Identifying Quality Mersenne Twister Streams For Parallel Stochastic Simulations - Université Clermont Auvergne
Communication Dans Un Congrès Année : 2023

Identifying Quality Mersenne Twister Streams For Parallel Stochastic Simulations

Résumé

The Mersenne Twister (MT) is a pseudo-random number generator (PRNG) widely used in High Performance Computing for parallel stochastic simulations. We aim to assess the quality of common parallelization techniques used to generate large streams of MT pseudo-random numbers. We compare three techniques: sequence splitting, random spacing and MT indexed sequence. The TestU01 Big Crush battery is used to evaluate the quality of 4096 streams for each technique on three different hardware configurations. Surprisingly, all techniques exhibited almost 30% of defects with no technique showing better quality than the others. While all 106 Big Crush tests showed failures, the failure rate was limited to a small number of tests (maximum of 6 tests failed per stream, resulting in over 94% success rate). Thanks to 33 CPU years, high-quality streams identified are given. They can be used for sensitive parallel simulations such as nuclear medicine and precise high-energy physics applications.
Fichier principal
Vignette du fichier
WSC con204s3 HAL v(dh).pdf (481.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04426829 , version 1 (30-01-2024)

Licence

Identifiants

  • HAL Id : hal-04426829 , version 1

Citer

Benjamin A. Antunes, Claude Mazel, David R.C. Hill. Identifying Quality Mersenne Twister Streams For Parallel Stochastic Simulations. Winter Simulation Conference 2023, Dec 2023, San Antonio, United States. ⟨hal-04426829⟩
26 Consultations
49 Téléchargements

Partager

More