# Really strong Carmichael numbers 

Mohamed Ayad, Rachid Bouchenna

## To cite this version:

Mohamed Ayad, Rachid Bouchenna. Really strong Carmichael numbers. 2024. hal-04492933

HAL Id: hal-04492933 https://uca.hal.science/hal-04492933

Preprint submitted on 6 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

## Really strong Carmichael numbers

Mohamed Ayad, Laboratoire de Mathématiques Pures et Appliquées, Université du Littoral, F-62228 Calais. France

E-mail: ayadmohamed502@yahoo.com
Rachid Bouchenna, ACC (Arithmétique, Codage et Combinatoire), Université des Sciences et Technologies Houari Boumediene, 16324, El Alia, Alger, Algérie.

E-mail: rbouchenna@usthb.dz

MSC : 11A07, 11A51.

Keywords : $\lambda$ function, Carmichael numbers, Strong Carmichael numbers, Congruences.


#### Abstract

A composite number $n$ is called a Carmichael number if $a^{n-1} \equiv 1$ $(\bmod n)$ for any integer $a$ coprime with $n$. D. H. Lehmer considered the class of these numbers $n$ such that $a^{(n-1) / 2} \equiv\left(\frac{a}{n}\right)(\bmod n)$ for any integer $a$ coprime with $n$. Here $\left(\frac{a}{n}\right)$ denotes the Jacobi symbol. It turns out and it is shown by Lehmer himself that this class is empty. Here, we replace $\equiv\left(\frac{a}{n}\right)(\bmod n)$ in Lehmer's congruence by $\equiv 1(\bmod n)$ and get a new class which is not empty.


## 1 introduction

In 1910, R. D. Carmichael [2] defined the number theory function $\lambda(n)$ by $\lambda(2)=$ $\Phi(2)=1, \lambda\left(2^{2}\right)=\Phi\left(2^{2}\right)=2$,

$$
\lambda\left(p^{e}\right)=\left\{\begin{array}{l}
\Phi\left(p^{e}\right)=p^{e-1}(p-1) \text { if } p \text { is odd and } e \geq 1 \\
\frac{\Phi\left(2^{e}\right)}{2}=2^{e-2} \text { if } p=2 \text { and } e \geq 3
\end{array}\right.
$$

and in general $\lambda\left(p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}\right)=\operatorname{lcm}\left(\lambda\left(p_{1}^{e_{1}}\right), \ldots, \lambda\left(p_{r}^{e_{r}}\right)\right)$.
Let $n \geq 2$ be an integer. It is easy to see that the exponent of the group $(\mathbb{Z} / n \mathbb{Z})^{\star}$ divides $\lambda(n)$. Indeed, even better that this divisibility property alone, the paper [2] proves equality, that is there exists an element of the group whose order is equal to $\lambda(n)$.

The famous Fermat's little theorem asserts that if $p$ is a prime number, then for any $a \in \mathbb{Z}, \operatorname{gcd}(a, p)=1$, we have $a^{p-1} \equiv 1(\bmod p)$. The converse of this theorem is false. Carmichael [3] gave the first counter-example, namely $n=561=3.11 .17$, so we are led to the following definition. A composite number $n$ is called a Carmichael number if for any $a \in \mathbb{Z}, \operatorname{gcd}(a, n)=1$ we have $a^{n-1} \equiv 1(\bmod n)$.

The known criteria for a Carmichael number are sumarized in the following result.

Theorem 1. Let $n \geq 2$ be a composite number, then the following conditions are equivalent.
(i) $n$ is a Carmichael number.
(ii) $n$ is square-free and any prime factor $p$ of $n$ satisfies the condition $p-1 \mid n-1$.
(iii) $\lambda(n) \mid n-1$.

The equivalence of $(i)$ with (ii) (resp. (i) with (iii)) are due to A. R. Korselt [4] and to R. D. Carmichael respectively [3].

In [1] the authors proved that there are infinitely many Carmichael numbers.

In [5], D. H. Lehmer defined what he called a strong Carmichael number to be an odd composite number $n$ for which $a^{(n-1) / 2} \equiv\left(\frac{a}{n}\right)(\bmod n)$ for any $a \in \mathbb{Z}, \operatorname{gcd}(a, n)=1$, where $\left(\frac{a}{n}\right)$ denotes the Jacobi symbol. He showed, in the same paper, that these numbers do not exist.

In the rest of the text, we discuss the possibility for an integer $n$ to satisfy the congruence $a^{(n-1) / 2} \equiv 1(\bmod n)$ for any $a \in \mathbb{Z}, \operatorname{gcd}(a, n)=1$. Such numbers will be called really strong Carmichael numbers.

## 2 Really strong Carmichael numbers.

An odd composite number $n$ for which $a^{(n-1) / 2} \equiv\left(\frac{a}{n}\right)(\bmod n)$ for any $a \in \mathbb{Z}$, $\operatorname{gcd}(a, n)=1$ is called by D. H. Lehmer a strong Carmichael number. Here $\left(\frac{a}{n}\right)$
denotes the Jacobi symbol. If $n$ is strong, then

$$
\left(a^{(n-1) / 2}\right)^{2} \equiv\left(\frac{a}{n}\right)^{2} \quad(\bmod n) \equiv 1 \quad(\bmod n)
$$

hence $n$ is a Carmichael number. For example for $n=561$ which is the smallest Carmichael number, we have $2^{560 / 2}=2^{280} \equiv-1(\bmod 561) \equiv\left(\frac{2}{561}\right)(\bmod 561)$ and $5^{280} \equiv 67(\bmod 561) \not \equiv \pm 1(\bmod 561)$, hence 561 is not a strong Carmichael number. Indeed, in his paper Lehmer proved that there exists no strong Carmichael number.

Let $e(n)=\nu_{2}(n-1) \geq 1$. For any $k, 1 \leq k \leq e(n)$, we consider the conditions:

$$
\left(C_{k}\right) \quad a^{(n-1) / 2^{k}} \equiv 1 \quad(\bmod n) \quad \text { for any } \quad a \in \mathbb{Z}, \quad \operatorname{gcd}(a, n)=1
$$

It is clear that if $\left(C_{k}\right)$ is satisfied, then all the conditions $\left(C_{k}\right),\left(C_{k-1}\right), \cdots\left(C_{1}\right)$ are verified. A number $n$ which satisfies $\left(C_{k}\right)$ for some $1 \leq k \leq e(n)$, hence for $k=1$, will be called a really strong Carmichael number. We will show that contrary to strong Carmichael numbers, really strong Carmichael numbers exist.

Notice that, since the exponent of the group $(\mathbb{Z} / n \mathbb{Z})^{\star}$ is equal to $\lambda(n)$, then the condition $\left(C_{k}\right)$ is equivalent to $\lambda(n) \mid(n-1) / 2^{k}$.

Proposition 1. If $n \equiv-1(\bmod 4)$ and $n$ is a Carmichael number, then any prime factor of $n$ is congruent to -1 modulo 4. The number of these primes is odd and $n$ is not really strong.

Proof. Since $n \equiv-1(\bmod 4)$, then $n-1 \equiv 2(\bmod 4)$. Let $p$ be a prime factor of $n$. Since $p$ is odd and $p-1 \mid n-1$, then $p-1 \equiv 2(\bmod 4)$, hence $p \equiv-1(\bmod 4)$.

Let $r$ be the number of prime factors of $n$, then $-1 \equiv n(\bmod 4) \equiv(-1)^{r}(\bmod 4)$, hence $r$ is odd. Now $(n-1) / 2$ is odd and $\lambda(n)$ is even, hence $\lambda(n) \nmid(n-1) / 2$ and $n$ is not really strong.

Example. The integer $n=8911=7 \times 19 \times 67$ satisfies the conditions of this proposition.

Theorem 2. Let $n \geq 3$ be an odd integer and $k$ be an integer such that $1 \leq k \leq e(n)$.

1. The following conditions are equivalent.
(i) $n$ is a prime number or a Carmichael number.
(ii) For any $a \in \mathbb{Z}, \operatorname{gcd}(a, n)=1$, we have $\overline{a^{(n-1) / 2^{k}}}$ is a $2^{k}$-th root of 1 in $\mathbb{Z} / n \mathbb{Z}$.
2. Suppose that $n$ satisfies the above equivalent conditions. Let $A_{k}$ be the set of prime numbers $p$ dividing $n$ such that $\nu_{2}(p-1)>\nu_{2}\left((n-1) / 2^{k}\right)$.

Let $\theta:(\mathbb{Z} / n \mathbb{Z})^{\star} \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\star}$ be the map such that $\theta(\bar{x})=\overline{x^{(n-1) / 2^{k}}}$. Then $\theta$ is a homomorphism of groups and
$\operatorname{Im} \theta \simeq \prod_{p_{i} \in A_{k}}\left(\mathbb{F}_{p_{i}}^{\star}\right)^{u_{i}} \simeq \prod_{p_{i} \in A_{k}}\left\{2^{s_{i}}\right.$-th roots of 1 in $\left.\mathbb{Z} / p_{i} \mathbb{Z}\right\} \simeq \prod_{p_{i} \in A_{k}}<\xi_{i}^{\left(p_{i}-1\right) / 2^{s_{i}}}>$,
where $\xi_{i}$ is a generator of $\left(\mathbb{Z} / p_{i} \mathbb{Z}\right)^{\star}$, $s_{i}=\nu_{2}\left(p_{i}-1\right)-(e-k)$ and $u_{i}=\left(p_{i}-1\right) / 2^{s_{i}}$.
Moreover,

$$
\operatorname{Im} \theta=\left\{\bar{x} \in(\mathbb{Z} / n \mathbb{Z})^{\star} \mid x \equiv 1 \text { or } x^{2^{k}} \equiv 1 \quad(\bmod p) \text { according to } p \notin A_{k} \text { or } \quad p \in A_{k}\right\} .
$$

Proof. 1. • $(i) \Rightarrow(i i)$. Let $a \in \mathbb{Z}$ such that $\operatorname{gcd}(a, n)=1$ and let $b=a^{(n-1) / 2^{k}}$. Since $\overline{a^{n-1}}=\overline{1}$, then $\bar{b}^{2^{k}}=\overline{a^{(n-1) / 2^{k}}} 2^{k}=\overline{a^{n-1}}=\overline{1}$, hence $b$ is a $2^{k}$-th root of 1 modulo $n$.

- $(i i) \Rightarrow(i)$. Suppose that $n$ is not a prime number, that is $n$ is composite. Let $a \in \mathbb{Z}$ such that $\operatorname{gcd}(a, n)=1$, then $\overline{1}=\overline{a^{(n-1) / 2^{2}}}{ }^{k}=\overline{a^{n-1}}$, hence $n$ is a Carmichael number.

2. Obviously, $\theta$ is a homomorphism of groups. We compute the image of $\theta$. We will use the following:

Claim. Let $p$ be a prime divisor of $n$, then $p-1 \mid(n-1) / 2^{k}$ if and only if $p \notin A_{k}$.

Proof. For any odd prime $l$, we have $\nu_{l}\left((n-1) / 2^{k}\right)=\nu_{l}(n-1)$, hence

$$
\begin{aligned}
p-1 \mid(n-1) / 2^{k} & \Leftrightarrow \nu_{l}(p-1) \leq \nu_{l}\left((n-1) / 2^{k}\right) \quad \text { for any prime } l \\
& \Leftrightarrow \nu_{2}(p-1) \leq \nu_{2}\left((n-1) / 2^{k}\right)=\nu_{2}(n-1)-k \\
& \Leftrightarrow p \notin A_{k} .
\end{aligned}
$$

This claim being proved, let $\bar{a} \in(\mathbb{Z} / n \mathbb{Z})^{\star}$. We have

$$
\begin{aligned}
\bar{a} \in \operatorname{Ker} \theta & \Leftrightarrow \overline{a^{(n-1) / 2^{k}}}=\overline{1} \\
& \Leftrightarrow a^{(n-1) / 2^{k}} \equiv 1 \quad(\bmod p) \quad \text { for any } \quad p \mid n \\
& \Leftrightarrow(\text { by the claim }), \quad a^{(n-1) / 2^{k}} \equiv 1 \quad\left(\bmod p_{i}\right) \quad \text { for } \quad p_{i} \in A_{k} .
\end{aligned}
$$

For $i$ such that $p_{i} \in A_{k}$, let $\xi_{i} \in \mathbb{Z}$ be such that its reduction modulo $p_{i}$ is a primitive $p_{i}$-th root of unity and let $u_{i}$ be such that $a \equiv \xi_{i}^{u_{i}}\left(\bmod p_{i}\right)$. Then

$$
\begin{aligned}
a^{(n-1) / 2^{k}} \equiv 1 \quad\left(\bmod p_{i}\right) & \Leftrightarrow \xi_{i}^{u_{i}(n-1) / 2^{k}} \equiv 1 \quad\left(\bmod p_{i}\right) \\
& \Leftrightarrow p_{i}-1 \mid u_{i}(n-1) / 2^{k} \\
& \Leftrightarrow\left(\text { by the fact that } p_{i}-1 \mid n-1\right), \nu_{2}\left(p_{i}-1\right) \leq \nu_{2}\left(u_{i}(n-1) / 2^{k}\right) \\
& =\nu_{2}\left(u_{i}\right)+\nu_{2}\left((n-1) / 2^{k}\right)
\end{aligned}
$$

Since $\nu_{2}\left(p_{i}-1\right)>\nu_{2}\left((n-1) / 2^{k}\right)=e-k$, set $\nu_{2}\left(p_{i}-1\right)=e-k+s_{i}$, where $s_{i}$ is a positive integer. Then

$$
\begin{aligned}
p_{i}-1 \mid u_{i}(n-1) / 2^{k} & \Leftrightarrow e-k+s_{i} \leq \nu_{2}\left(u_{i}\right)+e-k \\
& \Leftrightarrow \nu_{2}\left(u_{i}\right) \geq s_{i} .
\end{aligned}
$$

We deduce that

$$
\begin{aligned}
\bar{a} \in \operatorname{Ker} \theta & \Leftrightarrow \nu_{2}\left(u_{i}\right) \geq s_{i}=\nu_{2}\left(p_{i}-1\right)-(e-k) \text { for } p_{i} \in A_{k} \\
& \Leftrightarrow 2^{s_{i}} \mid u_{i} \text { for } p_{i} \in A_{k} \\
& \Leftrightarrow a \text { modulo } p_{i} \text { is a } 2^{s_{i}}-\text { th power in } \mathbb{Z} / p_{i} \mathbb{Z} \text { for } p_{i} \in A_{k}
\end{aligned}
$$

Therefore $\operatorname{Ker} \theta \simeq\left(\prod_{p_{i} \notin A_{k}} \mathbb{F}_{p_{i}}^{\star}\right) \times\left(\prod_{p_{j} \in A_{k}} \mathbb{F}_{p_{j}}^{\star 2_{j}}\right)$.

This implies that

$$
\begin{aligned}
\operatorname{Im} \theta & \simeq \prod_{p_{j} \in A_{k}}\left(\mathbb{F}_{p_{j}}^{\star}\right)^{u_{j}} \\
& \simeq \prod_{p_{j} \in A_{k}}\left\{2^{s_{j}} \text {-th roots of } 1 \text { in } \mathbb{Z} / p_{j} \mathbb{Z}\right\} \\
& \simeq \prod_{p_{j} \in A_{k}}<\xi_{j}^{\left(p_{j}-1\right) / 2^{s_{j}}}>
\end{aligned}
$$

where $u_{j}=\left(p_{j}-1\right) / 2^{s_{j}}$. Moreover,
$\operatorname{Im} \theta=\left\{\bar{x} \in(\mathbb{Z} / n \mathbb{Z})^{\star} \mid x \equiv 1\right.$ or $x^{2^{k}} \equiv 1 \quad(\bmod p)$ according to $p \notin A_{k}$ or $\left.p \in A_{k}\right\}$.

## 3 The role of the square roots of 1.

This theorem shows that if $n$ a prime number or a Carmichael number, then as $a$ runs over $\mathbb{Z}$ and $\operatorname{gcd}(a, n)=1, a^{(n-1) / 2}$ takes $2^{\left|A_{1}\right|}$ distinct values modulo $n$ all of them being square roots of 1 .

Corollary 1. Let $n \geq 3$ be an odd integer and

$$
V=\left\{\overline{a^{(n-1) / 2}}, a \in \mathbb{Z} \mid \quad \operatorname{gcd}(a, n)=1\right\} \subset(\mathbb{Z} / n \mathbb{Z})^{\star}
$$

1. $V$ contains an element which is not a square root of 1 if and only if $n$ is not prime nor a Carmichael number.
2. If all the elements of $V$ are square roots of 1 , then $n$ is a prime number if and only if $V=\{-1,1\}$.

Proof. 1. Let $x \in V$ be such that $x$ is not a square root of 1 , and let $a \in \mathbb{Z}$, $\operatorname{gcd}(a, n)=1$ and $x=\bar{a}^{(n-1) / 2}$. Since $x^{2} \neq 1$, then $a^{n-1} \not \equiv 1(\bmod n)$. Fermat's little theorem implies immediately that $n$ is not a prime number, hence $n$ is composite not a Carmichael number.

Conversely, suppose that $n=p^{e}$ or $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, where $r \geq 2, p, p_{1}, \ldots p_{r}$ are odd prime numbers, $e \geq 2$ and $e_{1}, \ldots e_{r}$ are positive integers. Let $\xi_{n}$ be an element of $(\mathbb{Z} / n \mathbb{Z})^{\star}$ of order $\lambda(n)$. Then $\xi_{n}^{(n-1) / 2} \in V$. We show that this element of $V$ is not a square root of 1 . Suppose the contrary. We have

$$
\overline{1}=\left(\xi_{n}^{(n-1) / 2}\right)^{2}=\xi_{n}^{n-1}=\left\{\begin{array}{l}
\xi_{n}^{p^{e}-1} \text { in the first case } \\
\xi_{n}^{p_{1}^{e_{1} \ldots p_{r}^{e_{r}}-1} \text { in the second case }}
\end{array}\right.
$$

In the first case this implies $\lambda(n)=\Phi(n)=p^{e-1}(p-1)$ divides $p^{e}-1$. This is a contradiction because $p \nmid p^{e}-1$. In the second case $\lambda(n)=\operatorname{lcm}\left(\Phi\left(p_{i}^{e_{i}}\right), i=\right.$ $1, \ldots, r)=\operatorname{lcm}\left(p_{i}^{e_{i}-1}\left(p_{i}-1\right), i=1, \ldots, r\right)$ divides $p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}-1$. If some $e_{j} \geq 2$, then $p_{j} \mid p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}-1$, which is a contradiction. If all the $e_{i}$ are equal to 1 , then $p_{i}-1 \mid n-1$ for all $i$, hence $n$ is a Carmichael number, a contradiction again.
2. Suppose $n=p$ is a prime number and let $x=\overline{a^{(n-1) / 2}}=\overline{a^{(p-1) / 2}} \in V$, then $x^{2}=\overline{a^{p-1}}=\overline{1}$, hence $x= \pm 1$.

Conversely, suppose that $V=\{-1,1\}$. Let $a \in \mathbb{Z}$ such that $\operatorname{gcd}(a, n)=1$. Since $a^{(n-1) / 2} \equiv \pm 1(\bmod n)$, then $a^{n-1} \equiv 1(\bmod n)$. By $1 ., n$ is a prime or a Carmichael number. We must eliminate the second possibility. If $n=p_{1} \cdots p_{r}$ is a Carmichael number, then the assumption on $V$ shows that $\left|B_{1}\right|=1$ and $\left|A_{1}\right| \geq 2$, thus $\left|A_{1}\right|=r-1$. This means that $a^{(n-1) / 2} \equiv 1\left(\bmod p_{i}\right)$ for $i=1, \ldots r_{1}$ and $a^{(n-1) / 2} \equiv \pm 1\left(\bmod p_{r}\right)$. Equivalently, we have

$$
a^{(n-1) / 2} \equiv \begin{cases}1 & \left(\bmod \prod_{i=1}^{r-1} p_{i}\right) \\ 1 & \left(\bmod p_{r}\right)\end{cases}
$$

or

$$
a^{(n-1) / 2} \equiv \begin{cases}1 & \left(\bmod \prod_{i=1}^{r-1} p_{i}\right) \\ -1 & \left(\bmod p_{r}\right)\end{cases}
$$

The first case shows that the unique solution is $a^{(n-1) / 2} \equiv 1(\bmod n)$. The solution for the second case is never equal to 1 , nor -1 .

Example Let $n=3367$, then $(n-1) / 2=1683,2^{(n-1) / 2} \equiv 1807(\bmod n)$ and $1807^{2} \equiv 2626(\bmod n) \not \equiv 1(\bmod n)$, hence by the corollary, $n$ is not a prime nor a Carmichael number.

Remark 1. If all the elements of $V$ are square roots of 1 , then by $1 ., n$ is a prime number or a Carmichael number, thus item 2. of the above corollary may be replaced by the following:

If all the the elements of $V$ are square roots of 1 , then $n$ is a Carmichael number if and only if $V \neq\{-1,1\}$.

Notice that if $a^{(n-1) / 2}$ is a square root of 1 for any $\bar{a} \in(\mathbb{Z} / n \mathbb{Z})^{\star}$, then the set $V$ is a subgroup of the group $S$ of square roots of unity, so $\{1\} \subset V \subset S \subset(\mathbb{Z} / n \mathbb{Z})^{\star}$.

Corollary 2. Let $n=p_{1} \cdots p_{r}$ be a square free integer such that all the elements of $V$ are square roots of 1 . Let $r_{1}$ (resp. $r_{2}$ ) be the number of $p_{i}$ 's such that $\nu_{2}\left(p_{i}-1\right)<$ $\nu_{2}(n-1)$ (resp. $\left.\nu_{2}\left(p_{i}-1\right)=\nu_{2}(n-1)\right)$. Then the first three (resp. the last three) following conditions are equivalent.
(i) $r_{2}=0$.
(ii) $V=\{1\}$.
(iii) $n$ is really strong.
(iv) $r_{1}=0$.
(v) $-1 \in V$.
(vi) $V=\left\{\bar{x} \in(\mathbb{Z} / n \mathbb{Z})^{\star} \mid \bar{x}^{2}=1\right\}$.

Proof. $(i) \Rightarrow(i i)$. Since for any $i=1, \ldots, r, \nu_{2}\left(p_{i}-1\right)<\nu_{2}(n-1)$, then $\nu_{2}\left(p_{i}-1\right) \leq$ $\nu_{2}((n-1) / 2)$, hence $p_{i}-1 \mid(n-1) / 2$. Since for any $a \in \mathbb{Z}, \operatorname{gcd}(a, n)=1$, we have $a^{p_{i}-1} \equiv 1\left(\bmod p_{i}\right)$, then $a^{(n-1) / 2} \equiv 1(\bmod n)$ for $i=1, \ldots, r$. This implies $a^{(n-1) / 2} \equiv 1(\bmod n)$ for any $a \in \mathbb{Z}$ such that $\operatorname{gcd}(a, n)=1$. Therefore, $V=\{1\}$. $(i i) \Rightarrow(i i i)$. Obvious.
$($ iii $) \Rightarrow(i)$. By contradiction, suppose that there exists $i \in\{1, \ldots, r\}$ be such that $\nu_{2}\left(p_{i}-1\right)=\nu_{2}(n-1)$. Since $p_{i}-1 \mid n-1$, then we may set $n-1=\left(p_{i}-1\right) q$, where $q$ is an odd integer. Let $a \in \mathbb{Z}$ be such that $a^{\left(p_{i}-1\right) / 2} \equiv-1\left(\bmod p_{i}\right)$, then $a^{(n-1) / 2}=$ $\left(a^{\left(p_{i}-1\right) / 2}\right)^{q} \equiv(-1)^{q}\left(\bmod p_{i}\right) \equiv-1\left(\bmod p_{i}\right)$, hence $a^{(n-1) / 2} \not \equiv 1(\bmod n)$, which is a contradiction.
$(i v) \Rightarrow(v)$. For any $i=1, \ldots, r, \nu_{2}\left(p_{i}-1\right)=\nu_{2}(n-1)$, hence $n-1=\left(p_{i}-1\right) q_{i}$, where $q_{i}$ is an odd positive integer. By the Chinese remainder theorem, let $a \in \mathbb{Z}$ be such that $a^{\left(p_{i}-1\right) / 2} \equiv-1\left(\bmod p_{i}\right)$ for $i=1, \ldots, r$. Then $a^{(n-1) / 2}=\left(a^{\left(\left(p_{i}-1\right) / 2\right)}\right)^{q} \equiv(-1)^{q}$ $\left(\bmod p_{i}\right) \equiv-1\left(\bmod p_{i}\right)$ for $i=1, \ldots, r$, hence $a^{(n-1) / 2} \equiv-1(\bmod n)$. This implies $-1 \in V$.
$(v) \Rightarrow(v i)$. By assumption any element of $V$ is a square root of 1 . We show the converse. Let $a \in \mathbb{Z}$ be a fixed integer such that $a^{(n-1) / 2} \equiv-1(\bmod n)$, then for $i=1, \ldots, r, a^{(n-1) / 2} \equiv-1\left(\bmod p_{i}\right)$. Let $\bar{x}$ be a square root of 1 in $\mathbb{Z} / n \mathbb{Z}$, then $x$ is a square root of 1 modulo $p_{i}$ for $i=1, \ldots, r$, hence $x \equiv \epsilon_{i}$ for $i=1, \ldots r$, where $\epsilon_{i}= \pm 1$. Set

$$
b_{i}=\left\{\begin{array}{l}
a \text { if } \epsilon_{i}=-1 \\
\epsilon_{i} \text { if } \epsilon_{i}=1
\end{array}\right.
$$

and let $b \in \mathbb{Z}$ be such that $b \equiv b_{i}\left(\bmod p_{i}\right)$ for $i=1, \ldots, r$. We have $b^{(n-1) / 2} \in V$, $b^{(n-1) / 2} \equiv b_{i}^{(n-1) / 2}\left(\bmod p_{i}\right)$.
$(v i) \Rightarrow(i v)$. Since $\overline{-1} \in V$, then there exists $a \in \mathbb{Z}$ such that $a^{(n-1) / 2} \equiv-1(\bmod n)$.

This implies that $a^{(n-1) / 2} \equiv-1(\bmod p)$ for any prime factor $p$ of $n$. We deduce that $p-1 \nmid(n-1) / 2$, and since $p-1 \mid n-1$, then $\nu_{2}(p-1)=\nu_{2}(n-1)$. Therefore, $r_{1}=0$.

Here is the list of the sixteen first Carmichael numbers $n$ with the factorizations of $n$ and $n-1$ along with the values of $\lambda(n)$ and $\left(r_{1}, r_{2}\right)$.

| $n$ | $n-1$ | $\lambda(n)$ | $\left(r_{1}, r_{2}\right)$ |
| :---: | :---: | :---: | :---: |
| $561=3.11 .17$ | $560=2^{4} .5 .7$ | $\lambda(561)=2^{4} .5$ | $(2,1)$ |
| $1105=5.13 .17$ | $1104=2^{4} .3 .23$ | $\lambda(1105)=2^{4} .3$ | $(2,1)$ |
| $1729=7.13 .19$ | $1728=2^{6} .3^{3}$ | $\lambda(1729)=2^{2} .3^{2}$ | $(3,0)$ |
| $2465=5.17 .29$ | $2464=2^{5} .7 .11$ | $\lambda(2465)=2^{4} .7$ | $(3,0)$ |
| $2821=7.13 .31$ | $2820=2^{2} \cdot 3 \cdot 5 \cdot 47$ | $\lambda(2821)=2^{2} .3 .5$ | $(2,1)$ |
| $6601=7.23 .41$ | $6600=2^{3} \cdot 3 \cdot 5^{2} \cdot 11$ | $\lambda(6601)=2^{3} .3 .5 .11$ | $(2,1)$ |
| $8911=7.19 .67$. | $8910=2.3{ }^{4} .5 .11$ | $\lambda(8911)=2.3^{2} .11$ | $(0,3)$ |
| $10585=5.29 .73$ | $10584=2^{3} \cdot 3^{3} \cdot 7^{2}$ | $\lambda(2465)=2^{3} .3^{2} .7$ | $(2,1)$ |
| $15841=7.31 .73$ | $15840=2^{5} \cdot 3^{2} .5 .11$ | $\lambda(15841)=2^{3} .3^{2} .5$ | $(3,0)$ |
| $29341=13.37 .61$. | $29340=2^{2} .3^{2} \cdot 5 \cdot 163$ | $\lambda(29341)=2^{2} .3^{2} .5$ | $(0,3)$ |
| $41041=7.11 .13 .41$ | $41040=2^{4} \cdot 3^{2} .5 .19$ | $\lambda(2465)=2^{3} .3 .5$ | $(4,0)$ |
| $46657=13.37 .97$ | $46656=2^{6} .3^{6}$ | $\lambda(2465)=2^{5} .3^{2}$ | $(3,0)$ |
| $52633=7.73 .103$ | $52632=2^{3} .3^{2} .17 .43$ | $\lambda(52633)=2^{3} .3^{2} .17$ | $(2,1)$ |
| $62745=3.5 .47 .89$. | $62744=2^{3} .11 .23 .31$ | $\lambda(62745)=2^{3} .11 .23$ | $(3,1)$ |
| $63973=7.13 .19 .37$ | $63972=2^{2} \cdot 3^{2} .1777$ | $\lambda(63973)=2^{3} .11 .23$ | $(2,2)$ |


| $n$ | $n-1$ | $\lambda(n)$ | $\left(r_{1}, r_{2}\right)$ |
| :--- | :--- | :--- | :--- |
| $75361=11.13 .17 .31$. | $75360=2^{5} .3 .5 .157$ | $\lambda(63973)=2^{4} .3 .5$ | $(4,0)$ |

Among these Carmichael numbers, six of them are really strong Carmichael numbers, namely: $1729,2465,15841,41041,46657,75361$. Clearly, if $n \equiv-1(\bmod 4)$, then by proposition $1, r_{1}=0$ and $r_{2}=r$. The converse is false, as is shown by the number $n=29341=13.37 .61$ contained in the above table. Notice that in this table there is no number for which $\left(r_{1}, r_{2}\right)=(1,2)$.

Questions. 1. Do there exist infinitely many Carmichael numbers $n \equiv-1(\bmod 4)$ ?
2. Given non-negative integers $r_{1}, r_{2}, r$, such that $r \geq 3$ and $r_{1}+r_{2}=r$, can one find a Carmichael number $n$ such that $n$ has $r$ prime factors, $r_{1}$ of them say $p_{1}, \ldots, p_{r_{1}}$ satisfy the condition $\nu_{2}\left(p_{i}-1\right)<\nu_{2}(n-1)$ and the remaing ones $p_{r_{1}+1}, \ldots, p_{r}$ verify the condition $\nu_{2}\left(p_{j}-1\right)=\nu_{2}(n-1)$ ?

## References

[1] W. R. Alford, A. Granville, C. Pomerance, There are infinitely many Carmichael numbers, Annals of Math. 140, (1994) 703-722.
[2] R. D. Carmichael, Note on a new number theory function, Bull. A. M. S. 16 (1910) 232-238.
[3] R. D. Carmichael, On composite numbers $P$ which satisfy the Fermat congruence $a^{P-1} \equiv 1(\bmod P)$, Amer. Math. Monthly, $19((1912)$ 22-27.
[4] A. R. Korselt, Problème chinois, L'intermédiaire des mathématiciens 6 (1899) 142-143.
[5] D. H. Lehmer, Strong Carmichael numbers, J. Aust. Math. Soc. 21 (1976) 508510.

