
HAL Id: hal-04402910
https://uca.hal.science/hal-04402910v1

Submitted on 18 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Secure Multihop Key Establishment Protocols for
Wireless Sensor Networks

Ismail Mansour, Pascal Lafourcade, Gérard Chalhoub

To cite this version:
Ismail Mansour, Pascal Lafourcade, Gérard Chalhoub. Secure Multihop Key Establishment Protocols
for Wireless Sensor Networks. Cryptography and Security Systems. CSS 2014., 448, Springer, pp.166-
177, 2014, Lecture Notes in Computer Science, 978-3-662-44892-2. �10.1007/978-3-662-44893-9_15�.
�hal-04402910�

https://uca.hal.science/hal-04402910v1
https://hal.archives-ouvertes.fr


Secure Multihop Key Establishment Protocols

for Wireless Sensor Networks

Ismail Mansour, Gérard Chalhoub and Pascal Lafourcade

LIMOS, Clermont University, Campus des Cézeaux, Aubière, France

Abstract. Designing secure communication protocols is not an easy
task. Cryptography is often necessary but does not always guarantee
the security of protocols as several famous examples attest in the litera-
ture. Moreover, in the context of Wireless Sensor Networks (WSNs) the
design is even more difficult due to the limited resources of sensor nodes
that add extra constraints to take into account. During the life time of
a secure WSN, one of the first crucial steps is the key establishment
between two nodes. In this paper we propose four secure multihop key
establishment protocols based on elliptic curve cryptography (ECC). For
each protocol, we make a formal security proof using the automatic tool
Scyther. Then, in order to evaluate their performances, we implemented
them on testbeds using TelosB motes and TinyOS. Results allow us to
estimate the overhead of our key establishment methods.
Keywords: Authentication, key establishment, Wireless Sensor Net-
work, Security, Multihop, Formal Verification.

1 Introduction

Due to the technological advances, Wireless Sensor Networks (WSNs) are
more and more used in diverse applications. In the first age of WSNs,
the main concern was to efficiently transmit the data to the destina-
tion using wireless communications. Only few applications, like military
WSN examples, required a high level of security [7]. In this context, it is
important to design secure efficient communication mechanisms between
nodes of the network, using cryptography.
Moreover, with the expansion of the Internet of Things (IoT) more and
more devices will be interconnected and monitoring critical human ac-
tivities. For instance nowadays most of the smart phones have a GPS,
a camera, and several sensors. In a close future our environment will be
equipped with several sensors in order to collect data to inform the user.
In this context the knowledge of this data can leak private information,
one solution to avoid this is to use cryptography in order to preserve
privacy of the users. One of the first steps in this situation is to design
secure multihop key establishment protocols. This is the main motivation
of this paper.

Contributions:

Our goal is to design several secure key establishment protocols for WSNs
and to evaluate their performances on real nodes. Hence our contribu-
tions can be split in three points:



– Design of key establishment protocols based on ECC.
– Formal security analysis of the protocols.

– Evaluation on TelosB testbeds of the execution time of each solution.

All our protocols are based on Elliptic Curve Cryptography (ECC) with
a key of 160 bits. We propose a first protocol called MKES . It allows
nodes that already share a key with the sink to establish a new secret key.
The idea is to use the sink as a kind of third trusted party to establish a
new key. In addition, we propose an improvement of this protocol called
MKES − light. In this version, the sink performs costly computation
instead of the nodes, since in many situations the sink has no limited
battery and more computation power than nodes of the WSN. We also
give two other protocols that establish a secret key between two nodes
without passing by the sink. The first one is called MKENK , it uses
only the network key shared between all the authenticated nodes in the
network. This authentication phase can be done for instance using one
of the protocols proposed in [10]. The second protocol is called MKEK ,
also it does not use the sink, but it uses the symmetric keys shared
between neighbor nodes. In order to guarantee the authentication of
nodes involved, this protocol only requires two flows of messages instead
of three as it is the case for the protocol MKENK .
In order to prove the security of all these protocols, we used Scyther
an automatic cryptographic protocol verification tool developed by Cas
Cremers. It is easy to propose a flawed protocol, this tool helps to verify
the correctness of the security protocol and make sure that it resists
against several kinds of attacks. Each of our solutions uses a different
approach to securely establish a new secret key, they vary according to
the number of cryptographic operations involved and the trust level that
we need to have in the network nodes.
Our last contribution is the implementation on real nodes of all our
protocols. Our aim is to measure the execution time of each protocol,
but also to compare them in order to be able to judge which one is the
most suitable.

Related Work:

Many contributions have been made in the key establishment and sym-
metric key distribution in WSNs. Some of them are based on a proba-
bilistic predistribution that guarantees that any two nodes in the network
are able to share a key with a certain probability, and others are deter-
ministic but cause more storage overhead [1]. One of the most known
symmetric key systems that were proposed for wireless sensor networks
is SPINS (Security Protocols for Sensor Networks) [13] which uses a
simplified version of TESLA (Timed, Efficient, Streaming, Loss-tolerant
Authentication) protocol [12]. In SPINS, the base station plays an es-
sential role in the key establishment process. It is a lightweight protocol
but suffers from scalability and high dependency on the base station.
Authors in [11] proposed a multi-hop key establishment between nodes
called Micro-PKI. Their method is based on the pre-distribution of the
public key of the base station. Using this public key, every node is able

2



to create a secret key with any other node of the network. The authenti-
cation process in this proposal is only dependent on the public key of the
base station, if a node has this key, it is considered authenticated. This
makes the procurement of this public key very critical on which depends
the whole security architecture.

In [3], authors proposed PIKE, peer intermediaries for key establishment,
one of the most famous key establishment protocols that is not dependent
on a central trusted node. According to PIKE, keys are pre-deployed in
the nodes in such a way to guarantee that any two nodes in the network
have at least one node in common with which each one of the two nodes
has a secret key with it. Therefor, these two nodes are able to establish
a secret key by using the trusted channel established with the common
node. PIKE suffers from high memory storage to make sure that nodes
are able to find at least one node in common to establish a new key.

CARPY and CARPY+ were proposed in [15]. They are based on the
symmetric keys of Blom [2] with a perturbation function that makes
more difficult for an attacker to guess the pairwise keys. In their paper
they discuss the five criteria that were proposed in [16] and claim that
CARPY+ satisfies all of them. These criteria are: Resilience to the Ad-

versary’s Intervention during the key establishment phase, Directed and
Guaranteed Key Establishment for any couple of nodes in the network,
Resilience to Network Configurations nodes should be able to establish
keys in any kind of network topology, Efficiency of the key establishment
process in terms of memory storage, communication overhead and com-
plexity, Resilience to Dynamic Node Deployment which allows nodes to
be added at any time to the network and enabling them to establish keys.
The main weakness of this scheme is the lack of a rekeying process. The
preshared matrices will only help to create one pairwise key for every
couple of nodes.

Table 1 summarizes a comparison between the related work schemes and
our proposition. The comparison is based on some repudiated criterias
in WSN area. As the table shows, Yu et al. scheme [15] is the closest one
to our schemes. Nevertheless, the authors use TelosB motes to evaluate
energy consumption of basic operations used in their schemes and they
provide a large scale simulation for thousands of nodes based on these
measurements.

Proposed scheme
Pre-

distribution
Trusted
Party

Cryptographic
technique Simulation

Implemen-
tation Verification

Perrig et al.,
2000[12], 2002[13] yes Base station symmetric JAVA none manual
Chan et al., 2005[3] yes Base station symmetric yes none manual
Yu et al., 2009[15] yes none symmetric none TelosB manual
Munivel et al.,

2010[11] yes Base station
symmetric/
asymmetric manual none none

Our schemes yes Base station
symmetric/
asymmetric none TelosB automatic

Table 1: Comparison of related work schemes.

3



In this paper, we did not compare our time execution results with other
protocols from the state of the art because implementations are hard-
ware and system dependent. In addition, they can be optimized for cer-
tain platforms which makes the comparison unfair using different plat-
forms and cryptographic primitives. Finally the main difference with
other works is that we formally prove the security of all our protocols
using the automatic verification tool Scyther [4].

Outline:

In the next section, we introduce the notations used and present four
key establishment protocols. Then, in Section 3, we give the results of
our implementation on TelosB motes. Finally, we conclude in the last
section.

2 Multi-hop Key Establishment Protocols

In our evaluation testbed, we used public keys based on Elliptic Curve
Cryptography (ECC), using parameters secp160r1 given by the Stan-
dards for Efficient Cryptography Group [14]. Our implementation of ECC
on TelosB is based on TinyECC library [8]. More precisely we used the
Elliptic Curve Diffie-Hellman (ECDH) key agreement scheme [5]. For all
symmetric encryption/decryption we use an optimized implementation
of AES with a key of 128 bits proposed by [9].
Note that we only use the public keys in order to establish symmetric
keys without doing any asymmetric encryption or decryption operations.
Indeed, it helps us establish a pairwise key without interaction between
nodes thanks to the predistribution of public keys before the deployment.
Before deployment, each nodeN knows the public key pk(S) of the sink S

and also its own pair of private and public keys, denoted (pk(N), sk(N))
respectively. Based on ECC, we have that pk(N) = sk(N) × G, where
G is a generator point of the elliptic curve. Using this material, each
node N can compute a shared key with the sink S using a variation of
the Diffie-Hellman key exchange without interaction between the nodes,
denoted KDH(N,S). These computations can be done by the sink and
by all nodes before deployment in order to preserve their energy.
– The sink knows its own secret key sk(S) and the public key pk(N)

of a node N . The sink computes KDH(N,S) = sk(S)× pk(N).
– Node N multiplies his secret key sk(N) by the public key of the sink

pk(S) to get KDH(N,S).
Both computations give the same shared key since:

KDH(N,S) = sk(N) × pk(S)

= sk(N) × (sk(S)×G)

= (sk(N) ×G)× sk(S)

= pk(N)× sk(S)

Notations

In what follows, we use the following notations to describe exchanged
messages in our protocols:

4



– I : a new node that initiates the protocol,
– R: a neighbour of node I ,
– S: the sink of the network (also called base station),
– Ji: the i-th intermediate node between R and S,

– nA: a nonce generated by node A,
– pk(A): the public key of node A,
– sk(A): the secret (private) key of node A,
– K(I, S): the session key between I and S,
– NK: the symmetric network key between all nodes of the network,
– KDH(N, S): the shared symmetric key between N and S using the

Diffie-Hellman key exchange without interaction described above,
– {x}k: the encryption of message x with the symmetric or asymmetric

key k.

In all the figures that describe our protocol, we denote a direct communi-
cation by an arrow between two nodes, and a communication passing by
several possible intermediate nodes by a dotted arrow. We also explicit
above each exchanged message the size in Bytes.

Protocols with Intervention of the Sink

Our aim is to establish a shared key between any two authenticated
nodes I and R of the network (not necessary in range). We propose two
protocols, called MKES and MKES − light. Protocol MKES , depicted
in Figure 1, uses the secure channels created between the sink and each
node to communicate the public keys of I and R. Notice that in our
context the sink knows all the public keys of all nodes and a node only
knows its public key and the public of the sink. The initiator node I

builds a request containing the identity of node R and a nonce nI . This
request is encrypted with KDH(I, S) and sent to S. The sink S sends:

– to I , the identity of R, a nonce nS , the public key of R encrypted
with the shared symmetric key KDH(I, S),

– to R, the identity of I , the same nonce nS , the nonce nI received
from I and the public key of I encrypted with the shared symmetric
key KDH(S,R).

Once these two messages received by I and R, the two nodes are able to
compute KDH(I,R) as follows:

– Node I computes sk(I)× pk(R) = sk(I)× sk(R)×G = KDH(I,R).
– Node R computes sk(R)× pk(I) = sk(R)× sk(I)×G= KDH(I,R).

To ensure mutual authentication of R and I , node R generates a nonce
nR, then uses KDH(I,R) to encrypt its own identity, the two received
nonces from S plus its nonce nR. This cipher is sent to I , without neces-
sary passing by S. Finally, node I verifies that the received nonce from
R is the same as the one sent by the sink. Then it confirms that it cor-
rectly received the message by sending to R its own identity and the two
nonces nS and nR, encrypted with KDH(I,R).
Notice that the computation of the new key KDH(I,R) can be done by
the sink in order to save some computations on nodes R and I . This
version called MKES − light is depicted in Figure 2.

5



Sink

S

Initiator

I

Responder

R

{R,nI}KDH (I,S)

5B

{R,nS, pk(R)}KDH(I,S)

45B

{I, nS , nI , pk(I)}KDH(S,R)

49B

KDH(I, R)

{R,nS , nI , nR}KDH (I,R)

13B

KDH(I, R)

{I, nS , nR}KDH (I,R)

9B

Fig. 1: MKES : Multihop Key Establishment using the sink S to deliver
public keys. KDH(I,R) is computed by the initiator I and the responder
R.

Sink

S

Initiator

I

Responder

R

{R,nI}KDH (I,S)

5B

KDH(I, R)

{R, nS ,KDH(I, R)}KDH (I,S)

21B

{I, nS, nI ,KDH(I, R)}KDH (S,R)

25B

{R,nS , nI , nR}KDH (I,R)

13B

{I, nS , nR}KDH (I,R)

9B

Fig. 2: MKES − light: Multihop Key Establishment using the sink S to
computes and delivers KDH(I,R) to initiator and responder nodes.

6



Protocols without intervention of the Sink

In order to avoid exhausting nodes situated near the sink, we propose
two protocols, called MKENK and MKEK , that do not need the in-
tervention of the sink in the key establishment process. The protocol
MKENK , depicted in Figure 3, uses the network key NK allowing the
initiator node I and the responder R to exchange their public key. The
initiator node I builds a request containing his own identity and a nonce
nI . This request is encrypted with NK and sent to R. After decrypt-
ing this request, the responder R is able to extract pk(I) and compute
KDH(I,R). In order to ensure mutual authentication of R and I , node R
generates a nonce nR, then uses KDH(I,R) to encrypt the received nonce
from I and its nonce nR. Then, node R builds the response message in-
cluding this cipher and his own public key pk(R). The response message
is encrypted using NK and sent to the initiator I . After decrypting the
response message, node I extracts pk(R) and computes KDH(I,R). Us-
ing this key, I decrypts the two nonces nI and nR. After verifying the
nonce nI , node I builds a reply message containing nR, encrypted with
KDH(I,R). Finally, node R verifies that the received nonce nR from I

is the same as the one it originally sent.

Initiator

I

Intermediate nodes

J0:k

Responder

R

{nI , pk(I)}NK

44B {nI , pk(I)}NK

44B

KDH(I, R)

{pk(R), {nI , nR}KDH (I,R)}NK

48B{pk(R), {nI , nR}KDH (I,R)}NK

48B

KDH(I, R)

{nR}KDH (I,R)

4B {nR}KDH (I,R)

4B

Fig. 3: MKENK : Multihop Key Establishment using the network key NK.
No encryption/decryption operations on intermediate nodes.

We note that the use of NK to exchange public keys between nodes I

and R can be useful when the initiator I is in the neighborhood of R.
Indeed, node I sends directly its request to node R without the need of
intermediate nodes to forward its request. Since the network key NK is
known by all nodes before deployment, the protocol MKENK may suffer

7



from man-in-the-middle attack when an intruder is able to recover NK

by capturing any node in the network for example. In what follows, we
describe the scenario of such attack.
An intruder, denoted E, captures a previously authenticated node N in
the network and compromises the network key. Node E intercepts the
request sent from I to R, decrypts the request and builds an intruder
request instead by replacing the nonce nI by its own nonce nE and pk(I)
by pk(E). Node E encrypts this new request using NK and sends it to R.
Node R decrypts the request, extracts pk(E) and computes KDH(R,E).
The response message to E becomes {pk(R), {nE , nR}KDH (E,R)}NK .
Upon reception, node E decrypts the response message with NK, extract
pk(R) and computes KDH(R,E). Node E uses the key computed to de-
crypt the nonce nR and sends it back to R encrypted with KDH(R,E).
In order to finish his attack, node E builds a response message {pk(E),-
{nI , nE}KDH (E,I)}NK and sends it to node I . Using pk(I), which was
extracted from the request originally sent by I , node E is able to com-
pute KDH(E, I). Upon reception, the initiator I decrypts the received
response using NK, computes KDH(E, I) and replies with nE encrypted
with KDH(E, I).
In order to make the key establishment more resilient to node capture,
we propose another protocol, called MKEK that uses sessions keys pre-
viously established with common neighbors in order to establish new
keys. The protocol MKEK , depicted in Figure 4, uses the session keys
established with common neighbors, denoted intermediate nodes J1 : k,
in order to share a new key between an initiator I and a responder R.
We assume that the trusted path from I to R is determined by a routing
mechanism. Unlike the protocol MKENK , nodes J1 : k are involved in
the key establishment, they decrypt, modify and encrypt the exchanged
messages between nodes I and R instead of just forwarding.

Initiator

I

Intermediate nodes

J1:k

Responder

R

{I, nI , pk(I)}K(I,J1:k)

45B {I, nj , pk(I)}K(J1:k,R)

45B

KDH(I, R)

{nj , pk(R), {KDH(I,R)}KDH(I,R)}K(J1:k,R)

60B{nI , pk(R), {KDH(I,R)}KDH (I,R)}K(I,J1:k)

60B

KDH(I, R)

Fig. 4: MKEK : Multihop Key Establishment using session keys. Encryp-
tion/decryption on every intermediate node.

Indeed, each intermediate node Jj , (j = 1, ..., k), extracts only the nonce
from the request of the initiator I and replaces it by its own nonce

8



nj . Upon the reception of a response message sent by the responder R,
node Jj recovers and verifies its nonce nj and replies with the nonce
extracted previously from the request. The adding of nonces nj at each
hop helps to authenticate intermediate nodes. Note that KDH(I,R) is
used as a common nonce between nodes I and R to ensure the mutual
authentication between of I and R. Also, it should be noted that the
protocol MKEK can only be used if nodes I and R have at least one
common neighbor.

3 Results

We prove the correctness of all our protocols automatically using Scyther
a tool for the automatic verification of security protocols. Cas Cremers
has developed an automatic tool called Scyther [4]. It is a free tool avail-
able on all operating systems (Linux, Mac and Windows). This tool can
automatically find attacks on cryptographic protocols and prove their
security for bounded and unbounded numbers of sessions. One main ad-
vantage of Scyther is that it provides an easy way to model security
properties like secrecy and authentication. This tool abstract the cost of
the communications and the execution times of each cryptographic oper-
ation. Scyther uses the Dolev-Yao intruder model [6]. In this model, the
intruder controls the network and all communications pass through it.
Which means that all packets can be captured by the intruder. Moreover
the intruder has its own public and private pair of keys. Thus, it is able
to play the role of any participant in the protocol. It can also encrypt
messages with all public or symmetric keys that it knows and decrypts
cipher-texts only if it knows the decryption key.
In Table 2, we present the execution time for our protocols using TelosB
which are very limited in calculation resources and are used as a base
for comparison between the different protocols and not for obtaining the
best results in terms of performance. Notice that these results are done
with the minimum required cryptographic operations necessary to realize
each protocol. For example, the evaluation of MKES , MKES − light,
and MKENK is done without intermediate nodes between node I and R.
Indeed, the intermediate nodes are just forwarding the messages between
I and R. In contrast, we evaluated MKEK with one intermediate node
between nodes I and R due to the necessity of one common neighbor
node to use the session keys established with this neighbor.
Note that MKES − light is the most efficient of all protocols. Indeed,
the computation of new shared keys are done by nodes I and R in all
protocols except MKES − light where only the sink S is doing this com-
putation. So MKES − light is very suitable for protocols where the sink
has more capacities than the sensor nodes. We note that the computa-
tion of new keys according to ECDH without interaction is about 3.2
seconds. This time consumption has a clear effect on the execution time
of protocols.
While the number of computation of new keys are equal in the MKES,
MKENK and MKEK , MKEK differs from MKES and MKENK by
the decryption/encryption operations done by intermediate nodes. In-
deed, the difference is more than 400ms per each intermediate node.

9



Protocol name
Time

with S (ms)
Time

without S (ms) Gain
Standard

deviation (ms)
MKES 6888.15 6625.94 4% 5.81

MKES − light 3679.30 365.85 90% 5.02
MKENK 6853.26 6853.26 0% 5.01
MKEK 7434.95 7434.95 0% 3.44

Table 2: Execution times of all protocols.

In addition, MKES and MKENK have almost the same cryptographic
operations which is why their execution times are very close. We can
expect that the protocol MKES is more suitable when nodes I and R

are next to the sink while the protocol MKENK is more suitable when
these nodes are too far from the sink. So in a given topology, nodes
should be able to execute the protocol that is less consuming according
to their positions relative to the sink.

4 Conclusion

In this paper, we proposed different methods for establishing a secret key
between two authenticated nodes in a WSN. We presented and validated
two protocols that enables authenticated nodes to establish a common
key in a multihop manner with the intervention of the sink or the base
station of the WSN.

In order to avoid exhausting nodes that are located near the sink with the
key establishment requests, we proposed two protocols that allow nodes
to establish secret keys without the intervention of the sink MKENK

and MKEK . These latter protocols are based on the fact that nodes
can use the network key to exchange key establishment messages or use
previously established session keys on each hop.

Depending on the type of keys that are used and the intervention of the
sink, the resiliency of the protocol against intruder attacks is different.
The most vulnerable protocol is the one that uses the network key with-
out the intervention of the sink MKENK , but it is the fastest one. The
most secure protocols are MKES and MKES − light, but they exhaust
nodes that are near the sink and might take longer routes to reach the
sink compared to MKENK and MKEK .

In our future work, we plan on evaluating the performance of each of
these protocols with the presence of intermediate nodes between nodes
that are establishing a new key, and between these nodes and the sink
as well. Depending on the network topology, a trade-off might arise and
we might need to make these protocols available at the same time and
to be used according the relative positions of the involved nodes.

10



References

1. S. Bala, G. Sharma, and A. Verma. Classification of symmetric
key management schemes for wireless sensor networks. International
Journal of Security and Its Applications, 7, 2013.

2. R. Blom. An optimal class of symmetric key generation systems. In
International Conference on the Theory and Applications of Crypto-

graphic Techniques, 1984.

3. H. Chan and A. Perrig. Pike: Peer intermediaries for key estab-
lishment in sensor networks. In INFOCOM, pages 524–535. IEEE
Computer Society, 2005.

4. C. Cremers. The Scyther Tool: Verification, falsification, and analy-
sis of security protocols. In Computer Aided Verification, 20th Inter-

national Conference, CAV 2008, Proc., volume 5123/2008 of Lecture
Notes in Computer Science, pages 414–418. Springer, 2008.

5. W. Diffie and M. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, 22:644–654, 1976.

6. D. Dolev and A. C. Yao. On the security of public key protocols.
In Proceedings of the 22Nd Annual Symposium on Foundations of

Computer Science, SFCS ’81, pages 350–357, 1981.

7. M. A. Hussain, P. Khan, and K. K. Sup. Wsn research activities for
military application. In Proceedings of the 11th international con-

ference on Advanced Communication Technology-Volume 1, pages
271–274. IEEE Press, 2009.

8. A. Liu and N. Ning. Tinyecc: A configurable library for elliptic
curve cryptography in wireless sensor networks. In 7th International

Conference on Information Processing in Sensor Networks, pages
245–256, April 2008.

9. N. Manica, M. Saloni, and P. Toldo. WSN - secure comunications
with AES algoritms. University of Trento - Faculty of Computer
Science, 2008.

10. I. Mansour, D. Rusinek, G. Chalhoub, P. Lafourcade, and
B. Ksiezopolski. Multihop node authentication mechanisms for wire-
less sensor networks. In 13th International Conference, ADHOC-

NOW 2014, Lecture Notes in Computer Science. Springer, 2014.

11. E. Munivel and G. Ajit. Efficient public key infrastructure implemen-
tation in wireless sensor networks. In International Conference on

Wireless Communication and Sensor Computing, pages 1–6, 2010.

12. A. Perrig, R. Canetti, J. Tygar, and D. Song. Efficient authentica-
tion and signing of multicast streams over lossy channels. In IEEE

Symposium on Security and Privacy, April 2000.

13. A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. Culler. SPINS:
Security protocols for sensor networks. Wireless Networks, 2002.

14. C. Research. Standards for efficient cryptography, sec 1: Elliptic
curve cryptography, September 2000.

15. C. Yu, C. Lu, and S. Kuo. A simple non-interactive pairwise key
establishment scheme in sensor networks. In IEEE International

Conference on Sensing, Communication, and Networking, SECON,
2009.

11



16. W. Zhang, M. Tran, S. Zhu, and G. Cao. A random perturbation-
based scheme for pairwise key establishment in sensor networks. In
ACM International Symposium on Mobile Ad Hoc Networking and

Computing, MobiHoc, 2007.

12


