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Abstract. A composite number n is called a Carmichael number if an−1 ≡ 1

(mod n) for any integer a coprime with n. D. H. Lehmer considered the class of

these numbers n such that a(n−1)/2 ≡
(
a
n

)
(mod n) for any integer a coprime with n.

Here
(
a
n

)
denotes the Jacobi symbol. It turns out and it is shown by Lehmer himself

that this class is empty. Here, we replace ≡
(
a
n

)
(mod n) in Lehmer’s congruence

by ≡ 1 (mod n) and get a new class which is not empty.

1



1 INTRODUCTION

1 introduction

In 1910, R. D. Carmichael [2] defined the number theory function λ(n) by λ(2) =

Φ(2) = 1, λ(22) = Φ(22) = 2,

λ(pe) =


Φ(pe) = pe−1(p− 1) if p is odd and e ≥ 1

Φ(2e)
2

= 2e−2 if p = 2 and e ≥ 3

and in general λ(pe11 · · · perr ) = lcm(λ(pe11 ), . . . , λ(perr )).

Let n ≥ 2 be an integer. It is easy to see that the exponent of the group (Z/nZ)?

divides λ(n). Indeed, even better that this divisibility property alone, the paper [2]

proves equality, that is there exists an element of the group whose order is equal to

λ(n).

The famous Fermat’s little theorem asserts that if p is a prime number, then for any

a ∈ Z, gcd(a, p) = 1, we have ap−1 ≡ 1 (mod p). The converse of this theorem is

false. Carmichael [3] gave the first counter-example, namely n = 561 = 3.11.17, so

we are led to the following definition. A composite number n is called a Carmichael

number if for any a ∈ Z, gcd(a, n) = 1 we have an−1 ≡ 1 (mod n).

The known criteria for a Carmichael number are sumarized in the following re-

sult.

Theorem 1. Let n ≥ 2 be a composite number, then the following conditions are

equivalent.
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2 REALLY STRONG CARMICHAEL NUMBERS.

(i) n is a Carmichael number.

(ii) n is square-free and any prime factor p of n satisfies the condition p−1 | n−1.

(iii) λ(n) | n− 1.

The equivalence of (i) with (ii) (resp. (i) with (iii)) are due to A. R. Korselt [4] and

to R. D. Carmichael respectively [3].

In [1] the authors proved that there are infinitely many Carmichael numbers.

In [5], D. H. Lehmer defined what he called a strong Carmichael number to be an odd

composite number n for which a(n−1)/2 ≡ ( a
n
) (mod n) for any a ∈ Z, gcd(a, n) = 1,

where ( a
n
) denotes the Jacobi symbol. He showed, in the same paper, that these

numbers do not exist.

In the rest of the text, we discuss the possibility for an integer n to satisfy the

congruence a(n−1)/2 ≡ 1 (mod n) for any a ∈ Z, gcd(a, n) = 1. Such numbers will be

called really strong Carmichael numbers.

2 Really strong Carmichael numbers.

An odd composite number n for which a(n−1)/2 ≡ ( a
n
) (mod n) for any a ∈ Z,

gcd(a, n) = 1 is called by D. H. Lehmer a strong Carmichael number. Here
(
a
n

)
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2 REALLY STRONG CARMICHAEL NUMBERS.

denotes the Jacobi symbol. If n is strong, then(
a(n−1)/2

)2 ≡
(a
n

)2

(mod n) ≡ 1 (mod n),

hence n is a Carmichael number. For example for n = 561 which is the smallest

Carmichael number, we have 2560/2 = 2280 ≡ −1 (mod 561) ≡
(

2
561

)
(mod 561)

and 5280 ≡ 67 (mod 561) 6≡ ±1 (mod 561), hence 561 is not a strong Carmichael

number. Indeed, in his paper Lehmer proved that there exists no strong Carmichael

number.

Let e(n) = ν2(n− 1) ≥ 1. For any k, 1 ≤ k ≤ e(n), we consider the conditions:

(Ck) a(n−1)/2k ≡ 1 (mod n) for any a ∈ Z, gcd(a, n) = 1.

It is clear that if (Ck) is satisfied, then all the conditions (Ck), (Ck−1), · · · (C1) are

verified. A number n which satisfies (Ck) for some 1 ≤ k ≤ e(n), hence for k = 1,

will be called a really strong Carmichael number. We will show that contrary to

strong Carmichael numbers, really strong Carmichael numbers exist.

Notice that, since the exponent of the group (Z/nZ)? is equal to λ(n), then the

condition (Ck) is equivalent to λ(n) | (n− 1)/2k.

Proposition 1. If n ≡ −1 (mod 4) and n is a Carmichael number, then any prime

factor of n is congruent to −1 modulo 4. The number of these primes is odd and n

is not really strong.

Proof. Since n ≡ −1 (mod 4), then n − 1 ≡ 2 (mod 4). Let p be a prime factor of

n. Since p is odd and p− 1 | n− 1, then p− 1 ≡ 2 (mod 4), hence p ≡ −1 (mod 4).
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2 REALLY STRONG CARMICHAEL NUMBERS.

Let r be the number of prime factors of n, then −1 ≡ n (mod 4) ≡ (−1)r (mod 4),

hence r is odd. Now (n − 1)/2 is odd and λ(n) is even, hence λ(n) - (n − 1)/2 and

n is not really strong.

Example. The integer n = 8911 = 7 × 19 × 67 satisfies the conditions of this

proposition.

Theorem 2. Let n ≥ 3 be an odd integer and k be an integer such that 1 ≤ k ≤ e(n).

1. The following conditions are equivalent.

(i) n is a prime number or a Carmichael number.

(ii) For any a ∈ Z, gcd(a, n) = 1, we have a(n−1)/2k is a 2k-th root of 1 in

Z/nZ.

2. Suppose that n satisfies the above equivalent conditions. Let Ak be the set of

prime numbers p dividing n such that ν2(p− 1) > ν2((n− 1)/2k).

Let θ : (Z/nZ)? → (Z/nZ)? be the map such that θ(x̄) = x(n−1)/2k . Then θ is a

homomorphism of groups and

Imθ '
∏

pi∈Ak

(F?
pi

)ui '
∏

pi∈Ak

{2si-th roots of 1 in Z/piZ} '
∏

pi∈Ak

< ξ
(pi−1)/2si

i >,

where ξi is a generator of (Z/piZ)?, si = ν2(pi−1)−(e−k) and ui = (pi−1)/2si.

Moreover,

Imθ = {x̄ ∈ (Z/nZ)?|x ≡ 1 orx2k ≡ 1 (mod p) according to p 6∈ Ak or p ∈ Ak}.
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2 REALLY STRONG CARMICHAEL NUMBERS.

Proof. 1. • (i) ⇒ (ii). Let a ∈ Z such that gcd(a, n) = 1 and let b = a(n−1)/2k .

Since an−1 = 1, then b
2k

= a(n−1)/2k
2k

= an−1 = 1, hence b is a 2k-th root of 1

modulo n.

• (ii) ⇒ (i). Suppose that n is not a prime number, that is n is composite.

Let a ∈ Z such that gcd(a, n) = 1, then 1 = a(n−1)/2k
2k

= an−1, hence n is a

Carmichael number.

2. Obviously, θ is a homomorphism of groups. We compute the image of θ. We

will use the following:

Claim. Let p be a prime divisor of n, then p − 1 | (n − 1)/2k if and only if

p 6∈ Ak.

Proof. For any odd prime l, we have νl((n− 1)/2k) = νl(n− 1), hence

p− 1 | (n− 1)/2k ⇔ νl(p− 1) ≤ νl((n− 1)/2k) for any prime l

⇔ ν2(p− 1) ≤ ν2((n− 1)/2k) = ν2(n− 1)− k

⇔ p 6∈ Ak.

This claim being proved, let a ∈ (Z/nZ)?. We have

a ∈ Kerθ ⇔ a(n−1)/2k = 1

⇔ a(n−1)/2k ≡ 1 (mod p) for any p | n

⇔ ( by the claim), a(n−1)/2k ≡ 1 (mod pi) for pi ∈ Ak.
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2 REALLY STRONG CARMICHAEL NUMBERS.

For i such that pi ∈ Ak, let ξi ∈ Z be such that its reduction modulo pi is a

primitive pi-th root of unity and let ui be such that a ≡ ξui
i (mod pi). Then

a(n−1)/2k ≡ 1 (mod pi)⇔ ξ
ui(n−1)/2k

i ≡ 1 (mod pi)

⇔ pi − 1 | ui(n− 1)/2k

⇔ (by the fact that pi − 1 | n− 1), ν2(pi − 1) ≤ ν2(ui(n− 1)/2k)

= ν2(ui) + ν2((n− 1)/2k)

Since ν2(pi − 1) > ν2((n− 1)/2k) = e− k, set ν2(pi − 1) = e− k + si, where si

is a positive integer. Then

pi − 1 | ui(n− 1)/2k ⇔ e− k + si ≤ ν2(ui) + e− k

⇔ ν2(ui) ≥ si.

We deduce that

a ∈ Kerθ ⇔ ν2(ui) ≥ si = ν2(pi − 1)− (e− k) for pi ∈ Ak

⇔ 2si | ui for pi ∈ Ak

⇔ a modulo pi is a 2si − th power in Z/piZ for pi ∈ Ak

Therefore Kerθ ' (
∏

pi 6∈Ak
F?
pi

)× (
∏

pj∈Ak
F?2sj
pj

).
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3 THE ROLE OF THE SQUARE ROOTS OF 1.

This implies that

Imθ '
∏

pj∈Ak

(F?
pj

)uj

'
∏

pj∈Ak

{2sj -th roots of 1 in Z/pjZ}

'
∏

pj∈Ak

< ξ
(pj−1)/2sj

j >,

where uj = (pj − 1)/2sj . Moreover,

Imθ = {x̄ ∈ (Z/nZ)?|x ≡ 1 orx2k ≡ 1 (mod p) according to p 6∈ Ak or p ∈ Ak}.

3 The role of the square roots of 1.

This theorem shows that if n a prime number or a Carmichael number, then as a

runs over Z and gcd(a, n) = 1, a(n−1)/2 takes 2|A1| distinct values modulo n all of

them being square roots of 1.

Corollary 1. Let n ≥ 3 be an odd integer and

V = {a(n−1)/2, a ∈ Z| gcd(a, n) = 1} ⊂ (Z/nZ)?

1. V contains an element which is not a square root of 1 if and only if n is not

prime nor a Carmichael number.
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3 THE ROLE OF THE SQUARE ROOTS OF 1.

2. If all the elements of V are square roots of 1, then n is a prime number if and

only if V = {−1, 1}.

Proof. 1. Let x ∈ V be such that x is not a square root of 1, and let a ∈ Z,

gcd(a, n) = 1 and x = a(n−1)/2. Since x2 6= 1, then an−1 6≡ 1 (mod n). Fermat’s

little theorem implies immediately that n is not a prime number, hence n is

composite not a Carmichael number.

Conversely, suppose that n = pe or n = pe11 · · · perr , where r ≥ 2, p, p1, . . . pr

are odd prime numbers, e ≥ 2 and e1, . . . er are positive integers. Let ξn be

an element of (Z/nZ)? of order λ(n). Then ξ
(n−1)/2
n ∈ V . We show that this

element of V is not a square root of 1. Suppose the contrary. We have

1̄ = (ξ(n−1)/2
n )2 = ξn−1

n =


ξp

e−1
n in the first case

ξ
p
e1
1 ···p

er
r −1

n in the second case

.

In the first case this implies λ(n) = Φ(n) = pe−1(p− 1) divides pe − 1. This is

a contradiction because p - pe − 1. In the second case λ(n) = lcm(Φ(peii ), i =

1, . . . , r) = lcm(pei−1
i (pi−1), i = 1, . . . , r) divides pe11 · · · perr −1. If some ej ≥ 2,

then pj | pe11 · · · perr − 1, which is a contradiction. If all the ei are equal to 1,

then pi − 1 | n − 1 for all i, hence n is a Carmichael number, a contradiction

again.

2. Suppose n = p is a prime number and let x = a(n−1)/2 = a(p−1)/2 ∈ V , then

x2 = ap−1 = 1̄, hence x = ±1.
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3 THE ROLE OF THE SQUARE ROOTS OF 1.

Conversely, suppose that V = {−1, 1}. Let a ∈ Z such that gcd(a, n) = 1.

Since a(n−1)/2 ≡ ±1 (mod n), then an−1 ≡ 1 (mod n). By 1., n is a prime or a

Carmichael number. We must eliminate the second possibility. If n = p1 · · · pr

is a Carmichael number, then the assumption on V shows that |B1| = 1 and

|A1| ≥ 2, thus |A1| = r − 1. This means that a(n−1)/2 ≡ 1 (mod pi) for

i = 1, . . . r1 and a(n−1)/2 ≡ ±1 (mod pr). Equivalently, we have

a(n−1)/2 ≡


1 (mod

∏r−1
i=1 pi)

1 (mod pr)

or

a(n−1)/2 ≡


1 (mod

∏r−1
i=1 pi)

−1 (mod pr).

The first case shows that the unique solution is a(n−1)/2 ≡ 1 (mod n). The

solution for the second case is never equal to 1, nor −1.

Example Let n = 3367, then (n − 1)/2 = 1683, 2(n−1)/2 ≡ 1807 (mod n) and

18072 ≡ 2626 (mod n) 6≡ 1 (mod n), hence by the corollary, n is not a prime nor a

Carmichael number.

Remark 1. If all the elements of V are square roots of 1, then by 1., n is a prime

number or a Carmichael number, thus item 2. of the above corollary may be replaced

by the following:

10



3 THE ROLE OF THE SQUARE ROOTS OF 1.

If all the the elements of V are square roots of 1, then n is a Carmichael number if

and only if V 6= {−1, 1}.

Notice that if a(n−1)/2 is a square root of 1 for any a ∈ (Z/nZ)?, then the set V is a

subgroup of the group S of square roots of unity, so {1} ⊂ V ⊂ S ⊂ (Z/nZ)?.

Corollary 2. Let n = p1 · · · pr be a square free integer such that all the elements of

V are square roots of 1. Let r1 (resp. r2) be the number of pi’s such that ν2(pi−1) <

ν2(n − 1) (resp. ν2(pi − 1) = ν2(n − 1)). Then the first three (resp. the last three)

following conditions are equivalent.

(i) r2 = 0.

(ii) V = {1}.

(iii) n is really strong.

(iv) r1 = 0.

(v) −1 ∈ V .

(vi) V = {x ∈ (Z/nZ)? | x2 = 1}.

Proof. (i)⇒ (ii). Since for any i = 1, . . . , r, ν2(pi− 1) < ν2(n− 1), then ν2(pi− 1) ≤

ν2((n − 1)/2), hence pi − 1 | (n − 1)/2. Since for any a ∈ Z, gcd(a, n) = 1, we

have api−1 ≡ 1 (mod pi), then a(n−1)/2 ≡ 1 (mod n) for i = 1, . . . , r. This implies

a(n−1)/2 ≡ 1 (mod n) for any a ∈ Z such that gcd(a, n) = 1. Therefore, V = {1}.

(ii)⇒ (iii). Obvious.
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3 THE ROLE OF THE SQUARE ROOTS OF 1.

(iii) ⇒ (i). By contradiction, suppose that there exists i ∈ {1, . . . , r} be such that

ν2(pi− 1) = ν2(n− 1). Since pi− 1 | n− 1, then we may set n− 1 = (pi− 1)q, where

q is an odd integer. Let a ∈ Z be such that a(pi−1)/2 ≡ −1 (mod pi), then a(n−1)/2 =

(a(pi−1)/2)q ≡ (−1)q (mod pi) ≡ −1 (mod pi), hence a(n−1)/2 6≡ 1 (mod n), which is

a contradiction.

(iv)⇒ (v). For any i = 1, . . . , r, ν2(pi−1) = ν2(n−1), hence n−1 = (pi−1)qi, where

qi is an odd positive integer. By the Chinese remainder theorem, let a ∈ Z be such

that a(pi−1)/2 ≡ −1 (mod pi) for i = 1, . . . , r. Then a(n−1)/2 = (a((pi−1)/2))q ≡ (−1)q

(mod pi) ≡ −1 (mod pi) for i = 1, . . . , r, hence a(n−1)/2 ≡ −1 (mod n). This implies

−1 ∈ V .

(v) ⇒ (vi). By assumption any element of V is a square root of 1. We show the

converse. Let a ∈ Z be a fixed integer such that a(n−1)/2 ≡ −1 (mod n), then for

i = 1, . . . , r, a(n−1)/2 ≡ −1 (mod pi). Let x be a square root of 1 in Z/nZ, then x

is a square root of 1 modulo pi for i = 1, . . . , r, hence x ≡ εi for i = 1, . . . r, where

εi = ±1. Set

bi =


a if εi = −1

εi if εi = 1

and let b ∈ Z be such that b ≡ bi (mod pi) for i = 1, . . . , r. We have b(n−1)/2 ∈ V ,

b(n−1)/2 ≡ b
(n−1)/2
i (mod pi).

(vi)⇒ (iv). Since −1 ∈ V , then there exists a ∈ Z such that a(n−1)/2 ≡ −1 (mod n).
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3 THE ROLE OF THE SQUARE ROOTS OF 1.

This implies that a(n−1)/2 ≡ −1 (mod p) for any prime factor p of n. We deduce

that p− 1 - (n− 1)/2, and since p− 1 | n− 1, then ν2(p− 1) = ν2(n− 1). Therefore,

r1 = 0.

Here is the list of the sixteen first Carmichael numbers n with the factorizations of

n and n− 1 along with the values of λ(n) and (r1, r2).

n n− 1 λ(n) (r1, r2)

561=3.11.17 560 = 24.5.7 λ(561) = 24.5 (2, 1)

1105=5.13.17 1104 = 24.3.23 λ(1105) = 24.3 (2, 1)

1729=7.13.19 1728 = 26.33 λ(1729) = 22.32 (3, 0)

2465=5.17.29 2464 = 25.7.11 λ(2465) = 24.7 (3, 0)

2821=7.13.31 2820 = 22.3.5.47 λ(2821) = 22.3.5 (2, 1)

6601=7.23.41 6600 = 23.3.52.11 λ(6601) = 23.3.5.11 (2, 1)

8911=7.19.67. 8910 = 2.34.5.11 λ(8911) = 2.32.11 (0, 3)

10585=5.29.73 10584 = 23.33.72 λ(2465) = 23.32.7 (2, 1)

15841=7.31.73 15840 = 25.32.5.11 λ(15841) = 23.32.5 (3, 0)

29341=13.37.61. 29340 = 22.32.5.163 λ(29341) = 22.32.5 (0, 3)

41041=7.11.13.41 41040 = 24.32.5.19 λ(2465) = 23.3.5 (4, 0)

46657=13.37.97 46656 = 26.36 λ(2465) = 25.32 (3, 0)

52633=7.73.103 52632 = 23.32.17.43 λ(52633) = 23.32.17 (2, 1)

62745=3.5.47.89. 62744 = 23.11.23.31 λ(62745) = 23.11.23 (3, 1)

63973=7.13.19.37 63972 = 22.32.1777 λ(63973) = 23.11.23 (2, 2)
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n n− 1 λ(n) (r1, r2)

75361=11.13.17.31. 75360 = 25.3.5.157 λ(63973) = 24.3.5 (4, 0)

Among these Carmichael numbers, six of them are really strong Carmichael numbers,

namely: 1729, 2465, 15841, 41041, 46657, 75361. Clearly, if n ≡ −1 (mod 4), then by

proposition 1, r1 = 0 and r2 = r. The converse is false, as is shown by the number

n = 29341 = 13.37.61 contained in the above table. Notice that in this table there

is no number for which (r1, r2) = (1, 2).

Questions. 1. Do there exist infinitely many Carmichael numbers n ≡ −1 (mod 4)?

2. Given non-negative integers r1, r2, r, such that r ≥ 3 and r1 + r2 = r, can one find

a Carmichael number n such that n has r prime factors, r1 of them say p1, . . . , pr1

satisfy the condition ν2(pi− 1) < ν2(n− 1) and the remaing ones pr1+1, . . . , pr verify

the condition ν2(pj − 1) = ν2(n− 1)?
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