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Abstract 24 

The 2018–2021 Fani Maoré submarine eruption (offshore of Mayotte, Mozambique 25 

Channel) extruded a bulk volume of ~6.5 km3 of basanite magma onto the seafloor at a depth 26 

of 3300 m, with effusion rates ranging from 150–200 m3/s in the first year of the eruption, to 27 
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less than 11 m3/s in the final months. Six oceanographic campaigns provided a large sample set 28 

covering the entire flow field at high spatial and temporal resolution. These samples allow us 29 

to precisely track syn-eruptive degassing processes through quantification of textural 30 

parameters including porosity, pore connectivity, vesicle number density (NV) and vesicle size 31 

distributions (VSD). Three different textural facies have been distinguished. (1) Vesicular lavas 32 

(average porosity of 35%) display unimodal VSDs, high NV (14–214 mm-3), and small and 33 

spherical vesicles. (2) Lavas with intermediate porosities (25%) have scarce small vesicles, 34 

VSDs shifted towards larger vesicles, and low NV (0.2–39 mm-3). (3) Dense lavas with low 35 

porosities (14%) display bimodal VSDs distribution, a dominant mode of small vesicles, and 36 

low NV (0–87 mm-3). The early phase of activity (Phase 1, June 2018 – May 2019) built the 37 

main edifice and was fed by rapid ascent and closed-system degassing of volatile-rich magma 38 

ascending from a deep reservoir to the seafloor (Facies 1). Distal samples collected from lava 39 

flows emitted during Phase 2, between June and July 2019, show large and irregular shape 40 

vesicles mostly related to bubble growth and coalescence, and outgassing during emplacement 41 

(Facies 2). These lavas are interpreted to be emplaced during extension of a lava tube system 42 

which began to develop during Phase 1. The final phase (Phase 3, August 2019 – January 2021) 43 

was associated with lava effusion located at the northwest lava flow front, 6 km from the 44 

summit. Phase 3 involved a more degassed magma due to the increase in the length of the 45 

magma pathway (Facies 3). Phase 3 lavas were also extremely outgassed and associated with 46 

construction of a new complex lava flow field with tumuli and multiple ephemeral vents (lava 47 

breakouts). The heterogeneous textures within the studied samples reflect changing ascent and 48 

effusion rates with time, leading to emplacement of lava flows which varied depending on the 49 

degree of degassing and effusion rate. We conclude that emplacement of the Fani Maoré large 50 

submarine lava flow fields developed through extensive and prolonged tube systems this being 51 

supported by the high effusion rates. 52 
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 56 

1. Introduction 57 

Submarine volcanism represents about 75% of volcanic activity on Earth (Crisp, 1984), 58 

yet submarine eruptions have rarely been directly observed (Chadwick et al., 2008; Murch et 59 

al., 2022). Most of the documented historical submarine eruptions have occurred at mid-ocean 60 

ridges (Chadwick et al., 2016). Previous work has focused on estimating effusion rates 61 

associated with eruptions at mid-ocean ridges by using the volume of erupted lava and the 62 

eruption duration (Caress et al., 2012), lava flow morphology (Gregg and Fink, 1995), and 63 

dissolved CO2 and vesicle characteristics (Chavrit et al., 2014, 2012; Jones et al., 2018; Soule 64 

et al., 2012). Unusually gas-rich lavas, also known as “popping rocks”, have been sampled at 65 

the Mid-Atlantic Ridge (Hekinian et al., 1973; Sarda and Graham, 1990). Such popping rocks 66 

are thought to be examples of undegassed magma (Jones et al., 2019; Sarda and Graham, 1990). 67 

However, due to limited access, the origin of many submarine magmas, their ascent and 68 

degassing history, as well as the emplacement characteristics of lava flows on the ocean floor, 69 

remain poorly understood.    70 

The dynamics of magma ascent and degassing have been partly inferred from textural 71 

analysis (Blower et al., 2003; Cashman et al., 1994; Shea et al., 2010). In particular, bubbles 72 

resulting from exsolution of volatiles in a magma are frozen as vesicles (Colombier et al., 2021; 73 

Shea et al., 2010). In subaerial products from explosive basaltic eruptions, characterization of 74 

vesicle shape, vesicle size distribution (VSD) and vesicle number density (NV) have been used 75 

to investigate magma ascent and fragmentation in Hawaiian-style fire fountains and 76 

Strombolian-style explosive eruptions (e.g., Gurioli et al., 2008). For effusive basaltic 77 
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eruptions, textural analysis has been used to aid the understanding of, for example, the transition 78 

from pahoehoe to a’a surface texture types (e.g., Polacci et al., 1999), the emplacement 79 

dynamics of channel-fed flows (e.g., Harris et al., 2022), and lava flow degassing and 80 

outgassing (Cashman et al., 1994; Polacci and Papale, 1997). According to Burgisser and 81 

Degruyter (2015), degassing is defined as the general process by which magma loses its 82 

volatiles elements by exsolution or outgassing. Whereas outgassing is the physical process by 83 

which gas escapes from the magma by bubble rise. 84 

In May 2018, an intense and deep seismic crisis impacted Mayotte Island (north 85 

Mozambique Channel) (Feuillet et al., 2021; Lemoine et al., 2020). The seismicity migrated 86 

towards the surface at the beginning of June 2018, and the eruption began between June 17 and 87 

June 27 (Mercury et al., 2023) and continued for about two and half years. Located ~50 km east 88 

of Mayotte, the eruption extruded a bulk volume of around 6.5 km3 of basanitic magma 89 

(Berthod et al., 2021; Feuillet et al., 2021; Lemoine et al., 2020) to create a 820 m high 90 

submarine volcano, named Fani Maoré, at a depth of about 3300 m (Feuillet 2019). From June 91 

2018 to May 2019 (Phase 1), Fani Maoré was fed by direct ascent of a basanitic magma from a 92 

~40 km deep reservoir to the surface (Berthod et al., 2021). Between June and July 2019 (Phase 93 

2), a shallower, sub-crustal (17 km deep) tephri-phonolitic magma reservoir became involved  94 

and mixed with the less evolved initial magma (Berthod et al., 2021). Then, in August 2019, 95 

the location of lava emplacement shifted ~6 km to the northwest of the initial vent (Phase 3a) 96 

(Fig. 1). Samples collected from October 2020 to January 2021 demonstrate the draining of 97 

magma stored in the shallower reservoir, based on petrological and geochemical variations 98 

(Phase 3b) (Berthod et al., 2022). For phase 1, the average effusion rate was very high, at least 99 

150–200 m3/s (Feuillet et al., 2021), then decreased during phases 2 and 3 (Berthod et al., 2021; 100 

Peltier et al., 2022, REVOSIMA 2024). The last activity observed at Fani Maoré was on January 101 

2021 (Berthod et al., 2022). 102 
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The 2018 – 2021 submarine eruption of Fani Maoré was extremely well monitored with 103 

several oceanographic campaigns providing a large number of samples, mostly “popping rocks” 104 

(obtained by seafloor dredges and remotely operated vehicle – ROV) (Fig. 1) (Rinnert et al., 105 

2021b, 2021a, 2020; Feuillet, 2019; Fouquet and Feuillet, 2019; Jorry, 2019). This high spatial 106 

and temporal sampling resolution of the entire lava flow field, allows us to precisely track the 107 

textural evolution and degassing processes of the erupted lava flows during the emplacement 108 

history of the lava flow field.  109 

In this paper, we present a textural characterization of Fani Maoré’s deep submarine 110 

lavas. Bulk texture measurements (porosity and vesicle connectivity) and microscopic texture 111 

measurements (VSD and NV), reveal degassing variations in time and space, which we interpret 112 

to be due to differing ascent dynamics. Our results enable us to propose eruptive degassing 113 

scenarios for magma ascent and lava flow emplacement mechanisms on the seafloor during this 114 

eruption.   115 

 116 

Figure 1. Location of Fani Maoré volcano (summit shown by yellow star). A. Simplified map 117 

of the Comoros archipelago location showing the four main islands, from east to west: Mayotte 118 

(May), Anjouan (A), Mohéli (M) and Grande Comore (GC) (Modified from Berthod et al. 119 

(2021)) B. Geological map of the East-Mayotte submarine Volcanic Chain (EMVC) showing 120 

the location of the dredges (DR label) used in this study on Fani Maoré and on three other 121 
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unnamed volcanic edifices (DR03, DR04 and DR05). C. Location of the dredges and ROV dives 122 

on Fani Maoré lava flows. Lava flow outlines have been modified from Feuillet et al. (2021). 123 

Background is the bathymetry from the Homonim project (SHOM, 2016), DEM Litto3D IGN-124 

SHOM (SHOM, 2016) and MAYOBS (Rinnert, 2019).  125 

 126 

2. Methods 127 

2.1. Samples 128 

Rock samples considered here cover the entire 2018 – 2021 Fani Maoré eruption 129 

(Berthod et al., 2022, 2021) and were collected at a water depth ranging from 2800 to 3400 m 130 

by dredging or using a Remotely Operated Vehicle (ROV). Sampling was carried out during 131 

the following oceanographic campaigns: MAYOBS-1 (Feuillet, 2019b), -2 (Jorry, 2019), -4 132 

(Fouquet and Feuillet, 2019), -15 (Rinnert et al., 2020), -21 (Rinnert et al., 2021b) and 133 

GeoFLAMME (Rinnert et al., 2021a) (Table 1, Fig. 1). The observation of an acoustic plume 134 

(Feuillet et al., 2021) provides the precise location of Fani Maoré summit and so, the location 135 

of all samples in relation to the vent position. Four dredges (DR01, DR10, DR12, and DR25), 136 

and one ROV dive (PL_777_08), sampled the area near the summit, as well as the surrounding 137 

lava flows emitted during the first phase of the eruption between June 2018 and May 2019 (Fig. 138 

1, Berthod et al., 2022). Three dredges (DR08, DR11, and DR27) collected samples from the 139 

south and southwest flanks from lava emplaced during Phase 2 between June and July 2019 140 

(Fig. 1, Berthod et al., 2022). Finally, five dredges (DR14, DR15, DR18, DR19, and DR20), as 141 

well as two ROV dives (PL_780_11 and PL_782_13), sampled lava from the late eruptive 142 

phases, to the northwest, between August 2019 and January 2021 (Phases 3a and 3b) (Berthod 143 

et al., 2022).  144 

During these campaigns, a dredge operation typically sampled about 400 to 1000 kg of 145 

rocks (see Berthod et al. (2022) for the dredging protocol). These rocks were sorted on board 146 
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to select samples representative of the entire rock diversity, in terms of degree of alteration and 147 

morphology. Most dredged samples were metric to decametric pillow lavas, pahoehoe lobes, 148 

fragments of lava channel and tube roof, sheet lava and lava pillars. We selected only unaltered 149 

and quenched lava selvages within each representative morphology and textural grouping found 150 

for each dredge and ROV dive. We measured porosity and connectivity on 100 samples in total 151 

(40, 27 and 33 for Phases 1, 2 and 3, respectively), a sufficient number to be statistically 152 

representative. From these samples, we selected 17 for more detailed textural analysis (see 153 

Supplementary Material S1 for a full description of each selected sample).  154 

We also carried out measurements on submarine basanitic samples from three older 155 

edifices of the East-Mayotte submarine Volcanic Chain (EMVC) (DR03, DR04, and DR05, 156 

Fig. 1). Supplementary Material Table 1 gives the complete database with all porosity and 157 

connectivity measurements, as well as the sample description and chemistry.  158 
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Table 1. Location of the dredges and ROV samples collected during the oceanographic cruises. Latitudes and longitudes are given in degrees 159 

minutes (DM) and depth in meters (m). Only samples used for the detailed textural analysis are listed here. 160 

Dredges 
Eruptive  

phase 
IGSN number Samples Name 

Samples Name in the 

text 

Oceanographic 

Campaigns 

Start dredging End dredging 

Latitude Longitude Depth Latitude Longitude Depth 

DR01 1 BFBG-168516 MAY01_DR01_03 DR01 MAYOBS 1 12°54.30’S 45°43.13’E 3050 12°54.51’S 45°43.08’E 2820 

DR08 2 BFBG-168595 MAY02_DR08_01 DR08 MAYOBS 2 12°56.46’S 45°42.88’E 3072 12°56.05’S 45°41.91’E 3050 

DR10 1 BFBG-168447 MAY04_DR10_02_02 DR10 MAYOBS 4 12°54.94’S 45°43.31’E 3120 12°55.05’S 45°43.24’E 2950 

DR11 2 

BFBG-168478 MAY04_DR11_02_05 DR11_02_05 

MAYOBS 4 12°54.80’S 45°41.57’E 3250 12°55.20’S 45°41.55’E 3228 - 

 

MAY04_DR11_07_04 DR11_07_04 

DR12 1 - MAY04_DR12_02_03 DR12 MAYOBS 4 12°52.90’S 45°42.94’E 3245 12°52.97’S 45°42.93’E 3200 

DR14 3a BFBG-180798 MAY15_DR14_03 DR14 MAYOBS 15 12°51.94’S 45°40.65’E 3240 12°51.94’S 45°40.71’E 3210 

DR15 3a BFBG-180805 MAY15_DR15_02_03 DR15 MAYOBS 15 12°52.71’S 45°40.34’E 3130 12°52.80’S 45°40.49’E 3070 

DR18 3b BFBG-180822 MAY15_DR18_01 DR18 MAYOBS 15 12°52.26’S 45°41.17’E 3270 12°52.27’S 45°41.03’E 3265 

DR19 3a BFBG-180859 GFL_DR19_02 DR19 GeoFLAMME 12°50.63’S 45°40.96’E 3363 12°50.92’S 45°40.81’E 3369 

DR20 3b - GFL_DR20_02_01 DR20 GeoFLAMME 12°52.09’S 45°40.35’E 3224 12°50.92’S 45°40.81’E 3135 

DR25 1 CNRS0000018038 MAY21_DR25_09 DR25 MAYOBS 21 12°50.59’S 45°43.31’E 3478 12°50.77’S 45°43.05’E 3455 

DR27 2 CNRS0000018080 MAY21_DR27_04 DR27 MAYOBS 21 12°57.84’S 45°43.81’E 3433 12°57.70’S 45°43.66’E 3431 

ROV Dive 
  

Samples Name 
Samples Name in the 

text 

Oceanographic 

Campaigns 

Sample location 

  Latitude Longitude Depth 

PL_777_08 1 
- GFL_PL777_08_PBT01 PL777_08_PBT01 

GeoFLAMME 
12°54.39’S 45°42.43’E 2259 

- GFL_PL777_08_08 PL777_08_08 12°54.14’S 45°42.39’E 2882 

161 
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 162 

2.2. Density, porosity and connectivity measurements 163 

Textural and physical measurements (density, porosity and connectivity) were carried 164 

out at the Laboratoire Magmas et Volcans (LMV, Université Clermont-Auvergne, France), 165 

using the method of Thivet et al. (2020) for density measurements and the strategy developed 166 

by Colombier et al. (2017) to measure vesicle connectivity. Dense rock equivalent (DRE) 167 

density, skeleton volume of the solid phases and volume of isolated vesicles were obtained 168 

using an Accupyc 1340 Helium Pycnometer. In addition, envelope volumes (solids and all 169 

vesicles) and bulk density were acquired using a Geopycnometer 1360. All results are given as 170 

average values for five measurements per sample (see http://wwwobs.univ-171 

bpclermont.fr/SO/televolc/dynvolc for full description of protocols used for measuring porosity 172 

and connectivity).  173 

We carried out measurements of porosity and connectivity on 3 to 15 samples per 174 

dredge. These measurements were performed on samples located close to pillow- or flow-175 

selvages and were cut into 4 × 2 cm rectangular blocks. Given that our samples were obtained 176 

from the upper sections of the lava flows through dredging, they likely represent the most 177 

vesicle-rich portion of the flows.   178 

  179 

2.3. Microscopic texture 180 

 At least one representative sample from each dredge and ROV dive were prepared as 181 

thin sections to allow a more detailed textural analysis. To quantify the petrographic 182 

characteristics of each thin section, images were acquired at different magnifications (one 183 

image capturing the entire thin section, and up to 10 images at ×25 magnification) following 184 

the strategy of Shea et al. (2010). This allowed us to capture the entire vesicle population down 185 

to the smallest vesicles of 0.01 mm. Thin sections were imaged using an optical scanner. Images 186 

http://wwwobs.univ-bpclermont.fr/SO/televolc/dynvolc/routine.php
http://wwwobs.univ-bpclermont.fr/SO/televolc/dynvolc/routine.php
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at ×25 magnification were acquired using a Jeol 5910 LV Scanning Electron Microscope (SEM) 187 

in Back-Scattered Electron (BSE) mode with an acceleration voltage of 15 kV and a beam 188 

current of 80 µA.  189 

All images were converted into binary images and processed to extract the different 190 

phases (crystals and vesicles) using Photoshop®. In some places, vesicle walls were rebuilt to 191 

(i) reconstruct those broken during sample preparation,  192 

(ii) rebuild very thin walls that disappeared during segmentation, and  193 

(iii) disconnect late-stage coalesced vesicles to reestablish the vesicle state prior to 194 

sample quench.  195 

Microvesicles related to post-emplacement crystallization associated with slow cooling 196 

(i.e., diktytaxitic texture, Walker, 1989) were not considered. Crystals (olivine, magnetite, 197 

plagioclase) were distinguished on the SEM images from their different grey scales. The 198 

percentage of crystals in the thin sections was quantified to correct the vesicularity values (Shea 199 

et al., 2010).  200 

Vesicle size distribution (VSD), cumulative vesicle size distributions (CVSD) and 201 

vesicle number density (NV) were determined using the MATLAB program FOAMS (Fast 202 

Object Acquisition and Measurement System; Shea et al. (2010)), by assuming spherical vesicle 203 

shapes. Further information on the image processing used to acquire VSD and NV is presented 204 

in Shea et al. (2010).  205 

 206 

3. Results 207 

3.1. Macro- to micro-textural features 208 

Dredged samples predominantly consist of centimetric and decametric blocks which 209 

exhibit the characteristic morphology of pillow lavas (Fig. 2, Berthod et al., 2022). This being 210 

a conical shape with a convex glassy surface that converges into a denser core. Pillow fragments 211 
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from Phases 1 and 2 generally present a selvage of variable thickness (2 to 3 cm) that is usually 212 

quenched, glassy, cracked and microvesiculated (Fig. 2). Below this layer, vesicles are sub-213 

spherical with diameters varying from <1 mm to 1 cm. Irregular shapes of the largest vesicles 214 

suggest that coalescence occurred (Fig. 2). This phenomenon tends to increase towards the 215 

internal part of the pillow lava, forming large cavities up to 2 – 3 cm in diameter. The 216 

distribution of vesicle number and size with depth in the pillow is typical of spongy (s-type) 217 

pahoehoe (Walker, 1989). Samples collected in the northwestern part of the flow field (Phases 218 

3a and 3b) are more massive. Though these samples still present an outer glassy selvage of 2 – 219 

3 cm thick, they are characterized by the appearance of prismatic fractures and pipes in the 220 

inner part of pillows. These pipes are 4 cm long and 3 – 6 mm wide (see also Berthod et al., 221 

2022), and are similar to pipe-bearing (p-type) pahoehoe (Wilmoth and Walker, 1993). 222 

Thin sections were made exclusively from pillow selvages. SEM images show a broad 223 

range of vesicle sizes, from 0.01 to 6.10 mm. Two distinct populations can be distinguished in 224 

microscopic observations: large vesicles >2.40 mm in diameter and small vesicles <2.40 mm 225 

in diameter. Vesicles smaller than 0.01 mm are considered to be related to crystallization and 226 

are not considered in this study. Samples collected close to the Fani Maoré summit are 227 

composed of small vesicles (mean size 0.60 mm), which are homogeneously organized and 228 

mostly spherical to sub-spherical, thus showing no signs of coalescence (Fig. 2A). In contrast, 229 

distal samples from Phases 1 and 2 contain larger vesicles up to 6 mm in diameter (Figs. 2B 230 

and C). These larger vesicles have rounded to complex shapes, hence, highlighting evidence 231 

of coalescence. (Figs. 2B and C). Samples associated with the last eruptive phase (Phase 3) 232 

have the lowest number of vesicles (Fig. 2D).  233 
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 234 

Figure 2. General textural facies of the pillow lavas from Fani Maoré A. Proximal sample 235 

(DR01 - Phase 1), B. Distal sample (DR25 - Phase 1), C. Distal sample (DR27 - Phase 2), D. 236 

Sample collected at the northwest area (DR20 - Phase 3). From left to right, picture of a sample 237 

section from surface to interior, its associated thin section from the pillow rim, and a binary 238 

BSE image (×25) made on the thin section (black = vesicles, white = glass and grey = crystals). 239 

3.2. Porosity 240 

The bulk porosity (Xt) of the dredged samples shows a decrease over the course of the 241 

eruption (Fig 3). During Phase 1, from June 2018 to May 2019, the porosity ranged from 23 to 242 

50%, with an average of 35% (Fig. 3). Distal lava flows emplaced during Phase 2, between 243 
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June and July 2019, display a lower bulk porosity between 11 and 41% (average of 25%) (Fig. 244 

3). Over Phase 3, from August 2019 to January 2021, the bulk porosity decreased further to 245 

reach values between near zero and 32% (average of 14%). Only DR19, sampled from the 246 

extreme distal portion of the Phase 3 lava flow field, shows anomalously low porosity values, 247 

ranging from near zero to 4% (Fig. 3).  248 

 249 

Figure 3. Bulk porosity (Xt) of the dredged basanite lavas emitted during the 2018–2021 250 

Mayotte eruption at Fani Maoré. Binary images of selected representative samples for each 251 

phase is also shown on top to illustrate decrease in porosity over time (black = vesicles, white 252 

= glass and grey = crystals). The estimated effusion rates for Phase 1 and for Phases 2 and 3 253 

are taken from Feuillet et al. (2021) and Berthod et al. (2021), Peltier et al. (2022) and 254 

REVOSIMA (2024), respectively. Error bars are smaller than the symbol size. 255 

 256 
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3.3. Connectivity 257 

The term “pore” includes cracks, vesicles and voids in a rock. Thus, the pore 258 

connectivity measurements (C) provide the percentage of connected versus isolated vesicles 259 

giving first-order information on the outgassing capacity (Colombier et al., 2017). Our results 260 

show that most of the connectivity values are between 0.50 and 1 (Fig. 4A), with only a few 261 

samples having lower connectivity. This relatively low connectivity recorded in Fani Maoré 262 

samples has not been observed on subaerial lava flows (Colombier et al., 2017) and implies the 263 

presence of a population of isolated vesicles, which are found throughout the eruption. A few 264 

samples are highly connected with connectivity values above one. Such outlying values are 265 

likely to be related to extensive fracturing as discussed in Colombier et al. (2017).  266 

Results show that pillow selvages from Phase 1 (DR01, DR10, DR12, DR25 and 267 

PL_777_08, Table 2) have both a high porosity and a high connectivity (0.55 < C < 1). Pillow 268 

selvages from Phase 2 (DR08, DR27 and DR11, Table 2) maintain a high connectivity ranging 269 

from 0.55 to 1, despite having a slightly lower porosity than Phase 1 (Fig. 4A). In contrast, the 270 

late eruptive stages (Phases 3a and 3b; DR15, DR19, DR14_03, DR18, DR20 and PL_780_11, 271 

Table 2) have the lowest bulk porosity but cover a broader range of connectivity (0.20 < C < 272 

1). These samples appear to be either totally connected (C = 1) or have a connectivity restricted 273 

to the range 0.80 – 0.20 (Fig. 4A).  274 

 275 
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 276 

Figure 4. A. Pore connectivity (C) (expressed as a fraction) versus bulk porosity (Xt) (in 277 

percentage). Sample symbols and color code are the same as in Fig. 3. Erroneous values (>1) 278 

are unphysical and are likely related to extensive fracturing. B. Comparison between samples 279 

presented in this study (red dots, Fani Maoré) and other basanitic samples from volcanic 280 

edifices located in the Mayotte submarine chain, DR03, DR04 and DR05 (black triangles, this 281 

study) and subaerial basaltic lava flows from Piton de la Fournaise (empty squares, 2015–2016 282 

eruptions after Thivet et al. (2020), 2018–2019 eruptions from Colombier et al. (2021),  and 283 

2020–2023 eruptions after Gurioli and Di Muro (2017)).  284 

3.4. Vesicle characteristics and size distributions 285 
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The vesicle size distributions (VSD) (Fig. 5A) and the cumulative vesicle size 286 

distributions (CVSD) (Fig. 5B) can be used to infer the processes that may have caused any 287 

given distributions (e.g., single or several nucleation events, and continuous nucleation 288 

associated with either growth or coalescence) (Shea et al., 2010). Despite having a large range 289 

of vesicle sizes, we note that each eruptive phase shows a distinct distribution (Fig. 5).  290 

Most of the samples located near the summit vent (Phase 1) display a unimodal 291 

distribution, with vesicles ranging from 0.10 mm to 3.81 mm in diameter, and a main VSD 292 

mode at 0.60 mm (Fig. 5-A1). A homogenous population of spherical vesicles associated with 293 

a high number of vesicles per unit of area (NV) mostly characterizes these samples, with values 294 

ranging from 14 to 214 mm-3. One distal sample (DR25) has a VSD shifted towards larger and 295 

coalesced vesicles (mean size of 2.00 mm) and its NV declines down to 0.5 mm-3 (Table 2), 296 

while its porosity remains high (Xt = 36%). The VSDs for samples from Phase 2 mostly show 297 

large vesicles with irregular shapes, whose size range (0.96 to 4.77 mm in diameter) coincides 298 

approximately with that of distal sample DR25 from Phase 1. However, one sample of DR11 299 

(DR11_02_05) shows a bimodal distribution (Fig. 5-A2), with a second population 300 

characterized by smaller vesicles (L: 0.19 to 0.76 mm). Overall, despite a still high porosity 301 

(Fig. 3), NV from Phase 2 is much lower than in Phase 1, ranging from 0.2 to 39 mm-3 (Table 302 

2). As for the VSD of the last eruptive phase (Phases 3a and 3b), we also identify a bimodal 303 

distribution, with a first population with equivalent diameters (L) of between 0.06 and 0.96 mm, 304 

and a second with L from 1.21 to 6.04 mm. As for Phase 1, large vesicles are almost absent in 305 

Phase 3 samples and the smallest vesicles are dominant (Fig. 5-A3). However, contrary to Phase 306 

1, vesicles from Phase 3 are the smallest of the dataset with a mean L of 0.30 mm and a low NV 307 

(ranging from 0 to 87 mm-3) (Table 2).  308 

The CVSD distributions for all samples display two distinct trends following either a 309 

power or an exponential law indicative of two distinct populations of vesicles (Fig. 5B). If there 310 
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is only one population, a power law is expected to continuously decrease towards larger vesicles 311 

whereas an exponential law will remain steady at small size of vesicles before dropping sharply 312 

(see Shea et al., 2010). Most of the distributions for Phase 1 have a regular trend that obeys a 313 

power law for vesicles larger than 1 µm, whereas smaller vesicles deviate from this power law 314 

distribution and define an exponential trend (Fig. 5-B1). A power law is consistent with a 315 

mechanism of continuous nucleation (cf. Cashman et al., 1994), in agreement with the high 316 

values of NV. The same is observed for samples DR11_02_05 (Phase 2) and DR15 (Phase 3a) 317 

(Fig. 5-B2 and B3, respectively). In contrast, samples lacking small vesicles are characterized 318 

by an exponential distribution (Fig. 5B) consistent with bubble growth dominated by 319 

coalescence (cf. Cashman et al., 1994). 320 

 321 

Figure 5. A. Vesicle size distribution (VSD) and B. Cumulative vesicle size distribution (CVSD) 322 

log(NV > L) vs log(L) for the associated VSD. Solid and dashed lines represent power and 323 

exponential law curves, respectively.  324 
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Table 2. Values for mass and volume of the sample cubes (msample and Vsample), the density of the solid phase (ρs), the volume of the solid phase plus 325 

the volume of the isolated vesicles (Vmeasured), the bulk porosity (Xt), the connectivity (C), the average vesicle diameter (Lmean) and the number of 326 

vesicles per unit of area (NV) of the investigated samples of lava selvages. 327 

Samples 
msample Vsample ρs Vmeasured Xt C Lmean 

(mm) 

NV 

(mm-3) (g) (cm3) (g cm-3) (cm3) (%)  

Phase 1         

GFL_PL777_08_PBT01 29.89 ± 0.01 18.08 ± 0.01 1.65 ± 0.002 13.77 ± 0.054 42 0.56 0.60 184.1 

GFL_PL777_08_08 17.95 ± 0.01 11.51 ± 0.01 1.56 ± 0.001 6.12 ± 0.021 45 1.03 1.91 14.0 

MAY_DR01_03 15.50 ± 0.01 9.37 ± 0.01 1.65 ± 0.002 6.42 ± 0.018 42 0.74 0.76 142.0 

MAY_DR10_02_02 7.61 ± 0.01 3.91 ± 0.02 1.94 ± 0.008 3.06 ± 0.001 31 0.71 0.76 213.9 

MAY_DR12_02_03 30.64 ± 0.01 16.51 ± 0.01 1.86 ± 0.001 11.49 ± 0.034 36 0.86 0.60 94.1 

MAY_DR25_09 10.74 ± 0.01 5.86 ± 0.00 1.83 ± 0.001 3.87 ± 0.0128 36 0.94 2.40 0.5 

Phase 2         

MAY_DR08_01 8.10 ± 0.01 4.64 ± 0.02 1.74 ± 0.008 3.19 ± 0.003 38 0.83 1.20 and 3.81 0.2 

MAY_DR27_04 18.96 ± 0.01 9.40 ± 0.01 2.02 ± 0.001 8.23 ± 0.021 28 0.44 1.91 0.4 

MAY_DR11_02_05 32.45 ± 0.01 16.51 ± 0.02 1.97 ± 0.002 12.05 ± 0.016 30 0.90 0.96 38.8 

MAY_DR11_07_04 17.12 ± 0.01 8.58 ± 0.01 1.99 ± 0.003 6.07 ± 0.005 29 1.01 1.52 2.0 

Phase 3         

MAY_DR15_02_03 16.20 ± 0.01 7.19 ± 0.01 2.25 ± 0.003 5.79 ± 0.004 19 1.01 0.48 87.3 

GFL_DR19_02 14.06 ± 0.01 5.03 ± 0.02 2.79 ± 0.011 5.02 ± 0.001 <1 0.24 n.a* n.a 

MAY_DR14_03 8.31 ± 0.01 3.52 ± 0.01 2.36 ± 0.009 2.99 ± 0.002 16 0.94 1.52 0.4 

GFL_DR18_01 40.21 ± 0.01 15.35 ± 0.02 2.62 ± 0.004 14.17 ± 0.007 7 1.07 n.a n.a 

GFL_DR20_02_01 33.46 ± 0.01 12.91 ± 0.01 2.59 ± 0.001 12.24 ± 0.023 8 0.64 0.30 2.4 

*n.a.: not applicable 

328 
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 329 

4. Discussion 330 

4.1. Porosity and connectivity: comparison with subaerial basaltic lava flows  331 

To compare our results to subaerial deposits we choose the Piton de la Fournaise lava 332 

flows because they constitute a unique extensive and solid dataset. Indeed, Piton de la Fournaise 333 

volcano produces frequent effusive basaltic eruptions and for the 25 eruptions between 2014 to 334 

2023, porosity and pore connectivity have been measured (Gurioli and Di Muro, 2017). These 335 

values are consistent to other subaerial lavas like in Hawaii (e.g.; Harris and Rowland, 2015; 336 

Polacci et al., 1999). Several studies have demonstrated that the most vesiculated lava samples 337 

are typically located close to the vent (Colombier et al., 2021; Harris et al., 2022; Polacci et al., 338 

1999). Porosity tends to decrease down flow, most likely due to outgassing though local 339 

increases in porosity have been observed during slow emplacement and cooling due to 340 

coalescence (Cashman et al., 1994; Harris et al., 2022; Walker, 1989). Colombier et al. (2021, 341 

2017) showed that porosity of subaerial basaltic lavas is dominated by total connected porosity, 342 

meaning that there are few isolated vesicles, as is also apparent in the texture database for Piton 343 

de la Fournaise volcano (Gurioli and Di Muro, 2017; Thivet et al., 2020 – Fig. 4B). This has 344 

been explained by bubble coalescence during lava transport down a channel (Robert et al., 345 

2014).  346 

If we compare the Piton de la Fournaise dataset to the submarine lavas studied here, we 347 

note that our samples have lower porosities of up to 51%, 41% and 32%, for Phases 1, 2 and 3, 348 

respectively, and contain a higher number of isolated vesicles, especially in samples from Phase 349 

1 (Fig. 4B). A comparison with basanitic samples (DR03, DR04 and DR05) collected at other 350 

locations along the EMVC (Fig. 1), demonstrates a restricted porosity of less than 50% and low 351 

connectivity down to 0.4 (Fig. 4B). This confirms that along the entire EMVC it is common to 352 

find samples with porosity up to 55%, but submarine lavas can trap a greater number of isolated 353 
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vesicles compared to subaerial lavas. This difference between submarine and subaerial samples 354 

can be explained by more rapid quenching of the outer layer in contact with water (> 500 °C/s, 355 

Thivet et al., 2023b) as opposed to slower quenching due to exposure to the atmosphere 356 

(maximum of ~100 °C/s, Hon et al., 1994). This minimizes time for vesicle coalescence, 357 

allowing a greater number of vesicles to become locked into the quenched selvage. The rapid 358 

quenching of the crust of submarine lava flows thus may help to prevent coalescence, and 359 

instead isolates vesicles within the first few centimeters of the lava upper surface in contact 360 

with seawater.  361 

When lava interacts with seawater microcracks could form by thermal shock due to 362 

rapid quenching (James et al., 2008; Perfit et al., 2003). This would increase pore connectivity. 363 

This could also explain the high connectivity, but low coalescence, as observed for a few 364 

samples from Phases 3a and b (Fig. 4A). Note that whether the Fani Maoré samples were 365 

collected close to or distant from the vent, they all had a “popping” behaviour interpreted as 366 

being the result of high gas content and rapid stress release during decompression (Sarda and 367 

Graham, 1990). This popping behaviour is also driven by rapid expansion of a large number of 368 

isolated gas-filled vesicles trapped in the Fani Maoré lavas as evidenced by the strong H2S smell 369 

observed when popping rocks arrived on the ship’s deck after dredging.  370 

 371 

4.2. Porosity: comparison with other submarine basaltic lavas 372 

In general, submarine lava samples show a restricted porosity range, and two groups can 373 

be distinguished (Chavrit et al., 2014, 2012; Dixon et al., 1997; Hekinian et al., 2000; Sarda 374 

and Graham, 1990). A first group includes tholeiitic lavas (MORBs) with low porosity ranging 375 

between <1% and 5% (Chavrit et al., 2014, 2012), with the exception of popping rocks collected 376 

at the Mid-Atlantic Ridge which have vesicularities of up to 17% (Jones et al., 2019; Sarda and 377 

Graham, 1990; Soule et al., 2012). A second group includes alkali basalts located at the Mid-378 
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Atlantic Ridge with porosities as high as 66 % (Hekinian et al., 2000), and in the North Arch 379 

Volcanic Field (Hawaii), at more than 3000 m depth, with porosities of up to 57 % (Dixon et 380 

al., 1997). The samples collected at Fani Maoré belong to this second group, as we found 381 

porosities as high as 51% (Fig. 3).  382 

The difference in porosity between MORBs and submarine alkali basalts/basanites may 383 

be related to the initial volatile (CO2, H2O) contents within the melt. The CO2 content of 384 

MORBs reaches 1 wt.% with a typical dissolved CO2 in glass of 30 to 400 ppm (Jones et al., 385 

2019; Soule et al., 2012). In addition, MORBs are mostly anhydrous with H2O contents of < 386 

0.4 wt.% (Jones et al., 2019; Sarda and Graham, 1990). Instead, alkali basalts contain up to 5 387 

wt.% CO2 (Buso et al., 2022; Dixon et al., 1997; Hudgins et al., 2015) and ≥1 wt.% of initial 388 

H2O (Buso et al., 2022; Hudgins et al., 2015; Schiavi et al., 2020). In comparison, the pre-389 

eruptive water content for Fani Maoré lavas ranges between 1.2 and 2.3 wt.% with evidence for 390 

pre-eruptive CO2 concentrations possibly up to 1.2 wt.% (Berthod et al., 2021a).   391 

In addition to low initial volatile contents, MORBs may experience pre-eruptive bubble 392 

loss during crustal storage, so that the regional context may impact the degree of degassing 393 

(Chavrit et al., 2012; Graham et al., 2018; Sarda and Graham, 1990). Instead, alkali basalts 394 

usually ascend faster with little or no residence time in shallow crustal reservoirs reducing gas 395 

segregation and escape (Cooper et al., 2007; Dixon et al., 1997). Petrological studies (Berthod 396 

et al., 2021) coupled with seismic data (Feuillet et al., 2021; Lemoine et al., 2020; Mercury et 397 

al., 2023) suggest that the basanitic magma that fed Fani Maoré ascended directly from a deep 398 

reservoir (~40 km) during Phase 1 therefore minimizing any pre-eruptive outgassing (Berthod 399 

et al., 2021). Assuming that vesicle characteristics measured within the lavas collected near the 400 

summit vent (sample PL_777_08_PBT01) have undergone minor bubble loss, magma ascent 401 

rates can be estimated using the model of Toramaru (2006) based on NV values. This calculation 402 

gives a decompression rate of around 0.09 MPa/s and an ascent velocity of ~3.0 m/s 403 
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(Supplementary Material S2). However, this estimate considers that bubbles only contain 404 

H2O, but they will also contain some CO2 (Thivet et al., 2023a). Assuming that the effect of 405 

CO2 dominates over H2O, and that the saturation pressure occurs at the source depth of around 406 

40 km, we can roughly estimate the ascent rates by substituting H2O parameters with those for 407 

CO2 (e.g., surface tension and diffusivity after Sarda and Graham (1990) and Watson et al. 408 

(1982), respectively). This gives higher magma ascent rates of >10 m/s, an unrealistic value 409 

that however suggests that the ascent rates determined from CO2 alone is a minimum bound. 410 

Further work is needed to better understand the role of CO2 during magma ascent to the seafloor. 411 

However, our minimum bound is still higher than those found for MORBs based on CO2 412 

degassing for the 2011 Axial Seamount eruption which range from 0.02 to 1.2 m/s (Jones et al., 413 

2018). We conclude that the high porosity recorded within our Fani Maoré samples is related 414 

to a high initial volatile content (1.2 – 2.3 wt.% H2O ; 0.6 – 1.2 wt.% CO2, Berthod et al., 2021a) 415 

coupled with fast magma ascent (>3 m/s).  416 

 417 

4.3. Implications for lava flow emplacement at Fani Maoré 418 

4.3.1. Phase 1 (June 2018 – May 2019): main lava cone building stage 419 

Deep seismicity (up to a depth of 50 km,  Feuillet et al., 2021; Lemoine et al., 2020; 420 

Mercury et al., 2023), coupled with petrological studies (Berthod et al., 2021), have revealed 421 

the source to be a deep magmatic reservoir at ~40 km. From the source, migration of 422 

earthquakes revealed magma ascent towards the southeast. Ascent rates of >3 m/s prevented 423 

interaction with shallower and more evolved reservoirs, and resulted in very high effusion rates 424 

(150–200 m3/s, Feuillet et al., 2021). Note that the eruptive style of the very early phases of the 425 

eruption cannot be known because the flows from those phases were buried by successive flows 426 

by the time of the first observations. Thus, our discussion of Phase 1 only applies to processes 427 

occurring once the flow field was well-developed and mature. 428 



Post-Print  Verdurme et al., accepted EPSL 

23 
 

The high porosity (max. 51 %) and the large number of vesicles per unit area (max NV 429 

= 214 mm-3) recorded in the pillow lavas near the summit vent, suggest that a high content of 430 

volatiles had degassed during magma decompression in a nearly closed-system between the 431 

deep reservoir and the seafloor. The unimodal VSD implies that one stage of nucleation and 432 

bubble growth occurred during magma ascent, with no perturbations due to coalescence or 433 

bubble loss (Blower et al., 2003; Giachetti et al., 2010; Mourtada-Bonnefoi and Laporte, 2004; 434 

Shea et al., 2010). The homogenous spatial distribution of the vesicles in the samples collected 435 

near the vent is consistent with an overall, rather than a local, bubble nucleation mechanism (cf. 436 

Le Gall and Pichavant, 2016a). Basanitic compositions may contain up to 5 wt.% of CO2 (e.g., 437 

Buso et al., 2022) and more than 1 wt.% of H2O (Buso et al., 2022; Dixon et al., 1997; Head et 438 

al., 2011; Hudgins et al., 2015). Decompression experiments have demonstrated that 439 

vesiculation in CO2-bearing melts is caused by a single continuous mechanism of nucleation 440 

along the decompression path (Le Gall and Pichavant, 2016a; Yoshimura, 2015). Due to the 441 

equilibrium between H2O – CO2 fluid and melt, when pressure decreases it induces initial 442 

nucleation of CO2-rich bubbles followed by growth mostly due to water diffusion (Le Gall and 443 

Pichavant, 2016a, 2016b). Given an exsolution depth of around 40 km, coupled with very fast 444 

magma ascent, there would have been insufficient time for volatile diffusion into existing 445 

bubbles, which limited bubble growth and thus their sizes. The very fast ascent rates also 446 

prevented any form of coalescence and minimized outgassing prior to eruption. 447 

Although proximal samples have a texture related to degassing by exsolution, samples 448 

collected at the distal front of the Phase 1 lava flow field (DR25) display a different texture, 449 

which indicates outgassing (Fig. 6). Even though they retain a high porosity, they are 450 

characterized by a much lower NV (0.5 mm-3) as well as a shift towards larger vesicles as 451 

observed in the VSD trend (Fig. 5). This can be explained by coalescence of bubbles (cf. Shea 452 

et al., 2010). The eruption involved relatively low viscosity (~300 Pa.s) magma (Verdurme et 453 
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al., 2023). This would favor coalescence and outgassing during lava flow emplacement on the 454 

seafloor (Fig. 6), as often observed for subaerial basaltic lava flows (Blower et al., 2003; 455 

Cashman et al., 1994; Harris et al., 2022; Polacci et al., 1999). Phase 1 lava reached a distance 456 

of about 9 km from the vent to the north of the summit. The flow field morphology and dredged 457 

samples of lava tube roofs indicate that lava tubes were established to feed inflated pahoehoe 458 

sheet flows to great distances from the vent. Subaerial tube roofs are known to provide very 459 

effective insulation reducing heat losses and cooling rates to ≤1 °C/km (Keszthelyi, 1995). In 460 

lava tubes, greater distances of flow advancement can be achieved (Keszthelyi, 1995), and 461 

complex tube systems can develop during long-lived eruptions to feed distal zones of inflated 462 

pahoehoe lava flows (Mattox et al., 1993). Similar complex systems of lava tubes have also 463 

been observed at the East Pacific rise (Fornari, 1986). Here, we interpret that lava was 464 

transported through a network of lava tubes feeding inflated pahoehoe with long cooling times 465 

(cf. Hon et al. 1994) so that outgassing occurred.  466 
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 467 

Figure 6. A. Geological map outlining the lava flow field emitted during Phase 1, from June 468 

2018 to May 2019, on MAYOBS bathymetry (Rinnert, 2019). Binary images of selected thin 469 

sections of lava samples are also shown at different locations on the lava flow field. B. 470 

Schematic drawing (not to scale) illustrating the dynamics of degassing processes from the 471 

magma reservoir to lava flow emplacement on the seafloor. The depths of layers, such as the 472 

top of the Mesozoic Oceanic Crust (OC) and the seismic Moho discontinuity, are defined by 473 

refraction and reflection seismic data under Fani Maoré in Masquelet et al. (2022, 2023 474 

submitted Tectonophysics). 475 
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 476 

4.3.2. Phase 2 (June – July 2019): southern and western lava flow fields 477 

Phase 2 lavas are dominated by large vesicles with irregular shapes and NV ranging 478 

between 0.2 and 39 mm-3 (Figs 2 and 5). Porosities are slightly lower than for Phase 1, 479 

indicating that bubble coalescence dominated over nucleation (cf. Blower et al., 2003; Giachetti 480 

et al., 2010). Phase 2 samples contain zoned olivine crystals, which suggests that instead of 481 

ascending directly from the deep reservoir, the magma interacted with a shallower tephri-482 

phonolitic reservoir at a depth of around 17 km below the seafloor (Fig. 7) (Berthod et al., 2022, 483 

2021). Given that the ascent rate from the shallow reservoir was slower (minimum 0.005 m/s, 484 

Berthod et al., 2021), the effusion rates are also lower (70 – 80 m3/s, Berthod et al. 2021; 485 

REVOSIMA, 2024). Vesicle characteristics are similar to the samples collected at the distal 486 

flow front of the Phase 1 lava flow field. This means that more efficient outgassing occurred 487 

during magma ascent and lava flow emplacement during Phase 2 (Fig. 7).  488 

Berthod et al. (2022, 2021) suggested that Phase 2 was emitted by new vents located 489 

between ~1 and ~4 km from the Phase 1 vent. However, mapping using bathymetry data 490 

indicate that the Phase 2 lava flow field is continuous with that of Phase 1: the former extending 491 

from the front of the latter (Fig. 7A). The first Phase 2 lava flow field was emplaced from the 492 

southern edge of the Phase 1 field in June 2019, and the second was emplaced from the 493 

southwest edge of the Phase 1 field in July 2019. This suggests that the main primary vent 494 

remained in the same location, but that extension of the flow field in Phase 2 resulted from the 495 

establishment of a stable tube system in the Phase 1 flow field, breakouts from the Phase 1 flow 496 

front, and extension of the tube system through the Phase 2 flow field (cf. Mattox et al. 1993). 497 

The presence of zoned crystals in Phase 2 samples can be explained by a decrease in the magma 498 

ascent rate, facilitating interaction with the shallower tephri-phonolitic reservoir as suggested 499 

by Berthod et al. (2021) (Fig. 7B).  500 
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 501 

Figure 7. A. Geological map outlining the lava flows emplaced during Phase 2, from June to 502 

July 2019, on MAYOBS bathymetry (Rinnert, 2019). Binary images of selected thin sections of 503 

lava samples are also shown at different locations on the lava flows. B. Caption same as Fig. 504 

6. Bi-color (red and green) arrows represent the interaction between the basanitic and tephri-505 

phonolitic melts. 506 
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 507 

4.3.3. Phase 3 (August 2019 – January 2021): Northwestern flow field 508 

 Phase 3a and b lavas were emitted from a new area 6 km northwest of the main edifice 509 

(Fig. 1; Berthod et al., 2022). Based on petrological data, Berthod et al. (2022) explains this 510 

change in location via a new dyke pathway occurring in the crust above the shallower reservoir. 511 

However, the location of Phase 3 lava flows at the periphery of the existing flow field as well 512 

as the lack of seismic signal between a depth of around 20 km and the seafloor (e.g., Lavayssière 513 

and Retailleau, 2023), although shallow seismicity is also absent below Fani Maoré summit, 514 

may also suggest that this new location is likely associated with the breakouts of the Phase 1 515 

lava flow front, similarly to Phase 2. Such breakouts, also called ephemeral vents are commonly 516 

found in lava flow field with well-established tube system (Calvari and Pinkerton, 1998; Polacci 517 

and Papale 1997).  518 

Emplacement of the Phase 3 lava flows began around 21 August 2019 and a complex 519 

succession of lava flows piled up around a first ephemeral vent (Berthod et al., 2022; Rinnert 520 

et al., 2021a, 2020) (Fig. 8A). This emission source was most likely close to the location of the 521 

DR15 dredge, where bathymetry shows a lava flow field thickness of up to ~ 250 m. The lava 522 

flow field extends towards the North. Proximal samples from Phase 3 (DR15) have a higher 523 

porosity and NV (87.3 mm-3) than distal vesicle-free samples (DR19) (Fig. 8A). This suggests 524 

that an initially degassed magma became outgassed, with crystallization and outgassing 525 

occurring during lava flow emplacement under the lower effusion rate conditions (11 m3/s, 526 

Peltier et al. 2022; REVOSIMA, 2024). The anomalously low porosity and high density of 527 

DR19 samples can be explained by the location of the dredge at the flow front.  528 

Between 10 May and 10 October 2020, a large 760  m long by 450 m wide tumulus-like 529 

structure with a well-developed axial cleft 620 m long and about 50 m wide (cf. Walker, 1991) 530 

and a height of 40 m developed in the Phase 3a flow field. After it formed, the tumulus emitted 531 
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a lava flow from its central cleft and from collapse breakouts at its southern side (Fig. 8B). 532 

Between 10 and 22 October 2020, lava flows of Phase 3b erupted in the vicinity of the tumulus, 533 

covering it and extending radially away from it (Fig. 8C). This mimics processes observed at 534 

active inflating subaerial pahoehoe lava flow fields (e.g., Hon et al. 1994; Mattox et al. 1993; 535 

Walker, 1991). Dredge DR14 sampled lava flows from both Phases 3a and 3b, whereas DR18 536 

(Rinnert et al., 2020) only sampled Phase 3b, including thin elongated lava flows, probably fed 537 

by tubes emanating from the tumulus structure and its southern flank breakout. Near the 538 

tumulus (DR14), we found two types of samples, the first resembling s-type pahoehoe with 539 

high porosities (max. 32 %), and the second resembling p-type pahoehoe with low porosities 540 

and pipes (Walker, 1989). In contrast, at the distal site (DR18) only p-type pahoehoe with very 541 

low porosities are found (Fig. 8C). The texture of Phase 3b samples highlight, again, that 542 

magma arriving at the surface experienced a degree of degassing and crystallization during 543 

ascent prior to emplacement. This was followed by variable degrees of outgassing during lava 544 

flow emplacement and inflation.  545 

The final stage of Phase 3b, from 22 October 2020 to January 2021 was sampled by 546 

dredge DR20 (Rinnert et al., 2021a), and was characterized by highly degassed lavas found at 547 

five different locations (Fig. 8D). These locations were distributed radially around the southern 548 

sector of the Phase 3b tumulus. Samples are of vesicle-poor lava, reflecting degassed magma 549 

arriving at the surface. These samples also contain pipes. This texture is consistent with the 550 

breakout of outgassed pahoehoe at the end of the inflation phase. We envision this as similar to 551 

the previously documented example of the waning phases of lava flow field inflation at Kilauea 552 

where ooze out of outgassed spiney and blue glassy pahoehoe previously stored in the flow 553 

field was observed around the margins of an inflated flow (e.g., Harris et al., 2007; Rowland 554 

and Walker, 1990).  555 
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Overall Phase 3 samples are characterized by low porosities (average of 14%), which 556 

may be related to decreasing driving pressure at the end of the eruption (cf. Gudmundsson, 557 

2002; Rivalta et al., 2005; Taisne and Jaupart, 2009) when the magma had more time to undergo 558 

degassing during ascent (e.g., Jones et al., 2018). Furthermore, depletion of the initial volatile 559 

content over the almost two years of eruption prior to Phase 3, may have also resulted in lower 560 

porosity. In addition, extended residence time of lava within the flow field could lead to high 561 

degrees of outgassing and the emplacement of vesicle poor lava types. Despite generally low 562 

porosities, heterogeneous textures within the samples reflect the complexity of the 563 

emplacement style of lavas in this area.  564 

 565 
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Figure 8. Geological map showing the lava flows that took place between August 2019 and the 566 

end of the eruption in January 2021 (Phase 3a and 3b) at 6km northwest of the main volcanic 567 

cone. DR labels corresponds to the dredges. A. 21 August 2019 – 10 May 2020 B. 10 May – 10 568 

October 2020 C. 10 – 22 October 2020 D. 22 October 2020 – January 2021. Background is the 569 

bathymetry from MAYOBS (Rinnert, 2019). The star symbol represents the approximate 570 

location of ephemeral vent at the tip of a tube system.  571 

 572 

5. Conclusions 573 

This study provides a detailed textural analysis of lava flows erupted and emplaced 574 

during the 2018–2021 submarine eruption of Fani Maoré and how they changed with time. This 575 

submarine eruption occurred at a depth of 3300 m, and was extremely well characterized by 576 

numerous oceanographic campaigns that provided an extensive sample set. The quantification 577 

of textural parameters including porosity, pore connectivity, vesicle number density (NV) and 578 

vesicle size distributions (VSD) reveals three different textural facies. (1) The most vesicular 579 

(average porosity of 35%) lava display unimodal VSDs, a high NV (14–214 mm-3) and are 580 

characterized by small and spherical vesicles. (2) Samples with intermediate porosities (25%) 581 

are poor in small vesicles, have VSDs shifted towards larger vesicles and low NV (0.2–39 mm-582 

3). (3) The densest samples have the lowest porosity (14%) and are characterized by a bimodal 583 

distribution, with a dominant mode of small vesicles and still a low NV (0–87 mm-3). 584 

These results bring valuable information on spatio-temporal degassing variations during 585 

a long-lasting submarine effusive eruption. The early phase of activity (Phase 1, June 2018 – 586 

May 2019) was associated with the rapid ascent (>3 m/s) and closed-system degassing of 587 

volatile-rich magma during transfer from the deep mantle reservoir to the seafloor (Facies 1). 588 

Distal samples collected at lava flows emitted during Phases 1 and 2, between June 2018 and 589 

July 2019, mirror a decline in effusion rate with increasing evidence of outgassing during lava 590 
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flow emplacement (Facies 2). During the final phase (Phase 3, August 2019 – January 2021), 591 

an ephemeral vent located 6 km to the northwest emitted a more degassed magma. Extended 592 

periods of residence within a lava tube distribution system and an inflated flow field led to a 593 

high degree of outgassing (Facies 3). Furthermore, this study emphasizes that the emplacement 594 

of lava flows during Phases 2 and 3 are not related to new vents or new dykes. Indeed, during 595 

Phase 1, a large lava flow was able to expand thanks to high effusion rates and where lava tubes 596 

well developed. Then lava was transported through this complex lava tube system to the front 597 

of the lava flow forming new distal flows. First to the south (Phase 2) and finally to the 598 

northwest (Phase 3) where a new complex lava flow field with tumuli and multiple ephemeral 599 

vents was established. 600 

Hence, the heterogeneous textures within the studied samples reflect diverse ascent and 601 

emplacement dynamics, coupled with changes in ascent and effusion rates over time as 602 

observed in subaerial effusive events. Indeed, although we see a preponderance of pillows, we 603 

also observe analogs with tube-fed emplacement of tumuli and inflated sheet flow. To better 604 

link volatile-rich magma ascent conditions with effusion and emplacement of the associated 605 

lavas, further decompression experiments are needed focusing on H2O–CO2 bearing basanitic 606 

melts to better constrain ascent rates. Fundamentally, we find strong evidence that variations in 607 

ascent rate and degassing conditions directly influence effusion rates and the style of effusive 608 

eruptions on the seafloor. 609 
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