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Highlights 35 

• Ten cloud masking algorithms for Landsat 8 and Sentinel-2 are evaluated 36 

• Algorithm performance varied depending on the reference dataset 37 

• Average overall accuracy for Sentinel-2 was 80.0±5.3% to 89.4±2.4% 38 

• Average overall accuracy for Landsat 8 was 79.8±7.1% to 97.6±0.8% 39 

• Performance of algorithms improved when thin/semi-transparent clouds not 40 

considered 41 

  42 
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Abstract. 43 

Cloud cover is a major limiting factor in exploiting time-series data acquired by optical 44 

spaceborne remote sensing sensors. Multiple methods have been developed to address the 45 

problem of cloud detection in satellite imagery and a number of cloud masking algorithms 46 

have been developed for optical sensors but very few studies have carried out quantitative 47 

intercomparison of state-of-the-art methods in this domain. This paper summarizes results of 48 

the first Cloud Masking Intercomparison eXercise (CMIX) conducted within the Committee 49 

Earth Observation Satellites (CEOS) Working Group on Calibration & Validation (WGCV). 50 

CEOS is the forum for space agency coordination and cooperation on Earth observations, 51 

with activities organized under working groups. CMIX, as one such activity, is an 52 

international collaborative effort aimed at intercomparing cloud detection algorithms for 53 

moderate-spatial resolution (10-30 m) spaceborne optical sensors. The focus of CMIX is on 54 

open and free imagery acquired by the Landsat 8 (NASA/USGS) and Sentinel-2 (ESA) 55 

missions. Ten algorithms developed by nine teams from fourteen different organizations 56 

representing universities, research centers and industry, as well as space agencies (CNES, 57 

ESA, DLR, and NASA), are evaluated within the CMIX. Those algorithms vary in their 58 

approach and concepts utilized which were based on various spectral properties, spatial and 59 

temporal features, as well as machine learning methods. Algorithm outputs are evaluated 60 

against existing reference cloud mask datasets. Those datasets vary in sampling methods, 61 

geographical distribution, sample unit (points, polygons, full image labels), and generation 62 

approaches (experts, machine learning, sky images). Overall, the performance of algorithms 63 

varied depending on the reference dataset, which can be attributed to differences the 64 

reference datasets were produced. The algorithms were in good agreement for thick cloud 65 

detection, which were opaque and had lower uncertainties in their identification, in contrast 66 

to thin/semi-transparent clouds detection. Not only did CMIX allow identification of 67 



5 

strengths and weaknesses of existing algorithms and potential areas of improvements, but 68 

also the problems associated with the existing reference datasets. The paper concludes with 69 

recommendations on generating new reference datasets, metrics, and an analysis framework 70 

to be further exploited and additional input datasets to be considered by future CMIX 71 

activities. 72 

 73 

Keywords: cloud, intercomparison, validation, Landsat 8, Sentinel-2, CMIX, CEOS 74 
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1 Introduction 76 

Identification of clouds in satellite imagery acquired by passive remote sensing 77 

sensors in the visible and infrared parts of the electromagnetic spectrum (EM) is an essential 78 

pre-processing step in producing high-quality geoinformation products. Omission of clouds 79 

can lead to errors that propagate to high-level products related to Earth surface monitoring, 80 

whereas over detection of clouds can lead to a reduced number of valid observations and, 81 

therefore, decrease the frequency of cloud-free data. Development of cloud masking 82 

algorithms remains an area of active research in the remote sensing community (Foga et al., 83 

2017; Frantz et al., 2018; Hagolle et al., 2010; Hollingsworth et al., 1996; Irish et al., 2006; 84 

López-Puigdollers et al., 2021; Qiu et al., 2019; Scaramuzza et al., 2012; Zhu et al., 2015; 85 

Zhu and Woodcock, 2012). A range of algorithms utilize satellite image spectral and spatial 86 

properties along with decision tree rules to distinguish cloud versus non-cloud regions (Qiu et 87 

al., 2019). These algorithms rely mainly on physical properties of cloud reflectance. 88 

Utilization of multi-temporal satellite images, where clouds are considered “anomalies” with 89 

respect to a cloud-free reference, can generally improve cloud detection (Frantz et al., 2015; 90 

Hagolle et al., 2010; Zhu & Woodcock, 2014). With the advancement of machine learning 91 

(ML) and deep learning (DL) methods neural networks models are trained to detect clouds in 92 

satellite imagery (Chai et al., 2019; Jeppesen et al., 2019; Mateo-García et al., 2020; Segal-93 

Rozenhaimer et al., 2020; Wieland et al., 2019; Xie et al., 2017). 94 

Although a large number of cloud masking algorithms for optical satellite imagery is 95 

currently available, there are a limited quantity of studies aiming at their intercomparison. 96 

Three studies should be mentioned in this regard. Foga et al. (2017) compared 13 cloud 97 

masking algorithms and their variants for cloud detection in Landsat 7 and Landsat 8 data. 98 

Their primary objective was to select an algorithm for generating quality assurance (QA) 99 

layers when producing operational Landsat data products. They found that CFMask, a C code 100 
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version of the Fmask algorithm (Qiu et al., 2019; Zhu et al., 2015), gave the best 101 

performance, and this algorithm is currently used within the U.S. Geological Survey (USGS) 102 

operational processing chain to generate Landsat Level-1 products (Wulder et al., 2019). 103 

Baetens et al. (2018) compared three methods applied to Sentinel-2 data by analyzing 30 104 

images and found large differences in quality, specifically when taking into account the 105 

necessary dilation (buffer) of cloud masks. Tarrio et al. (2020) carried out a study comparing 106 

five cloud masking algorithms for Sentinel-2 imagery. By analyzing 28 images over six 107 

Sentinel-2 tiles using a sample-based approach and analyst-interpreted reference data they 108 

found that none of the algorithms yielded the best performance in terms of identifying both 109 

cloud and shadow. They also explored ensemble models to integrate outputs from multiple 110 

algorithms and found that on average a +2.7% gain can be achieved over the best-performing 111 

model, although at the expense of computational performance. 112 

The main objective of this paper is to summarize results of the first Cloud Masking 113 

Intercomparison eXercise (CMIX) conducted within the Committee of Earth Observation 114 

Satellites (CEOS) Working Group on Calibration & Validation (WGCV). CMIX is an 115 

international collaborative effort co-led by National Aeronautics and Space Administration 116 

(NASA) and European Space Agency (ESA) aimed at intercomparing state-of-the-art cloud 117 

masking algorithms for moderate-spatial resolution (10-30 m) spaceborne optical sensors. 118 

CMIX was recommended following the first Atmospheric Correction Inter-comparison 119 

eXercise (ACIX) (Doxani et al., 2018), and was conducted in conjunction with ACIX-II-120 

Land and ACIX-II-Aqua (Pahlevan et al., 2021). The focus of this effort is on open and free 121 

imagery acquired by Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor 122 

(TIRS), and Sentinel-2 MultiSpectral Instrument (MSI) sensors, with corresponding cloud 123 

masking algorithms applied. Five existing cloud reference datasets for Landsat 8 and 124 

Sentinel-2 are utilized to compare ten cloud masking algorithms. Within CMIX, a qualitative 125 
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definition of “cloud” is adopted, which provides an absolute (spectrally independent) 126 

indication of cloudiness in the satellite image. Although rules defining clouds vary across 127 

algorithms and reference data, ultimately all data are converted to “cloud” and “non-cloud” 128 

classes to perform a consistent intercomparison. Algorithms are compared using the same set 129 

of reference data and metrics under identical conditions. Cloud shadows are not considered in 130 

this study, since it is typically a cloud-derived product, and its performance heavily depends 131 

on accuracy of cloud detection. Consequently, efforts are primarily directed to cloud mask 132 

evaluation. 133 

The rest of the paper is organized as follows: a brief description of cloud reference 134 

data, cloud masking algorithms, and performance metrics is provided in Section 2. Detailed 135 

description of results and their implications are respectively presented in Section 3 and 136 

Section 4. Section 5 offers recommendations on further activities regarding generation of 137 

cloud reference data and intercomparison of algorithms.  138 

 139 

2 Methods 140 

2.1 Cloud reference datasets 141 

Intercomparison of algorithms within CMIX is performed using existing Sentinel-2 142 

and Landsat 8 cloud reference datasets (Table 1), which includ Hollstein (Hollstein et al., 143 

2016), PixBox (Paperin et al., 2021a, 2021b), L8Biome (Foga et al., 2017), CESBIO 144 

(Baetens et al., 2019) and GSFC (Skakun et al., 2021). These datasets were 145 

collected/generated for different purposes using different methodologies and cloud class 146 

nomenclatures. Some of the datasets are single-pixel collections (where a minimum mapping 147 

unit is a pixel), while others are the collections of connected pixel areas (polygons) or 148 

correspond to whole images. For the majority of datasets, pixels were classified manually 149 

through photointerpretation by an expert or a group of experts; in others, the labelling process 150 

was semi-automatic with extensive manual checking during classification and post-151 
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processing. Geographical distribution of Landsat 8 and Sentinel-2 scenes in the reference 152 

datasets is shown in Figure 1. 153 

 154 

 155 

Figure 1. Geographical distribution of the Landsat 8 and Sentinel-2 scenes in the reference 156 

datasets used in CMIX. 157 

 158 
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Table 1. Summary of cloud reference data (L8: Landsat 8, S2: Sentinel-2). 159 

Dataset Spatial domain Level of automatization Purpose Thematic 
depth 

Satellites Spatial 
resolution 

# 
scenes 

Data Availability 

CESBIO Fully classified 
Sentinel-2 

scenes 

Classification using an 
iterative and supervised 
active learning method 

Validation 6 classes S2 60 m S2: 30 https://zenodo.org/record/1460961 

GSFC  Sample 
polygons 

Manually selected and 
classified by an expert 

assisted by ground-
based images of the sky 

Validation 4 classes L8, S2 Polygons (in 
vector format) 

L8: 6 
S2: 28 

https://doi.org/10.17632/r7tnvx7d9g.1 

Hollstein Sample 
polygons 

Manually selected and 
classified by an expert 

Training and 
validation 

6 classes S2 Polygons (at 
20 m) 

S2: 59 https://git.gfz-potsdam.de/EnMAP/ 
sentinel2_manual_classification_clouds 

L8Biome Fully classified 
Landsat 8 

scenes 

Manually classified by 
an expert 

Training and 
validation 

4 classes L8 30 m L8: 96 http://doi.org/10.5066/F7251GDH 

PixBox Sample pixels Manually selected and 
classified by an expert 

Validation 10 classes S2, L8 S2: 10 m 
L8: 30 m 

S2: 29 
L8: 11 

https://zenodo.org/record/5036991 
https://zenodo.org/record/5040271 

 160 
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2.1.1 CESBIO dataset (Sentinel-2) 161 

The CESBIO dataset was generated using an active learning method (Baetens et al., 162 

2019) using the Hollstein dataset (see section 2.1.3) as training samples. The classification 163 

method was iterative, the operator constituted a first set of training samples, and iteratively 164 

added other samples, where the classification results were wrong or uncertain. It provides 165 

fully classified Sentinel-2 scenes into one of the following classes (Figure 2): low-altitude 166 

clouds, high-altitude clouds, cloud shadows, land, water, and snow. In addition to the 167 

classification map, a QA layer is provided showing the confidence of classification. Overall, 168 

30 Sentinel-2 scenes were utilized in CMIX with the total number of labelled pixels 169 

85,782,723 (at 60 m spatial resolution). The scenes were acquired from ten sites around the 170 

world, five mainly vegetated and five arid sites. The detailed description of the CESBIO 171 

dataset is given in Baetens et al. (2019). 172 

 173 

Figure 2. Distribution of labeled pixels in the CESBIO dataset. 174 

 175 

2.1.2 GSFC dataset (Landsat 8, Sentinel-2) 176 

GSFC cloud reference data were collected over the NASA Goddard Space Flight 177 

Center (GSFC) (Skakun et al., 2021). The area is quite heterogeneous with major land cover 178 
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classes being forest (~52%) and impervious surfaces (31%) with patches of natural vegetation 179 

and cultivated areas (totaling 17%) (Figure 3). NASA GSFC also has an AERONET station 180 

(Holben et al., 1998), which provides aerosol optical thickness (AOT) and water vapor. 181 

Ground-based images of the sky were collected from 2017 through 2019 using a smartphone 182 

camera with a fisheye lens. These data were collected manually during the Landsat 8 and 183 

Sentinel-2 overpasses. Reference data were collected for 6 Landsat 8 and 28 Sentinel-2 184 

scenes. The objective was to capture various cloud conditions and seasonal variability. 185 

Labeling of satellite imagery was performed into cloud, thin cloud (semi-transparent), 186 

shadows, and clear classes (Figure 3). Regions within cloud boundaries were excluded from 187 

the reference data due to large uncertainties regarding the exact boundaries of clouds, 188 

especially on Sentinel-2 imagery (Skakun et al., 2021). In order to facilitate the labelling 189 

process, Sentinel-2 and Landsat 8 images were presented in various spectral combinations 190 

including true color (red-green-blue) and false color (NIR-red-green, SWIR1-NIR-red), and 191 

using a cirrus band (at 1.38 µm). The detailed description of the GSFC dataset is given in 192 

Skakun et al. (2021). 193 

 194 

Figure 3. Distribution of labeled pixels in the GSFC S2 dataset (left) and land cover classes 195 

(right). 196 
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 197 

2.1.3 Hollstein dataset (Sentinel-2) 198 

The “S2 Hollstein dataset” is a database of manually labeled Sentinel-2A spectra of 199 

clouds (Hollstein et al., 2016). By means of different spectral tools, pixels were selected and 200 

classified into one of the following six classes (Figure 4): cloud (opaque clouds), cirrus 201 

(cirrus, semi-transparent clouds and vapor trails), snow (snow and ice), shadow (shadows 202 

from clouds, cirrus, mountains, buildings, etc.), water (lakes, rivers, seas), and clear-sky 203 

(other remaining areas). Spectral tools include false-color composites of Sentinel-2 images, 204 

image enhancements and graphical visualization of spectra. The aim was to create highly 205 

heterogeneous classes with a balanced number of pixels. There were 59 total Sentinel-2 206 

scenes and 1,593,911 reference (labelled) pixels. 207 

 208 

Figure 4. Distribution of labeled pixels in the Hollstein dataset. 209 

 210 

2.1.4 L8Biome dataset (Landsat 8) 211 

The “L8 Biome” cloud validation dataset consisted of 96 Landsat 8 scenes, which 212 

were selected using a semi-random sampling by biome (Foga et al., 2017). These biomes 213 

included barren, forest, grass/crops, shrubland, snow/ice, urban, water, and wetlands. For 214 
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each biome 12 Landsat 8 scenes were selected, and each scene was manually classified by an 215 

expert into the following classes (Figure 5): clear, thin cloud, cloud, and cloud shadow. It 216 

should be noted that no specific threshold was used to detect thin (semi-transparent) clouds, 217 

which were primarily determined by the analyst. Also, the cloud shadow class in the 218 

validation dataset was not provided for all the Landsat 8 scenes. The detailed description of 219 

the L8Biome dataset is provided in Foga et al. (2017). 220 

 221 

Figure 5. Distribution of labeled pixels in the L8Biome dataset. 222 

 223 

2.1.5 PixBox dataset (Landsat 8, Sentinel-2) 224 

The overarching goal of the so called “PixBox” is to enable a quantitative assessment 225 

of the quality of a pixel classification produced by an automated algorithm/procedure. Pixel 226 

classification is defined as assigning a certain number of attributes to an image pixel, such as 227 

cloud, clear sky, water, land, inland water, flooded, snow etc. These pixel classification 228 

attributes are typically used to further guide higher level processing. PixBox is not only a 229 

dataset but also includes a method comprising a procedure to define the best thematic, spatial 230 

and temporal distribution for each collection purpose, a dedicated software for collecting 231 
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pixels, the analysis, comparing the collected reference against an automatic classification, as 232 

well as the generation of a report. 233 

For the PixBox Reference Dataset, a trained expert(s) manually labels pixels of an 234 

image sensor into a detailed set of pre-defined classes. These are typically different cloud 235 

transparencies, cloud shadow, and condition of the underlying surface (“semi-transparent 236 

clouds over snow”, “clouds over bright scattering water”). The collected dataset includes 10’s 237 

of thousands of pixels because it necessitates representation for all classes, and for various 238 

observation and environmental conditions such as climate zones, solar illumination, viewing 239 

angles, etc. Prior to the collection process the expert is provided with a detailed list of 240 

distribution of categories and classes that needs to be fulfilled. During the collection process 241 

the growing database is constantly checked against this reference. Quality control of the 242 

collected pixels is important in order to detect misclassifications and systematic errors.  243 

PixBox is a commercially sold product/service of Brockmann Consult GmbH. The 244 

following two PixBox datasets have been made freely available to be used for CMIX 245 

(Paperin 2021a, Paperin 2021b). The Sentinel-2 PixBox dataset contained 17,351 pixels (at 246 

10 m) manually collected from 29 Sentinel-2A/B Level 1C products (top-of-atmosphere 247 

reflectance—TOA reflectance). The Landsat 8 PixBox dataset contained 20,500 pixels (at 248 

30 m) manually collected from 11 Landsat-8 Level 1 products (TOA reflectance). The 249 

Sentinel-2 PixBox dataset is spatially, temporally, and thematically evenly distributed, while 250 

the Landsat 8 dataset has a strong spatial focus on the Northern European coastal areas. 251 

Distribution of labelled pixels and corresponding land clover classes for the PixBox datasets 252 

are shown in Figure 6. 253 
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 254 

Figure 6. Distribution of labeled pixels and land cover classes in the PixBox dataset. 255 

 256 

2.1.6 Summary of strengths and limitations of cloud reference datasets 257 

Table 2 summarizes the strengths and limitations of cloud reference datasets used in 258 

this study. Reference data incorporating global coverage and a wide range of image 259 

conditions (L8Biome, PixBox, Hollstein) are based on the photointerpretation of images by 260 

an expert or a group of experts. This can introduce some subjectivity in labelling clouds, 261 

especially for thin/semi-transparent clouds that can be wavelength-dependent and fog 262 

(Scaramuzza et al., 2011) (Figure 7), and it is usually difficult to draw the exact boundary 263 

between this type of clouds and clear pixels. Another approach is to use high-quality pixels 264 

(with no uncertainties in cloud detection) and subsequently apply machine learning 265 
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algorithms to extrapolate classification for the whole scene through an iterative process until 266 

the classification results assessed by an expert are deemed to be satisfactory (CESBIO) 267 

(Figure 8). The quality of the resulting map, however, can still depend on the training data 268 

and classification method used. A third approach (GSFC dataset) is to utilize ground-based 269 

imagery of the sky to produce a training/validation cloud dataset, either through manual or 270 

automatic labelling (Figure 8). While such an approach would potentially decrease 271 

subjectivity in identifying clouds, a network of such sites with sky cameras would be required 272 

(similar to the Aeronet network) in order to capture various geographical conditions. 273 

 274 

 275 

Figure 7. Part of the L8Biome scene (LC81570452014213LGN00) with some thin clouds not 276 

labelled. Thin clouds are shown in orange, and thick clouds in maroon. 277 

 278 
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 279 

Figure 8. Examples of labeled data in the three datasets: CESBIO (fully labeled images); 280 

GSFC (polygons avoiding uncertain areas, such cloud boundaries); PixBox (sample-based 281 

approach). 282 

 283 
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Table A1 (Appendix A) provides a list of classes from the reference datasets that were 284 

used to define cloud and non-cloud pixels in the CMIX. Most of the datasets were balanced 285 

in terms of cloud and non-cloud pixels, except of CESBIO, which had 24% of cloud pixels 286 

(Figure 2). CESBIO, GSFC and Hollstein datasets were primarily over the land surface, while 287 

the majority of PixBox datasets was over the water surface: 32% for S2 and 60% for L8. 288 

 289 

Table 2. Strengths and limitations of cloud reference datasets. 290 

Dataset Strengths Limitations 
CESBIO – All pixels in the scene are classified 

using an iteratively supervised machine 
learning approach 

– Based on expert knowledge (potential 
bias). Small number of locations (limited 
spatial coverage) 

– Cloud and non-cloud areas unbalanced 
GSFC – Assisted with ground-based imagery 

– Over the same territory (can be 
potentially used for temporal consistency 
analysis) 

– Limited field of view and single location 
– Surface classes limited to the location of 

sky camera 
– Cloud boundaries excluded 

Hollstein – Manual classification of polygons using 
spectral features 

– Lack of sample quality 
– Low level of detail 
– Based on expert knowledge (potential 

bias) 
– Cloud edges not sampled 

L8Biome – Global coverage with stratified sampling 
– All pixels in the scene are classified 

– Based on expert knowledge (potential 
bias) 

PixBox – High level of detail 
– High level of classification precision 
– Global coverage with stratified sampling 

– Single pixel, thus a comparably small 
dataset 

– Based on expert knowledge (potential 
bias) 

 291 

2.2 Cloud masking algorithms 292 

This subsection briefly describes the main concepts utilized in each of the cloud 293 

masking algorithms with a summary presented in Table 3. 294 
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Table 3. Summary of cloud masking algorithms (L8: Landsat 8, S2: Sentinel-2). The “Objective” column shows the intended performance of 295 

algorithm in terms of cloud omission/commission errors. “Balanced” means the algorithms aims at balancing omission/commission errors. 296 

“Cloud-free conservative” means the algorithm aimed at minimizing cloud omission errors. 297 

Processor Organization Methodology Objective 
Spatial 

resolution, m 

Tempor

ality 

Buffer for 

clouds 

Shadow 

detection 
References 

ATCOR DLR Spectral tests Balanced 
L8: 30 
S2: 20 

Mono 100 m Yes Richter & Schläpfer (2019a) 

CD-FCNN 
University of 

Valencia 
Machine learning Balanced 

L8: 30 
S2: 10/20/60 

Mono No No 
Mateo-García et al., (2020), 

López-Puigdollers et al. (2021) 
Fmask 4.0 

CCA 
USGS Spectral tests Balanced 

L8: 30 
S2: 20 

Mono 
L8: 90 m 
S2: 60 m 

Yeas 
Foga et al. (2017), Qiu et al. 

(2019), Zhu et al. (2015) 

FORCE 

Humboldt-
Universität zu 
Berlin / Trier 

University 

Spectral test + 
parallax (S2 

only) 

Cloud-free 
conservative 

L8: 30 
S2: 10 

Mono 300 m Yes 
Frantz (2019), Frantz et al. (2018), 

Frantz et al. (2016), Zhu et al. 
(2015), Zhu & Woodcock (2012) 

IdePix 
Brockmann 

Consult 
Spectral tests Balanced S2: 20 Mono 

Not used 
(user-

defined) 
Yes Wevers et al. (2021) 

InterSSIM Sinergise 
Machine learning 
+ spatio-temporal 

context 

Cloud-free 
conservative 

S2: 10 Multi 160 m No Puc & Žust (2019) 

LaSRC 
NASA / University 

of Maryland 
Spectral tests 

Cloud-free 
conservative 

L8: 30 
S2: 10 

Mono 
L8: 150 m 
S2: 50 m 

Yes 
Skakun et al. (2019), Skakun et al. 

(2021), Vermote et al. (2016) 

MAJA CNES / CESBIO 
Multi-temporal 

and spectral tests 
Cloud-free 

conservative 
S2: 240 Multi 240 m Yes 

Hagolle et al. (2010), 
Hagolle et al. (2017) 

s2cloudless Sinergise Machine learning 
Cloud-free 

conservative 
S2: 10 Mono 160 m No Zupanc (2017) 

sen2cor 
ESA / Telespazio 

France 
Spectral test + 
auxiliary data 

Balanced S2: 20 Mono No Yes 
Louis et al. (2016), 

Louis (2021) 

 298 
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2.2.1 ATCOR 299 

ATCOR is a generic atmospheric correction algorithm for mono-temporal multi-300 

/hyper-spectral satellite imagery in the solar reflective region (400 – 2500 nm) and thermal 301 

region (8-13 µm) (Richter & Schläpfer, 2019b). The code uses MODTRAN5 look-up tables 302 

for the radiative transfer functions. Separate codes exist for the processing of flat and rugged 303 

terrain imagery. A preprocessing step calculates different masks (water cloud, cirrus cloud, 304 

shadow, water) based on spectral tests. The cloud masking uses a buffer of 100 m. For 305 

Landsat-8 and Sentinel-2 data the TOA reflectance threshold of the cirrus band is set to 0.01 306 

(reflectance units). The lower threshold for thin cirrus detection was used prevent scenes with 307 

very thin cirrus being classified as (thin) cirrus because other classes (e.g., water, shadow) are 308 

generally of more interest than very thin cirrus. Cloud detection in ATCOR was aimed to 309 

have a balance between commission and omission errors. In CMIX, ATCOR version 9.3.0 310 

(2019) was used. CMIX processing of ATCOR did not use a Digital Elevation Model (DEM) 311 

or any other auxiliary data. Some scenes from reference datasets were not processed by 312 

ATCOR, since they were acquired with Sun elevation angle values less than 30°. 313 

 314 

2.2.2 CD-FCNN 315 

The cloud detection approach based on deep learning, proposed by the Image and 316 

Signal Processing (ISP) group of the University of Valencia, is applicable to multispectral 317 

images from moderate spatial resolution satellites, including Landsat 8 and Sentinel-2. 318 

Training accurate global cloud detection models based on deep learning requires large 319 

datasets of annotated images, which must reflect the high variability of clouds, surface, and 320 

atmospheric conditions. This is a major difficulty since high-quality labeled datasets usually 321 

do not exist or are not publicly available for most satellite sensors. For Landsat 8, the 322 

L8Biome dataset matches these requirements (Jeppesen et al., 2019). However, similar global 323 
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datasets do not exist for Sentinel-2 yet. (Sentinel-2 Cloud Mask Catalogue (Francis et al., 324 

2020) was made available after CMIX was initiated). Therefore, Landsat 8 datasets 325 

(L8Biome, 80%, and L8SPARCS, 20%) were used to train fully convolutional neural 326 

networks (FCNN) that may be transferred to perform cloud detection in Sentinel-2 images. 327 

L8SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) (USGS, 328 

2016) was created for the validation of the cloud detection approach proposed by Hughes & 329 

Hayes (2014). It consists of 80 Landsat-8 sub-scenes manually labeled in five different 330 

classes: cloud, cloud-shadow, snow/ice, water, flooded, and clear-sky. The size of each sub-331 

scene is 1000x1000 pixels. 332 

After a minimum adaptation of Sentinel-2 data, in terms of band selection and spatial 333 

resolution, the models trained on Landsat 8 data are directly applied to Sentinel-2 images. 334 

The proposed neural network architecture is based on a modified U-Net with significantly 335 

less training parameters and lower computational cost (Mateo-García et al., 2020). It seeks to 336 

provide both faster inference time and accurate detection through a lightweight architecture 337 

with a moderate number of parameters, i.e., approximately 96,000 parameters, which is 338 

around 1% of original U-Net parameters. Moreover, this modified version of U-Net works 339 

seamlessly with Landsat-8 and Sentinel-2 images thanks to a transfer learning strategy over 340 

both sensors. In this way, all input bands, regardless of the sensor, are homogenized and 341 

resampled to 30m overlapping patches of 32x32 pixels, which are used for training the 342 

networks in a 64-batch size configuration. Models are trained to minimize a pixel-wise binary 343 

cross-entropy cost function, between ground truth and predictions, using the Adam stochastic 344 

gradient descent optimization algorithm. An initial learning rate of 10-5, a weight decay of 5 x 345 

10-4 and 120 epochs were used to train the final network. The TensorFlow framework was 346 

used to implement and train the models on a GPU (average of 800 s/epoch in all 347 

configurations). Training and testing details can be found in López-Puigdollers et al. (2021); 348 
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in addition, the pre-trained model and a Python-implementation of the proposed cloud 349 

detection algorithm for Landsat-8 and Sentinel-2 is provided in a public repository 350 

(https://github.com/IPL-UV/DL-L8S2-UV).  351 

Since we propose to use the same model for Landsat-8 and Sentinel-2, we are 352 

restricted to bands available in both sensors. In this context, three different bands 353 

configurations were tested: "RGBI" corresponds to bands B2, B3, B4 and B5 of Landsat-8 354 

and B2, B3, B4 and B8 of Sentinel-2; "RGBISWIR" to bands B2, B3, B4, B5, B6 and B7 of 355 

Landsat-8 and B2, B3, B4, B8, B11 and B12 of Sentinel-2; and "ALLNT" includes all 356 

"RGBISWIR" bands plus the coastal aerosols and cirrus bands (B1 and B9 in Landsat-8, B1 357 

and B10 in Sentinel-2, respectively). After internal testing, the network selected for 358 

benchmarking in CMIX was the "RGBISWIR" network. Further results about the different 359 

band configurations can be found in López-Puigdollers et al. (2021).  360 

The CD-FCNN output is given by a sigmoid activation function that provides 361 

continuous values, which could be interpreted as probabilities, between 0 and 1. In order to 362 

compare with the rest of the methods, these values are binarized into “non-cloud” (0) or 363 

“cloud” (1) classes for each pixel. We set a default 0.5 threshold to obtain the binary cloud 364 

mask assuming unbiased data. However, this threshold has a crucial importance in terms of 365 

balance between commission and omission and errors. In Landsat-8 images both errors are 366 

similar, but performance may decrease in complex scenarios with presence of ambiguous 367 

pixels, e.g. over snow, urban areas or coastal lines. Adjusting this threshold for a specific 368 

dataset may improve the tradeoff between omission and commission errors depending on the 369 

requirements of the application, i.e. cloud or cloud-free conservative applications. The 370 

resulting cloud mask is spatially resampled from the native Landsat 8 resolution of 30 m to 371 

the corresponding Sentinel-2 resolutions of 10, 20 and 60 m. Throughout the entire process 372 
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the work is done at a pixel level, and no spatial dilation of the cloud mask is considered at 373 

any stage. 374 

 375 

2.2.3 Fmask 4.0 CCA 376 

Function of Mask (Fmask) 4.0 is a cloud assessment algorithm used with Landsat and 377 

Sentinel-2 imagery (Qiu et al., 2019). An earlier version, Fmask 3.3, is applied operationally 378 

to create cloud masks for USGS Landsat products. The algorithm provisionally identifies 379 

cloud pixels using spectral tests, then matches those pixels to provisional cloud shadow pixels 380 

using sensor geometry, the Digital Elevation Model (DEM) of the terrain, and an iterative 381 

search of altitudes (in Landsat imagery). Fmask was designed to provide a balance between 382 

cloud commission and omission errors. Fmask 4.0 is available under an MIT license at 383 

https://github.com/GERSL/Fmask. 384 

 385 

2.2.4 FORCE 386 

FORCE (Framework for Operational Radiometric Correction for Environmental 387 

monitoring, https://github.com/davidfrantz/force) is developed as an ‘all-in-one’ open-source 388 

software solution for the mass-processing and analysis of Landsat and Sentinel-2 image 389 

archives (Frantz, 2019). FORCE includes a mono-temporal Level 2 processing system for 390 

Analysis Ready Data (ARD) generation which includes: radiometric correction, cloud 391 

masking, and data cube generation (Frantz et al., 2016). The cloud masking has branched 392 

from Fmask version 1.6.3 (Zhu & Woodcock, 2012), and since then has been developed in 393 

parallel (Frantz et al., 2015; Frantz et al., 2016; Frantz et al., 2018). Parts of the updates in 394 

Zhu et al. (2015) were incorporated. A darkness filter was implemented to mitigate false 395 

positives in bifidly structured dryland areas, where the scene-based temperature distribution 396 

tests for Landsat can result in commission errors of cold image parts (Frantz et al., 2015). 397 
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Cirrus masking is based on an elevation-dependent equation (Baetens et al., 2019). The most 398 

notable difference to the original Fmask, however, is the complete replacement of the cloud 399 

probability module for Sentinel-2 with a new algorithm that makes use of the Cloud 400 

Displacement Index, which is formulated to enhance parallax effects in highly correlated NIR 401 

bands (Frantz et al., 2018). The FORCE cloud masking aims to aggressively detect clouds 402 

and cloud shadows to increase cloud producer’s accuracy at the deliberate expense of cloud 403 

commission for its safe operation in time-series applications. Circular buffers are used to 404 

reduce false negatives (300 m for opaque clouds). FORCE provides quality bits whereby 12 405 

quality indicators with respect to atmospheric conditions are provided (Frantz, 2019). 406 

Multiple indicators can be set simultaneously for each pixel, e.g., snow and cloud. This 407 

quality product is generated at 30 m and 10 m resolution for Landsat and Sentinel-2, 408 

respectively. FORCE v. 3.0-dev was used in CMIX. 409 

 410 

2.2.5 Idepix 411 

IdePix (Identification of Pixel properties) is a multi-sensor pixel identification tool 412 

available as a SNAP (Sentinel Application Platform) plugin (Wevers, 2021). It provides pixel 413 

identification algorithms for a wide variety of sensors such as Sentinel-2 MSI, Sentinel-3 414 

OLCI, MERIS, Landsat-8, MODIS, VIIRS, Proba-V or SPOT VGT. IdePix classifies pixels 415 

into a series of categories (flags) for further processing using a mono-temporal approach and 416 

background information. Its uniqueness consists of a certain set of flags, which are calculated 417 

for all instruments (common flags), complemented by instrument specific flags (instrument 418 

flags). The technical design of all IdePix is instrument specific and can include decision trees, 419 

probabilistic combination of calculated features or neural networks. The Sentinel-2 IdePix is 420 

mainly based on a decision tree technique for cloud calculation as well as geometric 421 

calculations for cloud and mountain shadows. In contrast to many other pixel identification 422 
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tools the final IdePix classification is non-exclusive and therefore allows multiple classes to 423 

be set for a single pixel. This means a single pixel can have multiple properties such as land 424 

and cloud (semi-transparent cloud over land), land and snow (land covered with snow), or 425 

land, snow and cloud (semi-transparent cloud over snow covered land). This type of 426 

implementation allows the most versatile usage of the flagging and combinations according 427 

to users’ needs compared to a standard integer flag allowing a single status per pixel. 428 

Sentinel-2 IdePix derives water cloud flags and cirrus cloud flags (B10>0.01 & elevation < 429 

2000 m) on multiple confidence levels, as well as cloud shadow, mountain shadow, snow/ice 430 

and water flags. The pixel identification (IdePix) for Sentinel-2 is only working at single 431 

resolution (i.e., 10 m, 20 m, 60 m). Cloud boundary pixels are flagged using a dilation filter. 432 

In principle, cloud boundaries are regarded as neighbor pixels of a cloud as identified before 433 

by the processor; therefore, a buffer is set around the cloud. The width of this boundary (in 434 

number of pixels) can be set by the user. Usage of the buffering functionality was not 435 

however utilized for CMIX to validate the sole performance of the cloud detection algorithm. 436 

 437 

2.2.6 S2cloudless 438 

The s2cloudless is an automated cloud-detection algorithm for Sentinel-2 imagery 439 

(Zupanc, 2017) based on a gradient boosting algorithm. It was developed by the EO Research 440 

team at Sinergise and is published under the MIT License on https://github.com/sentinel-441 

hub/sentinel2-cloud-detector. The model was trained on a large training dataset with a global 442 

coverage. The algorithm is monotemporal, does not consider any spatial context, and 443 

therefore can be executed at any resolution. The s2cloudless algorithm can, unlike many 444 

other algorithms, be executed also on averaged Sentinel-2 reflectance values over arbitrary 445 

user-defined geometries and still provide meaningful results. The input features are Sentinel-446 

2 Level-1C TOA reflectance values of the following ten bands: B01, B02, B04, B05, B08, 447 
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B8A, B09, B10, B11, B12 and output of the algorithm is a cloud probability map. Users of 448 

the algorithm can convert the cloud probability map to a cloud mask by thresholding the 449 

cloud probability map. The recommended value for the threshold is 0.4 to minimize cloud 450 

omission errors. Users can optionally apply additional morphological operations during the 451 

conversion of the cloud probability map to the cloud mask. These operations are as follows: 452 

convolution of the probability map and dilation of the binary cloud mask with a disk. We 453 

recommend convolving cloud probability maps at 10 m (160 m) resolution with a disk with a 454 

radius of 22 (2) px and dilate cloud masks with a disk with radius 11 (1) px. Sentinel Hub 455 

(https://www.sentinel-hub.com, details in EO Research team (2020)) and Google Earth 456 

Engine (https://developers.google.com/earth-457 

engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY) provide precomputed 458 

s2cloudless cloud probability maps and masks to their users for the entire Sentinel-2 archive. 459 

The s2cloudless cloud masks for CMIX were provided in a binary mode (1 – cloud 460 

and 0 – non-cloud) using the latest (v0.1) model and default values for threshold and 461 

morphological operations. 462 

 463 

2.2.7 InterSSIM 464 

The InterSSIM cloud detection algorithm is a multi-temporal extension of the 465 

s2cloudless algorithm (section 2.2.6), but unlike s2cloudless, the InterSSIM algorithm takes 466 

temporal and spatial contexts into account. The algorithm was developed by the EO Research 467 

Team at Sinergise (Puc & Žust, 2019) and integrated into the eo-learn Python library 468 

published under the MIT License on https://github.com/sentinel-hub/eo-learn.  The input data 469 

and parameters for the InterSSIM are same as in s2cloudless (see section 2.2.6) with the 470 

addition of prior satellite observations. The algorithm works on the ten Sentinel-2 TOA 471 

bands, and in addition to cloud probabilities from the s2cloudless model incorporates 472 
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additional features: spatially averaged reflectance values, minimum and mean reflectance 473 

values over all prior observations, and maximum, mean, and standard deviation of structural 474 

similarity indices computed between the observation for which cloud mask is being predicted 475 

and every other prior observations. The output of the algorithm is a cloud probability map for 476 

the target timeframe, which can be converted into a cloud mask with the same procedure as in 477 

the case of the s2cloudless algorithm. 478 

The InterSSIM cloud masks for CMIX were provided in a binary mode (1 – cloud and 479 

0 – non-cloud) using the latest (v0.1) s2cloudless model with default parameter values. 480 

 481 

2.2.8 LaSRC 482 

The Land Surface Reflectance Code (LaSRC) is a generic atmospheric correction 483 

algorithm aimed at removing atmospheric effects associated with optical satellite imagery 484 

acquisitions (Doxani et al., 2018; Vermote et al., 2016). The code is based on the inversion of 485 

the 6SV radiative transfer code (Kotchenova et al., 2006; Vermote et al., 1997). Within the 486 

atmospheric correction process, LaSRC generates several quality assurance (QA) layers, 487 

including a cloud mask. The main metric for deriving a cloud mask is a per-pixel inversion 488 

residual error (Skakun et al., 2019; Skakun et al., 2021; Vermote et al., 2016), which shows 489 

the goodness of aerosol optical thickness (AOT) estimation process. For both Landsat 8 and 490 

Sentinel-2, we used a threshold of 0.05 for the residual to identify cloudy pixels and to 491 

minimize cloud omission errors, so only high-quality pixels will be used for further 492 

processing. Pixels adjacent to clouds within 5 pixels are separately masked as “adjacent to 493 

clouds”. For S2, a conservative threshold of 0.003 (reflectance units) was used for the cirrus 494 

band. Therefore, for LaSRC pixels identified as cloud or adjacent were used as “cloud”, 495 

whereas all others were used as “non-cloud”. In CMIX, LaSRC version 3.5.5 was used. 496 

 497 
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 498 

 499 

 500 

2.2.9 MAJA 501 

MAJA is applicable to satellites which perform repetitive observations at similar 502 

viewing angles, such as Sentinel-2. It was developed by CNES with methods designed by 503 

CESBIO with a few modules provided by DLR. MAJA is an open-source software. 504 

MAJA’s cloud and shadow detection methods include several tests, which use the 505 

multi-spectral and multi-temporal properties of surfaces, clouds, and shadows to classify 506 

different types of pixels. The methods are described in Hagolle et al. (2010) and Hagolle et 507 

al. (2017). The main cloud test detects the pixels for which the surface reflectance in the blue 508 

band increases sharply. The cloud masks obtained with MAJA are dilated by 240 m, firstly to 509 

account for the parallax effects due to differences in observation angles between spectral 510 

bands, and secondly for the adjacency effects of clouds and for their ‘fuzzy’ borders. MAJA 511 

aims at a sensible reliability for surface reflectance monitoring, its tests and thresholds are 512 

therefore optimized to minimize cloud or cloud shadow omission (aiming at maximizing 513 

producer’s accuracy for clouds, but balanced for cirrus clouds), without excessively 514 

degrading the commission error. Cirrus band is used to detect high clouds using the following 515 

equation: Cirrus > 0.007 + 0.007 × h2. where h is the pixel altitude in km above sea level. 516 

In CMIX, the cloud masks for Sentinel-2 were computed at 240 m resolution to 517 

optimize the computation time, but this can prevent MAJA from detecting very small clouds. 518 

In the more recent MAJA versions the clouds and shadows masks are computed at 120 m, 519 

which should further improve MAJA’s performance. MAJA has been intensively validated 520 

and some of its validation data sets (Baetens et al., 2019) were used in the CMIX experiment. 521 

Due to the necessity to process times series of data with a processed data volume 10 times 522 
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greater than the other algorithms, the MAJA team was not able to process all the data sets 523 

submitted to CMIX, and it was decided to only produce the datasets acquired when both 524 

Sentinel-2A and -2B satellites were operational. 525 

 526 

2.2.10 Sen2Cor 527 

Sen2Cor is a processor for Sentinel-2 Level 2A product generation; it performs the 528 

atmospheric correction of the Top-Of-Atmosphere (TOA) Level 1C input data. It is 529 

composed of two main modules: an atmospheric correction module and a scene classification 530 

module that provides a “Scene Classification Map” (SCL), which is used internally in the 531 

atmospheric correction module to distinguish between cloudy, clear and water pixels. The 532 

Sen2Cor processor is used by the European Space Agency to generate Sentinel-2 Level-2A 533 

products within the Sentinel-2 ground segment. Sen2Cor software is available for download 534 

at https://step.esa.int/main/third-party-plugins-2/sen2cor/. The code is open source and 535 

written in Python. 536 

The Sen2Cor version 2.8 cloud screening algorithm (Louis et al., 2016; Louis, 2021) 537 

uses the reflective properties of scene features (TOA reflectance). Potential cloudy pixels 538 

undergo a sequence of filtering based on spectral bands thresholds, ratios, and indexes 539 

computations (Normalized Difference Snow Index – NDSI, Normalized Difference 540 

Vegetation Index –NDVI). Sen2Cor was designed to provide a balance between cloud 541 

omission and commission errors. In addition, it includes a cirrus and cloud shadow detection 542 

algorithm. A series of additional steps to improve the quality of the classification are 543 

automatically triggered using a priori information: digital elevation model (DEM) 544 

information, ESA CCI Water Bodies Map v4.0 (Lamarche et al., 2017), ESA CCI Land 545 

Cover Map v.2.0.7 (2015) and a snow climatology.  546 
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In CMIX, Sen2cor version 2.8 was used. SCL classes 8, 9 and 10 were used for cloud 547 

and the remaining SCL classes for non-cloud. 548 

 549 

 550 

2.3 Performance metrics 551 

A standard set of classification metrics derived from confusion matrices (Table 4) was 552 

used to compare cloud masking algorithms and included (Table 5) overall accuracy (OA) and 553 

balanced OA (BOA), producer’s (PA) and user’s accuracies (UA). BOA (Brodersen et al., 554 

2010) was used in addition to OA since some of the reference datasets were imbalanced in 555 

terms of cloud/clear pixels and therefore BOA would be a better indicator of algorithms 556 

performance. 557 

 558 

Table 4. Confusion matrix for cloud validation. 559 

  Reference 

  Cloud Non-cloud 

Map 
Cloud �cloud_as_cloud �ncloud_as_cloud 

Non-cloud �cloud_as_ncloud �ncloud_as_ncloud 

 560 

Table 5. Main performance metrics. 561 

Metric Equation 

Overall accuracy (OA) �cloud_as_cloud	�ncloud_as_ncloud

�cloud_as_cloud	�ncloud_as_ncloud	�ncloud_as_cloud	�cloud_as_ncloud
                 (1) 

Balanced OA (BOA) 0.5 
 �cloud_as_cloud

�cloud_as_cloud	�cloud_as_ncloud
+ �ncloud_as_ncloud

�ncloud_as_cloud	�ncloud_as_ncloud
�    (2) 

PA (for clouds) �cloud_as_cloud

�cloud_as_cloud	�cloud_as_ncloud
                                                           (3) 

UA (for clouds) �cloud_as_cloud

�cloud_as_cloud	�ncloud_as_cloud
                                                           (4) 
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 562 

Performance metrics were estimated from confusion matrices that incorporated all 563 

valid pixels over all scenes available in the dataset. PA is complementary to the omission 564 

error, which shows a fraction of missed clouds; UA is complementary to the commission 565 

error, which shows a fraction of over detected clouds. High PA (cloud-free, non-cloud or 566 

clear conservative) means that after elimination of clouds, the users results will be minimally 567 

affected by remaining clouds, while high UA (cloud conservative) means that the cloud 568 

masks will not discard supernumerary valid pixels. 569 

 570 

3 Results 571 

3.1 Performance of cloud masking algorithms for Sentinel-2 572 

3.1.1 CESBIO reference dataset 573 

Table 6 and Figure 9 show performance metrics when applying cloud masking 574 

algorithms on the Sentinel-2 CESBIO dataset. Several observations can be made when 575 

analyzing these results. The number of reference pixels varied, since the CESBIO dataset was 576 

generated at 60 m spatial resolution, and processors produced masks at various spatial 577 

resolution: 10 m (FORCE, InterSSIM, LaSRC and S2cloudless), 20 m (ATCOR, Idepix, 578 

Fmask 4.0 CCA, Sen2Cor), 60 m (CD-FCNN, interpolated from 30 m), and 240 m (MAJA). 579 

Cloud and non-cloud classes were imbalanced in the reference dataset (of all labelled pixels 580 

24.3% were clouds), therefore it results in the OA to be biased towards the non-cloud 581 

(dominant) class. Therefore, the balanced OA (BOA) is a more appropriate metric. Overall, 582 

BOA varied from 79.5% to 90.5%, an average of 85.9±3.7%. When not considering MAJA 583 

(whose developers generated the CESBIO dataset), the highest cloud PA was 85.6%, with the 584 

average being 75.9±8.7%, meaning that most algorithms missed almost 24% of clouds 585 

identified in the CESBIO dataset. Average cloud UA without MAJA was 85.1±10.6%, 586 
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meaning an average of 15% over detection of clouds, which may lie in the dilated parts of the 587 

cloud masks (FORCE, MAJA), or be associated with a stricter detection of cirrus clouds 588 

(LaSRC). Overall, the performance of cloud masking algorithms varied for this dataset by an 589 

average 11-12% of PA and UA, as measured by the coefficient of variation (CV), which is a 590 

ratio between standard deviation and average. 591 

 592 

Table 6. Performance metrics of Sentinel-2 cloud masking algorithms for the CESBIO 593 

dataset. All algorithms, except MAJA, processed all 30 reference scenes (with 24.3% of 594 

clouds in the reference dataset), while MAJA processed 28 references scenes (25.6%). Here, 595 

and in Table 7 through Table 14: in bold are the numbers with the highest value for the 596 

particular metric (column-wise); * denotes algorithms which did not process the whole 597 

dataset; algorithms that are underscored were produced by the same team as the reference 598 

dataset. 599 

   Cloud 

Processor OA BOA PA UA 

ATCOR 88.6 80.4 64.4 84.9 
CD-FCNN 89.5 79.5 60.3 94.1 

Fmask 4.0 CCA 93.3 88.9 80.4 90.8 
FORCE 91.1 88.9 84.7 79.9 
Idepix 91.7 86.9 77.5 86.9 

InterSSIM 93.2 88.0 77.8 93.1 
LaSRC 81.2 82.7 85.6 57.6 

MAJA* (28/30) 89.2 90.5 92.9 72.7 
S2cloudless 93.1 88.8 80.4 90.2 

sen2cor 91 84.7 72.3 88.7 
Average 90.2 85.9 77.6 83.9 

Standard deviation 3.4 3.7 9.3 10.7 

 600 
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 601 

Figure 9. Comparison of BOA values and distribution of PA/UA for the CESBIO reference 602 

dataset. 603 

 604 

3.1.2 GSFC S2 reference dataset 605 

Table 7 and Figure 10 show the results of comparing algorithm outcomes against the 606 

Sentinel-2 GSFC dataset. MAJA provided only 10 images out of 28 images. In the S2 GSFC 607 

dataset, cloud and non-cloud are almost balanced (approx. 61% of reference pixels are 608 

identified as clouds), therefore there is minimal difference between OA and BOA. BOA 609 

varied from 80.7% to 96.8% with LaSRC being the outlier (developers of LaSRC produced 610 

the GSFC data), with average being 85.7±2.8% (not considering LaSRC). Average values of 611 

cloud PA and UA not considering LaSRC were 73.7±5.6% and 98.2±2.7%, respectively, 612 

meaning large omission errors. It is worth noting that FORCE and MAJA, whose PA was 613 

better than the UA for the other reference datasets, have the opposite result for the GSFC 614 

reference, due to the strict classification of very thin clouds as clouds in the GSFC reference 615 

data set. The reason for all algorithms producing lower accuracies compared to LaSRC is that 616 

they did not identify thin (semi-transparent and cirrus) clouds, which, in turn, LaSRC was 617 

masking out using a rather conservative threshold (0.003 in reflectance units; for 618 

LaSRCv3.5.5) applied for the cirrus band (B10). As the cirrus cloud masking method is very 619 
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simple, all methods could obtain similar performances, at the expense of masking an 620 

important part of usable pixels. Those clouds were labelled as thin, since they were clearly 621 

visible in the ground-based images. If thin clouds are removed from the analysis (Table 7), all 622 

algorithms showed much better performance: average BOA was 94.4±2.9% (an average gain 623 

+7.4±2.6%) and cloud PA was 90.8±5.9% (an average gain +14.8±5.2%), while cloud-UA 624 

remained essentially the same 98.1±2.7%. These results show the differences between 625 

algorithms in defining and identifying thin (semi-transparent) cirrus clouds, at the same time 626 

mostly agreeing on thick clouds. Variation in algorithms performance was 8% for cloud PA 627 

(6% without thin clouds) and 3% for cloud UA.  628 

 629 

Table 7. Performance metrics of Sentinel-2 cloud masking algorithms for the GSFC S2 630 

dataset. All algorithms, with exception of MAJA, processed all 28 reference scenes (with 631 

60.6% and 55.5% of clouds in reference data for all clouds and without thin clouds, 632 

respectively), while MAJA processed 10 images (49.2% and 40.8%). 633 

 All types of clouds Without thin clouds 

   Cloud   Cloud 

Processor OA BOA PA UA OA BOA PA UA 

ATCOR 77.9 81.7 63.5 100 86.9 88.2 76.4 100 

CD-FCNN 82.4 85.4 71 99.9 92.9 93.6 87.3 99.9 
Fmask 4.0 CCA 86 88.4 77.1 99.7 96.1 96.5 93.3 99.7 

FORCE 86.1 88.2 78.2 98.6 95.9 96.1 94 98.5 
Idepix 84.8 86.1 80.1 93.9 92.5 92.5 92.9 93.6 

InterSSIM 85 87.6 75.4 99.7 95.6 96 92.4 99.7 
LaSRC 96.7 96.8 96.3 98.2 98 97.9 98.5 97.8 

MAJA* (10/28) 80.9 80.7 66.2 93 92.7 92.2 89.1 92.7 
S2cloudless 85.2 87.7 76.1 99.3 95.7 96.1 93 99.3 

sen2cor 85.2 87.8 75.8 99.7 95 95.4 91.2 99.7 
Average 85.0 87.0 76.0 98.2 94.1 94.5 90.8 98.1 
Standard 
deviation 

4.6 4.1 8.4 2.4 2.9 2.7 5.6 2.6 

 634 
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 635 

Figure 10. Comparison of BOA values and distribution of PA/UA (for all clouds) for the 636 

GSFC S2 reference dataset. 637 

 638 

3.1.3 Hollstein reference dataset 639 

Table 8 and Figure 11 show algorithms performance for the Hollstein data depending 640 

on the opaque and semi-transparent/cirrus clouds. BOA varied from 84.2% to 92.3% (average 641 

89.4±2.4%) for all cloud types and 86.2 to 97.8% (93.4±3.8%) for opaque clouds only. Not 642 

considering semi-transparent/cirrus clouds improved algorithms performance, especially for 643 

cloud PA: an average gain +8.0±8.1%. Variation of performance was comparable to the 644 

GSFC results with 8% (5% for opaque only) for PA and 4% (7%) for UA. Note that the 645 

Hollstein dataset was used to set radii of disks with which the cloud probability mask and 646 

binary cloud mask are convoluted and dilated, respectively, by the s2cloudless algorithm. 647 

MAJA was not evaluated against the Hollstein data set, as the images were acquired before 648 

Sentinel-2B launch. 649 

 650 

Table 8. Performance metrics of cloud masking algorithms for the Hollstein dataset. All 651 

algorithms processed all 59 reference scenes (with 61.8% and 44.4% of clouds in reference 652 

data for all clouds and without thin clouds, respectively). 653 
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 Opaque clouds and semi-

transparent clouds/cirrus 

Opaque clouds only 

   Cloud   Cloud 

Processor OA BOA PA UA OA BOA PA UA 

ATCOR 88.6 89.9 84.6 96.5 89.1 88.5 81.8 93.2 
CD-FCNN 81 84.2 71.1 97.7 97.8 97.8 98.3 96.7 

Fmask 4.0 CCA 91.2 91.1 91.3 94.2 94.9 95.4 99.9 89.8 
FORCE 89.1 89.4 88.2 93.8 93.6 94 97.4 89.1 
Idepix 91.3 90.5 94.1 92.1 91.9 92.6 98.2 85.7 

InterSSIM 90.4 91.9 85.7 98.6 97.5 97.4 96.8 97.5 

LaSRC 89.3 86.7 97.7 86.7 85 86.2 96.7 76 
S2cloudless 91.5 92.3 89.2 96.8 96.3 96.5 97.6 94.3 

sen2cor 87.9 88.6 85.6 94.3 92.2 92.3 93 89.8 
Average 88.9 89.4 87.5 94.5 93.1 93.4 95.5 90.2 
Standard 
deviation 

3.1 2.4 7.1 3.4 3.9 3.8 5.2 6.2 

 654 

 655 

Figure 11. Comparison of BOA values and distribution of PA/UA (for all clouds) for the 656 

Hollstein reference dataset. 657 

 658 

3.1.4 PixBox S2 reference dataset 659 

Not all algorithms processed all 29 products of the PixBox S2 dataset; the reasons for 660 

this were limitations of allowed geometries (ATCOR, 27 processed) or too sparse time-series 661 

around the acquisition (MAJA, 14 processed). In order to account for the difference of 662 

available products for validation, two different comparisons were made: one using all 663 



38 

available products for each algorithm and a second using only the products that all algorithms 664 

have been applied to (14 out of 29 reference scenes). We call the second dataset the least 665 

common denominator (LCD) subset, while the first is referred to as the “complete dataset”. 666 

The whole comparison could have been made only on the LCD subset, but this reduces the 667 

complete dataset by half, which reduces its utility. Therefore, the complete dataset also was 668 

used for comparison. In this comparison using the complete dataset, results for MAJA must 669 

be assessed with caution, as they are only based on 14 out of 29 products. 670 

Algorithm performance for the complete PixBox dataset is provided in Table 9 and 671 

Figure 12. For all types of clouds, BOA varied from 67.5% to 85.9% (average 80.0±5.3%). 672 

The top two algorithms (S2cloudless and MAJA) showed a similar performance in terms of 673 

BOA; however, the tradeoff between PA and UA varied substantially for those algorithms: 674 

S2cloudless yielded PA=80.2% and UA=89.5% (more cloud omissions than commissions) 675 

and MAJA yielded PA=88.6% and UA=80.2% (less cloud omissions and more commissions, 676 

in part due to the dilation). When thin/semi-transparent clouds were not considered, all 677 

algorithms showed a better performance with an average gain in BOA of +5.1±1.6%. Some 678 

algorithms (FORCE, Idepix and LaSRC) showed high commission errors (low UA), which 679 

were related to identifying snow as clouds.  680 

 681 

Table 9. Performance metrics of cloud masking algorithms for the complete PixBox S2 682 

dataset. ATCOR and MAJA processed 27 and 14 reference scenes, respectively, while other 683 

algorithms processed all 29 reference scenes. Fraction of cloud pixels was 47.2% and 36.8% 684 

for all cloud types and without thin clouds, respectively. 685 

 All types of clouds Without thin clouds 

   Cloud   Cloud 

Processor OA BOA PA UA OA BOA PA UA 

ATCOR* (27/29) 76.6 76.2 62.5 85.3 82.5 80.4 70.8 81.4 
CD-FCNN 80.5 79.7 66 89.9 89.5 88.1 82.7 87.9 

Fmask 4.0 CCA 84.5 84.2 79.4 86.5 89.6 89.9 90.8 82.7 
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FORCE 80.2 80.1 79 78.9 84.6 85.8 90.4 73.6 
Idepix 75.7 76.3 85.9 69.7 77.2 81 95.3 62.4 

InterSSIM 84.6 84 72.7 93.2 91.9 90.7 86.2 91.3 

LaSRC 66.4 67.5 86.8 59.9 65 71 93.8 51.3 
MAJA* (14/29) 85.1 85.5 88.6 80.2 86.5 88.3 94.3 74.3 

S2cloudless 86.3 85.9 80.2 89.5 91.6 91.6 91.6 86.4 
sen2cor 81.2 80.8 74.7 83.6 85.4 84.8 82.7 78.6 
Average 80.1 80.0 77.6 81.7 84.4 85.2 87.9 77.0 

Standard deviation 5.7 5.3 8.3 9.6 7.7 6.0 7.1 11.7 

 686 

 687 

Figure 12. Comparison of BOA values and distribution of PA/UA (for all clouds) for the 688 

PixBox S2 reference dataset. 689 

 690 

Table 10 shows BOA values when comparing complete and LCD PixBox dataset. 691 

When restricting to the LCD, s2cloudless yielded the highest BOA in all cases Overall, the 692 

differences in BOA between complete and LCD sets were below 2%. Also, algorithms 693 

performance improved when thin clouds and snow were excluded from the analysis. 694 

 695 

Table 10. Performance metrics of cloud masking algorithms for the complete and LCD 696 

PixBox dataset for various scenarios. 697 

 
All types of 

clouds 

All types of clouds 

(excluding snow) 

Without thin 

clouds 

Processor BOA BOA BOA BOA BOA BOA 
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complete LCD complete LCD complete LCD 

ATCOR 76.2 78.3 77.2 79.3 80.4 81.6 

CD-FCNN 79.7 78.6 80.4 79.5 88.1 86.0 

Fmask 4.0 CCA 84.2 85.1 86.3 86.9 89.9 89.7 

FORCE 80.1 83.0 82.1 85.2 85.8 88.2 

Idepix 76.3 73.8 84.0 83.0 81.0 78.8 

InterSSIM 84.0 84.2 84.9 85.2 90.7 91.1 

LaSRC 67.5 70.7 74.2 78.0 71.0 73.4 

MAJA 85.5 85.5 86.1 86.1 88.3 88.3 

S2cloudless 85.9 87.3 86.7 87.8 91.6 93.1 

sen2cor 80.8 82.3 82.1 85.4 84.8 85.3 

Average 80.0 80.9 82.4 83.6 85.2 85.5 
Standard deviation 5.3 5.1 3.9 3.3 6.0 5.7 

 698 

Figure 13 shows an example of cloud detection over the Sentinel-2 scene from the 699 

PixBox dataset. The scene features opaque clouds as well as semi-transparent clouds over the 700 

water. All algorithms were successful in identifying opaque clouds, while majority struggled 701 

to identify semi-transparent over the water. 702 

 703 

 704 

Figure 13. Examples of cloud masking by various algorithms over the Sentinel-2 scene 705 

S2A_MSIL1C_20170629T103021_N0205_R108_T31TFJ_20170629T103020. 706 

 707 
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Figure 14 shows performance of algorithms on clear pixels depending on the major 708 

land cover classes (proportion>4%) from the PixBox S2 data. LaSRC, IdePix and FORCE 709 

showed the worst performance for the clear snow pixels, which was expected given 710 

limitations of these algorithms. Excluding snow, overall performance of algorithms was 711 

uniform throughout the land clover classes. All algorithms showed worst performance for the 712 

urban area given the presence of bright targets. Even approaches utilizing the Sentinel-2 713 

multi-band parallax (e.g., FORCE, Frantz et al., 2018) over-detected clouds in the urban 714 

areas. 715 

 716 

Figure 14. Performance of algorithms in terms of clear producer’s accuracy over the non-717 

cloudy regions depending on the land cover types in the PixBox S2 dataset. 718 

 719 

3.2 Performance of cloud masking algorithms for Landsat 8 720 

3.2.1 GSFC L8 reference dataset 721 

This dataset included six Landsat 8 scenes and all algorithms showed high 722 

performance (Table 11). Fmask showed the highest values of performance metrics. Two 723 

algorithms achieved 100% cloud UA, meaning no cloud overdetection in this dataset. 724 
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 725 

Table 11. Performance metrics of cloud masking algorithms for the GSFC L8 dataset. All 726 

algorithms processed six reference scenes (with 49.4% fraction of cloud in reference data). 727 

   Cloud 

Processor OA BOA PA UA 

ATCOR 97.3 97.3 94.8 99.8 

CD-FCNN 97.3 97.3 94.6 100.0 

Fmask 4.0 CCA 98.7 98.7 97.3 100.0 

FORCE 98.2 98.1 96.5 99.7 

LaSRC 96.5 96.5 94.8 98.0 

Average 97.6 97.6 95.6 99.5 

Standard deviation 0.8 0.8 1.1 0.7 

 728 

3.2.2 L8Biome reference dataset 729 

Table 12 provides a summary of performance metrics for the L8Biome dataset. 730 

Results in this table should not be used directly for intercomparing algorithms for the 731 

following reasons: (i) ATCOR processed only 86 images out of 96 images, since images in 732 

polar regions were removed due to Sun elevation lower than 30°; (ii) LaSRC processed 80 733 

images, since snow/ice scenes were not considered; (iii) all algorithms, except ATCOR, had 734 

on average 2.4% pixels not classified—those pixels are on the boundary of the Landsat 8 735 

scene, and do not have valid values for all spectral bands. In addition, since CD-FCNN was 736 

trained on the L8Biome and the L8SPARCS datasets (80% and 20%, respectively), the CD-737 

FCNN results on this dataset are omitted in order to avoid overoptimistic (overfitted) 738 

detection results. Fmask partially used L8Biome data to find optimal thresholds for some of 739 

the rules, namely weight of cirrus cloud probability, spectral-contextual snow index, and 740 

morphology-based post-processing (Qiu et al., 2019; personal communication, Zhe Zhu and 741 

Shi Qiu, University of Connecticut, November 2021). Since the foundation of the Fmask 742 

algorithm was developed well before the L8Biome dataset release, we still included Fmask 743 

4.0 for the inter-comparison, though with caveats. 744 
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 745 

Table 12. Performance metrics of cloud masking algorithms for the L8Biome dataset. 746 

ATCOR and LaSRC processed 86 (48.3% of clouds in reference data) and 80 (49.4%) 747 

scenes, respectively, while Fmask and FORCE processed all 96 scenes (47.9%). 748 

   Cloud 

Processor OA BOA PA UA 

ATCOR* (86/96) 86.8 86.7 83.2 88.8 
Fmask 4.0 CCA 90.0 90.2 93.6 86.6 

FORCE 84.9 85.3 96.0 77.7 
LaSRC* (80/96) 90.9 90.9 92.7 89.2 

Average 88.1 88.3 91.4 85.6 
Standard deviation 2.4 2.3 4.9 4.7 

 749 

Table 13 provides a correct intercomparison between algorithms since the amount of 750 

reference scenes and pixels used was the same. The average BOA was 90.0±1.4% and 751 

91.5±1.8% for all types of clouds and without thin clouds, respectively. Removing thin 752 

clouds from the reference increases BOA and Cloud-PA accuracies by +1.5±0.7% and 753 

+3.0±1.4%, respectively. 754 

 755 

Table 13. Performance metrics of cloud masking algorithms for the L8Biome dataset using 756 

the same set of 80 Landsat 8 scenes. Fraction of cloud reference pixels for all types of clouds 757 

and without thin clouds was 49.4% and 42.6%, respectively. 758 

 All types of clouds Without thin clouds 

   Cloud   Cloud 

Processor OA BOA PA UA OA BOA PA UA 

ATCOR 88.2 88.2 84.6 90.9 89.6 89.2 86.8 88.6 

Fmask 4.0 CCA 91.3 91.4 96.2 87.4 92.1 93.1 99.7 84.6 
FORCE 89.4 89.5 96.8 84.2 89.0 90.2 98.1 80.4 
LaSRC 90.9 90.9 92.7 89.2 92.8 93.5 97.8 86.9 
Average 89.9 90.0 92.6 87.9 90.9 91.5 95.6 85.1 
Standard 
deviation 

1.2 1.3 4.9 2.5 1.6 1.8 5.1 3.1 

 759 
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Analysis of algorithms performance by biomes showed little variability (Figure 15). 760 

Exceptions are ATCOR which showed lower cloud PA values over forest and grass/cropland 761 

biomes, and Fmask which lower cloud PA values over shrubland. It is worth noting though 762 

that those are generic land cover classes and don’t enable analysis of the dynamic state of the 763 

land cover class during the scene overpass. For example, a cropland can be characterized by 764 

multiple physical stages during the year, such as bare land (e.g., fallow or after ploughing), 765 

sparse vegetation (during crop emergence), dense vegetation (during peak), snow (during the 766 

winter period). Therefore, per-land cover performance of algorithms should be taken 767 

cautiously.  768 

 769 

 770 

Figure 15. Performance of the Landsat 8 cloud detection algorithms for the L8Biome dataset 771 

depending on the biomes. The same set of 80 Landsat 8 scenes was used to calculate PA and 772 

UA accuracy values. 773 

 774 

3.2.3 PixBox L8 reference dataset 775 

Table 14 shows the algorithm performance for the PixBox dataset. Fmask and 776 

ATCOR yielded the best performance in terms of BOA (87.9% and 86.3%, respectively), 777 

however PA/UA values exhibited a different behavior: for Fmask, PA and UA were mostly 778 

balanced (82.5% and 81.8%), while for ATCOR omission error (26.7%) was much higher 779 
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than commission error (2.8%). Overall, performance over the PixBox dataset was lower than 780 

for L8Biome and GSFC, as the case with PixBox S2. Performance metrics substantially 781 

improved when semi-transparent clouds were removed from the analysis. For all algorithms 782 

cloud PA increased on average by 28.1±13.9% reaching 95.9±3.6%. While there was an 783 

overall agreement between algorithms on detecting opaque clouds from the PixBox L8 784 

dataset (with average PA 95.9±3.6%) all algorithms failed to detect semi-transparent clouds 785 

(average PA was 40.6±27.4%) (Figure 16). It’s worth noting that all algorithms showed 786 

equally good performance for clear land and water classes. ATCOR and CD-FCNN were also 787 

successful in discriminating clouds from snow, while Fmask and FORCE showed 788 

intermediate results. LaSRC failed to identify clouds over snow, as expected from the 789 

algorithm’s design. 790 

 791 

Table 14. Performance metrics of cloud masking algorithms for the PixBox dataset. All 792 

algorithms processed all 11 Landsat 8 reference scenes. Fraction of cloud reference pixels 793 

was 27.4% for all types of clouds and 15.8%, when removing semi-transparent clouds. 794 

 All types of clouds Without semi-transparent clouds 

   Cloud   Cloud 

Processor OA BOA PA UA OA BOA PA UA 

ATCOR 92.1 86.3 73.3 97.2 98.4 96.7 94.1 95.6 

CD-FCNN 87.2 78.2 59 89.4 97.8 98.7 99.9 87.4 
Fmask 4.0 CCA 90.4 87.9 82.5 81.8 94.3 96.6 99.8 72.6 

FORCE 80.3 79.1 76.5 61.3 83.5 87.2 92.8 48.7 
LaSRC 76.8 67.8 47.8 59.5 88.5 90.4 93.1 58.6 
Average 83.7 78.2 66.5 73.0 92.5 93.9 95.9 72.6 

Standard deviation 5.4 7.1 13.8 12.9 6.4 4.8 3.6 19.5 
 795 
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 796 

Figure 16. PA values for various types of classes in the PixBox L8 dataset. 797 

 798 

4 Discussion 799 

4.1 Algorithm intercomparison 800 

Figure 17 shows the distribution of cloud PA and UA values for Sentinel-2 cloud 801 

masking algorithms. Overall, cloud PA/UA values are located in the areas defined by lines 802 

PA>80% or UA>80%. While individual values are located in the area of PA>90% and 803 

UA>90% (Figure 17, left), suggesting a very good balance of commission and omission 804 

errors, however that is not the case for averaged values across all reference datasets (Figure 805 

17, right). No algorithm yielded the PA>90% and UA>90% performance when averaging 806 

over reference datasets. Five algorithms (Fmask, FORCE, Idepix, MAJA and S2cloudless) 807 

yielded the average performance of cloud PA>80% and UA>80%, providing some balance 808 

(within ~10%) between commission and omission errors. Four algorithms (ATCOR, CD-809 

FCNN, InterSSIM and sen2cor) yielded performance with cloud UA>90% (cloud 810 

conservative), meaning these algorithms committed less clouds over clear regions, however 811 

at the expense of missing clouds. LaSRC yielded the cloud PA>90% performance (non-cloud 812 

conservative), detecting most of the clouds, however, at the expense of masking out also 813 
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valid non-cloudy observations, and with a large standard deviation in UA across the datasets 814 

(potentially, owing to various rules defining the cloud and the use of conservative threshold 815 

for the cirrus band).  816 

 817 

 818 

Figure 17. Distribution of cloud PA and UA over all Sentinel-2 cloud masking algorithms 819 

and reference datasets (left) and algorithms’ average values along with the standard deviation 820 

over four reference datasets (right). Averaging was performed using PA and UA values from 821 

Table 6, Table 7, Table 8 and Table 9 for all cloud types. 822 

 823 

Since only three datasets were used for Landsat 8, we did not perform the averaging 824 

(Figure 18). Three distinct clusters corresponding to the three reference datasets were evident 825 

with varying performance. The highest performance was for the GSFC dataset with only six 826 

Landsat 8 scenes over the same area, which probably is not fully representative of the 827 

performance of the algorithms. GSFC L8 had mostly thick and well-identifiable clouds that 828 

algorithms were able to classify successfully. L8Biome yielded the second highest 829 

performance with PA/UA values distributed over PA>90% (Fmask, FORCE and LaSRC) and 830 

UA>90% (ATCOR). Performance for the PixBox dataset was the lowest with algorithms 831 
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scattered in the cloud PA/UA space. Fmask yielded PA>80% and UA>80% for PixBox; 832 

ATCOR and CD-FCNN yielded UA>90%; while FORCE and LaSRC yielded both cloud PA 833 

and UA less than 80%. 834 

 835 

 836 

Figure 18. Distribution of cloud PA and UA over all Landsat 8 clouds masking algorithms 837 

and reference datasets. 838 

 839 

A summary of strengths and weaknesses of cloud algorithms known at the design 840 

stage and further identified/elaborated during the CMIX are presented in Table 15. 841 

 842 

Table 15. Summary of algorithms parameters to control cloud commission/omission errors 843 

along with strengths and weaknesses. 844 

Processor Parameter Strengths Weaknesses 

ATCOR 

Cloud buffer size (default 
size is 7 px). Increase will 
lead to higher cloud PA. 

– Water vapor map (S2) is 
used to reduce cloud pixel 
commission error 
– Elevation-dependent 
cirrus masking 

– Conservative cloud mask 
– Cloud buffer too small 
– Thin cirrus threshold of 
ρ(TOA)=0.01 underestimates 
thin cirrus 

CD-FCNN 
A posteriori cloud 
probability (default value is 
0.5). Decrease will lead to 

– Single architecture to 
provide global cloud 
masks for both Landsat-8 

– Model can underperform 
compared to customized 
algorithms for Sentinel-2 
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higher cloud PA (cloud-free 
conservative). Increase will 
lead to higher cloud UA 
(cloud conservative). 

and Sentinel-2 images 
– No ancillary data 
required 
– Mitigation of training 
data requirements: transfer 
learning from Landsat-8 to 
Sentinel-2 
– General approach 
directly learnt from 
available data 

– Model performance is fully 
constrained by the quality of 
training data 
– Presence of errors in thin 
clouds, cloud borders, urban 
areas, and snow. 
– It does not provide shadow 
detection. 
– It does not provide cloud type 
classes (e.g. cirrus, thin or thick 
clouds). 

Fmask 4.0 
CCA 

Cloud dilation (default is 3 
px), cloud probability 
threshold (CPT), and 
potential false positive 
cloud (PFPC) extension and 
erosion. The CPT default 
value is 17.5% for Landsat 
8, and 20% for Sentinel 2. 
Increase will reduce the 
number of potential cloud 
pixels. The PFPC 
parameters affect how the 
potential cloud mask is 
reduced to the final cloud 
mask. Changing its values 
will affect the algorithm’s 
performance over bright 
targets. 

– Generic algorithm 
– Applicable over land and 
water 
– Good performance over 
bright targets (urban, 
ice/snow) 

– Performance decreases when 
thermal band is not used 

FORCE 

Cloud probability (default 
22.5%). Increase will 
reduce the number of 
potential cloud pixels. 
Clouds were buffered by 
300 m. Higher values will 
increase cloud commission 
but reduce commission. 

– Rigorous cloud mask 
with emphasis on reducing 
cloud commission for safe 
usage in time series 
applications 
– Parallax effect is used to 
reduce bright false 
positives in Sentinel-2 
imagery 
– Multiple flags can be set, 
e.g. snow and cloud 

– Rigorous cloud mask with 
emphasis on reducing cloud 
commission with potential 
drawbacks for single-scene 
analysis 
– Parallax effect may 
occasionally introduce false 
positives in bright areas due to 
micro-vibrations on sensor 
– Snow and cloud often not 
mutually exclusively 

IdePix 

The 
CLOUD_AMBIGUOUS 
flag is currently quite probe 
to clear commission of 
urban and other very bright 
surfaces. Cloud buffer was 
not used, as it would 
increase cloud commission 
error. 

– Mono-temporal 
approach 
– Detects thin clouds quite 
well 
– Allows user defined 
cloud dilation 

– Snow detection could be better 
(bug in code during CMIX) 
– Commission error of bright 
(mostly urban) surfaces 

s2cloudless 

Cloud probability (default 
is 0.4). Lower values will 
lead to higher cloud PA 
(cloud-free conservative). 
Post-processing: 

– Fast single-observation 
cloud masking 
– Works on any resolution 
and even on aggregated 
values (objects) 

– Prone to errors on very bright 
areas 
– No spatial context is taken into 
account 
– No cloud shadow detection 
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convolution (22 px) and 
dilation (11 px). The 
convolution smoothens the 
masks, reducing the amount 
of salt-and-pepper effect, 
while the dilation of masks 
closes small openings and 
increases the cloud masks 
on the outside. 

– Provides pseudo-
probability that user can 
tweak to get better cloud 
masks for her use-case 

InterSSIM 

Similar to s2cloudless. 
Number of prior satellite 
observations. Increase will 
lead to better performance, 
especially bright targets, 
but increase the usage of 
computational and storage 
resources. 

– Using spatio-temporal 
context results in lower 
rate of false positive 
detections (particularly 
over consistently bright 
areas) 
– Provides pseudo-
probability that user can 
tweak to get better cloud 
masks for her use-case 

– Resource intensive calculation 
– Higher rate of cirrus 
misclassifications 
– Higher rate of 
misclassifications over large 
waterbodies 
– No cloud shadow detection 

LaSRC 

Threshold for residuals 
from aerosol retrievals 
(default is 0.05). Increase 
will lead to higher cloud 
UA (cloud conservative). 

– Simple, interpretable 
criteria 
Easily transferable 
– Conservative and tune to 
keep best high-quality data 
rather than questionable 
(low-quality) 

– Might confuse bad retrievals of 
aerosol with clouds (high 
aerosol, urban area) 
– Not suitable over snow cover 
region 

MAJA 

Four major parameters: 
– Multi-temporal: threshold 
on increase of surface 
reflectance in the blue. 
– Correlation: each 
neighborhood of a cloud is 
correlated with previous 
observations. If the 
correlation is high, it is not 
a cloud. 
– High clouds: threshold for 
the reflectance of the cirrus 
band, that depends on the 
squared altitude of the pixel 
to account for the fact that 
mountains may peak above 
the water vapor layer. 
– Buffer: all pixels close to 
a cloud within a buffer of 
240 m are classified as 
clouds, which is rather 
conservative, and avoids 
omissions due to the 
parallax between spectral 
bands or to fuzzy limits of 
the cloud. 

– Multi-temporal criterion 
to better detect low clouds 
that brings a much better 
separation between cloud / 
non clouds 
– Moderate threshold for 
the cirrus bands, as the 
multi-temporal threshold 
already detects clouds 
which have a significant 
impact on reflectances 
– Large buffer (240m), 
possible thanks to the very 
low level of cloud 
commission errors before 
dilation 

– Some very rapid changes of 
vegetation could be interpreted 
as clouds 
– Multi-temporal algorithm is 
less efficient in places where the 
cloudiness is extremely high 
– Working at 120 m resolution 
(240 m resolution during CMIX, 
but it has been upgraded since), 
may cause omissions of very 
small clouds 
– The buffer will include some 
cloud free pixels (but they are in 
fact are affected by large 
adjacency effects) 

sen2cor 
The parameters used to run 
Sen2Cor version 2.8 for 

– Cloud mask at 
“moderate” resolution (20 

– Potential cloud omissions on 
cloud edges/boundaries 
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CMIX were the default 
parameters used in 
Sentinel-2 operational 
ground segment and 
available in 
L2A_CAL_SC_GIPP.xml. 
No cloud mask dilation is 
applied and cloud 
boundaries can be omitted. 

m) 
– Robustness. Used 
operationally in all types 
of meteorological 
conditions and solar 
geometries  
– Processing time (<5 min 
for a full Sentinel-2 tile) 

– Potential cloud omissions for 
cloud over water 
– Potential cloud commissions 
for bright buildings in urban area 
or bright surfaces 

 845 

4.2 Dependence of the performance on the reference datasets 846 

Performance of cloud masking algorithms for Sentinel-2 varied depending on the 847 

reference dataset (Figure 19): average BOA was 80.0±5.3% (PixBox) to 89.4±2.4% 848 

(Hollstein). Performance of algorithms was the worst for the PixBox dataset compared to 849 

datasets. This can be explained by the following. PixBox dataset was sampled in such a way, 850 

so non-challenging (e.g., opaque thick clouds) and challenging (e.g., semi-transparent clouds, 851 

cloud boundaries) cases are equally present in the dataset. At the same time, other datasets 852 

were aimed at labelling the full images (L8Biome, CESBIO) or provide homogeneous 853 

polygons (Hollstein, GSFC), where the weight of challenging cases would be lower than for 854 

PixBox. In this regard, the question is about whether to weight samples according to the area 855 

or not. Both characteristics (based on equal allocation and area proportions) can be valuable 856 

to describe separability of classes by a given algorithm (model accuracy) and to estimate 857 

probability of a pixel being mapped correctly (map accuracy) (Blickensdörfer et al., 2022; 858 

Congalton, 1991). 859 

Across the four reference datasets algorithms showed better performance in terms of 860 

cloud UA, which was consistently higher than cloud PA. Removing thin/semi-transparent 861 

clouds from the reference datasets improves performance of algorithms (Figure 20), though at 862 

the expense of cloud UA. This happens because thin clouds have higher uncertainties and 863 

therefore are more challenging to the algorithms in contrast to thick clouds. When thin clouds 864 

removed from reference datasets the proportion of correctly detected classes increases and 865 
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therefore cloud PA increases. At the same time, cloud UA can experience both increase or 866 

decrease depending on the proportion of thin clouds and algorithm’s performance on thin 867 

clouds. 868 

The issue of thin/semi-transparent cloud detection has a significant impact on the 869 

subsequent shadow detection. Figure 21 shows an example of a cloud with different levels of 870 

transparency depending on wavelength used and its shadow. While the cloud is semi-871 

transparent in the false color composite (SWIR-NIR-red), its shadow is clearly visible and 872 

impacts the reflectance. 873 

 874 

Figure 19. Average performance of algorithms for Sentinel-2 for four cloud reference 875 

datasets. 876 
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Figure 20. Change in performance of Sentinel-2 cloud masking algorithms, when thin/semi-878 

transparent clouds removed from the reference datasets. 879 

 880 

 881 

Figure 21. Example of thin/semi-transparent cloud in various band combinations (true color 882 

and false color in top-of-atmosphere reflectance) along with the shadow from that cloud 883 

(Sentinel-2 scene, L1C_T18SUJ_A011777_20170923T160124). 884 

 885 

Figure 22 shows averaged BOA values across multiple Landsat 8 algorithms. As with 886 

Sentinel-2, the performance varied across datasets yielding BOA of 97.6±0.8%, 90.0±1.3% 887 
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and 79.8±7.1% for GSFC, L8Biome and PixBox, respectively. As with Sentinel-2, cloud PA 888 

was higher than cloud UA for GSFC and PixBox datasets, but not for L8Biome. 889 

 890 

 891 

Figure 22. Average performance of algorithms for Landsat 8 for three cloud reference 892 

datasets. 893 

 894 

In terms of various land cover classes, it is difficult to draw conclusions since only 895 

generic “static” information on land cover was available for some of the datasets. We did not 896 

observe any substantial differences in algorithm’s performance over various land cover 897 

classes, except for urban areas in the PixBox S2 data, which is expected. Sentinel-2 does not 898 

have a thermal band and, therefore, detection of clouds over bright targets in urban areas 899 

remains a challenging task. The use of multi-spectral parallax (Skakun et al., 2017) only 900 

partially addresses this problem (Frantz et al., 2018). 901 

 902 

5 Recommendations 903 

Results and lessons learned from CMIX-I provide a good foundation for future 904 

activities for improving practices related to the development and validation of cloud masking 905 

algorithms for passive optical satellite imagery. 906 
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The first area for improvement should aim at initially providing an agreed upon 907 

definition of “cloud” (Mejia et al., 2016; Stubenrauch et al., 2013) that is passed beforehand 908 

to intercomparison participants and validation dataset originators. Ideally this would be an 909 

objective (quantitative) definition of clouds, which would include a numerical metric. As 910 

results from CMIX-I showed, existing validation datasets varied in how a cloud was defined 911 

through mostly photointerpretation, and it influenced the performance of the algorithms. For 912 

example, one potential metric to define the cloud would be the cloud optical thickness. 913 

However, this poses the questions at which wavelength the thickness should be defined, what 914 

threshold to apply, and how it could be estimated for sizeable quantity of images. For 915 

example, Mejia et al. (2016) use a radiative transfer model to estimate cloud optical depth (τc) 916 

from ground-based sky images and define thick clouds with τc>30, thin clouds with τc~1, and 917 

clear sky with τc ~0 (all in the visible spectrum). While there was a consensus between 918 

algorithms and developers in defining thick non-transparent clouds, there was a disagreement 919 

(sometimes by design and depending on the intended applications) in transparent (semi-920 

transparent) clouds, such as cirrus, stratus and cloud edges. Also, the effect of those clouds 921 

can vary with wavelengths, which adds complexity to the analysis. 922 

Based on the cloud definition, the second area for improvement would include 923 

generation of new reference/validation datasets. The strengths and weaknesses of existing 924 

cloud reference datasets were thoroughly analyzed and discussed within this study, and new 925 

datasets should substantially address those weaknesses. A special attention should be paid to 926 

ensure a balanced statistical distribution of surface and cloud types, as well as the need to 927 

cover a wide range of environmental conditions, in order to thoroughly test the performance 928 

of the algorithms at global scale. Some of the recommendations include: 929 

• Consistently implementing the cloud definition, and adding cloud shadows to the 930 

analysis. Recommended practices for labelling clouds should be developed and 931 
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implemented for new datasets, whether through visual interpretation or ground 932 

measurements or ancillary data (e.g. geostationary satellites). Cloud shadows should 933 

be also part of the analysis, since an inaccurate cloud shadow mask can lead to 934 

substantial artifacts in the downstream products. 935 

• Defining a proper dilation of cloud masks to be applied, taking account the effect of 936 

parallax between spectral bands, smooth variation of clouds at their borders, and 937 

adjacency effects. The dilation could then be applied to the reference datasets and to 938 

the algorithm results. 939 

• Increasing the number of sites collecting ground-based imagery of the sky and use 940 

them in coordination with Aeronet measurements. Some limitations of the use of 941 

ground-based sky imagery include radiance contrast which could yield better 942 

detection of thin clouds; furthermore, the geometrical matching between sky-camera 943 

and satellite pixel may introduce some errors, which are related to the cloud height. 944 

• Acquire multiple datasets (time-series) over the same area to analyze consistent errors 945 

in cloud detection. This would enable temporal metrics to be exploited when 946 

assessing the efficiency of cloud masks. 947 

The third set of activities should focus on expanding the analysis framework, which 948 

would include: 949 

• A sample-based approach versus an area-based approach, when comparing reference 950 

cloud mask with a predicted one. The problem with an area-based approach is that 951 

more weight would be given to large clouds (which cover the larger area), whereas 952 

smaller clouds might have a small impact on the performance metrics. At the same 953 

time, sampled-based approaches can also miss some specific land cover features 954 

(unless a stratification scheme can be constructed with strata describing those 955 

features), and often do not address the boundaries of the clouds or more broadly 956 



57 

segmentation aspects. Area-based approaches are likewise necessary to study the 957 

effects of cloud dilation. Therefore, both approaches should be considered.  958 

• Temporal analysis of cloud masks over the same area. Originally planned for CMIX-I, 959 

the idea of using temporal metrics was abandoned, since no reference data (except 960 

GSFC, which were assisted with sky imagery and Aeronet measurements) was 961 

available for these purposes. As undetected clouds add noise on time-series, it is 962 

possible to evaluate the noise on time-series and compute the contribution of different 963 

cloud masks to this noise. 964 

• Application-based approach to cloud validation. One way to analyze efficiency of the 965 

cloud/shadow masks is to “validate” them indirectly within the downstream products. 966 

An example could include a generic land cover mapping workflow, when the same set 967 

of satellite data will be processed by various cloud detection algorithms and used as 968 

input to the classification algorithm. The derived land cover maps will be validated 969 

using the same validation data and intercompared. 970 

And finally, CMIX-I was limited to Landsat 8 and Sentinel-2 data. Future activities 971 

could include adding hyper-spectral data (such as PRISMA or DESIS), coarse resolution data 972 

(such as MODIS, VIIRS, Sentinel-3), and commercial very high spatial resolution satellites, 973 

such as Planet or hyperspectral sensors. 974 

 975 

6 Conclusion 976 

The Cloud Mask Intercomparison eXercise (CMIX) was a community-wide effort to 977 

intercompare the state-of-the-art and commonly-used cloud masking algorithms, with a focus 978 

on moderate spatial resolution data acquired by Landsat 8 and Sentinel-2 missions. Ten 979 

algorithms developed by nine teams from fourteen organizations representing universities, 980 

industry and space agencies were evaluated within CMIX using existing cloud reference data. 981 
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Overall, the performance of algorithms varied depending on the reference dataset, which can 982 

be attributed to differences in which reference datasets were generated. Average overall 983 

accuracy (across algorithms) varied 80.0±5.3% to 89.4±2.4% for Sentinel-2, and 79.8±7.1% 984 

to 97.6±0.8% for Landsat 8, depending on the reference dataset. An overall accuracy of 90% 985 

yields twice less errors than an overall accuracy of 80%. The study highlighted algorithms 986 

that provided a balance between commission and omission errors, as well as algorithms 987 

which are cloud conservative (high UA) and non-cloud (clear) conservative (high PA). With 988 

repetitive observations like those of Sentinel-2, it seems reasonable to favor cloud 989 

conservative approaches, with maybe the exception of very cloudy regions where every cloud 990 

free observation is critical. When thin/semi-transparent clouds were not considered in the 991 

reference datasets algorithms’ performance generally improved: overall accuracy values 992 

increased from +1.5% to 7.4%. It should be noted though that these clouds are commonly 993 

occurring and are often present in optical imagery. We concluded the paper with 994 

recommendations for further activities, which include provision of a quantitative definition 995 

for clouds (targeting moderate spatial resolution imagery by Landsat 8 and Sentinel-2), 996 

generation of new reference datasets, and expansion of the analysis framework (for example, 997 

multi-temporal analysis and application-driven validation). Such intercomparison studies will 998 

hopefully help the community to improve the algorithms and move towards standardization 999 

of cloud masking. Given the importance of cloud masking in optical imagery we encourage 1000 

CEOS to continue the CMIX activities. 1001 

 1002 

 1003 

Acknowledgment 1004 

We would like to thank to Chris Justice (University of Maryland) for helpful 1005 

comments on an earlier draft of paper and Gasmine Myers (University of Maryland) for 1006 



59 

proof-reading the paper. L.G.C., D.L.P. and G.M.G. (University of Valencia) were supported 1007 

for this work by the Spanish Ministry of Science and Innovation (project PID2019-1008 

109026RB- I00, ERDF) and the European Social Fund. S.S., J.C.R. (University of Maryland) 1009 

and E.V. (NASA GSFC) were supported by NASA grants 80NSSC19K1592, 1010 

80NSSC19M0222 and 80NSSC21M0080. 1011 

  1012 



60 

Appendix A.  1013 

 1014 

Table A1. Cloud and non-cloud classes that were used from the original reference datasets. 1015 

Dataset Cloud Non-cloud 
CESBIO Low clouds, high clouds Shadow, land, water, snow 
GSFC Cloud, thin cloud Clear, cloud shadow 
Hollstein Cloud, cirrus Clear, water, shadow, snow 
L8Biome Thin cloud, thick cloud Shadow, clear 
PixBox S2 Opaque, thick semi-transparent cloud, average 

density semi-transparent cloud, semi-transparent 
cloud, thin semi-transparent cloud, fog, haze 

Clear 

PixBox L8 Cloud, semi-transparent cloud Clear land, clear snow/ice, 
clear water, mixed 
snow_ice/water 

 1016 

  1017 
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 1180 

Figure 1. Geographical distribution of the Landsat 8 and Sentinel-2 scenes in the reference 1181 

datasets used in CMIX. 1182 

 1183 

Figure 2. Distribution of labeled pixels in the CESBIO dataset. 1184 

 1185 

Figure 3. Distribution of labeled pixels in the GSFC S2 dataset (left) and land cover classes 1186 

(right). 1187 

 1188 

Figure 4. Distribution of labeled pixels in the Hollstein dataset. 1189 

 1190 

Figure 5. Distribution of labeled pixels in the L8Biome dataset. 1191 

 1192 

Figure 6. Distribution of labeled pixels and land cover classes in the PixBox dataset. 1193 

 1194 

Figure 7. Part of the L8Biome scene (LC81570452014213LGN00) with some thin clouds not 1195 

labelled. Thin clouds are shown in orange, and thick clouds in maroon. 1196 

 1197 

Figure 8. Examples of labeled data in the three datasets: CESBIO (fully labeled images); 1198 

GSFC (polygons avoiding uncertain areas, such cloud boundaries); PixBox (sample-based 1199 

approach). 1200 

 1201 

Figure 9. Comparison of BOA values and distribution of PA/UA for the CESBIO reference 1202 

dataset. 1203 
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 1204 

Figure 10. Comparison of BOA values and distribution of PA/UA (for all clouds) for the 1205 

GSFC S2 reference dataset. 1206 

 1207 

Figure 11. Comparison of BOA values and distribution of PA/UA (for all clouds) for the 1208 

Hollstein reference dataset. 1209 

 1210 

Figure 12. Comparison of BOA values and distribution of PA/UA (for all clouds) for the 1211 

PixBox S2 reference dataset. 1212 

 1213 

Figure 13. Examples of cloud masking by various algorithms over the Sentinel-2 scene 1214 

S2A_MSIL1C_20170629T103021_N0205_R108_T31TFJ_20170629T103020. 1215 

 1216 

Figure 14. Performance of algorithms in terms of clear producer’s accuracy over the non-1217 

cloudy regions depending on the land cover types in the PixBox S2 dataset. 1218 

 1219 

Figure 15. Performance of the Landsat 8 cloud detection algorithms for the L8Biome dataset 1220 

depending on the biomes. The same set of 80 Landsat 8 scenes was used to calculate PA and 1221 

UA accuracy values. 1222 

 1223 

Figure 16. PA values for various types of classes in the PixBox L8 dataset. 1224 

 1225 

Figure 17. Distribution of cloud PA and UA over all Sentinel-2 cloud masking algorithms 1226 

and reference datasets (left) and algorithms’ average values along with the standard deviation 1227 
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over four reference datasets (right). Averaging was performed using PA and UA values from 1228 

Table 6, Table 7, Table 8 and Table 9 for all cloud types. 1229 

 1230 

Figure 18. Distribution of cloud PA and UA over all Landsat 8 clouds masking algorithms 1231 

and reference datasets. 1232 

 1233 

Figure 19. Average performance of algorithms for Sentinel-2 for four cloud reference 1234 

datasets. 1235 

 1236 

Figure 20. Change in performance of Sentinel-2 cloud masking algorithms, when thin/semi-1237 

transparent clouds removed from the reference datasets. 1238 

 1239 

Figure 21. Example of thin/semi-transparent cloud in various band combinations (true color 1240 

and false color in top-of-atmosphere reflectance) along with the shadow from that cloud 1241 

(Sentinel-2 scene, L1C_T18SUJ_A011777_20170923T160124). 1242 

 1243 

Figure 22. Average performance of algorithms for Landsat 8 for three cloud reference 1244 

datasets. 1245 




