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Abstract: Three-dimensional (3D) organoid culture recapitulating patient-specific histopathological
and molecular diversity offers great promise for precision medicine in cancer. In this study, we estab-
lished label-free imaging procedures, including Raman microspectroscopy (RMS) and fluorescence
lifetime imaging microscopy (FLIM), for in situ cellular analysis and metabolic monitoring of drug
treatment efficacy. Primary tumor and urine specimens were utilized to generate bladder cancer
organoids, which were further treated with various concentrations of pharmaceutical agents relevant
for the treatment of bladder cancer (i.e., cisplatin, venetoclax). Direct cellular response upon drug
treatment was monitored by RMS. Raman spectra of treated and untreated bladder cancer organoids
were compared using multivariate data analysis to monitor the impact of drugs on subcellular struc-
tures such as nuclei and mitochondria based on shifts and intensity changes of specific molecular
vibrations. The effects of different drugs on cell metabolism were assessed by the local autofluo-
rophore environment of NADH and FAD, determined by multiexponential fitting of lifetime decays.
Data-driven neural network and data validation analyses (k-means clustering) were performed to
retrieve additional and non-biased biomarkers for the classification of drug-specific responsiveness.
Together, FLIM and RMS allowed for non-invasive and molecular-sensitive monitoring of tumor-drug
interactions, providing the potential to determine and optimize patient-specific treatment efficacy.

Keywords: patient-derived tumor models; personalized medicine; non-invasive molecular imaging;
machine learning; drug efficacy testing

1. Introduction

Patient-derived tumor organoids have emerged as useful in vitro models for the
high-throughput screening of drugs for individualized cancer treatment [1–3]. In vitro
three-dimensional (3D) organoids, producible in a short time from small amounts of tissue,
enable drug testing and the identification of potential diagnostic biomarkers. Such 3D
organoids can be generated not only from surgical specimens, but also from endoscopic
fine-needle aspirates, biopsy samples or even from patients’ body fluids [4,5], allowing for
the recapitulation of a wide range of disease stages and clinical conditions. To date, the
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majority of preclinical bladder cancer research has been conducted with bladder cancer cell
lines or mouse models [6,7], poorly representing the features of human bladder tumors.
Recently, the generation of mouse and human bladder cancer organoids was reported [8,9],
recapitulating the broad histopathological and molecular spectrum of human bladder
cancer and suitable for analyses of patient-individualized drug responses. One of the
main obstacles in generating organoids is obtaining the patient’s tissue, which is typically
received from a biopsy. A novel, simplified and non-invasive method is to collect the urine
of a patient, eliminating the need for surgery under anesthesia [4,10].

Drug metabolism and uptake, dose-dependent efficacy and the development of drug
resistance are key determinants in the treatment of cancer patients. Within the last decade,
it has been well recognized that these parameters vary greatly from patient to patient,
necessitating personalized options for treatment [11–13]. Pretreatment screening of the
dose-dependent potency of chemotherapeutics increases success rates and precludes drug
overuse, thereby preventing side effects and additional patient suffering. Moreover, such
patient-specific information could make therapies more cost-effective.

Conventional methods to monitor drug-induced effects in cell cultures typically in-
clude either cell viability assays or gene and protein expression assays, which allow de-
tailed analysis of total protein or DNA composition [14,15]. Overall, these methods assess
the pooled response of a batch of organoids and ignore the cellular heterogeneity that
drives resistance to tumor treatment while being time-consuming and requiring lysis of 3D
organoids to extract biomolecules [16]. Spatially resolved techniques such as immunofluo-
rescence imaging inherit other limitations such as sample fixation and the incorporation
of a fluorophore that could interfere with native intracellular biochemistry. Moreover,
each fluorophore probes only one specific biomolecule, limiting the amount of obtainable
biochemical information.

Advances in non-destructive imaging techniques have evolved over the past decade,
providing time-resolved insight into cellular metabolism and molecular composition. Here,
label-free fluorescence lifetime imaging microscopy (FLIM) utilizing the endogenous fluo-
rescence of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide
(FAD) provides new possibilities for gathering information about metabolic pathways. Both
coenzymes are involved primarily in the mitochondrial tricarboxylic acid cycle and electron
transfer chain, where they are engaged in the formation of adenosine triphosphate and
reactive oxygen species (ROS) as part of the energy metabolism and apoptosis pathway [17].
One hallmark of cancer cells is the reprogramed metabolism in their energy production.
According to the “Warburg effect”, cancer cells are characterized by a dominating aerobic
glycolysis metabolism compared to the normally favored oxidative phosphorylation [18].
FLIM possesses the fidelity to identify minute changes in the distribution of bound and
free NADH and FAD as a direct measure of the metabolic state [19]. Hence, FLIM is a
promising tool for monitoring the direct drug response of chemotherapeutics in organoid
models [20].

Complementary to FLIM imaging, non-invasive Raman microspectroscopy (RMS)
enables the marker-independent and molecular-sensitive identification and localization of
subcellular structures. Molecular fingerprints of Raman active biomolecules such as pro-
teins, lipids, or nucleic acids can reflect a specific tissue state or cellular phenotype [21–24].

These methods yield a large amount of data not describable by conventional univari-
ate models. Therefore, data-driven machine learning tools such as principal component
analysis (PCA), k-means clustering, or neural networks have been introduced for the analy-
sis of RMS data to identify the main features of cellular changes after drug treatment in
different and complementary approaches [25,26]. Whereas PCA and k-means methods
are based solely on linear transformations, neural networks make use of non-linear activa-
tion functions and are able to find rather unintuitive and ulterior correlations in the data,
which ultimately yields better clustering [27]. Another research-oriented goal is to utilize
these machine learning tools to find new, hitherto unknown biomarkers with completely
unbiased approaches.
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In this study, 3D organoids of the bladder cancer cell line RT112, bladder cancer
organoids (BCO) derived from primary tumor biopsy tissue, and urine-derived organoids
(UCO) from bladder cancer patients were treated with cisplatin (cis) or venetoclax (vtx) and
evaluated with FLIM and RMS. Herein, we aim to address the molecular and metabolic
response of different organoid entities and to develop a multiparametric data-based model
that can predict patient-specific treatment efficacies.

2. Results

We characterized three different organoid models derived from a bladder cancer
cell line RT112, patient-derived primary bladder cancer tissue (BCO) as well as patient
urine (UCO) and compared their direct reaction to anticancer drugs cis and vtx. RMS
and FLIM were implemented for spatially and time-resolved measurements of cellular
drug responses.

2.1. Raman Microspectroscopy Allows Label-Free Imaging of Bladder Cancer Organoids

Organoids were derived from a bladder cancer cell line, primary bladder cancer tissue
and urine. Immunofluorescence (IF) staining for the epithelial cell markers cytokeratin
5 and cytokeratin 7 and the transcription factor GATA3 was performed to characterize
the three cancer organoid models (Figure 1a). IF images served for validation of the
cancerogenic phenotype of the cultured urothelial organoids and confirmed successful
cultivation. All organoids expressed cytokeratin 7 and GATA3, whereas cytokeratin 5 was
not expressed in UCO.

Organoids were treated with different concentrations of cis or vtx. RMS was performed
after 24 and 48 h, respectively. Utilizing true component analysis (TCA), six major cellular
components were identified that could be attributed to mitochondria (red), nucleic acids
(blue), cytoplasm (green), lipids (yellow), an unknown component (turquoise) and Matrigel
(orange) based on their location within the organoids (Figure 1b) and their Raman finger-
print spectra (Figure 1c). To obtain information about the distribution of both drugs in the
organoids, acquired reference spectra of solid drugs were included in the TCA calculation.
In Raman images, cis is represented in pink, while vtx is presented in purple.

The assignment of the TCA components to their biological origins is based on the
evaluation of individual peaks of the fingerprint spectra. Mitochondria were identified
by their pronounced peaks at 747 and 1130 cm−1 reported for cytochrome c and b [28,29]
and in-house measurement of a reference spectrum. Nuclei are assigned to the peak pair
at 798 and 1096 cm−1, indicators for PO2 occurring in DNA [30], while the cytoplasm is
assigned to peaks at 1001 and 1660 cm−1, representative of phenylalanine and amide I
bonds found in proteins [31,32]. Lipids are characterized by a peak at 1750 cm−1 explaining
C=C vibrations in fatty acids [31,33]. The unknown component detected only in UCO
demonstrated peaks at 1167 and 1593 cm−1, which might be assigned to C=N and C=C
stretching in quinoid rings and C-H in plane bending [32].

2.2. Nuclei Features Identify Spectral Differences between Treated Organoids

To determine the sensitivity of RMS to evaluate drug efficacy in our organoid models,
Raman spectra of nuclei were extracted from Raman images. A total number of 20 spec-
tra per organoid and concentration with respect to the acquired timepoint were further
analyzed by PCA to investigate the cellular response of the three cancer models. A compar-
ison of PC score values demonstrated trends of separation in dependence on the selected
treatment (Figure 2a,c,e). Compared to controls which exhibited score values close to 0,
cis-treated organoids clustered at opposite score values to vtx-treated organoids. Overall,
nuclei information was rather influenced by cis treatment than vtx. Within the group of
cis treatment, RT112 organoids demonstrated concentration-dependent effects, whereas
time-dependent trends were evident for BCO, and no clear time or concentration correlation
was visualized for UCOs.
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Figure 1. Immunofluorescence (IF) and Raman microspectroscopy (RMS) of different bladder 
cancer organoid models. (a) IF images of untreated RT112, BCO and UCO organoids stained for 
cytokeratin 5, cytokeratin 7 or GATA3 (green) and DAPI (blue). Scale bar: 25 µm. (b) True 
component analysis (TCA) images of RT112, BCO and UCO organoids. Displayed is one 

Figure 1. Immunofluorescence (IF) and Raman microspectroscopy (RMS) of different bladder
cancer organoid models. (a) IF images of untreated RT112, BCO and UCO organoids stained for
cytokeratin 5, cytokeratin 7 or GATA3 (green) and DAPI (blue). Scale bar: 25 µm. (b) True component
analysis (TCA) images of RT112, BCO and UCO organoids. Displayed is one representative scan of
untreated and treated organoids (30 µM cisplatin (cis) or 10 µM venetoclax (vtx)) for each organoid
model. Scale bar: 20 µm. (c) Relevant TCA spectra for the identified cellular components.

To identify Raman peaks responsible for the separation between vtx and cis treatment,
PC loadings were plotted, and prominent peaks were identified (Figure 2b,d,f). The load-
ings for each of the three organoid models demonstrated similar band assignments for the
separation of vtx- and cis-induced effects. The shifts to positive loadings in RT112 and BCO
as well as to negative loadings in UCO at 702 and 815 cm−1 in cis-treated organoids might
be related to conformational changes from B-form DNA to A-form DNA [34]. Additionally,
shifts at 615 and 750 cm−1, representative of changes in the thymidine band, are observed
in cis-treated organoids. On the opposite, data from non-cis-treated organoids demon-
strated more pronounced peaks at 1250, 1321, and 1455 cm−1, which represent guanine and
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DNA, respectively [30,35]. All relevant peaks and their molecular assignments are listed
in·Table 1.
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Figure 2. PCA of nuclei-derived Raman spectra reveals similar spectral changes for all organoid 
models after cis (pink) and vtx (purple) treatments. (a) Score value analysis of the cell line RT112 

Figure 2. PCA of nuclei-derived Raman spectra reveals similar spectral changes for all organoid
models after cis (pink) and vtx (purple) treatments. (a) Score value analysis of the cell line RT112
shows statistically significant differences after cis and vtx treatment. (b) Corresponding loading
plot. (c) Score value analysis of patient-derived BCOs shows statistically significant differences
after cis treatment and tendencies of separation after vtx treatment. (d) Corresponding loading
plot. (e) Score value analysis of patient-derived UCOs reveals statistically significant differences
between controls and cis and vtx treatment. (f) Corresponding loading plot. Black: controls; pink: cis
treatment; purple: vtx treatment; circles: 24 h; square: 48 h; Statistical analysis: One-way ANOVA,
n = 9, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Table 1. Biological assignment of the most relevant wavenumbers.

Wavenumber [cm−1] Biological Origin Literature

702 A-form DNA [34]
705 Cholesterol ester [36]
747 Cytochrome c [28]
798 PO2

− [30]
815 A-form DNA [34]

1096 PO2
− [30,37]

1125 Cytochrome c [28]
1250 G [35]
1315 Cytochrome c [38]
1321 G [30,35]
1450 CH2 [30,31,39]
1455 DNA [35]
1660 Amide I [32]
1750 C=C [33]

2.3. Mitochondrial Spectra Identify Spectral Differences between Organoids after vtx Treatment

PCAs were also performed on extracted mitochondria spectra from the three organoid
models to assess cellular responses with regard to cell metabolism. For cis treatment, no
significant differences in spectral signatures were observed when compared to untreated
specimens in all tested organoid systems (Figure 3a,c,e). In contrast, alterations in mito-
chondrial spectra were observed after vtx treatments in patient-derived BCOs and to a
smaller extent in UCOs. No significant shift was shown for cell-line-derived organoids.
The corresponding loading plots (Figure 3b,d,f) exhibit, similar to the PCAs of nuclei, a
recurrent pattern when comparing the individual multivariate analyses with each other.
The most prominent peaks in correlation with vtx treatment are depicted in purple boxes
in the loading plots. The peaks around 1308–1315 cm−1, 1125 cm−1 and 747 cm−1 can be
assigned to cytochrome c [28,38]. The bands in the region between 1447–1450 cm−1 are
indicative of changes in the CH2 conformation of proteins [30,31,39]. Interestingly, the
cellular response to vtx in UCOs demonstrated inverted effects at 742 cm−1 and 1455 cm−1

when compared to the other organoid systems, presenting the biggest heterogeneity within
a group and only a separation at a lower explained variance (PC-5 at 2%).

2.4. Data-Driven Feature Selection Identifies Novel Biomarkers

Neural networks were utilized as a complementary data-driven method to derive
potential biomarkers suitable for the evaluation of spectral data and to compare feature
output in dependence on the linearity of the transformation method. By using the FeaSel-
Net algorithm, we aimed to find spectral biomarkers (i.e., wavenumbers) in the dataset
while classifying it into one of the three classes: cis, vtx and control.

In total, six different datasets (nuclei and mitochondria for each of the three organoid
models) were evaluated. Each dataset initially consisted of 350 features (spectral range
from 400–1800 cm−1 with a sampling interval of 4 cm−1) and was pruned to 10 features
after 16 pruning iterations. During preprocessing, Raman spectra were standardized along
the feature axis. Their mean spectra can be found in Figure S1. Since neural networks
are inherently random in their parameter initialization, a deterministic result cannot be
achieved. Thus, we statistically evaluate the resulting masks from 50 executions of the
FeaSel-Net algorithm. The five most relevant wavenumbers per dataset are presented
in Table 2. The corresponding percentages show how often each wavenumber has been
chosen within the 50 executions. Even though the input signal was compressed to less than
3% and an equally likely selection of the features yielded approximately 1.4 selections per
feature (2.85%), the algorithm found significantly increased interest in the stated features.
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Figure 3. PCA of mitochondria-derived Raman spectra reveals similar spectral for all organoid 
models after vtx (purple) treatment. (a) Score value analysis of organoids from the cell line RT112 
shows tendencies of separation after vtx treatment. (b) Corresponding loading plot. (c) Score value 

Figure 3. PCA of mitochondria-derived Raman spectra reveals similar spectral for all organoid
models after vtx (purple) treatment. (a) Score value analysis of organoids from the cell line RT112
shows tendencies of separation after vtx treatment. (b) Corresponding loading plot. (c) Score value
analysis of patient-derived BCOs show statistically significant differences after vtx . (d) Correspond-
ing loading plot. (e) Score value analysis of patient-derived UCOs reveals statistically significant
differences between controls and vtx treatment. (f) Corresponding loading plot. Black: controls;
pink: cis treatment; purple: vtx treatment; circles: 24 h; square: 48 h; Statistical analysis: One-way
ANOVA, n = 9, * p < 0.05, ** p < 0.01, *** p < 0.001.



Int. J. Mol. Sci. 2022, 23, 6956 8 of 21

Table 2. Most frequently occurring wavenumbers upon treatment discrimination.

Dataset ν1 [cm−1] ν2 [cm−1] ν3 [cm−1] ν4 [cm−1] ν5 [cm−1]

Nuclei
RT112 1551 (76%) 934 (68%) 926 (56%) 1760 (52%) 1688 (50%)
BCO 926 (100%) 1443 (58%) 825 (52%) 1311 (50%) 1535 (44%)
UCO 1479 (84%) 1555 (70%) 813 (68%) 1250 (48%) 404 (40%)

Mitochondria
RT112 1042 (54%) 697 (52%) 1307 (46%) 460 (46%) 1555 (44%)
BCO 705 (74%) 926 (72%) 476 (72%) 1587 (70%) 693 (48%)
UCO 1259 (82%) 1551 (46%) 1475 (42%) 1287 (38%) 1760 (38%)

The most robust wavenumber eventuated in the nuclei BCO dataset with 50 selections,
i.e., a selection in every run. On the other hand, the lowest percentage occurs in the UCO
mitochondria dataset with 19 selections, which is still 13.5 times higher than uniformly
distributed. Another interesting finding is that there are some overlaps in the resulting
features, especially in the nuclei datasets. The spectral area at 1535–1555 cm−1 appears
to be relevant to all nuclei datasets, and the area around 925–935 cm−1 appears to be
relevant for RT112 and BCO. These possible biomarkers could be assigned to changes in
DNA backbones or α-helix structure [40,41] and to changes in the amide II region [42], all
denoting structural alterations of DNA.

Another reoccurring wavenumber emerged in RT112 and BCO mitochondria around
690–705 cm−1. In the PCAs of mitochondria, this wavenumber was not detected in any of
the loadings for separation between drug treatments and controls. The wavenumbers at
around 700 cm−1 could be assigned to cholesterol ester and might display a reaction to
drug-induced oxidative stress [36,43]. Another explanation might be the structural-altering
effect of cis on mitochondrial DNA [33,44].

Furthermore, the interdependencies of the chosen wavenumbers were analyzed,
i.e., which wavenumbers are commonly chosen in the same run. To do so, Jaccard co-
efficients were calculated using the masks that were obtained in 50 runs. The resulting
Jaccard coefficient matrices were weighted by the number of feature occurrences in the
selection. Figure 4 shows the 10 most selected wavenumbers and their dependencies for
each dataset. Especially for the matrices of the BCO mitochondria and the UCO nuclei
set, a clustering in the upper left corner is described, indicating a frequent selection of the
most common markers at the same time. The simultaneous pick in these BCO and UCO
sets cannot be perceived in the other organoid types that exhibit XOR behaviors rather
than ANDs, which indicates that even univariate classifications with reasonable results
could be possible. In particular, the nuclei BCO set, whose most important wavenumber
at 925.5 cm−1 is selected every run, is probably able to provide enough information on its
own to separate all three classes correctly.

2.5. Classification with Selected Raman Markers

The performance of the biomarkers retrieved from the FeaSel-Net algorithm (Table 2)
and from conventional loading analysis of the PCAs (Table S1) was analyzed in the follow-
ing. Accordingly, the original Raman features were masked and reduced for each dataset
and used for classification. The applied classifier for both PCA-derived and FeaSel-Net de-
rived methods was the same fully-connected neural network with an input of five discrete
wavenumber values (masked original Raman signal) and an output of the three classes
vtx, cis and control. We purposely did not use the classification model from our FeaSel-Net
algorithm to ensure equal chances for the two different feature selection methods.
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Figure 4. Weighted Jaccard coefficients for the most important wavenumbers evaluated with
FeaSel-Net in percent. The plots describe the dependencies within the selected wavenumbers.
Darker areas indicate a strong relationship between the features. The selection dependency for the
nuclei spectra of each organoid type is shown in (a), whereas those of mitochondria are depicted
in (b).

Table 3 shows the classification results with the performance parameters’ accuracy
(ACC), sensitivity (SEN), and specificity (SPE) for the neural network trained with the
masked RMS data for each of the six datasets. The neural network was trained 10 times for
each dataset and feature selection. At first glance, striking classification accuracies between
73 and 87% were demonstrated when taking into account that less than 1% of the overall
spectral data points were utilized for the discrimination. In both organelles, the cell line
and the BCO model performed slightly better than the UCO.

Table 3. Classification performance of masked Raman data. The presented values (±SD) are the
parameters’ percentage averages of 10 training runs for each dataset and feature selection method.

PCA Loadings FeaSel-Net
Dataset ACC SEN SPE ACC SEN SPE

Nuclei
RT112 76.6 ± 1.0 64.9 ± 3.9 82.4 ± 2.4 87.0 ± 1.0 80.4 ± 2.6 90.2 ± 1.3
BCO 79.0 ± 1.1 68.5 ± 3.7 84.2 ± 2.3 84.7 ± 0.8 77.1 ± 2.9 88.5 ± 1.4
UCO 73.1 ± 1.9 59.6 ± 6.4 79.8 ± 4.8 80.1 ± 1.0 70.1 ± 2.8 85.1 ± 1.6

Mitochondria
RT112 77.9 ± 1.4 66.9 ± 4.6 83.5 ± 3.0 84.4 ± 0.9 76.7 ± 2.9 88.3 ± 1.8
BCO 83.1 ± 0.5 74.6 ± 1.5 87.3 ± 1.0 84.7 ± 0.6 77.0 ± 3.2 88.5 ± 2.0
UCO 72.8 ± 1.0 59.3 ± 3.7 79.6 ± 1.9 76.8 ± 1.2 65.3 ± 4.2 82.6 ± 2.6

When comparing the two biomarker selection methods, Table 3 indicates a difference
between the conventional feature selection method (PCA loadings) and the data-driven
approach (FeaSel-Net). Throughout all datasets, classification parameters were improved.
The overall accuracy increased by 7.3%, whereas improvement in specificity and sensitivity
accounted for 5.1% and 12.8%, respectively. These effects correlate in particular to the nuclei-
based classification between control, vtx and cis (Table S2 provides a detailed overview).
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The previous analysis did not consider differences emerging from the drug concen-
trations or treatment durations. Thus, classification was repeated on the best-performing
pre-trained model (BCO nuclei), and the discrimination was additionally split into con-
centration and exposure time-dependent subsets. The resulting confusion matrices for
different input features are shown in Figure 5. Contrary to the assumption that longer
exposure times and higher doses yield better discriminability, a trend that confirms these
assumptions cannot be described. This could be since the training has been done with
data from all concentrations and durations. However, even though Figure 5 does not show
any correlations between drug doses and exposure time, it still shows the influence of the
selected biomarker features. The classifier with an input defined by FeaSel-Net (Figure 5a)
performs better than a classification with the PCA-derived wavenumbers (Figure 5b).
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Figure 5. Confusion matrices for the BCO nuclei dataset resolved by drug concentration and
exposure time. Classification accuracy (%) with features retrieved from FeaSel-Net (a) or PCA
loadings (b) are shown.

2.6. FLIM Enables Non-Invasive Monitoring of Drug Response Patterns in Bladder
Cancer Organoids

Drug treatment with cis or vtx influences the metabolic pathways in cells [45,46], and
it has been shown that FLIM identifies metabolic changes in cell cultures and in vivo [47].
Therefore, FLIM images of endogenous NADH and FAD fluorescence were acquired from
RT112, BCOs, and UCOs treated with different concentrations of cis and vtx for 24 and 48 h.
For each treatment, FLIM parameters τ1, τ2, and α1% of the respective coenzymes NADH
and FAD were characterized and compared among each other. Exemplarily, differences
in FAD α1% and bound NADH fluorescence lifetime τ2 are visualized in representative
FLIM images (Figure 6a,c) and mean difference heatmaps (Figure 6b,d). The complete
overview of NADH and FAD τ1, τ2, and α1% values can be found in the supplementary
material (Figures S2–S4).

Comparing NADH and FAD a1% readouts, representing the redistribution of free vs.
bound coenzymes, no significant changes were observed upon vtx treatment for any of the
organoid models. On the contrary, upon cis treatment, a decrease in a1% in both NADH
and FAD was observed for BCOs (Figure S2b,e) as well as in FAD a1% in UCOs (Figure 6b).
Cell line-derived organoids did not indicate changes in a1% (Figure S2a,d).

FLIM parameters representing the fluorescence lifetime of free (τ1) and bound (τ2)
NADH and free (τ2) and bound (τ1) FAD exhibited statistically significant changes for all
organoid models after vtx treatment and a partial impact of cis treatment. Lifetimes τ1 and
τ2 of both NADH and FAD increased after vtx treatment in all organoid models (Figure S2).
In addition, an increase in NADH τ1 after treatment with a high concentration of cis was
observed in the RT112 and BCO models after 48 h (Figure S3d). In UCO, cis lead to a
significant decrease in FAD τ1 (Figure S4b). Overall, except for NADH τ1, mean difference
heatmaps indicate opposite effects on fluorescence lifetime upon vtx and cis treatments.
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2.7. Feature Importance Analysis Automatically Identifies Most Informative FLIM Parameters

Conventional statistical comparison, i.e., via ANOVA, requires manual interpretation
and comparison of each FLIM parameter and is highly dependent on sample heterogeneity
or standard deviation. Thus, we were interested in investigating whether a subset of FLIM
parameters existed that was sufficiently informative of changes resulting from different
drug treatments. To assess the ability of FLIM parameters to automatically discriminate
organoids treated with cis versus vtx, we conducted a feature importance clustering analysis.
For this analysis, we considered averaged values of FLIM parameters over all biological
replicas or each timepoint/drug/model. We excluded control measurements from this
analysis because our focus was on differentiating cells treated with cis from those treated
with vtx. We first verified that FLIM parameter values could be used to automatically
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separate cis-treated organoids from vtx-treated ones for each model. Using a k-means
clustering analysis (with k = 2), we were able to correctly divide each dataset into two
clusters, one containing only cis-associated values and the other containing only vtx-
associated values. These results were consistent across all three models (RT112, BCO and
UCO). We then sought to identify which parameters were driving the cluster assignment. To
assess the relative importance of each parameter, we conducted a feature importance study.
We were able to identify a lower-dimensional subspace of features that offered the correct
separation of our datasets. This lower-dimensional subspace contained two out of the six
FLIM parameters which were found to be sufficiently informative to discriminate cis-treated
organoids from vtx-treated organoids. Interestingly, the most informative pairs differed
across models (Table 4). These results suggest some general trends. First, fluorescence
lifetimes seemed to be most informative for cell line and patient-derived models, although
different channels were selected for each model. Second, the fluorescence lifetime of τ2 from
NADH is the only parameter selected in more than one model, indicating resemblances in
patient-derived organoids compared to the cell line.

Table 4. FLIM parameters selected using a feature importance analysis.

Dataset

RT112 τ1 from FAD τ1 from NADH
BCO τ2 from FAD τ2 from NADH
UCO α1% of FAD τ2 from NADH

3. Discussion

In this study, RMS and FLIM were utilized for a comprehensive characterization of
the drug effect of cis and vtx on bladder cancer organoids in different models derived from
a cell line as well as patient-derived primary tissue and urine. Our RMS and FLIM mea-
surements suggest that the spectral and endogenous fluorescence information, especially
from mitochondria and nuclei, can be useful in situ tools for non-destructive monitoring of
drug effects on organoid models.

The promise of patient-derived organoid models in precision medicine relies upon
the notion that characterization of their mutational profiles in combination with high-
throughput screening with a library of therapeutic compounds can elucidate druggable
targets. In the case of bladder cancer, patients are often diagnosed early in disease progres-
sion, and patients with non-muscle invasive cancer frequently undergo multiple resections
and treatments to avoid cystectomy and its detrimental impact on quality of life. Thus,
information on effective drug candidates identified by screening in personalized organoid
culture could be utilized to guide intravesical therapies and support decision making for
earlier therapy success and better patient compliance by avoiding side effects. In recent
years, RMS and FLIM have been established as promising techniques for investigating
molecular and metabolic changes in cells. The advantages of these methods are their non-
destructive approach with concomitant spatial resolution at the subcellular level [3,23,48].

Therefore, we investigated the capability of these techniques to monitor the metabolic
and molecular response of bladder cancer organoids to chemotherapeutic drugs at spatial
and temporal resolution. TCA-based image generation enabled the marker-independent dis-
crimination and localization of major subcellular structures within the organoids and even
allowed the visualization of accumulations of the drugs. Intensity distribution heatmaps of
the single components enabled us to further investigate underlying spectral information.
Spectral signatures provided access to changes in molecular composition and identified
drug-specific peak patterns in nuclei-derived PCA loadings, which reoccurred in each of
the three organoid models. Cis treatment-related changes were correlated to alterations
in the structure of DNA. Pronounced peaks at 700 and 815 cm−1 reported in A-form
DNA [34] were present in all organoid models. Multiple studies demonstrate that cis results
in intrastrand crosslinks (CLs) between adjacent purine bases (1,2-GG or 1,2-AG CLs) or
between purine bases separated by a third base, CLs, and monofunctional adducts [49,50].
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Additional shifts were observed at 615 and 750 cm−1, which identify C2′-endo/anti con-
formers of deoxy thymine [34,37] and support our conclusion that RMS has the fidelity to
screen for variations in DNA structure.

In addition to DNA damage, cis is also known to induce the production of ROS in
its target cell [51–53]. Although the intracellular origin of ROS production is still unclear,
it was reported that especially cis-induced ROS production occurs in mitochondria [54].
Generation of ROS often correlates to loss of the mitochondrial membrane potential [55],
leading to inhibition of the TCA cycle [51], which can impact fluorescence lifetimes and
is, therefore, a potential reason for alteration upon cis treatment. NADH τ1 denotes the
fluorescence lifetime of free, cytosolic NADH, in contrast to bound NADH, which is found
in the oxidative phosphorylation chain and is designated by τ2 [56]. Fluorescent lifetimes
are highly sensitive to alterations in the cellular microenvironment, such as pH, solvent
polarity, or even viscosity and can, therefore, directly monitor changes in organoids [47,57].
Our data of cis-treated organoids indicate similar trends among τ1 and τ2 for both NADH
and FAD but were only significant for 30 µM cis concentration.

In contrast, vtx treatment significantly affected both FLIM and Raman results for all
organoid models. Vtx is a chemotherapeutic drug mimicking the BH3 domain of pro-
apoptotic proteins capable of binding to and antagonizing BCL-2 family anti-apoptotic
proteins. As a result, the cell undergoes apoptosis mediated by the mitochondrial pathway
and initiated by the activation of caspases [58]. This effect was reflected in the Raman data
of mitochondria, demonstrating shifts in wavenumbers relevant to cytochrome c. The latter
were found mainly in BCOs and UCOs. Utilizing PCAs, nuclei-related alterations were
also observed upon vtx treatment, which, unlike cis, does not directly interact with DNA.
We assume that the recurrent changes in the loading plots at 1255, 1325, and 1455 cm−1, all
representative of DNA, especially guanine, correlate with the preparation for apoptosis or
altered cell metabolism. These shifts might refer to the concomitant denser packing of cell
nuclei during the initiation of apoptosis [59].

FLIM was able to detect statistically significant effects on NADH and FAD lifetimes
for all three organoid models after vtx treatment. In all models, we found increased
fluorescence lifetimes as a reaction of cells to vtx probably undergoing apoptosis. These
findings are consistent with the results of other studies reporting an increase in NADH
lifetime associated with apoptosis [60].

In comparison to significant changes in fluorescence lifetimes, minor drug-induced
effects were reflected in NADH and FAD α1% values and only detected for BCOs treated
with cis. A decrease in NADH α1% is associated with a shift in the ratio of free to bound
NADH, which correlates to a switch from glycolysis, favored in cancer cells, to oxidative
phosphorylation. Another explanation for the changes in α1% might be an increased energy
consumption of nuclei as they prepare for apoptosis [61,62], i.e., after DNA bending due to
the impact of cis.

However, when comparing NADH and FAD α1% among all organoid systems, dif-
ferences in control organoid baseline values were observed. While NADH a1% was at
~78% in non-treated RT112, decreased baseline values were observed in BCOs and UCOs
between 60–80% and 50–70%, respectively. These baseline shifts were also visible for α1%
of FAD to decreased values in BCO and UCO compared to RT112. An explanation for this
result might be the stage and type of cancer, which is reflected by the different models. The
cell line RT112 is established from a G2 transitional cell carcinoma with untreated primary
urinary bladder carcinoma. BCOs were retrieved from a muscle-invasive bladder cancer
tumor in stage pT2 in G3, while UCOs were derived from a less aggressive surface tumor in
stage pT1 in G2. Because α1% is a direct measure of metabolic state indicating the balance
between glycolysis and oxidative phosphorylation, baseline shifts in non-treated organoids
were in accordance with the metabolic activity and severity of the cancer state.

In addition to the introduction of non-destructive readouts for analyzing the cytotoxic
effects of drugs on different types of organoids, we aimed to build data-driven classification
models that allow us to identify the most robust and relevant Raman and FLIM parameters
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enabling the identification of novel biomarkers. Both FLIM and RMS measurements
generate large data sets, and automated dimensionality reduction and feature selection
can help to translate these methods into a clinical setting and improve the interpretability
of the data. The establishment of neural networks allowed us to identify different Raman
markers relevant for the separation between controls and treated organoids across the
organoid systems. With non-linear optimization and transformation processes that are
inherent to neural networks and the recursive feature evaluation provided by FeaSel-
Net, the extraction of the most relevant data subsets was enabled in a more complex and
yet more accessible approach. The advantage of non-linearity has been confirmed in a
deep-learning-based classification with the elaborated features. With Jaccard matrices, the
interdependence of the features and the need to apply multivariate analyses on spectral
data have been shown. Retrieval of Raman signals from data-driven feature selection
results in 12.2% improved sensitivity for discrimination of nuclei-related effects and 6.8%
improved sensitivity for drug-induced mitochondrial changes in comparison to Raman
bands guided by PCA loadings.

It must be stated that the data-driven and single organoid-based approach presented
in this study is very sample-specific, and its finding must not be assumed for bladder
cancer in general. To further evaluate the robustness of this method for the assessment
of drug response and, in particular, to improve sensitivity to dose-dependent effects, our
experiments would need to be repeated on multiple donors with parallel viability assays.
Another factor to be considered for this data analysis approach is its virtue: the non-
linearity. Compared to PCAs and their assigned loadings plot, very deep neural networks
can find patterns in the signal that are not interpretable by humans or statistical analyses.
We have specifically chosen the FeaSel-Net approach for feature selection since it offers
more possibilities to fine-tune hyper-parameters, which enables us to find better results.
Another reason for the neural network approach, in contrast to other feature selection
methods such as XGBoost [63], is the capability of further optimizing the machine learning
model by adapting the pre-trained weights from our previous feature selection. In terms of
generalizability, the neural network approach will perform better when having a bigger
dataset and multiple outliers or noisy data.

FLIM measurements obtain multiple parameters of bound and free FAD and NADH,
characterizing the metabolic profile of cells. To perform faster and more robust analyses of
FLIM data, we investigated whether the identification of different drug effects is reflected in
a smaller subset of parameters. All organoid models were subjected to data-driven k-means
clustering to identify the FLIM parameters explaining the drug-induced effects. Among
organoid models, only one parameter overlap in τ2 NADH was detected for BCO and UCO
organoids. We hypothesize that this indicates similarities in metabolic activities between
the patient-derived models but differences in the cell line. Since the RT112 cell line exhibits
no overlap in relevant FLIM parameters to the patient-derived organoids, the metabolic
and biological difference between the models becomes evident, highlighting the need for
patient-specific analyses in drug testing. The overlap of the selected FLIM parameters
further corroborates the comparability of the organoid systems, allowing urine-derived
organoids to be considered equivalent to organoids derived from primary tissue despite
their origin from different donors. K-means clustering also highlights that FLIM parameters
displaying the ratios of bound to free NADH and FAD are less important to discriminate
the drug effects between cis and vtx as only in UCO was α1% of FAD selected. One possible
reason for this result could be that the two drugs tested may have a relatively smaller effect
on the redistribution of NADH and FAD than on the change in the microenvironment of
the cell, which is detected very sensitively by alterations in the fluorescence lifetimes.

With the novel data-driven methodologies presented in this study, we provide first
insights into similar molecular behaviors upon drug treatments between patient-derived
organoids produced from primary tissues compared to urine. Interestingly, we found
variabilities between the patient-derived organoids and the cell line, especially by clustering
the FLIM parameters and thus highlighting the need for patient-specific analysis. These
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evaluation methods give insights into the distinctness of treated and control organoids,
but also provide information on the importance of the specific features of the data, and
subsequent filtering allows us to focus on the relevant data. The purpose of the extraction
and evaluation of relevant features is to enhance generalizability during discrimination
tasks, therefore relieving the process of sample acquisition and improving discriminability.
With this knowledge, new sparse sensors and measurement protocols can avail faster
and more efficient tumor classifications up to real-time evaluations. This methodology
could also be applicable in the future as a tool to identify biomarkers that can be utilized
to distinguish tumorous from healthy cells. An important future direction is to conduct
Raman and FLIM experiments on additional patient-derived organoids to investigate donor-
specific variances. The comparisons between urine- and tissue-derived organoids from the
same patient would be of particular interest for further evaluation of both methods. An
additional target for subsequent studies is the comparison with patient-derived organoids
retrieved from normal bladder tissue. This will allow the identification of the most effective
drug concentrations that have a maximum effect on the cancerous tissue and minimum
side effects.

The ultimate goal of our study was to establish a multiparametric workflow to rapidly
evaluate drug-induced effects on patient-derived tissue models. With our experiments,
we provide evidence that RMS and FLIM on organoids can be utilized as a test platform
to evaluate the effectiveness of different anticancer drugs as well as their mode of action.
In addition, we demonstrated that data-driven approaches can be utilized to reduce data
complexity by automated feature selection enabling to improve of classification models
and ultimately lead to better prediction accuracy.

4. Materials and Methods
4.1. Cell Culture of Organoids in Matrigel

After informed consent of the patient, tumor cells were retrieved from surgical speci-
mens of a radical cystectomy or rinsing urine for BCO and UCO, respectively. The study
was approved by the Ethics Committee (804/2020/B02). An overview of patient-specific
pathohistological information is given in Table S3. For the preparation of BCO, the tissue
was covered by working medium (DMEM, 2 mM glutamine, 10% FBS, 1% pen-strep (all
from Sigma-Aldrich, St. Louis, MO, USA), 100 mM Y-27632 (MecChemExpress, Hölzl
GmbH, Cologne, Germany), mechanically cut in cubes of approximately 1 mm3, suspended
in 10 mL working medium and centrifuged (480 g, 10 min, ambient temperature). The
sediment was resuspended in 1 mL PBS per 100 mg tissue wet weight. Extracellular matrix
components were enzymatically degraded through the addition of 15 µL of a blend of col-
lagenase (3000 U/mL)/hyaluronidase (1000 U/mL; STEMCELL Technologies, Vancouver,
Canada) per 1 mL suspension and incubated for 30 min at 37 ◦C. This step was repeated
once. Subsequently, undissolved tissue was removed by a 70 µm cell strainer, and the
filtrate was centrifuged (150 g, 7 min, ambient temperature). The vital cells were counted
and resuspended at 1 × 106 cells/mL in organoid culture medium and cooled on wet
ice [9,64]. The cell suspension (30 µL) and Matrigel (10 µL, BioTechne, Minneapolis, MN,
USA) were mixed on ice.

This blend of cells in Matrigel (40 µL) was placed in a 24-well plate. The plate was
then turned upside down and incubated for 5 min at 37 ◦C to generate hanging drops.
A total of 500 µL organoid culture medium [9,64] was added per well and incubated at
37 ◦C, 5% CO2 and a humidified atmosphere. The organoid culture medium was routinely
replaced twice a week after microscopic evaluation of cell growth of the organoids. Before
measurements, organoids were transferred into 8 well µ-slides (ibidi GmbH, Gräfelfing,
Germany). For the preparation of UCO, cells from urine samples were sedimented by
centrifugation, washed twice with PBS, counted, and resuspended at 1 × 106 cells/mL in
organoid medium to generate organoids as described above.
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4.2. Immunofluorescence Staining

For imaging, organoids were cultured in 8-well chamber slides. Organoids were
fixed by 4% formaldehyde (30 min, ambient temperature) and blocked (5% BSA, 0.2%
Triton X-100, 0.1% Tween 20, in PBS; 1 h, ambient temperature), and incubated (1 h,
37 ◦C) with primary antibodies CK5 (BioLegend, Amsterdam, The Netherlands), CK 7
(Abcam, Cambridge, UK) and GATA3 (Abcam). Primary antibodies were incubated with
complementary Alexa Fluor 488-labelled (Jackson ImmoResearch Europe, Cambridge, UK)
secondary antibodies (1:250, 1 h, ambient temperature). Nuclei were counterstained by
DAPI (DAKO), and the expression of the marker genes was visualized by microscopy
(Zeiss Axiophot, Carl Zeiss AG, Oberkochen, Germany). Antibody diluent was 1% BSA
in PBS. Samples without primary antibodies and samples stained with anti-rabbit IgG
antibodies served as controls.

4.3. Sample Preparation for Spectroscopic Raman- and FLIM Measurements

Organoids derived from the RT112 cell line, primary tumor tissue and urine were
incubated with 10 µM, 4 µM and 1.5 µM venetoclax (vtx, Sellek Chemicals, Houston, TX,
USA) or 30 µM, 10 µM and 1 µM cisplatin (cis, Sellek Chemicals) in cell culture medium for
24–48 h at 37 ◦C in 5% CO2 atmosphere. Vtx was dissolved in 20% Captisol (Sellek Chemi-
cals), while cis was dissolved in Milli-Q water. Controls were kept in medium. Organoids
were first measured with FLIM and afterward with RMS. Prior to FLIM measurements, the
samples were washed with PBS to remove phenol red interfering with Raman measure-
ments. Organoids were kept in 200 µL PBS throughout the measurements and immersed in
a cell culture medium with or without drugs afterward.

4.4. FLIM Imaging of Organoids

Time-correlated single-photon counting (TCSPC) fluorescence decay measurements
were performed with a Zeiss LSM 880 (Zeiss) coupled with a Ti:Sapphire femtosecond laser
(MaiTai HP Spectra Physics, Santa Clara, CA, USA) and a two-channel NDD BIG2.0 GaAsP
PMT detector (Becker & Hickl GmbH, Berlin, Germany). Autofluorescence of NADH and
FAD was excited with two-photon excitation at a wavelength of 700 nm and 5% laser power
through a 63×1.4 NA C-plan apochromat objective (Zeiss). Emission light was filtered
in the range of 450 to 490 nm for NADH and 500 to 550 nm for FAD. The total image
acquisition time was set to 141 s at a resolution of 512 × 512 pixels and a pixel dwell time
of 32.77 µs. The instrument response function was recorded at 900 nm from crystalline urea
(Sigma-Aldrich). All FLIM measurements were performed at 37 ◦C using a microscope
stage top incubation system (ibidi heating system, ibidi GmbH).

4.5. FLIM Data Analysis

SPCImage (Becker & Hickl GmbH) was utilized to perform biexponential decay fittings
with a 30% threshold of maximum photon count to remove the background. The quality of
fit was decided based on a mean χ2 value smaller than 1.15 per image. ASCII images for
α1%, τ1 and τ2 were exported for both NADH and FAD for further analysis. α1% explains
the ratio of bound to unbound FAD or the ratio of unbound to bound NADH and is a direct
measure of cell metabolism. The fluorescence lifetimes τ1 and τ2 describe the fast and slow
components of exponential decay.

4.6. Raman Imaging of Organoids

Spectral Raman mapping was performed on a customized inverted WITec alpha300 R
Raman system (WITec GmbH, Ulm, Germany) equipped with a green laser (532 nm) and a
CCD spectrograph with a grating of 600 g/mm. An incubation chamber (Okolab S.R.L.) was
integrated into the setup to keep the organoids constantly at 37 ◦C. Images were acquired
from at least three organoids at a laser power of 58 mW, an integration time per spectrum
of 0.2 s and a pixel resolution of 1 × 1 µm at a size of 50 × 50 µm. All measurements were
acquired with a 50× objective (Carl Zeiss AG, Oberkochen, Germany). Reference spectra
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of cytochrome c (derived from bovine heart, Sigma Aldrich), cis and vtx were recorded as
single spectra with an accumulation of 10 spectra and 0.5 s integration time.

4.7. Multivariate Data Analysis

Image analysis of spectral maps was performed with the Project Five 5.2 software
(WITec GmbH, Ulm, Germany). RMS data were preprocessed in regard to cosmic ray re-
moval, polynomial baseline correction, cropping to 400–3000 cm−1 as well as area intensity
normalization. True component analysis (TCA) was performed to analyze Raman images.
In brief, TCA is a non-negative matrix factorization-based multivariate data analysis tool
elaborating spectral components, which predominantly occur in the data set, allowing
us to identify their spectral distribution by false color intensity distribution heatmaps.
Based on TCA heatmaps, spectral information (20 spectra/organoid) representing nuclei
or mitochondria was extracted for further in-depth analysis of the molecular composition
by principal component analysis (PCA) using Unscrambler X10.5 (Camo, Norway). PCA
is a gold standard multivariate data analysis tool for spectroscopic data, reducing the di-
mensionality of a set of spectral data on a vector-based approach. Each vector, the so-called
principal component (PC), describes a variation in the spectra. Plotting PC values against
each other visualizes a correlation or separation of two or more data sets. The interpretation
of the underlying spectral changes can be derived from the PC loadings plot.

4.8. Feature Selection Using FeaSel-Net

We recently developed the neural network architecture FeaSel-Net that is capable
of recursively selecting relevant wavenumber areas (features) in the classifier’s input
signal [65]. It is a combination of a neural network classifier and a feature selection
algorithm. Other than dropout methods, this approach does not focus on stochastic pruning
of parameters within hidden layers to improve generalizability but on deterministically
pruning nodes in the input layer [66]. The package is open-source and can be downloaded
from https://pypi.org/project/FeaSel-Net/, (Version 0.0.1). When features are selected,
the optimizer in the neural network has to adapt to the fewer input signals and re-optimize
the classifier with the new requirements. The selection process itself is a rather complex
procedure, where the entropy is measured for every feature being masked, and the features
with the highest entropy are kept. Contrarily to the interpretation of PCA loadings, this
method provides a completely data-driven and unbiased evaluation of the findings and
serves as an extension of the former method. In our recursive feature selection process,
every selection was made whenever the threshold of classification accuracy of τacc = 0.98
was consistently surpassed in the optimization process. The features were reduced by 20%
every time the feature evaluation was executed. The reduction was made by masking the
initial signal at the input of the neural network. All other parameters can be retrieved
from Table S4.

4.9. Neural Network Classifier

Sample discrimination was undertaken by using a simple neural network from the
open-source Keras and Tensorflow API (Google Brain). The model had a rhomboidal fully-
connected layer structure with 5− 10− 20− 10− 3 nodes, where the layer with 5 nodes
was the input layer, and the one with 3 nodes was the output layer. The activation functions
used were mainly ReLU (Rectified Linear Unit) and one sigmoid function in the last layer
for probabilistic output values. The optimizer used was Adam [67], with a learning rate
of η = 0.005. With a batch size of 128, the model was trained for 100 epochs, and a train
test split of 0.8 was applied. The model was tested with all validation and training data to
obtain the performance parameters in Section 0.

4.10. Feature Importance Clustering Analysis

In total, we curated three model-specific datasets (RT112, BCO and UCO), each with
72 measurements (six FLIM parameter values across 12 timepoints/drug concentration).

https://pypi.org/project/FeaSel-Net/
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We first scaled all data to the z-norm. This was done to ensure that the clustering algorithm
can focus on structural similarities and differences instead of amplitude-driven ones. We
then performed clustering analysis using the method implemented in the R package
kmeans for k = 2. Next, we performed a feature importance analysis using the function
FeatureImpCluster in R by setting the number of true clusters to 2. We repeated the feature
importance analysis 20 times using different random seeds. The function FeatureImpCluster
computes the permutation misclassification rate for each variable of the data. The mean
misclassification rate over all iterations can be interpreted as variable importance.

4.11. Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 9.00 for Windows
(GraphPad Software). Results are shown throughout the entire article as mean ± standard
deviation. All data sets are tested for normal distribution using the Kolmogorov–Smirnov
test; outliers were removed using Grubb’s test with a confidence interval of 0.05. All
n-numbers, applied tests, and corresponding significance for each result are listed in the
figure legends. Experiments were performed at least 3 times.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23136956/s1.
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59. Rogalińska, M. Alterations in cell nuclei during apoptosis. Cell. Mol. Biol. Lett. 2002, 7, 995–1018.
60. Bower, A.J.; Sorrells, J.E.; Li, J.; Marjanovic, M.; Barkalifa, R.; Boppart, S.A. Tracking metabolic dynamics of apoptosis with

high-speed two-photon fluorescence lifetime imaging microscopy. Biomed. Opt. Express 2019, 10, 6408. [CrossRef]
61. Zbinden, A.; Carvajal Berrio, D.A.; Urbanczyk, M.; Layland, S.L.; Bosch, M.; Fliri, S.; Lu, C.E.; Jeyagaran, A.; Loskill, P.;

Duffy, G.P.; et al. Fluorescence lifetime metabolic mapping of hypoxia-induced damage in pancreatic pseudo-islets. J. Biophotonics
2020, 13, e202000375. [CrossRef]

62. Bower, A.J.; Marjanovic, M.; Zhao, Y.; Li, J.; Chaney, E.J.; Boppart, S.A. Label-freein vivocellular-level detection and imaging of
apoptosis. J. Biophotonics 2017, 10, 143–150. [CrossRef]

63. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. arXiv 2016, arXiv:1603.02754. [CrossRef]
64. Geng, R.; Harland, N.; Montes-Mojarro, I.A.; Fend, F.; Aicher, W.K.; Stenzl, A.; Amend, B. CD24: A Marker for an Extended

Expansion Potential of Urothelial Cancer Cell Organoids In Vitro? Int. J. Mol. Sci. 2022, 23, 5453. [CrossRef] [PubMed]
65. Fischer, F.; Birk, A.; Frenner, K.; Herkommer, A. FeaSel-Net: A Recursive Feature Selection Callback in Neural Networks.

TechRxiv 2022. [CrossRef]
66. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
67. Kingma, D.P.; Ba, J. Adam: A Method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [CrossRef]

http://doi.org/10.1080/10428194.2017.1283032
http://doi.org/10.1364/BOE.10.006408
http://doi.org/10.1002/jbio.202000375
http://doi.org/10.1002/jbio.201600003
http://doi.org/10.1145/2939672.2939785
http://doi.org/10.3390/ijms23105453
http://www.ncbi.nlm.nih.gov/pubmed/35628262
http://doi.org/10.36227/techrxiv.19803520
http://doi.org/10.48550/arxiv.1412.6980

	Introduction 
	Results 
	Raman Microspectroscopy Allows Label-Free Imaging of Bladder Cancer Organoids 
	Nuclei Features Identify Spectral Differences between Treated Organoids 
	Mitochondrial Spectra Identify Spectral Differences between Organoids after vtx Treatment 
	Data-Driven Feature Selection Identifies Novel Biomarkers 
	Classification with Selected Raman Markers 
	FLIM Enables Non-Invasive Monitoring of Drug Response Patterns in Bladder Cancer Organoids 
	Feature Importance Analysis Automatically Identifies Most Informative FLIM Parameters 

	Discussion 
	Materials and Methods 
	Cell Culture of Organoids in Matrigel 
	Immunofluorescence Staining 
	Sample Preparation for Spectroscopic Raman- and FLIM Measurements 
	FLIM Imaging of Organoids 
	FLIM Data Analysis 
	Raman Imaging of Organoids 
	Multivariate Data Analysis 
	Feature Selection Using FeaSel-Net 
	Neural Network Classifier 
	Feature Importance Clustering Analysis 
	Statistical Analysis 

	References

