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Abstract. With the immutability property and decentralized architecture, Block-
chain technology is considered as a revolution for several topics. For electronic
voting, it can be used to ensure voter privacy, the integrity of votes, and the ver-
ifiability of vote results. More precisely permissioned Blockchains could be the
solution for many of the e-voting issues. In this paper, we start by evaluating some
of the existing Blockchain-based e-voting systems and analyze their drawbacks.
We then propose a fully-decentralized e-voting system based on permissioned
Blockchain. Called DABSTERS, our protocol uses a blinded signature consensus
algorithm to preserve voters privacy. This ensures several security properties and
aims at achieving a balance between voter privacy and election transparency. Fur-
thermore, we formally prove the security of our protocol by using the automated
verification tool, ProVerif, with the Applied Pi-Calculus modeling language.
Keywords: Permissioned Blockchain, Electronic voting, Blind Signature, Formal
verification, Applied Pi-Calculus, ProVerif.

1 Introduction

Voting is the cornerstone of a democratic country. The list of security properties that
must respect a secure voting protocol includes the following features. Eligibility: only
registered voters can vote and only one vote per voter is counted. If the voter is allowed
to vote more than once, the most recent ballot will be tallied and all others must be
discarded. Individual verifiability: the voter him/herself must be able to verify that
his/her ballot was cast as intended and counted as cast. Universal verifiability: after
the tallying process, the results are published and must be verifiable by everybody. Vote-
privacy: the connection between a voter and his/her vote must not be reconstructable
without his/her help. Receipt-freeness: a voter cannot prove to a potential coercer that
he/she voted in a particular way. Coercion resistance: even when a voter interacts
with a coercer during the voting process, the coercer will be not sure whether the voter
obeyed their demand or not. Integrity: ballots are not altered or deleted during any
step of the election. Fairness: no partial results are published before tallying has ended,
otherwise voters may be influenced by these results and vote differently. Robustness:
the system should be able to tolerate some faulty votes. Vote-and-go: a voter does not
need to wait for the end of the voting phase or trigger the tallying phase. Voting policy:
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specify if a voter has the right to vote more than once or he/she has not the right to
change his/her opinion once he/she casted a vote.

Traditionally, during an election, the voter goes to a polling station and makes
his/her choice in an anonymous manner, without any external influence. To perform the
tally, we need to trust a central authority. From this comes the risk of electoral fraud.
The tallying authority has the possibility to falsify votes and thus to elect a candidate
who should not be elected. It is also possible for the registration authority to allow inel-
igible voters to vote. Hence, voting becomes useless and we notice a decrease in voter
turnout in elections. Decentralized systems can be a good alternative to traditional vot-
ing since we need a secure, verifiable and privacy preserving e-voting systems for our
elections. Blockchain is a distributed ledger that operates without the need to a trusted
party. Expanding e-voting into Blockchain technology could be the solution to alleviate
the present issues in voting.

Due to the proliferation of Blockchain implementations, the European Blockchain
Observatory and Forum has published a technical report [14] where it recommends the
use of private or permissioned Blockchains for sensitive data storage, which is the ar-
chitecture implemented in an e-voting system. In this Blockchain architecture, the user
credentials are generated by a Certificate Authority (CA). Hence, the users must be en-
rolled into the system through the CA before joining the network. This model is suitable
for an e-voting system because the user management can rely on the Blockchain plat-
form, due to their formal enrolling process. The advantage of having a minimum level
of trust through our knowing the participants is that we can achieve security for the
Blockchain replication process by using Byzantine Agreement as a consensus mech-
anism. Although permissioned Blockchains have several features suitable for services
that involve sensitive data, such as user personal information, they have drawbacks
related to transactions and user linkability. This is due to the fact that each user cre-
dential, public key pair and certificates, are issued for specific users that were previ-
ously enrolled in the CA. In order to overcome this drawback, we use, in this paper,
the Okamoto-Schnorr blind signature scheme to sign the transactions without linking
the user to it. This model allows validating transactions without exposing the user’s
identification, and therefore maintaining the privacy of the votes.
Related Work: In the last few decades, a considerable number of Blockchain-based
e-voting protocols have been proposed to address the security issues of traditional vot-
ing protocols. Due to the limitation on the number of pages, we give a brief overview
of some of these systems and evaluate their security in Table 1, in which we use the
following abreviations1.

– Open Vote Network (OVN) [15]: It is a self-tallying, boardroom scale e-voting
protocol implemented as a smart contract in Ethereum. This protocol guarantees
voter’s privacy and removes the need to trust the tallying authorities whether to en-
sure the anonymity of voters or to guarantee the verifiability of elections. However,
it suffers from several security issues. For example, it supports only elections with
two options (yes or no) and with a maximum of 50 voters due to the mathematical
tools that they used and to the gas limit for blocks imposed by Ethereum. Addition-
ally, this protocol does not provide any mechanism to ensure coercion resistance

1 TCA: Trusted Central Authority; SV: Single Vote; MV: Multiple Votes.
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and needs to trust the election administrator to ensure voter’s eligibility. Open Vote
Network is not resistant to the misbehavior of a dishonest miner who can invali-
date the election by modifying voters’ transactions before storing them on blocks.
Dishonest voter can also invalidate the election by sending an invalid vote or by
abstaining during the voting phase.

– E-Voting with Blockchain: An E-Voting Protocol with Decentralization and Voter
Privacy (EVPDVP) [10]: Implemented on a private network that uses the Ethereum
Blockchain API, this protocol uses the blind signature to ensure voters privacy. It
needs a central authority (CA) as a trusted party to ensure voters eligibility and
allow voters to change and update their votes. To ensure fairness, voters include
in their ballots a digital commitment of their choices instead of the real identity of
the chosen candidate. To tally ballots, voters must broadcast to the network a ballot
opening message during the counting phase.

– Verify-Your-Vote: A Verifiable Blockchain-based Online Voting Protocol (VYV) [7]:
It is an online e-voting protocol that uses Ethereum Blockchain as a bulletin board.
It is based on a variety of cryptographic primitives, namely Elliptic Curve Cryptog-
raphy [9], pairings [4,19] and Identity Based Encryption [5]. The combination of
security properties in this protocol has numerous advantages. It ensures voter’s pri-
vacy because the Blockchain is characterized by the anonymity of its transactions.
It also ensures fairness, individual and universal verifiability because the ballot
structure includes counter-values, which serve as receipts for voters, and homomor-
phism of pairings. However, the registration phase of this protocol is centralized.
A unique authority, which is the registration agent, is responsible for verifying the
eligibility of voters and registering them. A second problem is inherent in the use of
Ethereum because each transaction sent by the protocol entities in the Blockchain
passes through miners who validate it, put it in the current block and execute the
consensus algorithm. Any dishonest miner in the election Blockchain can modify
transactions before storing them on blocks. Additionally, this protocol is not coer-
cion resistent.

– TIVI [21]: It is a commercial online voting solution based on biometric authenti-
cation, designed by the company Smartmatic. It checks the elector’s identity via
a selfie using facial recognition technology. TIVI ensures the secrecy of votes so
long as the encryption remains uncompromised. It provides also voters’ privacy
thanks to its mixing phase and offers the possibility to follow votes by the mean
of a QR code stored during voting phase and checked later via a smartphone ap-
plication. However, this system does not provide any mechanism to protect voters
from coercion or to ensure receipt-freeness. Additionally, TIVI uses the Ethereum
Blockchain as a ballot box so it is not resistant to misbehaving miners that could
invalidate the election by modifying votes before storing them on the election
Blockchain.

– Follow My Vote (FMV) [8]: It is a commercial online voting protocol that uses
the Ethereum Blockchain as a ballot box. A trusted authority authenticates eligible
voters and provides them with pass-phrases needed in case of changing their votes
in the future. Voters can watch the election progress in real time as votes are cast. It
includes an authentication phase which ensures voters’ eligibility. It allows voters
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to locate their votes, and check that they are both present and correct using their
voters’ IDs. Nevertheless, this voting system requires a trusted authority to ensure
votes confidentiality and hide the correspondence between the voters’ real identities
and their voting keys. If this authority is corrupted, votes are no longer anonymous.
Votes secrecy is not verified by this system because votes are cast without being
encrypted. Moreover, the ability to change votes, coupled with the ability to observe
the election in real time compromise fairness property. This system is not coercion
resistance and is not universally verifiable because we have no way to verify that
the votes present in the election final result are cast by eligible voters.

– BitCongress [11]: A commercial online voting platform based on a combination of
three networks which are: Bitcoin, Counterparty(a decentralized asset creation sys-
tem and decentralized asset exchange) and a Smart Contract Blockchain. It aims at
preventing double voting by using the time stamp system of the Bitcoin Blockchain.
This platform does not ensure voters eligibility because it allows any Bitcoin ad-
dress to register for the election. It performs the tally using, by default, a modified
version of Borda count and a Quota Borda system for large scale elections. It en-
sures individual and universal verifiability but it is not coercion resistent.

– Platform-independent Secure Blockchain-based Voting System (PSBVS) [22]: Im-
plemented in the Hyperledger Fabric Blockchain [2], this protocol uses Paillier
cryptosystem [18] to encrypt votes before being cast, proof of knowledge to en-
sure the correctness and consistence of votes, and Short Linkable Ring Signature
(SLRS) [3] to guarantee voters privacy. In the other hand, this protocol does not
include a registration phase in which we verify, physically or by using biometric
techniques, the eligibility of the voter. A voter can register him/herself by sim-
ply providing his/her e-mail address, identity number or an invitation URL with a
desired password. These mechanisms are not sufficient to verify the eligibility of
a voter and information like e-mail address or identity number can be known by
people other than the voter him/herself. Also, with reference to the definition of co-
ercion resistance given by Juels et al. [12], this protocol is not coercion resistant. In
fact, if a voter gives his/her secret key to a coercer, the coercer can vote in the place
of the voter who cannot modify this vote later. We mention here that the coerced
voter cannot provide a fake secret key to the coercer because a vote with a fake
secret key is rejected by the smart contract.

Contributions: In this paper, we aim at designing a secure online e-voting protocol
that addresses the security issues mentioned in the related work section by using the
Blockchain technology and a variety of cryptographic primitives. Called DABSTER,
our protocol uses a new architecture based on permissioned Blockchain and blind sig-
nature. It satisfies the following security properties: eligibility, individual verifiability,
universal verifiability, vote-privacy, receipt-freeness, fairness, integrity and robustness.
Our contributions can be summarized as follows:

– A new architecture of trust for electronic voting systems. This architecture is based
on permissioned Blockchain and on a blind consensus which provides voter’s pri-
vacy and vote’s integrity.

– A secure and fully distributed electronic voting protocol based on our propounded
architecture.
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OVN EVPDVP VYV TIVI FMV BitCongress PSBVS DABSTERS
Eligibility TCA TCA TCA X TCA X X X

Individual verif X X X X X X X X
Universal verif X X X X X X X X
Vote-Privacy X X X X TCA X X X

Receipt-freeness X X X X X X X X
Coercion resistance X X X X X X X X

Fairness X X X X X X X X
Integrity X X X X X X X X

Robustness X X X X X X X X
Vote-and-go X X X X X X X X
Voting policy SV MV MV SV MV MV SV MV

Table 1: Security evaluation of OVN, EVPDVP, VYV, TIVI, FMV, BitCongress,
PSBVS and DABSTERS.

– A detailed security evaluation of the protocol and a formal security proof using
the Applied Pi-Calculus modeling language and the automated verification tool
ProVerif.

Outline: In the next section, we give an overview of the Byzantine Fault Tolerante
(BFT) with blind signature consensus algorithms. Then in Section 3, we describe our
proposed e-voting protocol, DABSTERS, and give its different stakeholders and phases
as well as the structure of each voter’s ballot. In Section 4, we evaluate the security
of our protocol using Proverif when it is possible. The conclusion is a summary of
DABSTERS and a proposal for ongoing evaluation of its performance.

2 Background

We give a definition of the Okamoto-Schnorr blind signature, before using it in a Byzan-
tine based consensus.

2.1 Blind Signature

Let p and q be two large primes with q|p−1. Let G be a cyclic group of prime order q,
and g and h be generators of G. Let H : {0,1}∗→ Zq be a cryptographic hash function.

Key Generation: Let (r,s) r←− Zq and y = grhs be the A’s private and public key, re-
spectively.

Blind signature protocol: 1. A chooses (t,u) r←− Zq, computes a = gthu, and sends a
to the user.

2. The user chooses (β,γ,δ)
r←− Zq and computes the blind version of a as α =

ag−βh−γyδ, and ε = H(M,α). Then calculates e = ε−δ mod q, and sends e to
the A.

3. A computes S = u− es mod q and R = t− er mod q, sends (S,R) to the user.
4. The user calculates ρ = R−β mod q and σ = S− γ mod q.
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UserA

secret: (r,s) r←− Zq public: y = grhs

(t,u) r←− Zq

a = gthu

S = u− es mod q
R = t− er mod q

(β,γ,δ)
r←− Zq

α = ag−βh−γyδ

ε = H(M,α)

e = ε−δ mod q

ρ = R−β mod q
σ = S− γ mod q

a

e

(S,R)

Fig. 1: Okamoto-Schnorr blind signature diagram, where y r←− Zq means that y is
randomly chosen in Zq.

Verification: Given a message M ∈ {0,1}∗ and a signature (ρ,σ,ε), we have α =
gρhσyε mod p.

The Okamoto-Schnorr blind signature scheme is suitable with a private Blockchain
architecture due to the blinding process that can be performed by the same authority re-
sponsible of the enrollment process (see Figure 1, where the authority A blindly signs a
message for the user). We use BlindSign(M,(β,σ,γ),y) and VerifyBlindSign(M,(ρ,δ,ε),y)
to blind sign and to verify the blinded signature, respectively using Okamoto-Schnorr,
where M corresponds to the message to be signed, (β,σ,γ) to the secret values ran-
domly chosen, (ρ,δ,ε) to the blinded signature; and y to the RA’s public key. The result
obtained from the function BlindSign corresponds to the blinded signature (ρ,σ,ε). On
the other hand, the function VerifyBlindSign returns a response valid or invalid.

2.2 BFT based consensus algorithm

Now, considering a permissioned Byzantine Fault Tolerance (BFT) based consensus
protocol like the one introduced in Hyperledger Fabric [2]. In this protocol, the digital
signature is used as a user authentication method without protecting the user privacy.
Hence, for a privacy preserving consensus protocol, we need to add the following prop-
erties to the BFT based consensus algorithm:

– Alice sends a newly signed transaction to the registration authority (RA) which is
responsible for the enrollment of Alice.

– Alice’s signature is validated only by the RA.
– The RA anonymises Alice’s identity.
– The RA signs the transaction sent by Alice to the network.
– All the node of the transactions validation process can validate the RA’s signature.
– The RA signature cannot be duplicated.
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Now, to keep the privacy of the client and peers involved in the transactional process,
we need to hide his ID and make his signature blind. However, we do not address the
ID hiding process with any particular mechanism. Therefore, we consider that the ID
is replaced by a value corresponding to the anonymised user ID, and this process can
be performed by using different schemes. As presented in [13], to address the issue
related to the digital signature, we replace the signing mechanism used in the original
protocol by the Okamoto-Schnorr blind signature scheme [16]. In order to maintain the
consistency and liveness that the protocol has, we keep the transactional flow. However,
the steps are modified in order to accept the new blind signature scheme to authenticate
the clients and peers.

The transactional process based on our BFT consensus algorithm with Blind Signa-
ture consists of the following steps:
1. Initiating Transactions: The client cbc generates a message M to execute an oper-

ation obc in the network with a blinded signature by using BlindSign((M,β,σ,γ),y).
2. Transaction Proposal: The submitting peer spbc receives the message M com-

ing from the client cbc, validates the client blinded signature by using VerifyBlind-
Sign(M,(ρ,δ,ε),y) and proposes a transaction with the client instruction obc.

3. Transaction Endorsement: The endorser peers epbc validate the client blinded
signature using VerifyBlindSign(M,(ρ,δ,ε),y) and verify if the transaction is valid
by simulating the operation obc using his local version of the Blockchain. Then, the
endorser peers generate signed transactions with the result of the validation process
and send it to the submitting peer spbc.

4. Broadcasting to Consensus: The submitting peer spbc collects the endorsement
coming from the endorsing peers connected to the network. Once spbc collects
enough valid answers from the endorsing peers, it broadcasts the transaction pro-
posal with the endorsements to the ordering service.

5. Commitment: All the transactions are ordered within a block, and are validated
with their respective endorsement. Then, the new block is spread through the net-
work to be committed by the peers.

3 Description of DABSTERS

Our protocol is implemented over a new architecture of trust. It is based on a BFT-
based consensus protocol [2] and on a blinded signature consensus protocol, called
BlindCons [13], presented in Section 2. It eliminates the risk of invalidating the election
because of dishonest miners who modify the transactions before storing them on blocks.
We also propose a distributed enrollment phase to reduce the need to trust election
agents and impose the publication of the list of eligible registered voters at the end of
the enrollment phase. This list is auditable and verifiable by all parties.

Our scheme unfolds in 5 stages. It starts with an enrollment phase in which registra-
tion authorities (RAs) verify the eligibility of voters by verifying the existence of their
names and their identity card numbers in a list published beforehand and containing the
names of all persons who have the right to vote. Then, all eligible voters are registered
and provided with credentials. The enrollment phase is offline. At the end of this phase,
RAs construct a list containing the names of all registered eligible voters and their ID
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card numbers. This list can be rejected or published on the election Blockchain during
the validation phase. Once the list is validated, we move to the third stage which is vot-
ing phase. Each eligible voter (Vi) initiates a transaction in which he/she writes his/her
encrypted vote, signs the transaction using his/her credential and sends it to the RAs
to check his/her signature and blind it. Then, the voter sends the transaction with the
blinded signature and his/her anonymous ID (his/her credential) to the consensus peers
to be validated and stored in the election Blockchain anonymously. After validating and
storing all votes in our Blockchain, tallying authorities (TAs) read these encrypted votes
from the network, decrypt them, and proceed to the tally. The final stage is the verifi-
cation phase. During this phase, voters make sure that their votes have been considered
correctly and check the accuracy of the tally. The individual verifiability is ensured due
to the structure of our ballots and the universal verification is ensured thanks to the ho-
momorphism property of pairings. Except the enrollment phase, all the phases of our
protocol are on-chain. Therefore, we call the BFT based consensus protocol with each
transaction initiated by authorities and the BlindCons with each transaction initiated by
eligible voters because we do not need to hide the identity of our authorities but we need
to ensure voter’s privacy. In the following, we give a detailed description of the role of
our protocol stakeholders, the structure of our ballot, the different protocol phases and
the two consensus.

3.1 Protocol Stakeholders

DABSTERS involves three main entities:
– Registration authorities (RAs): they verify the eligibility of every person wishing

to register to the election and provide eligible voters by their credentials which are
constructed by cooperation between all RAs.

– Eligible voters (V): every eligible voter (Vi) has the right to vote more than once
before the end of the voting phase and only his/her last vote is counted. Voters
have the possibility to verify that their votes are cast as intended and counted as
cast during the verification phase. Also, they can check the accuracy of the election
final result but they are not obliged to participate in the verification phase (they can
vote and go).

– Tallying authorities (TAs): the protocol includes as many tallying authorities as
candidates. Before the voting phase, they construct n ballots, where n is the number
of registered voters. Thus, every voter has a unique ballot which is different from
the other ballots. TAs encrypt ballots and send them to voters during the voting
phase. They decrypt votes and calculate the election final result during the tallying
phase and publish the different values that allow voters to check the accuracy of the
count during the verification phase.

DABSTERS also involves observers and election organizers who have the right to host
the Blockchain peers to ensure the correctness of the execution of the protocol.

3.2 Ballot Structure:

As illustrated in Figure 2, each ballot is composed of a unique bulletin number BN cal-
culated as follows: BN = {g,D}PKA , where g is a generator of an additive cyclic group
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Ballot number BN
Pseudo Candidate’s Choice Counter-value
”ID C j” ”name name j” ”CVBN,name j ,k”

0 Paul � CVBN,name0,0
1 Nico � CVBN,name1,1
2 Joel � CVBN,name2,2

Fig. 2: Ballot structure[17].

G, D is a random number and PKA is the
administrator’s public key. It contains also
a set of candidates’ names name j and can-
didates’ pseudo IDs, denoted C j, which
are the positions of candidates in the bal-
lot, calculated from an initial order and an
offset value. In addition, each ballot in-
cludes a set of counter-values CVBN,name j ,k
that are receipts for each voter. They are calculated using the following formula:
CVBN,name j ,k = e(Qname j,Sk ·QBN); where e(., .) is the pairing function, Sk is the se-
cret key of the tallying authority TAk, Qname j = H1(name j) and QBN = H1(BN) are two
points of the elliptic curve E.

3.3 Protocol Stages

Our solution includes the following phases:

Enrollment Phase: Every person who has the right to vote and desires to do so, phys-
ically goes to the nearest registration station. He/she provides his/her national identity
card to the RAs, who verify his/her eligibility by checking if his/her name and ID card
number exists in a list, previously published, contains all persons that are able to partic-
ipate in the election. If he/she is an eligible voter, the RAs save the number of his/her
ID card and provide him with a credential that allows him to participate in the voting
process. Voters’ credentials are calculated using elliptic curve cryptography and have
this form:

CredentialVi = SM ·H1(IDVi) where:
– SM = S1 ·S2 . . . ,SR is a secret master key calculated by cooperation between all RAs.

Each registration authority participates with its secret fragment Sr; r ∈ {1 . . .R},
– H1 is an hash function defined as follows: H1 : {0,1}∗→ G1; G1 an additive cyclic

group of order prime number q,
– IDVi is the number of the ID card of the voter Vi.

Validation Phase: After registering all eligible voters, RAs create a list containing
the names and the identity card numbers of all registered voters. This list should be
viewable and verifiable by voters, election organizers and observers. Thus, RAs send
this list in a transaction on our election Blockchain. This transaction passes through the
five steps of the BFT based consensus protocol to be validated if the list is correct or
rejected if the list contains names of ineligible voters.

– Step1: Transaction initiation. RAs generate the list of eligible voters to be vali-
dated by the network. The list is sent to a submitter peer. In the case of an offline
or misbehaving submitter peer, RAs send the transaction to the next submitter peer.
This step is illustrated by Figure 3.
• IDRA is the ID of the registration authorities,
• Write(List) is the operation invoked by the RAs to be executed by the network.

It consists of writing the list of eligible voters and their ID card numbers in the
Blockchain,
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RAs SP

SUBMIT, IDRA, Write(List),
List, σRA, retryFlag

Fig. 3: Step1: Transaction initiation.

• List is the payload of the submitted transaction, which is the list of registered
voters to be published on the Blockchain,

• σRA is the signature of the registration authorities,
• retryFlag is a boolean variable to identify whether to retry the submission of

the transaction in case of the transaction fails.
– Step2: Transaction proposal. The submitter peer receives the transaction and ver-

ifies the RAs signature. Then prepares a transaction proposal to be sent to the en-
dorsing peers. Endorsing peers are composed of some voters, election organizers
and observers who desire to host the Blockchain peers. This step is described in
Figure 4.

SP EP: Voters+Election
organizers + Observers

PROPOSAL, mRA,
Transprop

Fig. 4: Step2: Transaction proposal.

• mRA = (IDRA,Write(List),List,σRA)
• Transprop = (SP,Write(List),List,StateU pdate, VerDep):
∗ StateUpdate corresponds to the state machine after simulate locally the

operation coming in Write(List).
∗ VerDep is the version dependency associated to the variable to be created

or modified. It is used to keep the consistency of the variables across the
different machine state version.

– Step3: Transaction endorsement. Each endorser peer verifies the signature of the
registration authorities σRA coming in mRA and checks that the list of eligible voters
in mRA and Transprop is the same. Then, each endorser verifies the eligibility of
all names and ID card numbers included in the list. If they are all valid, the en-
dorser peer generates a transaction valid message to be sent to the submitter peer
(Figure 5). But if the list includes names of ineligible voters, the endorser peer
generates a transaction invalid message (Figure 6).
• T xID is the transaction ID,
• σEP is the signature of the endorser peer.
• Error: can has the following values:
∗ INCORRECT-STATE: when the endorser tries to validate the transaction

with a different local version of the Blockchain than the one coming in the
transaction proposal.
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SP EP: Voters+Election
organizers + Observers

TRANSACTION-VALID,
T xID,σEP

Fig. 5: Step3: Transaction endorsement: valid transaction.

SP EP: Voters+Election
organizers + Observers

TRANSACTION-INVALID,
T xID, Error, InvalidList,

σEP

Fig. 6: Step3: Transaction endorsement: invalid transaction.

∗ INCORRECT-VERSION: when the version of the variable where the list
will be recorded differs from the one referred in the transaction proposal.

∗ REJECTED: for any other reason.
• InvalidList: is the list of ineligible names that were included in the list sent by

the RAs.
– Step4: Broadcasting to Consensus. The submitter peer waits for the response

from the endorser peers. When it receives enough Transaction Valid messages ad-
equately signed, the peer stores the endorsing signatures into packaged called en-
dorsement. Once the transaction is considered endorsed, the peer invokes the con-
sensus services by using broadcast(blob), where blob = (Transprop, endorsement)
(Figure7).
The number of responses and endorsement to consider the transaction proposal as
endorsed is equal to 50%+1 of the total number of endorser peers. If the transaction
has failed to collect enough endorsements, it abandons this transaction and notifies
the RAs.

SP Or

Broadcast(Blob)

Fig. 7: Step4: Broadcasting to consensus.

– Step5: Commitment. Once the submitter peer broadcasts the transaction to con-
sensus, the ordering services put it into the current block, which will be sent to
all peers once built. Finally, if the transaction was not validated, the registration
authorities are informed by the submitter peer SP.
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In the case of an invalid list, the registration authorities have to correct the list and
restart the validation phase. We move to the next phase (which is the voting phase) only
when we obtain a valid list of registered voters.

Voting Phase: Two entities participate during this phase:
– The tallying authorities who have constructed ballots before the beginning of the

voting phase. To construct a ballot, TAs calculate, locally, the unique ballot number
BN = {g,D}PKTA , the offset value o f f set = H(g) mod m and the counter-values
CVBN,name j ,k = e(Qname j,Sk ·QBN), where g is a generator of G an additive cyclic
group of order a prime number, D is a random number, PKTA is TAs’ public key,
m is the number of candidates, e(., .) is the pairing function, Sk is the secret key of
the tallying authority TAk, Qname j = H1(name j) and QBN = H1(BN) are two points
of the elliptic curve E. Then, TAs choose, randomly, a blank ballot for each voter,
encrypt it with the voter’s public key and transmit it to the corresponding voter via
the Blockchain. Ballots are sent encrypted because they contain secret information
like the BN, the o f f set and counter-values. To send encrypted ballots to voters
via the Blockchain, TAs interact with the BFT consensus peers. These interactions
unfold in five steps, the same steps as those presented in Section 3.3, and described
in Figure 8.

TAs SP EP

SUBMIT, IDTA,
Write(Enc Ballot),
TxPayload, σTA,

retryFlag

Or

PROPOSAL, mTA,
Transprop

P

TRANSACTION
-VALID, T xid ,σep

broadcast(blob)
B = ([T x1,T x2,

..,T xk ],h)

B = ([T x1,T x2,

..,T xk ],h)

Fig. 8: Interaction between TAs and peers.

1. Transaction initiation. TAs initiate a transaction and send it to a submitter
peer SP. The transaction contains their ID (IDTA), the list of encrypted bal-
lots, the transaction payload, their signature (σTA) and the value of the variable
retryFlag.

2. Transaction proposal. SP verifies the TAs signature and prepares a transac-
tion proposal Transprop = (SP, Write(Enc Ballot),Enc Ballot,stateU pdate,
VerDep) to be sent to the endorsing peer with the TAs message mTA = (IDTA,
Write(Enc Ballot),Enc Ballot,σTA)
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3. Transaction endorsement. EP verifies the σTA coming in mTA, simulates the
transaction proposal and validates that the stateU pdate and verDep are correct.
If the validation process is successful, the endorser peer generates a transaction
valid message to be sent to the submitter peer.

4. Broadcasting to consensus. When the SP receives a number of Transaction
Valid message equals to 50%+ 1 of the total number of endorser peers, ade-
quately signed, he stores the endorsing signatures into an endorsement package
and invokes the consensus services by using broadcast(blob); where blob =
(Transprop,endorsement).

5. Commitment. Ordering services (Or) add the transaction to a block. Once
they collect enough endorsed transactions, they broadcast the new block to all
other peers. A block has the following form: B = ([tx1, tx2, . . . , txk];h) where h
corresponds to the hash value of the previous block.

– Every eligible voter retrieves his/her ballot, decrypts it using his/her secret key and
encrypts his/her vote by voting then sends it in a transaction through the Blockchain.
To encrypt his/her vote, the voter uses the Identity Based Encryption [5] and en-
crypts his/her ballot number BN with QC j = H1(C j) where C j is the pseudo ID of
the chosen candidate. Thus, each encrypted vote has the following form: Enc Vote=
{BN}QCj

.
To be read from the Blockchain or be written on it, voters’ transactions pass through
the blinded signature consensus. We model in Figure 9 the steps through which a
transaction of an eligible voter passes. We take the example of a transaction contain-
ing an encrypted vote. During the interactions between TAs and peers, we use the

RAs V

BlindSign(M,(β,γ,δ),y)

SP

(ρ,σ,ε)

EP

SUBMIT, CrandVi ,
Write({BN}QC j ),

TxPayload,
retryFlag, (ρ,σ,ε)

Or

PROPOSAL,
mVi , transprop

P

TRANSACTION
-VALID, T xid ,

σep

broadcast(blob)
B = ([T x1,T x2,

..,T xk ],h)

B = ([T x1,T x2,

..,T xk ],h)

Fig. 9: Interactions between eligible voter and BlindCons peers.

digital signature as user authentication method without protecting the TAs privacy
because we do not need to hide the identity of our protocol authorities. However,
when it comes to interactions between voters and peers, we need to preserve vot-
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ers’ privacy by blinding their signatures. The privacy preserving consensus adds
two steps:

i) The signature of each eligible voter is blinded automatically after the vote is
cast by the function BlindSign(M,(β,γ,δ),PKRA), where M = (CredentialVi ||
Write(Enc Vote)||Enc Vote||retryFlag) is the message to be signed, (β,γ,δ)
are secret values randomly chosen by the voter and PKRA is the public key of
the RAs.

ii) RAs blind the signature of each eligible voter by providing him the tuple (R,S),
allowing the voter to construct his/her blinded signature (ρ,σ,ε) to be used
during his/her interactions with the peers.

The other steps are the same as the BFT based consensus, but instead of sending
their signatures, the voters send their blinded signatures provided by the RAs.
1. Initiating transaction:

<SUBMIT, CredentialVi , Write(Enc Vote), Enc vote, retryFlag, (ρ,σ,ε)>
2. Transaction Proposal: <PROPOSAL,mVi , transprop >
3. Transaction Endorsement: < TRANSACTION-VALID,T xid ,σep >
4. Broadcasting to consensus: broadcast(blob)
5. Commitment: B = ([T x1,T x2, . . . ,T xk],h)

The voters who intend to verify that their votes were properly counted must memorize
the counter-values that correspond to their chosen candidates.

Tallying Phase: After all votes have been cast, TAs proceed to the tally. We have
as many TAs as candidates. Each tallying authority TAk is responsible for counting the
number of votes for a specific pseudo ID C j: for example the first tallying authority TA1
decrypts, with its secret key S1 ·QC1 , all bulletins that were encrypted with the public
key QC1 (certainly these ballots contain votes for candidates with C j = 0). TAk starts by
initiating a transaction to read encrypted votes from the Blockchain. This transaction
passes through the five steps of the BFT based consensus. Then, it decrypts the votes
with its secret key Sk that were encrypted with QC j in order to reveal the bulletin num-
ber BN. Then, it reconstructs the ballot, identifies the chosen candidate, and added to
the corresponding counter. At the end of this phase, TAk publishes the count for each

candidate using the following formula: σk,name j =
l j

∑
i=1

Sk ·QBNi ; Where l j is the num-

ber of votes received by the candidate j, Sk is the private key of the tallying authority
k, QBNi = H1(BNi) and BNi is the ballot number of the vote i that corresponds to the
candidate with name name j.

Verification Phase: This phase allows voters to check that their votes were counted
as cast and that the election final result corresponds to the sum of all eligible votes. It
includes two sub-phases. During the first one, TAs calculate the list of chosen counter-
values from each ballot number and the name of the chosen candidate, and publish this
list on the Blockchain. Each eligible voter can read this list and verify the existence
of his/her counter-value to be sure that his/her vote was counted correctly. The second
sub-phase uses the homomorphism of pairings to check the accuracy of the tally. Us-
ing the published counts and the reconstructed counter-values, we can verify that the
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announced result corresponds to the sum of all eligible votes, as follows :

l

∏
i=1

CVBNi =
m

∏
k=1

m

∏
j=1

l j

∏
i=1

CVBNi,name j ,k
=

m

∏
k=1

m

∏
j=1

l j

∏
i=1

e(Qname j ,Sk ·QBNi)

=
m

∏
k=1

m

∏
j=1

e(Qname j ,
l j

∑
i=1

Sk ·QBNi) =
m

∏
k=1

m

∏
j=1

e(Qname j ,σk,name j) (1)

Where l =
m
∑
j=1

l j is the total number of votes. These equalities use the bilinear property

of pairing:
l j

∏
i=1

e(Qname j ,Sk ·QBNi) = e(Qname j ,
l j

∑
i=1

Sk ·QBNi)

4 Security Evaluation of DABSTER

Thanks to the use of the BFT based consensus, the BlindCons and a variety of cryp-
tographic primitives, our protocol ensures several security properties. We discuss the
security properties ensured by our protocol and prove, formally, that our solution guar-
antees vote secrecy, vote privacy, and voter’s authentication.

4.1 Informal Security Evaluation

We evaluate our protocol according to a list of security properties that must respect a
secure and practical voting system.

– Eligible voter: The registration and the validation phases of our protocol ensure
that only eligible voters participate in the voting process. During the registration
phase, RAs verify the identity of each voter via a face to face meeting and only
eligible voters are provided with credentials. During the validation phase, RAs send
the list of registered voters to the consensus peers, which are composed of voters,
election organizers and observers, in order to verify the eligibility of all registered
voters and validate or reject this list.

– Individual verifiability: This property is ensured by our protocol because our bal-
lot structure includes counter-values. These values serve as receipts for voters and
enable them to verify that their votes have been cast as intended without disclos-
ing who they voted for. In fact, counter-values are calculated using the following
formula: CVBN,name j ,k = e(Qname j,Sk ·QBN). Thus, we cannot get the name of the
candidate from the value of CVBN,name j ,k.

– Universal verifiability: From the parameters published by the TAs during the ver-
ification phase, everyone can verify the accuracy of the final result by checking the
equation (1).

– Vote-Privacy: This property is ensured thanks to the BlindCons. Before interacting
with the consensus peers, RAs blind the signature of all eligible voters to hide their
real identities. Voters’ transactions are signed by the blind signature issued by the
RAs and not with the voter’s signature. Thus voters’ identities are kept private and
no one can link a vote to a voter.
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– Receipt-freeness: In our case, a voter cannot find his/her vote from the counter-
value CVBN,name j ,k and the other public parameters. He/she cannot therefore prove
that he/she voted for a given candidate.

– Coercion resistance: Our protocol is not resistant to coercion. A coercer can force
a voter to vote for a certain candidate and check his/her submission later using the
counter-value.

– Integrity: The BFT based consensus and the blind signature algorithm prevent
votes from being altered while keeping the voter’s secrecy. Each transaction is
stored in the Blockchain after being validated by 50%+ 1 of the endorsing peers.
This eliminates the risk of modifying transactions before storing them. We mention
here that the BFT consensus is based on the assumption that 2/3 of the endorsing
peers are honest.

– Fairness: During the voting phase, each eligible voter encrypts his/her ballot num-
ber BN with QC j = H1(C j) where C j is the pseudo-ID of the desired candidate.
Ballot numbers are secret and candidates’ pseudo-IDs do not reflect the real iden-
tities of candidates thanks to the offset value, so nobody can identify the chosen
candidate from the encrypted vote. Thus, we cannot get partial results before the
official count.

– Robustness: Our scheme is resistant to the misbehavior of dishonest voters which
cannot invalidate the election by casting an invalid vote or by refusing to cast a
vote.

– Vote-and-go: Our protocol does not need the voter to trigger the tallying phase,
they can cast their votes and quit before the voting ends.

– Voting policy: DABSTERS gives the possibility to eligible voters to vote more
than once and only their last votes are counted. It means that we have a maximum
of one vote per voter in the final tally. In fact, every eligible voter has a unique valid
credential which is sent with his/her vote in the transaction.

4.2 Formal Security Evaluation

ProVerif is a fully automated and efficient tool to verify security protocols. It is ca-
pable of proving reachability properties, correspondence assertions, and observational
equivalence. To perform an automated security analysis using this verification tool, we
model our protocol in the Applied Pi-Calculus [1] which is a language for modeling
and analyzing security protocols. It is a variant of the Pi-Calculus extended with equa-
tional theory over terms and functions and provides an intuitive syntax for studying
concurrency and process interaction. The Applied Pi-Calculus allows to describe sev-
eral security goals and to determine whether the protocol meets these goals or not. To
describe our protocol with the Applied Pi calculus, we need to define a set of names,
a set of variables and a signature that consists of the function symbols which will be
used in order to define terms. These function symbols have arities and types. To rep-
resent the encryption, decryption, signature, blind signature and hash operations, we
use the following function symbols: pk(skey), aenc(x,pk(skey)), adec(x,skey),
spk(sskey), sign(x,sskey), checksign(x,spk(sskey)), BlindSign(x,smkey),
checkBlindSign(x, spk(smkey)), H1(x). Intuitively, the pk function generates the
corresponding public key of a given secret key, aenc and adec stand, respectively, for
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asymmetric encryption and asymmetric decryption, aenc and adec follow this equa-
tion: adec(aenc(x,y),pk(y))=x. The spk function generates the corresponding pub-
lic key of a given signature secret key, sign and checksign provide, respectively, the
signature of a given message and the verification of the signature. They respect the fol-
lowing equation: checksign(sign(x,y),spk(y))=x. BlindSign and checkBlind-
Sign stand, respectively, for blind sign and check blinded signature, BlindSign and
checkBlindSign follow the equation checkBlindSign(BlindSign(x,y),spk(y))=x.
We also assume the hash operation which is denoted with the function H1.

Because of the limitation on the number of pages, we put all ProVerif codes online2

and give only the queries, the results of executing these codes, and the time it takes
ProVerif to prove the properties in Table 2 (Execution times are expressed in seconds).

Property to evaluate Description Result Exec time
To capture the value of a given vote, an attacker has to inter-

Vote secrecy cept the values of two parameters: the ballot number BN and Proved 0.012s
the pseudo ID of the chosen candidate C j.

Voter’s We use correspondence assertion to prove this property. Proved 0.010s
Authentication

To express vote privacy we prove the observational equiva-
Vote privacy lence between two instances of our process that differ only in Proved 0.024s

the choice of candidates.

Table 2: ProVerif results and execution times.

4.3 Blockchain Security Evaluation

DABSTERS Blockchain protocol has the following security properties.

Consistency: A Blockchain protocol achieves consistency if it is capable of ensuring
that each valid transaction sent to the network will stay immutable in the Blockchain.

Definition 1 (Consistency). A Blockchain protocol P is T −consistent if a valid trans-
action tx is confirmed and stays immutable in the Blockchain after T − round of new
blocks.

Theorem 1. DABSTERS Blockchain protocol is 1-consistent.

Proof. The consistency is achieved by agreeing on the validity of the transaction through
a Byzantine Agreement process. Hence, the probability to not settling it in a new block
is negligible if the transaction has at least 50%+ 1 of valid endorsement and the net-
work have at most b an−1

3 c out of total n malicious peers, as it has been shown in [6] [14]
under the terminology of safeness. The protocol achieves consistency after a new block
is created (1-consistency) due to the chain is growing without forks.

2 http://sancy.univ-bpclermont.fr/˜lafourcade/DABSTERS_FormalVerif/

http://sancy.univ-bpclermont.fr/~lafourcade/DABSTERS_FormalVerif/
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Liveness: A consensus protocol ensures liveness if a honest client submits a valid
transaction and a new block is generated with the transaction in it. Hence, the protocol
must ensure that the Blockchain growths if valid clients generate valid transactions.

Definition 2 (Liveness). A consensus protocol P ensures liveness for a Blockchain C if
P ensures that after a period of time t, the new version of the Blockchain C′ is C′ >C,
if a valid client cibc has broadcasted a valid transaction txi during the time t.

Theorem 2. DABSTERS Blockchain protocol achieves liveness.

Proof. Our protocol is a BFT-based consensus. Thus, liveness is achieved if after the
transaction validation process, the network agrees in new block B with the transactions
broadcasted by the clients during a period of time t. Hence, for valid transactions txi,
where i ∈ N0, issued by valid a client ci during a period of time t, the probability that
C′ =C is neglected if we have at most b n−1

3 c out of total n malicious peers [6].

Blindness: We use the definition of blindness defined by Schnorr in [20]. A signature
is properly blinded if the signer cannot get any information about the signature if the
receiver follows the protocol correctly.

Definition 3 (Blind signature). A signing scheme is blind if the signature (m,ρ,σ,ε)
generated by following correctly the protocol, is statistically independent of the inter-
action (a,e,R,S) with that provides the view to the signer.

Theorem 3. Okamoto-Schnorr signature (m,ρ,δ,ε) is statistically independent to the
interaction (a,e,R,S) between the authority A and the user.

Proof. We recall how the protocol works. To generate a blind signature (m,ρ,σ,ε) the
user chooses randomly (β,γ,δ) ∈ Zq to respond to the commitment a generated by A
with the challenge e = H(m,agβhγyδ)− δ mod q. The authority A then sends (R,S) =
(t − er,u− es) to finally obtain the signature by calculating (ρ,σ) = (R− β,S− γ).
Hence, for the constant interaction (a,e,R,S) and a unique set (β,γ,δ) randomly cho-
sen per signature, we generate a signature (m,ρ,δ,ε) = (m,R− β,S− γ,e + γ) that
is uniformly distributed over all the signatures of the message m due to the random
(β,γ,δ)← Zq [20].

5 Conclusion

We proposed a fully decentralized electronic voting system that combines several secu-
rity properties. This protocol, called DABSTERS, uses a new architecture that allows
enhancement of the security of e-voting systems and guarantees the trustworthiness re-
quired by voters and election organizers. DABSTERS is designed to be implemented on
private Blockchains and uses a new blinded signature consensus algorithm to guaran-
tee vote integrity and voter’s privacy due to the unlinkability property that the blinded
signature has. Future work will be dedicated to evaluating the performance and the
scalability of DABSTERS.
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