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NEW PROPERTIES ON THE GROWTH OF ULTRAMETRIC
ENTIRE FUNCTIONS AND APPLICATIONS

ALAIN ESCASSUT

Abstract. Let IK be a complete ultrametric algebraically closed field and let
f be an entire function in IK whose order of growth is finite. We show that the
type of growth is finite if and only if so is the cotype. We give bounds for the
cotype of growth and also for the lower cotype of growth. We show that the
type of growth of f is equal to its lower type if and only if its cotype is equal
to its lower cotype and when these are realised, then the cotype is the product
of the type by the order of growth and the order of growth (if > 0), is then
equal to the lower order of growth.

If an entire function h has an order of growth strictly inferior to the lower
order of an entire function f , then h is a small function with respect to f . A
similar comparison is made with the type of growth. Conversely, if h is a small
function with respect to f , then f + h and f have same order, same type and
same cotype of growth. Links are showed with the Nevanlinna Theory.

Suppose that IK is of characteristic 0. Given a meromorphic function f = g
h ,

if f admits primitives and if the type or the cotype of h is finite, then f assumes
all values infinitely many times.

A counter-example is constructed where the lower order of growth is equal
to the order of growth but the lower type of growth is not equal to the type
of growth and where the the cotype is not equal to the product of the type by
the order of growth.

In complex analysis, a claim was made for complex meromorphic functions
stating that if the lower order of growth equals the order, then the lower type
equals the type but we contest the proof.

I. Introduction and main results
Notations and definitions: Let IK be a complete ul-
trametric algebraically closed field whose absolute value is
denoted | . | and let |IK| = { |x|, x ∈ IK}. Given r > 0,
we denote by d(0, r) the disk {x ∈ IK | |x| ≤ r}, by
d(0, r−) the disk {x ∈ IK | |x| < r} and by C(0, r) the
circle {x ∈ IK | |x| = r} .

02000 Mathematics Subject Classification: 12J25; 30D35; 30G06.
0Keywords: p-adic entire functions, order and type of growth
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Let A(IK) be the IK-algebra of entire functions with co-
efficients in IK and let M(IK) be the field of meromorphic

functions
g

h
, g, h ∈ A(IK).

Let f ∈ M(IK). For each r > 0, |f (x)| is known to have
a limit |f |(r) when |x| tends to r while being different from
r and then |f |(r) = sup{|f (x)| | |x| ≤ r} [6], [8].
We denote by s(r, f ) the number of zeros of f in d(0, r),

each counted with its multiplicity and we denote by t(r, f )
the number of poles of f in d(0, r), each counted with its
multiplicity.
We denote by Log the Neperian logarithm and by e the

number such that Log(e) = 1. Let f ∈ A(IK). As in
complex analysis [11], we define

ρ(f ) = lim sup
r→+∞

Log(Log(|f |(r)|))
Log(r)

,

ρ̃(f ) = lim inf
r→+∞

Log(Log(|f |(r)|))
Log(r)

and if 0 < ρ(f ) < +∞, we put

σ(f, r) =
Log(|f |(r)
rρ(f)

,

σ(f ) = lim sup
r→+∞

σ(f, r),

σ̃(f ) = lim inf
r→+∞

σ(f, r),

Moreover, assuming again 0 < ρ(f ) < +∞, here we put

ψ(f, r) =
s(r, f )

rρ(f)
, ψ(f ) = lim sup

r→+∞

s(r, f )

rρ(f)
,

and ψ̃(f ) = lim inf
r→+∞

s(r, f )

rρ(f)
.

ρ(f ) is called the order of growth, ρ̃(f ) is called the lower
order of growth, σ(f ) is called the type of growth, σ̃(f ) is
called the lower type of growth, ψ(f ) is called the cotype

of growth, ψ̃(f ) is called the lower cotype of growth.
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A value b ∈ |IK| is called a quasi-exceptional value of a
meromorphic function f ∈ M(IK) if f − b has finitely many
zeros.

Theorem 1 is easy:

Theorem 1: Let f, g ∈ A(IK). Then ρ(fg) = max(ρ(f ), ρ(g))
and ρ(fn) = ρ(f ) ∀n ∈ IN. Moreover ρ(f+g) ≤ max(ρ(f ), ρ(g)).

Corollary 1.1: The set of functions f ∈ A(IK) of order
≤ t is a semi-group.

We will now state the following Theorem 2:

Theorem 2: Let f ∈ A(IK) be such that 0 < ρ(f ) <
+∞. Then σ(f ) < +∞ if anf only if ψ(f ) < +∞. Sup-
pose that these hypotheses are satisfied. Then

ρ(f )σ(f ) ≤ ψ(f ) ≤ ρ(f )
(
eσ(f )− σ̃(f )

)
and

ρ(f )
(
σ̃(f )− σ(f )

e

)
≤ ψ̃(f ) ≤ ρ(f )σ̃(f ).

Further, the hypotheses σ(f ) = σ̃(f ) and ψ(f ) = ψ̃(f )
are equivalent and if they are satisfied, then ψ(f ) =
ρ(f )σ(f ).

Corollary 2.1: Let f ∈ A(IK) be clean. Then ψ(f ) =
ρ(f )σ(f ).

Remark 1: In [3] as in [6], it was proved that ρ(f )σ(f ) ≤
ψ(f ) ≤ ρ(f )

(
eσ(f )− σ̃(f )

)
and that each hypothesis

a) σ(f ) = σ̃(f ) ,

b) ψ(f ) = ψ̃(f ),
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implies ψ(f ) = ρ(f )σ(f ), but it was not proved that the
two hypotheses are equivalent.

Remark 2: The equality ψ(f ) = ρ(f )σ(f ) holds because
σ(f, r) was defined with help of the Neperian logarithm.

Definition: A function f ∈ A(IK) is said to be regular if
ρ(f ) = ρ̃(f ) [11] and f is said to be clean if 0 < ρ(f ) < +∞
and σ(f ) = σ̃(f ).

Let us recall here the following Theorem A from [9] and
[3]:

Theorem A: Let f (x) =
∞∑
n=0

bnx
n ∈ A(IK) be such that

0 < ρ(f ) < +∞. Then eσ(f )ρ(f ) = lim sup
n→+∞

(
n n

√
|bn|ρ(f)

)
.

Now Corollary 2.2) is an immediate consequence of Theo-
rem 2 and Theorem A:

Corollary 2.2: Let f (x) =
∞∑
n=0

bnx
n ∈ A(IK) be such

that 0 < ρ(f ) < +∞. Then

ρ(f )σ(f ) ≤ ψ(f ) ≤ lim sup
n→+∞

(
n n

√
|bn|ρ(f)

)
− ρ(f )σ̃(f )

and if f is clean, then

eψ(f ) =
lim supn→+∞

(
n n
√

|bn|ρ(f)
)

ρ(f )
.

Theorem 3: Let f, g ∈ A(IK) be such that ρ(g) ≤
ρ(f ) < +∞ and max(σ(f ), σ(g) < +∞. Then, σ(fg) ≤
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σ(f ) + σ(g). If ρ(f ) > ρ(g) then σ(fg) = σ(f ). If f is
clean and such that ρ(f ) > ρ(g), then fg is clean. If f
and g are clean and if ρ(f ) = ρ(g), then fg is clean, and
σ(fg) = σ(f ) + σ(g) and ψ(fg) = ψ(f ) + ψ(g).

Corollary 3.1: The set of clean functions f ∈ A(IK)
is a multiplicative semi-group. The set C(t), .) of clean
functions f ∈ A(IK) of order t is a submultiplicative
semi-group and σ and ψ are semi-group morphisms from
(C(t), .) into (IR+,+).

Corollary 2.1 suggests a question:

Question 1: Let f (x) =
∞∑
n=0

bnx
n ∈ A(IK) be such that

0 < ρ(f ) < +∞. Do we have

ρ(f )σ(f ) = ψ(f ) =
lim supn→+∞

(
n n
√

|bn|ρ(f)
)

e
when f is not clean? The answer is presented through a
counter-example at the end of the article.

Theorem 4 is easy:

Theorem 4: Let f ∈ A(IK) be such that 0 < ρ(f ) <
+∞ and σ̃(f ) > 0. Then f is regular.

Corollary 4.1: Let f ∈ A(IK) be clean, such that 0 <
ρ(f ) < +∞ and σ(f ) > 0. Then f is regular.

Now, from Theorem 2, we will deduce the following Theo-
rem 5:

Theorem 5: Suppose that IK is of characteristic 0. Let
f ∈ M(IK) \ IK(x), admitting primitives, be of the form
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g

h
with g, h ∈ A(IK) and be such that 0 < ρ(h) < +∞

and ψ(h) < +∞. Then f has no quasi-exceptional value.

By Theorem 2 we deduce immediately this corollary:

Corollary 5.1: Suppose that IK is of characteristic 0.
Let f ∈ M(IK) \ IK(x), admitting primitives, be of the

form
g

h
with g, h ∈ A(IK) and be such that 0 < ρ(h) <

+∞ and σ(h) < +∞. Then f has no quasi-exceptional
value.

Corollary 5.2: Suppose that IK is of characteristic 0.
Let f ∈ M(IK)\IK(x), be of the form g

h with g, h ∈ A(IK)
and be such that 0 < ρ(h) < +∞ and σ(h) < +∞. If
f has a quasi-exceptional value, then it has a non-zero
residue.

Corollary 5.3: Suppose that IK is of characteristic 0.

Let f ∈ M(IK)\IK(x), be of the form g

h
with g, h ∈ A(IK)

and be such that 0 < ρ(h) < +∞ and σ(h) < +∞. Then
f ′ has no quasi-exceptional value.

Proof: Indeed, since ρ(h) < +∞ and σ(h) < +∞, we
have ρ(h2) < +∞ and σ(h2) < +∞ and hence Corollary
5.1 applies to f ′.

Let us recall the definition of small functions, applied to
entire functions.

Definition: Let f, h ∈ A(IK). The function h is said to

be a small function with respect to f if lim
r→+∞

Log(|h|(r))
Log(|f |(r))

= 0.

(A more general definition is given for meromorphic func-
tions that we will not use here.)
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Given three functions f, g, h ∈ A(IK), f and g are said to
share h, ignoring multiplicity, if the equalityf (x) = h(x)
is equivalent to the equality g(x) = h(x).

Now we can state Theorem 6:

Theorem 6: Let f, h ∈ A(IK) be such that be such
that 0 < ρ(f ) < +∞ and ρ(h) < ρ̃(f ). Then h is a small
function with respect to f .

Corollary 6.1: Let f, h ∈ A(IK), be such that f is
regular and 0 < ρ(f ) < +∞ and ρ(h) < ρ(f ). Then h is
a small function with respect to f .

Theorem 7: Let f, h ∈ A(IK) be such that ρ(h) =
ρ(f ), 0 < ρ(f ) < +∞ and σ(h) = 0 < σ̃(f ). Then h is a
small function with respect to f .

Corollary 7.1: Let f, h ∈ A(IK) be such that ρ(h) =
ρ(f ) be such that 0 < ρ(f ) < +∞. If f is clean, and if
σ(h) = 0 < σ((f ), then h is a small function with respect
to f .

Moreover, we notice that when r is big enough, in each
disk d(0, r), the number of zeros of f + h equals this of f ,
therefore ψ(f + h) = ψ(f ).

In [5] the following Theorem B was given and it will be
useful now. It is also a consequence of results of [10].

Theorem B: Suppose that IK is of characteristic 0. Let
f, g ∈ A(IK) share 3 small functions h1, h2, h3 ∈ A(IK),
ignoring multiplicity. Then f = g.
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Now Corollary 7.2 is an immediate consequence of Theo-
rem 6 and Theorem B.

Corollary 7.2: Suppose that IK is of characteristic 0.
Let f, g ∈ A(IK) share h1, h2, h3 ∈ A(IK), ignoring mul-
tiplicity, such that max1≤j≤3(ρ(hj)) < min(ρ̃(f ), ρ̃(g)).
Then f = g.

And by Theorem 7, we have Corollary 7.3:

Corollary 7.3: Suppose that IK is of characteristic 0.
Let f, g ∈ A(IK) share h1, h2, h3 ∈ A(IK), ignoring mul-
tiplicity, such that ρ(hj) = ρ(f ) = ρ(g), j = 1, 2, 3,
σ(hj) = 0, j = 1, 2, 3 and 0 < min(σ̃(f ), σ̃(g)). Then
f = g.

Theorem 8: Suppose that IK is of characteristic 0. Let
f ∈ A(IK) and let h ∈ A(IK) satisfy ||h|(r) < |f |(r) ∀r >
R, for a certain R > 0. Then ρ(f+h) = ρ(f ), σ(f+h) =
σ(f ) and ψ(f + h) = ψ(f ).

Corollary 8.1: Suppose that IK is of characteristic 0.
Let f ∈ A(IK) and let h ∈ A(IK) be a small function with
respect to f . Then ρ(f + h) = ρ(f ), σ(f + h) = σ(f ) and
ψ(f + h) = ψ(f ).

Theorem 9: Suppose that IK is of characteristic 0. Let
f ∈ A(IK) be such that 0 < ρ(f ) < +∞. Then ρ(f ′) =
ρ(f ), σ(f ′) = σ(f ). Moreover, if f is clean, then ψ(f ′) ≥
ψ(f ) and if f ′ is clean, then ψ(f ′) ≤ ψ(f ).

Corollary 9.1: Suppose that IK is of characteristic 0
Let f ∈ A(IK) be such that 0 < ρ(f ) < +∞. If f and f ′

are clean, then ψ(f ′) = ψ(f ).
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By Theorem 9, we can immediately derive Question 2:

Question 2: Suppose that IK is of characteristic 0. Let
f ∈ A(IK) be such that 0 < ρ(f ) < +∞. Do we have
ψ(f ′) = ψ(f )?

In [3], the first statament of Theorem C is proved.The sec-
ond statament is easy:

Theorem C: Suppose that IK has residue characteris-
tic 0. Then for every f ∈ A(IK) such that 0 < ρ(f ) <
+∞, we have ψ(f ′) = ψ(f ). Moreover, if f is clean, so
is f ′.

Question 2, in the general case, then seems natural, as
suggested in [2] and [3]. However, by Theorems 2 and 7, we
can write Corollary 9.2:

Corollary 9.2: Suppose that IK is of characteristic 0.
Let f ∈ A(IK) 0 be such that 0 < ρ(f ) < +∞. Then,

|ψ(f )− ψ(f ′)|∞ ≤ ρ(f )[(e− 1)σ(f )− σ̃(f )].

In order to prove Theorem 10, we need to recall. the second
Main Nevanlinna Theorem for p-adic entire functions (. for
example. Theorem C.4.24 in [6]) and first, we will. need the
counter functions of zeros for an entire function.
Here we will choose a presentation that avoids assuming

that all functions we consider admit no zero and no pole at
the origin.

Question 3: If an entire function f ∈ A(IK) is clean, is
f ′ clean too? In residue characteristic p > 0 the answer is
probably ”no”.
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Definitions: Let f ∈ A(IK) We denote by Z(r, f ) the
counting function of zeros of f in d(0, r) defined in the fol-
lowing way.
Let ω0(f ) be the order of multiplicity of 0 if it is a. zero of

f and let ω0(f ) = 0 else.
Let (an), (1 ≤ n ≤ q(r)) be the finite sequence of zeros of

f such that 0 < |an| ≤ r, of respective order sn.

We setZ(r, f ) = max(ω0(f ), 0)Logr+

q(r)∑
n=1

sn(Logr − Log|an|)

and so, Z(r, f ) is called the counting function of zeros of
f in d(0, r), counting multiplicity.
In order to define the counting function of zeros of f ig-

noring multiplicity, we put ω0(f ) = 0 if ω0(f ) = 0 and
ω0(f ) = 1 if ω0(f ) ≥ 1.
Now, we denote by Z(r, f ) the counting function of zeros

of f ignoring multiplicity:

Z(r, f ) = ω0(f )Logr+

q(r)∑
n=1

(Logr − Log|an|) and so, Z(r, f )

is called the counting function of zeros of f in d(0, r) ig-
noring multiplicity.
And we denote by Z0(f ′, r) the counting function of the

zeros of f ′ that are zeros of f − an for any n ≤ q(r).

Theorem N: Suppose that IK is of characteristic 0.
Let f ∈ A(IK) and let a1, ..., aq ∈ IK. Then

(q−1)Log(|f |(r)) ≤
q∑
i=1

Z(r, f−ai)−Z0(f ′, r)−Log(r)+O(1).
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Theorem 10: Suppose that IK is of characteristic 0.
Let f ∈ A(IK) be such that 0 < ρ(f ) < +∞ and let
a1, ..., aq ∈ IK. Then

(q − 1)σ(f ) ≤ lim sup
r→+∞

( 1

rρ(f)

q∑
i=1

Z(r, f − ai)− Z0(f ′, r)
)
.

Corollary 10.1: Suppose that IK is of characteristic 0
and let f ∈ A(IK) be clean. Let a1, ..., aq ∈ IK. Then

(q − 1)σ(f ) ≤ lim inf
r→+∞

( 1

rρ(f)

q∑
i=1

Z(r, f − ai)− Z0(f ′, r)
)
.

and

(q − 1)ψ(f ) ≤ lim inf
r→+∞

(ρ(f )
rρ(f)

q∑
i=1

Z(r, f − ai)− Z0(f ′, r)
)
.

Theorem 11: Suppose that IK is of characteristic 0.
There exist regular non-clean functions f ∈ A(IK) such
that ψ(f ) > ρ(f )σ(f ).

II. Proofs of theorems

Proof. of Theorem 1: All conclusions are easy except
that ρ(fg) = max(ρ(f ), ρ(g)). It is clear that ρ(fg) ≥
max(ρ(f ), ρ(g)). since |fg|(r) = |f |(r)|g|(r). Now, let t =
max(ρ(f ), ρ(g). Then there exists a function ω defined in

IR+, of limit 0 at ∞, such that Log(Log(|f |(r)))
Log(r) ≤ t+ω(r) and

Log(Log(|g|(r)))
Log(r) ≤ t + ω(r). Hence, we have

Log(|f |(r)) ≤ rt+ω(r), Log(|g|(r)) ≤ rt+ω(r)
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hence
Log(|f |(r)) + Log(|g|(r)) ≤ 2rt+ω(r)

therefore

Log
(
Log(|f |(r))+Log(g|(r))

)
≤ Log(2)+(t+ω(r))Log(r)

hence,

Log
(
Log(|f |(r))+Log(g|(r))

)
≤ Log(2)+(t+ω(r))Log(r)

hence

Log(Log(|f |(r).|g|(r)))
Log(r)

≤ Log(2)

Log(r)
+ t + ω(r)

and hence

lim sup
r→+∞

Log(Log(|f |(r).|g|(r)))
Log(r)

≤ t.

Consequently, ρ(fg) ≤ max(ρ(f ), ρ(g)), which ends the
proof.

In the proof of Yheortem 2, we will use the following
Lemma 1 that is classical [6]:

Lemma 1: Let f (x) ∈ A(IK)) be such that f (0) ̸= 0,
let r ∈]0, R[ and let aj, 1 ≤ j ≤ q be the zeros of f in
d(0, r), of respective multiplicity mj. Then

Log(|(f |(r)) = Log(|f (0)|) +
q∑
j=1

mj(Log(r)− Log|aj|).

Proof. of Theorem 2: quad Without loss of generality
we can assume that f (0) = 1. Let u = ρ(f ). Let (an)n∈IN be
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the sequence of zeros of f with |an| ≤ |an+1|, n ∈ IN and for
each n ∈ IN, let wn be the multiplicity order of an. For every
r > 0, let k(r) be the integer such that |an| ≤ r ∀n ≤ k(r)
and |an| > r ∀n > k(r). Then by Lemma 1, Log(|f |(r))

is of the form

k(r)∑
n=0

wn(Log(r)− Log(|an|)) hence, we have

σ(f, r) =

∑k(r)
n=0wn(Log(r)− Log(|an|))

rρ(f)
. In the same way,

for any r > 0 and n ∈ IN, we put cn = |an|, ψ(f, r) =
s(r, f )

rρ(f)
.

We first show the inequality ρ(f )σ(f ) ≤ ψ(f ). By defini-
tion of σ(f, r) we can derive

σ(f, r) =

k(re−α)∑
n=0

wn
(
Log(r)− Log(re−α)

)
ru

+

k(re−α)∑
n=0

wn
(
Log(re−α)− Log(cn)

)
ru

+
∑

k(re−α)<n≤k(r)

wn(Log(r)− Log(cn)

ru
,

hence

σ(f, r) ≤
k(re−α)∑
n=0

wn
(
Log(r)− Log(re−α)

)
ru

+

k(re−α)∑
n=0

wn
(
Log(re−α)− Log(cn)

)
ru

+ α
∑

k(re−α)<n≤k(r)

wn
ru
,
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because Log(r) − Log(cn) ≤ α ∀n ∈ [k(re−α), k(r)] ∩ IN.
Consequently,

σ(f, r) ≤ α

k(re−α)∑
n=0

wn
ru

+

k(re−α)∑
n=0

wn
(
Log(re−α)− Log(cn)

)
ru

+α
∑

k(re−α)<n≤k(r)

wn
ru

therefore

σ(f, r) ≤ α

k(r)∑
n=0

wn
ru

+

k(re−α)∑
n=0

wn
(
Log(re−α)− Log(cn)

)
ru

hence

σ(f, r) ≤ e−uα
k(re−α)∑
n=0

wn(Log(re
−α)− Log(cn))

(re−α)u
+α

∑
0≤n≤k(r)

wn
ru
.

Thus we have

(1) σ(f, r) ≤ e−uασ(f, re−α) + αψ(f, r).

Suppose first that σ(f ) < +∞. We check that we can
pass to superior limits on both sides, so we obtain σ(f ) ≤

e−uασ(f ) + αψ(f ) therefore σ(f )
(1− e−uα)

α
≤ ψ(f ). That

holds for every α > 0, hence by de l’Hopital’s theorem, we
can derive

(2) ψ(f ) ≥ ρ(f )σ(f ).

Now by (1), we have

σ(f, r)(1− e−uα) ≤ αψ((r, f ),
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hence passing to inferior limits on both sides, we deduce

σ̃(f )− e−uασ(f )

α
≤ ψ̃(f )

hence
u(σ̃(f )− e−uασ(f ))

uα
≤ ψ̃(f )

therefore when αu = 1, we obtain

(3) ρ(f )(σ̃(f )− σ(f )

e
) ≤ ψ̃(f ).

We will now show the inequality

ψ(f ) ≤ ρ(f )(eσ(f )− σ̃(f )).

Let us fix α > 0. We can write

σ(f, r) =

k(re−α)∑
n=0

wn(Log(r)− Log(re−α))

ru

+

k(re−α)∑
j=0

wj(Log(re
−α)− Log(cn))

ru
+

∑
k(re−α)<j≤k(r)

wj(Log(r)− Log(cj))

ru

hence

σ(f, r) ≥ α

k(re−α)∑
n=0

wn
ru

+

k(re−α)∑
j=0

wj(Log(re
−α)− Log(cn))

ru

hence
(4)

σ(f, r) ≥ αe−uα
k(re−α)∑
n=0

wn
(re−α)u

+e−uα
k(re−α)∑
j=0

wn(Log(re
−α)− Log(cn))

(re−α)u
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and hence

(5) σ(f, r) ≥ αe−uαψ(f, re−α) + e−uασ(f, re−α).

Therefore, we can deduce

αe−uαψ(f ) ≤ lim sup
r→+∞

(
σ(f, r)− e−uασ(f, re−α))

)
and therefore

(6) αe−uαψ(f ) ≤ σ(f )− e−uασ̃(f )).

That holds for every α > 0 and hence, when uα = 1, by
(6) we obtain

(7) ψ(f ) ≤ ρ(f )
(
eσ(f )− σ̃(f )

)
which is the left hand inequality of the general conclusion.
Particularly, we notice that when σ(f ) < +∞, then ψ(f ) <

+∞. Now, on (4) we can also take the inferior limit on both

sides and we deduce

σ̃(f ) ≥ αe−uαψ̃(f ) + e−uασ̃(f )

therefore
αe−uαψ̃(f ) ≤ σ̃(f )(1− e−uα).

Then when uα tends to 0 we have

(3) ψ̃(f ) ≤ ρ(f )σ̃(f ).

Now, on (4) we can also take the inferior limit on both
sides and we deduce

σ̃(f ) ≥ αe−uαψ̃(f ) + e−uασ̃(f )

therefore
αe−uαψ̃(f ) ≤ σ̃(f )(1− e−uα).

Then when uα tends to 0 we have

(3) ψ̃(f ) ≤ ρ(f )σ̃(f ).
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Now, suppose that σ(f ) = +∞. We can find an increasing
sequence rn of limit +∞ such that
σ(f, rn) = sup{σ(f, r) | r ≤ rn}, n ∈ IN. Consider (1)
when min(α, uα) > 1. Then σ(f, rne

−α) < σ(f, r)n, hence
of course

(1− e−uα)σ(f, rne
−α) ≤ (1− e−uα)σ(f, rn)

and hence σ(f, rn)− e−uασ(f, rne
−α) ≥ (1− e−uα)σ(f, rn),

therefore (1 − e−uα)σ(f, rn) ≤ ψ(f, rn), which proves that
ψ(f ) = +∞.
Thus, σ(f ) < +∞ is equivalent to ψ(f ) < +∞. Conse-

quently, Relations (2), (3), (5), (7), (8) still apply and hence
hold as soon as σ(f ) < +∞ or ψ(f ) < +∞.

Now suppose that ψ̃(f ) = ψ(f ). Then we have

ρ(f )σ(f ) ≤ ψ(f ) ≤ ρ(f )σ̃(f )

therefore σ(f ) = σ̃(f ), since ρ(f ) > 0.

Conversely, suppose that σ(f ) = σ̃(f ). Then by (6) we

have ψ(f ) ≤ σ(f )
(euα − 1

α

)
. That holds for every α > 0

and then, ψ(f ) ≤ uσ(f ), i.e. ψ(f ) ≤ ρ(f )σ(f ), hence by
(2) we have, ψ(f ) = ρ(f )σ(f ).
But now, by (1), we see that

αψ(f, r) ≥ σ(f, r)− e−uασ(f, re−α)

hence, passing to the inferior limit,

αψ̃(f ) ≥ σ(f )(1− e−uα) ∀α > 0

therefore ψ̃(f ) ≥ ρ(f )σ(f ). But we just showed that ψ(f ) =

ρ(f )σ(f ), hence ψ̃(f ) = ψ(f ).
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Proof of Theorem 3 Let s = ρ(f ) ≥ t = ρ(g). Then
ρ(fg) = s, hence

σ(fg) = lim sup
r→+∞

Log(|fg|(r))
rs

= lim sup
r→+∞

Log(|f |(r).|g|(r))
rs

.

Now, if s > t, then

σ(fg) = lim sup
r→+∞

(Log(|f |(r))
rs

+
Log(|g|(r))

rs

)
≤ lim sup

r→+∞

Log(|f |(r))
rs

+ lim sup
r→+∞

Log(|g|(r))
rt

= σ(f )+σ(g).

Then we notice that when t < s, we have lim supr→+∞
Log(|fg|(r))

rs =

lim supr→+∞
Log(|f |(r))

rs = σ(f )
Particularly, if f is clean we have limits instead of limitsup

as long as f is concerned. Consequently, if t < s, then fg is
clean.

Now, suppose that f and g are clean and that s = t. Then

lim sup
r→+∞

Log(|f |(r)) + Log(|g|(r))
rt

= lim
r→+∞

Log(|f |(r)) + Log(|g|(r))
rt

= σ(f ) + σ(g).

Thus fg is clean. And by Theorem 1 and Theorem 2, we
have ψ(fg) = ρ(fg)σ(fg) = ρ(f )(σ(f ) + σ(g)) = ψ(f ) +
ψ(g).

Remark: A similar proof applies to complex entire func-
tions.

Proof of Theorem 4. By hypothesis, there exist a > 0

and R > 0 such that
Log(|f |(r))

rρ(f)
≥ a ∀r ≥ R hence
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Log(Log(|f |(r))) ≥ Log(a)+ρ(f )Log(r) ∀r ≥ R therefore

Log(Log(|f |(r)))
Log(r)

≥ Log(a)

Log(r)
+ ρ(f ) ∀r ≥ R

and hence ρ̃(f ) ≥ ρ(f ) i.e. ρ̃(f ) = ρ(f ).

In order to prove Theorem 5, we must recall the following
Theorem D which is Theorem 1 in [1] and Corollary D.1
which is Theorem 4 in [7] and derives from Theorem D.

Theorem D: Suppose that IK is of characteristic 0.
Let f ∈ M be transcendental, admitting a primitive F .
If there there exists c > 0 and u > 0 such that the
number of multiple poles of F , taking multiplicity into
account, ϕ(r, F ), satisfy ϕ(r, F ) ≤ cru, then f has no
quasi-exceptional value.

Corollary D.1: Suppose that IK is of characteristic
0. Let f ∈ M(IK) be transcendental, admitting primti-
ives. If Log(t(r, f )) ≤ O(Log(r)), then f has no quasi-
exceptional value.

Proof of Theorem 5. Let f =
g

h
admit primitives and

be such that ψ(h) < +∞. Then s(r, h) ≤ (ψ(h) + 1)rρ(h)

when r is big enough. Consequently, t(r, f ) = s(r, h) ≤
(ψ(h) + 1)rρ(h). Therefore by Corollary D.1, f has infinitely
many zeros. The same applies to f − b for every b ∈ IK,
which ends the proof.

Proof of Corollary 5.2. Indeed, a meromorphic func-
tion having no residue different from zero admits primitives
[6].
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Proof of Corollary 5.3. Let f =
g

h
with σ(h) < +∞.

Then f ′ =
g′h− h′g

h2
and σ(h2) = 2σ(h). Thus one can

apply Corollary 3.1 to f ′.

Proof of Theorem 6. By hypothesis, there exists λ > 0
and R > 0 such that

Log(Log(|h|(r)))
Log(r)

+ 2λ < ρ̃(f ) ∀r > R

and hence there exists R′ > R such that

Log(Log(|h|(r))) + λLog(r) < Log(Log(|f |(r))) ∀r > R′

therefore rλLog(|h|(r)) < Log(|f |(r)), which proves that

lim
r→+∞

Log(|h|(r))
Log(|f |(r))

= 0, what ends the proof.

Proof of Theorem 7. By hypothesis, we have

lim
r→+∞

Log(|h|(r)))
Log(|f |(r))

= 0

hence Log(|h|(r)) is of the form (Log(|f |(r))(ϵ(r)), with
lim

r→+∞
ϵ(r) = 0. Therefore, |h|(r) < |f |(r)) when r is big

enough and hence |f + h|(r) = |f |(r), therefore ρ(f + h) =
ρ(f ). Then

lim sup
r→∞

log(f | + h|(r))
rρ(f+h)

= lim sup
r→∞

log(f |(r))
rρ(f)

= σ(f ),

hence σ(f + h) = σ(f ).
Now, there exists R > 0 such that |f+h|(r) = |f |(r)∀r >

R. Consequently the number of zeros of f + h in each disk
d(0, r) equals the number of zeros of f in d(0, r), for every
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r > R. Consequently, since ρ(f + h) = ρ(f ), we have
ψ(f + h) = ψ(f ).

Proof of Theorem 8. By hypothesis, we have |h|(r) <
|f |(r) when r is big enough and hence

(1) |f + h|(r) = |f |(r)

therefore ρ(f +h) = ρ(f ). Consequently, σ(f +h) = σ(f ).
Moreover, by (1) we notice that when r is big enough, by

classical results [6], in each disk d(0, r), the number of zeros
of f + h equals this of f , therefore ψ(f + h) = ψ(f ).

Proof of Theorem 9. The statements ρ(f ′) = ρ(f ) and
σ(f ′) = σ(f ) are given in [2] and [3]. Now, suppose that

σ(f ) = σ̃(f ). Set f (x) =

+∞∑
n=0

anx
n. By Theorems 2 and C,

eψ(f ) = eρ(f )σ(f ) = lim sup
n→+∞

n n

√
|an|ρ(f).

But we know that
1

n
≤ |n| ≤ 1 ∀n ∈ IN, hence lim

n→+∞
n
√
|n + 1| = 1,

therefore

eψ(f ) = lim sup
n→+∞

n n

√
|(n + 1)an+1|ρ(f) = eσ(f ′)ρ(f ′) ≤ eψ(f ′).

Similarly, if σ(f ′) = σ̃(f ′), then we can see that ψ(f ) ≥
ψ(f ′).

In order to prove Theorem 10, we need to recall. the second
main Nevanlinna Theorem for p-adic entire functions (for
example Theorem C.4.24 in [6]).
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Theorem N: Suppose that IK is of characteristic 0.
Let f ∈ A(IK) and let a1, ..., aq ∈ IK. Then

(q − 1)Log(|f |(r)) ≤
q∑
i=1

Z(r, f − ai)− Log(r) +O(1).

Proof of Theorem 10. We have σ(f, r) =
Log(|f |(r))

rρ(f)
,

hence by Theorem N,

rρ(f)(q−1)σ(f, r) ≤
q∑
i=1

Z(r, f−ai)−Z0(f ′, r)−Log(r)+O(1).

The conclusion is then obvious.

In the proof of Theorem 11, we will use the following basic
lemmas:

Lemma 2 Let f1, f2 be two functions from IR+ to IR+

such that lim
x→+∞

f1(x) = lim
x→+∞

f2(x) = +∞ and

lim sup
x→+∞

f1(x)

f2(x)
= b ∈ IR+, lim inf

x→+∞

f1(x)

f2(x)
= a > 0.

Then

lim
x→+∞

Log(f1(x))

Log(f2(x))
= 1.

Lemma 3: Let α, β ∈ IR+ and let g(x) = e−x(αx−β).

Then g′ has a unique zero at 1 +
β

α
and g(1 +

β

α
) =

αe
−(1+

β

α
)
. Moreover, g is increasing in [0, 1 +

β

α
] and is
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decreasing in [1 +
β

α
,+∞[ and tends to 0 when x tends

to +∞.

Now let us recall that the definition of a divisor in IK.

Defintion: We call divisor in IK a sequence (an, vn)n∈IN
where (an)n∈IN is a sequence in IK such that lim

n→+∞
|an| = +∞

and each vn belongs to IN∗ [6].

The following Lemma 4 is classical (see for example Corol-
lary B.18.5 of [6]).

Lemma 4: Given a divisor (an, vn)n∈IN in IK, there ex-
ist functions admitting each an as a zero of order vn and
no other zero and two such functions are proportional.

Proof of Theorem 11. We begin the definition of positive
increasing sequences (rm)m∈IN, (αm)m∈IN in IN∗, (βm)m∈IN,
where r0 = 1, r2m ∈ |IK|, 2r2m ≤ αm < 2r2m + 1,. We
put qm = αm − αm−1, νm = Log(rm), β0 = 0 and βm =
βm−1 + qm(Log(r2m))).
Suppose, we have defined these sequences up to the rank

m and suppose that the function gk defined by gk(ν) =
e−ν(αkν − βk) satisfies 1 ≤ gk(ν2k) ≤ 1 + 1

4k2
and 1 ≤

gk(ν2k+2) ≤ 1 + 1
4(k+1)2

∀k = 1, ...,m − 1 and gk−1(ν2k) =

gk(ν2k).
In ]0,+∞[, we define gm(ν) = e−ν(αmν−βm). By Lemma

3, gm is increasing in [
βm
αm

, 1 +
βm
αm

] from 0 to a maximum

equal to αme
1+
βm
αm and is decreasing to 0 when ν tends to

+∞. Hence gm takes the value 1 at a unique point λ2m in
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[
βm
αm

, 1 +
βm
αm

] and at a unique point in [1 +
βm
αm

,+∞[. We

then have gm(λ2m) = e−λ2m(αmλ2m − βm) and
gm(λ2m+2) = e−λ2m+2(αmλ2m+2 − βm) hence

λ2m =
eλ2m + βm

αm
and λ2m+2 =

eλ2m+2 + βm
αm

> ν2m+1 and

we can take the value r2m+2 ∈ |IK| close enough to eλ2m+2

such that, putting r2m+2 = eν2m+2, then

(1) 1 ≤ gm(ν2m+2) = 1 + xm ≤ 1 +
1

4(m + 1)2
.

We notice that r2m+2 > r2m+1 hence ν2m+2 > ν2m+1.
Next, the function gm+1 is defined in the same way in

[ν2m+2, ν2m+4] as gm+1(ν) = e−ν(αm+1ν − βm+1). And we
can check that gm+1(ν2m+2) = gm(ν2m+2).
Then. by Lemma 3, gm has a maximum at ν2m+1 =

1 +
βm
αm

and gm+1 has a maximum at ν2m+3 = 1 +
βm+1

αm+1

and gm+1(ν2m+3) = αm+1e
βm+1
αm+1 > 1, hence ν2m+3 > ν2m+2.

Consequently, the sequence (rn)n∈IN and is strictly increas-
ing. This way, the sequences are now defined for all m ∈ IN.
We put qm = αm − αm−1 and Θm = ν2m+1 − ν2m. Then,

ν2m =
βm + eν2m(1 + xm)

αm
and hence

(2)

Θm = 1−e
ν2m(1 + xm)

αm
= 1−r2m(1 + xm)

αm
= 1−r2m(1 + xm)

2r2m + ηm
,

where (ηm)m∈IN is a positive sequences bounded by 1 and

the sequence (xm), by (1), satisfies 0 ≤ xm ≤ 1

4(m + 1)2
.
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Then

(3) Θm ≥ 1

2
− 1

8(m + 1)2
>

15

32
.

We can now define by induction the sequences (rm), (νm),
(gm), (xm), (Θm) and then lim

n→+∞
rn = +∞. Consequently

by (2)

(4) lim
m→+∞

Θm =
1

2
.

We now obtain

gm(ν2m+1) = e−ν2m+1(αmν2m+1 − βm) = αme
−(1+βm

αm
)

and hence

(5) gm(ν2m+1) =
(2r2m + ηm)

r2m+1
= 2e−Θm + ζm.

where (ζm)m∈IN is a positive sequence of limit 0, since
lim

m→+∞
r2m+1 = +∞.

We can now define a function g in [0,+∞[ as g(ν) = gm(ν)
when ν ∈ [Log(r2m), Log(r2m+2)[.
So, by (4) we have

(6) lim
m→+∞

g(ν2m+1) =
2√
e
.

We can check that

(7) lim sup
ν→+∞

g(ν) = lim sup
m→+∞

g(ν2m+1) < 2.
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Consider now the entire function f admitting qm zeros on
each circle C(0, r2m) and no other zero. Let (aj,m)(1≤j≤qm)

be the zeros of f on the circle C(0, r2m).
Then, when 2m ≤ r < r2m+2, the counting functions of

zeros of f (counting multiplicity) is of the form

Z(f, r) =
m∑
k=1

qk∑
j=1

(ak,j(Log(r)− Log(r2k)))

=

m∑
k=1

qk(Log(r)− Log(r2k)))

and hence, putting αm =
∑m

k=1 qk and βm =
∑m

k=1 qkν2k,
the function g appears as the quotient of the counting func-
tion of zeros of f (counting multiplicity) by eν when we put

ν = Log(r) . So, we have
Log(|f |(r))

r
= g(ν) whenever

Log(r) = ν ∈ [ν2m, ν2m+2[ and therefore by (1) we can see
that

(8) lim inf
r→+∞

Log(|f |(r))
r

= 1

and

(9) lim sup
r→+∞

Log(|f |(r))
r

= lim
m→+∞

|g(ν2m+1)| =
2√
e
.

Moreover, by (9) and Lemma 2, we have

lim
r→+∞

Log(Log(|f |(r)))
Log(r)

= 1

hence ρ(f ) = 1.

Further, since lim sup
r→+∞

Log(|f |(r))
r

=
2√
e
and
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lim inf
r→+∞

Log(|f |(r))
r

= 1 we can see that σ(f ) = 2√
e
and

σ̃(f ) = 1. Thus, f is not clean though it is regular.

More precisely, by construction, for every r ∈ [r2m, r2m+2[,
we have ψ(f, r) = 2r2m+ηm

r and hence ψ(f, r2m) is of the form
2 + ym where (ym)m∈IN is a sequence of limit 0. Therefore
ψ(f ) ≥ 2, while ρ(f ) = 1. This shows that f does not
satisfy the relation ψ(f ) = ρ(f )σ(f ) and hence, this is not
allways satisfied when a function f is not clean.

III. Remarks

Remark 1: Of course, by Theorem 2 we know that the
function f built in the proof of Theorem 11 satisfies ψ(f ) >

ψ̃(f ). But we can directly verify this: on one hand ψ(f ) = 2

and on the other hand, we can see that ψ(f, r2m+1) =
αm
r2m+1

and hence by (5), ψ̃(f ) ≤ 2√
e
.

Next, f must satisfy Theorem 2: ρ(f )σ(f ) ≤ ψ(f ) ≤
ρ(f )(eσ(f )−σ̃(f )). Let us check. We have seen that ψ(f ) =

2, ρ(f ) = 1, σ(f ) =
2√
e
, σ̃(f ) = 1. Then, ρ(f )(eσ(f ) −

σ̃(f )) = 2
√
e− 1 > 2. That is O’kay.

Remark 2: By Corollary 4.1, we see that a clean entire
function such that σ(f ) > 0 is regular. The converse is not
true, as shows Theorem 11.
In complex analysis, given an entire function f , we put

M(f, r) = sup{|f (z)|∞, |z|∞ = r} where | . |∞ is the
archimedean modulus on lC. In [4] the authors claimed that
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if a complex entire function f satisfies

lim sup
r→+∞

Log(Log(M(f, r)))

Log(r)
= lim inf

r→+∞

Log(Log(M(f, r)))

Log(r)
,

then

lim sup
r→+∞

Log(M(f, r))

rρ
= lim inf

r→+∞

Log(M(f, r))

rρ
,

where ρ = lim
r→+∞

Log(Log(M(f, r)))

Log(r)
. In the field IK, we

just checked that such a theorem does not hold. Actually,
the proof of [4] is put in doubt by the following argument
held in Lemma 2 of [4]:
since ∫ +∞

r0

exp(Log(M(r, f ))

(exp(rλ))t−ε+1
dr = +∞,

”then”

lim inf
r→+∞

exp(Log(M(r, f ))

(exp(rλ))t−ε
= +∞.

Suppose for example that in [r0,+∞[, M(r, f ) is equiva-

lent to
exp(rλ(t− ε + 1))

r
.

Then
exp(rλ(t− ε + 1))

exp(rλ(t− ε))
is equivalent to

1

r
and hence∫ +∞

r0

exp(Log(M(r, f ))

(exp(rλ))t−ε+1
dr = +∞,

but

lim inf
r→+∞

exp(Log(M(r, f ))

(exp(rλ))t−ε
= 0.
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