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A B S T R A C T   

The Landsat global consolidated data archive now exceeds 50 years. In recognition of the need for consistently 
processed data across the Landsat satellite series, the U.S. Geological Survey (USGS) initiated collection-based 
processing of the entire archive that was processed as Collection 1 in 2016. In preparation for the data from 
the now successfully launched Landsat 9, the USGS reprocessed the Landsat archive as Collection 2 in 2020. This 
paper describes the rationale for, and the contents and advancements provided by Collection 2, and highlights 
the differences between the Collection 1 and Collection 2 products. Notably, the Collection 2 products have 
improved geolocation and, for the first time, the USGS provides a global inventory of Level 2 surface reflectance 
and surface temperature products. Also for the first time, the USGS used a commercial cloud computing archi
tecture to efficiently process the archive and enable direct cloud access of the Landsat products. The paper 
concludes with discussion of likely improvements expected in Collection 3 in preparation for the Landsat Next 
mission that is planned for launch in the early 2030s.   

1. Introduction 

Landsat 1, launched July 1972, was the first spaceborne digital 
sensor developed for terrestrial environmental monitoring (Williams 
and Carter, 1976; Goward et al., 2017) and was followed by a series of 
improved Landsat sensors that provide the longest, now five-decade, 

global remote sensing record (Wulder et al., 2022). The design and 
launch of the Landsat satellites and sensors into near-polar low earth 
orbit is managed by the National Aeronautics and Space Administration 
(NASA), and the flight operations, archive, ground processing, and 
distribution are managed by the U.S. Geological Survey (USGS), with an 
associated Landsat Science Team serving in a scientific and technical 
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evaluation capacity (Roy et al., 2014). Ensuring Landsat mission conti
nuity and so the provision of an uninterrupted global medium resolution 
satellite record has been a long-standing priority of USGS, NASA, and 
successive Landsat Science Teams (Roy et al., 2014; Goward et al., 2017; 
Wulder et al., 2022). The eight Landsat missions (Landsat 1, 2, 3, 4, 5, 7, 
8 and 9) provide the longest satellite terrestrial record over a period of 
substantial human modification of the environment and climate change. 
The successful 2021 launch of Landsat 9 and provision of U.S. funding 
for the planned Landsat Next mission (Masek et al., 2020) has secured 
Landsat mission continuity. However, until the advent of 
Collection-based processing, the Landsat archive was not processed 
consistently. This reflected practical cost limitations, the significant 
changes over the last five decades in satellite, sensor, and ground system 
technologies, and because Landsat data acquired outside the United 
States were archived and processed by different agencies. 

Conventionally, satellite data are processed into a hierarchy of 
increasingly refined levels from raw instrument data (Level 0), that are 
calibrated and geolocated (Level 1), converted into geophysical pa
rameters (Level 2), and gridded, and sometimes temporally composited, 
into an Earth-based coordinate system (Level 3) (Wolfe et al., 1998). In 
the first four decades of the Landsat era, most of the imagery acquired 
outside of the United States were only available from regional and na
tional agencies that downlinked the imagery in their ground station 
geographic area. In 2010, the USGS began the Landsat Global Archive 
Consolidation (LGAC) initiative to bring all the raw (Level 0) imagery 
from these agencies into a centralized global archive located at the USGS 
Earth Resources Observation and Science (EROS) Center in Sioux Falls, 
South Dakota (Wulder et al., 2016). The resulting consolidation of the 
global Landsat archive and the free and open Landsat data access policy 
that started in 2008 were major steps forward (Zhu et al., 2019) but 
Landsat data were processed only in response to user requests and so 
large consistently processed Landsat data sets were unavailable. In 
addition, the distributed datasets were not atmospherically corrected to 
reduce scattering and absorption by atmospheric aerosols, gases, and 
water vapor (Tanré et al., 1990; Tonooka, 2005). 

In September 2016, the USGS initiated the first collection-based 
processing. The archived Landsat 1–8 Level 0 and all newly acquired 
data were processed to generate Level 1 data that were collectively 
labelled as Collection 1. Dedicated engineers and scientists undertake 
routine analysis of recent Landsat acquisitions, and retrospective anal
ysis of Landsat time series, to derive improved characterization of sensor 
performance (radiometry and geolocation). The Collection 1 processing 
was undertaken in a consistent manner using the most up-to-date 
radiometric calibration and to the best achievable geolocation accu
racy and, in addition, Level 2 atmospherically corrected products were 
processed over the conterminous United States (CONUS), Alaska and 
Hawaii (Dwyer et al., 2018). The success of Collection 1, and several 
factors, discussed in this paper, including improved geolocation using 
Landsat 8 harmonized with European Space Agency (ESA) Global 
Reference Image (GRI) data, new opportunities provided by cloud 
computing, and the scheduled launch of Landsat 9, meant that the de
cision was made to process the Landsat data again as Collection 2. The 
main differences between Collection 2 and 1 are summarized in Table 1 
and are described in detail later in the paper. 

Landsat users can migrate their science and applications to using 
Collection 2 products since the Collection 1 products were removed from 
public distribution on December 31, 2022. At the time of writing, 
Collection 2 is composed of >10.2 million images that occupy >9 
petabytes of data collected by the Landsat 1–5 Multispectral Scanner 
(MSS), Landsat 4 and 5 Thematic Mapper (TM), Landsat 7 Enhanced 
Thematic Mapper Plus (ETM+), and Landsat 8 and 9 Operational Land 
Imager (OLI) and Thermal Infrared Sensor (TIRS) sensors. The Collec
tion 2 products include calibrated and geolocated (i) Level 1 top of at
mosphere (TOA) heritage ~185 × 180 km images defined in the 
Universal Transverse Mercator (UTM) projection, (ii) Level 2 surface 
reflectance and surface temperature images, (iii) for select U.S. regions, 

analysis ready data (ARD) gridded tiled products defined in the Albers 
equal area projection. The Collection 2 Level 2 products and U.S. ARD 
were certified by the Committee on Earth Observation Satellites (CEOS) 
as being analysis ready data compliant i.e., processed to a minimum set 
of requirements and organized into a form that allows for analysis with 
minimal additional user effort that facilitates interoperability with other 
Earth observation datasets. 

This paper overviews the rationale for the Collection 2 processing, 
improvements over Collection 1, new Collection 2 products, and sum
marizes Landsat Collection 2 data access. The paper concludes with a 
discussion of improvements expected in the Landsat Collection 3 pro
cessing, a data stream that will include products from the planned 
follow-on Landsat Next mission. 

2. Landsat collection 2 motivation, products and processing 
overview 

Collection-based processing was a significant change in the man
agement of the Landsat archive. Previously, Landsat Level 1 data were 
processed on demand in response to user and agency orders (Goward 
et al., 2017). Unfortunately, this meant that different (or the same) users 
could order the same image acquisition from the global archive on 
different dates and the processing software, geolocation and calibration 
used to generate the Level 1 image could be different. In 2008, the USGS 
officially announced free access to the Landsat archive which acceler
ated uptake, particularly for large area and multi-decadal analyses 
(Wulder et al., 2019). As Landsat usage increased, concern over pro
cessing inconsistencies led to the recommendation by the Landsat Sci
ence Team to process all Landsat data consistently to facilitate 
generation of traceable, quality, higher-level science and application 
information products (Roy et al., 2014). In recognition of the need for 
consistently processed data, the USGS initiated collection-based Landsat 
processing emulating the NASA Moderate Resolution Imaging Spec
troradiometer (MODIS) land product collection numbering approach 
(Justice et al., 2002). The first Collection 1 Landsat processing was un
dertaken to generate a consistently processed version of the archive, 
while recognizing that future reprocessing would occur to reflect 
improved sensor calibration and geolocation knowledge as well as 
feedback from the user community (Dwyer et al., 2018). 

Within the USGS Landsat program and the Landsat Science Team, the 
undesirability of producing a new collection too soon after the previous 
one was discussed. It is well established that there should be sufficient 
time for users to become familiar with a new collection, and several 
years of collection data are needed typically to characterize the data 
quality, particularly of Level 2 and 3 products (Masuoka et al., 2011). 
Further, collection-based processing is not inexpensive, as both the 
archived and all newly acquired data must be processed and copying a 

Table 1 
Summary of main differences between Collection 2 and Collection 1 (the paper 
section describing the change is shown in parenthesis).  

Improved absolute geolocation accuracy using Landsat 8 Operational Land Imager 
(OLI) harmonized with European Space Agency (ESA) Global Reference Image (GRI) 
(Section 3.1) 

New Digital Elevation Model (DEM) used for orthorectification with improved vertical 
accuracy (Section 3.1) 

Improved radiometric calibration particularly for Landsat 5 and 8 (Section 3.2) 
Inclusion of Landsat 9 observations (Section 3.2) 
Global coverage Level 2 Surface Reflectance (Section 3.3) and Surface Temperature 

(Section 3.4) Landsat 4–9 products 
Expanded Quality Assessment (QA) bits for Landsat 4–9 (Section 3.5) 
Consistent bit design between Level 1 and Level 2 (Section 3.6) 
Inclusion of per-pixel solar illumination and sensor viewing geometry (Section 3.6) 
Expanded U.S. Analysis Ready Data (ARD) tile grid to cover more of the Aleutian 

Islands, Great Lakes, and certain coastal regions (Section 3.7) 
Improved latency between acquisition and availability of Landsat 8 products (Section 

4) 
Direct Landsat access and analysis via commercial cloud (Section 4)  
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Landsat collection to another institution (such as a cloud hosting service, 
national agency or well-resourced academic research group) is 
non-trivial. After assessing these constraints, the Collection 2 processing 
was initiated in September 2020. 

The Collection 2 processing was motivated primarily by the ability to 
improve the Landsat absolute geolocation accuracy using Landsat 8 
geolocational imaging performance harmonized with the ESA GRI data 
(Section 3.1). In addition, new opportunities provided by the avail
ability of commercial cloud computing meant that efficient processing of 
the archived data to include global Level 2 surface reflectance (Section 
3.3) and surface temperature (Section 3.4) products was possible. This 
also meant that the Collection 2 products could be stored in the cloud to 
provide new cloud-based analysis opportunities without the need for 
users to download Landsat data to their institutions. The schedule of the 
Collection 2 processing was driven by the planned launch of Landsat 9 
(Masek et al., 2020) because of the desirability of processing the newly 
acquired Landsat 9 imagery as part of a new collection. Landsat 9 
launched successfully, after a short delay, in September 2021. 

The Collection 2 Level 1 and Level 2 products have the same ge
ometry and are provided with a similar format as Collection 1 in 
approximately 185 km × 180 km images defined in the Universal 
Transverse Mercator (UTM) projection, or in the Polar Stereographic 
(PS) projection over polar regions. The image locations are referenced, 
as for Collection 1, by the Worldwide Reference System (WRS) path and 
row coordinates. The Collection 2 Level 1 products are generated by 
projecting the geolocated (Section 3.1) and radiometrically corrected 
(Section 3.2) Level 0 data into the UTM or PS projection. Top-of- 
atmosphere (TOA) digital numbers (DN) are stored for each spectral 
band and pixel, with band specific metadata to enable conversion of the 
DNs to radiance (Wm− 2 sr− 1 μm− 1) and conversion of the reflective 
wavelength DNs to reflectance (unitless) and the thermal infrared 
wavelength DNs to brightness temperature (Kelvin). The Level 2 prod
ucts are derived from the Level 1 TOA radiance and include surface 
reflectance (unitless) defined for each reflective spectral band and an 
estimate of the surface temperature (Kelvin) from TIR wavelengths 
(Sections 3.3 and 3.4). Unlike for Collection 1, the Collection 2 Level 2 
products are provided with global coverage. The Landsat U.S. analysis 
ready data (ARD) products are generated, as for Collection 1, over the 
conterminous United States (CONUS), Alaska, and Hawaii for the 
Landsat 4–9 30 m record (Dwyer et al., 2018). The Collection 2 U.S. ARD 
are generated by projecting the Level 0 data to the Albers equal area 
projection, applying the Collection 2 Level 1 and 2 processing algo
rithms, and then gridding the results into fixed non-overlapping tiles 
(Section 3.7). 

The Collection 2 processing was undertaken using a hybrid on- 
premises and commercial cloud architecture to enable efficient pro
cessing. Previously, the Collection 1 processing was undertaken solely 
on-premises at the USGS EROS using the Landsat Product Generation 
System (LPGS). The LPGS was developed in the Landsat 7 era and 
refined to provide a modular and scalable architecture to which addi
tional storage and processing nodes could be added to increase capacity 
and performance (Goward et al., 2017; Loveland and Dwyer, 2012). 
However, the large volume of the Landsat archive and the offering of 
global Level 2 products meant that timely processing of Collection 2 was 
not possible using the on-premises LPGS. For Collection 2, the archived 
Landsat data acquired up to June 2020 were processed in the Amazon 
Web Services (AWS) commercial cloud and only the newly acquired 
Landsat 8 and 9 data from June 2020 onwards were LPGS processed 
on-premises at the USGS EROS. A range of existing AWS tools were used 
to containerize the LPGS ingest and science processing workflows, data 
management, and security, and were parallelized to provide efficiencies 
not achievable using the on-premises LPGS. The Collection 1 Level 1 
processing took approximately 18 months to complete using the 
on-premises LPGS. In contrast, the Collection 2 processing of more than 
twice the data volume (due to additional processing of the global Level 2 
products and another approximately three and half years of Landsat 7 

and 8 observations) took five weeks in AWS. The effective processing 
rates for Collection 1 and 2 were equivalent to processing about 25,000 
and 450,000 Landsat images per day, respectively. The Collection 2 
products are stored in the Landsat AWS Simple Storage Service (S3) 
cloud bucket and users can obtain them directly from AWS or using 
conventional USGS interfaces that are transparent to the AWS storage 
(Section 4). The Collection 2 Landsat 8 and 9 data generated 
on-premises at USGS EROS from June 2020 onwards are copied to the 
AWS S3 cloud and a rolling cache of the previous 90 days of processed 
acquisitions are retained at the USGS EROS to facilitate near-real time 
and bulk data access through a machine-to-machine (M2M) application 
programming interface (API). 

3. Landsat collection 2 

3.1. Collection 2 improved landsat geolocation 

The Landsat geolocation is derived using a geometric sensor model, 
satellite ephemeris and attitude information, a Digital Elevation Model 
(DEM), and a library of ground control chips (Storey et al., 2019). The 
Landsat data are processed to Level 1 with the highest achievable geo
location accuracy - listed with increasing accuracy as L1GS (no DEM or 
ground control available), L1GT (terrain corrected using a DEM and no 
ground control), and L1TP (terrain corrected with ground control). Over 
the 50-year Landsat record, the availability and quality of the satellite 
ephemeris and attitude information has been variable, particularly for 
earlier Landsat sensors, and the geolocation is limited by atmospheric 
cloud obscuration that precludes image matching with the ground 
control chips (Yan and Roy, 2021). Prior to Landsat 8, the ground con
trol chip library was extracted from orthorectified Landsat 7 ETM +
images acquired as part of the Global Land Survey 2000 (GLS-2000) 
global cloud-free image data set (Gutman et al., 2013). The Landsat 8 
OLI pushbroom sensor design and operational onboard global posi
tioning system (GPS) provides improved geometric knowledge 
compared to previous Landsat missions and the imaged OLI data 
revealed errors in the GLS-2000 ground control chip library (Storey 
et al., 2016). The Landsat ground control library was refined using 
Landsat 8 OLI image chips harmonized to the ESA Sentinel-2 10 m GRI 
coordinates and is now used in the Collection 2 geometric processing. 
This involved updating over 5.1 million chips as well as the extraction of 
2.5 million new Landsat 8 chips globally for inclusion in Collection 2 
(Storey et al., 2019; Rengarajan et al., 2020). In addition, a new DEM is 
used in Collection 2 that was derived using more recent publicly avail
able elevation data sources (Franks et al., 2020). 

Fig. 1 summarizes the typical geolocation differences between the 
Collection 1 and Collection 2 Level 1 data for Landsat 4–8. The root- 
mean-square difference (RMSD) (derived as the square root of the sum 
of the squared mean longitude and mean latitude geolocation collection 
shifts) scaled to meters defined at each global Landsat WRS-2 path/row 
are shown. The offsets were computed by averaging the offsets of all 
ground control chips within a given path/row and based on adjustments 
undertaken by a block triangulation solution (Storey et al., 2019). In 
general, most images have sub-pixel (<30 m) geolocation differences 
between Collection 1 and 2. There are negligible differences over 
Australia because the ground control library across the continent was 
improved in time for the Collection 1 processing (Storey et al., 2019). At 
certain Landsat path/rows, the geolocation differences between collec
tions can be > 30 m (orange and red tones) indicating a significant 
improvement in the geolocation. Fig. 2 shows an example extracted over 
path 125/row 43 in China which has a 44.81 m RMSD and illustrates 
qualitatively the impact of the Collection 1 to 2 geolocation improve
ment on the reflectance data. 

The geolocation accuracy of the Collection 2 Level L1TP imagery is 
reflected in metadata available with each image. Specifically, the root- 
mean-square errors (RMSE) between the known ground control and 
sensed image locations are provided resolved in the Easting and 
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Northing directions and radially. In addition, all the processed Landsat 
Level 1 images are categorized into two tiers. L1TP images with radial 
RMSE ≤12 m are categorized as Tier 1, and as Tier 2 if they have radial 
RMSE >12 m. The L1GS and L1GT images are categorized as Tier 2 as no 

ground control is available to derive RMSE statistics and their geo
location is expected to be lower than for Tier 1. Users can refer to the 
RMSE L1TP image metadata and to the Tier categorization to ensure that 
they use appropriately geolocated imagery for their applications. Tier 1 
images are more suitable for change detection and time series applica
tions as the geolocation accuracy is less than half a 30 m pixel (Dwyer 
et al., 2018). 

The improved geolocation provided by the Collection 2 processing is 
evident in Table 2, which summarizes the increased number of Tier 1 
Level 1 images processed in Collection 1 compared to Collection 2. 
Considering all the tabulated sensors together, 11.95% more images 
were processed as Tier 1 in Collection 2. A minority of Landsat TM, ETM 
and OLI/TIRS images were categorized as Tier 1 in Collection 1 but were 
downgraded to Tier 2 in Collection 2. This occurred primarily because 
the image geolocation was more reliably characterized due to the 
greater number and quality of ground control used in Collection 2. Im
provements to the ground control library included removal of early MSS 
era (1970s–1990s) ground control chips which reduced the number of 
Collection 2 MSS Tier 1 processed images by 1.16%. Landsat MSS geo
location is particularly challenging due to the lower quality and some
times missing satellite ephemeris and attitude information, the coarser 
MSS spatial resolution compared to later sensor generations, and 
because of land cover change between the date of MSS image acquisition 
(1972–2012) and the up to decade(s) later ground control chip acqui
sition dates (Yan and Roy, 2021). Thus, as for Collection 1, less than 1% 
of the total MSS archive (not shown in Table 2) is processed to Tier 1 in 
Collection 2, whereas the proportion of the TM, ETM+, OLI/TIRS 
archive processed to Tier 1 increased from 62% in Collection 1–69% in 
Collection 2. 

Fig. 1. Landsat WRS-2 path/row geolocation differences between the Collection 1 and Collection 2 Level 1 data products. The root-mean-square difference (RMSD) 
defined at each path/row are shown for Landsat 4–8. 

Fig. 2. Illustration of Level 1 TP Landsat geolocation differences between 
Collection 1 and Collection 2 for a panchromatic (0.50–0.68 μm) 400 × 200 15 
m pixel subset extracted from a Landsat 8 OLI image acquired over a path/row 
where the mean longitude and latitude geolocation collection shifts are large 
(25.64 m and 36.75 m respectively, 44.81 m RMSD). Left: Collection 2 15 m 
panchromatic band shown as red, green, blue. Right: Collection 1, Collection 2, 
Collection 2 panchromatic band shown as red, green, blue, respectively. The 
misregistration between the Collection 1 and Collection 2 images is apparent in 
the magenta and cyan tones in the right image. The Landsat 8 OLI image was 
acquired September 2, 2020, over WRS-2 path 125/row 43 and the subset is 
centered at 24.348◦N, 109.361◦E, near Liuzhou, China. 

Table 2 
Number of Collection 1 and Collection 2 Tier 1 Level 1 products available in the 
USGS Landsat archive acquired from July 23, 1972 to December 31, 2021. 
Numbers only include the daytime (descending orbit) Landsat image 
acquisitions.  

Mission Collection 1 Collection 2 Difference Change 

Landsat 1–5 MSS 11,682 11,546 − 136 − 1.16% 
Landsat 4–5 TM 1,683,854 1,918,910 235,056 13.96% 
Landsat 7 ETM+ 2,154,133 2,390,190 236,057 10.96% 
Landsat 8 OLI/TIRS 1,272,332 1,413,237 140,905 11.07%  
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3.2. Collection 2 improved sensor radiometric calibration 

Landsat data are radiometrically calibrated to ensure that the re
flected radiance imaged by the visible-to-shortwave infrared (VSWIR) 
spectral bands and the emitted radiance from the thermal infrared (TIR) 
spectral bands are consistent across the Landsat sensor record and reflect 
surface conditions rather than sensor artefacts. Prior to launch, all 
Landsat sensors are subject to laboratory measurements to characterize 
their radiometric and spectral responses and to quantify the relationship 
between the imaged radiance and the recorded digital numbers (DNs). 
In addition, the Landsat 8 OLI was subjected to a national laboratory 
traceable cross-calibration with the Sentinel-2 Multispectral Instrument 
(MSI) due to the similar MSI VSWIR spectral sampling and expected 
inter-use of OLI and MSI VSWIR imagery (Roy et al., 2014). Post-launch 
calibration is needed for Earth science missions because changes in the 
relationship between the imaged radiance and the recorded DNs can 
occur due to the stress of the satellite launch and/or sensor degradation 
over time. Consequently, all the Landsat sensors have, or had, some form 
of on-board lamps, solar diffusers, and blackbodies to provide on-orbit 
calibration data (Markham et al., 2004a, b, 2014). The resulting cali
bration information is often complemented by vicarious information 
obtained from a variety of sources including VSWIR observations of the 
moon (Markham et al., 2015) and of pseudo-invariant calibration sites 
(PICS) (Mishra et al., 2016) and TIR observations of deep space and 
water bodies characterized with in situ buoy thermal measurements 
(Hook et al., 2004; Barsi et al., 2014). 

For Collections 1 and 2, the Landsat 8 OLI was used as the absolute 
VSWIR radiometric calibration reference and all previous Landsat sen
sors were cross calibrated to Landsat 8 using desert PICS targets (Mici
jevic et al., 2017). The TIR spectral bands were calibrated using thermal 
reference buoy measurements in coastal and inland water bodies (Schott 
et al., 2012; Barsi et al., 2014). The Collection 2 reprocessing enabled 
several radiometric improvements particularly for Landsat 5 and 8. The 
Landsat 8 TIRS absolute calibration was updated based on stray-light 
corrected vicarious calibration data (Schott et al., 2014). This resulted 
in a brightness temperature change from Collection 1 to Collection 2 of 
up to 0.2K and 0.6K for the Landsat 8 10.8 μm and 12.0 μm TIRS spectral 
bands over a 300K surface (Barsi et al., 2020). The Landsat 5 absolute 
calibration of the single TIR spectral band centered at 11.4 μm was 
updated for imagery acquired after January 1, 1997 to account for a 
residual bias error of 0.33K over a 300K surface (Micijevic et al., 2020). 
In addition, the Landsat 8 TIRS relative calibration was updated to ac
count for variations in per-detector responsivities and reduced residual 
striping by 0.1–0.2% for most of the TIR detectors, with a minority 
changed by >1% (Barsi et al., 2020). The Landsat 8 OLI absolute cali
bration was updated for the shortest wavelength coastal aerosol (0.443 
μm) and blue (0.482 μm) spectral bands to account for more complete 
knowledge of OLI responsivity degradation since launch and affected the 
data in these two spectral bands by up to 0.15% (Micijevic et al., 2020). 
The Landsat 8 OLI relative gains were also updated for all spectral bands 
to make use of actual responsivity measurement variations, rather than 
modeled future predictions. The resulting change was generally less 
than 0.2%, although some SWIR detectors may change by up to 2% 
(Micijevic et al., 2020). In addition, Landsat 8 OLI per detector bias 
estimates were modified to account for per-frame fluctuations reducing 
along-track striping and increasing the signal-to-noise ratio by 2–3% at 
typical radiances (Micijevic et al., 2019). The Collection 2 Landsat 8 
reflectance calibration is well maintained with ~2% absolute reflective 
spectral band calibration uncertainty (Markham et al., 2014) and TIR 
spectral band uncertainties within 0.5 K in the 10.8 μm band and 0.75K 
in 12.0 μm band when expressed as a change in apparent temperature of 
a 300K surface (Barsi et al., 2020). 

Landsat 9 data were first processed under Collection 2 using post- 
launch knowledge from the commissioning period. The Landsat 8 and 
9 OLI and TIRS sensors are by design very similar but with some addi
tional baffling added to the Landsat 9 TIRS telescope to reduce stray 

light contamination (Masek et al., 2020). After the September 2021 
launch of Landsat 9, the commissioning phase included a 
cross-calibration with contemporaneous Landsat 8 imagery acquired by 
placing Landsat 9 into a slightly lower orbit with cross-calibration op
portunities over a 6-day under-flight period (Gross et al., 2022; Kaita 
et al., 2022). Fig. 3 shows an under-flight example illustrating surface 
reflectance and surface temperature derived from contemporaneous 
Landsat 8 and under-flight Landsat 9 imagery over Baja California. The 
Landsat 9 OLI VSWIR bands were cross-calibrated to the corresponding 
Landsat 8 OLI spectral bands as the absolute calibration reference over a 
globally distributed set of sites during the 6-day period. The Landsat 9 
TIRS spectral bands were calibrated to coastal and inland buoy data as 
described above. 

The first sixteen months of Landsat 9 acquisitions (October 31, 2021 
to February 28, 2023) were reprocessed using updated calibration pa
rameters identified during this period. The calibration updates were 
needed to improve the relative gains between focal plan modules 
(banding) in the VSWIR bands, reduce detector swaps (striping) in the 
TIRS bands and TIRS absolute biases, and in addition, to improve TIRS to 
OLI sensor geometric alignment and the geometric accuracy of Landsat 9 
L1GT processed imagery. Landsat 9 users can examine the processing 
date denoted in the filename or stored in the DATE_PRODUCT_GEN
ERATED metadata and be cautious in their use of Landsat 9 processed 
before March 1, 2023 as they were processed without the updated 
calibration. The Collection 2 Landsat 9 OLI radiometric uncertainty is 
comparable or better than the Landsat 8 OLI (Micijevic et al., 2022) and 
TIRS spectral band uncertainties of approximately 0.65 K are evident 
when expressed as a change in apparent temperature of a 300K surface 
(Barsi et al., 2022). 

While not a Collection 2 radiometric calibration improvement, users 
of Landsat 4 and 5 TM, and Landsat 7 ETM + data may occasionally find 
images with “caterpillar tracks” of anomalous pixel values (Helder et al., 
2004; Storey and Choate, 2004). These pixel anomalies occur because 
the mechanical bumpers used to reverse the mirror scan direction in the 
TM and ETM + sensors degraded with age. This resulted in occasional 
stripes of isolated pixels with corrupted radiance values that can fall 
within the valid radiance range and so are difficult to detect using an 
automated technique. In Collection 2, for the first time, a new metadata 
parameter was added to denote the presence of these shutter intrusion 
events in effected images. In May 2003 the Landsat 7 ETM + scan line 
corrector (SLC) failed, removing pixel observations in stripes that in
crease in size towards the scan edge and reducing the useable amount of 
image data by about 22% (Markham et al., 2004a, b). A number of 
“SLC-off” gap filling algorithms have been proposed (Brooks et al., 2018; 
Yan and Roy 2020; Wang et al., 2020) but none have been implemented 
in Collection 2 as they are computationally expensive to implement and 
are imperfect. 

3.3. Collection 2 level 2 surface reflectance 

Landsat atmospheric correction of the reflective spectral bands has a 
long provenance. Early algorithms were based typically on dark-object 
subtraction that required users to identify dark objects in the image 
and assumed that the object TOA spectral reflectance was equal to the 
reflectance of the atmosphere that was then subtracted from all the 
image pixels (Chavez, 1996). Early algorithms did not correct for vari
ations in the atmospheric scattering and absorbing constituents across 
the image, or account for multiple scattering (Ju et al., 2012). Modern 
algorithms use radiative transfer models in conjunction with atmo
spheric characterization data and image-based aerosol retrieval methods 
(Doxani et al., 2023). The Collection 2 Level 2 surface reflectance 
products are derived with global coverage for daytime images (solar 
zenith <76◦) using algorithms based on the Second Simulation of a 
Satellite Signal in the Solar Spectrum Vector (6SV) radiative transfer 
code (Kotchenova et al., 2006). The Landsat 4–7 and the Landsat 8 and 9 
TOA data are processed to surface reflectance using different 6SV 
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implementations that are described below. The Landsat 1–5 MSS data 
are not atmospherically corrected in Collection 2 because the MSS has 
no blue or SWIR bands and there were sparse auxiliary atmospheric 
characterization data in the MSS Landsat 1–3 era. 

The Landsat 4–7 data are atmospherically corrected using the 
Landsat Ecosystem Data Adaptive Processing System (LEDAPS) algo
rithm (Masek et al., 2006). The LEDAPS algorithm uses a per-band 6SV 
parameterized Look up Table (LUT) for a range of aerosol values, 
elevation data (i.e., for surface pressure derivation), and near 

contemporaneous auxiliary ozone, water vapor obtained from a variety 
of sources (Table 3). The aerosol optical thickness (AOT) is retrieved 
independently using a dense dark vegetation (DDV) approach. The 
Landsat 4–7 Level 2 surface reflectance for each VSWIR band is provided 
with per-pixel atmospheric opacity information and Quality Assessment 
(QA) flags defining the DDV pixels, and other pixel conditions used in 
the LEDAPS processing. The surface reflectance atmospheric opacity and 
the LEDAPS cloud QA bands present in Landsat 4–7 Collection 2 surface 
reflectance product are defined in Table 4. 

Fig. 3. Example of Landsat 8 and Landsat 9 under-fly data acquired November 15, 2021, over Baja California, Mexico (WRS-2 path 125/row 43) and processed with 
Collection 2 algorithms. Left: Level 2 surface reflectance (true color red/green/blue surface reflectance scaled with the same stretch in each band from ρ = 0.0 to 0.4), 
Right: Level 2 surface temperature. 

Table 3 
Atmospheric auxiliary data ingest for Landsat Collection 2 Level 2 product generation. Abbreviations: LaSRC (Land Surface Reflectance Code), LEDAPS (Landsat 
Ecosystem Disturbance Adaptive Processing System), 6SV (Second Simulation of a Satellite Signal in the Solar Spectrum), MODIS (Moderate Resolution Imaging 
Spectroradiometer), CMG (Climate Modelling Grid), VIIRS (Visible Infrared Imaging Radiometer Suite), MISR (Multi-angle Imaging SpectroRadiometer), NOAA 
(National Oceanic and Atmospheric Administration), ETOPO5 (Earth Topography Five Minute Grid), TOMS (Total Ozone Mapping Spectrometer), OMI (Ozone 
Monitoring Instrument), NCEP (National Centers for Environmental Prediction), MODTRAN (MODerate resolution atmospheric TRANsmission), MERRA-2 (Modern- 
Era Retrospective analysis for Research and Application Version 2), GEOS (Goddard Earth Observing System), Forward Processing for Instrument Teams (FP-IT), 
Instrument Teams (IT), ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), GED (Global Emissivity Dataset), GLS (Global Land Survey), 
NASADEM (NASA Shuttle Radar Topography Mission), CDEM (Canadian Digital Elevation Model), SNF (Sweden, Norway, and Finland National Elevation Data), NED 
(National Elevation Dataset for Alaska), GIMP (Greenland Ice Mapping Project), NPI (Norwegian Polar Institute).  

Level 2 
Product 

Algorithm USGS 
Algorithm 
Ver. 

Radiative Transfer 
Model/Program 

Auxiliary data Description Horizontal 
Resolution 

Latency 

Surface 
Reflectance 

LaSRC 1.5.0 6SV (refined to take 
advantage of added 
CA band) 

MODIS C6 CMG (2013–2/16/ 
2023) 
MODIS C6.1 CMG (2/17/2023- 
present); transition to VIIRS C2 
CMG is underway. 

Coarse-resolution ozone and water 
vapor 

0.05◦ 2 days 

MODIS/MISR derived ratio 
maps 

To capture seasonal/annual 
variability in the ratio between red 
and blue channels for AOT retrieval 

0.05◦ Static 

NOAA ETOPO5 DEM To derive surface air pressure 5 arcmin Static 
LEDAPS 3.4.0 6SV TOMS (1978–2004), OMI (2004- 

present) 
Ozone 1.25 × 1 deg 3 days 

NCEP grid Water vapor, atmospheric pressure, 
air temperature 

2.5 × 2.5 deg 4 days 

NOAA ETOPO5 DEM Digital elevation model 5 arcmin Static 
Surface 

Temperature 
Single 
Channel 

1.3.0 MODTRAN MERRA-2 (1982–12/31/1999), 
GEOS FP-IT (01/01/2000- 
present); transition to GEOS IT is 
underway. 

Atmosphere profiles of geopotential 
height, specific humidity, and air 
temperature 

0.625 × 0.5 
deg 

18 h 

ASTER GED Surface emissivity 100 m Static 
GLS DEM, NASADEM, CDEM, 
SNF, Alaska NED, GIMP, NPI, 
ArcticDEM 

Regional digital elevation model 3 arcsec Static  

C.J. Crawford et al.                                                                                                                                                                                                                            



Science of Remote Sensing 8 (2023) 100103

7

The Landsat 8 and 9 data are atmospherically corrected using the 
Land Surface Reflectance Code (LaSRC) (Vermote et al., 2016). The 
LaSRC algorithm uses a 6SV parameterized Look up Table (LUT) of 
discrete AOT values and also water vapor and ozone derived from near 
contemporaneous MODIS Climate Modelling Grid (CMG) data (Table 3). 
In the LaSRC algorithm, the AOT is inverted using spectral ratios of the 

OLI coastal aerosol, blue, and red spectral bands. Over water, a red 
spectral band AOT LUT is used. In Collection 2, the LaSRC code was 
modified to make the code run more efficiently and to ensure processing 
traceability where every pixel is consistently processed to Level 2 sur
face reflectance. The AOT is retrieved with respect to 3 × 3 30 m pixel 
windows instead of the original per-pixel retrieval implementation. In 
addition, a semi-analytical approach is used to estimate the atmospheric 
transmission, intrinsic reflectance, and spherical albedo more efficiently 
based on a cubic polynomial fit of the AOT LUT values. The AOT at the 
center of the 3 × 3 30-m pixel window is optimized by iteratively calling 
the atmospheric correction function until the AOT inversion converges. 
Window locations where the AOT retrieval fails are flagged, and their 
AOT values are gap-filled from surrounding windows. An inverse dis
tance weighted interpolation is then applied to obtain AOT estimates for 
every 30-m pixel. The Landsat 8 and 9 Level 2 surface reflectance is 
computed for each VSWIR spectral band and is provided with similar 
per-pixel QA flags as for the LEDAPS (Landsat 4–7) surface reflectance. 
Additional surface reflectance aerosol QA flags are included that docu
ment the validity of the aerosol retrieval, whether a land or water-based 
algorithm was used for the aerosol inversion, or if the aerosol was 
interpolated from surrounding pixels are included (Table 4). 

The Collection 2 Level 2 Surface Reflectance is produced globally 
and in general performs as expected (Fig. 3). As usual, a minority of 
atmospherically corrected pixels may have values outside their theo
retical limits, i.e., reflectance >1.0 or <0.0 (on the unitless reflectance 
scale) due to “overcorrection” associated primarily with incorrect at
mospheric characterization (Roy et al., 2014) and over surfaces that 
reflect light in the satellite observation direction more strongly than a 
Lambertian surface (Schaepman-Strub et al., 2006). A known Collection 
2 issue for the Landsat 8 and 9 Level 2 surface reflectance products 
occurs over snow and ice where the AOT inversion can fail and the AOT 
interpolated from neighboring values is insufficiently representative, 
causing reflectance >1.0, particularly in the shorter wavelength spectral 
bands. Users are encouraged to examine the per-pixel Aerosol QA in
formation, especially the validity of aerosol retrieval (bit 1) and the 
qualitative aerosol level (bits 6 and 7). Pixels with invalid retrieval and 
high aerosol levels indicate greater uncertainty in surface reflectance 
and can be used to mask reflectance values > 1. For example, the top row 
of Fig. 4 shows Level 2 surface reflectance over and around Lake Tahoe 
acquired by the Landsat 8 OLI in the Spring (left column) and Summer 
(right column), and the middle and bottom rows show the per-pixel QA 
information. In the Spring there are many invalid AOT pixels (red tones) 
present over the snow-covered terrain in the south and west which 
indicate uncertain surface reflectance values. Conversely, in the Summer 
most of the terrestrial pixels have valid AOT retrievals. 

The LEDAPS and LaSRC source algorithms have been systematically 
evaluated against AErosol RObotic NETwork (AERONET) measurements 
(Vermote et al., 2016; Ju et al., 2012; Roger et al., 2022), MODIS 
Collection 5 surface reflectance products (Feng et al., 2013), and 
ground-based in situ reflectance (Maiersperger et al., 2013; Nazeer et al., 
2014; Vuolo et al., 2015). Recent community exercises including the 
Atmospheric Correction Intercomparison eXercise (ACIX) provide a 
forum for surface reflectance validation (Doxani et al., 2023). Validation 
of the USGS-generated Collection 2 Level 2 surface reflectance products 
is underway and will include the use of data collected by new imaging 
systems mounted on stationary towers to measure heterogeneous 
vegetated sites (Vermote et al., 2022) and will enable meaningful vali
dation of atmospheric corrections to account for surface heterogeneity i. 
e., adjacency effects (Ouaidrari and Vermote, 1999; Liang et al., 2001). 

Older Landsat sensor generations were not designed for water 
monitoring. The OLI on Landsat 8 and 9 has sufficiently high radiometric 
resolution and spectral characteristics to enable water quality and 
aquatic information retrieval (Pahlevan et al., 2017). However, the 
LaSRC atmospheric correction was not designed to compute reflectance 
over water, and users should be cautious in using the Collection 2 Level 2 
surface reflectance product for water and aquatic science applications. 

Table 4 
Landsat Collection 2 Level 1 and Level 2 per-pixel quality assessment (QA) 
information.  

QA Band Description 

Landsat 4–9 Pixel Quality 
Assessment (QA_PIXEL) 

Derived from the Function of Mask (FMask) 
version 3.3.1, the bit-packed Pixel QA 
defines certain quality conditions such as 
cloud, cloud shadow, and snow/ice flags 
with associated confidence levels. The 
cirrus and cirrus confidence levels in 
Landsat 8–9 QA_PIXEL are determined 
using a separate cirrus detection algorithm. 
A water flag is also included to support 
advanced level science products. The high- 
confidence cloud pixels are dilated (3- 
pixels) and flagged as such in this QA band. 

Landsat 4–9 Radiometric 
Saturation QA (QA_RADSAT) 

Represents which sensor bands were 
saturated during data capture, yielding 
unusable data. Saturation is not common in 
Landsat 8/9. Saturation occurs over the 
reflective surfaces in the Visible and Near 
Infrared (VNIR) bands, or volcanoes and 
wildfires in the Shortwave Infrared (SWIR) 
and thermal bands. 

Landsat 8/9 Aerosol QA 
(SR_QA_AEROSOL) 

An internal Landsat 8/9 Land Surface 
Reflectance Code (LaSRC) QA band that 
provide low-level details about the validity 
of the aerosol retrieval. It also shows 
whether a terrestrial or water-based 
routine was used for aerosol determination. 
The Aerosol QA also indicates if the aerosol 
was inverted or interpolated from the 
center of 3 × 3 windows. 

Landsat 4–7 LEDAPS SR Cloud QA 
(SR_CLOUD_QA) 

An internal Landsat Ecosystem Disturbance 
Adaptive Processing System (LEDAPS) QA 
band that flags the Dark Dense Vegetation 
(DDV) pixels used in Aerosol Optical 
Thickness (AOT) calculation. The LEDAPS 
SR cloud QA also provides per-pixel 
information about the cloud, cloud 
shadow, snow, and water conditions. 
Although these conditions are defined in 
the QA_PIXEL, the LEDAPS algorithm 
executes its own calculations to meet the 
specific requirements of the atmospheric 
correction routines. 

Landsat 4–7 SR Atmospheric 
Opacity (SR_ATMOSOPACITY) 

Provides a generalized measure of the 
atmospheric opacity generated by the 
Landsat Ecosystem Disturbance Adaptive 
Processing System (LEDAPS) algorithm and 
based on the radiance viewed over the Dark 
Dense Vegetation (DDV) pixels within the 
scene. Values less than 0.1 are clear, 
0.1–0.3 are average, and values greater 
than 0.3 indicate haze or other cloud 
conditions. The SR values from pixels with 
high atmospheric opacity are less reliable, 
especially under high Solar Zenith Angle 
(SZA) conditions. 

Landsat 4–9 ST Uncertainty (ST_QA) Provides the per-pixel ST product 
uncertainty (K). The uncertainty 
propagation model includes the 
uncertainty in atmospheric variables, 
Landsat radiance uncertainty, the error 
associated with the Advanced Spaceborne 
Thermal Emission and Reflection 
Radiometer (ASTER) Global Emissivity 
Dataset (GED) emissivity, and uncertainties 
in the distance to cloud and transmission.  
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Fig. 4. Collection 2 Level 2 surface reflectance from Landsat 8 acquired over Lake Tahoe, California region (WRS-2 path42/row33) in the Spring March 27; (left) and 
Summer August 2; (right) of 2020. Top row: surface reflectance (true color red/green/blue surface reflectance scaled linearly between ρ = 0.0 to 0.4 reflectance units); 
Middle row: per-pixel Aerosol QA information; Bottom row: a 2.4 × 2.8 km spatial subset of the per-pixel Aerosol QA information showing for illustrative clarity the 
QA information for every third 30-m pixel in the x and y image directions. 
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Instead, the USGS EROS Center is currently offering an on-demand 
provisional Collection 2 Level 2 aquatic reflectance product through 
the EROS Science Processing Architecture On Demand Interface (ESPA) 
(https://espa.cr.usgs.gov). 

3.4. Collection 2 level 2 surface temperature 

Surface skin temperature varies rapidly in space and time as a 
function of several environmental factors. Reliable temperature deri
vation from satellite thermal infrared (TIR) radiance requires correction 
for atmospheric absorption and temperature effects, and knowledge, or 
retrieval, of the spectral surface emissivity. The Landsat 4 and 5 TM had 
one 120-m TIR band centered at around 11.4 μm, the Landsat 7 ETM +
had a 60-m TIR band centered around 11.4 μm with low and high gain 
settings, and the Landsat 8 and 9 Thermal Infrared Sensor (TIRS) has two 
100-m bands centered at 10.8 μm and 12.0 μm. There were no TIR 
spectral bands on the earlier Landsat 1–2 missions, and the Landsat 3 
TIR spectral band failed shortly after launch (Goward et al., 2017). In 
principle, two TIRS bands enable improved surface temperature esti
mation using a split window algorithm to reduce differential atmo
spheric absorption (Wan and Dozier, 1996; Reuter et al., 2015). 
Unfortunately, the two Landsat 8 TIRS bands, and in particular the 12.0 
μm band, were found post-launch to have stray light issues (Montanaro 
et al., 2014). The Landsat 8 TIRS stray light was compensated for using 
an optical stray light model and the observations at the swath edges 
(Gerace and Montanaro, 2017) and the corrected TIRS data were shown 
to be able to provide split window surface temperature retrievals with a 
0.2 K mean error (Gerace et al., 2020). However, due to schedule issues, 
the Collection 2 Level 2 surface temperature products are derived using 
only a single channel algorithm applied to the 11.4 μm radiance 
(Landsat 4–7) and to the 10.8 μm radiance (Landsat 8–9). The Landsat 7 
ETM + surface temperature is derived using both the low and a high gain 
11.4 μm radiance to provide a single pixel retrieval that saturates less 
frequently. 

The Collection 2 Level 2 Surface Temperature product is derived 
with global coverage for daytime images (solar zenith <76◦) for Landsat 
4–9. The surface temperature (units: Kelvin) is provided on a 30 m grid 
consistent with the shortwave datasets (although the nominal resolution 
of the TIR data is coarser, 60–120 m), and is accompanied by per-pixel 
uncertainty (units: Kelvin) of surface temperature measurement to 
enable downstream analysis of retrieval quality (Table 4). In addition, 
atmospheric transmittance, upwelled path radiance, and downwelled 
sky radiance information is provided to facilitate product generation 
traceability. The Collection 2 surface temperature algorithm is based on 
the MODerate resolution atmospheric TRANmission (MODTRAN) radi
ative transfer code (Malakar et al., 2018). The MODTRAN algorithm 
uses contemporaneous atmospheric auxiliary information (Table 3) 
including profiles of the air temperature, geopotential height, and spe
cific humidity information that are extracted (depending on the image 
acquisition date) either from Modern-Era Retrospective analysis for 
Research and Application, Version 2 (MERRA-2) (Gelaro et al., 2017) or 
Goddard Earth Observing System-5 (GEOS-5) Forward Processing for 
Instrument Teams (FP-IT) (Lucchesi, 2017) reanalysis data. The surface 
spectral emissivity that is needed to derive surface temperature cannot 
be retrieved from a single TIR band. Instead, spectral emissivity at 11.3 
μm (for Landsat 4–7) and 10.7 μm (for Landsat 8–9) obtained from the 
Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) Global Emissivity Database (GEDv3) are used. The GEDv3 
provides a near global coverage of spectral emissivity values and was 
generated by applying the Temperature Emissivity Separation (TES) 
algorithm to the five 90-m ASTER TIR bands and averaging over the 
cloud-free observations from 2000 to 2008 (Hulley et al., 2015; Malakar 
et al., 2018). The mean spectral emissivity associated with Landsat TIR 
spectral bands is estimated by applying sensor-specific regression co
efficients on ASTER 10.7 and 11.3 μm bands. Since the ASTER GEDv3 is 
static, the spectral mean emissivity from ASTER era is adjusted for 

Landsat overpass conditions to account for vegetation and snow cover 
changes (Hulley et al., 2015; Malakar et al., 2018). 

The single channel algorithm used to generate the Collection 2 
Landsat surface temperature product has been validated using select 
Landsat 5 and 7 data over land sites and inland and coastal water with an 
accuracy of within 0.51 K and precision of 1.56 K (Cook et al., 2014; 
Laraby and Schott, 2018; Gerace et al., 2015; Malakar et al., 2018). The 
Collection 2 Landsat 8 surface temperature product has been validated 
over a variety of land sites with ~0.5 K accuracy and ~1K precision, and 
over lake and coastal water sites with approximately 50% better per
formance (Fig. 5). The land sites have lower accuracy and precision due 
to the larger variability in surface emissivity compared to water bodies. 
There is an outstanding need for comprehensive validation of the 
Collection 2 surface temperature products across a range of geographic 
regions and land surface types and for Landsat 4–9. 

3.5. Cloud and cloud shadow mask 

Clouds and their shadows preclude reliable surface monitoring. Like 
Collection 1, the 30 m cloud and shadow masks are included in the 
Collection 2 Level 1 and 2 products. The Landsat Collection 2 per-pixel 
QA includes information on cloud, cloud shadow, cirrus, snow/ice, and 
water presence. This QA layer also provides low, medium, and high- 
confidence levels for cloud, as well as low and high-confidence levels 
for shadow, snow/ice, and cirrus presence (Table 4). 

The Landsat cloud detection has a heritage based on the application 
of empirical spectral tests to single image pixels (Irish et al., 2006; Zhu 
and Woodcock, 2012; Foga et al., 2017; Skakun et al., 2019). The 
Collection 2 cloud and cloud shadow masking algorithm uses the USGS 
Landsat Collection 1 C Function of Mask (CFMask) algorithm version 
3.3.1 (Foga et al., 2017) developed by Zhu et al. (2015). The CFMask 
algorithm was validated as having an overall accuracy of 90.45%, 
although comprehensive validation of cloud mask products is chal
lenging given the considerable variability in the optical properties and 
morphology of clouds. In particular, cloud detection over snow and ice, 
and shadow detection over low reflectance surfaces, can be challenging 
due to spectral similarity. The inclusion of a 1.360–1.390 μm spectral 
band on the Landsat 8 and 9 OLI enabled cirrus cloud detection with low 
and high confidence, which is needed given the pervasiveness of cirrus 
in Landsat imagery (Kovalskyy and Roy, 2015). The OLI cirrus cloud 
detection is undertaken by thresholding the OLI 1.360–1.390 μm TOA 
reflectance with a non-linear adjustment for column water vapor effects 
based on the surface elevation defined using the Landsat geolocation 
DEM (Section 3.1). Future cirrus detection improvements may be 
necessary as the cirrus detection algorithm can misclassify pixels in dry 
atmospheric conditions and over snow/ice surfaces that reflect strongly 
in the 1.360–1.390 μm region (Qiu et al., 2020). 

3.6. Level 1 and level 2 product format 

The Collection 2 Level 1 and 2 products are provided as ~185 km ×
180 km images in the UTM projection (or PS projection for Antarctic 
scenes with center latitude ≥63◦S). The images are defined in the WRS 
path and row coordinate system. The first three Landsat satellites were 
in a higher orbit (917 km) with a greater repeat (18-days) compared to 
the later satellites (705 km orbit, 16 day repeat) (Goward et al., 2017). 
Consequently, the Landsat 1, 2 and 3 products are defined using the 
WRS-1 path and row coordinate system, while the Landsat 4–9 products 
are defined using the WRS-2 system to account for swath coverage dif
ferences. Periodic station-keeping maneuvers (i.e., inclination burns) 
are implemented to maintain the Landsat satellite ground track and orbit 
phase. Notably, Landsat 5 experienced significant orbit drift particularly 
when it was operated commercially from 1985 to 2001 (Zhang and Roy, 
2016). The Landsat 7 orbit was allowed to drift after the final 
station-keeping maneuver in 2017 with increasing changes during its 
extended science mission between 2022 and 2023. For all the Landsat 
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missions, orbit perturbations mean that the ground locations (latitude 
and longitude) of the Leve1 1 and Level 2 product pixel locations 
occurring in the same WRS path/row typically change between over
passes. For example, drifts of several kilometers east-west and less than a 
kilometer north-south were found from global analysis of three years of 
global Landsat 5 TM and Landsat 7 ETM + imagery (Kovalskyy and Roy, 
2013). Consequently, Level 1 or 2 products acquired over the same WRS 
path/row need to be aligned prior to temporal analyses. 

The Collection 2 Level 1 and 2 products store each pixel and spectral 
band as 16-bit unsigned integer digital numbers (DNs). The DNs may be 
converted to physical units, i.e., TOA spectral radiance (Level 1) or TOA 
reflectance, surface reflectance, TOA brightness temperature, and sur
face temperature (Level 2) using band specific scale factors and offset 
values stored in the product metadata. The Level 1 TOA radiance and 
TOA reflectance are stored assuming a solar zenith angle = 0◦ and can be 
corrected using the solar zenith angle at the time of acquisition. The 
solar zenith angle (SZA), solar azimuth angle (SAA), view zenith angle 
(VZA), and view azimuth angle (VAA) are provided for each 30 m pixel 
for Landsat 4–9 in the Collection 2 Level 1 product. These angles are not 
available for Landsat 1–3 because of uncertainties in the Landsat MSS 
line-of-sight calculation due to sometimes sparse and less-precise satel
lite ephemeris information. 

The Collection 2 Level 1 products include per-pixel QA bands that 
document the cloud detection confidence, cloud shadows, water, and 
snow/ice detection confidence, radiometric saturation, and terrain oc
clusion (Table 4). The Collection 2 Level 1 QA bands were revised from 
Collection 1 to facilitate consistency between Level 1 and Level 2 pro
cessing, and to accommodate the expanded per-pixel Level 2 QA bits 
included within Level 2 surface reflectance and surface temperature 
products. 

3.7. Collection 2 U.S. Analysis ready data 

Landsat U.S. ARD are generated for the Landsat 4–9 30 m record over 
the conterminous United States (CONUS), Alaska, and Hawaii. The 
Landsat ARD were developed to provide easy-to-use data, to enable 
analysis with a minimum of additional effort, and support the down- 
stream development of higher-level products (Dwyer et al., 2018). The 
ARD store 30 m (i) surface reflectance, and (ii) top of atmosphere (TOA) 
reflectance, for each of the VSWIR spectral bands, (iii) TOA brightness 
temperature for the TIR band(s), (iv) the surface temperature, and (v) 
associated per-pixel quality assessment information. Both TOA and 

surface estimates are stored as certain users prefer TOA data, particu
larly over snow and water where atmospheric correction can be less 
reliable (Fahnestock et al., 2016; Scambos et al., 2018; Zhai et al., 2022), 
and to facilitate the development of next generation atmospheric 
correction and temperature retrieval algorithms. 

The Landsat ARD are generated by application of the Collection 2 
Level 1 and 2 processing algorithms to the Level 0 data and then 
reprojecting the results into fixed non-overlapping tiles defined in the 
Albers equal area projection. Notably the Landsat data are not resam
pled twice but rather are projected directly to the Albers projection to 
reduce resampling degradations (Shlien, 1979; Li et al., 2017). To ensure 
that the ARD are geometrically consistent through time, only Landsat 
images that can be aligned with image-to-image tolerances of ≤12 m 
radial root mean square error (Tier 1 data) are used in the ARD pro
cessing (Dwyer et al., 2018). Consequently, the Landsat ARD does not 
include Landsat MSS data as the majority of MSS acquisitions cannot be 
geolocated to this accuracy (Yan and Roy, 2021). Given the high geo
location accuracy of more recent Landsat sensors (Storey et al., 2019), 
all Landsat 8 and 9 images are processed to the U.S. ARD. Notably, 
because the geographic coordinates of each ARD tile pixel are fixed, no 
additional processing and alignment steps are necessary prior to 
multi-temporal analysis. This is in contrast, as noted in Section 3.6, to 
the Level 1 and 2 products defined in the UTM and PS projections. 
Further, unlike for the Level 1 and 2 products, the ARD are defined in an 
equal area projection which is convenient for summarizing the areas of 
terrestrial attributes and for large area analyses (Dwyer et al., 2018). 
Indeed, the Albers projection is the same as that used by other 
CONUS-wide remote sensing products including the USGS National 
Land Cover Database (NLCD) (Wickham et al., 2021), the United States 
Department of Agriculture (USDA) National Agricultural Statistics Ser
vice (NASS) Cropland Data Layer (CDL) (Johnson and Mueller, 2010), 
and the USGS Land Change Monitoring, Assessment, and Projection 
(LCMAP) product (Brown et al., 2020). 

The Landsat ARD are provided in fixed and non-overlapping 5000 ×
5000 30-m pixel (150 × 150 km) tiles referenced by horizontal (h) and 
vertical (v) tile coordinates. Each individual orbit of Landsat data 
overlapping an U.S. ARD tile is stored independently. The tiling scheme 
is based on an original one developed by an early NASA-funded Landsat 
ARD project (Roy et al., 2010). Fig. 6 illustrates Landsat 8 (left column) 
and Landsat 9 (right column) OLI 30 m surface reflectance (top row) and 
surface temperature (bottom row) for a 15 × 15 km spatial subset of a 
single ARD tile in California. The Landsat 8 and 9 imagery sensed over 

Fig. 5. Example validation of the Collection 2 Landsat 8 surface temperature products for land sites (left) and lake sites (right) derived from hundreds of cloud-free 
acquisitions acquired 2018–2021. 
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the tile area were acquired on December 15th and 16th 2021, respec
tively, and in this one day period the surface reflectance did not change 
significantly but the temperature changed by > 6 K at certain 30-m ARD 
pixel locations. The Landsat ARD were first made available in Collection 
1, and the ARD geographic coverage was extended in Collection 2 in 
response to user requests, particularly over the Aleutian Islands, the 
Great Lakes, and some other coastal regions (Fig. 7). In addition, the 
ARD tiles were expanded by including WRS-2 path/rows that intersected 
within a 15-km coastal buffer zone around the U.S. shoreline and the 
Great Lakes. This resulted in a total of 81, 2 and 73 ARD tiles being 
added or updated in Collection 2 over the CONUS, Hawaii and Alaska, 
respectively. 

4. Landsat collection 2 access and latency 

The Landsat Collection 2 products are available in the standard way 
from the legacy USGS Earth Explorer (https://earthexplorer.usgs.gov) 
portal and also for bulk ordering via the USGS/EROS machine-to- 
machine (M2M) application programming interface (API). Notably, 
the Collection 2 products can also be accessed directly from the com
mercial cloud through the USGS’s Cloud Hosting Solutions (CHS) US 
West-2 AWS Simple Storage Service (S3) bucket (https://registry.op 
endata.aws/usgs-landsat/). This AWS storage enables users to bring 
their applications to the Landsat archive rather than needing to down
load Landsat data to their local computer. The USGS pays for the Landsat 
Collection 2 AWS storage costs. However, users processing Landsat data 
directly in AWS will need to pay for their AWS processing costs, any 
temporal file storage in AWS, and for egress of derived products. 

Landsat was not designed for near-real time applications because of 
the low revisit interval (nominally 16-days for Landsats 4–9 and 18-days 
for Landsats 1–3). Consequently, efforts to minimize the latency be
tween image acquisition and the availability of the processed data were 
not a priority compared to other processing considerations. However, in 
Collection 2 aspects of the processing were reengineered to reduce the 
latency for newly acquired Landsat 8 and 9 data (Table 5). Recall that 
the Collection 2 Landsat 8 and 9 data are generated on-premises at USGS 
EROS and a rolling cache of the previous 90 days of processed acquisi
tions are retained to facilitate bulk data access. The USGS makes Landsat 
8 OLI and TIRS products available shortly after acquisition to support a 
nascent NRT product demand even though TIRS geolocational uncer
tainty is higher until additional geometric processing is conducted for 
the Tiered Level 1 and Level 2 processing. The Landsat 9 latency is much 
improved over Landsat 8 with the ability to generate a Level 1 product 

Fig. 6. Collection 2 Landsat ARD example over an agricultural region in Cali
fornia (15 × 15 km spatial subset from CONUS ARD tile h05v13, centered on 
33.442◦N 114.659◦W). Left column: Landsat 8 data sensed December 15, 2021, 
Right column: Landsat 9 data sensed December 16, 2021. Top row: true color 
surface reflectance (red, green, blue spectral bands). Bottom row: surface tem
perature (K). 

Fig. 7. Landsat Collection 2 ARD horizontal (h) and vertical (v) tile coordinates for CONUS, Alaska, and Hawaii. The grey and orange shades highlight Collection 1 
and Collection 2 differences where either a new ARD tile was added or more WRS-2 path/row data were included. 

Table 5 
Latency between acquisition and availability of Collection 2 Landsat 8 and 9 
products.   

LEVEL 1 REAL TIME 
(RT) 

LEVEL 1 
TIERED 

LEVEL 2 
TIERED 

LANDSAT 9 OLI/ 
TIRS 

Not Applicable 4–6 h 2–3 days 

LANDSAT 8 OLI/ 
TIRS 

4–6 h 3–10 days 4–11 days  
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within four to 6 h after acquisition because TIRS on Landsat 9 does not 
require additional Scene Select Mechanism (SSM) processing like 
Landsat 8. The Landsat Collection 2 Level 2 scene-based and the U.S. 
ARD are on average, generated within 24 h of the Tiered Level 1 prod
ucts being processed. 

All data released by the USGS on servers owned by, or managed 
under contract to, the USGS, are assigned a Digital Object Identifier 
(DOI). A DOI is a string of numbers, letters and symbols used to uniquely 
identify a dataset and to provide it with a permanent internet accessible 
address. The DOI remains fixed over the dataset lifetime, whereas a 
website location may change. Table 6 summarizes the availability and 
DOIs used to identify the Collection 2 archive. 

5. Discussion and future collection plans 

Collection 2 is an important step towards improving the consistency 
of the Landsat record. This is challenging given the significant techno
logical changes and the availability of ancillary data that have occurred 
since the launch of Landsat 1 in 1972. The Landsat Collection 2 products 
have two core improvements over Landsat Collection 1. First, the ab
solute geolocation accuracy was improved by exploiting the availability 
of ESA Sentinel-2 GRI data and the on-orbit geometric performance of 
Landsat 8. Second, Level 2 atmospherically corrected surface reflectance 
and surface temperature products are now available for the global 30 m 
Landsat 4–9 record and are generated operationally as new Landsat 8 
and 9 observations are acquired. While these changes reflect major 
product achievements, there are several existing Collection 2 product 
improvements that have been identified for when the time comes to 
reprocess the consolidated Landsat global data archive for a third time as 
Collection 3. They are described below and discussed in the context of 
the lessons learned from Landsat Collection 1 and Collection 2. 

The USGS was able to improve the Landsat geolocation accuracy 
because of the Landsat 8 OLI on-orbit geometric performance, which is 
currently matched or exceeded by the Landsat 9 OLI (Masek et al., 
2020), and the availability of ESA GRI data that together were used to 
update the Landsat ground control library used in Collection 2. The in
ternational cooperation between USGS, NASA, and ESA, resulted in 
more accurate geolocation than previously observed for the Landsat 
mission data and importantly supports the reliable harmonization of 
Landsat 8/9 data with ESA Sentinel-2A/B data (Storey et al., 2016). The 
number of Landsat Tier 1 Level 1 products (i.e., geolocated with a radial 
RMSE <12 m) increased by >10% from Collection 1 to Collection 2 for 
all the Landsat sensor generations except for MSS (Table 2). Fig. 8 shows 
by sensor the geographic distribution of the Tier 1 changes. For all 
sensors, snow-prone high latitude and certain desert regions had greater 
numbers of acquisitions downgraded from Tier 1 to Tier 2 than else
where. This occurred primarily because the image geolocation was more 
reliably characterized due to the greater number and quality of ground 
control used in Collection 2. The greater number and spatial coverage of 

the later Landsat mission acquisitions (Wulder et al., 2016) is also 
evident. Future research to consider the impacts of changing the radial 
RMSE 12 m threshold value in future collection processing for a more 
refined Tiering categorization is recommended. As for Collection 1, less 
than one percent of the total MSS archive was processed as Tier 1 in 
Collection 2 for the reasons discussed in detail in Section 3.1. For 
Collection 3, improvement of the MSS geolocation accuracy is needed to 
increase the number of MSS images that can be processed to Tier 1 ac
curacy to support time series applications, and to enable the MSS data to 
be included in the U.S. Landsat ARD data suite. 

The Landsat Level 2 surface reflectance product has a long devel
opment heritage (from MODIS and AVHRR) and is quite mature. How
ever, a known Collection 2 issue for the Landsat 8 and 9 surface 
reflectance product over snow and ice (described in Section 3.3) is 
pending resolution. The Landsat surface reflectance product requires a 
variety of auxiliary atmospheric characterization data that cannot be 
retrieved from Landsat observations alone (Table 3). In particular, 
auxiliary atmospheric characterization data were unavailable in the 
1970s and 1980s and seasonally dependent climatological average 
characterizations were used in the Collection 2 processing of the Landsat 
TM data. The Landsat 1–5 MSS data were not atmospherically corrected 
in Collection 2 because of this issue and because the MSS carried only 
green, red and NIR bands. Simple but robust MSS atmospheric correc
tion approaches may be merited for Collection 3, for example, by not 
correcting for aerosol scattering and absorption effects that optimally 
require blue and SWIR bands that the MSS did not carry. The NASA 
MODIS atmospheric characterization data used to atmospherically cor
rect the Landsat 8 and 9 OLI data stream will need to be replaced when 
the NASA MODIS mission is retired (currently scheduled for late 2023/ 
2024). Given the need for continuity of surface reflectance, studies to 
examine the impact of replacing the MODIS atmospheric characteriza
tion data with JPSS-1/2 VIIRS derived data have been undertaken, 
indicating minimal impacts (Fig. 9). The Landsat Next mission will 
include 15 new spectral bands (see for more information: https://la 
ndsat.gsfc.nasa.gov/satellites/landsat-next/) and several spectral 
bands will enable retrieval of atmospheric characteristics, such as 
aerosols and column water vapor. This will provide more contempora
neous atmospheric characterization data and so likely improved atmo
spheric correction and will reduce the processing latency by removing 
the need to wait for auxiliary atmospheric characterization data. The 
USGS plans to continue to examine the impact of auxiliary atmospheric 
correction data on the surface reflectance product performance, while 
also continuing to support new atmospheric correction research for 
Collection 3 and the Landsat Next mission. 

The Landsat sensors are in sun-synchronous orbits acquiring near- 
nadir observations over narrow (about 15◦) sensor field of views. 
Consequently, changes in the retrieved Landsat reflectance due only to 
changes in the solar and view geometry and surface reflectance anisot
ropy, described by the Bi-directional Reflectance Distribution Function 
(BRDF), have been considered negligible or smaller than residual at
mospheric correction artefacts. The need to minimize BRDF effects 
became evident when large area Landsat mosaics started to be generated 
(Toivonen et al., 2006) and empirical BRDF minimization approaches 
were initially developed (Hansen et al., 2008). Subsequently, more so
phisticated algorithms were developed and across-swath view zenith 
BRDF variations up to 0.02 and 0.06 (reflectance units) in the red and 
NIR Landsat bands were quantified (Roy et al., 2016). Unlike wide 
field-of-view daily coverage sensors, such as MODIS, Landsat does not 
provide sufficient angular sampling to characterize the BRDF reliably 
from the Landsat observations alone at time scales where the surface can 
be assumed to be unchanged (Roy et al., 2016). Consequently, 
semi-empirical algorithms have been developed to adjust Landsat 
reflectance to a nadir view, referred to as nadir-adjusted bidirectional 
reflectance (NBAR) (Roy et al., 2016; Zhang et al., 2018) using the 
MODIS BRDF product (Schaaf et al., 2002; Wang et al., 2018). Landsat 
NBAR has been shown to improve the consistency of Landsat time series 

Table 6 
Landsat Collection 2 Digital Object Identifiers (DOIs) and availability (month 
and year of first/last sensor data acquisition).   

LANDSAT 8/ 
9 OLI/TIRS 

LANDSAT 7 
ETM+

LANDSAT 4/ 
5 TM 

LANDSAT 
1–3 MSS 

LEVEL 1 https://doi. 
org/10.5066 
/P975CC9B 

https://doi. 
org/10.5066 
/P9TU80IG 

https://doi. 
org/10.5066 
/P918ROHC 

https://doi. 
org/10.5066 
/P9AF14YV 

LEVEL 2 https://doi. 
org/10.5066 
/P9OGBGM6 

https://doi. 
org/10.5066 
/P9C7I13B 

https://doi. 
org/10.5066 
/P9IAXOVV 

Currently 
Not 
Available 

U.S. ARD https://doi. 
org/10.5066 
/P960F8OC 

https://doi. 
org/10.5066 
/P960F8OC 

https://doi. 
org/10.5066 
/P960F8OC 

Currently 
Not 
Available 

AVAILABILITY March 2013 
to present 

July 1999 to 
present 

July 1982 to 
May 2012 

July 1972 to 
October 
1992  
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(Qiu et al., 2018). However, this adjustment was not integrated into the 
Collection 2 processing, although Landsat users have begun to integrate 
it themselves for large area land cover mapping (Liu et al., 2021; Egorov 
et al., 2023; Zhang et al., 2023). The USGS expects to consider NBAR 
techniques for deployment as part of Collection 3 and in preparation for 
the Landsat Next mission. 

The Landsat Level 2 surface temperature product is globally avail
able and will be improved in Collection 3, with refinements supported 
by the results of product quality assessment and validation activities 
undertaken across a representative range of conditions and for the 
different Landsat sensor generations. The earlier Landsat missions car
ried no thermal infrared spectral bands (MSS) or only a single thermal 
infrared spectral band (TM and ETM+). Thus, there can be no MSS 
surface temperature product, and the Collection 2 TM and ETM + sur
face temperature products were necessarily derived using a single 
channel algorithm with the ASTER derived GEDv3 product to define the 
surface spectral emissivity. Prior to the Collection 2 processing there 
were no mature medium spatial resolution near global coverage surface 
emissivity datasets other than GEDv3. Future research to evaluate and 
develop new and more recent global spectral emissivity maps suitable 
for Collection 3 processing of the Landsat TM and ETM + data is rec
ommended, for example, using emissivity data from more recent ther
mal satellites (Hulley et al., 2022) and improved resampling techniques 
to reduce boxy artefacts apparent in the Collection 2 surface tempera
ture product. The Landsat TIRS sensors on both Landsat 8 and 9 carry 
two thermal infrared spectral bands. Consequently, improved surface 
temperature retrievals using both TIRS bands is recommended for 
Collection 3 to strengthen the utility of the Landsat surface temperature 
data record. 

One of the hallmarks of Landsat Collection 1 was the ability to 
institutionalize the derivation of product quality assessment (QA) in
formation as part of Landsat product generation (Dwyer et al., 2018). As 
evident from the MODIS land product suite (Justice et al., 1998; Roy 
et al., 2002), QA flags are essential to document the pixel-level scientific 

quality of products with respect to their intended performance, to 
document algorithm processing pathways and external factors (such as 
clouds) known to affect product quality and consistency. User exami
nation of the Landsat product pixel QA information is warranted. The 
Landsat Collection 2 QA flags are stratified by processing levels where 
the amount of pixel level descriptive information increases progressively 
from Level 0 to Level 2. The Collection 2 strategy was to algorithmically 
process Level 1 and Level 2 data irrespective of QA condition to ensure 
that every pixel is processed consistently. Looking ahead to Collection 3, 
Level 1 cloud detection and screening and Level 2 atmospheric error 
propagation will be important areas for research and development. 
While the Landsat CFMask algorithm (used in Collections 1 and 2) 
outperformed other candidate cloud detection and screening algorithms 
in the first Cloud Masking Intercomparison Experiment (CMIX) (Skakun 
et al., 2022), more recent refinements have shown improved per-pixel 
results (Qiu et al., 2019, 2020) and new deep learning cloud masking 
algorithms show promise (Li et al., 2022). To facilitate Landsat-based 
cloud detection algorithm testing and intercomparison, the USGS has 
released several reference cloud mask validation datasets that have been 
derived using manual identification techniques (https://www.usgs.gov/ 
landsat-missions/cloud-cover-assessment-validation-datasets). 

There is an increasing recognition of the need for harmonized ARD 
generated using different sensor data. For example, the ESA Sentinel- 
2A/B data have similar characteristics as Landsat 8/9, and when used 
together, the data from both sensors provide improved temporal reso
lution (Li and Roy 2017). The processing steps to harmonize Landsat and 
Sentinel-2 reflectance data are complex and include adjustment of 
sensor spectral band pass differences, correction for BRDF effects, at
mospheric correction using the same radiative transfer model and at
mospheric characterization data, and reprojection into the same gridded 
coordinate system (Roy et al., 2019). This processing has been institu
tionalized and the NASA Harmonized Landsat Sentinel-2 (HLS) project 
generates Landsat and Sentinel-2 30 m data from 2015 onwards (Clav
erie et al., 2018), and the ESA Sen2Like project has developed 

Fig. 8. Change in the total number of Landsat Level 1 Tier 1 images available in Collection 2 compared to Collection 1 considering a) MSS on Landsat 1–5 (for 
1972–1983), b) TM on Landsat 4–5 (for 1982–2012), c) ETM + on Landsat 7 (for 1999–2021), and d) OLI/TIRS on Landsat 8 (for 2013–2021). The green colors 
represent an increase, and the purple colors indicate a decrease in the number (considering only daytime descending acquisitions). 
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algorithms to generate harmonized 10 m Landsat and Sentinel-2 prod
ucts (Saunier et al., 2022). Production of consistent multi-sensor ARD 
will benefit from the availability of collection-based processing, partic
ularly if future Landsat and Sentinel-2 collection processing schedules 
are synchronized. 

The Collection 3 schedule has not yet been set but will likely occur 
before or in synchronization with the planned Landsat Next mission 
while allowing time for users to become familiar with the Collection 2 
products that have been available since December 2020. Certainly, the 
Collection 3 schedule is not computationally constrained - the barriers to 
rapid processing of the global Landsat archive were significantly 
reduced from Collection 1 (18 months) to Collection 2 (5 weeks) by the 
adoption of commercial cloud processing. The Collection 3 schedule will 
also be contingent on the results of Collection 2 product quality 
assessment and validation activities and the development time for any 
needed algorithm refinements. Refinements to ensure the provision of 
Landsat 1–9 data that are consistent with the Landsat Next mission data 
may also be expected. 

6. Conclusion 

This paper overviewed the rationale for the Landsat Collection 2 
processing and improvements over Collection 1, highlighted the new 
global coverage surface reflectance and temperature products, and 

outlined the likely improvements expected in the Landsat Collection 3 
processing. The Landsat data record provides more than 50 years of 
global terrestrial observations that continues with the Landsat 8 and 9 
data streams. Landsat Collection 2 provides greater radiometric consis
tency and improved geolocation needed for time series analyses and is 
an important step forward in enabling science and applications and 
fusion with other satellite data. Landsat users can migrate their science 
and applications to using the Collection 2 products since the Collection 1 
products were removed from public distribution on December 31, 2022. 
The suite of USGS Landsat 1–9 Collection 2 products are available for 
download (https://earthexplorer.usgs.gov) or direct access in the USGS 
managed AWS commercial cloud (https://registry.opendata.aws/usgs 
-landsat/). 
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spherically corrected independently using MODIS Terra and using JPSS 2 VIIRS climate modelling grid (CMG) atmospheric auxiliary data. Results derived 
considering 10,000 randomly selected land pixels over the Salton Sea, California (land pixel locations shown by red dots in the left Landsat image). 
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