
HAL Id: hal-04432740
https://uca.hal.science/hal-04432740v1

Submitted on 19 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Evaluating Simultaneous Multi-threading and Affinity
Performance for Reproducible Parallel Stochastic

Simulation
Benjamin A. Antunes, David Hill

To cite this version:
Benjamin A. Antunes, David Hill. Evaluating Simultaneous Multi-threading and Affinity Performance
for Reproducible Parallel Stochastic Simulation. Research Reports on Computer Science, 2023, 2 (2),
pp.91-110. �10.37256/rrcs.2220233134�. �hal-04432740�

https://uca.hal.science/hal-04432740v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Volume 2 Issue 2|2023| 91 Research Reports on Computer Science

Research Reports on Computer Science
https://ojs.wiserpub.com/index.php/RRCS/

Copyright ©2023 Benjamin Antunes, et al.
DOI: https://doi.org/10.37256/rrcs.2220233134
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Research Article

Evaluating Simultaneous Multi-threading and Affinity Performance
for Reproducible Parallel Stochastic Simulation

Benjamin Antunes* , David Hill

Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP, LIMOS UMR 6158 - ISIMA - F-63000
Clermont-Ferrand, France
E-mail: benjamin.antunes@uca.fr

Received: 31 May 2023; Revised: 25 July 2023; Accepted: 26 September 2023

Abstract: This paper investigates whether simultaneous multi-threading (SMT) can improve performance on modern
computing clusters with reproducible results on four types of applications, focused on stochastic simulations with
different memory bound and compute bound constraints. We manually set the affinity of processes to compare its
efficiency with the computing time obtained by the automatic assignment of the operating system. To measure SMT and
affinity impact on a modern multicore processor, we parallelize up to 128 processes of the four types of applications.
We expect repeatable numerical results between the sequential and parallel versions of simulations. For the three
applications that are not memory bound, SMT is more effective by up to 30%. This represents an interesting increase up
to 10% more performance for compute bound applications when compared to the initial papers discussing the efficiency
of SMT. However, for the memory-bound application, SMT is less effective and can even decrease performance. The
manual setting of core affinity does not show an increase in performance compared to the automatic assignment. All
code and data used in the study are available to help reproducible research.

Keywords: simultaneous multi-threading, multicore, hyper-threading, performance

1. Introduction
Reproducible research is one of the cornerstones of science. However, as we can see in many studies, even

computer science papers are hardly reproducible [1, 2]. In this paper, we study in a reproducible way the impact of
simultaneous multi-threading (SMT) and affinity on performance for parallel stochastic simulations. Papers about SMT
are quite old now and our goal is to actualize our knowledge in the era of advanced multicores central processing units
(CPUs).

More than 80% of the Worldwide Computing Grid CPU cycles are running stochastic simulations with SMT [3].
Multicore processors have become a ubiquitous technology. In fact, in 2002, Intel released a paper [4] that introduced
SMT, also known as hyper-threading (HT) for Intel’s patented implementation or SMT for other manufacturers. During
the two decades after the introduction of this patent, multicore (or also called more recently manycore) chips emerged to
lower the die size and power consumption of massive parallelism. On a single CPU, we can now find 128 physical cores
(with recent ARM and AMD chips). In addition, if we consider SMT, we can multiply this number by 2 (or sometimes
more depending on the SMT architecture) to get the number of logical cores. With this level of density, we could find a
single high performance computing (HPC) node with two sockets providing up to 512 logical cores at the end of 2022.

https://www.wiserpub.com/
https://ojs.wiserpub.com/index.php/RRCS/
https://orcid.org/0000-0002-0700-6558
https://orcid.org/0000-0003-2820-2766
mailto:benjamin.antunes%40uca.fr?subject=

Research Reports on Computer Science 92 | Benjamin Antunes, et al.

The distinction between multicore processors and manycore processors is somewhat arbitrary and there is no strict
definition that applies to all cases. We made the choice here to talk about multicore, but we can find in literature, 32
cores CPU considered as manycore processors.

First, let us explain how 2-way SMT works [4]. For the operating system, a single physical processor will appear
as two logical processors. While the physical execution resources are shared, the full architecture state is duplicated for
the two logical processors. The operating systems and the user programs can use the two logical cores as if they were
real physical processors. The first level of parallelism is instruction-level parallelism (ILP); it “refers to techniques to
increase the number of instructions executed each clock cycle” [4]. We can cite superscalar processors that execute
multiple instructions at each clock cycle. However, this implies to use the out-of-order technique to be efficient. The
out-of-order technique (dynamic execution) is now implemented in most modern CPUs. A combination of Speculative
Execution, Multiple Branch Prediction and Data-flow Analysis can lead to a better usage of core resources (less idle
time). In an out-of-order machine, proper exception handling and branch prediction miss imply a repairing mechanism
to restore the machine to a previous reliable state [5]. The out-of-order feature can also lead to a loss of repeatability
when dealing with floating point operations since they are not associative [6, 7]. Indeed, with out-of-order cores,
instructions are not always executed following the order specified in the source program or even by the compiler. The
IBM System 360/Model 91 was the first machine to propose this feature in 1967 but it did not propose floating point
instructions, the introduction of this approach to Floating Point Units is quite recent. Another level of parallelism is the
thread-level parallelism (TLP). In fact, in current systems, many processes are running at the same time (in foreground
or background). So multi-threading is also handled for basic computing, not only for HPC.

Multicore chips are one way to facilitate the handling of TLP by providing more ‘hardware’. To handle multiple
threads, it is rare that you can propose a physical core for each task; you have to switch between them. Different
methods exist: switch between threads at a fixed time (or not), when a thread is still runnable, and switch between
threads when long latency events happen, like I/O or synchronization, or interruption handling. The operating system
policy of switching can vary; this task is done by the scheduler. When a CPU core is scheduled to switch to another
thread, we call this process a “Context Switch”. Context Switches are expensive and slow down the computing process
as the entire state and flow of the highly pipelined CPU must be stopped, saved and swapped out for another state (as
well as other caches, registers, lookup tables, etc.). What can cost time is also cache misses. A cache miss appears
when data is not stored in the local hierarchy of memory cache for fast access. The CPU will have to get the data in
random-access memory (RAM), and this results in a significant time loss. The goal of SMT is to be able to “exploits
both instruction-level and thread-level parallelism by issuing instructions from different threads in the same cycle” [8],
without switching between them. To do so, there is one architecture state for each logical core, as said previously. The
processor can keep the state of the two threads simultaneously, and can easily swap between them without time loss.
Logical cores share most of the physical CPU resource, but the duplication of the architecture enables the autonomy
of both logical cores with only 5% more power and chip size (according to Intel’s paper). The latter shows that the HT
technology offers around 20% performance improvement on database exploitation and web services. However, the
information is quite old now. We want to answer here the following questions: is SMT really that useful today, at the
large multicore (or manycore) era? Is it suitable for HPC and more particularly for large stochastic simulations? They
sometimes present huge memory needs and sometimes massive computation needs. Does the user management of CPU
affinity increase performance? What kind of advices can we give to non-expert users of computing clusters? Can we
help system administrators in their decisions about enabling or disabling SMT depending on the application profile? In
our context of parallel stochastic simulations, we need reproducible and repeatable applications to address the previous
questions. In this paper, we will first present related work about SMT and affinity performance impact and show that we
experience a reproducibility problem. Then, we will present our work, how we planned it and then discuss our results.
Finally, we will discuss some hypotheses to explain the obtained results before planning future work.

2. A few words about the “reproducibility” terminology evolution
While reproducibility can appear as a simple notion, the fact is that we do not have a consensus definition among

researchers and research fields. Before 2020, according to the ACM, here was the main terms and definitions:
• Repeatability: Same team, same experimental setup

Volume 2 Issue 2|2023| 93 Research Reports on Computer Science

• Reproducibility: Different team, different experimental setup
• Replicability: Different team, same experimental setup
In these definitions, as Drummond said in [9], reproducibility requires changes, replicability avoids it.

Reproducibility is the fact that a different team applying a different method or setup for the same scientific question
obtains the same scientific conclusions. This is strengthening the discovery. In the case of replicability, the goal is that
a different team, using the first team article artifacts, can obtain the same results with a stated precision. In literature,
authors sometimes use the word “reproducibility” to talk about “replicability”, and sometimes it was the other
way around. Advised by NISO (National Information Standards Organization), ACM (Association for Computing
Machinery) changed their definitions after 2020, swapping terms between reproducibility and replicability for a better
match with the practice of other research fields. Barba found which scientific field used one definition or the other and
obtained the results presented in [10]. With this study, we realize that computer science was one of the rare fields to use
the definition given at the beginning of this section. That was an argument to follow the NISO standardization advices;
ACM then switched their reproducibility and replicability definitions. Here are the 2020, and current, definition for both
terms [11]:

“Reproducibility (Different team, same experimental setup): The measurement can be obtained with stated
precision by a different team using the same measurement procedure, the same measuring system, under the same
operating conditions, in the same or a different location on multiple trials. For computational experiments, this means
that an independent group can obtain the same result using the author’s own artifacts.

Replicability (Different team, different experimental setup): The measurement can be obtained with stated
precision by a different team, a different measuring system, in a different location on multiple trials. For computational
experiments, this means that an independent group can obtain the same result using artifacts which they develop
completely independently.”

We can also observe that some authors, active in the reproducibility research field in computer science, and that
were using the previous definitions, like Hinsen [12] or Rougier et al. [13], have also swapped their definitions of
reproducibility and replicability; it now matches with the ACM 2020 update. Our approach is the same, and in this
paper, we will stick to the ACM definitions for “reproducibility” and “replicability”. Increasing trust about a scientific
conclusion with reproducibility and/or replicability is important for us. Reproducibility is the first step for everyone to
regain confidence in published results.

The last term to discuss about is repeatability. It has led to less controversy than the two others. However, in computer
science research papers, we sometimes find a confusion between repeatability and reproducibility. In our opinion, the
definition of repeatability can still vary among scientific fields. In fact, in computer science, our machines are designed
to be deterministic (except for quantum computing of course). We want to obtain run to run bitwise identical results on
the same machine for the same program. This point is absolutely essential for debugging and for the trust in the use of
our deterministic computers. Repeatability is a real concern for researchers who are still aware of debugging, and this
activity is particularly tough in the HPC world. Ensuring reliable parallel debugging requires repeatability with bitwise
identical results. And in this sense, we do not fully agree with the ACM definition which adds that results are identical
with a “stated precision”. This is because the ACM definition of repeatability comes from the International Vocabulary
of Metrology. In our opinion, this definition is perfectly correct for quantum computer science, but not for classical
deterministic computing where we really need “bitwise identical results” in order to debug properly. In the case of
classical deterministic computer science, the “stated precision” should allow no differences. This applies to numerical
results of applications. When talking about computing time, “stated precision” of the general definition is fairer. In this
paper, we aim to obtain bitwise identical results for each of our experiments and on different platforms, but also, we
want the same results when go from sequential execution to parallel execution (which is not so obvious if no proper
method is used to manage the different stochastic streams). This last point is important to ensure that different execution
mode and execution time are not due to differences in the execution path of the processes.

3. Related work
Several papers exist about SMT and affinity. If the SMT concept is described in [4], paper [14] studies the impact

of SMT in specific case of message passing interface (MPI) applications. It gives us some conclusions: SMT technology

Research Reports on Computer Science 94 | Benjamin Antunes, et al.

allows a better resource utilization of the processor, but, on the other hand, it can also lead to more overhead. Some
studies focused on the first SMT (HT) processor, the Pentium 4. Paper [15] shows an amelioration of 20% as expected
from Intel’s paper [4] and [16] obtained similar results. A good study from 2011 tested the impact of SMT on processor
utilization on four real-life NASA applications [17]. It shows that SMT led to a better utilization of processors,
and it results in increased global performance when sufficient memory resources are available (cache and memory
bandwidth). In the cases of affinity, there are also some papers existing about this subject; in [18], the authors work on
transmission control protocol (TCP) connections on a symmetric multiprocessing (SMP) server. This study obtained a
good performance impact using affinity, around 20%. This case is specific for communication applications with the TCP
protocol. In [19], the study is close to our considerations. They tried to figure out the affinity performance on multicore
chips. They measured it on multicore uniprocessors and multicore multiprocessors according to their terminology.
The difference is about the physical architecture: in the first case, there is only one socket, and in the second case,
there can be two or more sockets. This is why we have multicore uniprocessor (with only one processor), or multicore
multiprocessors (with several). This leads to the fact that L2 and L3 cache might be fully shared between all cores and
in the second case, several L2 and L3 caches can be shared between a subset of cores, so we can still use affinity at L2
or L3 cache level. Their results are that affinity gives no improvement on multicore uniprocessors (a single processor
with multicore inside and a single L2 usually used on a single socket node). Affinity gives a gain of 11% in performance
on average for multicore multiprocessors (nodes with 2 or more sockets, each of them providing their own L2 cache
for their multicore). An improvement was observed with affinity before multicore existed (assigning tasks to physical
processors on a multiprocessor system). This paper was published in 2008, multicore chips have evolved since then.
While [18] and [19] were talking about results obtained with affinity on the same motherboard (handling affinity to work
better with cache memory), we can also think about affinity at a larger scale for communicating processes. In [20], they
are working at a larger scale on computing clusters. This requires knowing exactly the architecture of the computing
cluster we are using, where exactly our programs are going to be executed and where the intense communications
between processes are. Without a fast and balanced cluster interconnect, the more distance we have between two
communicating points, the more time we will need. This paper [20] places the context of a computing cluster that may
have the size of a room for example (a small supercomputer for instance). Knowing the exact physical architecture of
the cluster can be useful to understand the behavior of some parallel programs, where are physically the racks and the
nodes in the room, on which racks are node X and node Y placed for example. When scientists submit their jobs on
computing clusters, they rarely have this information and they should not care about this. As said previously, fast and
balanced interconnect solves most of the questions raised by this paper. This paper does not study the performance
impact of affinity, but it is interesting to see affinity in a different way, how affinity can be used at a larger scale?

In [21], they studied the performance impact of SMT for parallel simulations. They have shown that the SMT
impact on performance was influenced by “the characteristics of the runtime software architecture (i.e., mono-thread/
multi-thread implementation)” and that SMT slightly increase performance. In [22], they used benchmarks to predict
the performance of memory bounded applications on clusters. In [23], they studied the impact of several technologies,
including HT, on high energy physics (HEP) simulation on computing grid for CERN (European Council for Nuclear
Research). They worked on GEANT4 detector simulations. Their results were that HT caused unnecessary overheads
and should not be used because of a loss of performance. And lastly for [24], they study the effect of SMT on MPI-
based applications while testing different math libraries. They conclude that SMT can improve or worsen performance
depending on hardware configuration and on the applications that we are running. For a math library, that is using high
CPU resources, then SMT can decrease performance, because enabling SMT will share cache and lead to more cache
misses. This is why we think that studying SMT effectiveness is still pertinent, because we should not assume that it is
in all cases beneficial.

Most related works that we presented come from papers published between 2000 and 2010. As technologies are
evolving fast, more up-to-date studies are also important, without minimizing the importance of older papers. In the
recent published papers about SMT, we cannot find articles that consider the evaluation of SMT performance compared
to machines with SMT disabled. Depending on the type of applications running on clusters, the benefice of SMT is
not always there. Osborne and colleagues published several papers about SMT for real-time application from 2019
onwards. We can cite [25-27], where they assume that SMT provides an overall performance benefit. Starting from this
knowledge, they aim to obtain a better usage of SMT resources by optimizing the scheduling, in the special case of

Volume 2 Issue 2|2023| 95 Research Reports on Computer Science

real-time applications. These more recent papers are not relevant to our study, as we primarily question the benefits of
enabling or disabling SMT on every computing cluster, where we should consider the running applications types, or the
other hardware configuration (like memory or interconnect), to know if SMT is effective. With the same considerations
of previous recent works, [28] also aim to optimize the usage of the resources offered by SMT, they are proposing a
solution affecting the compilation phase. Furthermore in 2020 from [29], wanted to optimize fetching policies with
machine learning. All these recent papers are assuming the SMT value for enhancing performance. A small recent paper
is more connected to our research questions. In [30], the authors study whether users should enable or disable SMT on
cloud service provider. They conclude “Sometimes, disabling SMT is a good option to boost the performance of certain
workloads. Therefore, we should always test our workloads with different SMT settings and deploy with the setting that
brings better performance to the workloads.”; this is more similar to what [23] obtained, and to what we are studying.
With our paper, we want to question the fact that SMT is always beneficial to performance. Indeed, as we see, papers
evaluating SMT performance are quite old now, and are also not reproducible (because back in the time, code sharing
and good practices was not considered as important as it is now). In addition, multicore chips have evolved since, and
we can even call them “manycore” chips. This paper aims to actualize our knowledge, by practical experiment, as many
non-expert users could use an actual computing cluster.

In the new set of ACM definitions (2020) dealing with reproducibility [11], as we said, reproducibility is an
important notion which helps to trust the published results. To be reproducible, a paper has to give its artifacts. In our
case with SMT and affinity, papers should describe the method used, and should give a link to the scripts and codes with
the essential documentation in order to be runnable in a reasonable time. We studied the ability to reproduce the results
obtained by the papers we cite as references to write this paper about SMT and affinity. In the following table, we check
if a paper gives its scripts/codes, if they are at least minimally documented, and finally if they are runnable.

As we can see in Table 1, we could not reproduce the results of any of the articles cited (except one); this a
regrettable for the computer science field. No source codes, no binaries available and even no documentation on how
to reproduce the experiments. We could justify the bad scores because most of these papers are quite old (around 15-
20 years old), and back in time, reproducibility was not a major concern for publishing. It now tends to become more
important and many serious journals require artifacts.

Table 1. Reproducibility of SMT and affinity papers

Reference Source code and
scripts available

Data and
Documentation

Runnable experiment
(binary versions)

[21] No No No
[22] No No No
[14] No No No
[16] No No No
[17] No No No
[23] No No No
[24] No No No
[18] No No No
[19] No No No
[20] No No No
[25] Yes Yes Yes
[26] No No No
[27] No No No
[28] No No No
[29] No No No

[30] No No No

Computing papers about SMT and affinity use most of the time open-source benchmarks, and this is a good point.
The major problem is that they do not give their code, analysis scripts and other artifacts, so we cannot reproduce the

Research Reports on Computer Science 96 | Benjamin Antunes, et al.

published results. We think that our contribution is useful since we actualize the knowledge about SMT at the multicore
(manycore) era, in a reproducible way (https://gitlab.isima.fr/beantunes/simultaneousmultithreading-evaluation).

The reproducibility aspect might concern different parts of our study. First, as we mentioned above, reproducibility is
the fact that other researchers are able to replay a study conducted in a published paper, using the paper’s artifacts. This is
one of our concerns, and this is why we took the time to define reproducible research vocabulary. However, reproducibility
is also about numerical reproducibility of application results, and about computation times. In this paper, we worked on two
different hardware and software configurations, and we ensure the repeatability of numerical results from parallelization
(which needs a specific procedure described in [31]), even if numerical results of running applications are not the main
aspect of this paper, and that they are not used, bitwise same numerical results suppose the exact same computation, so
differences between computing times, which we are studying here, cannot come from a different execution. Concerning
reproducibility in terms of computing time, we did 30 replications so we could identify the variability. In fact, some
published papers [32-34] are indeed concerned about the negative influence of SMT on computing time reproducibility,
because SMT can increase variability of computing times (which cannot be of course “bitwise” as numerical results
would do, but we can consider a stated precision, like ACM definitions would provide).

4. Materials and methods
We have designed an experiment to answer the three questions raised at the end of our introduction. We want to

know the impact of SMT on performance, and we study AMD SMT and Intel HT. The AMD processor release date
is mid-2019, while the Intel processor release date is end of 2013. This allows us to study the mid-term evolution or
consistency of SMT performance impact, and to confirm or disprove the results we would obtain on each different
clusters configuration with reproducibility in mind. For AMD, we have two nodes. Each node has two AMD EPYC
Rome 7452 processors, each of them with 32-Cores, 64 threads, 2 MB of L1 cache, 16 MB of L2, 128 MB of L3
cache and 512GB RAM (DDR4). The maximum memory bandwidth is 190.7 GB/s. Each core can run at 3.35 GHz.
The operating system is Ubuntu 20.04, with kernel version 5.4.0.153-generic, and we work with the gcc/g++ compiler
version 9.4.0. The two nodes are the same, but on the first node, named here node-NoSMT, SMT is deactivated, and
on the second, node-SMT, SMT is activated. This brings node-NoSMT to 64 cores (physical), and node-SMT to
128 logical cores (64 physical cores proposing 128 logical cores). Our experiments are easily balanced since we run
replicates of stochastic simulations (embarrassingly parallel load). This means that we have identical tasks but each of
them has a different random stream in order to obtain results with statistically independent runs. We have selected the
Mersenne Twister pseudo random generator [35] and used it with different “independent” stream statuses [31]. The
parallel technique used for all applications is known as the multiple replications in parallel (MRIP) approach [36]. We
have considered four cases: We run 4 kinds of experiments: (1) 128 parallel tasks on node-NoSMT without setting the
affinity; (2) 128 parallel tasks on node-NoSMT with affinity setting; (3) 128 parallel tasks on node-SMT without setting
affinity and (4) 128 parallel tasks on node-SMT with setting affinity.

To see if we can have a stable growth of the speedup, we fixed the problem size to 128 simulation tasks, and we
ran this problem on 1, 2, 4, 8, 16, 32, 64 and 128 cores. The speedup value is calculated by dividing the time taken to
execute the bag of work (128 processes in our case) by N cores by the time taken to execute the bag of work on one core
(Speedup = TimeOnNcores / TimeOnOneCore). Obviously, for the experiments on node-SMT with SMT and 128 logical
cores, a task can be assigned to each core. On node-NoSMT with only 64 physical cores, two tasks will have to be
processed on each core at full load. The expected result is that node-SMT should obtain better performance, by around
20% as mentioned in related works. The two nodes we use for this test are located in a cluster accessible with Slurm.
All the scripts and code used are available on Gitlab (https://gitlab.isima.fr/beantunes/simultaneousmultithreading-
evaluation). We reserved the whole capacity of both nodes (--exclusive Slurm access), even if we use only one core
for example, so we do not have interference with other jobs that other lab researchers of our laboratory might have
launched. The affinity is set with the taskset Linux command. For node-SMT (with SMT and 128 logical cores), we
have first set the affinity only on physical cores as long as possible (from 1 to 64 tasks). Then for 128 tasks, the affinity
assigns one process to each logical core (from 0 to 127). For node-NoSMT, with taskset, we did the same, one task by
physical core until 64, and then two tasks by cores to process the 128 tasks.

For Intel, we also have two nodes. Each node has two Intel Xeon E5-2650 v2, each of them with 8-cores, 16

https://gitlab.isima.fr/beantunes/simultaneousmultithreading-evaluation
https://gitlab.isima.fr/beantunes/simultaneousmultithreading-evaluation

Volume 2 Issue 2|2023| 97 Research Reports on Computer Science

threads, 32K of L1 cache, 128K of L2 cache, and 10 MB of L3 cache and 128GB RAM. The operating system is
CentOS Linux 7.9.2009, with kernel version 7.9.2009, and we work with the gcc/g++ compiler version 4.8.4. Turbo
boost is enabled, to go from 1.2 GHz to 3.4GHz. The two nodes are exactly the same, but on the first node (named
node-NoHT), HT is deactivated, and on the second (named node-HT), HT is activated. Due to the technical limits of
the hardware at our disposal, experiment on Intel HT is smaller than on AMD (32 processes VS 128 processes). The
software configurations of clusters are quite similar, but with different versions of operating system, compiler, libraries.
Processor brand and generations are also different, with different SMT implementation. Due to these differences, it
allows us to study the impact of SMT of performance depending of the type of applications, and to replicate this on
two real-life cluster configurations, that users might encounter during their career, to confirm or disprove obtained
conclusions.

On the two clusters, this is a local default non-uniform memory access (NUMA) policy. There are two AMD
sockets, and two Intel sockets. Each chip is using its memory for its own cores (L1, L2 and L3 caches). By default,
when a process runs on a core, the scheduler is likely to keep this process on this core to avoid loss of performance. This
is also called affinity. SMT and HT are disabled on corresponding nodes at the basic input/output system (BIOS) level.

To analyze the SMT impact on performance in our computing clusters, we have selected four different kinds of
stochastic applications. An Agent-Based Model (ABM) for COVID-19 epidemiological modelling written in C++ and
with a large need of RAM, a benchmark for physics simulation at CERN written in Python, a simple compute bound
Monte-Carlo simulation to estimate Pi written in C and a PRNG test library named TestU01written in C [37]. Each C or
C++ application in compiled using gcc or g++ (versions mentioned above), and the –O2 option.

The ABM is described in [38]. The spatial agents modelled are humans moving on a map. The map is divided into
cells and stored in a squared matrix. If some humans are contaminated, when they move, they can infect others using a
differential Moore’s neighbourhood (order 1 and 2 have different contamination probabilities). To have a realistic HPC
load for our tests, we ran the simulations on a famous big city: Paris. The map is of 10,000 m² and needs around 2 GB
RAM per simulation. The load will correspond to 256 GB of RAM for 128 parallel simulations on fat nodes with 512
GB of RAM. Such simulations do not fit in cache memory and because of some long-distance random moves of humans
on the map, each time step of the simulation may inspect the content of cells scattered everywhere in the map. Because
of this modelling constraint, there will be many cache misses.

The Monte-Carlo Pi simulation is a well-known toy case in the field of stochastic simulations. This is not at all
the fastest or optimal way to get an estimation of Pi value, but it stands as an easy basis and benchmark for surface
estimation (slowly converging at the square root of the number of points drawn). In addition, with this simple
application, we have an example of easily reproducible compute bound application where everything may fit in the
cache memory. Many real applications need data fetching and memory accesses, it is still a main concern now despite
the improvements of DDR5 (Double Data Rate 5) and the increase of cache size. Memory access can often be the main
limitation of intensive computing [39].

The third application we use for our experiments is the DB12 benchmark developed at CERN [40]. This benchmark
has the objective to replicate the HEPSPEC06 benchmark used for HEP applications. This benchmark is small and
written in Python3. It tries to model the load of stochastic simulations run on the World Large Computing Grid (WLCG)
for CERN and it is interesting to check the behavior of such a benchmark used in HPC at CERN with SMT (SMT
is almost always activated for compute intensive grid computing). Results of the benchmark itself shows that core
performance gets lower as we increase the parallelism. Once we reach the full charge on SMT enabled machines, we
noticed a difference in performance from physical and logical cores, as we will show in the results section.

The last application is a PRNG test library software called TestU01. To know if a PRNG is giving “random”
numbers, we use statistical tests that should determine if there are visible correlations between generated random
numbers. TestU01 is currently the most complete test battery we know to assess the quality of random numbers [31],
particularly with its famous “BigCrush” battery. For our experiment, we have selected the SmallCrush test battery since
it takes only 2 minutes, against 4 hours for BigCrush on modern processors. It would have been a waste of computing
time for our massive parallel testing.

To run these experiments, we used Bash scripts for Slurm jobs. For example, Figure 1 below presents the
script executing the bag of work of 128 processes on 4 cores, each running 32 sequential tasks, with affinity. As said
previously, we used the “—exclusive” option to get the entire node reserved for our experiment. We used “—ntasks”to

Research Reports on Computer Science 98 | Benjamin Antunes, et al.

set the number of nodes we want to use, and “mem=0” allows us to reserve all the RAM of the node. Each task
corresponds to the execution of a command. Here, the task is “time taskset –c $(($i%64)) ./exe [args]”. In the script
given, we work on node-NoSMT, so we only have physical cores (64). With taskset (affinity), we set each task to work
on its processor number (task 0 in core 0, task 1 on core 1, etc.). When we reach 128 tasks with only 64 cores, the
“%64” assigns two tasks on each core. With simultaneous multi-threaded machines, we are careful about assigning only
physical cores until the number of tasks gets bigger than the number of cores.

Figure 1. Example of Bash script for Slurm jobs

We have retained an embarrassingly parallel workload approach at the operating system level to efficiently utilize
multiprocessor nodes. This means we have a workload that can be easily divided into independent tasks, each of which
can be processed in parallel without any need for complex coordination. Thus, we do not need classical parallel libraries:
OpenMP, MPI or pthread with lightweight threads, and this allows us to focus on SMT performances and to avoid
potential synchronization limitations that might arise with more sophisticated parallel processing methods. We want to
make the best use of the available multiprocessor nodes in our systems. Rather than dividing each simulation into smaller
units, we group them together to simplify the workload distribution. The “bags of work” can then be easily assigned to
128 or 32 parallel tasks (in the case of our AMD or Intel clusters, respectively).

In 1967 [41], Amdahl defined the speedup and its limits depending on the proportion of code which is mandatorily
sequential. In our experiment, the size of the problem to process is 128 tasks and there is no sequential part, a linear
speedup could be expected. Each task is a heavy process following the high-level parallelization model called SPMD
(Single Program Multiple Data). This approach is intensively used on clusters for Experimental Designs and Sensitivity
Analysis where huge parallel loads are required to explore the space of results depending on the number of levels for each
factor of an experimental design. For such loads, the best we can propose is to assign one task per core, so we could expect
to “divide” the computing time by 128 (AMD) or 32 (Intel). As said previously, we have no sequential parts in our tasks,
we are in the Amdahl’s law optimal case where the speedup is theoretically linear. With such an embarrassingly parallel
problem, we want to see if we can reach this optimum. In this work, we did not only measure computing time, but we also
checked the numerical results. Bitwise identical results, even if we are not considering them, allow us to be sure that the
exact same execution path is done for each process, so gaps in computing time do not result from a gap in the execution.
If one does not take care of the parallelization technique used for the stochastic simulations, it is common to obtain non-
reproducible results [42]. In addition, if we want to be able to compare the sequential results of a stochastic simulation
and the results obtained by a parallel version of this simulation, we have to prepare this carefully with special care to
random streams (including a special approach for the sequential version which serves as reference. The procedure is
described in [43]. When you execute your simulations sequentially, you have to think parallel and you still have to prepare
different statuses of your pseudorandom number generator. This can be easily achieved with pre-computed statuses. Each
task will have its own status, will it be executed sequentially or in parallel, and each task will produce the same result.
Thanks to this, when you parallelize, you can obtain results identical to a reference sequential program. For example,
we have a process with 128 tasks that will be executed sequentially. The corresponding local program is named “exe”.
If we parallelize the load on 4 processors for example, we want to execute 32 sequential simulations on each of the four
cores: 0 – 31, 32 – 63, 64 – 95 and 96 – 127. This is what we are doing here with “$((0 + 32*$i)) $((31 + 32*$i))” in the
script given in Figure 1. Inside the C++ code of the simulation, we initialize the Mersenne Twister generator with a status

#!/bin/bash
#SBATCH –exclusive
#SBTACH –ntasks=4
#SBATCH –cpus-per-task=1
#SBATCH –nodelist=node-NoSMT
#SBATCH –mem=0

#SBATCH –outpour=4processAffinity-SMA-Experiement1-Node34
for I in ‘seq 0 3’;
do
 time taskset –c $(($i%64)) ./exe $((0 + 32*$i)) $((31 + 32*$i)) configParis
 configNoMesure logConfigParisProc$i &
done
wait

Volume 2 Issue 2|2023| 99 Research Reports on Computer Science

depending on the number of the simulation. So, each simulation will be initialized with the same status, independently if
it runs sequentially or in parallel. This allows us to get repeatable results between sequential and parallel execution. The
performance evaluation is based on two metrics: the overall time taken for execution and the speedup achieved.

5. Results
We did 30 replications with a parallelization with 1, 2, 4, 8, 16, 32, 64 and 128 cores on AMD and 1, 2, 4, 8, 16

and 32 for Intel. We are not comparing AMD and Intel; on the contrary, we are validating our results on two processors
from different brands and generations that we have at our disposal for this study. Figure 2A gives the result of the small
compute intensive program that estimates the value of Pi, we can already get some information. First, SMT is effective,
and gives us a 30% performance increase when compared to with the program running without SMT. At the end (128 tasks
fully parallelized on 128/64 cores), we can see a slight benefit from affinity, with or without SMT. We did not show the
95% confidence interval error bars because the gap is so small that it does not appear on graphs, measures are statistically
strong and the error bar is not significant for this study. With DB12, conclusions we can make from Figure 2B are similar
to those obtained with the Pi estimation program. These applications are similar, with high computation, but there is an
increasing need of memory for DB12 even if it remains small compared to the RAM available per node and per core (512
GB of RAM for 128 logical cores).

Figure 2. (A1 – A2) Monte Carlo Pi simulation speedup depending on SMT and affinity on AMD (128 cores); (B1 – B2) DB12 benchmark speedup
depending on SMT and affinity on AMD (128 cores)

Pi-Affinity-Node34 (No HT)
Pi-NoAffinity-Node34 (No HT)
Pi-Affinity-Node40 (HT)
Pi-NoAffinity-Node40 (HT)

120

Sp
ee

du
p

100

80

60

40

20

0

Number of processors
0 20 40 1008060 120

(A1)

Db12-Affinity-Node34 (No HT)
Db12-NoAffinity-Node34 (No HT)
Db12-Affinity-Node40 (HT)
Db12-NoAffinity-Node40 (HT)

120

Sp
ee

du
p

100

80

60

40

20

0

Number of processors
0 20 40 1008060 120

(B1)

Db12-Affinity-Node34 (No HT)
Db12-NoAffinity-Node34 (No HT)
Db12-Affinity-Node40 (HT)
Db12-NoAffinity-Node40 (HT)
Theoretical linear speedup (y = x)

128

Sp
ee

du
p

64

32

16

8

4

2

1

Number of processors
1 4 8 643216 128

(B2)

2

Pi-Affinity-Node34 (No HT)
Pi-NoAffinity-Node34 (No HT)
Pi-Affinity-Node40 (HT)
Pi-NoAffinity-Node40 (HT)
Theoretical linear speedup (y = x)

Number of processors
1 4 8 643216 128

(A2)

2

Sp
ee

du
p

64

32

16

8

4

2

1

128

Research Reports on Computer Science 100 | Benjamin Antunes, et al.

For the SmallCrush of TestU01 (Figure 3A), we have the same conclusion as for DB12 and Pi, where SMT is more
efficient with 128 parallel processes. In Figure 3B, for the ABM simulation, the situation is different. First, we can see
that, while the speedup was approximating linear for Pi, DB12 and SmallCrush, it is not the case here. Even worse, in
Figure 3B we see that if we parallelize with more than 32 cores, performance without affinity starts decreasing. We can
also note that the best speedup obtained is without affinity and for a low level of parallelization (32 cores). This means
to us that letting the operating system decide could be a better option, if we do not set the affinity according to the exact
hardware architecture (which is often not possible for non-expert users). We can also observe a curious phenomenon: after
32 cores, without affinity, there is a decrease in speedup up to 64 cores, before the performance meets a constant plateau
close to a speedup of 16 (far from linear). We can also notice that, while affinity is the main difference in performance,
the node without SMT is performing slightly better than the hyper-threaded node. We will discuss later the hypothesis of
these results.

Figure 3. (A1 – A2) TestU01 speedup depending on SMT and affinity on AMD (128 cores); (B1 – B2) ABM speedup depending on SMT and affinity
on AMD (128 cores)

Now, we will present results of the same experiment done on an Intel chip (HT From Figures 4 and 5, we can see
that the results from Intel node are similar to those obtained with the more “modern” AMD processor. For compute bound
applications like Pi Monte Carlo simulation, DB12 benchmark or SmallCrush from TestU01, HT is around 30% more
effective (surprisingly not much for DB12 here). For large COVID-19 ABM, we can see that without HT, performance is

Testu01-Affinity-Node34 (No HT)
Testu01-NoAffinity-Node34 (No HT)
Testu01-Affinity-Node40 (HT)
Testu01-NoAffinity-Node40 (HT)

120

Sp
ee

du
p

100

80

60

40

20

0

Number of processors
0 20 40 1008060 120

(A1)

SMA-Affinity-Node34 (No HT)
SMA-NoAffinity-Node34 (No HT)
SMA-Affinity-Node40 (HT)
SMA-NoAffinity-Node40 (HT)

Sp
ee

du
p

80

60

40

20

0

Number of processors
0 20 40 1008060 120

(B1)

Testu01-Affinity-Node34 (No HT)
Testu01-NoAffinity-Node34 (No HT)
Testu01-Affinity-Node40 (HT)
Testu01-NoAffinity-Node40 (HT)
Theoretical linear speedup (y = x)

128

Sp
ee

du
p

64

32

16

8

4

2

1

Number of processors
1 4 8 643216 128

(A2)

2

SMA-Affinity-Node34 (No HT)
SMA-NoAffinity-Node34 (No HT)
SMA-Affinity-Node40 (HT)
SMA-NoAffinity-Node40 (HT)
Theoretical linear speedup (y = x)

128

Sp
ee

du
p

64

32

16

8

4

2

1

Number of processors
1 4 8 643216 128

(B2)

2

Volume 2 Issue 2|2023| 101 Research Reports on Computer Science

slightly better.
These results for the Intel cluster confirm what we obtained on the AMD clusters, with larger multicore chips.

Figure 4. (A1-A2) Monte Carlo Pi simulation speedup depending on SMT and affinity on Intel (32 cores); (B1-B2) Db12 speedup depending on SMT
and affinity on Intel (32 cores)

With the execution times given by Tables 2 and 3, we can see with the performance obtained that the use
of SMT had a negative impact for the ABM application, which is memory bound. For the compute bound applica-
tions, SMT had a positive impact. In fact, on AMD, we can see that, in terms of time, the ABM takes around 12%
more time with SMT activated. But for SmallCrush, it takes around 27% less time. On Intel, results are similar, but
HT loses less performance for ABM, probably due to less overhead with only 32 processes (compared to 128). How-
ever, conclusions remain the same: SMT might decrease performance in the case of huge memory usage simulations.

Pi-Affinity-Node10 (No HT)
Pi-NoAffinity-Node10 (No HT)
Pi-Affinity-Node11 (HT)
Pi-NoAffinity-Node11 (HT)

30

Sp
ee

du
p

25

20

15

10

5

Number of processors
0 5 10 252015 30

(A1)

Db12-Affinity-Node10 (No HT)
Db12-NoAffinity-Node10 (No HT)
Db12-Affinity-Node11 (HT)
Db12-NoAffinity-Node11 (HT)

30

Sp
ee

du
p

25

20

15

10

5

Number of processors
0 5 10 252015 30

(B1)

32

Sp
ee

du
p

16

8

4

2

1

Number of processors
1 2 4 32168

(A2)

Pi-Affinity-Node10 (No HT)
Pi-NoAffinity-Node10 (No HT)
Pi-Affinity-Node11 (HT)
Pi-NoAffinity-Node11 (HT)
Theoretical linear speedup (y = x)

32

Sp
ee

du
p

16

8

4

2

1

Number of processors
1 2 4 32168

(B2)

Db12-Affinity-Node10 (No HT)
Db12-NoAffinity-Node10 (No HT)
Db12-Affinity-Node11 (HT)
Db12-NoAffinity-Node11 (HT)
Theoretical linear speedup (y = x)

Research Reports on Computer Science 102 | Benjamin Antunes, et al.

Figure 5. (A1-A2) TestU01 (SmallCrush) speedup depending on SMT and affinity on Intel (32 cores); (B1-B2) ABM speedup depending on SMT and
affinity on Intel (32 cores)

Table 2. Mean time and speedup for 128 cores (AMD SMT) and percentage of increase or decrease of performance, on the ABM and TestU01
applications, comparing SMT enabled or not

ABM time
(minutes)

TestU01 time
(minutes)

% time increase (SMT) ABM
speedup

TestU01
speedup

% increase speedup

ABM TestU01 ABM TestU01

AMD Node-NoSMT Affi 248.42 0.2301
11.8% −28.99%

16.62 56.06
−12.39% 40.62%

AMD Node-SMT Affi 277.74 0.1634 14.56 78.83

AMD NoSMT NoAffi 248.27 0.221
12.02% −25.34%

16.79 55.29
−12.03% 39.6%

AMD Node-SMT NoAffi 278.11 0.1650 14.62 78.26

Testu01-Affinity-Node10 (No HT)
Testu01-NoAffinity-Node10 (No HT)
Testu01-Affinity-Node11 (HT)
Testu01-NoAffinity-Node11 (HT)

30

Sp
ee

du
p

25

20

15

10

5

Number of processors
0 5 10 252015 30

(A1)

SMA-Affinity-Node10 (No HT)
SMA-NoAffinity-Node10 (No HT)
SMA-Affinity-Node11 (HT)
SMA-NoAffinity-Node11 (HT)

Sp
ee

du
p

5

4

3

2

1

Number of processors
0 5 10 252015 30

(B1)

6

32

Sp
ee

du
p

16

8

4

2

1

Number of processors
1 2 4 32168

(A2)

Testu01-Affinity-Node10 (No HT)
Testu01-NoAffinity-Node10 (No HT)
Testu01-Affinity-Node11(HT)
Testu01-NoAffinity-Node11 (HT)
Theoretical linear speedup (y = x)

32
Sp

ee
du

p

16

8

4

2

1

Number of processors
1 2 4 32168

(B2)

SMA-Affinity-Node10 (No HT)
SMA-NoAffinity-Node10 (No HT)
SMA-Affinity-Node11 (HT)
SMA-NoAffinity-Node11 (HT)
Theoretical linear speedup (y = x)

Volume 2 Issue 2|2023| 103 Research Reports on Computer Science

Table 3. Mean time and speedup for 32 cores (Intel HT) and percentage of increase or decrease of performance, on the ABM and TestU01
applications, comparing HT enabled or not

ABM time
(minutes)

TestU01 time
(minutes)

% time increase (HT) ABM
speedup

TestU01
speedup

% increase speedup

ABM TestU01 ABM TestU01

Intel Node-NoHT Affi 178.3 0.25
2.05% −26.8%

6.49 14.46
−2.62% 36.45%

Intel Node-HT Affi 181.95 0.183 6.32 19.73

Intel Node-NoHT NoAffi 178.9 0.257
1.84% −35.02%

6.43 14.08
−1.4% 54.12%

Intel Node-HT NoAffi 182.2 0.167 6.34 21.7

In our previous results, we calculated the average execution time for the entire bag of work using all available
cores (128 and 32). The baseline time for calculating speedup is the execution time of this bag of work on a single core.
We conducted 30 replications, each with 95% confidence intervals. As stated previously, the intervals were too small to
be visually represented on the graphs, indicating that the computing time exhibited low variability in our case. This is
noteworthy, as many studies focus on the variability introduced by SMT usage.

Concerning the results of the DB12 benchmark itself, it shows that core performance gets lower as we increase
the parallelism. Once we reach the full charge on SMT enabled machine, we noticed a difference in performance from
physical and logical cores. The higher the score is, the less performance the processor has. We can clearly see from
Figures 6 and 7 that without SMT enabled, on AMD or on Intel, the CPU performance lightly decrease as we increase
the parallelism. Meanwhile, with SMT enabled, we clearly see the trigger point of doing our computation on logical core
instead of physical cores (at 16 for Intel and at 64 for AMD). For the DB12 benchmark, a logical core is just twice worse
than a physical core.

Figure 6. (A) DB12 CPU score with HT on Intel (32 cores); (B) DB12 CPU score without HT on Intel (32 cores)

Mean CPU score per number of core used, HT + no affinity Intel

32.5

30.0

27.5

25.0

22.5

20.0

17.5

15.0
0 5 10 252015

(A)
30

Mean CPU score per number of core used, no HT + no affinity Intel

0 5 10 252015
(B)

30

17.75

17.50

17.25

17.00

16.75

16.50

16.25

16.00

15.75

Research Reports on Computer Science 104 | Benjamin Antunes, et al.

Figure 7. (A) DB12 CPU score with SMT on AMD (128 cores); (B) DB12 CPU score without SMT on AMD (128 cores)

Secondly, to talk about DB12 reproducibility of the measures, we have checked the mean and the standard deviation
over 30 replications. We then see how many differences we can observe from run to run in exactly the same configuration.
This can of course occur from many CPU benchmarks where we do not expect exactly the same measure. Since time
is measured, the lowest results are better. We can notice that the recent AMD processor is significantly faster than the
older Intel. In addition, we see that the variance is much smaller with the AMD chip. This is shown in Figures 8 and 9 for
respectively AMD and Intel processors.

Figure 8. DB12 CPU scores density function on the AMD processor. The scores are presented on the X axis with the mean and standard deviation on
AMD over 30 replications (128*30 values) (128 cores) – without SMT

Mean CPU score per number of core used, SMT + no affinity AMD
16

15

14

13

12

11

10

9

0 20 40 1008060
(A)

120

Mean CPU score per number of core used, no SMT + no affinity AMD

0 20 40 1008060
(B)

120

9.10

9.05

9.00

8.95

8.90

8.85

8.80

8.75

8.70

Affinity node 34 - 128 process. Mean = 9.146630544354839 and std = 0.0965755000618877
5

4

3

2

1

0
9.0 9.2 9.89.4 9.6

Volume 2 Issue 2|2023| 105 Research Reports on Computer Science

Figure 9. DB12 CPU scores density function on the Intel processor. The scores are presented on the X axis with mean and standard deviation over 30
replications (30*32 values) (32 cores) – without HT

6. Discussion
From the results obtained, there are some hypotheses that we can make. First, on AMD with 128 processes, we can

see that setting the affinity with taskset is not always efficient, particularly when the nodes execute heavy loads on all
cores. Perhaps, optimizing results by considering NUMA nodes and the CPU hardware architecture when setting affinity
might yield better performance. However, it's worth noting that non-expert users are unlikely to possess the knowledge
or capability to implement such optimizations. We can see the loss of time when executing the ABM application, which
is memory bound. Without setting process affinity, we have obtained better speedup when 1 to 32 cores are used for
parallelization. And then, the speedup without affinity is decreasing from 32 to 64 cores. When we took hand on affinity, we
could obtain a constant increase of the speedup with the same pace, with or without SMT up to 64 cores. The performance
without SMT is a little better for this kind of ABM memory bound application. Above 64 cores, we reach approximately
the same plateau. At full charge, SMT did increase the overall time by around 10%. However, the best speedup was
obtained with 32 cores only and without affinity. We used the hwloc software from INRIA [44] to find that, on AMD core,
L1 and L2 cache are duplicated for each physical core (64 KB and 512 KB respectively), so shared between logical ones,
and L3 (16 MB) cache is shared between four physical cores.

Secondly, and most importantly, we can see that for compute bound applications like Pi, DB12 or TestU01, we have
obtained an increase in performance around 30% with SMT. This can be expected according to the HT technology as shown
in [4]. However, for HPC applications with huge memory needs like the ABM we used, simultaneous multi-threading is
less efficient. The main computing difference between ABM and small programs like Pi, DB12 or TestU01 is probably
linked to memory bottlenecks and cache misses. The reason why SMT can lead to a decrease of performance for memory
consuming applications might be that execution resources are shared between the two hyper-threads of a core. This means
that the cache size is halved again this can lead to more cache misses (except for the case of the L1 cache specific to logical
cores but it has a very small size). A case in which it might be beneficial is if the working set sizes (if they are disjoint)
of the two hyper-threads are small enough that they still fit comfortably within the capacity of the caches. Unless the
threads are tightly coupled through sharing, this is unlikely to happen with L1 sizes. In our hypothesis, we get close to the
conclusions of the NASA paper [17] which deals with fluid mechanics application. On one of their applications, they did
not observe a performance gain with SMT because “SMT increases competition for resources in the memory hierarchy,
such as memory bandwidth”. Moreover, SMT performance is affected by increased communication pressure as additional
processes compete for network resources such as IB (InfiniBand) HCA (Host Channel Adapter) chips and IB switches.

Affinity node 10 - 32 process. Mean = 17.589885416666664 and std = 0.32797657340729847

0.4

0.2

0.0

1.6

1.4

1.2

1.0

0.8

0.6

16.75 17.00 17.7517.25 17.50 18.00 18.25 18.50

Research Reports on Computer Science 106 | Benjamin Antunes, et al.

Therefore, we should care about advantages and drawbacks about SMT. We agree that the competition for cache and for
memory in general results in more cache misses, and more bus saturation for realistic HPC memory bound applications,
and not for small cases. It questions the usefulness of SMT on computing clusters since we may run large programs that
will generate memory contentions.

And lastly, about the speedup, we can see that practical applications do not really meet the theoretical expectations.
In fact, for small programs, we can see that the speedup grows quite linearly (around 20/30% slower than linear with
SMT, and 50% without). And with SMT activated, we can see a real benefit since SMT processors are able to approximate
Amdahl’s law as if their logical cores were physical cores [41]. This is a good point for SMT processors. Without SMT,
we can see the expected stagnation of the speedup. Nevertheless, for the ABM application, the speedup curve does not
look like we expected at all. First, we see a negative impact of affinity that might be surprising. In addition, we can see
that the speedup is not only sublinear, but clearly decreases after 32 cores. This difference between theoretical expectation
and experimental value is, in our opinion, because Amdahl’s law is only considering computing power. We should also
consider memory access, and its ratio with the computing power. The result is that increasing computing resources
without taking care of the interconnect, the memory speed, caches, etc., might lead to a real losing situation. We lose
computing time, and we lose energy consumption. As described in [45], we can see that to optimize energy consumption
and computing power ratio, we have to be very careful about associating more computing power to faster memory access.
And we can see here, in our ABM case, increasing computing resources is not only a waste of energy, but also a loss of
time (and more time equals more energy waste). This shows the limitations of Amdahl’s law about estimating speedup
for real HPC programs based on the number of cores when there is a need of a rather large memory per core. Our study
shows the limits in speedup for memory bound problems with and without affinity, with and without SMT. The bias we
might have on this is that the cluster we used is not as optimized as a supercomputer. We also have to keep in mind that
the processors we tested here are built and optimized for SMT. Deactivating SMT on these cores might not lead to optimal
performance. With single threaded cores, results could have been more significant for huge simulations. In fact, SMT is
a cost when we make chips, plus we see now that the tendency is to multiply the number of cores, while decreasing their
own clock speed. By doing this, we put more pressure on other components like memory, bus or interconnect, and they
become the limiting factor. We show that this can affect the performance when we run memory bounded simulations.

7. Reproducing the results
On a purpose of reproducible research, we found it pertinent to add a reproducibility part to this paper. The

original idea to create a “reproducibility” section in a research paper to enhance reproducibility in the writing process
and in the review process comes from [46]. All code, script and data can be found at https://gitlab.isima.fr/beantunes/
simultaneousmultithreading-evaluation.

Two folders: Intel-hpcnodeX-10 and AMD-Node34-40 are providing code and data. The first one contains experiment
done on Intel nodes, and the second one contains experiment done on AMD nodes. In each folder, you will find additional
subfolders: Db12-bench, SMA-Covid, testMonteCarlo, testU01 and mts-0000-9999. The first four folders contain all bash
scripts to run the experiment, the codes and results file. The mts-0000-9999 folder contains all Mersenne Twister statuses
used for repeatable parallel stochastic simulations. There is also a Jupyter Notebook file. This is the one you can use to
reproduce all the results. To redo the experiment from beginning, you would need to run all scripts again to obtain data,
that are analyzed by the Jupyter notebook. We used the script called “runBash.sh” to run them all, with Slurm. You can
make your own choices on how you want to run these scripts and how many replications you want to do. For Db12, the
program is a Python script, so it does not need any compilation. For SMA-Covid, use the command “make” to compile
the project and generate executable. For testMonteCarlo, it is a small C file that needs to be compiled by yourself such
as “gcc calculpi.c –O2 –o exe”. Finally, for TestU01, you will have to follow the instructions given by L’Ecuyer on the
official TestU01 website.

https://gitlab.isima.fr/beantunes/simultaneousmultithreading-evaluation
https://gitlab.isima.fr/beantunes/simultaneousmultithreading-evaluation

Volume 2 Issue 2|2023| 107 Research Reports on Computer Science

8. Conclusions
We tried to answer the following questions: is SMT always effective to increase performance, on modern classical

computing clusters, when used by non-expert users? Is it suitable for HPC and more particularly for stochastic simulations,
which are not solely compute bound? Does the user management of CPU affinity increase performance?

We have shown that knowing if SMT and affinity have a positive impact is not trivial. It depends on many different
variables like the profile of the application we want to run, the architecture of the physical machine, etc. With this paper,
we presented repeatable parallel stochastic simulation results following the method proposed in [31]. Our results can be
reproduced with public access to the artifact. We saw that, for applications with low memory needs, the SMT technology
is still very effective at the large multicore era, with up to 30% performance increase compared to SMT disabled. This
represents an interesting increase up to 10% more performance for compute bound applications when compared to the
initial papers discussing the efficiency of HT/SMT. On the other hand, for applications with large memory needs, we
observe a loss of performance with SMT by around 10%. We bring two hypotheses to explain this: First, when we have
more processes running simultaneously, we can face the limits of the bus bandwidth that results in a bottleneck to access
memory and a loss of time. Secondly, simultaneous multi-threaded cores share 95% of their physical resources, like the
cache memory. Therefore, cache size is halved for logical cores. We can then imagine that it results in more cache misses
for applications in need of a lot of memory.

Nowadays, supercomputers are all configured with simultaneous multi-threading enabled. With this paper, we
discuss the pertinence of that, at an era of dense multicore (up to 256 logical cores on a single CPU). It could become
pertinent to split clusters with different configurations depending on the different application profiles. Further work will
test the performance of this kind of real ABM application on spare cycles of a supercomputer with fast memory access, a
fast interconnect and with larger problems. We might also want to work on the IBM SMT implementation.

Conflict of interest
There is no conflict of interest for this study.

References
[1] Collberg C, Proebsting T. Repeatability in Computer Systems Research. Communications of the ACM. 2016; 59(3):

62-69. https://doi.org/10.1145/2812803
[2] Mesnard O, Barba LA. Reproducible and replicable computational fluid dynamics: it’s harder than you think.

Computing in Science & Engineering. 2017; 19(4): 44-55. https://doi.org/10.1109/MCSE.2017.3151254
[3] Boyer AF. Contributions to Computing needs in High Energy Physics Offline Activities: Towards an efficient

exploitation of heterogeneous, distributed and shared Computing Resources. PhD Thesis. Université Clermont
Auvergne; 2022.

[4] Marr DT, Binns F, Hill DL, Hinton G, Koufaty DA, Miller JA, et al. Hyper-threading technology architecture and
microarchitecture. Intel Technology Journal. 2002; 6(1): 4-15.

[5] Hwu WW, Patt NY. Checkpoint repair for high-performance out-of-order execution machines. IEEE Transactions
on Computers. 1987; 100(12): 1496-1514. https://doi.org/10.1109/TC.1987.5009500

[6] Goldberg D. What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys
(CSUR). 1991; 23(1): 5-48. https://doi.org/10.1145/103162.103163

[7] Lutz DR, Hinds CN. High-precision anchored accumulators for reproducible floating-point summation. In: IEEE
24th Symposium on Computer Arithmetic (ARITH). London, UK: IEEE; 2017. p.98-105. https://doi.org/10.1109/
ARITH.2017.20

[8] Eggers SJ, Emer JS, Levy HM, Lo JL, Stamm RL, Tullsen DM. Simultaneous multithreading: A platform for next-
generation processors. IEEE Micro. 1997; 17(5): 12-19. https://doi.org/10.1109/40.621209

[9] Drummond C. Replicability is not reproducibility: nor is it good science. In: Proceedings of the Evaluation
Methods for Machine Learning Workshop at the 26th ICML. Montreal, Canada: National Research Council of
Canada; 2009.

https://doi.org/10.1145/2812803
https://doi.org/10.1109/MCSE.2017.3151254
https://doi.org/10.1109/TC.1987.5009500
https://doi.org/10.1145/103162.103163
https://doi.org/10.1109/ARITH.2017.20
https://doi.org/10.1109/ARITH.2017.20
https://doi.org/10.1109/40.621209

Research Reports on Computer Science 108 | Benjamin Antunes, et al.

[10] Barba LA. Terminologies for reproducible research. arXiv [Preprint] 2018. Version 1. https://doi.org/10.48550/
arXiv.1802.03311

[11] Association for Computing Machinery (ACM). Artifact Review and Badging – Current. https://www.acm.org/
publications/policies/artifact-review-and-badging-current [Accessed 30th May 2023].

[12] Hinsen K. Reproducibility, replicability, and the two layers of computational science. https://khinsen.wordpress.
com/2014/08/27/reproducibility-replicability-and-the-two-layers-of-computational-science/ [Accessed 30th May
2023].

[13] Rougier NP, Hinsen K, Alexandre F, Arildsen T, Barba LA, Benureau FC, et al. Sustainable computational science:
the ReScience initiative. PeerJ Computer Science. 2017; 3: e142. https://doi.org/10.7717/peerj-cs.142

[14] Leng T, Ali R, Hsieh J, Mashayekhi V, Rooholamini R. An empirical study of hyper-threading in high-performance
computing clusters. In: 3rd LCI International Conference on Linux Clusters: The HPC Revolution 2002. Florida,
USA: Linux Clusters Institute; 2002. p.1-12.

[15] Tuck N, Tullsen MD. Initial observations of the simultaneous multithreading Pentium 4 processor. In: 2003 12th
International Conference on Parallel Architectures and Compilation Techniques. New Orleans, USA: IEEE; 2003.
p.26-34. https://doi.org/10.1109/PACT.2003.1237999

[16] Bulpin RJ, Pratt IA. Multiprogramming performance of the Pentium 4 with simultaneous multi-threading. In:
Second Annual Workshop on Duplicating, Deconstruction and Debunking (WDDD). München, Germany; 2004.
p.53-62. https://doi.org/10.1109/PACT.2003.1237999

[17] Saini S, Jin H, Hood R, Barker D, Mehrotra P, Biswas R. The impact of hyper-threading on processor resource
utilization in production applications. In: 18th International Conference on High Performance Computing.
Bangalore, India: IEEE; 2011. p.1-10. https://doi.org/10.1109/HiPC.2011.6152743

[18] Foong A, Fung J, Newell D. An in-depth analysis of the impact of processor affinity on network performance. In:
Proceedings 12th IEEE International Conference on Networks (ICON). Singapore: IEEE; 2004. p.244-250. https://
doi.org/10.1109/ICON.2004.1409136

[19] Kazempour V, Fedorova A, Alagheband P. Performance implications of cache affinity on multicore processors. In:
European Conference on Parallel Processing. Berlin: Springer; 2008. p.151-161. https://doi.org/10.1007/978-3-
540-85451-7_17

[20] Bordage C, Jeannot E. Process affinity, metrics and impact on performance: An empirical study. In: 18th IEEE/
ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). Washington DC, USA: IEEE;
2018. p.523-532. https://doi.org/10.1109/CCGRID.2018.00079

[21] Bononi L, Bracuto M, D’Angelo G, Donatiello L. Exploring the effects of hyper-threading on parallel simulation.
In: 2006 Tenth IEEE International Symposium on Distributed Simulation and Real-Time Applications. Malaga,
Spain: IEEE; 2006. p.257-260. https://doi.org/10.1109/DS-RT.2006.18

[22] Tikir MM, Carrington L, Strohmaier E, Snavely A. A genetic algorithms approach to modeling the performance
of memory-bound computations. In: SC’07: Proceedings of the ACM/IEEE Conference on Supercomputing. Reno
Nevada, USA: ACM; 2007. p.1-12. https://doi.org/10.1145/1362622.1362686

[23] Gilbert L, Tseng J, Newman R, Iqbal S, Pepper R, Celebioglu O, et al. Performance implications of virtualization
and hyper-threading on high energy physics applications in a grid environment. In: Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium. Denver, USA: IEEE; 2005. p.10. https://doi.
org/10.1109/IPDPS.2005.338

[24] Celebioglu O, Saify A, Leng T, Hsieh J, Mashayekhi V, Rooholamini R. The performance impact of computational
efficiency on HPC clusters with hyper-threading technology. In: Proceedings of the 18th International
Parallel and Distributed Processing Symposium. Sante Fe, USA: IEEE; 2004. p.250. https://doi.org/10.1109/
IPDPS.2004.1303311

[25] Osborne SH, Bakita JJ, Anderson JH. Simultaneous multithreading applied to real time. Dagstuhl Artifacts Series.
2019; 5(1): 8:1-8:2. https://doi.org/10.4230/DARTS.5.1.8

[26] Bakita J, Ahmed S, Osborne SH, Tang S, Chen J, Smith FD, et al. Simultaneous multithreading in mixed-criticality
real-time systems. In: IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS).
Nashville, USA: IEEE; 2021. p.278-291. https://doi.org/10.1109/RTAS52030.2021.00030

[27] Osborne SH, Ahmed S, Nandi S, Anderson JH. Exploiting simultaneous multithreading in priority-driven

https://doi.org/10.48550/arXiv.1802.03311
https://doi.org/10.48550/arXiv.1802.03311
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://khinsen.wordpress.com/2014/08/27/reproducibility-replicability-and-the-two-layers-of-computational-science/
https://khinsen.wordpress.com/2014/08/27/reproducibility-replicability-and-the-two-layers-of-computational-science/
https://doi.org/10.7717/peerj-cs.142
https://doi.org/10.1109/PACT.2003.1237999
https://doi.org/10.1109/PACT.2003.1237999
https://doi.org/10.1109/HiPC.2011.6152743
https://doi.org/10.1109/ICON.2004.1409136
https://doi.org/10.1109/ICON.2004.1409136
https://doi.org/10.1007/978-3-540-85451-7_17
https://doi.org/10.1007/978-3-540-85451-7_17
https://doi.org/10.1109/CCGRID.2018.00079
https://doi.org/10.1109/DS-RT.2006.18
https://doi.org/10.1145/1362622.1362686
https://doi.org/10.1109/IPDPS.2005.338
https://doi.org/10.1109/IPDPS.2005.338
https://doi.org/10.1109/IPDPS.2004.1303311
https://doi.org/10.1109/IPDPS.2004.1303311
https://doi.org/10.4230/DARTS.5.1.8
https://doi.org/10.1109/RTAS52030.2021.00030

Volume 2 Issue 2|2023| 109 Research Reports on Computer Science

hard real-time systems. In: IEEE 26th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). Gangnueng, South Korea: IEEE; 2020. p.1-10. https://doi.org/10.1109/
RTCSA50079.2020.9203575

[28] Chen Y, Shi Q, Li X. CSSMT: Compiler based software simultaneous multithreading (SMT). In: 26th Euromicro
International Conference on Parallel, Distributed and Network-based Processing (PDP). Cambridge, UK: IEEE;
2018. p.60-67. https://doi.org/10.1109/PDP2018.2018.00017

[29] Ide Y, Yamasaki N. A learning-based fetch thread gating mechanism for a simultaneous multithreading processor.
In: Eighth International Symposium on Computing and Networking (CANDAR). Naha, Japan: IEEE; 2020. p.1-10.
https://doi.org/10.1109/CANDAR51075.2020.00011

[30] Hoo KC, Ee OS, Yin TS. Effect of simultaneous multithreading towards the performance of cloud workloads. In:
Embedded World Conference 2022. Haar, Germany: WEKA FACHMEDIEN GmbH; 2022. p.23-26.

[31] Hill D, Passerat-Palmbach J, Mazel C, Traore MK. Distribution of random streams for simulation practitioners.
Concurrency and Computation: Practice and Experience. 2013; 25(10): 1427-1442. https://doi.org/10.1002/
cpe.2942

[32] Jin X, Zhou Y, Huang B, Yu Z, Zhan X, Wang H, et al. QoSMT: supporting precise performance control
for simultaneous multithreading architecture. In: Proceedings of the ACM International Conference on
Supercomputing. Phoenix Arizona, USA: ACM; 2019. p.206-216. https://doi.org/10.1145/3330345.3330364

[33] Zhang Y, Laurenzano MA, Mars J, Tang L. Smite: Precise QoS prediction on real-system SMT processors to
improve utilization in warehouse scale computers. In: 47th Annual IEEE/ACM International Symposium on
Microarchitecture. Cambridge, UK: IEEE; 2014. p.406-418. https://doi.org/10.1109/MICRO.2014.53

[34] Rosenthal E, León EA, Moody AT. Mitigating system noise with simultaneous multi-threading. [Poster] SC’13:
The International Conference on High Performance Computing, Networking, Storage and Analysis. 20th-21st
November 2013. https://sc13.supercomputing.org/sites/default/files/PostersArchive/post275.html

[35] Matsumoto M, Nishimura T. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS). 1998; 8(1): 3-30. https://
doi.org/10.1145/272991.272995

[36] Passerat-Palmbach, J, Caux J, Siregar P, Mazel C, Hill D. Warp-level parallelism: enabling multiple replications in
parallel on GPU. In: European Simulation and Modelling Conference. Guimaraes, Portugal: EUROSIS-ETI; 2011.
p.76-83.

[37] L’ecuyer P, Simard R. TestU01: AC library for empirical testing of random number generators. ACM Transactions
on Mathematical Software (TOMS.) 2007; 33(4): 1-40. https://doi.org/10.1145/1268776.1268777

[38] Hill D, Antunes B. Reproductibilité et modèles Covid-un modèle multi-agents. In: Journées DEVS Francophones-
Convergences entre la Théorie de la Modélisation et de la Simulation et les Systèmes multi-agents. Cargèse,
France: Cépaduès; 2022. https://hal.uca.fr/hal-03768175v1

[39] Wulf WA, McKee S. Hitting the memory wall: Implications of the obvious. ACM SIGARCH Computer Architecture
News. 1995; 23(1): 20-24. https://doi.org/10.1145/216585.216588

[40] Boyer AF, Haen C, Stagni F, Hill D. Porting DIRAC Benchmark to Python3: impact of the discrepancies and
solutions. In: Proceedings of the 41st International Conference on High Energy physics. Bologna, Italy: PoS; 2022.
p.1-4. https://hal.uca.fr/hal-04045256

[41] Amdahl GM. Validity of the single processor approach to achieving large scale computing capabilities. In:
Proceedings of the spring joint computer conference. Atlantic City, USA: ACM; 1967. p.483-485. https://doi.
org/10.1145/1465482.1465560

[42] Hill D. Numerical reproducibility of parallel and distributed stochastic simulation using high-performance
computing. In: Traoré MK. (ed.) Computational Frameworks. London, UK: Elsevier; 2017. p.95-109. https://doi.
org/10.1016/B978-1-78548-256-4.50004-1

[43] Hill D. Parallel random numbers, simulation, and reproducible research. Computing in Science & Engineering.
2015; 17(4): 66-71. https://doi.org/10.1109/MCSE.2015.79

[44] Broquedis F, Clet-Ortega J, Moreaud S, Furmento N, Goglin B, Mercier G, et al. hwloc: A generic framework
for managing hardware affinities in HPC applications. In: Proceedings of the 18th Euromicro Conference on
Parallel, Distributed and Network-based Processing. Pisa, Italy: IEEE; 2010. p.180-186. https://doi.org/10.1109/

https://doi.org/10.1109/RTCSA50079.2020.9203575
https://doi.org/10.1109/RTCSA50079.2020.9203575
https://doi.org/10.1109/PDP2018.2018.00017
https://doi.org/10.1109/CANDAR51075.2020.00011
https://doi.org/10.1002/cpe.2942
https://doi.org/10.1002/cpe.2942
https://doi.org/10.1145/3330345.3330364
https://doi.org/10.1109/MICRO.2014.53
https://sc13.supercomputing.org/sites/default/files/PostersArchive/post275.html
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/1268776.1268777
https://hal.uca.fr/hal-03768175v1
https://doi.org/10.1145/216585.216588
https://hal.uca.fr/hal-04045256
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1016/B978-1-78548-256-4.50004-1
https://doi.org/10.1016/B978-1-78548-256-4.50004-1
https://doi.org/10.1109/MCSE.2015.79
https://doi.org/10.1109/PDP.2010.67

Research Reports on Computer Science 110 | Benjamin Antunes, et al.

PDP.2010.67
[45] Szalay AS, Bell G, Huang HH, Terzis A, White A. Low-power amdahl-balanced blades for data intensive computing.

ACM SIGOPS Operating Systems Review. 2010; 44(1): 71-75. https://doi.org/10.1145/1740390.1740407
[46] Bajpai V, Kühlewind M, Ott J, Schönwälder J, Sperotto A, Trammell B. Challenges with reproducibility.

In: Proceedings of the Reproducibility Workshop. Los Angeles, USA: ACM; 2017. p.1-4. https://doi.
org/10.1145/3097766.3097767

https://doi.org/10.1109/PDP.2010.67
https://doi.org/10.1145/1740390.1740407
https://doi.org/10.1145/3097766.3097767
https://doi.org/10.1145/3097766.3097767

