users systematically use a pre-shared key.

Importance of initial key distribution. As opposed to
WireGuard specification, we choose to model compromise of
static public keys distribution, as we estimate this distribution
is an attack path for an adversary. This leads to combinations
(Dv ∧Rs) in DNF1 and DNF4 and (Du ∧Rs) in DNF2 and
DNF3. This shows that the assumption in WireGuard specifi-
cation about initial correct out of band key distribution is a key
factor of WireGuard security and cannot be eluded: WireGuard
is safe as soon as static keys are correctly distributed.

VII. CONCLUSION AND FUTURE WORK

We proposed a unified symbolic analysis of WireGuard,
and we provide a precise model in SAPIC+ which unifies of all
previous analyses. We also enhanced the adversary model, with
a more precise adversary that can read or set static, ephemeral
or pre-shared keys, read or set ecdh pre-computations, control
key distribution. This allows us to rediscover an attack on
anonymity that was only shown in the computational model.
We also demonstrated that ecdh pre-computations may result
in concrete attacks when static keys are protected in smart
card, and we propose original fixes that improve the security
of WireGuard, as these two attacks are mitigated.

Our methodology allowed us to analyze agreement, se-
crecy, perfect forward secrecy and anonymity and to rapidly
obtain results that are compact and comparable with other

analyses of the same protocol because we compute DNFs
for each security property. Our tool currently takes as input
a model of WireGuard, and queries are named in accordance
with events positioned in the WireGuard model. We believe
that it could be adapted to other protocols as well.

We used computational analyses to compare the modeled
protocols and enrich our symbolic model, but we did not
compare their results with ours. Although security properties
correspond to a similar intuitive idea, their formal definitions
differ, hence they are not directly comparable. One potential
future endeavor would be to adapt our implementation in
SAPIC+ for computational analysis.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their constructive comments, Bruno Blanchet, Vincent
Cheval, Charlie Jacomme, Jannik Dreier for their proofs tech-
niques indications, William Guyot and Vincent Mazenod for
setting up the complete infrastructure for our test and for
artifacts review. This work has been supported by SEVERITAS
ANR-20-CE39-0009.

REFERENCES

[1] M. Abadi, B. Blanchet, and C. Fournet, “The Applied Pi Calculus:
Mobile Values, New Names, and Secure Communication,” Journal of
the ACM (JACM), vol. 65, no. 1, pp. 1 – 103, Oct. 2017. [Online].
Available: https://hal.inria.fr/hal-01636616

[2] J. Appelbaum, C. Martindale, and P. Wu, “Tiny WireGuard tweak,”
in AFRICACRYPT 19: 11th International Conference on Cryptology in
Africa, ser. Lecture Notes in Computer Science, J. Buchmann, A. Nitaj,
and T. eddine Rachidi, Eds., vol. 11627. Rabat, Morocco: Springer,
Heidelberg, Germany, Jul. 9–11, 2019, pp. 3–20.

[3] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein,
“BLAKE2: Simpler, smaller, fast as MD5,” in ACNS 13: 11th Interna-
tional Conference on Applied Cryptography and Network Security, ser.
Lecture Notes in Computer Science, M. J. Jacobson Jr., M. E. Locasto,
P. Mohassel, and R. Safavi-Naini, Eds., vol. 7954. Banff, AB, Canada:
Springer, Heidelberg, Germany, Jun. 25–28, 2013, pp. 119–135.

[4] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers, K. Liao,
and B. Parno, “SoK: Computer-aided cryptography,” in 2021 IEEE
Symposium on Security and Privacy. San Francisco, CA, USA: IEEE
Computer Society Press, May 24–27, 2021, pp. 777–795.

[5] D. Basin and C. Cremers, “Know your enemy: Compromising
adversaries in protocol analysis,” ACM Trans. Inf. Syst. Secur., vol. 17,
no. 2, nov 2014. [Online]. Available: https://doi.org/10.1145/2658996

[6] D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,” in
PKC 2006: 9th International Conference on Theory and Practice of
Public Key Cryptography, ser. Lecture Notes in Computer Science,
M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, Eds., vol. 3958. New
York, NY, USA: Springer, Heidelberg, Germany, Apr. 24–26, 2006, pp.
207–228.

[7] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A messy
state of the union: Taming the composite state machines of TLS,” in
2015 IEEE Symposium on Security and Privacy. San Jose, CA, USA:
IEEE Computer Society Press, May 17–21, 2015, pp. 535–552.

[8] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the TLS 1.3 standard candidate,” in 2017
IEEE Symposium on Security and Privacy. San Jose, CA, USA: IEEE
Computer Society Press, May 22–26, 2017, pp. 483–502.

[9] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and P.-
Y. Strub, “Triple handshakes and cookie cutters: Breaking and fixing
authentication over TLS,” in 2014 IEEE Symposium on Security and
Privacy. Berkeley, CA, USA: IEEE Computer Society Press, May 18–
21, 2014, pp. 98–113.

14

[10] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P.-Y. Strub,
“Implementing TLS with verified cryptographic security,” in 2013 IEEE
Symposium on Security and Privacy. Berkeley, CA, USA: IEEE
Computer Society Press, May 19–22, 2013, pp. 445–459.

[11] K. Bhargavan and G. Leurent, “Transcript collision attacks: Breaking
authentication in TLS, IKE and SSH,” in ISOC Network and Distributed
System Security Symposium – NDSS 2016. San Diego, CA, USA: The
Internet Society, Feb. 21–24, 2016.

[12] B. Blanchet, “Modeling and verifying security protocols with the
applied pi calculus and proverif,” Foundations and Trends® in Privacy
and Security, vol. 1, no. 1-2, pp. 1–135, 2016. [Online]. Available:
http://dx.doi.org/10.1561/3300000004

[13] M. Brinkmann, C. Dresen, R. Merget, D. Poddebniak, J. Müller,
J. Somorovsky, J. Schwenk, and S. Schinzel, “ALPACA: Application
layer protocol confusion - analyzing and mitigating cracks in TLS
authentication,” in USENIX Security 2021: 30th USENIX Security
Symposium, M. Bailey and R. Greenstadt, Eds. USENIX Association,
Aug. 11–13, 2021, pp. 4293–4310.

[14] R. Canetti and H. Krawczyk, “Security analysis of IKE’s signature-
based key-exchange protocol,” in Advances in Cryptology –
CRYPTO 2002, ser. Lecture Notes in Computer Science, M. Yung, Ed.,
vol. 2442. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 18–22, 2002, pp. 143–161, https://eprint.iacr.org/2002/120/.

[15] V. Cheval, C. Jacomme, S. Kremer, and R. Künnemann, “Sapic+:
protocol verifiers of the world, unite!” in USENIX Security Symposium
(USENIX Security), 2022, 2022.

[16] V. Cortier and S. Kremer, “Formal Models and Techniques for
Analyzing Security Protocols: A Tutorial,” Foundations and Trends in
Programming Languages, vol. 1, no. 3, p. 117, Sep. 2014. [Online].
Available: https://hal.inria.fr/hal-01090874

[17] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe, “Automated
analysis and verification of TLS 1.3: 0-RTT, resumption and delayed
authentication,” in 2016 IEEE Symposium on Security and Privacy. San
Jose, CA, USA: IEEE Computer Society Press, May 22–26, 2016, pp.
470–485.

[18] C. J. F. Cremers, “Key exchange in IPsec revisited: Formal analysis of
IKEv1 and IKEv2,” in ESORICS 2011: 16th European Symposium on
Research in Computer Security, ser. Lecture Notes in Computer Science,
V. Atluri and C. Dı́az, Eds., vol. 6879. Leuven, Belgium: Springer,
Heidelberg, Germany, Sep. 12–14, 2011, pp. 315–334.

[19] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Ras-
togi, N. Swamy, S. Zanella-Béguelin, K. Bhargavan, J. Pan, and J. K.
Zinzindohoue, “Implementing and proving the TLS 1.3 record layer,”
in 2017 IEEE Symposium on Security and Privacy. San Jose, CA,
USA: IEEE Computer Society Press, May 22–26, 2017, pp. 463–482.

[20] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on Information Theory, vol. 29, no. 2, pp. 198–208, 1983.

[21] J. A. Donenfeld, “WireGuard: Next generation kernel network tun-
nel,” in ISOC Network and Distributed System Security Symposium –
NDSS 2017. San Diego, CA, USA: The Internet Society, Feb. 26 –
Mar. 1, 2017.

[22] ——. (2021) Wireguard. https://www.wireguard.com.

[23] ——, “Go implementation of wireguard,” https://git.zx2c4.com/
wireguard-go/about/, 2023.

[24] J. A. Donenfeld and K. Milner, “Formal verification of the wire-
guard protocol,” https://www.wireguard.com/papers/wireguard-formal-
verification.pdf, 2018.

[25] B. Dowling and K. G. Paterson, “A cryptographic analysis of the
WireGuard protocol,” in ACNS 18: 16th International Conference on
Applied Cryptography and Network Security, ser. Lecture Notes in
Computer Science, B. Preneel and F. Vercauteren, Eds., vol. 10892.
Leuven, Belgium: Springer, Heidelberg, Germany, Jul. 2–4, 2018, pp.
3–21.

[26] B. Dowling, P. Rösler, and J. Schwenk, “Flexible authenticated and con-
fidential channel establishment (fACCE): Analyzing the noise protocol
framework,” in PKC 2020: 23rd International Conference on Theory
and Practice of Public Key Cryptography, Part I, ser. Lecture Notes in
Computer Science, A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas,
Eds., vol. 12110. Edinburgh, UK: Springer, Heidelberg, Germany,
May 4–7, 2020, pp. 341–373.

[27] D. Felsch, M. Grothe, J. Schwenk, A. Czubak, and M. Szymanek,
“The dangers of key reuse: Practical attacks on IPsec IKE,” in USENIX
Security 2018: 27th USENIX Security Symposium, W. Enck and A. P.
Felt, Eds. Baltimore, MD, USA: USENIX Association, Aug. 15–17,
2018, pp. 567–583.

[28] M. Fischlin, F. Günther, B. Schmidt, and B. Warinschi, “Key confir-
mation in key exchange: A formal treatment and implications for TLS
1.3,” in 2016 IEEE Symposium on Security and Privacy. San Jose, CA,
USA: IEEE Computer Society Press, May 22–26, 2016, pp. 452–469.

[29] S. Frankel and S. Krishnan, “IP Security (IPsec) and Internet
Key Exchange (IKE) Document Roadmap,” Internet Requests for
Comments, RFC Editor, RFC 6071, February 2011. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6071.txt

[30] S. Gajek, M. Manulis, O. Pereira, A.-R. Sadeghi, and J. Schwenk,
“Universally composable security analysis of TLS,” in ProvSec 2008:
2nd International Conference on Provable Security, ser. Lecture Notes
in Computer Science, J. Baek, F. Bao, K. Chen, and X. Lai, Eds., vol.
5324. Shanghai, China: Springer, Heidelberg, Germany, Oct. 31 –
Nov. 1, 2008, pp. 313–327.

[31] G. Girol, L. Hirschi, R. Sasse, D. Jackson, C. Cremers, and D. A. Basin,
“A spectral analysis of noise: A comprehensive, automated, formal
analysis of Diffie-Hellman protocols,” in USENIX Security 2020: 29th
USENIX Security Symposium, S. Capkun and F. Roesner, Eds. USENIX
Association, Aug. 12–14, 2020, pp. 1857–1874.

[32] “Specifications for the keyed-hash message authentication code,” Na-
tional Institute of Standards and Technology (NIST), FIPS PUB 198,
U.S. Department of Commerce, Mar. 2002.

[33] A. Hülsing, K.-C. Ning, P. Schwabe, F. Weber, and P. R. Zimmermann,
“Post-quantum WireGuard,” in 2021 IEEE Symposium on Security and
Privacy. San Francisco, CA, USA: IEEE Computer Society Press,
May 24–27, 2021, pp. 304–321.

[34] C. Jacomme, E. Klein, S. Kremer, and M. Racouchot, “A
comprehensive, formal and automated analysis of the EDHOC
protocol,” in USENIX Security ’23 - 32nd USENIX Security
Symposium, Anaheim, CA, United States, Aug. 2023. [Online].
Available: https://inria.hal.science/hal-03810102

[35] N. Kobeissi, G. Nicolas, and K. Bhargavan, “Noise explorer: Fully
automated modeling and verification for arbitrary noise protocols,” in
IEEE European Symposium on Security and Privacy, EuroS&P 2019,
Stockholm, Sweden, June 17-19, 2019. IEEE, 2019, pp. 356–370.
[Online]. Available: https://doi.org/10.1109/EuroSP.2019.00034

[36] H. Krawczyk, “SIGMA: The “SIGn-and-MAc” approach to authenti-
cated Diffie-Hellman and its use in the IKE protocols,” in Advances in
Cryptology – CRYPTO 2003, ser. Lecture Notes in Computer Science,
D. Boneh, Ed., vol. 2729. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 17–21, 2003, pp. 400–425.

[37] ——, “Cryptographic extraction and key derivation: The HKDF
scheme,” in Advances in Cryptology – CRYPTO 2010, ser. Lecture
Notes in Computer Science, T. Rabin, Ed., vol. 6223. Santa Barbara,
CA, USA: Springer, Heidelberg, Germany, Aug. 15–19, 2010, pp. 631–
648.

[38] P. Lafourcade, D. Mahmoud, and S. Ruhault, “Artifacts of research pa-
per ”a unified symbolic analysis of wireguard”,” https://gitlab.limos.fr/
palafour/ndss2024-AE364, 2023.

[39] A. Langley, M. Hamburg, and S. Turner, “Elliptic Curves for Security,”
Internet Requests for Comments, RFC Editor, RFC 7748, January
2016. [Online]. Available: http://www.rfc-editor.org/rfc/rfc7748.txt

[40] A. Langley and Y. Nir, “ChaCha20 and Poly1305 for IETF Protocols,”
Internet Requests for Comments, RFC Editor, RFC 7539, May 2015.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc7539.txt

[41] X. Li, J. Xu, Z. Zhang, D. Feng, and H. Hu, “Multiple handshakes
security of TLS 1.3 candidates,” in 2016 IEEE Symposium on Security
and Privacy. San Jose, CA, USA: IEEE Computer Society Press,
May 22–26, 2016, pp. 486–505.

[42] Y. Li, S. Schäge, Z. Yang, F. Kohlar, and J. Schwenk, “On the security
of the pre-shared key ciphersuites of TLS,” in PKC 2014: 17th Interna-
tional Conference on Theory and Practice of Public Key Cryptography,
ser. Lecture Notes in Computer Science, H. Krawczyk, Ed., vol. 8383.
Buenos Aires, Argentina: Springer, Heidelberg, Germany, Mar. 26–28,
2014, pp. 669–684.

15

[43] B. Lipp, B. Blanchet, and K. Bhargavan, “A mechanised cryptographic
proof of the wireguard virtual private network protocol,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS P), 2019, pp.
231–246.

[44] G. Lowe, “A hierarchy of authentication specifications,” in Proceedings
10th Computer Security Foundations Workshop, 1997, pp. 31–43.

[45] J. Ludwig, “Wireguard key on an openpgp card,” https://
www.procustodibus.com/blog/2023/03/openpgpcard-wireguard-guide/,
2023.

[46] R. Merget, M. Brinkmann, N. Aviram, J. Somorovsky, J. Mittmann, and
J. Schwenk, “Raccoon attack: Finding and exploiting most-significant-
bit-oracles in TLS-DH(E),” in USENIX Security 2021: 30th USENIX
Security Symposium, M. Bailey and R. Greenstadt, Eds. USENIX
Association, Aug. 11–13, 2021, pp. 213–230.

[47] C. Meyer and J. Schwenk, “SoK: Lessons learned from SSL/TLS
attacks,” in WISA 13: 14th International Workshop on Information
Security Applications, ser. Lecture Notes in Computer Science, Y. Kim,
H. Lee, and A. Perrig, Eds., vol. 8267. Jeju Island, Korea: Springer,
Heidelberg, Germany, Aug. 19–21, 2014, pp. 189–209.

[48] OpenVPNInc. (2021) Openvpn. https://openvpn.net/.
[49] T. Perrin. (2018) The noise protocol framework. http:

//www.noiseprotocol.org/.
[50] D. Poddebniak, F. Ising, H. Böck, and S. Schinzel, “Why TLS is better

without STARTTLS: A security analysis of STARTTLS in the email
context,” in USENIX Security 2021: 30th USENIX Security Symposium,
M. Bailey and R. Greenstadt, Eds. USENIX Association, Aug. 11–13,
2021, pp. 4365–4382.

[51] J. Postel, “User Datagram Protocol,” Internet Requests for Comments,
RFC Editor, RFC 768, August 1980. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc768.txt

[52] M.-J. O. Saarinen and J.-P. Aumasson, “The BLAKE2 Cryptographic
Hash and Message Authentication Code (MAC),” Internet Requests
for Comments, RFC Editor, RFC 7693, November 2015. [Online].
Available: http://www.rfc-editor.org/rfc/rfc7693.txt

[53] A. Suter-Döring, “Formalizing and verifying the security
protocols from the noise framework, bachelor thesis,” https:
//ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-
security-group-dam/research/software/noise suter-doerig.pdf, 2018.

[54] SymPyDevelopmentTeam, “Sympy,” https://www.sympy.org/en/
index.html, March 2023.

[55] O. Tange, “Gnu parallel 2018,” https://doi.org/10.5281/
zenodo.1146014, March 2018.

[56] S. Taylor, “Wireguard vpn: Best vpns that support wireguard in 2023,”
https://restoreprivacy.com/vpn/wireguard/, 2023.

[57] L. Torvalds. (2020) Merge. https://git.kernel.org/
pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
bd2463ac7d7ec51d432f23bf0e893fb371a908cd.

16

APPENDIX A
ARTIFACT

This artifact allows to reproduce the symbolic analysis
described in research paper. It contains:

• Used versions of TAMARIN and PROVERIF.
• The reference models of WireGuard.
• The scripts to generate all evaluation files in PROVERIF,

to evaluate them, to compute DNF for all security prop-
erties, all evaluation files in TAMARIN and the scripts to
evaluate them.

A. Access, Requirements, Installation, Checks & Benchmarks

All our files are publicly available and can be ac-
cessed online either through Gitlab repository (commit
hash: cefa5c14103badcf895495dff048919065cfb6a4), Docker
image (tag: 913b61a1087a7be9de7db2dadf980080ce9a06a934
a3f9734440dda2b8bfc34a) or Zenodo (https://doi.org/10.5281/
zenodo.10126619). Docker image contains all software pre-
installed and requires a running Docker Engine1. Gitlab repos-
itory contains an installation script that has been successfully
tested on a fresh Ubuntu Server 22.04.3 LTS, installed from
ISO image2.

1) Access through Gitlab and software installation:

$ git clone https://gitlab.limos.fr/palafour/ndss2024-AE364
$ cd ndss2024-AE364
$ sh run_install-dep-tam-pv.sh

2) Access through Docker (no installation required):

$ docker pull wganalysis/artifacts
$ docker run -it wganalysis/artifacts bash

3) Hardware requirements to run the artifacts:

• Configuration (C1) A standard laptop with 8 cores of
CPU 1.8 GHz and 16 Go of RAM. This architecture can
be used to run experiment E1 but shall not be used to
run experiments E2, E3, E4.

• Configuration (C2) A dedicated server, with at least 256
cores of CPU 1.5 GHz and 512 Go of RAM, on which
experiments E2, E3 and E4 shall be run.

4) Basic checks: to check whether the Docker started
successfully, or whether installation through Gitlab worked,
execute:
$ tamarin-prover test

In the end you should see the following:
*** TEST SUMMARY ***
All tests successful.
The tamarin-prover should work as intended.

:-) happy proving (-:

If result is tamarin-prover: not found, open a new
terminal and repeat previous command. Then execute:
$ eval $(opam env --safe); proverif -help

In the beginning you should see the following:

Proverif 2.04. Cryptographic protocol verifier

1https://docs.docker.com/engine/install/https://docs.docker.com/engine/install/
2https://ubuntu.com/download/serverhttps://ubuntu.com/download/server

5) Benchmarks:

• Experiment E1 can be run on a standard laptop of
configuration C1, results are obtained in 20 minutes.

• Experiments E2, E3 and E4 shall be run on a server
of configuration C2. For this architecture, results are
available in 9 hours for E2, 12 hours for E3 and 2 hours
for E4.

B. Major Claims

We assess the following security properties:

• Agreement properties: agreement of RecHello mes-
sage (from Responder to Initiator), agreement of first
TransData message (from Initiator to Responder),
agreement of next TransData messages (from Initiator
to Responder and from Responder to Initiator), for Wire-
Guard with or without cookies and for two fixed versions
of WireGuard.

• Secrecy properties: secrecy and PFS of session key before
derivation (named k6 in protocol description), from Initia-
tor’s and Responder’s view, secrecy and PFS of derivated
keys (named Ci and Cr), from Initiator’s and Responder’s
view, for WireGuard with or without cookies and for two
fixed versions of WireGuard.

• Anonymity, for WireGuard with or without cookies and
for two fixed versions of WireGuard.

Agreement and secrecy for WireGuard without cookie are
verified in experiment E2, fixes for anonymity are verified
in experiments E3 and E4. Experiment E1 concerns PFS of
session key before derivation from Initiator’s view.

C. Evaluation

1) Experiment (E1): [PFS of session key before derivation
from Initiator’s view for WireGuard without cookie] [5 human-
minutes + 15 compute-minutes on configuration C1] this
experiment corresponds to Section 6.A of our research paper.
Execute:

$ cd process_complete_minimal_tests
$ sh run_all.sh

This will launch, sequentially:

• Generation of PROVERIF files from reference .spthy
files. For this evaluated property, there are 64 files.

• Evaluation of all PROVERIF files.
• Computation of DNF from all evaluated PROVERIF files.
• Evaluation of dedicated TAMARIN file.

TAMARIN file for this property is available in folder
__tamarin__. It contains one lemma named
Secrecy_IK6_PFS, which is deduced from previous
DNF. Output should be (numbers correspond to computation
duration and may be different):

Generate ProVerif queries
Generate ProVerif files
0:00.79
[WARNING] Running as root is not recommended
Evaluate ProVerif queries for isk6 pfs
2:16.28
Generate CNF and DNF files
0:00.46

17

Evaluate Tamarin Lemma
[Saturating Sources] Step 1/5
[Saturating Sources] Step 2/5
[Saturating Sources] Step 3/5
[Saturating Sources] Step 4/5
[Saturating Sources] Step 5/5
[Saturating Sources] Saturation aborted, more than 5
iterations. (Limit can be change with -s=)
2:28.59

Once computation is finished, directory process_comple
te_minimal_tests contains new folders, named
secrecy_isk6_pfs and results. Folder secrecy_
isk6_pfs contains all generated PROVERIF files (*.pv),
all corresponding evaluation files (*.pv.log) and all
sub-folders used to compute DNF, as described in research
paper, Section 6. Folder results contains 2 files:

• wireguard_secrecy_isk6_pfs.cnfdnf
• wireguard_secrecy_isk6_pfs_all_trusted.tamarin

Content of .cnfdnf file corresponds to the content of
Table 2 of research paper, for a part of DNF3⋆, which is (R∗

s∧
R∗

u ∧Rx)∨ (R∗
s ∧R∗

v ∧Ry)∨ (R∗
c ∧R∗

s ∧Rx ∧Ry). Content
of .tamarin file corresponds to the log files of TAMARIN
resolution for the property. Execute:
$ cd results
$ grep "verified\|falsified" *.tamarin

Output should be:
Secrecy_IK6_PFS (all-traces): verified (268 steps)

2) Experiment (E2): [Agreement and Secrecy for Wire-
Guard without cookie] [5 human-minutes + 9 compute-hours
on configuration C2] this experiment corresponds to Section
6.A of our research paper. Execute:

$ cd process_complete_without_cookie
$ sh run_all.sh

This will launch, sequentially:

• Generation of PROVERIF files from reference .spthy
files (up to 4860 files per property).

• Evaluation of all PROVERIF files.
• Computation of DNF from all evaluated PROVERIF files.
• Evaluation of dedicated TAMARIN file.

Output message is as in experiment E1. Our experiment
and obtained durations, on a server of configuration C2
are detailed on our Gitlab repository (A-A1). After compu-
tation, directory process_complete_without_cookie
contains new folders, secrecy_*, agreement_*. These
contain all generated PROVERIF files (*.pv), all correspond-
ing evaluation files (*.pv.log) and all sub-folders used to
compute DNF. New folder results contains two types of
files: *.cnfdnf and *.tamarin. Link between content of
Table 2 of research paper and *.cnfdnf files is described
in Table III. Each *.spthy file in folder __tamarin__
is dedicated to a security property and evaluates one lemma
which is deduced from previously computed DNF1⋆, DNF2⋆,
DNF3⋆, DNF4⋆. Each *.tamarin file in folder results
is the log file of their evaluation. Execute:

$ cd results
$ grep "verified\|falsified" *.tamarin

DNF Computed files

DNF1, DNF1⋆ wireguard_agreement_rechello.cnfdnf

wireguard_agreement_transport_rtoi.cnfdnf

DNF2, DNF2⋆ wireguard_agreement_confirm.cnfdnf

wireguard_agreement_transport_itor.cnfdnf

DNF3, DNF3⋆ wireguard_secrecy_isk6.cnfdnf

wireguard_secrecy_isk6_pfs.cnfdnf

wireguard_secrecy_isk_itor.cnfdnf

wireguard_secrecy_isk_itor_pfs.cnfdnf

wireguard_secrecy_isk_rtoi.cnfdnf

wireguard_secrecy_isk_rtoi_pfs.cnfdnf

DNF4, DNF4⋆ wireguard_secrecy_rsk6.cnfdnf

wireguard_secrecy_rsk6_pfs.cnfdnf

wireguard_secrecy_rsk_itor.cnfdnf

wireguard_secrecy_rsk_itor_pfs.cnfdnf

wireguard_secrecy_rsk_rtoi.cnfdnf

wireguard_secrecy_rsk_rtoi_pfs.cnfdnf

TABLE III: Link between computed files and Table II

Each line should contain (all-traces):verified ex-
cept for inithello_untrusted_pki which should con-
tain (all-traces):falsified.

3) Experiment (E3): [Anonymity for fixed version of
WireGuard without cookie, based on guv)] [5 human-minutes
+ 12 compute-hours on configuration C2] this experiment
corresponds to Section 6.B of our research paper. Execute:

$ cd process_complete_with_fix_guv
$ sh run_evaluate-anonymity.sh

This generates 8 PROVERIF files, named Anonymity_with
_fix_guv_*, with * = _Rs, _Rc, _Ru, _Rv, _Rx,
_Ry, _RsRy, _WITHOUT_R. Execute:

$ cd __anonymity__
$ grep "RESULT" *.log

Output should be:

• For files _Ry, _Rs, _RsRy and _WITHOUT_R, RESULT
Observational equivalence is true.

• For all other files, RESULT Observational
equivalence cannot be proved.

4) Experiment (E4): [Anonymity for fixed version of
WireGuard without cookie, based on psk)] [5 human-minutes
+ 2 compute-hours on configuration C2] this experiment
corresponds to Section 6.B of our research paper. Execute:

$ cd process_complete_with_fix_psk
$ sh run_evaluate-anonymity.sh

This generates 9 PROVERIF files, named Anonymity_with
_fix_guv_*, with * = _Rs, _Rc, _Ru, _Rv, _Rx,
_Ry, _RcRy, _RuRy, _WITHOUT_R. Execute:

$ cd __anonymity__
$ grep "RESULT" *.log

Output should be:

• For files _Rc, _Ru _Ry, _RcRy, _RuRy and
_WITHOUT_R, RESULT Observational equiva
lence is true.

• For all other files, RESULT Observational
equivalence cannot be proved.

18

